Date of Conferral

2019

Degree

Ph.D.

School

Public Health

Advisor

Shanna Barnett

Abstract

Tularemia is a vector-borne disease of global concern with diverse regional foci. Arkansas is an endemic state with differences in case distribution and land suitability supporting host and vector sustainment. The aim of this study was to conduct a geospatial and spatiotemporal assessment of factors associated with case distribution and timeliness and completeness of public reporting. Guided with direction from spatial epidemiology and nidality, referring to the association of ecology, climate, and proximity of disease, analysis included secondary data collected from the Arkansas Department of Health between 1995 and 2018. Using Poisson-based software, 2 clusters were found: a high-risk cluster encompassing 23% of the total population within 24 counties spanning an 8-year period (RR = 4.98, p < 0.05), and a low risk cluster that included 25% of the population within 28 counties during a 12-year period (RR 0.14, p < 0.05). Analysis of ecological data revealed associations between annual precipitation within the high-risk cluster and total number of cases (AUC = 0.716 and AUC = 0.726, respectively) with trends toward higher incidence rates in suitable land cover and moderate to high elevation using maximum entropy software. Analysis of timeliness and completeness revealed gaps for clinical form and transmission mode determination (p < 0.05), while increases in probable cases followed decreases in confirmed cases revealing gaps in laboratory diagnostics. Positive social change necessitates multidisciplinary collaboration between climatologists, clinicians, and epidemiologists to reach high-risk populations and promote educational awareness. The potential for social change includes predictive modeling optimizing funding while representing underserved populations.

Share

 
COinS