
Walden University Walden University

ScholarWorks ScholarWorks

Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies
Collection

2020

Exploring Software Testing Strategies Used on Software Exploring Software Testing Strategies Used on Software

Applications in the Government Applications in the Government

Angel Diane Cross
Walden University

Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations

 Part of the Databases and Information Systems Commons

This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies
Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an
authorized administrator of ScholarWorks. For more information, please contact ScholarWorks@waldenu.edu.

http://www.waldenu.edu/
http://www.waldenu.edu/
https://scholarworks.waldenu.edu/
https://scholarworks.waldenu.edu/dissertations
https://scholarworks.waldenu.edu/dissanddoc
https://scholarworks.waldenu.edu/dissanddoc
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F8373&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F8373&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ScholarWorks@waldenu.edu

Walden University

College of Management and Technology

This is to certify that the doctoral study by

Angel D. Cross

has been found to be complete and satisfactory in all respects,

and that any and all revisions required by

the review committee have been made.

Review Committee

Dr. Steven Case, Committee Chairperson, Information Technology Faculty

Dr. Gail Miles, Committee Member, Information Technology Faculty

Dr. Jodine Burchell, University Reviewer, Information Technology Faculty

Chief Academic Officer and Provost

Sue Subocz, Ph.D.

Walden University

2020

Abstract

Exploring Software Testing Strategies Used on Software Applications in the Government

by

Angel D. Cross

MS, Strayer University, 2008

BS, Hampton University, 2001

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

March 2020

Abstract

Developing a defect-free software application is a challenging task. Despite many years

of experience, the intense development of reliable software remains a challenge. For this

reason, software defects identified at the end of the testing phase are more expensive than

those detected sooner. The purpose of this multiple case study is to explore the testing

strategies software developers use to ensure the reliability of software applications in the

government contracting industry. The target population consisted of software developers

from 3 government contracting organizations located along the East Coast region of the

United States. Lehman’s laws of software evolution was the conceptual framework. The

data collection process included semistructured interviews with software developers (n =

10), including a review of organizational documents (n = 77). Thematic analysis was

used to identify patterns and codes from the interviews. Member checking activities were

triangulated with organizational documents to produce 4 major themes: (a)

communication and collaboration with all stakeholders, (b) development of well-defined

requirements, (c) focus on thorough documentation, and (d) focus on automation testing.

The results of this study may contribute to information about testing strategies that may

help organizations improve or enhance their testing practices. The results of this study

may serve as a foundation for positive social change by potentially improving citizens’

experience with government software applications as a result of potential improvement in

software testing practices.

Exploring Software Testing Strategies Used on Software Applications in the Government

by

Angel D. Cross

MS, Strayer University, 2008

BS, Hampton University, 2001

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

March 2020

Dedication

I dedicate this study to my family. Thanks to my parents, my brother, and most of

all, my husband, Eddie. There is absolutely no way in the world that I could have

completed this program without your continued support and, most of all, your prayers.

Thank you all for cheering me on as my lifelong dream has manifested into a reality. It is

never too late to make your dreams come true. I know that I have been unavailable on

many occasions while I worked on my research study; in the end, it paid off. You all

have been very supportive and understanding, and I am forever grateful. As the first in

the family to achieve a doctoral-level degree, I hope to have made everyone proud. To

my nephews Justin and Jordan, my niece Robyn, and my cousins Tyrie and Tyler, you are

the next generation of leaders. Remember, education is the key to unlocking the world.

To achieve your dreams, remember your ABCs. Finally, I dedicate this study to the

memory of my grandmother, who would have been incredibly proud of this

accomplishment. I miss you a lot. You will always be in my heart.

Acknowledgments

First and foremost, I want to give honor to my Heavenly Father Jesus Christ, for

making all of this possible. I encouraged myself daily by meditating on scriptures,

Philippians 4:13, Jeremiah 31:17, and Galatians 6:9.

I am blessed and fortunate to have furthered and completed my doctoral-level

studies at Walden University. The education that I received from Walden has added

value to my life, as well as enhanced my corporate skills. Second, I would like to thank

my committee chair, Dr. Steven Case, for his mentorship, support, and guidance during

my doctoral journey. The difficulty level would have been extremely high without his

guidance and encouragement. Especially during the times when I was tired and wanted

to throw in the towel.

Third, I would also like to thank my second committee member, Dr. Gail Miles,

for her valuable comments and feedback on making my study complete. Next, I also

would like to thank all the staff, administrators, and instructors who encouraged me along

the way. I even would like to extend special thanks to all of the participants in my study

who so kindly shared information and their time with me. Finally, to my employer, you

helped me make this possible in more ways than you could ever imagine.

i

Table of Contents

List of Tables... v

List of Figures .. vi

Section 1: Foundation of the Study .. 1

Background of the Problem.. 1

Problem Statement ... 3

Purpose Statement ... 3

Nature of the Study .. 4

Research Question ... 5

Interview Questions ...6

Conceptual Framework .. 7

Definition of Terms ... 8

Assumptions, Limitations, and Delimitations ... 10

Assumptions .. 10

Limitations ... 11

Delimitations ... 12

Significance of the Study ... 12

Contribution to Information Technology Practice ... 12

Implications for Social Change .. 13

A Review of the Professional and Academic Literature .. 14

Literature Review Strategy... 16

Lehman’s Laws of Software Evolution ... 17

ii

Lehman’s Laws and Software Evolution .. 26

Lehman’s Laws of Software Evolution and the Linux Kernel 39

Lehman’s Laws of Software Evolution and Software Maintenance 41

Complementary and Contrasting Theories .. 43

Software Testing .. 46

Software Testing Strategies .. 63

The Waterfall Methodology ... 75

The Agile Methodology ... 78

Comparing Agile and Waterfall Methodologies.. 80

Software Testing and The Federal Government .. 84

Transition and Summary .. 88

Section 2: The Project .. 90

Purpose Statement ... 90

Role of the Researcher ... 91

Participants .. 93

Research Method and Design ... 95

Method .. 95

Research Design .. 97

Population and Sampling ... 99

Ethical Research .. 102

Data Collection .. 105

Instruments .. 105

iii

Data Collection Technique ... 106

Data Organization Techniques ... 109

Data Analysis Technique ... 111

Reliability and Validity .. 115

Reliability .. 115

Dependability ... 116

Validity .. 117

Credibility .. 117

Transferability.. 118

Confirmability.. 118

Data Saturation .. 119

Transition and Summary .. 120

Section 3: Application to Professional Practice and Implications for Change 122

Overview of Study ... 122

Presentation of the Findings ... 123

Applications to Professional Practice ... 175

Implications for Social Change .. 178

Recommendations for Action ... 179

Recommendations for Further Study .. 180

Reflections ... 182

Summary and Study Conclusions ... 183

References ... 185

iv

Appendix A: Human Subject Research Certificate of Completion 259

Appendix B: Interview Protocol .. 260

Appendix C: Background/Interview Questions .. 262

Appendix D: Permission to Use Figures #1 .. 264

Appendix E: Permission to Use Figures #2 .. 265

Appendix F: Permission to Use Figures #3 .. 266

Appendix G: Permission to Use Figures #4 .. 267

Appendix H: Permission to Use Figures #5 .. 268

v

List of Tables

Table 1. Statistics for references in Literature Review…………….……...………...... 17

Table 2. Subthemes of Communication with all Stakeholders ………….………...… 131

Table 3. Subthemes of Development of Well-Defined Requirements……….…….…142

Table 4. Subthemes of Focus on Thorough Documentation ……………..….……… 154

Table 5. Subthemes of Focus on Automation Testing……………………….…..….. 166

vi

List of Figures

Figure 1. Lehman’s laws of software evolution .. 21

Figure 2. Types of test documents recommended by IEEE Standard 829 57

Figure 3. Classification of software testing .. 70

Figure 4. The cost curve of change………………………………………………………78

Figure 5. Waterfall versus Agile…………………………………………………………84

1

Section 1: Foundation of the Study

Developing a defect free software application is a challenging task due to the

occurrence of unknown software bugs or unforeseen software defects. The presence of

bugs and defects occur regardless of the guidelines followed in the software development

lifecycle. Consequently, effective software testing is essential to the development and

delivery of reliable software applications. There is no question that the longer a defect

remains undetected, the more expensive it is to fix it. For this reason, software testing

can save time and money by reducing software development and maintenance costs. As

with any activity that requires human involvement, the outcome is dependent on human

factors. The purpose of this study was to explore testing strategies that software

developers use to ensure the reliability of software applications in the government

contracting industry. Section 1 contains the foundation of the study, background of the

problem, the problem and purpose statement, the nature of the study, the research

question, the interview questions, the conceptual framework, definition of terms, the

assumptions, limitations, and delimitations, the significance of the study, contribution to

IT practice, the implications for social change and the literature review. Following a

review of the academic literature and professional literature on software testing and

Lehman’s laws of software evolution, I provide a conclusion and then transition to

Section 2 of the study.

Background of the Problem

In this fast-paced age of Information Technology (IT), the release of reliable and

defect free software cannot go unnoticed. As more citizens become computer literate, the

2

use of computers, laptops, mobile devices, and other computer-based products have

almost dominated our everyday living. All these devices require some form of software

involvement (Batool, 2015). At this moment, software controls every aspect of our daily

lives, ranging from mobile communication devices and interaction on social media

networks to conducting online banking and monitoring our health. Software is a broad

term used to define a set of written instructions that a computer follows to perform a

specific task. The development of a defect free software application is a challenging task

and is of utmost importance. Tomar and Agarwal (2016) developed an application to

identify defective software that can benefit software developers by allocating resources

for the release of reliable and defect free software products. As there is interest in the

development of defect free software, the idea to avoid rework is the goal. In addition to

extending time to use, software defects can have more dire consequences. Reports have

showed that software defects wrecked a European satellite launch, delayed the opening of

a newly constructed Denver airport for a year, destroyed a NASA Mars mission, and

killed four marines in a helicopter crash (Oghenovo, 2014). These incidents explain why

software testing is so important to the success of any project.

Software testing is vital to the successful execution of a product. Though an

essential activity in the software development lifecycle, software testing is primarily

conducted to detect any software defects introduced during various phases of the software

development lifecycle (Subramanian, Pendharkar, & Pai, 2017). The main problem is

that software testing activities consume a great deal of the time allocated toward the

overall costs of software development. Therefore, as technology advances, software

3

testing is more critical today as the potential impact for defective software applications

continues to rise.

Problem Statement

Software errors that are discovered at the end of the testing phase and software

defects that are found by software end-users are much more expensive to fix than defects

that are found at the earliest project phases (Petunova & Berzisa, 2017). Based on a

study conducted at Cambridge University, the results concluded that software developers

spend nearly 50% of their time diagnosing software errors, which leads to an estimated

cost of $312 billion per year (Hamill & Goseva-Popstojanova, 2017). The general IT

problem is that software defects impact the reliability of software applications. The

specific IT problem is that some software developers lack testing strategies to ensure the

reliability of software applications in the government contracting industry.

Purpose Statement

The purpose of this qualitative multiple case study was to explore the testing

strategies used by software developers in the government contracting industry to ensure

the reliability of software applications. The targeted population consisted of software

developers from three government contracting industry organizations located along the

East Coast region of the United States. The contributions of this study may help foster a

greater understanding on the part of software developers to improve testing strategies to

ensure the reliability of software applications in the government contracting industry.

Thus, the research findings might contribute to positive social change by possibly

4

improving the everyday life of citizens, as a result of improvement in the reliability of

software applications in the government contracting industry.

Nature of the Study

The nature of the study is a description and justification of the selection of the

study methodology and design. I selected the qualitative method for this study as it

addressed the research purpose to explore and understand the testing strategies used by

software developers in the government contracting industry to ensure the reliability of

software applications. A qualitative research method is used by researchers to address

the ‘how’ and ‘why’ of a story, in ways that quantitative research cannot (Yates &

Leggett, 2016). I selected the qualitative research method for this study because I wanted

to explore and understand ‘how’ the testing strategies used by software developers in the

government contracting industry ensured the reliability of software applications. A

quantitative research method is used by researchers to accept or reject a statistical

hypothesis (Haegele & Hodge, 2015). I did not select a quantitative research method for

this study because the intended focus of the research question is not to accept or reject a

statistical hypothesis. A mixed methods research method is used by researchers to collect

both qualitative and quantitative data (Stockman, 2015). I did not select a mixed methods

research method for this study because the quantitative method has been eliminated. As I

reflect on the probable method, the qualitative method is appropriate for this research

because it addresses the intended focus of the research question.

I selected the case study design for this study to explore and understand the

testing strategies used by software developers in the government contracting industry to

5

ensure the reliability of software applications. A case study design is a comprehensive

method that incorporates multiple sources of data to provide detailed accounts of

complex research phenomena in real life contexts (Morgan, Pullon, Macdonald,

McKinlay, & Gray, 2017). I selected the multiple case study design because I wanted to

investigate the testing strategies used by software developers in the government

contracting industry to ensure the reliability of software applications. A narrative design

studies the lives of individuals and provides stories about their lives (De Loo, Cooper, &

Manochin, 2015). I did not select a narrative design for this study as understanding the

lives of individuals was not the intended focus of the research question. A

phenomenological design describes the lived experiences of individuals or a phenomenon

(Aagard, 2017). I did not select a phenomenological design for this study because

understanding the lived experiences of individuals is not the intended focus of the

research question. An ethnography design studies the shared patterns of behaviors,

languages, and actions of other cultural groups (Badri, Wolfe, Farmer, & Amin, 2018). I

did not select an ethnographic design for this study because shared patterns, languages,

and actions of cultural groups are not the intended focus of the research question. As I

reflected on the probable designs, the multiple case study design was appropriate for this

research because it addressed the intended focus of the research question.

Research Question

What testing strategies do software developers use to ensure the reliability of

software applications in the government contracting industry?

6

Interview Questions

Background Interview Questions

1. Can you tell me about yourself and your current role?

2. How many years of experience do you have as a software developer?

3. How long have you been performing software testing tasks?

4. What type of project(s) are you currently working on?

Interview Questions

1. What is the primary software development methodology you are using?

2. How is software testing organized in your organization?

3. What testing strategies have you used to ensure the reliability of software

applications?

4. How do you assess the effectiveness of the testing strategies used to ensure

the reliability of software applications?

5. How satisfied are you with the development and testing environments that you

have?

6. What challenges have you faced where you find yourself in a disagreement

over a software defect?

7. How has these challenges impacted your testing of software applications?

8. What testing strategies do you find the most effective in detecting software

defects?

9. How much time is allocated for testing software applications in your

organization?

7

10. What additional information would you like to share about testing strategies

that would ensure the reliability of software applications?

Conceptual Framework

The conceptual framework for this study was driven by Lehman’s laws of

software evolution. Meir Manny Lehman developed the laws of software evolution in

1968 as a result of an investigation into programming practices within IBM (Godfrey &

German, 2014). The analysis prompted a further study of the IBM S/360 operating

system and its successor, IBM S/370 (Godfrey & German, 2014). Lehman’s (1996) work

on the laws of software evolution, which he devised and refined with Laszlo Belady and

other collaborators over many years, continues to influence the study of ‘how’ and ‘why’

software applications change over time. Lehman (as cited in Godfrey & German, 2014)

discovered that software developers were becoming increasingly interested in assessing

their productivity, which was measured in terms of daily source lines of code (SLOC)

and passing unit tests. Lehman observed that productivity was increasing according to

the requirements; however, at the same time, software developers appeared to be losing

sight of the overall product (Godfrey & German, 2014). Lehman summarized his

observations about the evolution of software into eight laws which include: (a) continuing

change law, (b) increasing complexity law, (c) self-regulation law, (d) conservation of

organizational stability law, (e) conservation of familiarity law, (f) continuing growth

law, (g) declining quality law, and (h) feedback system law.

In this study, I explored the testing strategies used to ensure the reliability of

software applications. I used the unique lens of Lehman’s laws of software evolution in

8

my study to understand how attributes of the software evolution phenomenon has an

impact on my study and software process improvement. I selected the law of continuing

change as it suggests that software will become progressively less satisfying to its users’

overtime unless it is adapted to meet new needs. Moreover, the law of continuing change

suggests that software developers must be aware that if their software does not respond

positively to the pressures of the system, that over time, the system will be less appealing

to its users (Godfrey & German, 2014). I also selected the law of increasing complexity

and the law of declining quality. The law of increasing complexity indicated that

software would become progressively more complex over time unless explicit work is

completed to reduce its complexity. The law of declining quality indicated that a

software system would be perceived as declining in quality over time unless the design is

carefully maintained and adapted to new operational constraints. Both laws imply that

the changes required to evolve the system to respond to the pressures tend to make the

system more complex and lowers its quality (Godfrey & German, 2014). Finally, I

selected the feedback systems law. The feedback systems law suggested that as software

ages, it tends to become increasingly complicated as a result of the change. The laws of

software evolution were relevant to this study because its core components and constructs

align closely with those that I explored in the research. I intended to use Lehman’s laws

of software evolution as a lens to better understand the study.

Definition of Terms

The following definitions are to assist the reader as these keywords occurred

within this study:

9

Acceptance testing: A software testing strategy that performs tests to validate

whether the system meets all the specifications and requirements of the customer and

provides assurance that the system is working rather than to find errors (Malik, 2017).

Functional testing: A software testing strategy that discovers disagreements

between the specification and the actual implementation of the software application

(Julia, Vale, & Passos, 2016).

Load testing: A software testing strategy that refers to the practice of assessing

the system behavior under a load. A load is a rate of the incoming requests to the system

(Jiang, 2015).

Performance testing: A software testing strategy that determines how fast some

aspects of the system perform under a predefined workload. It is calculated by analyzing

the production, which comes from the application hosted on the server (Khan & Amjad,

2016).

Regression testing: The pragmatic selection of a test suite from tests developed

from other parts of the test process (Parsons, Susnjak, & Lange, 2014).

Software defect: A software bug, error, failure, or flaw found inside the structure

of computer source code or system that is the result of some programmatical mistake

(Deak, Stålhane, & Sindre, 2016).

Software reliability: The chance of failure free software operation for a specified

period (Zhu & Pham, 2018).

Software testing: A phase of the software development lifecycle used to improve

the quality of developed software (Jayaram & Krishnan, 2018).

10

Test case: A set of written conditions that examines all aspects of the structure

and logic of a software product or software system to validate the functionality of a

specific requirement (Gomez, Cortés-Verdín, & Pardo, 2017).

Unit testing: A software testing strategy which the smallest testable parts of a

program individually and independently analyzed for proper operation (Buckley &

Buckley, 2017).

Assumptions, Limitations, and Delimitations

Any number of phenomena that affect the internal or external factors can

influence the research and its outcomes. It is the process of identifying and analyzing

these phenomena that establishes credibility. Three categories of phenomena occur in

research; they are assumptions, limitations, and delimitations.

Assumptions

 I made assumptions based on the requirements of the study. Assumptions are

the beliefs, or the preconceptions of the researcher based on instinct or experience that

has not been verified by evidence (Holloway & Galvin, 2016). The achievements of

certain assumptions or preconceptions assumed to be true but not verified for this study

include the following for assumptions. For this study, the first assumption I made was

that software developers representing three government contracting organizations along

the East Coast region of the United States would be available and willing to participate in

this study. The second assumption is that I assumed that participants would provide open,

honest, and unbiased responses to the interview questions during the semistructured

interviews. My third assumption is that enough participants would be available within

11

the organization for data saturation to be reached. The final assumption is that I assumed

the software developers participating in this study would have software testing

experience or knowledge and represent themselves accordingly and fit the established

qualifying criteria.

Limitations

I identified the limitations based on the requirements of the study. Limitations are

the defects, or the deficiencies encountered that are out of a researcher's control (Horga,

Kaur, & Peterson, 2014). For this study, the first limitation of the study was the potential

bias due to my views on the research question because I was a software tester in the

industry, and I worked in the same geographical region as the study. Bracketing is a

technique by which researchers set aside their biases and preconceptions to develop a

keen awareness of assumptions and expectations (Sohn, Thomas, Greenberg, & Pollio,

2017). Before conducting interviews, I bracketed my own opinions about the subject and

followed approved research protocols to ensure that I did not incorporate any personal

bias into the research study. The second limitation of this study was that the accuracy of

the results would rely on honest answers from the participants. Yin (2018) emphasized

that some participants might respond to interview questions because of what they believe

the researcher wants to hear. In part, I mitigated bias by using open-ended questions

rather than yes-no questions to allow participants to share their experiences and

perceptions about software testing.

12

Delimitations

I developed the scope for collecting data. Delimitations are factors that limit the

scope and state the boundaries of the study, but they are all under the researcher's control

(Anthonisz & Perry, 2015). The boundaries that I have placed surrounding this multiple

case study would constrain it to a specific population and sampling. The first

delimitation was geographically limited to only government contracting industry

organizations located along the East Coast region of the United States. Furthermore,

Holloway and Galvin (2016) added that delimitations are the boundaries of the research

showing what is included or excluded. The second delimitation for this study was that

the participants must have at least 2 years of software development experience and

software testing experience or knowledge. The third delimitation for this study was that

participants identify testing strategies to ensure the reliability of software applications in

the government contracting industry rather than to determine how to implement the

process. Finally, these testing strategies may vary by government contracting

organizations based on when and how they were previously performed.

Significance of the Study

Contribution to Information Technology Practice

This study may be significant to IT practice because it may help foster a greater

understanding on the part of software developers to improve testing strategies to ensure

the reliability of software applications in the government contracting industry. Software

development companies across America lose billions of dollars each year due to the

performance of poorly designed software applications (Underwood, 2016). This study

13

contributes information about testing strategies that may help other organizations

improve or enhance their testing strategies. Furthermore, this study could be a vision for

building a better understanding of testing strategies, which in turn could lead to improved

testing strategies, reliable software, profit potential, and the creation of more IT jobs.

Finally, this study may fill gaps in the understanding and effective practice of IT by

identifying testing strategies used by software developers in the government contracting

industry to ensure the reliability of software applications.

Implications for Social Change

This study might contribute to positive social change by possibly improving the

everyday life of citizens as a result of improvement in the reliability of software

applications in the government contracting industry. Software use has become part of

daily living (Ogbodo, 2014). Thus, for this study, the findings may help improve the

everyday life of citizens by eventually improving the quality of government applications

that enable access to government services. If software developers can design reliable

software applications, then more citizens may make use of their services, whether it is for

accessing websites that provide advice and helpful information about veterans’ benefits,

healthcare, news, and information about the NASA space program, or live events

occurring at the United States White House. Therefore, the results of this study could

provide a better understanding of the testing strategies, which in turn can lead to more

government contractors developing more reliable software that may contribute to

improving the everyday life of citizens.

14

A Review of the Professional and Academic Literature

The purpose of this qualitative multiple case study was to explore the testing

strategies used by software developers in the government contracting industry to ensure

the reliability of software applications. The focus of the literature review is the research

question: What testing strategies do software developers use to ensure the reliability of

software applications in the government contracting industry? I explored how

researchers applied Lehman’s laws of software evolution as a conceptual framework for

their study. Next, I explored the testing strategies software developers used to ensure the

reliability of software applications while focusing on the government contracting

industry.

The literature review was a significant element of the research study. The

literature review was a complex and demanding genre to write (see Badenhorst, 2018).

More importantly, the literature review demonstrated an exhaustive review of the rich

literature using the chosen theoretical or conceptual framework as a lens to research the

phenomenon. According to Steinert and Thomas (2016), the literature review was the

foundation upon which all strong scholarly work focuses on a specific topic. Overall, the

literature review should be a critical analysis of academic studies and authoritative

seminal works.

In this section, my extensive review of the literature established a scholarly

foundation for the study, while providing critical analysis to the body of knowledge.

According to Cope (2014), the purpose of the professional and academic literature review

was to show support of the research topic, identify the literature contributing to research,

15

build a more structured conceptual framework, and help to inform the study results. I

organized the professional and academic literature review by subject matter and content.

The fast pace of change and the growing complexity of modern-day software

makes it hard to deliver a defect free product (Calcagno et al., 2015). Software

developers strive to release new software applications every 90 or 120 days, accelerating

the software development lifecycle (Brhel, Meth, Maedche, & Werder, 2015). Most

companies today have an increased concern with the quality of their delivered software

products and services. For this reason, customers demand better quality software forcing

organizations to improve their products and services (Al-Dhaafri & Al-Swidi, 2016).

Defective software can vary from minor inconveniences to catastrophic loss of finances

or even life. For example, in April 2015, a software anomaly affected more than 300,000

traders on the financial markets at the Bloomberg Terminal in London. As a result, it

forced the United Kingdom government to postpone a 3 billion-pound debt sale. In 2016,

an F-35 fighter plane fell victim to a software defect, making it a challenge to detect

correct targets. Further, Nissan recalled more than 1 million of its vehicles from the

market because of a software defect identified in the airbag sensor detectors causing fatal

vehicular accidents (Mohan & Shrimali, 2017). In these situations, I assume that

Lehman’s laws of software evolution are suitable for understanding the phenomenon of

this study. The identification of the appropriate testing strategies could help motivate

government contractors to develop more reliable software that may contribute to the

improvement of the everyday life of citizens.

16

 Software is evolving and requires constant work to develop and maintain. When

compared to software development, software testing is tedious work (Deak et al., 2016).

Lehman’s laws of software evolution as the conceptual framework established the

foundation for this qualitative multiple case study. For this purpose, the literature review

was organized into sections composed of discussions on Lehman’s laws of software

evolution, complementary and contrasting theories, software testing, software

methodologies, and software testing strategies.

Literature Review Strategy

The literature review was based on a comprehensive search of online information

obtained from the following library databases: EBSCOhost, Proquest Central, ACM

Digital Library, Computers and Applied Sciences Complete, Computing Database, IEEE

Xplore Digital Library, Science Direct, Google Scholar, Sage Journals, Academic Search

Complete, and Military and Government collection. These databases contained a

plethora of books, dissertations, conference proceedings, and peer reviewed articles. The

use of Ulrich’s Periodical Directory allowed me to verify that the sources used in my

study were peer reviewed.

A combination of phrases and key terms were used as key search words in the

databases for related literature on software testing strategies used in the government

contracting industry. Such phrases and key terms included: software testing, Lehman’s

laws of software evolution, Linux, software evolution, software maintenance, waterfall

model, agile model, black-box testing, white-box testing, regression testing, unit testing,

integration testing, and system testing.

17

The literature review consisted of peer reviewed articles from journals, reports,

articles, dissertations, and seminal books with a focus on research conducted within the

past 5 years. I used 194 literature review resources, with 95(%) published between 2014

and 2018. Eighty-four percent of the resources used in the literature review were peer

reviewed. A detailed summary of these sources is listed in Table 1 below.

Table 1

Statistics for references in Literature Review

Category Result

Total number of literature review references 194

Total number of peer reviewed literature review references 178

Total number of peer reviewed references within 5 years 180

Total number of doctoral dissertations 4

Percentage (%) of peer reviewed references 0.84

Percentage (%) of peer reviewed references within 5 years 0.95

Lehman’s Laws of Software Evolution

Lehman’s laws of software evolution were selected to drive the conceptual

framework for this study. For this reason, the laws defined a balance between efforts

driving new developments on the one hand, and efforts that slow down the progress on

the other. Meanwhile, Lehman’s laws of software evolution encourage a holistic

approach when researching any software development problem that would guide this

study through the process of exposing the testing strategies used by software developers.

By using Lehman’s laws as the basis to understand the evolution of software

18

development, the testing of code is an important factor. As it contributes to the overall

reliability of the developed code.

Meir M. “Manny” Lehman has influenced how software is created and

understood. Reflecting on the mid-1970s, together with Laszlo Belady, Lehman

observed and performed empirical work on IBM OS/360 and other large-scale software

systems that would later foster a discussion on the understanding of the software

development lifecycle by other researchers and practitioners (Godfrey & German, 2014;

Oliveria, Santos, Almeida, & Gomes, 2017). The model contributed to improved control

of software quality and cost. The empirical studies pioneered by Lehman and Belady

gave rise to the eight laws of software evolution (Stol & Fitzgerald, 2015). The eight

laws are the result of careful and challenging empirical studies on the evolution of large-

scale software systems found in corporate based settings (Aversano, Di Brino,

Guardabascio, Salerno, & Tortorella, 2015). Lehman (as cited in Heuser, Fay, Schaefer,

& Tichy, 2015) defined the laws of software evolution and identified that systems are

subject to the dynamics causing continual changes of software, resulting in increasing

complexity. Thus, it is essential to gain a thorough understanding of the way that

software evolves.

Software systems are ever changing. When Lehman (1996) examined the

software system, he noticed that after the installation of software, the environment

changed. To clarify, for software to function correctly, it should adapt to the

environment it evolves by sending user feedback (Alenezi & Almustafa, 2015). In 1974,

Lehman proposed three laws that were related to software evolution that would shed light

19

further on the analysis (Lehman, 1996). The three laws proposed were the law of

continuing change, the law of complexity, and the law of self-regulation (Shehzad &

Shaikh, 2017). Belady and Lehman (1976) defined software evolution as the dynamic

behavior of programming systems as they are maintained and enhanced over their

lifetimes. In other words, as systems in organizations become longer-lived, software

evolution is of great importance.

In 1978, Lehman proposed two more laws, the law of invariant work rate and the

law of incremented growth (Skoulis, Vassiliadis, & Zarras, 2015). The laws were later

renamed to the conservation of organizational stability law and the conservation of

familiarity law (Skoulis et al., 2015). Ten years later, the law of continuing growth was

proposed and included with the other laws (Skoulis et al., 2015). In 1996, Lehman

revised those observations once more to foster the eight laws of software evolution

(Skoulis et al., 2015). Lehman demonstrated that it is not easy to evolve software, so, in

1997, the observations relating to the evolution of software systems were published (Kaur

& Kaur, 2015). Researchers and practitioners began verifying the validity of the laws

through the scope of open-source and industrial software (Oliveria et al., 2017). Once

Lehman’s work was published, the laws became known as Lehman’s laws of software

evolution and are noted as the law of continuing change, the law of increasing

complexity, the law of self-regulation, the law of conservation of organizational stability,

the law of conservation of familiarity, the law of continuing growth, the law of declining

quality, and the law of the feedback system (Herraiz, Rodriguez, Robles, & Gonzalez-

Barahona, 2013). Lehman's laws of software evolution are not just descriptions of the

20

evolutionary process, but they identify the principles in software development. Now, it is

crucial to note that Lehman's laws are nothing similar to the laws of physics or chemistry;

yet, they were derived from the habits and practices of people and organizations (Bruyn,

Mannaert, Verelst, & Huysmans, 2018). Lehman's laws were proposed to form an

environment within which the effectiveness of programming methodologies and

management strategies and techniques could be evaluated. Figure 1 is an illustration of

Lehman’s laws of software evolution (Lehman, 1996).

21

 Figure 1. Lehman’s laws of software evolution. From “Metrics and laws of software

 evolution-the nineties view” by M.M. Lehman, J.F. Ramil, P.D. Wernick, D.E. Perry, &

 W. M. Turski, 1997, Proceedings Fourth International Software Metrics Symposium,

 p. 21. Copyright 1997 by IEEE. Reprinted with permission (Appendix D).

Continuing Change (Law 1). The continuing change law is the first law of

software evolution. According to Lehman (1996), the continuing change law emphasized

the point that a software system must continually adjust to its environment to meet user

needs. Generally, it is challenging to differentiate between the general growth law (law

six) and between changes in the environment. Since the environment of the real-world is

ever changing, systems and software must evolve as the world changes or face becoming

less applicable and useful (Lehman, Ramil, Wernick, Perry, & Turski, 1997). Lehman et

22

al. (1997) believed that the continuing change law supports but does not contradict the

observations proposed two decades earlier that software evolution is still relevant.

Nevertheless, incremental growth may increase the number of defects. Lehman et

al. (1997) believed that evolution continues until it is found to be cost effective to

reinstate the system with a recreated version. Therefore, the existence of rippled cycles

provided evidence that the growth rate sometimes declines with time. Hence, the

observation of this law suggested that large systems are incomplete; yet, they continue to

evolve to remain useful.

Increasing Complexity (Law 2). The increasing complexity law is Lehman's

second law of software evolution. According to Lehman (1996), as a program evolves,

its complexity increases unless there is work to reduce the complexity. Duran, Burns,

and Snell (2013) reminded us that the increasing complexity law is difficult to prove

since both trends are possible. As an example, agile projects are refactored frequently

during the development process (Duran et al., 2013). Refactoring decreases the amount

of code complexity through simplification and robust design. Most researchers like

Oliveira and Almeida (2016) expected the complexity to increase at a slower rate under

agile development because there are regular efforts to reduce it. A non-agile project, on

the other hand, the complexity would gradually increase as proposed by Lehman with the

possibility for sudden dips, which should correspond to a major refactoring or similar

effort (Duran et al., 2013). Some researchers have explored the increasing complexity

law and noted that data growth rates decline over time (Duran et al., 2013; Oliveira &

Almeida, 2016). Nevertheless, an alternative approach is to measure the source code

23

complexity directly, given the availability of the full source code for each version. So, as

evolving software continually changes, the complexity increases unless effort is applied

to maintain or reduce it.

Self-Regulation (Law 3). The self-regulation law is Lehman's third law of

software evolution. Lehman (1996) found that incremental effort spent on each release

remains constant throughout a systems lifetime. Lehman (as cited in Amanatidis &

Chatzigeorgeou, 2016) noted that the system evolution process is self-regulating.

Furthermore, Lehman noted that over time, any measurements of the system or its

process would follow a clear trend, with ripples in either direction that follows a normal

distribution (Godfrey & German, 2014). Kaur & Kaur (2015) suggested a balance

between what is necessary for change and what is achievable. Thus, to have a constant

evolution process, the limitation on the growth rate should be accepted, and productivity

should be predictable.

Conservation of Organizational Stability Law 4). The conservation of

organizational stability is Lehman's fourth law of software evolution. Lehman (1996)

found that the average work rate on an evolving system is statistically invariant. When

researchers such as Herraiz et al. (2013) studied the context of the conservation of

organizational stability law, they explored the maintenance effort spent on the system.

Consequently, it is hard to change the staff who has been working on evolving software.

The average global effective rate in evolving software tends to remain constant over a

product's lifetime (Kaur & Kaur, 2015). More importantly, Kaur and Kaur (2015) found

that the process of evolving software is necessary so that it can be used for an extended

24

period. Therefore, the conservation of organizational stability concludes that adding

more resources or effort does not profit the system in a meaningful way.

Conservation of Familiarity (Law 5). The conservation of familiarity is

Lehman's fifth law of software evolution. Lehman (1996) found that during the evolution

of software systems, the content of successive releases remained consistent because

software developers needed to have a thorough understanding of the source code and

behavior. Skoulis et al. (2015) reported that users should be familiar with the changes

made. Since it remains inevitable that without a familiarity with ‘how’ and ‘why’ the

system exists, the effort becomes challenging to implement changes and the ability to

understand them. In any event, as systems evolve, all available resources, whether

software developers, software testers, or end-users, must maintain proficiency in the

content and behavior to achieve satisfactory evolution.

Continuing Growth (Law 6). The continuing growth law is Lehman's sixth law

of software evolution. Lehman (1996) found that evolutionary type systems must be

continually enhanced to maintain user satisfaction over the lifetime of the system.

Godfrey and German (2014) believed that the continuing growth law is relevant to

Lehman's second law of evolution, the increasing complexity law. Since growth infers

adding new features to software and change often infers adding new code, the size of the

software increases to meet user requirements. According to Kaur and Kaur (2015),

Lehman’s continuous change and growth laws are essential for maintaining the software

for an extended period. These laws further explored that as time progresses, it becomes

more complicated and more problematic to add new features as a result of changes and

25

growth. When Kaur and Kaur (2015) analyzed the continuing growth law, they found

that the systems are thoroughly tested and functional after each increment. In the end, the

lifetime of each increment executes until the overall system decommissions.

Declining Quality (Law 7). The law of declining quality is Lehman's seventh

law of software evolution. Lehman (1996) found that poorly designed software leads to

the introduction of software defects and incomplete requirement specifications. Godfrey

and German (2014) reported that during software evolution, the quality of the software

should be appropriately maintained; otherwise, it decays. Per Kaur and Kaur (2015), the

software is not liable to wear and tear, but it could prove to be unusable if it is not

responsive to always changing user’s needs. Since evolution is necessary for the lifetime

of the software, software systems would decline unless maintained and adapted to

operational environment changes.

Feedback Systems (Law 8). The final law of Lehman's software evolution is the

feedback systems law. Lehman (1996) found that as a software system ages, it tends to

become increasingly complicated to change due to the complexity of both the artifacts as

well as the processes involved as a result of the change. Although the feedback systems

law was the last to be proposed, researchers such as Shehzad and Shaikh (2017) argued

that it should have been the first law to have been published. The authors reminded us

that in software evolution, feedback comes first, and the themes pervade all others

allowing software developers the opportunity to be keenly aware of their software

systems that do not respond positively. Thus, to remain relevant and useful to the

26

environment, software developers have to respond to the feedback given by the user

community.

This section introduced Lehman's laws and showed that at the heart of software

evolution is change. Organizations make enormous investments in their software systems

which, is critical to the business. As a result, the majority of the software budget is

devoted to changing and evolving existing software rather than developing new software

applications. Lehman's laws have been criticized for lacking a solid empirical

foundation; however, they help to explain that change is inevitable and not a result of bad

programming (Godfrey & German, 2014). As argued elsewhere, the reasoning for

exploring Lehman's laws is to show the presence, not the absence of potential software

defects. Thus, to accomplish this, software developers must implement testing strategies

designed to mitigate the risk of software defects. As Julia et al. (2016) pointed out,

software testing ensures that expected business systems and software features behave as

expected. As business systems change, the environment changes and software testing is

required.

Lehman’s Laws and Software Evolution

As evolution continues, the complexity of an evolving system is inclined to

increase unless work is undertaken to control or reduce it. Lehman and Ramil (2002)

conducted an exploratory analysis concluding that software evolution involves

programming paradigms, approaches, languages, and usage domain. Their exploratory

research found that evolution should restrict the programming process artifacts such as

specifications, designs, and documentation. In 2003, Grubb and Takang advocated the

27

significance of Lehman’s law of software evolution and proposed similar prerequisites,

underlying essentials before attempting software evolution and maintenance analysis.

Meanwhile, Javed and Alenezi (2016) found that software needs to evolve to

survive, thus undergoing several changes, including modifications to the other attributes

such as software maintainability. In their study, Javed and Alenezi (2016) proposed a

technique that would reveal software defects in quality software that is stable and

maintainable. According to Tomar and Agarwal (2016), a software defect is an error or

deficiency in a software process that occurs due to incorrect programming logic,

miscommunication of requirements, the lack of programming experience, and the lack of

software testing skills. When Tomar and Agarwal (2016) reported that defective

software could lead to a poor-quality software product, they found a software defect

prediction problem using Lehman’s laws of software evolution to maintain quality

software. Their study found that class imbalance often occurs in software development

and other real-world applications, which deteriorates the performance of machine

learning. In the end, their study confirmed the law of declining quality.

The laws of software evolution described the trends that occurred in time series.

Lehman empirically derived the laws of software evolution, explaining the dynamics and

patterns behind the evolution of software in time (Ruohonen, Hyrynsalmi, & Leppanen,

2015). Ruohonen et al. (2015) found that the most significant law suggested that

evolving software grows and requires constant testing, maintenance, and development

work. According to Ruohonen et al. (2015), the motivation for evolving software

originated from the surrounding environment to which various feedback mechanisms

28

remain attached throughout evolution. So, as requirements change, evolving software

that does not meet the challenges brought forth by the environment decays. Lehman’s

research spanned over three decades within the software process domain that formulated

some software evolution laws, later supported by Godfrey and German (2014) and

several other practitioners. A clear difference of opinion occurred when Kaur and Vig

(2016) sharply criticized Lehman's laws of software evolution as a basis for confirming

the law of continuing change, the law of self-regulation, and the law of continuing

growth. Their research showed that statistical tests tend to contradict the laws even when

passed.

 The use of web applications has become essential in our daily lives. Many end-

users have used web applications to obtain information to conduct financial transactions

to having fun and communicating on social media platforms. When Amanatidis and

Chatzigeorgeou (2016) questioned whether Lehman’s laws of software evolution

confirmed practice for web applications, the results of the study concluded that the law of

continuing change, the law of increasing complexity, the law of self-regulation, the law

of conservation of organizational stability, and the law of continuing growth are

confirmed. Consequently, the law of increasing complexity and the law of the feedback

system did not hold in practice, but the law of declining quality failed. In 2016, Bian,

Parande, Koru, and Zhao’s published work criticized Lehman’s laws of software

evolution, arguing that smaller modules deserve higher attention levels of testing while

focusing on source code inspections. Therefore, the need for software and environment

29

changes originated from the quest to maintain quality software and improving

maintainability while ensuring customer satisfaction.

Software merging is essential to the maintenance and evolution of large-scale

software systems. For more than two decades, software evolution has endured challenges

leading to the issue of software merging, as noted by Bouras and Maouche (2017). In

previous work, Bouras and Maouche (2017) explained that the objective of software

merging is to compare and merge different versions of software in a reliable way, such as

to obtain a new version. For this purpose, Bouras and Maouche (2017) investigated an

approach to understanding software evolution by using the compare and merge technique.

The results of their research found that once new requirements for an existing system are

added incorrectly, the system then merges into a new operating system. Goltz et al.

(2015) supported the compare and merge technique suggesting that it represented a

challenging undertaking. The goal was to develop an innovative method for the

continuous evolution of software at a level that is cost effective than merging code.

Bouras and Maouche (2017) did not support Goltz et al. (2015) statement, arguably

noting that comparing and merging one thousand lines of code is not an efficient way to

evolve software since software requirements change rapidly and become obsolete.

Charrada, Koziolek, and Glinz (2015) claimed that updating software requirements is a

manual task that is expensive and time consuming. Nevertheless, there is still a need for

quality software testing. On the whole, software evolution should not compromise

software quality.

30

Software evolution is inseparable from software maintainability, an essential

software quality attribute that deteriorates with changes that continue to get integrated

throughout the evolution cycle (Braga de Vasconcelos, Kimble, Carreteiro, & Rocha,

2017). For forty years, Lehman and his colleagues hypothesized and tested a series of

software evolution laws explaining the universal aspects of software system behavior

(Skoulis et al., 2015). Altogether, Lehman’s laws of software evolution explained the

forces that drive new software development on the one hand and the forces that slow

down the development progress on the other hand. Since Lehman’s laws are assumed to

observe all the changes during the software evolution process, some empirical

observations of studying the development of the open-source system seem to challenge

most of Lehman’s laws of software evolution (Stol & Fitzgerald, 2015). In their work,

Braga de Vasconcelos et al. (2017) discussed how software evolution correlated with the

software lifecycle, suggesting that software evolution was an essential, feedback-driven,

property of software.

Software evolution is essential to real-world software applications. As

requirements change, the needs of software change; otherwise, it becomes less useful.

So, for software to be used for an extended period, it must evolve. The general idea of

open source software is to allow public access to source code so that any user can use it,

modify it, or redistribute it in the revised form. However, some empirical observations of

studying the development of open-source systems appear to challenge some of Lehman’s

laws (Alenezi & Almustafa, 2015; Guan, Peng, Perneel, & Timmerman, 2016; Stol &

Fitzgerald, 2015). After all, there is no broad support that exists for all the laws across

31

the various empirical studies of open-source systems. Through the years, most

researchers have analyzed open-source software evolution from several angles, including

growth, quality, and group dynamics (Saini, Mehmi, & Chahal, 2016). When Kaur,

Ratti, and Kaur (2014) studied two open-source software cases developed in C++, their

study found that the continuing change law, the increasing complexity law, and the

continuing growth law can be determined using different metrics. In contrast, the self-

regulation law, the conservation of organizational stability law, and the conservation of

familiarity law are difficult to evaluate on open-source software. Nevertheless, the

declining quality law and the feedback systems law required further observation of open-

source software.

Software systems must evolve to satisfy new demands. Lehman (1996) inferred

that software systems must evolve; otherwise, there might be a risk of losing market

share to competitors. According to Wohlin, Smite, and Moe (2015), Lehman categorized

all software systems to fit into one of three types: E, S, or P. Lehman (as cited in Skoulis

et al., 2015) used the keyword E-type to describe real-world systems as they evolve.

Lehman (1996) observed that E-type software is part of the changing environment,

especially when the system changes in response to a new user requirement or change

request. When Lehman (as cited in Skoulis et al., 2015) used the keyword S-type (or

static type), systems are comprised of static, formal, and correct requirements that have

easy to understand solutions. Moreover, Lehman (as cited in Skoulis et al., 2015) used

the keyword P-type (or practical type) to define precise requirements; in other words, the

solutions are not challenging to comprehend. Hence, Lehman's laws suggested that over

32

time and due to changes and growth, software systems become complex and complicated

to add new functional features. Thus, software evolution, which is the continual process

of change, is required to maintain updated software with the changing operational domain

(Klein, Polin, & Sutton, 2015). Therefore, frequent software change is needed for

stakeholders to remain at an acceptable level in a changing world (Klein et al., 2015).

The ability to manage change is critical. Kour and Singh (2016) believed that

software evolution is a continuous process that includes activities like software

improvement, adaptation, and correction that arise after the operational release of the

software. In 2016, Kour and Singh proposed a theory to understand software evolution

based on the quantifiable concept of evolvability. The theory included the study of

software product quality, the software evolution process, and their relationships with the

organizational environment. More specifically, Kour and Singh (2016) assessed the

opportunities for analyzing and measuring evolvability at predesign, architectural, and

source code phases in the software development lifecycle. In work carried out by

researchers Kaur and Vig (2017), Lehman's laws of software evolution have been

researched and validated; but there exist few studies that verified the laws for databases

in open source. Most of all, the research carried out by Kaur and Vig (2017) explored the

properties of growth for database evolution by analyzing Lehman's fifth and sixth law of

software evolution, conservation of familiarity law, and the continuous growth law on

three open-source databases. Their research found that Lehman's laws of continuous

growth and conservation of familiarity applied to open source java databases such that

the laws validated all the datasets involved.

33

Software libraries evolve to adapt to a changing environment. The evolution

process requires responding to customer needs, resolving software defects, or addressing

other maintainability concerns (Amanatidis & Chatzigeorgeou, 2016). Software is

primarily designed, modified, and maintained by humans. Lehman explored evolution

over time and noticed that software becomes complex and hard to add new features

(Godfrey & German, 2014). In his published observations, Lehman discussed the first

and second laws as they relate to software evolution. Lehman (1996) indicated that

software systems are written to reflect real-world activities, since the laws need to be

adapted, or they will become useless. In work carried out by Kebir, Borne, and Meslati

(2017), they supported Lehman’s laws of software evolution, noting that the laws are still

valid. Though this may be true, increased software complexity is linked to poor software

maintainability, leaving a negative impact on the design quality and future changes. The

complexity of software is one of the main problems where software defects go undetected

(Kebir et al., 2017). Thus, viewing software as a complex evolving system may

encourage software developers to accept software diversity as a vital source of

robustness.

Software maintenance may deteriorate the quality of the software. One of the

main ways to reduce the undesired effects of maintenance is by code refactoring or

restructuring existing code. Hora, Silva, Valente, and Robbes (2018) reported that

practitioners implement code refactoring; after all, it could be unnecessary work.

Furthermore, Hora et al. (2018) found that between 10-21% of changes at the method

level in 15 large Java systems were untracked. Dos Santos-Neto et al. (2015) reminded

34

us that code refactoring is a technique used to improve the quality of software without

changing the design and behavior of existing software. When Kula, Ouni, German, and

Inoue (2018) introduced the technique of code refactoring, they advocated that the code

base may increase the complexity and maintainability efforts of Lehman’s second law of

evolution. In contrast, Singh and Kaur (2017) warned of the code smell activity that

identified a more in-depth problem residing in the source code. While not all code smell

activities are relevant to the goals of the system or its health, a thorough analysis can

reveal the software defects through everyday software development activities, such as

program comprehension, maintenance, and evolution.

The complexity of software is a crucial aspect of software evolution research.

Wahler, Drofenik, and Snipes (2016) reported that software developers design a great

deal of complex software without any formal training or knowledge of Lehman’s laws of

software evolution. For this reason, multiple modules are inclined to software defects

because software developers have difficulty understanding the laws. Heuser et al. (2015)

reported that evolving the design of an industrial system is already difficult and complex.

However, researchers like Ramos, Kreutz, and Verissimo (2015) emphasized that the

more complex the software development effort is, the more challenges software

developers face to maintain it. Henceforth, poor design choices may result in complex

software that is expensive to support and maintain. In any event, the lesser the

complexity level, the easier it is to measure the various other factors of the code.

Quality software is essential to customers, and most importantly, to businesses of

all kinds. The need for changing software would always occur because of new customer

35

requirements, company changes, and even technological advances. Shehzad and Shaikh

(2017) suggested that software evolution is the sequence of changes to a software system

over its lifetime. Software evolution is very complicated because of the constant changes

in the environment. Godfrey and German (2014) compared the work of Lehman's laws

of software evolution to other types of evolution, offering insight into questions of both

the science and engineering fields, as they further examined the forces that would shape

change.

In contrast, Maisikeli (2016) found that after the development of a software

system, the likelihood that some evolution may endure because of business changes,

defect-correction exercises, or preventative maintenances would satisfy the overall

performance of the system. Maisikeli (2016) found that even a minor change in an

object-oriented software system might produce significant software defects causing

rippling-wave effects across an entire software system. Before software is released, it

could go through significant changes. Hence, the most crucial goal is to validate code

designs through software testing (Parampreet & Rajeev, 2018). Once software evolves, a

great deal is learned to provide an opportunity to collect data for future analysis.

The tremendous growth in IT companies was a result of bringing quality software

products to the market. According to Haitzer, Navarro, and Zdun (2017), software

changes would still exist because of customer needs, market changes, and technology

advances. While there may be justification, the choice to develop reliable software

would always exist. Almugrin, Albattah, and Melton (2016) argued that requirements

change with time, and software systems must frequently be updated to support the

36

changes. The need to release software products on time and the need to satisfy customer

satisfaction often compel software companies to release software at the optimal time.

Vora (2015) noted that no software does not have a software defect. Even if there are no

software defects, it does not prove that they do not exist. Therefore, designing quality

software from the start with a suitable process improves product quality.

The role quality plays in the development of software is crucial to the success of

any company. So, to deliver quality software, the primary goal is to create the exact

requirements and extract those that cause failure (Purohit & Sharma, 2016). Researchers

Purohit and Sharma (2016) suggested the use of Quality Function Deployment (QFD) as

one of the methods that offer specific software requirements. Purohit and Sharma (2016)

used this method to analyze the tool for the evolved software system by comparing

features of the programming languages. The focus was to explore the comparison of the

programming languages by using decisive factors and functions to analyze an evolving

system. The maintenance of the software architecture after deployment is quite complex

because of frequent changes in the environment and requirements. Before the changes

are modified, the software architecture must evolve. Huckabee (2015) argued that

knowing what to build before development commences reduced rework. The goal is to

support the decisions software developers make after the deployed software. The

deployment process focuses primarily on the maintenance phase because the software

requires frequent changes.

The scope of software visualization is to assist users with analyzing software

through the lens of visual resources. According to Novais, Santos, and Mendonca

37

(2017), software visualization can be most effective when used to understand a

significant amount of data produced during software evolution. Hence, software

developers need to understand the vast amounts of data required to maintain quality

software. Novais et al. (2017) used their research as a basis to present an experimental

approach that exploits the advantages of combining multiple visual strategies of software

evolution. The themes of the study confirmed that combined visualization strategies

perform better regarding correctness and analysis time. The goal of software

visualization is to help users to understand the software through the use of visual

resources. Thus, software visualization could be used to analyze and understand the large

amounts of data produced during software evolution (Alnabhan, Hammouri, Hammod,

Atoum, & Al-thnebat, 2018). According to Alnabhan et al. (2018), visualization

improved the understandability of the software system efficiently and effectively. It,

therefore, enhanced different stages of the software lifecycle, including maintenance,

reuse, re-engineering, and evolution. Wang, Zheng, Zhang, Zhou, and Dong (2018) used

software visualization in their exploratory to identify the evolution of research. They

found that the visualization maps for the evolution of research hotspots increased with

time.

Software systems must continually evolve to implement new requirements or new

environments. Most importantly, building quality software is an essential goal for

software developers (Okwu & Onyeje, 2014). When Okwu and Onyeje (2014) explored

Lehman's laws of software evolution, their research showed that a software system must

be frequently modified. Lehman’s laws outlined the principles that are common to all,

38

whether small, large, or E-type software systems. Stol and Fitzgerald (2015) reported

that researchers should conduct studies that produce evidence for practitioners to make

well informed decisions regarding Lehman’s laws of software evolution. Decan, Mens,

and Grosjean (2018) proposed novel metrics to capture the growth, changeability,

reusability, and dependency of networks to analyze and compare software evolution.

Thus, the findings would assess the quality of the networks.

Software evolution is an essential aspect of organizations. Today’s software

organizations must invest large amounts of money in maintaining software for the

systems used (Munir, Runeson, & Wnuk, 2018). Those systems should be reliable,

testable, and maintainable to support the software that it executes. Haitzer et al. (2017)

suggested that it is typical for software developers to only pay attention to code designed

for open-source projects, where the focus on planning and modeling is often non-existent.

According to Bahamdain (2015), open-source software is publicly accessible and

provides a lot of services and products to various companies, educational and government

organizations, including the White House. The issue that most software developers have

with open source software is that access to the source code is permissible, allowing

anyone to read, analyze, and modify for improvements (Javed & Alenezi, 2016). In the

scope of things, software defects may linger if the software does not evolve (Bergmane,

Grabis, & Zeiris, 2017). So, this means that experienced software developers are

responsible for maintaining the functionality of the system by designing quality software

defect free code.

39

 This section on Lehman’s laws and software evolution has shown that software

evolution is still evident as business needs change and the criteria for satisfaction

changes. Lehman challenged the commonly held view that evolution is essential to real-

world software (Godfrey & German, 2014). Since the software is the basis upon which

many businesses operate, it is paramount to the success of any business to have newly

developed or recently modified software tested for defects. To accomplish this, software

developers must fix a discovered software defect sooner than later, understanding

Lehman’s laws of software evolution. When software defects are found late in the

development process, it would likely take more time for the software developer to

unravel the code from around the defect. As Ivanov, Reznik, and Succi (2018) pointed

out, the goal of software testing is to ensure that software evolution does not break the

existing functionality. Therefore, the software developer would need to validate if a new

defect or a new software release does not violate the existing code.

Lehman’s Laws of Software Evolution and the Linux Kernel

In this section, I provided some background regarding the Linux kernel and how it

relates to Lehman's laws of software evolution. The Linux kernel, which is an essential

part of the Linux operating system, was initially written by a University of Helsinki

computer science student, Linus Torvalds, and later released and maintained under the

Free Software Foundation's GNU General Public License (GNU GPL), which manages

free software (Bansal, Kellis, Kordi, & Kundu, 2018). According to Karpowicz, Arabas,

and Niewiadomska-Szynkiewicz (2018), Linux is efficient and reliable and is available in

many versions, providing support for most modern-day computer hardware. Though

40

people can freely download and distribute Linux, some software developers charge fees,

which they justify by providing customer support for their versions of the operating

system (Rigoni, Manduchi, Luchetta, Taliercio, & Shroder, 2018).

Software systems are complex entities. They must evolve statistically and

dynamically regarding size and complexity. Olatunji, Oladele, and Bajeh (2017) found

that Lehman's continuing change law and increasing complexity law apply in the context

of system builds. For more than three decades, thousands of software developers have

contributed more than 18 million lines of code to the Linux kernel (Bagherzadeh et al.,

2018). According to Bagherzadeh et al. (2018), the Linux kernel forms the central part of

various operating systems that are used by a multitude of end-users. The Linux kernel is a

sophisticated system and can be used by software developers who want to improve the

design of their work. Further, the Linux kernel provided its services to an application

through system calls. Hatton, Spinellis, and van Genuchten (2017) examined the growth

rate of the Linux kernel. Their research showed that over time, the growth rate is linear

or decrease according to Lehman's laws of software evolution. As noted by Olatunji et

al. (2017), Lehman studied seven commercial large software systems and came out with

the laws of software evolution. Still, there remain significant differences between

industrial systems and open-source software. For example, the development of open-

source software is performed by software developers around the world. Thus, the

development of open-source software and its evolution or maintenance activities are done

at the same time, which happens at different times in commercial systems.

41

This section on Lehman’s laws of software evolution and the Linux kernel has

shown that Linux is the most used open-source operating system designed to run

efficiently on most modern-day computer hardware. Linux allows end-users to control a

platform's direction. As Olatunji et al. (2017) pointed out, Lehman's continuing change

law and complexity law supports the Linux operating system in the context of system

builds. Empirical studies have demonstrated that a strong incentive for developing open-

source software is to solve a technical problem (Bagherzadeh et al., 2018; Bansal et al.,

2018). When open-source software is given away for free to software developers who

write code, there is generally no rigorous software testing approach taken. Therefore,

software testing is narrowed down to whether the results look about right. Moreover,

when testing a software system, it requires having an understanding of what and how to

test. To accomplish this, using best practices such as integration testing and unit testing,

along with the proper tools, might implement testing strategies designed to mitigate

software defects. Since software testing is essential, it is often neglected due to its

complexity and time-consuming process (Rigoni et al., 2018).

Lehman’s Laws of Software Evolution and Software Maintenance

In this section, I provided some background regarding software maintenance

activities and how they relate to Lehman's laws of software evolution. The success of

software requires constant change and maintenance. Software evolution is a field that

examines the application of software maintenance activities, changes in software

processes, and the resulting evolved versions of the software (Granli, Burchell,

Hammouda, & Knauss, 2015).

42

A large part of software maintenance is software comprehension, which uses a

massive amount of time and effort (Khatiwada, Tushev, & Mahmoud, 2018). According

to Khatiwada et al. (2018), as much as 70% of the total lifetime cost for software is for

maintenance related activities. The need for software change has increased due to the

rapid growth of software development. Cashman and Rosenblatt (2014) reported that

maintenance expenses vary significantly during the system's operational life. Further,

they explained that the maintenance activities include changing programs, procedures, or

documentation to ensure that the correct system performance, and causing the system to

operate more efficiently.

When performing maintenance of a software system, it is not possible to make

changes without having a complete understanding of the system and the interactions

within that system. According to Granli et al. (2015), the four categories of maintenance

include: corrective, adaptive, preventive, and perfective. When Granli et al. (2015)

talked about corrective maintenance, they reported that it diagnoses and corrects errors

for functionality. Moreover, adaptive maintenance makes the system more comfortable

to use; whereas, preventive maintenance requires an analysis of areas where a problem is

likely to occur. Although perfective maintenance can improve system reliability, it

involves changing an operating system to make it more efficient (Granli et al., 2015).

Practitioners involved in software evolution consciously or unconsciously confront some

of the constraints imposed by the laws of software evolution that Lehman introduced

during the 1970s (Camilo, L'erario, Pagotto, & Fabri, 2018). Further, Coelho, Valente,

Silva, and Shihab (2018) carried out research to alert end-users about the risks of using

43

projects that were unmaintained or sparsely maintained. They argued that Lehman's laws

of software evolution deal with stable or controlled environments. In the end, their

research showed that 75% of the studied projects are unmaintained.

This section of the study explored Lehman's laws of software evolution and

software maintenance. Software maintenance and software evolution are a continuous

process in the software development lifecycle to repair existing faults, enhance platform

compatibility, and increase user satisfaction. While successful software requires constant

change triggered by evolving requirements, software evolution is inevitable (Khatiwada

et al., 2018). As Coelho et al. (2018) pointed out, a large portion of the software

maintenance budget is devoted to time and effort. Thus, it is necessary to have a good

understanding of the software system as a whole to make the required changes effective.

To accomplish this, software developers should employ systematic, continuous

performance regression testing strategies to reveal software defects in the early stages of

the testing process. Thus, due to high overhead charges, performance regression testing

is too expensive. To this end, software applications are not thoroughly tested to ensure

the reliability of the product.

Complementary and Contrasting Theories

Software testing is understood to be a bug hunting activity. According to

Alhammad and Moreno (2018), software testing is the main activity for evaluating and

executing software to discover defects. Software testing is an entity of software

engineering. For this reason, software testing is performed to ensure that the developed

software application is working as it is defined and intended to operate (Dalal & Hooda,

44

2018). Software testing is the most common approach in the industry to validate the

correctness of the software. Due to the nature of the study, it follows that Lehman's laws

of software evolution were selected as the conceptual framework to help understand the

phenomenon and to explore the testing strategies software developers use to ensure the

reliability of software applications in the government contracting industry. Hence, the

following section breaks down theories that either support or contrast the selected theory

for the study.

As there are many theories that I could choose from, as the researcher, I examined

each theory and determined the relevancy for answering the central research question.

According to Khachaturian et al. (2018), theoretical articles are written for a diverse

audience, so that the central research question and any linkages with existing ideas to the

conceptual frameworks or theories are easily understood. This research falls under the

broad theoretical area of software development, testing, and maintenance. As for this

research study, I reviewed complementary and contrasting theories as conceptual

frameworks and how they are applied to case study research.

Software Testing Theory. Software testing is a significant part of the software

development lifecycle, although it is the primary method for detecting software defects.

One supporting theory is software testing theory. Lemos, Silveira, Ferrari, and Garcia

(2018) noted, one of the characteristics of the software testing theory is that it is more

reliable than the theories previously introduced. Lemos et al. suggested that the software

testing theory might improve programming skills as a result of generating quality

software. Clarke, Davis, King, Pava, and Jones (2014) argued that more exposure to

45

software testing practices, tools, and better training for software developers might

contribute to quality software. Further, Beppe et al. (2018) emphasized that software

testing is used to evaluate and improve software quality. For this reason, software testing

confirms if the software does what it is intended to do, which is to identify problems in

the software before it is released. While there is no one to guarantee the best practices of

the software testing theory, many researchers are still conducting continual work as much

is built on wishful thinking (Beppe et al., 2018; Lemos et al., 2018; Yao & Liu, 2018).

Gerhart-Howden-Duran Testing Theory. Another theory that was considered

for this study, but was not chosen, was the Gerhart-Howden-Duran testing theory. The

Gerhart-Howden-Duran testing theory emerged in 1970 out of the desire by researchers

to precisely define the notions of random testing and operational reliability (Hamlet,

2015). Hamlet (2015) explored the Gerhart-Howden-Duran testing theory to analyze

persistent state-based testing methods that would increase the understanding of the

statistical properties of the software. The Gerhart-Howden-Duran testing theory treats

the behavior of software applications as nothing more than an input-output mapping. The

research carried out by Hamlet (2015) showed that the Gehart-Howden-Duran testing

theory critiques existing test methods. While there is no further research on this theory, I

did not select this theory to drive the conceptual framework for this reason.

Software Reliability Testing Theory. The software reliability theory was

considered for this study but was not chosen. The software reliability theory emerged

during the early 1970s as an attempt by researchers to unify hardware and software

applications for an overall reliable system (Lyu, 2002). While the software reliability

46

theory supports the design of failure free software, the theory prohibits the estimation in

advance of a project, and the amount of testing regarding execution time to achieve a

specific goal. For this reason, the theory was not selected to drive the conceptual

framework for this study.

Grey Systems Theory. In contrast to the testing theories, a researcher may

consider using the grey systems theory. The founder of the grey systems theory was

Professor Julong Deng in 1982 (Deng, 1982). As Huang and Wu (2018) noted, the grey

systems theory is a quantitative method for dealing with known and unknown

information. Moreover, the grey systems theory is studied using small samples and

inadequate information (Sifeng, Tao, Xie, & Yang, 2016). So, the researcher must make

assumptions and formulate conclusions based on incomplete information. The study

conducted by Memon, Lee, and Mari (2015) indicated that the grey systems theory and

the uncertainty theory are combined to achieve both quantitative and qualitative

objectives. Since the quantitative method is not used in this study, I did not select this

theory to drive the conceptual framework for this study.

Software Testing

Software testing is an entity of the software development lifecycle (SDLC) that

has a plethora of research where various techniques were used. Evidence of this is shown

by the number of original research investigations reported in the literature and those

listed in the reference section. For example, Jacob and Prasanna (2016) published work

proposing that software testing is an essential activity in the software development

lifecycle. Julia et al. (2016) supported the workings of Jacob and Prasanna, adding that

47

software testing is the most crucial phase in the software development lifecycle. Until

now, there was a difference between software testing research and practice. The study

conducted by Engstrom and Petersen (2015) explained that the reason for the gap is the

discrepancy between how testing research is reported and how testing challenges are

perceived in the IT industry. Garousi and Mantyla (2016a) argued that over 101

secondary studies had been published in software testing. Nevertheless, software testing

is not an easy task; yet, it provides information about the quality of a product or service

under test. When Julia et al. (2016) explained that it is essential to include the testing

phase amongst all steps in the software development lifecycle, the goal was to improve

the detection of software defects that may exist. The primary objective of the software

testing phase is to confirm that the developed software product meets or exceeds

customer requirements, is defect free, and ready for customer delivery. In any case,

software testing ensures that expected business systems and software features behave as

expected.

So far, software testing is a resource consuming activity. Per Zachariah (2015), a

good fraction of software development cost is spent on software testing, since intensive

testing is needed to identify and eradicate any future or potential software defects.

Software testing is an activity that reduces software defects, and the goal is to deliver

quality products at a low cost. Moreover, studies showed that testing constitutes more

than 50% of the overall costs of software development (Afzal, Alone, Glocksien, &

Torkar, 2016). Until now, software testing was an optional activity that was often

implemented late in a project with little planning and executed carelessly (Anu, Hu,

48

Carver, Walia, & Bradshaw, 2018). In hindsight, the result of a quick release may be the

result of failure prone software. The first step to understanding what caused a software

malfunction is to reproduce the defect that caused the failure through testing.

The desire organizations have for software projects to smoothly flow through the

planning, analysis, design, testing, and implementation phases seamlessly with limited

software defects is ideal. However, this is difficult because software development

projects are immensely varied in their complexity and require a substantial amount of

oversight and planning to be successful (Javed & Alenezi, 2016). Almugrin et al. (2016)

found that in the software development process, well designed software is one of the

most critical activities in the software development lifecycle; nevertheless, it is costly and

not easy to test or maintain because of poor designs. In prior research, Fitzgerald and

Stol (2017) explored the problem of severe disconnects between activities such as

planning, testing, integration, and release providing a holistic view of the activities.

Software testing is one of the most challenging labor-intensive practices of the software

development lifecycle. The active support of software testing is essential to providing

reliable software (Sun, Li, Leung, Li, & Li, 2015). Nevertheless, having quality software

requires more than a dynamic process. Amanatidis and Chatzigeorgeou (2016) reported

that an analysis of software evolution could reveal valuable information about software

testing practices. So, the need for software to evolve for an extended period, as Kaur and

Kaur (2015) noted, is necessary. In the end, evolution should not compromise the overall

software quality by avoiding software testing.

49

This section of the study showed that software testing is an essential activity in

the software development lifecycle. Software testing researchers have explained the

reason for the discrepancy between how testing research is reported and how challenges

are perceived in the IT industry. As Julia et al. (2016) pointed out, it is essential to

include the testing phase amongst all steps in the software development lifecycle. While

the goal is to improve the detection of software defects that may exist, some empirical

studies suggest that software testing in some cases can be exhaustive (Afzal et al., 2016;

Zachariah, 2015). When a defect occurs during preliminary testing, and the code is

modified, the software may not function as expected. Although software testing is a

labor-intensive practice of the software development lifecycle, discovering any defects in

software is difficult and, for the same reason, complex. Therefore, testing boundary

values are not sufficient to guarantee correctness.

Software testing is a technique that verifies and validates a product. Verification

techniques can increase the effectiveness of testing (De Souza, De Almeida Falbo, &

Vijaykuman, 2015). The software testing process is designed to verify and validate

software. IEEE Standard for System, Software, & Hardware Verification & Validation

determines whether the development product conforms to the requirements of the

verification and validation lifecycle process (IEEE, 2017). Verification and validation

are performed to help improve software quality. The purpose of verification is to confirm

that the product is correctly built, challenging the requirements and design specifications

(Sen, Marijan, & Gotlieb, 2018). When Tan et al. (2016) observed how test cases are

used for verification, they noted that the test cases are chosen differently to avoid

50

potential bias. The verification technique is a strategy used to implement static testing.

The static testing strategy reviews software artifacts, including source code, while

inspecting for defects without executing code during verification. It follows that

validation techniques are challenging and controversial. The study conducted by Ahmed,

Abdulsamad, and Potrus (2015) explained that the purpose of validation is to ensure that

the product satisfied the quality standards set forth by the customer using the dynamic

testing strategy. In contrast to static testing, dynamic testing is executed and is performed

during validation. Thus, it is evident that software testing is crucial. Many studies have

revealed the benefits of software testing and the importance of discovering software

defects early on in the software development phase (Arora & Bhatia, 2018; Lemos et al.,

2018; Lonetti & Marchetti, 2018).

 For the last decade, the verification and validation (V&V) technique have been

one of decreasing importance. Batarseh and Gonzalez (2015) explained that the reason

for reduced concern is a result of the persistent software challenges and failures detected.

Most researchers in the field support Ahmed et al. assertions that the only way to

eliminate problems is by performing verification and validation. Validation is an essential

component of the software development lifecycle as it provides answers to questions such

as (a) Does the software fulfill its intended use? (b) Is the company building the right

product? (c) Can the project be correctly implemented? (d) Are the documents in line

with the development process? (Batarseh & Gonzalez, 2015). Thus, evaluating the

effectiveness and efficiency of software quality is through verification and validation.

51

Software testing is a widely used practice for evaluating software qualities and

assisting software developers with finding and removing software defects. Kirner and

Haas (2014) found that software testing is an essential process that reduces the quality of

software defects. Thus, the primary goal of software testing, according to Subramanian

et al. (2017), is to ensure that a system or product fully satisfies all the requirements

defined by the customer. The need for software testing is a critical part of software

evolution because software defects can be expensive and dangerous (Kumar & Yadav,

2017). A case in point, Amazon’s third-party retailers, were horrified when they noticed

that items reduced to one pound as a result of a software defect. Then, a China Airlines

Airbus A300 crashed because of a software defect that killed all 271 passengers (Mohan

& Shrimali, 2017). So, software testing has a vital role in the software development

lifecycle. Software testing is a process rather than a single activity that is primarily

conducted to detect any or all errors that were induced in the system during various

stages of the software development lifecycle (Petunova & Berzisa, 2017). The phases of

the software development lifecycle include requirements, design, coding, testing, and

maintenance (Mohammed, Niazi, Alshayeb, & Mahmood, 2017). Once software testing

begins, requirements are collected, and the design and coding phases are complete.

Garousi and Mantyla (2016a) pointed out that as new software is developed, it needs to

undergo intensive testing to identify and remove potential faults or failures since the

release of a quality software product is the ideal goal.

The key to assuring a successful and reliable software product or service is

through intensive software testing. Garousi and Kucuk (2018) published work

52

advocating the notion of software developers spending more time in the software

development lifecycle to lessen the time spent in the software testing phase. Recently,

the software testing community responded to research that the emphasis should be

equally divided during the software development phase to address the time and cost

incurred during testing (Bergmane et al., 2017). Zhou, Sinaga, Susilo, Zhao, and Cai

(2018) concurred as they reported that software testing is a process that consumes about

30%-50% of software development time and budget. A typical testing fallacy, as

explained by Dalal and Solanki (2018), is that software testing is merely an act of running

test cases or running the software programs. The reality is that the actual test execution is

part of the testing phase of the software development lifecycle. In 2015, Chen, Kuo,

Towey, and Zhou reported that software testing is an approach that revealed software

defects and problems as quickly as possible. Software testing activities start before the

execution of test cases and continue even after the software testing phase is complete.

The activities involved in software testing include test planning, selecting test conditions,

creating and deciding on test cases, determining expected results, evaluating test results,

evaluating the testing effort completion criteria, test status reporting, and finalizing the

test phase (Rastogi, 2015). As explained earlier, verification techniques can increase the

effectiveness of testing (De Souza et al., 2015). Therefore, the collection of verification

techniques may be used during the development process to facilitate software quality. In

summary, software testing activities can reveal design problems as well as operational

and end-user issues. The advantage of early test planning and software development is

53

that both force the software developer to think about the product from a testing

perspective.

 In this fast-paced age of technology, any newcomer or practitioner is likely to

experience challenges in digesting large volumes of information about software testing.

Most of all, documentation is an integral part of the software development lifecycle. Zhi

et al. (2015), reported that a documentation’s main usage includes maintenance support

and program comprehension. For software testing, documentation aids in estimating the

testing effort required, test coverage, and requirement traceability (Machado, McGregor,

Cavalcanti, & Almeida, 2014). Some commonly used documented artifacts related to

software testing include (a) test plan, (b) test design specifications, and (c) test case

specifications (Steinberger, Reinhartz-Berger, & Tomer, 2018).

This section of the study discussed the importance of the verification and

validation technique. Ahmed et al. pointed out that the only way to eliminate software

defects is to perform verification and validation. As argued elsewhere, the importance of

verification and validation is the flexibility of changes encountered during the software

development lifecycle. Documentation is essential to software testing. A test plan is

composed of detailed procedures that specify how and when testing finishes, who

participates, and what test data would be used. Therefore, regardless of who creates the

test plan, it serves as a guide to testing throughout software development. Although test

design specifications record what needs to be tested, test cases are produced when the test

design is complete (Cashman & Rosenblatt, 2014). Overall, testing is an important step

when developing reliable and successful software applications.

54

Test documentation. The documentation for software testing provides support in

estimating the testing effort required. Software documentation is an essential part of any

software development process. However, according to Garousi et al. (2015), software

practitioners are often concerned about the value, degree of usage, and usefulness of

documentation during the software development lifecycle. The Institute of Electrical and

Electronics Engineers (IEEE) published documents that establish specifications and

procedures to confirm the reliability of the products and services used daily (IEEE,

2018). Specific to software and system testing, IEEE Standard 829-2008 determined

whether the development products of a given activity conform to the requirements (IEEE,

2018). Swarts (2015) found that rich test documentation is easy to understand; whereas,

poor test documentation is a hindrance for software developers to adopt when learning a

new tool. Given Swarts (2015) research, Elberzhager, Munch, and Assman (2014)

criticized the fact that fixing software defects is expensive and labor intensive because it

is necessary to fix the defects not only in the software code but also in the documentation.

As has been noted that software testing consumes about 30%-50% of software

development time and budget; thus, the software testing activities must always be

thoroughly documented to support resource allocation (Zhou et al., 2018). IEEE is a

leading developer of International Standards that support many of today's information

technology products and services. Specific to software testing, IEEE Standard 829

provided an outline for the format of artifacts used during software testing.

According to Phillips (2004), eight documents are specific to software testing,

IEEE Standard 829-2008 (IEEE, 2018). The document types include test plan, test

55

design specification, test case specification, test procedure specification, test item

transmittal report, test log, test incident report, and test summary report. Although not all

projects follow the full activities summarized in the testing process, most researchers are

still uncertain of the testing process. I presented an illustration of a software testing plan

in Figure 2 that contained eight document types included: test plan, test design

specification, test case specification, test procedure specification, test item transmittal

report, test log, test incident report, and test summary report.

Test analysis. The initial phase of the software testing process is the analysis

phase. Hooda and Chhillar (2015) found that the test analysis phase encompasses the

analysis of functional and nonfunctional requirements. Moreover, the requirements are to

be clarified with the customers to identify the actual and expected results of testing and to

identify any gaps. According to Ammann and Offutt (2016), test analysis is the process

of examining something that could derive test information. Dolezel and Buchalcevova

(2015) explained that the International Software Testing Qualification Board (ISTQB) is

an international organization that provided standardized certification in the area of

software testing. Therefore, the research carried out by Pawlak and Poniszewska-

Maranda (2018) noted that the ISTQB process included planning, control, defining test

conditions, designing, choosing test cases, executing test cases, evaluating results,

evaluating exit criteria, reporting the process and the software under test and concluding

the testing phase. Vukovic, Trninic, and Djurkovic (2018) argued that the goal of the

testing process is to provide a basis for a testing process that is specific to testing business

56

software in small and medium software organizations. Overall, the test analysis phase

identifies what needs testing.

Test plan. The test plan is the general approach to testing or the design of the

test. The test plan is the first document prepared that outlines the strategy that would be

used to test a software application. The research carried out by Vasanthapriyan, Tian,

Zhao, Xiongi, and Xiang (2017) noted that the goal of the test plan is to recommend the

scope, approach, resources, and schedule of testing activities. Further, Vasanthapriyan et

al. (2017) found that the advantage of using a test plan is that it forces software

developers to think about the product from a testing perspective. Plus, they identified

how the test plan should be structured. The test plan should include (a) an introduction to

the test plan document, (b) assumptions made while testing the software, (c) a list of test

cases for testing the software application, (d) a list of features to be tested, (e) the strategy

to use while testing the software, (f) a list of deliverables needed for testing, (g) any risks

involved during the testing process, and (h) a schedule of tasks and milestones to be

achieved. In support of Vasanthapriyan et al. (2017) research, Wang, Wang, and Duan

(2016) added that an optimal test plan is quite robust to the software testing phase.

Hence, without a clear and robust test plan, a software developer might spend countless

hours analyzing through test suites and fail to locate the problem. The test plan should be

updated to indicate any divergence from the original plan.

57

Figure 2. The hierarchy of test documentation. From “ISO/IEC/IEEE International

Standard - Software and Systems Engineering -- Software Testing --Part 3: Test

Documentation” p.10. Copyright 2013 by IEEE. Reprinted with permission (Appendix E)

Test design specifications. The test design specifications are the plan details or

specifics for a test item and identify the associated test case. According to

Vasanthapriyan et al. (2017), the test design is the first phase of developing test cases.

The test design flows from the test plan to the software requirements specifications.

While the test plan describes what must be tested, the test design describes how it should

be tested, revealing design problems including, operational and end-user issues (Lemos et

58

al., 2018). Thus, the document is used as a basis for the specification of test procedures

and test cases. The test design specifications include (a) test design specification, (b)

features to be tested, (c) testing refinements, (d) test identification, and (e) pass or fail

criteria (Vasanthapriyan et al., 2017). The test design specifications record which

structures should be tested and identifies how a successful test is recognized.

Test case specifications. Test cases are composed of a set of steps, conditions,

and inputs that are used to validate tests. The research carried out by Sapna and

Balakrishnan (2015) explained that test cases are designed from specifications

represented by using the Unified Modeling Language (UML). One of the primary

objectives of testing is to ensure that the changed system works correctly according to the

written test case specifications. In 2018, Huber, Kuhm, and Sachse found that some test

cases require days or even weeks to run. Later, the test cases are used as regression tests

to ensure that the functionality of the previous code works. While waiting even a few

minutes for test results can be detrimental to a software developer’s workflow. Once all

test cases have a passed status, the test is complete; otherwise, the testing phase starts

over until the test case returns a passed status.

Consequently, test cases are vital because changes may introduce new software

defects or unwanted side effects that must be avoided at all costs (Hooda & Chhillar,

2015). Although test cases are written to keep track of the testing coverage and to verify

that code functions as expected; therefore, every test case should include (a) test case ID,

(b) product module, (c) product version, (d) revision history, (e) purpose, (f) assumptions,

(g) pre-conditions, (h) steps, (i) expected outcome, (j) actual outcome, (k) post conditions

59

(Gario, Andrews, & Hagerman, 2015). Since software developers design test case

specifications, the ramifications are the test cases might contain software defects. To

sum up, test case specifications are written to confirm that the software may function as

expected.

Test procedure specification. The test procedure specification identifies useful

information. Afzal et al. (2016) identified the test procedure as a deliverable product that

flows from the test design specification. Thus, the purpose of the test procedure

specification process is to specify the phases for executing a collection of test cases, or,

more generally, the phases used to analyze a software product to evaluate a set of its

features. According to the International Software Testing Qualifications Board (2018),

test procedure specification is a document that examines one or more test procedures. In

summary, the test procedure specification is used in conjunction with test case data to

confirm the expected behavior of a test product.

Test execution. The phase of the software testing process that performs the test

cases is test execution. The study conducted by Hooda and Chhillar (2015) determined

that test execution begins when the criteria have been satisfied to avoid unnecessary

delays in testing. Software testing researchers like Hooda and Chhillar indicated that

whenever the actual and expected results do not match, the test is recorded as a software

defect and assigned back to the software developer. However, there is a significant

amount of completed work that focuses on the steps to report a valid software defect.

Therefore, it is important to understand the software testing lifecycle to gain a thorough

understanding of test execution.

60

Test transmittal report. The test transmittal report identifies test items

submitted for testing, including the version and revision levels (Tuffley, 2011).

According to Tuffley (2011), the transmittal report involves the person responsible for

each item, location, and status. Moreover, any modifications made since the initial test

analysis and test design specification phase are recorded in this report. Furthermore, the

report documents the handover of the test items from the developer to the tester and

confirms that the software product is ready for testing.

Test log. The test log produces a detailed chronological record of each step taken

while performing the test. Tuffley (2011) noted that the test log is used by the tester to

record the results of the testing. Furthermore, Tuffley explained that the test log verifies

the number of defects identified while performing a process function. For Okoye,

Naeem, and Islam (2017), the test log is used to evaluate and identify hidden defects, and

the test cases are recorded as either passed or failed.

Test incident. The test incident report records any events that occur during the

testing process that requires additional investigation and created during test execution.

According to Tuffley (2011), the test incident report is used by the tester to document

defects identified while testing and is used to initiate corrective action. Snyder, Zhang,

Jasmin, Thankachan, and Donnelly (2018) indicated that the test incident report is

generally a problem report. Overall, the test incident report is a summary of documented

incidents, which may be the result of software defects.

Test closure. The test closure phase is essential. This phase ensures that all

systems, integration, and user acceptance tests passed, and the summary reports are

61

included (Hooda & Chhillar, 2015). The test closure phase provides a detailed analysis

of software defects found or removed. The decision is taken whether all requirements are

tested, and there is no critical software defect pending to be fixed or verified (Evans et

al., 2018). Meanwhile, software testing researchers Hooda and Chhillar (2015) noted that

once all the testing artifacts have been received and reviewed, then the software can be

released. So, the test closure phase is the final step before the actual release.

Effective software testing is best achieved by using a structured and scientific

methodology, instead of the historical break-it approach. When Ivanov et al. (2018)

explained the goal of software testing, they ensured that software evolution does not

break existing functionality. So, they concluded that few studies focus on methods that

compare existing software concerning reliability. In 2016, Groce, Alipour, Chaoqiang,

Yang, and Regehr reported that the goal of software testing is to improve software

reliability and to reduce the risk of failure. Since the software testing phase is one of the

last software development life cycle stages, the approach must be thorough and efficient,

adding to the effectiveness and quality of the testing process (Jacob & Prasanna, 2016).

After all, there is no fail-safe method of knowing whether tests are correct; to this end,

the prevailing thought seems to have processes in place. The study conducted by Rais

(2016) showed that the testing process could not be delayed until after the development

phase; yet, testing should begin as soon as possible. A demonstration of this kind of

implementation is the technique of test-driven development that includes writing the test

case, executing the test case, and updating the source code. Rais (2016) explored that if

the test continues to fail, there is a need to update the source code and retest it again.

62

Otherwise, the process continues until the design meets the requirements, and the test

passes.

Similarly, software development and software testing are two distinctive, very

well-connected phases within the software development lifecycle. Many studies have

proven the benefits of testing and the importance of recognizing problems early in the

development phase (Arora & Bhatia, 2018). Kirac, Aktemur, and Sozer (2018)

concluded that the principle of software testing must be fast, and everything must work.

Although software testing is not an easy task, Batool (2015) reported that the emphasis

placed on the importance of testing could lead to many problems if not correctly detected.

The ramifications may lead to late deliveries, over budgeting, or failure to deliver the

required features. When Zalewski and Gonzalez (2017) talked about software defects,

the most prominent example they provided is the case of NASA’s 1997 Pathfinder

mission to Mars where a software glitch impacted the real-time kernel of the rover

control software calling for an in-depth analysis back on Earth at the mission control

center in Jet Propulsion Laboratory (JPL). After repairing the glitch, the software was

tested and uploaded back to the rover on Mars.

 As software evolves, updating the required specifications is a manual task that is

expensive and time consuming. Consequently, researchers and practitioners have

expressed concerns that software testing demands a large share of the costs of a software

project (Lemos et al., 2018). For example, a 2015 survey conducted by the Capgemini

Group (2016) revealed that 35% of the spending budget was allocated to software testing

practices. Altogether, software testing is a tradeoff between budget, time, and quality.

63

For these reasons, many software testing strategies and techniques are used for

verification and validation of software, which I discuss in the next section. Further, the

study provided a mechanism to show how the testing strategies contributed to the overall

effectiveness of software testing.

Software Testing Strategies

Software testing is an activity intended to evaluate an attribute or capability of a

program or system with the determination that it meets the required behavior. Despite

the importance of software testing, it involves exploring the behavior of a product to

discover potential faults (Barr, Harman, McMinn, Shahbaz, & Yoo, 2015). Barr et al.

found that much work on software testing seeks to automate as much of the testing

process as possible, allowing for testing to be faster, cheaper, and more reliable. There

are two methods of software testing, including manual testing and automation testing. In

manual testing, the responsibilities of test planning, test execution, and documenting

software defects are manually performed by human efforts (Mohan & Shrimali, 2017).

Although software testing is the first approach; yet, it requires intensive manual efforts.

In 2015, Chen et al. reported that many software releases were scary experiences because

the release process was not practiced. Instead, many error prone manual activities were

to blame. They are further adding that the setup and configuration of the test

environment contributed to the blame of errors for three weeks.

In automation testing, test scripts are designed for beginning the testing and

execution of a product. The technique takes less time, requires higher accuracy, and is

more expensive than manual testing (Mohan & Shrimali, 2017). Most organizations

64

associated with software testing with automation as a solution to decrease testing costs

and reduce cycle time in software development. Since automation testing is quite

comprehensive, manual testing is often a necessity. Many software testing strategies can

be implemented either as a manual or automation testing process. Xiao, Liu, and Wang

(2018) defined a software testing strategy as a framework that identified the testing

approach of the software development lifecycle made to inform software developers,

project managers, and other practitioners of some major issues detected during the testing

process. Further, Xiao et al. (2018) explained that a software testing strategy helps to

manage a test suite by identifying redundant test cases. Some commonly used software

testing strategies include (a) unit testing, (b) integration testing, and (c) system testing.

This section of the study explored the two methods of software testing: manual

and automatic. As Mohan and Shrimali (2017) pointed out, manual testing is performed

manually by human efforts, and automation testing is performed by the assistance of

tools, scripts, and software. As argued elsewhere, the limitation of manual testing is that

it requires an exponential amount of time and human effort, just as automated testing is

more efficient and requires a more significant investment in tools (Chen et al., 2015).

Though many software testing strategies could be implemented as either automatic or

manual, this study discussed the three most common testing methods that software

developers use to ensure the reliability of software applications. The methods included

unit testing, integration testing, and system testing. Further, the various software testing

strategies available to software developers are discussed in the next section.

65

Unit testing. A unit test is a testing method that gives the ability to verify that

functions or small units of code work as expected and tend to mirror the operational

environment. Evans et al. (2018) indicated that a unit test ensures that a software product

is defect free; whereas, a well-designed software application has minor software defects

and high cohesion. An advantage of the unit testing strategy, according to Eler, Endo,

and Durelli (2016), is that the developed code is easy to test and prevents future code

changes from breaking the functionality. While it is true that unit testing is the lowest

level of software testing, Hooda and Chhillar (2015) identified that software developers

usually conduct unit testing. Although this may be true, Khan (2016) demonstrated that

unit testing is difficult and time consuming. Even today, software testing strategies are

confined to the unit testing realm before progressing onward to integration testing. There

are two distinct categories of unit testing: black-box testing and white-box testing.

Black-box testing is conducted independently of the software implementation; whereas,

the implementation drives white-box (or glass box) testing.

Black box testing. Black box testing is a software testing strategy designed to

adequately exercise the functional requirement of a system without regard to the

fundamental workings of a software product. The black-box approach design functional

test cases to include all functionality to be delivered. The most widely discussed black

box testing strategies, according to Jan, Shah, Johar, Shah, and Khan (2016), include (a)

equivalence testing, and (b) boundary value analysis. Black box testing has become

harder and urgent; however, research has revealed impressive results addressing many of

the aspects of the problem that spans from integration with development to test case

66

generation and execution (Henard, Papadakis, Harman, Jia, & LeTraon, 2016). When

Mariani, Pezze, and Zuddas (2015) talked about black-box testing, they did not mean an

input or output driven approach to ensure that the functionality performed as specified,

but they suggested that all parts, not some, of the back end of the code, had been tested.

The equivalence partitioning approach determines the subset of test cases. For a detailed

discussion, the research carried out by Lemos et al. (2018) separated the input-output

domains of a software application into equivalence classes, whether valid or invalid. The

boundary value analysis approach converges on the boundary conditions of input and

output equivalence classes. Experience revealed that test cases that examine boundary

conditions have a tremendous payoff than test cases that do not (Burman, Hansbo, &

Larson, 2018). Thus, black-box testing ensures that the software code will function

according to the specifications.

White box testing. White box testing is a software testing strategy that focuses on

the internal logic and structure of the code. Software testing can never completely

identify all the defects detected in the software. Zhou et al. (2018) identified white box

testing as the best technique for code optimization. As a result, their study concluded that

the test strategy used achieved considerable savings in comparison to the number of test

executions required to detect software defects. In like manner, Larrea (2017) identified

the most widely used white-box testing strategies to include (a) fault-based testing, (b)

statement coverage, (c) branch coverage, (d) condition coverage, and (e) path coverage.

For example, when Emam and Miller (2015) talked about statement coverage, they

ensured that every statement in a program executed at least once. In another example, Yi,

67

Tan, Mechataev, Bohme, and Roychoudhury (2018) reported that statement coverage was

among the first testing strategies invented for white box testing. Even though the

complexity and size of the software are growing, branch coverage aimed to detect and

correct some of the software defects to ensure reliability. The research conducted by

Godboley, Panda, Dutta, and Mohapatra (2017) proved that any testing strategy that

generates enough test cases to execute produces 100% branch coverage.

In contrast, Manikumar, Keumar, and Maruthamuth (2016) indicated that it is

unlikely to generate a set of test cases to verify for 100% defect free code. Meanwhile,

Schwartz, Puckett, Meng, and Gay (2018) conducted a preliminary study considering

code metrics as a feature. Despite the severity of the features observed, the results of the

investigation revealed that using machine learning to predict branch coverage using

automated testing is viable; yet, a feasible option.

The condition coverage technique encompasses a variety of requirements.

Condition coverage, according to Kandl and Chandrashekar (2015), involved the

evaluation of the testing process of software incorporating decisions that contain multiple

boolean expressions. For instance, the decision (AB) test cases (CD) and (DC) meet the

coverage criterion but does not cause decisions to take on all possible outcomes. As the

main requirement of condition coverage, all boolean assignments must adequately define

the input variables. Khari Lumar, Burgos, and Crespo (2017) proposed an approach that

provided a set of minimal test cases with maximum path coverage in comparison to other

software testing strategies. Their proposed study generated optimal test results used for

automated fault detection. Moreover, Goel and Mehtre (2015) analyzed white box

68

testing, and the strategies involved noting that white box testing requires a deep

understanding of the testing network or system providing better results. In the end, their

study showed that white box testing is time consuming and exhaustive.

Integration testing. Following unit testing, the next level of testing is integration

testing. So far, integration testing is becoming more critical because of the increased

focus on modularity and abstraction. Earlier, software testing researchers like Garousi,

Felderer, Karapicak, and Yilmaz (2018b) indicated that integration testing is performed

to test the functionality of grouped modules. This type of testing is performed between

unit testing and system testing to test functionally grouped components. Integration

testing is a method that determines whether independently developed modules of

software work when joined and tested as a group. Integration testing also exposes errors

in the interaction between integrated modules. The goal of this testing strategy is to test

the interface between modules and units. The research carried out by Shin and Lim

(2018) identified integration testing based on previously tested modules or units as an

advantage. The modules are tested separately, and testing is done by integrating already

tested modules. However, according to Milajic, Beljakovic, Davidovic, Vatin, and

Murgul (2015), integration testing is challenging to debug, and much throwaway coding

is required. Integration testing uses a pattern approach to validate software. Sadath,

Karim, and Gill (2018) suggested that integration testing is just like extreme

programming (XP) testing techniques despite the fact of exploiting the agile experimental

methods. XP programming uses a simple methodology that executes smaller deliverables

when designing and testing code (Sohaib, Solanki, Dhaliwa, Hussain, & Asif, 2018). The

69

level of integration testing verifies the structure of the software program by examining

the software application's interface. Moreover, integration testing starts when the

software code matures and proceeds until the software developers release the product to

the next phase.

The software testing strategies associated with integration testing differ from

traditional software. Larrea (2017) identified the most widely used integration testing

strategies to include (a) big bang, (b) top-down, (c) bottom-up, and (d) mixed. When

Lonetti and Marchetti (2018) talked about the big bang, attention was not given to

verifying the interfaces across individual units. Instead, the components are linked

together and tested all at once. The evidence exhibited by the wealth of testing research

investigations revealed a lot of the techniques and tools available for integration testing;

despite the difficulty to implement. For example, Chen, Wu, Lin, and Ye (2018) found

that the top-down testing strategy is used to simulate the behavior of the lower-level

modules that are not yet integrated. Their research further explored both the bottom-up

and mixed testing strategies. The results of the research revealed that the bottom-up

testing strategy test units at a lower level with the help of higher-level units; whereas, the

mixed testing strategy combines both top-down and bottom-up approaches. To simplify,

the strategies identified for integration testing are very complex, and testing may take

hours, days, or even weeks to complete.

System testing. The final level of software testing strategies discussed in this

section of system testing. System testing projects the big picture to ensure that the entire

system is functioning correctly and assumes the responsibility by evaluating the quality

70

of the software under test. Suffian, Fahrurazi, Ann, Aman, and Bajuri (2018) found that

system testing helps to reduce the risk of failure when software operates in its intended

environment. After all, Khan and Amjad (2016) acknowledged that system testing is to

be used to test the system. For this reason, the testing team conducts system testing.

Larrea (2017) identified the commonly used system testing strategies to include (a) alpha

testing, (b) beta testing, (c) acceptance testing, (d) regression testing, (e) performance

testing, (f) volume testing, and (g) stress testing. The illustration in Figure 3 showed the

most common types of software testing strategies.

Figure 3. Classification of Software Testing. From “A Comparative Analysis On

Blackbox Testing Strategies,” by P. M. Jacob and M. Prasanna, 2016, 2016 International

Conference on Information Science (ICIS), p 2. Copyright 2016 by IEEE. Reprinted with

permission (Appendix F).

As an example, Jamil, Arif, Abubakar, and Ahmad (2016) published work

proposing that inhouse software developers perform alpha testing in real-life

environments. Furthermore, alpha testing promoted the quality of the product by

exposing errors and common user issues before deployment. When Lonetti and

Marchetti (2018) talked about alpha testing, there was no test plan to follow, but the

71

system was deployed to end-users, and testing could not perform without the involvement

of the software development team. The product was released to specific end-users for the

testing phase. Stavova, Dedkova, Ukrop, and Matyas (2018) suggested that beta testers

should represent a future product's end-user as much as possible. The beta testing

strategy does not require unique testing environments, and the focus is not placed on

deployment and workload issues. Furthermore, Saeed, Khan, Khan, and Islam (2018)

found that beta testing measures the satisfaction of end-users in contact with the software

product. The beta testing methods have made it possible to evaluate the design and

usability of a software product.

Acceptance testing is a testing strategy that is utilized for customized software

and applications. Customized software applications are designed for the usage of internal

business sectors or a select group of end-users (Fylaktopoulos et al., 2018). During this

stage of testing, the end-user collaborates with the software developer to verify the

software requirements specified in the statement of work. Leotta et al. (2018) presented

research explaining that the goal of acceptance testing is to assess the system’s

compliance with the business requirements and to verify if it has met the required criteria

for delivery to end-users. Then, stakeholders must sign off on the process once users

agree that the software is functioning as designed. Hence, acceptance testing is the final

approval process in customized applications and is more effective when testing on a

larger scale.

Software testing is the most common industry practice to validate the correctness

of software. Software developers often write test cases for recently implemented code

72

while checking the functionality and adding these tests to a test suite. Moreover, to check

that software modifications did not break previously working features, software

developers practice the technique of regression testing, which is running test cases at each

software revision. Even though regression testing is necessary, it is expensive because of

the many numbers of tests executed. Some studies revealed that regression testing could

take up to 50% of the testing budget (Hamill & Goseva-Popstojanova, 2017). In 2017, a

large software company revealed that software failures caused $1.7 trillion globally in

financial losses (Garousi, Ozkan, & Betin-Can, 2018). Motivated by a need to improve

regression testing practices, Garousi, Felderer, Karapicak, and Yilmaz (2018a) proposed

an approach that yields more efficient test suites in comparison to the traditional manual

test selection approach. The research revealed that the suggested practices have been

beneficial in saving the costs of regression testing. Earlier Parsons et al. (2014) explained

the central role of regression testing for maintaining quality software. Hence, the study

revealed that investing in regression testing tools and practices is likely to be beneficial

for organizations. Although regression testing is a critical component of software

development and maintenance, empirical studies indicated that using functional testing or

structural testing alone cannot detect all software defects detected in a software

application (Parsons et al., 2014). Since tests in a test plan depend on a chosen testing

strategy, the testing strategy that is used by other testing techniques should be the same if

the regression testing process involves the reuse of existing tests. Therefore, software

developers may use the regression testing approach to ensure the reliability of software

applications.

73

Performance testing is an effective way to measure the system parameters in

terms of response time and service availability. The research carried out by Sanchez,

Delgado-Perez, Segura, and Medina-Bulo (2018) explored the availability of mutation

testing to assess the improvement of the performance testing strategy. Examples and

open-ended questions motivated the study. Sanchez et al. (2018) proposed the generation

of real defects seeking not to alter the semantics of the program. The outcome of the

investigation concluded that previous research challenges need to be resolved such that

they are crucial to enhancing the ability of tests to reveal performance software defects.

The research carried out by Ahmad, Truscan, and Porres (2018) introduced an approach

for testing applications in which they identified the worst path in a workload model,

causing the highest consumption of a given resource. Hence, the study revealed that in

the case models with a significant amount of data, the approximate method performs

better. Although performance testing is a significant activity to ensure quality in

continuous software development environments, performance is all the more of what

people care about (Sanchez et al., 2018). To this end, performance testing has been a

significant concern, and the driving force of software evolution (Ahmad et al., 2018).

Thus, the overall goal of performance testing is to identify the performance bottleneck of

a typical software system.

Volume testing is a nonfunctional testing strategy that performs performance

testing techniques. The test data is generated using test data generation tools. For a

detailed discussion, the research carried out by Nichita (2018) verified the ability to

manage vast amounts of data either as input or output that resides within a database. The

74

study concluded that with proper scaling, iterations are robust and convey swiftly for

most conditions. The final testing strategy used during system testing is stress testing.

Stress testing is performed only by software developers. The strategy encompasses a set

of executables used to simulate or stimulate abnormal behavior detected in a software

application (Di Alesio, Briand, Nejati, & Gotlieb, 2015). The purpose of stress testing is

to consider situations that generally shut down or produce changing conditions in a

software application. Thus, testing explicit constructs in a software program exposes

vulnerabilities in the software. Stress testing commences after the software coding phase

is complete and proceeds until benchmark results are satisfied. The stress testing

strategy, alone, validates the stability of the application, but it does not provide data for

post development objectives.

This section of the study explored the various types of software testing strategies

software developers use to ensure the reliability of software applications. Empirical

studies have demonstrated that there are many approaches to improving software testing

(Evans et al., 2018; Hooda & Chhillar, 2015). Software testing is challenging, as Mariani

et al. (2015) pointed out, whereas some software developers believe that new software

technologies are needed (Lemos et al., 2018). Thus, developing new software testing

technologies is risky. The waterfall and agile methodologies determine what developing

techniques, professional skills, necessary tools, and management actions are required to

improve the quality of software testing. The details of the waterfall methodology and

agile methodology are discussed in the next section.

75

The Waterfall Methodology

In this section, I introduced the fundamentals of the waterfall methodology and

provided an understanding of its purpose for software testing. The waterfall software

development methodology is a classic, tried and true method that has proven to be

beneficial over the years. Understanding the difference between method and

methodology is of great importance. According to Chen and Han (2018), a method is a

research tool to generate and analyze data, while methodology is the reason for using a

particular research method. For many years, there have been significant debates about

whether “methodology” or “method” is the correct term, what constitutes a methodology,

and how practices differ from methodologies (Gupta, 2018). In this study, I used the

term methodology. The meaning is consistent in the perspective that a development

methodology emerges out of a philosophical view. Now, the understanding that any

methodology is more than the sum of its practices is key to understanding why traditional

methodologies differ from agile methodologies. Because of the importance of

understanding the philosophy and motivation behind any methodology’s practices,

waterfall and agile are leveraged to ensure the success of a project. Many researchers

have focused on engineering practices of specific agile development methodology. In

contrast, this study focused on software testing differentiators between the waterfall and

agile methodologies.

The waterfall methodology is a traditional methodology that has demonstrated to

be effective over the years. The methodology focuses on top-down development,

beginning at the highest level and efficiently narrowing the scope and design down until

76

the lowest level of detail is reached (Kramer, 2018). Projects are managed more

efficiently when segmented into a hierarchy of system requirements, constraints,

exceptions, and feasibility. The waterfall methodology assumes that the “facts”

regarding the system are available upfront with relative accuracy and certainty. In their

research, Chari and Agrawal (2018) reported that work is completed in stages while

content reviews are conducted between stages; reviews represent quality gates and

decision points before proceeding. According to Heeager and Nielsen (2018), the

waterfall methodology provides sequential steps and ensure the adequacy of

documentation and design reviews to enhance the quality, reliability, and maintainability

of the developed software. The waterfall methodology is used to get quick fixes out to

end-users.

Upon completion of the design phase, the coding and debugging phases

commence. During these phases, the software development team builds the product. The

team then performs unit testing and integration testing related activities. Once testing

starts, it is difficult to go back. After a while, the completed product is delivered to the

testing environment. When Chari and Agrawal (2018) talked about the waterfall

methodology, their published research suggested advantages over the previous, ad hoc

model for development. First, formal requirements and design procedures are

established, allowing for better code quality and end-user acceptance. Second, the

recognition of formal testing phases is needed since the waterfall methodology relies on

the creation of full documentation requirements during the early stages of the project. As

Adnan and Ritzhaupt (2018) pointed out, the waterfall methodology is effective for some

77

classes of software even when projects are short. In contrast, the waterfall methodology

is not as successful for complex and interactive end-user focused systems. Contrary to

research, the waterfall methodology is a poor model for long and ongoing projects. In

general, it follows that the software development team can design software from the

documented requirements.

Software testing requires an understanding of what and how to test. Therefore,

software developers should avoid making late revisions since the focus is placed on early

definition and requirements gathering. The waterfall methodology assumes a linear

delivery model, with the successful completion of each phase, although later views of the

waterfall model acknowledged feedback loops between adjoining phases (Chari &

Agrawal, 2018). While the classic waterfall methodology is not suitable for handling

changing or uncertain requirements, organizations spend as much as 40%-50% of their

budgets on requirements elicitation, analysis, and design (Primiero & Raimondi, 2015).

On the one hand, software developers assumed that too often end-users changed their

minds, on the other end-users criticized that it is the software developers who do not

provide an accurate understanding of what the system would deliver. Figure 4 illustrates

that the cost of change becomes significantly higher as time progresses, according to

Boehm (2002).

78

Figure 4. The cost curve of change. Adapted From “Get Ready For Agile Methods, With

Care” by B. Boehm, 2002, p.68. Copyright 2002 by IEEE. (Appendix G)

Therefore, the software testing phase is prolonged, and the timescale of project

delivery under the waterfall methodology is usually measured in months, and often years.

There is no question that projects tend to escalate. For example, Garousi and Kucuk

(2018) published work suggested that managers need to justify their decisions, which

may carry a psychological impact because of sunk costs. To that end, the traditional

waterfall methodology delivers most of the value at the end of the project to include

software testing, and consequently, there is a long delay before a value is delivered and

before progress and success can be measured. Thus, pressure escalates further to deliver

the product.

The Agile Methodology

The agile software development is prevalent and has attracted an enormous

following, even an entire community of users. During the mid-1990s, software

practitioners began to acknowledge the problems that resulted from strict adherence to

past traditional approaches (Matharu, Mishra, Singh, & Upadhyay, 2015). As

79

practitioners started to make a note of the best practices from lightweight iterative

methodologies, the result transitioned into the Agile movement. Moran (2015) identified

the dynamic restructuring of the software development lifecycle as the silver bullet for

increased productivity. After all, the software development process is well suited to

pander to the synopsis of continually changing or evolving requirements.

Agile uses a spiral model, which depicts a sequence of iterations, or revisions

based upon user feedback. In other words, agile takes a get something started approach

to build a product that involves testing and revision practices (Nidagundi & Novickis,

2017). Agile is a discipline of the software development lifecycle based on the values of

adaptability, communication, and feedback. Despa (2015) indicated that the primary

focus of the agile methodology correlates with adaptability and communication. Even

now, the methodology requires intense interaction between software developers and end-

users. Once the customer and software developer agreed to a list of tasks for each cycle

of iterations, changing requirements became challenging.

Agile brings the entire software development team together. Although it is a

lighter, more people centric approach in comparison to traditional waterfall approaches,

the process is simple and delivers software in quicker timeframes soliciting feedback

(Lei, Ganj-eizadeh, Jayachandran, & Ozcan., 2017). According to Huckabee (2015),

agile lifecycles are geared toward the delivery of working software. For this reason,

when using the agile methodology, the emphasis is placed on constant feedback, and each

incremental step is affected by the determined actions of the preceding step. Since the

agile process determines the result, critics often claim that the quick iterations and fast

80

releases lack discipline and produces products of questionable quality. In recent years,

Odzaly, Greer, and Stewart (2018) criticized the agile process as being overly process

centric.

Similarly, Despa (2015) and Joann (2015) found that agile methodologies do not

scale well in larger organizations because design issues detected during testing are

expensive and difficult to correct. When software developers write their tests, they are

more vested in fixing them when they fail. Even though Cooper and Sommer (2018)

noted that less focus on testing would be the expectation, the overall severity of the agile

software development team practices remains high. So far, the agile methodology has

resulted in many management methods for software development projects and practices

that shift from a cumbersome process to lightweight methods. The literature published

by Tripp and Armstrong (2018) identified at least eight unique agile frameworks: (a)

adaptive software development (ASD), (b) crystal, (c) dynamic system development

method (DSDM), (d) extreme programming (XP), (e) feature driven development (FDD),

(f) lean software development (LD) (h) scrum, with scrum and XP being the most

frequently implemented. Their study examined how a fit between an organization's goals

for agile adoption may affect a project's performance. In sum, as agile frameworks

become popular, many organizations are proposing to implement packages that software

developers can use to manage and document the agile process effectively.

Comparing Agile and Waterfall Methodologies

In agile, software developers test their work before revealing to the rest of the

project. The observance of quality testing is a significant benefit of the agile

81

methodology. Historically, software testing has been executed manually and identified as

error prone, time consuming, and expensive (Kour & Singh, 2016). Just as the software

industry extensively adopted the agile methodology, Alahyari, Svensson, and Gorschek

(2017) reported that agile is a familiar example of a lifecycle used to build intelligent and

analytical systems. Their study focused on the delivery of valuable software. The agile

methodology involves the use of multiple sprints.

Moreover, each sprint has a specific software feature to develop, test, refine, and

document. Since agile depends on the context of the project, testing is performed

differently for every sprint. After all, software testing researchers like Vijayasarathy and

Butler (2016) supported the agile methodology; whereas, Campanelli, Camilo, and

Parreiras (2018) criticized the model arguing that all organizations are not ready to fully

transition to agile. The authors presented results that showed that external environment

criteria influenced the adoption of agile practices. Most notably, a recent study by Kour

and Singh revealed that Lehman's law of declining quality supports the agile software

development methodology. Furthermore, the agile methodology is in alignment with the

feedback system proposed by Lehman (1996), as well as the law of continuing change

(Lehman, 1996). Agile has had a higher success rate than any other software

methodology despite the challenges encountered.

There are two contemporary software development methodologies in use,

waterfall and agile, besides each model carries its issues. Despite the widespread use of

the waterfall lifecycle, there are numerous software defects. For example, Poth (2016)

reminded us that it is based on paper, and the requirements are gathered and finalized

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Leo%20R.%22&searchWithin=%22Last%20Name%22:%22Vijayasarathy%22&newsearch=true

82

early in the process before development starts. Then, the software is delivered as a

finished product before the stakeholder has an opportunity to use it. A software project

based on the waterfall model is prone to a delay in the detection of errors. Finally, both

software reuse and prototyping are not formally tested according to the waterfall

methodology. Software reuse has value providing an understanding of how software

applications work. While software reuse saves time and cost, empirical studies reveal

that it may redefine software maintenance (Martin, 2017; Poth, 2016). Although ad hoc

changes are inexpensive and applied swiftly, they are likely to degrade the software

structure; instead, planned changes preserve the software structure (Kramer, 2018).

Large-scale testing is a smart way to test. Nowadays, companies are moving

away from formal methods of testing to large-scale testing in which components are

comprised to identify weaknesses in the software application or service (Alvaro &

Tymon, 2017). In the waterfall method, committee members and project sponsors are

required to sign off at the end of each phase. Steinke, Al-Deen, and LaBrie (2017) noted

that the intention is not to move forward until the design phase is complete. Thus, as a

downfall to the waterfall method, software developers are overwhelmed with satisfying

project approvals and meeting deadlines such that focus is lost on developing a reliable

product on time and within budget. Some researchers consider the waterfall method to be

an old or outdated methodology in comparison to agile for all that it is worth; it is still

popular (Politowski, Fontoura, Petrillo, & Gueheneuc, 2018).

The challenge all companies face in a swiftly changing business environment is

competitive. In most companies, software testing practices and processes are far from

83

being mature, and they are usually conducted in ad hoc fashions (Garousi, Felderer, &

Hacaloğlu, 2017). The primary focus when using agile is to achieve customer

satisfaction. When Cruzes, Moe, and Dybå (2016) talked about agile, they explained that

agile is a methodology used to develop a system or product incrementally by building

continuous prototypes and adjusting to user requirements. One of the underlying

problems in software development is the difficulty customers have in explaining their

needs. According to Inayat, Salim, Marczak, Daneva, and Shamshirband (2015),

customers faced challenges when explaining their requirements. Agile software

development helps customers to define their requirements, and it has led to many

successful software development projects. When Martin (2017) indicated that agile is a

software development methodology that emphasizes adaptability in a collaborative

process, software developers were ready to deliver tangible products in short iterative

cycles. In the end, testing and feedback are continuous such that software defects or

requirement changes can be discovered, clarified, and addressed throughout the

development process.

Once agile development was believed to best suit small teams, but the success has

since inspired the use in large-scale development environments. The research carried out

by Dikert, Paasivaara, and Lassenius (2016) identified problems of large-scale software

development environments. Their research revealed that preexisting development

environments are incompetent for supporting large-scale software systems. Furthermore,

their work provided insights into future work. Most notably, the recommendation that a

model needs to be defined, specifying the attributes of the software testing environment.

84

The waterfall methodology is used widely in both large companies and government

projects. The agile methodology embraces change and emphasizes open communication

and whole team involvement. Moreover, Curcio, Navarro, Malucelli, and Reineher

(2018) found that the waterfall process is developed and executed in sequential order.

When Raschke et al. (2015) talked about the agile process, they explained that testing

occurs early and often. After all, agile testing requires software developers to manage

changes quickly using proper tools, without compromising safety and quality. As

illustrated in Figure 5, the waterfall methodology emphasizes heavy up-front

requirements.

Figure 5. Waterfall versus Agile. From “An Analysis of the Software Selection Process

Using Waterfall Versus Agile Methodologies: A Simulation Study” by S. Feddock, 2016,

p.23. Copyright 2016 by Proquest. Reprinted with permission (Appendix H)

Software Testing and The Federal Government

The secret to 21st century software success is innovation. In this era, companies

in every industry continue to transition in the direction of software innovation.

Moreover, software innovation has captured the attention of all the sectors, including

85

accounting, banking, education, healthcare, and even the United States federal

government (Anand, Singh, & Das, 2015). Since the early 1970s, the waterfall

methodology has been the dominant approach for software development (Dolezel &

Buchalcevova, 2015). The study conducted by Ashmore, Townsend, Demarie, and

Mennecke (2018) credited Winston R. Royce as the founder of the waterfall methodology

who described the process as a cascading set of project phases that include requirements,

analysis, design, code, test, and operations. Software testing is difficult work. As

reported by Ashmore et al., Royce criticized the waterfall methodology as a flawed

approach because existing testing tools are considered inadequate. Thus, to understand

why the waterfall methodology failed government IT projects, I explored the

healthcare.gov website.

During October 2013, the Centers for Medicare and Medicaid Services (CMS), an

industry sector within the Department of Health and Human Services (HHS), initiated the

healthcare.gov website under the nation's Affordable Care Act health reform law (Capili,

2018). The law gave numerous Americans the stability and flexibility to make informed

choices regarding their healthcare. The healthcare.gov website was a data repository

configured to allow citizens the opportunity to choose their healthcare policy (Capili,

2018). According to Huang (2014), the healthcare.gov was another federal government

IT project that encountered catastrophic failures while using the waterfall method.

Consequently, the website suffered from poor planning from the very beginning and the

lack of software testing. Again, the importance of software testing should be

unavoidable. Instead of using an agile approach that would allow for the release of

86

segments of the system in weekly or bi weekly sprints, software developers used a big

bang approach, whereby all the components were tested at once until a finished product

was released (Anthopoulos, Reddick, Giannakidou, & Mavridis, 2016). Once the website

launched, access was granted to residents in 36 states to create and manage their

healthcare exchange. After the website went live, the discovery was that it was not

designed to support the large volume of end-users, such that within a 2-hour timeframe,

the system crashed (Cundiff, McCallum, Rich, Truax, & Ward, 2015).

The implementation was a massive IT failure. As a result, the failed launch had

to be rescued by a team of Google software developers in an emergency turnaround that

cost $100 million over the initial budget (Mergel, 2016). The U.S. Government

Accountability Office (GAO) (2014) report concluded that the lack of understanding

implications, and the frequent changing of requirements while pursuing a compressed

timeline to release the software were significant factors that contributed to the

performance of the website. Further, the U.S. Government Accountability Office (GAO,

2014) report revealed the inefficient management of project expenditures even though an

increase in funds occurred during the development process. Thus, failure to understand

that software rework and poor-quality software development impacted the agile schedule

causing for flawed customer requirements. In sum, it was not until 2014 that the website

became fully functional.

The federal government is looking to adopt the use of agile to quickly deliver

innovative software that satisfies the needs of the customer. So far, federal government

agencies are facing IT upgrades and legacy issues, such that outdated systems and

87

acquisition processes are the results of high-risk technology projects that are over budget

and behind schedule (Misra, Bisui, & Mahapatra, 2018). The agile software development

methodology follows the mantra fail fast, early, and often instead of failing

catastrophically and wasting taxpayer dollars as observed with the healthcare marketplace

portal (Mergel, 2016). In 2017, Deborah Sills, Kevin Tunks, and John O'Leary published

a study on the California Health and Human Services agency. For years, work on a

traditional waterfall request for proposal (RFP) was in progress, until a sudden move was

ordered to switch to agile. According to Stuard Drown (as cited in Sills et al., 2017), the

release of an RFP for a $500 million project in 2015 was in progress. Although the

project was on version seven, the work had been performed for three years and near

completion. Thus, in a dynamic switch, organizational leaders determined to transition

the project to agile. The move caused the agency to break down the project modules and

employ multiple vendors. Ordinarily, innovation in government software development is

created by using an agile software development approach adopted from the private sector

and IT organizations.

This section concluded the literature review. By utilizing Lehman's laws of

software evolution as the underlying conceptual framework, it provided a unique lens by

which to view testing strategies and the perceived benefits for implementing these

strategies within this case study. The review of the literature focused on software

evolution, software testing, and the testing strategies software developers used to ensure

reliable software applications in the government contracting industry.

88

Software testing is a crucial phase of the software development lifecycle (Lemos

et al., 2018). Since the first piece of written software code, there has been a need to test

code to ensure that it functions appropriately (Alvaro & Tymon, 2017). Historically,

software testing has been viewed as an optional activity, often performed late in a project

with limited planning and executed carelessly (Mohan & Shrimali, 2017). As argued

elsewhere, the techniques of Inayat et al. (2015) and Subramanian et al. (2017) use the

software testing strategies to recover requirements from insufficiently documented

software applications. De Souza et al. (2015) used requirements to generate test cases.

All three approaches could be implemented together to test existing, older software

systems to ensure their reliability under currently anticipated endeavors.

To this end, software testing can take up to 50% of software development time

and cost; however, research has marginalized the importance of testing (Afzal et al.,

2016; Beppe et al., 2018). Sanchez et al. (2018) acknowledged the deficiency with their

own previously advanced method of generating performance regression tests on

performance intensive software systems and suggested an improvement. Interestingly

enough, effective software performance testing is fundamental to the development and

delivery of quality software. The details of how the study was conducted appeared in the

next section.

Transition and Summary

This section contained an introduction to the problem of software defects found at

the end of the testing phase by software end-users. The purpose of this qualitative

multiple case study was to explore the testing strategies used by software developers in

89

the government contracting industry to ensure the reliability of software applications.

Lehman’s laws of software evolution as the underlying conceptual framework provided a

unique lens by which to view testing strategies used and the perceived benefits for

adopting the strategy within government contracting organizations in the United States.

Section 1 commences with the foundation of the study and a discussion on the

background of the problem. This section presented the problem statement, purpose

statement, the nature of the study, the research question, the interview questions, and the

conceptual framework. Moreover, Section 1 further elaborated to include the definition

of terms, assumptions, limitations, delimitations, the significance of the study,

contribution to IT practice, and the implications for social change. In the end, Section 1

concludes with the literature review, which provided a discussion on existing literature

and explored research applicable to software testing, testing strategies, and software

evolution.

Section 2 commences with a reminder of the purpose statement to provide the

reader in a logical, explicit manner, an understanding of the research. Section 2

continues with a further discussion on the role of the researcher, participants, the research

method and design, population sampling, and ethical research. Moreover, Section 2

explores data collection instruments, data collection techniques, and data analysis. In the

end, Section 2 concludes with a discussion of reliability and validity in the context of the

study. Section 3 contains an overview of the study, presentation of findings, application

to professional practice, implications for social change, recommendations for action, and

recommendations for future research.

90

Section 2: The Project

This section begins with a reminder of the purpose statement, followed by a

discussion that acknowledges my role as the researcher and provides an overview of the

participants involved in the study. Then, I provide detailed information about the

research method and design, followed by discussions on population and sampling, ethical

research, data collection instruments, data collection techniques and data organization

techniques, and data analysis. In the end, Section 2 concludes with a discussion of

reliability and validity in the context of the study and transitions to Section 3.

Purpose Statement

The purpose of this qualitative multiple case study was to explore the testing

strategies used by software developers in the government contracting industry to ensure

the reliability of software applications. The target population consisted of software

developers from three government contracting industry organizations located along the

East Coast region of the United States. I performed the data collection process by

interviewing software developers that have experience using and supporting software

testing strategies. The contributions of this study may help foster a greater understanding

on the part of software developers to improve testing strategies to ensure the reliability of

software applications in the government contracting industry. Thus, the research findings

might contribute to positive social change by possibly improving the everyday life of

citizens because of the improvement in the reliability of software applications in the

government contracting industry.

91

Role of the Researcher

This section of the study describes the role of the researcher. The researcher’s

role when conducting qualitative research is to collect quality data. Yin (2018) reported

that for qualitative research designs, the researcher is the primary collection instrument.

As the sole researcher, I was the primary data collection instrument. This role allowed

me to design the study, develop insightful interview questions, collect data in the form of

naturalistic reports, confirm participants' responses and ensure the understanding between

the research and the participant eliminating personal bias from the study.

According to Berger (2015), an understanding between the researcher and the

study area makes the research more holistic. Furthermore, Fusch and Ness (2015) are

right that one of the challenges researchers often face during data collection and analysis

is to mitigate bias. My professional experience in the information technology field for

more than 15 years, and my experience as a software tester in the government contracting

industry since 2002 gave me a holistic perspective of the study. Mitigating bias in

research is a challenge. Sohn et al. (2017) reported that bracketing is a technique by

which researchers set aside their knowledge, beliefs, values, and experiences to

understand participants’ experiences. I used bracketing during interviews to ensure that I

do not incorporate any personal bias into the research study.

Ethical behavior toward potential participants is necessary while conducting

research. I performed ethical research and data collection analysis for this study. The

Belmont Report, published by the National Commission for the Protection of Human

Subjects of Biomedical and Behavioral Research in 1978, provided guidelines for the

92

ethical treatment of participants. To ensure the study met ethical requirements, I

followed the directions of the Belmont Report. Hammer (2016) acknowledged that the

three fundamental principles for studying the protection of human subjects include (a)

respect, (b) beneficence, and (c) justice. These principles were achieved through

informed written consent, assessing risks and benefits, and the selection of participants

(U.S. Department of Health & Human Services, 1979). According to Forster and

Borasky (2018), the regulations of the Belmont Report reported that the principle of

respect for persons is revealed in the informed consent requirement. To ensure that the

study met moral requirements, as the researcher, I received a certificate for completing

the Protecting Human Research Participants online training course issued by the National

Institutes of Health (NIH; certification number: 171957) to protect and ensure the privacy

of all participants (Appendix A).

Trust builds rapport. Building rapport is vital to any interview (Lucas et al.,

2017). Leins, Fisher, Pludwinski, Rivard, and Robertson (2014) observed that

interviewing may shed light on the process and the way experts deal with critical

incidents. My role as the researcher allowed me to build rapport with participants. The

answers provided shed light on the process and the way participants’ deal with critical

incidents. According to Leins et al. (2014), the interview protocol is an instrument of

inquiry where the researcher asks specific questions about a topic, gaining reflection and

truthful answers from study participants. I used an interview protocol as an instrument of

inquiry for asking specific questions about a topic, obtaining reflection, and truthful

answers from study participants (Appendix B).

93

Participants

This section of the study describes the eligibility criteria for participants in this

study. The eligibility requirement was an important factor when considering potential

research participants. Yin (2018) explained that potential research participants should be

knowledgeable of the topic and able to provide suitable answers to the research questions.

For this study, the eligibility requirements included (a) must have at least 2 years

software development experience, (b) must be currently employed by a government

contracting organization located along the geographical East Coast region of the United

States, (c) must have software testing experience or knowledge, and (d) must not have a

recurring working relationship with me. Software developers in the government

contracting industry who met these criteria should have the capability to answer questions

and provide clarity.

The Institutional Review Board (IRB) is a board designed to approve, monitor,

and review behavioral research involving humans. Dukes et al. (2015) explained that

each step of the IRB process is in place to ensure the scientific quality of the study and

the ethical conduct of the research team and the research participants. I obtained

approval from Walden University’s Institutional Review Board (IRB) before contacting

my potential participants. My study’s IRB approval number was 03-19-19-0583689.

Researchers may rely on a professional network to gain access to study participants

(Borgers, Pownall, & Raes, 2016). I reached out to my professional network, using

LinkedIn to locate potential government contracting organizations. Peticca-Harris, de

Gama, and Elias (2016) identified mediators as employers or managers of the

94

organization who would help the researcher to gain access to eligible participants. Along

the same lines, Fischer-Lokou, Gueguen, Lamy, Martin, and Bullock (2014) noted that a

mediator could increase the trust between the researcher and the participants because of

their relationship with colleagues at the participating organization. I contacted the

mediator, introduced myself, and explained the purpose of the study, and asked for a

signed letter of cooperation. Cacari-Stone, Wallerstein, and Minkler (2014) agreed that

participants are more likely to agree to participate in a study if the research question is

relevant to their field of study and may result in helping their organization policy wise.

After receiving the letter of cooperation from the mediator as part of the IRB

approval process from Walden University, the mediator helped me to identify the

participants who met the eligibility requirements and then sent their information to me

via a separate email. According to Grieb, Eder, Smith, Calhoun, and Tandon (2015), the

relationship between researcher and study participant should be defined. Building trust

and positive rapport are vital. Some researchers found that building trust establishes a

working relationship by keeping participant information private (Hoyland, Hollund, &

Olsen, 2015; Nakash, Nager, & Maymon, 2015). Moreover, Drabble, Trocki, Salcedo,

Walker, and Korcha (2015) urged us to establish a working relationship with participants;

the participant needs to know more information about the researcher, the study, and the

allotted interview time. Once receiving the participants’ information from the mediator, I

extended an invitation to eligible participants an informational email, including the

consent form, which explained the purpose of the study, the procedures, any risk, and

benefits for participating in the study and the confidentiality of participants. I asked all

95

research participants to read and reply to the consent form to ensure anonymity and

confidentiality of all participants in compliance with Walden University’s IRB

requirements. Once participants responded electronically to the consent form, I began

scheduling interviews. Each participant had an opportunity to ask questions via email, or

via telephone before the start of the interviews to ensure that they are comfortable with

the interview process. According to Haahr, Norlyk, and Hall (2014), researcher and

participant interaction during the interview process influences trust and confidentiality.

When I scheduled interviews with participants, I summarized the interview process to

ensure comfort with the process. I reminded participants that their participation in the

study is 100% voluntary and that their participation and organization name would remain

confidential throughout the study.

Research Method and Design

Method

This section of the study elaborates more on the discussion of the research method

and identifies the specific research method used in the study. The 3 types of research

methodologies include qualitative, quantitative, and mixed methods. Every kind of

methodology has its advantages and disadvantages. Hence, the design that a researcher

uses is based according to preference.

I chose a qualitative research method to explore and understand the testing

strategies used by software developers in the government contracting industry to ensure

the reliability of software applications. According to Njie and Asimiran (2014),

qualitative research involves the studied use and collection of empirical studies. For this

96

qualitative research, I reviewed relevant empirical studies that related to my study.

Qualitative research answers questions about the ‘what,’ ‘how’ or ‘why’ of a

phenomenon rather than ‘how many’ or ‘how much’ (McCusker & Gunaydin, 2015). I

chose the qualitative research method because I wanted to explore and understand ‘how’

the testing strategies used by software developers in the government contracting industry

ensured the reliability of software applications. Qualitative research was relevant for

exploratory studies, and it stimulated further research on a larger scale (Cronin, 2014).

Stake (1995) supported the qualitative research method adding that it is valid for

qualitative case studies as being holistic, empirical, interpretative, and emphatic to

understanding a phenomenon. For this study, I chose a qualitative research method

because it allowed for a thorough understanding of the testing strategies used by software

developers in the government contracting industry to ensure the reliability of software

applications.

There are two other methodologies that I could have selected for my study; they

are quantitative and mixed methods. Quantitative research places focus on the ability to

test a hypothesis using statistical data (Barnham, 2016). I did not select a quantitative

research method for this study because my focus is not on the ability to test a hypothesis

using statistical data. According to McCusker and Gunaydin (2015), quantitative

research addresses a phenomenon using statistical numerical data and mathematical

methods. For this study, statistical numerical data would not address the intended focus

of the research question. Thus, I did not use statistical numerical data to explain or

discuss the phenomenon. In contrast, Khan (2014) argued that the quantitative method is

97

primarily associated with research in the natural sciences. I did not use the quantitative

method to explore the natural sciences since my goal was to explore the holistic

phenomena and real-life experiences of participants.

I considered using mixed methods research for this study. Mixed-methods

research involves the combined use of qualitative and quantitative data in a single study

(Halcomb & Hickman, 2015). According to Charman, Petersen, Piper, Liedeman, and

Legg (2015), a mixed-methods approach may be used when neither a quantitative nor a

qualitative method supports the comprehension of the study. While the quantification of

data was not required to support the understanding of this qualitative research, neither

quantitative nor the mixed methods approach was appropriate for this study. In contrast,

McCusker and Gunaydin (2015) reported that the collection of data increases as a result

of the intense combination of methods. As a result, I did not select the mixed methods

approach because of time consumption when combining methods. Overall, the

qualitative method is appropriate for this research because it addressed the intended focus

of the research question.

Research Design

This section of the study elaborates more on the discussion of the research design

and identifies the specific research design used in the study. The case study research

design was chosen for this study. According to Yazan (2015), case study research was

one of the most frequently used qualitative research methodologies. I selected a case

study design for this qualitative research study because it is the most commonly used in

qualitative research. The traditional design of qualitative research includes case study,

98

ethnography, phenomenology, and narrative (Percy, Kostere, & Kostere, 2015). I chose a

case study because it is a common design to explore and understand the central research

question. Dasgupta (2015) claimed that case study research is useful when a

phenomenon is broad, complex, and cannot be studied outside the context in which it

occurs. When conducting a case study, Yin (2018) reported that it might be realistic to

collect data from at least two of the following six sources of evidence: documentation,

archival records, interviews, direct observations, participant observation, and physical

artifacts. The reason I chose a case study design for my research because the information

from interviews and documentation as sources of evidence provided an understanding of

a broad research topic.

The ethnography research design was considered for this study. Some researchers

use ethnography designs to demonstrate how cultures react, social implications, or

communication between groups or other individuals (Ross, Rogers, & Duff, 2016; Trnka,

2017). I did not select an ethnographic design for this study because the demonstration of

how cultures react, social implications, or the communication between groups or other

individuals was not the intended focus of the study. According to Keutel, Michalik, and

Richter (2014), an ethnographic research design is the preferred method of choice when

the objective is to understand a culture. I did not select an ethnographic design because

my research question does not require the study of culture.

The phenomenological research design was considered for this study. A

phenomenological research design acquires lived experiences and events from the

phenomenon (Blackmon, 2017). I did not select a phenomenological design for this

99

study as understanding lived events from the phenomenon is not the intended focus of the

research questions. According to Kruth (2015), phenomenological research is the

investigation of human experiences through the eyes of people that are living the

phenomenon. For accurate results, the interviewer should have a minimum of 20

participants when considering a phenomenological design (Canli & Demirtaş, 2018). I

did not select a phenomenological design for this study because understanding the lived

experiences of individuals is not the intended focus of the research question.

The narrative research design was considered for this study. A narrative research

design involves storylines from participants that address sequences of events, specific

activities, and causes and effects (Leedy & Ormrod, 2015). I did not select a narrative

research design to involve the storylines from participants. When researchers like

Wolgemuth (2014) and De Loo et al. (2015) explored research designs, they indicated

that narrative research designs study the lives of individuals and provide stories about

their lives. I did not select a narrative design for this study as understanding the lives of

individuals is not the intended focus of the research question. Thus, a narrative research

design was not an appropriate fit for this study. As I reflected on the probable designs,

the multiple case study design was suitable for this research because it addressed the

intended focus of the research question.

Population and Sampling

This section of the study describes the population and discusses the sampling

method chosen and identifies how data saturation was achieved. Moreover, this section

discussed the setting for the semistructured interviews. The population for the study

100

included software developers working for government contracting organizations located

along the East Coast region of the United States. Berger (2015) claimed that the

population characteristics in a qualitative research study relate to participants’ subjective

experiences with the phenomenon. For this study, software developers were selected for

the population as they have the experience and the knowledge necessary to answer the

central research question. According to Robinson (2014), the first step in the data

collection process is to identify the study population by using inclusive and exclusive

criteria. The population included software developers who had software testing

experience or knowledge and worked for a government contracting organization.

Purposive sampling is used in qualitative research when researchers explore the

perspective on a specific research topic. Beverly, Hamel-Lambert, Jensen, Meeks, and

Rubin (2018) reminded us that total population sampling is a type of purposive sampling,

where the entire population is included in the research because they meet the criteria.

Moreover, Daniel (2014) insisted that researchers implement purposive sampling in

qualitative case studies so that researchers can explore the participants’ perspective on a

specific topic. I chose to use total population purposive sampling for this study to

explore the participants’ perspective on the testing strategies software developers use to

ensure the reliability of software applications in the government contracting industry.

According to Dasan, Gohil, Cornelius, and Taylor (2015), total population purposive

sampling is used to validate measures of commonality. I chose a total population

purposive sampling for this study to validate measures of commonality.

101

In contrast, Robinson (2014) reported that qualitative research is not appropriate

for random sampling as a statistical sample of the universe is the intended focus of the

research question. I did not select random sampling for my study because a statistical

sample of the universe is not the intended focus of the research question. However, Ojo

and Popoola (2015) acknowledged that the total population purposive sampling is

considered appropriate based on the fact that the population size is relatively small and

shares the same characteristics. For this study, I adopted a total population purposive

sampling technique to capture as broad a spectrum of experience as possible. Thus, the

total population of software developers representing three different government

contracting organizations was 10.

This section of the study identified how data saturation was achieved in the study.

According to Morse (2015), data saturation in qualitative research occurs when no new or

relevant information can be captured with additional interviews. Gentles, Charles, Ploeg,

and McKibbon (2015) explained that the number of participants could vary widely

depending upon the depth of information obtained from well-crafted interview questions.

In this study, data saturation was achieved through the collection of multiple sources of

data, which included interviews and organizational documents that focus on the testing

strategies software developers use to ensure the reliability of software applications in the

government contracting industry. Fusch and Ness (2015) noted that there is no number

of participants that would guarantee data saturation. Meanwhile, Malterud, Siersma, and

Guassora (2016) suggested that researchers should continue interviewing qualified

102

participants until data saturation is reached. I kept interviewing qualified participants

until no new information emerged.

Ethical Research

This section discusses measures to assure that the ethical protection of

participants was adequate, the informed consent process, procedures for withdrawing

from the study, and incentives for participating in the study. The design of this

qualitative multiple case study may reduce potential ethical risks. Thus, to assure the

ethical treatment of research participants and the appropriate conduct of investigators,

Walden University required that all researchers seek the approval of the Institutional

Review Board (IRB) before the collection of data commences. I obtained the approval

from Walden University’s IRB before data collection at the participating government

contracting organizations. My study’s IRB approval number was 03-19-19-0583689. I

abided by the three primary principles of the Belmont Report, which included: respect for

persons, beneficence, and justice. According to Forster and Borasky (2018), the principle

of respect for persons stresses that researchers consider an individual’s right to determine

whether to participate. I adhered to the requirements of the Belmont Report and

considered an individual’s right to decide whether to participate in the study. The

process of obtaining informed consent for research participation, as reported by Biros

(2018), is one method that attempts to secure the ethical rights of potential research

applicants. Above all, providing consent forms allows participants the opportunity to

understand all aspects of the study before deciding to participate (Schrems, 2014). I

invited potential participants a chance to participate in the study via email. The email

103

contained a copy of the informed consent form which explained the purpose of the study.

According to Chiumento, Khan, Rahman, and Frith (2015), the informed consent process

is designed to ensure the rights of all participants are not violated in any way. Beskow,

Check, and Ammarell (2014) supported sending invitations and assuring confidentiality

to participants. I emailed the study invitation and noted the assurance of confidentiality

to participants. Gelinas, Wertheimeir, and Miller (2016) reported that the primary

function of consent in human research is to protect and advance the interests of potential

research participants. I presented each participant with a consent form and explained that

participation is voluntary, and participants have the option to withdraw from the study by

notifying me at any time.

This section discussed the procedures for withdrawing and incentives for

participating in the study. Each participant involved in the study is informed that

participation is entirely voluntary, and they have the right to withdraw from the study at

any time without consequences (Gibbins, Bhatia, Forbes, & Reid, 2014). Beskow et al.

(2014) believed that there is no obligation for participants to continue participating in the

study should they feel uncomfortable. I reiterated to participants before the start of the

interview that participation in the study is 100% voluntary, and they may withdraw from

the study at any time without any consequences. According to Yip, Han, and Sng (2016),

any incentives for participating in the study should be made clear to the participants

before the start of the study as part of the consent process. Although recruitment is the

overall process of selecting suitable participants for a project, Robinson (2014) reminded

us that when recruiting participants for an interview study, the decision to offer a

104

financial incentive in exchange for a participant’s participation should be taken into

consideration by the researcher. Furthermore, the disadvantage of offering an incentive

in exchange for participant participation may fabricate or falsify their interview responses

to gain a monetary award. Therefore, I reiterated to the participants involved in this

study that there would be no incentives offered for participation.

This section discussed and explained how the names of individuals or

organizations are kept confidential. As the researcher, I protected the confidentiality of

all participants. Again, to ensure ethical research practices, researchers must protect the

confidentiality of all participants (Singhal & Bhola, 2017). I explained clearly the goals

of the interview and the expectations of the participants before initiating interviews with

each participant. The National Commission for the Protection of Human Subjects of

Biomedical and Behavioral Research (1978), as reported in the Belmont Report,

indicated that the data which links the information to the participants who provided the

information should be protected then destroyed at the earliest convenience when it is no

longer needed. In the consent form, I explained how I safeguarded the data obtained

during the study by keeping it in a locked safe at my financial institution, which I stored

under lock and key for 5 years. Only I would have access to the locked box and

possession of the key. Saunders, Kitzinger, and Kitzinger (2015) suggested the use of

pseudonyms to create a degree of anonymity to protect certain areas such as participants'

names, religion, cultural background, place of residence, occupation, and any other

identifiable characteristics for the participant. I assigned a pseudonym for each

participant in protecting their identity within the study. I also assigned a pseudonym for

105

the participating organizations, and I did not identify the name within the study. I

maintained the names of participants and organizations in a password protected Universal

Serial Bus (USB) flash drive that is separate from the actual study data. The actual study

data is stored on a second password protected USB storage device. Both devices are

stored at my financial institution and destroyed after five years.

Data Collection

Instruments

This section of the study identifies the primary data collection instrument,

explains how the technique was used, and discussed how reliability and validity enhanced

the data collection instrument process. In this qualitative case study, I was the primary

instrument for data collection, as explained in the Role of the Researcher. Per Yates and

Leggett (2016), researchers are the primary data collection instruments in qualitative

studies, and they must work directly with the data. According to Ridder (2017), data

collection is based on triangulation, where interviews, documents, and observations are

combined. I triangulated the data for this study using interviews and a combination of

documents. The documents that I used for this study included organizational documents

to identify the types of testing strategies used. Ridder (2017) also explained that

qualitative data could be collected in the form of in depth semistructured interviews to

gain a holistic understanding of the research question. When Beskow et al. (2014)

conducted their research, they found that an interview with open-ended questions helps

with the avoidance of unresponsiveness during the interview process and minimizes bias.

As the primary data collector and qualitative researcher, I used an interview protocol (see

106

Appendix B) to collect data using open-ended questions for this study. Per Patel, Shah,

and Shallcross (2015), interview protocols are instructions interviewers follow to ensure

the consistency between interviews that increases the reliability of the study. The

interviews enabled me an opportunity with each participant to ask specific follow up

questions that may contribute to the collection of rich data. Yin (2018) reported that

documentation could be used to expand further and confirm the data collected from

interviews. I used organizational documentation provided to expand further and confirm

the data collected from the interviews. The organizational documentation would consist

of meeting notes or minutes, test plans, test cases, test logs, and test summary reports.

There was no pilot study for this research.

Member checking is a technique for ensuring credibility. Conducting member

checking during each interview ensures the reliability and validity of the data collection

process (Marshall & Rossman, 2016). I followed the interview protocol to promote a

positive professional relationship with each participant and to extract relevant

information that was essential to answering the central research question. Caliz,

Samaniego, and Caliz (2016) noted that the purpose of member checking is to allow each

participant an opportunity to confirm or deny the interpretation of the data. For this

study, I asked follow-up interview questions to each participant of the study allowing the

opportunity to confirm or deny the interpretation of the data.

Data Collection Technique

This section of the study discusses the technique used to collect data, described

the advantages and disadvantages of the data collection process, and identified how

107

member checking was used for this qualitative study. Interview data for this study was

collected using an interview protocol (see Appendix B). According to Wood, Burke,

Byrne, Enache, and Morrison (2016), the interview protocol guides the researcher in the

direction for conducting professional interviews. O’Cathain et al. (2014) noted that

interviews are the recommended approach when working with professionals. I collected

recorded open-ended interview information from both telephone or Skype professionally

using an interview protocol. The use of the phone for conducting interviews is becoming

more popular in data collection. Carter, Bryant-Lukosius, DiCenso, Blythe, and Neville

(2014) found that the use of the telephone as an alternative to face-to-face interviews

reduces personal beliefs and biases. Zhang, Woud, Velten, Margraf, and Kuchinke

(2017) identified the benefits of phone interviews as part of data collection, including a

low refusal rate, convenience, and low cost. I conducted telephone interviews because of

participants’ location for convenience, low refusal rate, and low cost. According to

Sipes, Roberts, and Mullan (2019), Skype can be an effective method for collecting

detailed information from participants. I conducted interviews using Skype to collect

detailed information from participants when the telephone was not feasible.

As for any data collection technique, there are advantages and disadvantages the

researcher must consider. In most cases, an advantage to using a semistructured

interview for qualitative research is the need to use attentive listening and probe for

clarity while conducting semistructured open-ended interviews to ease the interview

process (Gibbins et al., 2014). Nevertheless, another benefit of using a semistructured

interview as a data collection technique is that they concentrate more on the case study

108

topic (Bowden & Galindo-Gonzalez, 2015). Finally, as one final advantage, a researcher

gains by conducting semistructured interviews is the opportunity to observe nonverbal

communication (Seitz, 2016). The interviews for this study were semistructured using

open-ended interview questions, and I observed nonverbal communication (see Appendix

D).

In contrast, as for any data collection technique, there are disadvantages to using a

semistructured interview. In 2014, Baskarada noted that researcher bias and the

misrepresentation of data collected during the interview process could potentially taint

the results of the study. Hence it is critical to ensure that no bias affects the data

collection process. I ensured that there was no bias involved so that it does not taint the

results of the study. The interviews for this study were semistructured using open-ended

interview questions.

Member checking is a technique used to enhance the reliability and validity of the

data collection instrument. According to Goodell, Stage, and Cooke (2016), member

checking techniques ask participants to review the findings to enhance the reliability and

validity of the data findings. Following each interview, the recorded files were

transcribed and annotated with a summary sent via email to participants for review and

verification, followed by member checking activities. Morse (2015) suggested that

member checking is a crucial step in establishing validity and reliability in a qualitative

study. Moreover, Marshall and Rossman (2016) indicated that conducting member

checking during each interview ensures the reliability and validity of the data collection

109

process. For this study, the use of member checking helped enhance the reliability and

validity of the study.

Data Organization Techniques

This section of the study describes the technique used to organize the data and to

discuss how to store it securely. The organization of data in a qualitative case study

requires the use of specific practices due to the amount of information and evidence

collected during the study. Yin (2018) pointed out to ensure the validity and reliability of

a study and to expose themes and patterns; a researcher uses research notes, research

logs, and interview transcriptions. Moreover, other researchers suggested the use of

reflexive journaling to summarize and track the experiences encountered (Cuellar, 2018;

David & Hitchcock, 2018). For this study, I practiced the technique of reflexive

journaling to document thoughts and perceptions before and during the research process.

Research logs are effective tools for recording information. According to

Merriam (2014), qualitative researchers use research logs to make a note of obstacles

encountered along with ideas emanating from data collected. Meanwhile, Yin (2018)

observed that researchers use notes to document preliminary data interpretations. I used a

research log to document emerging themes and patterns and trends from the data. As

noted by Lakshmi (2014), researchers use research logs to (a) minimize potential bias, (b)

provide a valuable audit trail for conformability, and (c) identify challenges that might

occur during the study. I used research logs to reduce the risk of potential bias and as an

audit trail. Plus, I labeled and categorized the research log entries based on notes from

the interview and company documents. Dennis and Walcott (2014) reported that the

110

organization of data is an essential process if a researcher expects to have a meaningful

study. For a meaningful study, I organized the data collected according to patterns and

themes. The identification of citations and references used in this study are stored using

the citation manager Mendeley, and the use of the NVivo software application to store,

file, and organize the collected research data.

Data collected from the interviews were transcribed and coded in a Microsoft

Word file. For each completed interview file, I organized the results from the telephone

interview into themes to promote research results promptly. Thus, to conceal the

identities of participants of the study, all interview and audio files received the naming

convention Organization 1 - Participant 1, Organization 2 - Participant 1, and so forth.

According to Brennan and Bakken (2015), thematic analysis is one of the most known

forms of data analysis in qualitative research.

Further, Brennan and Bakken (2015) emphasized NVivo as the data management

tool to identify emerging themes from narrative passages. Furthermore, the transcribed

data for each interview audio recording was stored in a password protected folder using

the same naming convention. For these reasons, researchers must maintain good data

organization practices to protect their participants. Hashem et al. (2015) explained that

confidential information should be stored in a secure location for five years upon

completion of the study and then disposed of as soon as possible. I saved all data on a

password-protected USB flash drive at my financial institution for five years. Afterward,

I would purge all forms of data, including password-protected USB flash drives, field

notes, interview audio transcriptions, and collected documents relevant to the study.

111

Data Analysis Technique

This section of the study identified the appropriate data analysis process for the

research design and discussed the specific data analysis technique used for this study. As

noted by Derobertmasure and Robertson (2014), researchers need to identify and analyze

their data to interpret the research findings correctly. Lawlor, Tilling, and Smith (2016)

explained that the rigor of qualitative research helps to establish the trustworthiness of the

data and includes the use of well-established data collection and analysis techniques,

including the use of triangulation. Moreover, Patton (as cited in Yin, 2018), reported that

the four types of data triangulation used to validate the findings of a case study include

data, investigator, theory, and methodological triangulation. I selected methodological

triangulation for this study.

Researchers use data triangulation to increase the validity of inference in

qualitative and quantitative research. Data triangulation, as described by Scheibe et al.

(2018), involves the use of different types of people or groups to get multiple

perspectives of the data, whereas, theory triangulation consists of the use of various

theories to analyze data (Fusch, Fusch, & Ness, 2018). I did not select data triangulation

as a data analysis technique for this study because the analysis of multiple perspectives

from different groups of people is not the intended form of triangulation that would

support this study. Plus, I did not select theory triangulation because the analysis of

multiple theories is not the intended form of triangulation that would support this study.

According to Carter et al. (2014), investigator triangulation involves using multiple

researchers in the same study to provide different perspectives on the same data. I did

112

not select investigator triangulation because, as the sole researcher, I do not have access

to additional researchers who might support exploring the phenomenon of this study.

Finally, methodological triangulation involves using multiple sources of data found

within one design (Zhao & Chen, 2018). I selected methodological triangulation for this

study because I used multiple sources of data for this case study design. Yin (2018)

reminded us that the use of multiple sources of data, a researcher can triangulate the data

more accurately. I used multiple sources of data collection to provide a complete

understanding of the phenomenon. I collected data from multiple data sources to gain as

much data as I could regarding the phenomenon of testing strategies for this study.

According to Carter et al. (2014), method triangulation is frequently used in qualitative

studies and may include interviews and other methods of data collection, all regarding the

same topic. Also, Ryan (2013) reported that examining company documents can enhance

the quality of interviews. For this study, I began by conducting individual interviews,

followed by document analysis as methods of data collection. I reached out to the

mediator to obtain additional information that helped identify the organizational

documents that were beneficial to my study. The documents of interest included meeting

minutes, test cases, test plans, and any other documents related to my study.

Data analysis focuses on uncovering key concepts from raw data. According to

Clarke and Braun (2018), thematic analysis involves a three-step coding process:

preparation, organizing, and reporting. The initial step of the data analysis process is

preparation. This step includes the reviewing of each interview and member checking

transcript to gain a holistic understanding of the raw data. Morrison and Luttenegger

113

(2015) stressed the importance of triangulating interview data with additional sources.

Plus, Morse (2015) explained how data triangulation becomes increasingly important to

enhance validity and reduce bias in data collection for qualitative research. Furthermore,

Marshall and Rossman (2016) suggested three sources of triangulation, including (a)

open-ended semistructured interviews, (b) direct observation of data collection, and (c)

company documents. Direct observation of data collection uses other data collection

procedures, such as surveys and questionnaires; however, they have the least effect. For

this study, the sources of triangulation that I used included open-ended semistructured

interviews and company documents as provided by the mediator. Furthermore,

researchers gain a greater understanding of their study through the observation of data

from different perspectives (Salmona, Kaczynsk, & Smith, 2015). I reviewed relevant

and available information posted on the company's website, capturing research notes that

were used later in the generation of codes.

The next step of the data analysis process is the organization of themes. Research

data need to be organized to identify the most efficient and effective methods of

observation. As part of the data analysis process, researchers need to carefully examine

and inspect the quality of their interview data (Langham et al., 2016; Yin, 2018). As the

researcher, I carefully examined and inspected the interview data of each participant.

Some researchers noted to ensure that participants correctly answer a research question,

the results need to be organized by themes (Low, Crawford, Manias, & Williams, 2016;

Ranney et al., 2015; Sutton & Austin, 2015). According to Neuman (2014), codes are

brief symbols that represent the crucial topics present in the data and are developed by

114

the researcher to expose such areas as events, relationships, situations, and opinions.

Following each interview, I played back the audio recordings on a digital voice recorder,

then manually transcribed and coded it into Microsoft Word. Coenen et al. (2016) noted

that compiling the data into a central resource would provide a holistic view of

commonality across the data. In the same manner, Vaismoradi, Jones, Turunen, and

Snelgrove (2016), found that the selection of themes during the data analysis process is a

fundamental task of the researcher because commonly used words or phrases by

participants might link the theme to the research question and conceptual framework.

Thus, the organization of data through categorizations of participants, interview

questions, or additional documented sources validated the analysis from various

perspectives. I organized the data and then coded into themes.

Upon completion, I re-examined the themes with participants and made any

necessary adjustments according to feedback received by participants. Once the data is

confirmed accurate, researchers use qualitative data analysis software programs (QDAS)

to support their research. NVivo is one of several software packages from the QDAS

category (Estrada & Koolen, 2018). Often, researchers identify the benefits of NVivo as

supportive of data management and its capabilities to code and organize themes (Maher,

Hadfield, Hutchings, & de Eyto, 2018). I used Nvivo version 12 software to complete all

interview data and documentation collected to save time for material organization and

theme identification. As reported by Kaefer, Roper, and Sinha (2015), the use of NVivo

demonstrates how software tools can promote analytical flexibility by improving the

transparency and trustworthiness of the qualitative research process. After the

115

identification of emergent themes, I shared the results with the participants as a member

checking technique. Member checking, as suggested by Stillwell et al. (2018), provides

participants with the opportunity to comment and provide feedback or express

disagreement with my interpretation of their responses. I ensured that the themes aligned

with the conceptual framework of Lehman's laws of software evolution and the literature

review on testing strategies by analyzing the results of the coding using NVivo version 12

before generating a report of my findings.

Finally, the last phase of the data analysis process involved the generation of a

report. The report illustrates theme patterns that trace back to the literature review and

the conceptual framework. The NVivo software was a crucial component during the data

analysis phase as it provided help in the generation of the final report. The presentation

of findings is explored further in section three of the study.

Reliability and Validity

The following section of the study introduces reliability and validity and identifies

similar criteria for qualitative research. Lincoln and Guba (1985) proposed four

commonly used criteria for ensuring rigor in research (a) dependability, (b) credibility,

(c) transferability, and (d) confirmability. In research, both reliability and validity are

techniques used to ensure transparency of a study and to minimize bias (Singh, 2014).

Reliability and validity have numerous meanings in qualitative and quantitative research

Reliability

The term reliability in qualitative research refers to how one addresses

dependability. I used the interview protocol listed in Appendix B and the triangulation of

116

methodological evidence to ensure reliability. A study is reliable and dependable,

according to DeGirolamo, Di Pillo, Porto, Todisco, and Barca (2018) when the results are

repeatable, and the verification of data references are accurate. I used reflexive journals

and research logs during the study to document reproducible results and to verify the

accuracy of data references. Henningsen, Sort, Møller, and Herling (2018) confirmed

that the research log is used as an audit tool, allowing the researcher to identify and

reflect on challenges that may occur during the research study. I used a research log as

an auditing tool to help track any obstacles encountered during the study.

Dependability

The term dependability in qualitative research refers to consistency. For this

reason, researchers enhance the dependability of the study through the process of member

checking, transcript review, expert validation of the interview questions, or interview

protocols to confirm and validate the data findings (De Massis & Kotlar, 2014). In the

same manner, Crowe, Inder, and Porter (2015) reported that researchers could establish

dependability by providing records of an audit trail of the methods and procedures for the

study. For this study, the research is dependable, and the reader will comprehend how

the researcher was able to derive the findings of the data.

I used a research log and reflexive journal to record my process so that any reader

or reviewer can understand the decision-making process for each situation encountered.

Thomas (2017) proposed that researchers use member checking methods as an approach

to deviate the incorrect data findings and to assure dependability. Daniel (2018)

suggested the technique of member checking to ensure that the researcher's interpretation

117

of the data is dependable and accurately captures the participant's perspective on the

phenomenon. Through the lens of dependability, I incorporated member checking as a

method to validate the research findings.

Validity

The term validity in qualitative research refers to the credibility, transferability,

and confirmability of the data findings. Marshall and Rossman (2016) reminded us that

the concept of validity asks the question: does this research process measure what it

claims to measure? Validity in research is the extent to which an instrument is measured.

There are two types of validity in research: internal and external (Bartels, Hastie, &

Urminsky, 2018). Internal validity refers to the causal claims in the setting where

inferences regarding cause-effect or causal relationships (Reeves et al., 2018). In

contrast, external validity refers to data findings that apply to more extensive population

settings or groups (Glasgow, Huebschmann, & Brownson, 2018). Hence, for this

qualitative study, validity helped reach data saturation to assure the credibility,

transferability, and confirmability of the data findings.

Credibility

The term credibility in qualitative research refers to acknowledging the truth.

Credibility involves ensuring that the data findings from the study are credible from the

perspective of the participants in the research (Stockman, 2015). For this multiple case

study, I used member checking to confirm my interpretation of each interview.

Credibility establishes trustworthiness and rigor. According to Lincoln and Guba (1985),

member checking is the most crucial technique for creating credibility by allowing the

118

participants to verify the accuracy and credibility of the researcher’s account of their

experiences. Caretta (2016) suggested member checking to confirm that the researcher’s

interpretation represents the intent of the participants’ comments. Moreover, when used

correctly, member checking can increase the trustworthiness of the study while adding

value such as credibility to the research (Becher & Wieling, 2015). In this study, I used

the member checking technique to confirm the accuracy and credibility of the

participants' experiences during data collection.

Transferability

The term transferability in qualitative research refers to the relevancy of the data

findings to other settings. The transferability of a study is evident when the outcome uses

a different context or group (Rapport, Clement, Doel, & Hutchings, 2015). In 2015,

Barnes noted that transferability is achieved when the data findings of the study have

meaning to individuals not involved in the study. In contrast to external validity,

transferability does not include broad claims (O'Sullivan & Conway, 2016). Lub (2015)

reported that the data findings could be theoretically transferable to other contexts if

researchers provide rich detail with a complete description of the case study. Thus,

through the lens of transferability, I provided complete descriptions for future readers to

determine whether they can apply these practices to future research studies.

Confirmability

The term confirmability in qualitative research ensures that the data results can be

confirmed and supported by others. Arundell, Mannix, Sheehan, and Peters (2018)

agreed that confirmability occurs when the researcher confirms that the participant's

119

views represent the data without any bias from the researcher. Further, Tong and Dew

(2016) explained that the data findings and interpretations reflect the opinions of the

participants. I used the defined interview protocol during the interview to ensure the

participant's responses are confirmable, and bias is minimal. I used the data findings and

interpretations to reflect the views of the participants. Moon, Brewer, Januchowski-

Hartley, and Blackman (2016) concluded that researchers must demonstrate that the data

findings connected to the data can be replicated as a process. I documented the data

findings from interviews and the steps taken during each phase of the research process in

a reflexive journal to provide repeatable steps for succeeding reviewers. Qualitative

researchers can enhance the confirmability of a study by conducting follow-up member

checking and asking questions from numerous perspectives (Singh, 2014). For this

study, each participant was given an opportunity during follow-up member checking to

confirm or dispute the interpretation of his or her responses.

Data Saturation

The term data saturation in qualitative research occurred when the data findings

collected produce no additional information. Fusch and Ness (2015) wrote that

researchers could ask multiple participants the same questions as one method to reach

data saturation. Also, Gibbins et al. (2014) wrote that when qualitative researchers

receive no additional information after conducting several interviews with research

participants that researchers achieved data saturation. To ensure data saturation, I

interviewed each research participant until no additional information replicated the

phenomenon of the study. Qualitative researchers can achieve data saturation through the

120

lens of methodological triangulation using multiple sources of data and member checking

methods to verify the accuracy of the interview data (Cope, 2014; Fusch & Ness, 2015).

Roy, Zvonkovic, Goldberg, Sharp, and Larossa (2015) insisted that the quality or the

depth of the data reflects saturation. I used methodological triangulation and member

checking to ensure data saturation.

Transition and Summary

The purpose of this qualitative multiple case study was to explore the testing

strategies software developers use to ensure the reliability of software applications in the

government contracting industry. In Section 1, I discussed the background of the study,

the problem statement, the purpose statement, and the nature of the study. I included in

this section, my assumption as a researcher, the research limitations, and delimitations.

The section continued with the research question and a discussion on the conceptual

framework. The academic literature concluded this section.

In Section 2, the purpose of this qualitative multiple case study was restated for

providing the reader with a broad perspective of the nature of the project. I began

Section 2 with a discussion regarding the role of the researcher, participants, and research

method and design, which was then followed up with a discussion on population and

sampling strategy used to select participants. Next, the ethical responsibilities that are

required by the IRB were explained, followed by another discussion of the data collection

and analysis techniques, along with data organization techniques and instruments chosen.

The collection of data from phone interviews and Skype, along with organizational

documents, were explained even more. I used the qualitative data analysis computer

121

software package NVivo to organize and analyze my data. Methodological triangulation

was used to ensure data saturation. The section concluded with a discussion on reliability

and validity in the context of the study. In Section 3, I present the findings from my

research, describe applications for professional practice, address implications for social

change, make recommendations for future research, and offer reflections.

122

Section 3: Application to Professional Practice and Implications for Change

This section contains information from the qualitative multiple case study,

including a presentation of the findings from the data collection and a description of how

this study may be significant to IT practice and society. Then, I discuss information from

my study that encourages positive implications for social change. Finally, I conclude

Section 3 with suggestions for future work as well as personal reflections related to the

study.

Overview of Study

The purpose of this qualitative multiple case study was to explore the testing

strategies software developers use to ensure the reliability of software applications in the

government contracting industry. The data for this study were collected from two

primary sources: semistructured phone interviews and organizational documentation.

Ten participants were recruited through total population purposive sampling that

included software developers from three respective government contracting organizations

located along the east coast region of the United States. Moreover, I collected and

analyzed 77 organizational documents for use in the study to illustrate the work

performed within the organizations. The participants ranged in status from junior to

senior level software developers. All of the participants of the study had between 2-35

years of software development experience and knowledge of software testing practices.

Most had between 5 and 35 years of software development experience. Two participants

had less than 5 years of software development experience.

123

I categorized participants into two groups by software development experience,

with eight participants having between 5 and 35 years of experience and two participants

having less than 5 years of experience. I also categorized participants into two groups by

software testing experience with seven having between 5 and 35 years of software testing

experience and two participants having less than 5 years of experience. The remaining

participant did not discuss their software testing experience. I organized themes by major

and subthemes associated with a significant theme. Additionally, reference counts are

based on attributions to theme keywords.

Similarly, a reference may be specific to one theme or include two or more

themes in the same reference. My analysis of the data resulted in four major themes to

emerge during the data analysis phase of this qualitative multiple case study: (a)

communication and collaboration with all stakeholders, (b) development of well-defined

requirements, (c) focus on thorough documentation, (d) focus on automation testing. The

findings from this study are comparable to the findings revealed in the literature review.

Furthermore, the findings from this study support the use of Lehman’s laws of software

evolution as the conceptual framework. In the following section, the four major themes

revealed during the data analysis phase was explored and synthesized for the reader.

Presentation of the Findings

When I first started this qualitative multiple case study, I wanted to answer the

overarching research question: What testing strategies do software developers use to

ensure the reliability of software applications in the government contracting industry? In

this section of the study, I present and introduce four major themes that emerged during

124

the data analysis phase of the study. I conducted semistructured phone interviews, which

were member checked to ensure transcription accuracy and also to enhance the

methodological triangulation process. Furthermore, methodological triangulation was

used to analyze the two sources of data obtained, which included semistructured phone

interviews and organizational documentation.

 The interview and member checking activities, along with the organizational

documents were all analyzed and uploaded into the qualitative data analysis software tool

NVivo, where the analysis of four major themes emerged from the study. The

identification of these four major themes provided potential strategies that could be used

for implementing testing strategies in government contracting organizations. According

to Bonello and Meehan (2019), qualitative analysis software tools such as NVivo provide

the researcher with an audit trail to visually analyze and code the data through various

iterations, annotations, as well as mapping concepts into themes. The development of

themes during the data analysis phase was identified, and the findings were tied back to

the existing literature review and conceptual framework.

In the following section, the four major themes that emerged during the data

analysis phase are compared to the existing literature review, and the findings are then

tied back to Lehman’s laws of software evolution, which served as the conceptual

framework for this study.

Theme 1: Communication and Collaboration with All Stakeholders

The theme communication and collaboration with all stakeholders was the first

theme to emerge during the data analysis phase of the study. The theme emerged based

125

on the responses of all participants, an analysis of organizational documents, and

confirmed by previous and current research. Within this theme, several subthemes were

mentioned by the participants, in the organizational documents, and identified in previous

research that contributed to communication and collaboration with all stakeholders.

Based on the participant interviews, communication and collaboration with all

stakeholders are critical in the culture of software testing as it lays the groundwork for

software testing. Supporting the participants' views was the study by Allison and Joo

(2015) reported in academic and professional literature. Allison and Joo indicated that

laying the groundwork for software testing through communication and collaboration

with all stakeholders requires working together as a team to understand the requirements

for testing the software application. Also, supporting the theme was a study by Berman

and Chutka (2016), cited in the academic and professional literature of this study.

Berman and Chuka reported that communication is not just restricted to talking, but also

to listening and nonverbal communication. Kim, Seo, and David (2015) showed that

communication connects people by face-to-face or written communication, collaboration

with all stakeholders ensures that everyone has an opportunity to provide input into

analyzing the problem and formulating an effective solution. The researchers’ views

were consistent with the opinions of the participants, who indicated that the team should

strive to have as many face-to-face meetings as possible. While it is critical to have

accurate communication when testing, collaborating with all stakeholders such as

supervisors, system analysts, other software developers, software testers, and end-users is

crucial to avoid producing a defective software application.

126

The responses from all 10 participants indicated the importance of laying the

groundwork of software testing through communication and collaboration with all

stakeholders. Seven participants reported that the attendance at daily stand-up meetings

to exchange ideas through communication is beneficial and an excellent way to

disseminate software testing information. The remaining three participants reported that

while their organization does not currently have a test team, they rely on peer code

reviews to examine and evaluate the content and quality of the software application.

While peer code reviews promote the development of working software through

communication and collaboration with all stakeholders, peer code reviews have the most

significant impact on code quality, coding style and standards, and testing (Sun, Wu,

Rong, & Liu, 2019).

An analysis of 11 organizational documents supporting this theme included a

charter document outlining the purpose, goals, roles, responsibilities of members,

processes, task tracking, and meeting frequency. From the literature, Yague, Garbajosa,

Diaz, and Gonzalez (2016) reported that communication is critical in the exchange of

information between team members. Moreover, Strandberg, Enoui, Afzal, Sundmark,

and Feldt (2019) reported to make informed decisions, practitioners need information

from software testing before the execution of test cases and continue even after the

software testing phase is complete. According to Wang, Graziotin, Kriso, and Wagner

(2019), software testing requires communication between all team members.

Organization 3-Participant 2 stated, “I think communication between all teams from the

project manager to the business analyst, to the development team to the stakeholders and

127

the software experts, the communication should always remain open.” In a separate

study, Alzoubi, Gill, and Al-Ani (2016) reported that poor communication is a significant

risk to the project when testing software. The fact that delivering incomplete, inaccurate,

or inadequate messages could cause severe software problems leading to unreliable

software applications and delayed software delivery. A case in point, when asked about

the current project and to explain the testing process, Organization 3-Participant 3 stated,

before creating version2, the process was everywhere and unorganized. People

had their hands on the documents, and there was no communication. Nothing.

What I did was made sure that the approval process was seamless and user-

friendly, making sure that it went to the proper people, proper steps, and proper

phases. So now, when I test, I usually have some test users, and some users are

heavily involved in the actual ‘live’ ones such that whenever they have time, I

have them make a ‘dummy’ process, and then I typically test it myself.

The findings of this study demonstrated that communication and collaboration

with all stakeholders are in alignment with existing literature. According to Rola,

Kuchta, and Kopczyk (2016), increasing communication among all stakeholders of a

project leads to a more reliable identification of performed tasks. According to

Organization 8-Participant 3, increasing communication with all stakeholders is essential.

From the literature, Bellery, Hodges, Camp, and Aduddell (2016) found that

communication is essential to teamwork. As explained earlier, communication and

collaboration with all stakeholders lay the groundwork for software testing. Organization

8-Participant 1 stated, “we have daily stand-up meetings every morning; this helps us to

128

understand what other people are working on, and it also informs the product owners and

the clients.” Support for this idea also exists in the literature, as Wohlin et al. (2015)

noted that the communication between teams improved, and so did the collaboration with

the stakeholders. Organization 8-Participant 2 stated, “we have a testing team, and as

tasks are completed, what we as developers do is unit testing.” Research carried out by

Jan et al. (2016) showed that software testing has taken on the interest of developers,

testers, and end-users.

 Communication and collaboration are the skills used to help teams build stronger

relationships and understand their work better. For example, one participant explained

that communication and collaboration with all stakeholders are both relevant to software

testing stating, “it helps the team to collaborate and manage their work better.” Kropp,

Meier, and Biddle (2016) argued that experience leads to collaboration showing that

successful teams tend to use more collaboration practices when testing. Organization 3-

Participant 4 stated, “if a tester does not understand what they are testing and you cannot

explain it to them, and they are not getting what it is, at some point managers step in and

say what the answer is and they proceed from there.” In the culture of software testing,

both communication and collaboration are essential. Weidner, Pauwels, McGuire, and

Davis (2017) claimed that communication and collaboration help bring projects up to

speed more quickly while passing along insightful tips. The insightful tips might require

using basic code testing, unit testing, regression testing, or user acceptance testing as the

software development team develops and delivers more software applications in a short

time, through communication and collaboration with all stakeholders, the testing team

129

could verify and validate them using integration testing or regression testing.

Organization 3-Participant 4 talked about the various tips in the tote bag that developers

use. Organization 8-Participant 1 explained,

as a developer, we do perform some form of unit testing. It is basically the code

testing before we pass the software to the testing team. We also make sure that

the new code does not break the previous code that was built. Then, we also do

some form of regression testing. As for user-acceptance (UA) testing, we usually

do that manually before sending it to the testing team.

Recent literature further supports the theme communication and collaboration

with all stakeholders as a strategic testing strategy that software developers could use to

ensure the reliability of software applications in the government contracting industry.

According to Organization 8-Participant 3, during the last Friday of the third week,

planning meetings with stakeholders are arranged to discuss every phase of the project.

Crevier and Parrott (2019) confirmed that communication and collaboration with and

between stakeholders should be encouraged through all phases of the testing project. As

noted by Ramanathan, Faulkner, Berry, et al. (2018), when thinking about future roles,

more communication and collaboration with all stakeholders could help achieve the end

goal. Their study found that an increase in communication and collaboration with all

stakeholders led to new visions and testing ideas. In the end, effectively leveraging

efforts demonstrates how an organization makes full use of the testing resources currently

available at their disposal.

130

The theme communication and collaboration with all stakeholders align with

Lehman’s laws of software evolution, which served as the conceptual framework for this

study. One of the characteristics of Lehman’s laws of software evolution is the law of

complexity. According to Lehman (1996), as software evolves, its complexity increases

unless work is done to maintain or reduce it. As noted earlier, communication and

collaboration are two components designed to work together because they both have laid

the groundwork for software testing. For projects that are complex in nature,

communication and collaboration are necessary. Lehman et al. (1997) demonstrated in

their empirical studies that communication and collaboration rely on continuous

improvement. Hence, collaboration is unachievable unless communication begins.

Mashia, van Wyk, and Leech (2019) agreed that communication is a priority. One

participant summarized the overarching theme stating,

 I am going to say this again. Communication is the number 1 priority. Number

two, build a relationship between the project manager and ensure that he or she

understands that project. Also, building a relationship with the business analysts

and developers is critical. Everyone is working as a team. I have worked with

developers in the past where they would stop what they are doing to ensure that

QA has a complete understanding of the code designs. It is important to the

project and the company.

The data in Table 2 lists the subthemes of communication and collaboration with

all stakeholders. The study participants’ identified these subthemes as results of their

experiences encountered in various projects at each of their respective organizations.

131

Also, Table 2 highlights the number of participants and the number of references in the

organizational documents supporting the subthemes.

Table 2

Subthemes of Communication and Collaboration with All Stakeholders

 Participant Document

Major Theme Count References Count References

Communication and collaboration with all stakeholders 10 100 11 160
 Effectively Leverage Collaboration 10 35 7 171

 Create Project Transparency 9 33 4 149

 Obtain Essential Feedback 9 21 4 96

Effectively leverage collaboration. Collaboration requires communication.

Also, collaboration brings groups together to focus their efforts on achieving a common

goal. When viewed through the lens of software testing, effective collaboration shapes

the way teams work together in pursuit of a common goal. The responses from all 10

participants indicated that effectively leveraging collaboration improves testing efficiency

and brings the team closer together. Their views were consistent with the findings of

Dadkhah, Araban, and Paydar (2020). The viewpoints of Organization 3-Participant 2

and Organization 4-Participant 3 on effectively leveraging collaboration enabled team

members to generate more productive and innovative ideas for software testing a product.

An analysis of seven out of the 11 organizational documents supported the

subtheme of effectively leveraging collaboration defining workflow processes, task

tracking, and tools used, such as Jira, to deliver product owner objectives. Support for

these ideas exists in academic and professional literature, as Strandberg et al. (2019)

noted that the flow of information in software testing is related to communication. The

132

authors noted that effectively leveraging collaboration seems to help locate issues faster.

From the literature, Tissenbaum (2020) reported that making and accepting suggestions

are important aspects of collaboration, providing opportunities for participants to relate

their understanding to the problem. According to Organization 3-Participant 4, their

group has daily scrum meetings where the entire team is at those meetings to discuss

issues encountered with the project. Research carried out by Kitamura, Alegroth, and

Ramler (2017) reported that the goal of collaboration is to transfer knowledge, exchange

experiences, and enrich the understanding of the opportunities and challenges between

the two sides.

The findings of this study demonstrated that effective leveraging collaboration is

in alignment with existing literature. Anderson-Cook, Lu, and Parker (2019) agreed that

having an effective collaborating team could accelerate the problem-solving process.

Communication is essential for effective collaboration and keeps testing projects on

schedule and stakeholders in the loop. Effectively leveraging collaboration is one means

of ensuring communication and collaboration with all stakeholders. Wang et al. (2020)

reported that effective communication might be the foundation required for collaboration.

Previous researchers agreed that collaboration was linked to timely communication,

which allowed team members to stay updated on the progress of the project while making

contributions to achieve common goals (Collette et al., 2017; Luetsch & Rowett, 2016).

Previous research carried out by Bell, Murray, and Davies (2019) confirmed the

findings for this theme. Bell et al. provide insight into fostering collaboration and

showed evidence that might be used to tailor future projects. The findings from these

133

researchers were consistent with the responses from Organization 3-Participants 1, 2, 3,

4, and Organization 8-Participants 1, 2, and 3 of the study. These participants indicated

that the Agile software development collaboration technique used within their

organization encouraged everyone to work as a team. To that end, Douglas-Smith,

Iwanaga, Croke, and Jakeman (2020) indicated that collaboration amongst users is

encouraged, and users can contribute to the project.

The conceptual framework that guided this study, Lehman’s laws of software

evolution, supported the findings of this study. Lehman (1996) reported that the

functionality of software increases overtime to maintain user satisfaction. Contributions

by Kour and Singh (2016), which was cited in the professional and academic literature of

this study, also supported the findings. Kour and Singh reported that easy, flexible, and

earlier testing, along with quick deliveries, increases cooperative collaboration,

communication, and coordination by delivering high-quality products to the customer.

Organization 8-Participants 1, 2, and 3 indicated that through positive communication

and effective collaboration, projects are finished sooner and the ability to promote high-

quality products. Research carried out by Ferrell and Ferrell (2016) showed that high-

quality products are achieved through positive collaboration.

Create project transparency. Project transparency is required to understand

what might be wrong while testing a troubled project. When viewed through the lens of

software testing, like communication and collaboration with all stakeholders, project

transparency is imperative. Six of the participants’ responses indicated that through the

use of tools like Jira, combined with daily stand-up face-to-face meetings, and

134

involvement in activities like these create project transparency and reduces the risk of

producing poor testing results. Their views were consistent with the findings of Pauly,

Michalik, and Basten (2015). Pauly et al. reported that daily stand-up meetings make

teams more productive and effective at testing. The meetings allow team members an

opportunity to discuss and inspect the progress of their work and remove any obstacles

encountered while testing. Moreover, Pauly et al. (2015) explained that each team

member answers the following three questions during the daily stand-up meeting: What

have you worked on since the last meeting? What will you work on until the next

meeting? Have you encountered any obstacles? When team members acknowledge these

questions, they can address the concerns encountered during testing. Furthermore, the

daily meetings serve as a reminder and foster the creation of transparency of the work in

progress, as well as communication and collaboration with all stakeholders involved in

the testing phase.

An analysis of four out of the 11 organizational documents supported the

subtheme of creating project transparency. This information was consistent with the

views of the six participants discussed earlier. The organizational documents provided

identified strategies used for creating project transparency that was discussed during daily

meetings. Support for these ideas exists in academic and professional literature, as

Sanchez-Morcilio and Quiles-Torres (2017) noted that better communication and the

creation of project transparency are shown in daily meetings. The authors noted that as a

result, there is more cooperation and support among team members. Although user

involvement is relatively high, the daily meetings were allowing the possibility of re-

135

planning and adjusting the project as opposed to traditional project management

techniques.

Jira is an issue tracking tool used to document defects while testing. The tool is

visible to all stakeholders and enhances efficiency. Organization 8-Participants 1, 2, 3

reported that Jira is used to monitor the workflow and to track the progress of a particular

item. When a project is substantial enough to require an official project turnaround rather

than deciding to fix the software defect, it is critical to recognize project transparency

during the testing phase. According to Kaur and Kaur (2019), Jira is a test management

and quality metrics tracking tool designed with the functionality to create, plan, and

execute tests. Also, Jira allows team members to distribute tasks across their team. Even

more, the tool can prioritize and track the team’s work in full context with complete

visibility. Organization 8-Participant 1 stated, “… we record everything that we do into

Jira.” Liu, Eisingerich, Auh, Merlo, and Chun (2015) noted that transparency matters

because organizations find it difficult to hide information when things go wrong. In their

research, Liu et al. (2015) performance-tested transparency, and the results showed that

transparency has positive effects when testing a project. For example, Organization 4-

Participant 1 talked about having a second set of peer's eyes on the software project is

helpful.

In today’s organizations, numerous testing activities introduce project

transparency. Nine of the participants talked about creating project transparency through

the lens of software testing in their interviews. One participant pointed out the use of

Visual Studio in their SharePoint environment to create and manage most of the tests

136

performed to ensure that every request made was completed. Konnola et al. (2016)

highlighted the importance of transparency, communication, and collaboration, allowing

the opportunity for team members to obtain a better understanding of their work and the

work of other team members. Glaser and Strauss (1967) developed a theory titled the

grounded theory. The purpose of the grounded theory is to inductively generate theory

that is grounded in or emerges from the data. The theory identified three conventional

methods used in grounded theory: participant observation, interviewing, and collection of

artifacts and texts. Though creating project transparency emerged from the data through

interviews, a detailed understanding of the grounded theory is required to make that

conclusion.

Obtain essential feedback. Obtaining essential feedback is also a critical

component of the testing process, as reported in Table 2. Soliciting feedback from

everyone involved in testing the project would help improve the quality and aid in the

deployment of a reliable software application. Nearly all of the participants' responses

indicated the importance of obtaining essential feedback in their interviews. On this

point, three participants reported that the time spent on testing was a significant source of

feedback. The remaining six participants indicated that feedback is an essential element

of testing practices. From the literature, Strandberg et al. (2019) reported that fast

feedback is the right approach for improving the flow of information and communication

in software testing. Although software testing produces non-trivial information to

manage and communicate, the flow of information in software testing involves numerous

feedback loops. The authors also proposed using automation frameworks and testing in a

137

simulated environment as strategies for obtaining faster feedback and dealing with test

results efficiently and effectively. Previous research carried out by Xiao et al. (2018)

showed that feedback offered when software testing is valuable. As Organization 3-

Participant 2 explained, “we have a weekly team meeting to discuss any issues going on,

and projects that are being worked on within the scope of testing and coordinated with

management. So, it is our meeting. A time where we can hash out problems with the

methodology process, testing, data, and things like that and so that the manager can get

involved to keep both development and testing moving forward.” In another study,

Heeager and Rose (2015) showed that providing feedback at the beginning of the testing

phase meets business needs.

An analysis of three out of the 11 organizational documents supported the

subtheme of obtaining essential feedback by identifying a plan for implementing

improvements that would be beneficial to future work, which was supported by existing

literature (Nidagundi & Novickis, 2016). When viewed through the lens of software

testing, feedback is crucial to understanding how to add value to a project. Previous

research by Beller (2018) corroborated the findings for the study. Beller reported that

software developers yearn for feedback, be it from their peers, code reviews, or local

execution of their tests. When asked about how much time is allocated for testing, one

participant explained that if their team is given the average amount of time for testing and

it does not seem correct, some form of feedback would be issued. With feedback at the

center of today’s software development practices, the flow of information in software

testing is built on numerous feedback loops (Strandberg et al., 2019).

138

The findings of this study demonstrated that obtaining essential feedback is in

alignment with existing literature. Scatalon, Barbosa, and Garcia (2017) stated that

feedback based on testing code coverage is useful. Essential feedback and effective

communication are necessary for the team when testing code. Through essential

feedback, information is provided continuously on tasks to guide the testing process. In

the culture of software testing, Zhou et al. (2018) found that test cases are centered on

feedback information collected during the testing process. Moreover, previous research

carried out by Zhou et al. showed that feedback information obtained on early fault

detections is beneficial for further improving the cost-effectiveness of testing.

When viewed through the unique lens of Lehman’s laws of software evolution,

feedback is the eighth law. Lehman (1996) applied feedback from users to solicit ideas

for new enhancements. One participant reported that when designing code, following the

requirements are essential feedback to meeting the client’s needs. Another participant

reported as feedback that the accurate measure of how effective the testing strategy used

is based upon the bug release rate. According to Panichella and Molina (2017), test

effectiveness metrics show a percentage value of the difference between the number of

bugs found and the overall number of bugs found in the software. In the literature, Inayat

et al. (2015), and Prechelt, Schmeisky, and Zieris (2016) all explained the importance of

obtaining feedback as early as possible. Organization 8-Participant 1 stated, “right now,

we are using an agile methodology. It is a methodology that we use based on the

feedback of the product owner.” According to Godfrey and German (2014), Lehman

recognized that the processes involved in developing and maintaining software appeared

139

to form a feedback system, where the environment provided a signal that had an intense

impact upon the continued evolution of the system. To that end, Dhandapani (2016)

explained that while software testing provides the gaps in the committed functionality of

the product, user testing provides input, which can provide the first round of feedback

provided by the customer before the product is officially released.

Theme 2: Development of Well-Defined Requirements

The theme development of well-defined requirements was the second theme to

emerge during the data analysis phase of the study. The theme emerged based on the

responses of nearly all participants, an analysis of organizational documents, and

confirmed by previous and current research. Within this theme, several subthemes were

mentioned by the participants, in the organizational documents, and identified in previous

research that contributed to the development of well-defined requirements. Software

testing is more than a bug hunting activity, but an activity that determines if the criteria

meet the required results. Based on the participant interviews, the quality of functional

software requirements is crucial because it is nearly impossible to produce a high-quality

implementation from a poor-quality design. A recent study found that poor

representation of the software design can bring on numerous testing obstacles

(Strandberg et al., 2019). The researcher's findings revealed that the lifetime of a test

case from its creation to its retirement might influence how test results are

communicated. One participant pointed out that test cases are derived from the

requirements with an intent to reveal software defects. Organization 3-Participant 4

echoed a similar response and added that the goal is to have minimal defects. Petunova

140

and Berzisa (2017) reported that these are efforts that reliable software applications must

begin with before the start of application development.

Nine participants' responses indicated the development of well-defined

requirements as an essential testing strategy before the start of application development in

their interviews. One participant conveyed the importance of writing test cases based on

the decomposition of the requirements before the start of application development. Two

participants also conveyed that writing the test script before developing the code meets

the best practices for requirements. The six remaining participants indicated that testable

requirements make it possible to develop test cases before the start of application

development to determine whether the condition meets the requirements.

An analysis of 26 organizational documents supported the theme of developing

well-defined requirements (Table 3). From the literature, Antinyan and Staron (2017)

concluded that a well-defined software requirements document is the backbone for high-

quality software design. According to Organization 3-Participant 2, “a full and clear

understanding of how the software works are imperative, adding that testing the software

application is based upon the requirements.” Black-box testing is a testing strategy in

which the data used for testing derive from the software requirements (Jan et al., 2016).

A user story helps with the creation of a simplified description of a requirement.

Organization 8-Participant 2 stated, “when the end-user wrote their story, the first step is

to ensure that it meets the requirement.” Previous research by Lucassen, Dalpiaz, E. M.

van der Werf, and Brinkkemper (2015) found that user stories are a widely used notation

for formulating requirements. Researchers Lucassen et al. (2015) and Hooda and Chhillar

141

(2015) recognized acceptance testing as a testing strategy to confirm the acceptance of

user stories. The goal for testing user stories is to confirm the acceptance of user stories

from a holistic approach through the lens of customer requirements.

The findings of this study demonstrated that the development of well-defined

requirements is in alignment with existing literature. As emphasized by Fortineau,

Paviot, and Lamouri (2019), the business rules must ensure that the product meets all of

the customer requirements. In a separate study, Fernandez et al. (2017) showed that not

having well-defined requirements is the leading cause of requirements failure.

Furthermore, Alahyari, Gorschek, and Svensson (2019) stated that not well-defined

requirements might expose other factors such as an inefficient architectural design, which

in turn may have long term side effects.

Recent literature further supports the theme development of well-defined

requirements as a strategic testing strategy that software developers could use to ensure

the reliability of software applications in the government contracting industry.

Unterkalmsteiner, Gorschek, Feldt, and Klotins (2015) implied that involving

requirements as a test strategy and test plan review would ensure the support of testing

requirements correctly. Organization 3-Participant 2 talked about testing requirements

and how the test planning was done very poorly in the past, observing that more bugs

came out later than they should have. Similarly, Huang (2017) noted that the analysis of

requirements and improving customer satisfaction are both challenging tasks.

Consequently, requirements that are traceable and easy to comprehend so that

142

stakeholders can develop a sense of knowledge are considered reasonable and without

conflict.

The data in Table 3 lists the subthemes of the development of well-defined

requirements. The study participants’ identified these subthemes as results of their

experiences encountered in various projects at each of their respective organizations.

Also, Table 3 highlights the number of participants and the number of references in the

organizational documents supporting the subthemes.

Table 3

Subthemes of Development of Well-Defined Requirements

 Participant Document

Major Theme Count References Count References

Development of well-defined requirements 9 25 26 173
 Requirements are testable 9 19 22 22

 Requirements are traceable 3 5 3 6

 Requirements are clear 3 8 2 14

Requirements are testable. Well-defined requirements are testable, as reported

in Table 3. Ideally, the central goal of testable requirements is to ensure that the quality

is correctly maintained from the beginning. Also, the essence of testable requirements is

to make it possible to develop tests to determine if the requirement has been met. Nine

participants agreed that well-defined requirements should be testable. The responses

from nearly all the participants indicated that requirements that are clear and concise are

easily testable. From the literature, Inayat et al. (2015) reported that a well-defined

requirements document is testable, traceable, and transparent defining everything the

software must accomplish. Software testing is the execution of a software application

143

against test cases (Lemos et al., 2018). Organization 3- Participant 2 stated, “When I do a

project plan, I do my estimate based on how much testing has to be done based on the

number of test cases and the number of resources that I have.” Lalitha, Latha, and

Sumathi (2016) reported that test cases must be carried out before the start of the

software design. Aceituna and Do (2019) argued that one of the toughest challenges for

requirements is the lack of testing. Organization 3-Participant 1 pointed out, “we do not

do a ton of that for obvious reasons, but that is what ensures that everything is 100%

showing up on the label correctly.” Challenges for testing include a lack of time for

testing as well as low availability of the test environment, consistent with Strandberg et

al. (2019) study. These findings also supported the second theme of this study.

An analysis of 22 out of the 26 organizational documents supported the subtheme

that requirements are traceable, providing test cases based on the decomposition of the

requirements. With that in mind, as part of document analysis, a PowerPoint presentation

was provided that presented an overview of the software development lifecycle. Huzoree

and Ramdoo (2015) also supported the findings of this study. Huzoree and Ramdoo

confirmed that there should be some finite cost-effective processes in place in which the

requirements could be validated through testing. Also, Huzoree and Ramdoo recognized

numerous challenges that prevent the successful development of software, including

customer dissatisfaction, cost overruns, an increase in the cost of maintenance due to

rework, and errors found in the software due to poor quality deliverables. Organization

3-Participant 4 stated, “if the goal is to have minimal defects, you want to spend time to

figure out how to write the code and test it.” Furthermore, defective requirements can

144

lead to defects found in the final software product, which is not desired by either the end-

user or developer. Chen, Shang, Nagappan, Hassan, and Thomas (2017) found that

fixing defects in later phases of software testing or after the delivery of the software can

be challenging and costly. According to Organization 3-Participant 1,

… we are not like your traditional organization because we are tied to a

government contract. So, for the current project, for the most part, our software

shop is not 100% typical. A lot of what we do is bug fixes and enhancements on

legacy applications. The customer oftentimes thinks that the software is designed

to do something when, in fact, it is not. Therefore, what they think is a bug; yet is

 an enhancement. They want the software changed and not fixed. Thus, we do

a scope creep constantly, which is you submit a bug for Problem A, and as we

gather to fix Problem A all of a sudden, Organization 3 will try to get us to fix

problems B, C, and D as well.

Shirazi, Kazemipoor, and Tavakkoli-Moghaddam (2017) explained scope creep as adding

features and functionality to the scope of the software without discussing the

consequences of it and the impact it has on testing. Shirazi et al. discussed the leading

causes of scope creep to include poor documentation, poor change control, poor

information transformation, and external changes all could have negative impacts on

testing. As a result of continuous testing, the required changes can be identified much

earlier to avoid the consequences of scope creep.

The findings of this study demonstrated that requirements are testable is in

alignment with existing literature. Andrews, Alhaddad, and Boukhris (2019) identified a

145

process for testing requirements using regression testing. They created rules for testing

requirements based on various failure scenarios. In a separate study, Andrews, Elakeili,

and Alhaddad (2015) reported that when testing requirements, efficiency improved by

65%. Previous research carried out by Dou (2016) revealed that testable requirements are

the foundation for any development project. In the culture of software testing, when

considering requirements verification, regression testing is needed as a balance between

cost and code coverage. Dou further explained that requirements should be traced from

the stakeholder to the test objectives.

From the perspective of Lehman (1996), he realized the need for software systems

to evolve as a result of the requirements to operate in or address a problem that is

significant to real-world activities. The first characteristic, the law of continuous change,

suggested that systems must continually be adapted else they become progressively less

satisfactory. Although requirements seem to expand, the development of well-defined

requirements provides a blueprint for future applications. When asked about testing

requirements, one participant stated, “some of our apps have built-in test award numbers

or contract numbers where we could do all the application functionality for those

subpieces so that we can do a thorough regression test. It would be nice if every app had

that enhancement, but since some are commercial off the shelf (COTS) products, we

could never change those to do so, but for future applications, it would be nice to think

about that sort of thing.”

Organization 8-Participant 4 stated, “we really don’t collect any metrics on

testing. We do know when something is being categorized as a bug or feature

146

enhancement through our tracking system.” Similar to traceability, requirements should

also be testable. Lehman (1996) believed that stakeholders would perceive an E-type

system to have declining quality unless it is rigorously maintained and adapted to its

changing operational environment. The second characteristic, the law of declining

quality, identified why requirements are tested. According to Lehman, the central

elements of focus, discipline, and rigorous effort must be sustained during the life of the

software product to reduce the number of defects that are introduced. For this reason, test

cases are written to help find problems detected in the requirements or design of the

software. Through rigorous testing, a strict entry and exit criteria are followed along with

all possible combinations of test cases and test data. One participant described the

processes involving rigorous testing as going down every corridor and opening every

door, ensuring that no door is left unopened. As Lehman (1996) noted, software systems

must endure continuous change, or they will become less useful. Therefore, if the

software does not adapt to the changing needs of the business stakeholders and end-users,

satisfaction will decrease.

 Requirements are traceable. Requirements traceability has shown to be an

essential contribution to organizations that make proper use of traceability techniques.

Three participants conveyed that requirements should be traceable when testing because

they represent the needs of specific product designs. The responses from the participants

indicated that the primary purpose of traceability meets the expectations of the

requirements. Their views were consistent with the findings of Murtazina and Avdeenko

(2019). The viewpoints of Organization 3-Participant 2 and Organization 4-Participant 2

147

on requirements are traceable, suggested that in the culture of software testing, traceable

requirements saves time, reduces costs, and improves the overall quality of the software

product. Rempel and Mader (2017) acknowledged that requirements traceability leads to

increased development effort and documentation workload, which can be compensated

by reduced costs and higher quality. In their research, Rempel and Mader found that

projects that implemented requirements traceability techniques performed on average 24

percent faster and created 50 percent more accurate results than projects that performed

without requirements traceability.

 An analysis of three out of the 26 organizational documents supported the

subtheme that requirements are traceable. A PowerPoint presentation that was included

with the organizational documents highlighted vital artifacts to explain the use of a

traceability matrix. Other documents supporting this idea included the organizational

documents entitled “Requirements Management Plan” and “Test Cases and Roles,”

which stated that “once requirements are prioritized, they become the template input for

the requirements traceability matrix.” Mattman, Gramlich, and Kloberdanz (2015)

reported that a real understanding of how to formulate requirements and how to

document requirements does not exist. Mattman et al. also noted that functional testing

provides measures for all relevant factors through the use of traceability matrices.

Organization 3-Participant 2 complicates matters further when stating, “the ability to

produce metrics based on the severity of the defects is important. If what we see in one

month of testing, or sprints, we see a high level of defects in a particular area, that is

something that will raise a red flag. Therefore, using things like traceability matrices to

148

ensure the user stories and bugs line up properly with the test cases.” From the literature,

Rempel and Mader (2015) reported that traceability is an essential quality of software

requirements; for this reason, it helps reduce software maintenance costs by educating the

developer who needs to resolve the defect. Organization 4-Participant 2 described

traceability as a percentage of bugs found as a measurement. Support for this idea also

exists in the literature, as Mattman et al. reported that despite the criteria, each

requirement should be traceable. According to Organization 3-Participant 2, traceability

matrices are used to align requirements with the test cases.

The findings of this study demonstrated that requirements are traceable is in

alignment with existing literature. Traceable requirements help with test case

verification, enabling to keep traceability links between test cases and functional

requirements (Roldan, Vegetti, Gonnet, Leone, & Marciszack, 2019). Traceability is a

significant quality of software requirements. Most research showed that traceable

requirements improve the quality of both the design and code of complex functions (Ali

& Lai, 2016; Chandani & Gupta, 2018). Bagheri, Garcia, Sadeghi, Malek, and

Medvidovic (2016) indicated that developers have difficulty understanding complex

software units, such that the software has to be updated regularly, which in part adds

more complexity to the software.

When viewed through the unique lens of Lehman’s laws of software evolution,

the law of complexity is the second law. Lehman’s laws of complexity suggest that

software will become progressively more complex over time unless explicit work is

conducted to reduce complexity. One participant reported running regression tests to

149

avoid the risk of breaking complex code that has already been tested. When viewed

through software testing, Rempel and Mader (2017) explained that traceable

requirements are a critical element of any rigorous software testing process.

Requirements are clear. Clear requirements are essential to software testing.

When viewed through the lens of software testing, the more time spent writing clear

requirements, the more likely it is that the end product will function as expected.

Moreover, the time spent on writing substantial requirements and test specifications leads

to considerable time and money saved during the testing phase of the project. Three

participants talked about the significance of clear requirements when testing software in

their interviews. The responses from the participants indicated that regardless of how

clear the requirements are, they must also be accurate. Tsunoda et al. (2018) found that

successful software projects are the result of clear software requirements. Organization

3-Participant 2 pointed out, “the simplicity of clear, well-defined requirements should be

so easy to understand that anyone should be able to pick them up and take off running

where the work was last left off.” Murphy and Wright (2018) noted that the

establishment of clear software requirements, objectives, and goals, and a realistic

schedule are the three critical components for project success. When asked about the

requirements document, one participant mentioned that it should be clearly written and

well documented.

In contrast, unclear requirements are among the many challenges that impact the

accuracy of software designs (Britto, Mendes, & Borstler, 2015). Nikiforova and

150

Bicevska (2018) pointed out a long list of reasons that might cause a project to fail,

including unclear software requirements. According to Organization 8-Participant 3,

 sometimes the requirements are unclear. As a developer, I understand it

differently, whereas the testers understand it another way. In that case, I design to

1 plus 2 equals 4, and they say that no 1 plus 2 equals 9. It is important to let the

client know that the requirements document is not clear, and we have to figure it

out. And at that time, everyone will be on the same page. Once fixed, the rest is

easy.

According to Joppen, Enzberg, Kuhn, and Dumitrescu (2019), 60% of errors occur

because the implementation of requirements is not clear. One participant indicated that

requirements that are not clear bring confusion. Liebel, Tichy, Knauss, Ljungkrantz, and

Stielbauer (2018) acknowledged that it is increasingly important to establish

communication. Moreover, the authors indicated that a lack of communication could

lead to vague or unclear requirements.

An analysis of two of the 26 organizational documents confirmed the subtheme

that requirements are clear. The information in these documents was consistent with the

responses from Organization 3-Participant 2, Organization 3-Participant 4, and

Organization 8-Participant 3, indicating that requirements are clear, complete, consistent,

and unambiguous. Bronckers, Roc’h, and Smolders (2017) agreed that it is often desired

to have clear requirements. Research carried out by Pereira, and de F. S. M. Russo

(2018) explored obtaining clear requirements based on customer input. The results

showed that implementing clear requirements promoted communication between

151

software development and testing teams and stakeholders involved in the software

project.

The findings of this study demonstrated that requirements are clear is in alignment

with existing literature. Contributions by Luckmann (2015), which was cited in the

professional and academic literature of this study also supported the findings. Luckmann

reported that the Standish Group’s Chaos Report acknowledged that clear requirements

are key success factors in IT projects. Also, in the culture of software testing, Alsaqaf,

Daneva, and Wieringa (2019) specified the need for clear requirements when

implementing test criteria correctly. Organization 8-Participant 3 stated, “I test using the

requirements, and if everything is okay, I push to test. When I test, if there are no

defects, then I have tested correctly, and my understanding of the requirements was

understood correctly.”

The conceptual framework that guided this study, Lehman’s laws of software

evolution, did not support the findings of this study. Glaser and Strauss (1967) developed

a theory titled the grounded theory. The purpose of the grounded theory is to inductively

generate theory that is grounded in or emerges from the data. The theory identified three

conventional methods used in grounded theory: participant observation, interviewing, and

collection of artifacts and texts. Though ensuring that requirements are clear emerged

from the data through interviews, a detailed understanding of the grounded theory is

required to make that conclusion

152

Theme 3: Focus on Thorough Documentation

The theme focus on thorough documentation was the third theme to emerge

during the data analysis phase of the study. The theme emerged from the responses of

participants, an analysis from the organizational documents, and previous research.

Within this theme, there were several subthemes mentioned by the participants, in the

organizational documents, and recognized in previous research that contributed to the

focus on thorough documentation. Based on participant interviews, policies and

procedures, test plans and execution summaries, and maintenance logs are necessary to

ensure that all processes flow correctly are tested and thoroughly documented. Thorough

documentation is not software, but it is crucial to the software testing phase (Yadav &

Yadav, 2015). The focus on thorough documentation can begin at the very start of the

software process since the earlier the defect discovered, the less it would cost to fix.

Moreover, thorough documentation makes testing easy and systematic. Nevertheless,

poor documentation may affect the quality of the software or application, leading to poor

testing results.

Eight participants talked about the need for thorough documentation to improve

their testing process. One participant reported the need for thorough documents since

these documents are publicly accessible and part of the Freedom Information Act. Three

participants reported the need for thorough test plan documentation. The remaining four

participants reported a general need for thorough documentation. From the literature,

Aovak, Gugan, Varga, and Domotor (2018) explained that thorough documentation of

principles is necessary for coordinating teamwork. Organization 3-Participant 1 stated,

153

“developers, I should say a good developer will get the software application running and

do what they possibly can to verify a defect.” Support for these ideas exists in the

literature as Yip et al. (2018), reported that thorough documentation ensures tasks are

completed consistently, correctly, and are traceable.

An analysis of 13 organizational documents supported the theme of focusing on

thorough documentation. Kramer, Brandt, and Borchers (2016) conveyed that thorough

documentation is highly relevant for software testing tasks and increases software

maintainability. Documentation testing is the testing of documents created before and

after software testing (Itkonen, Mantyla, & Lassenius, 2016). In a separate study,

Konnola et al. (2017) highlighted the importance of communication, collaboration, and

transparency when testing and focusing on thorough documentation. Organization 3-

Participant 4 stated, “because we work with testers, everybody comes to the program

with different mindsets. If I get to the point where my basic tests are fine, then I hand it

off to a tester, and they find problems, then we reassess my process to allow me to see

that I missed something.”

 Organization 3-Participant 2 stated, “the problem with Organization 3 is that

there are federal laws and rules that must be followed. So, they need much

documentation.” Another participant reported that their organization is documentation

heavy. According to Organization 3-Participant 4, “there is very strict documentation,

and it needs to be very thorough then approved by a manager. Once management

reviews, make corrections, and approves the documentation, then it goes for technical

review. After the documents have been reviewed and approved, they then become

154

government documents.” Patenaude, Pelletier, and Bingen (2015) noted that

organizations should follow thorough documentation for policies and procedures in

compliance with state and federal laws. Yoon, Dols, Hulscher, and Newberry (2016)

confirmed that testing for accessibility could include functional testing, usability testing,

and compliance testing. Previous researchers Iniesto, McAndrew, Minocha, and

Coughlan (2016) recognized the importance of raising the awareness of accessibility

challenges. The findings of their research confirmed that when focusing on thorough

documentation through the lens of software testing, the testing process ensures that

requirements are compliant with laws, policies, and regulations to avoid errors.

The data in Table 4 lists the subthemes of focus on thorough documentation. The

study participants’ identified these subthemes as results of their experiences encountered

in various projects at each of their respective organizations. Furthermore, Table 4

highlights the number of participants and the number of references in the organizational

documents supporting the subthemes.

Table 4

Subthemes of Focus on Thorough Documentation

 Participant Document
Major Theme Count References Count References

Focus on thorough documentation 8 29 13 333

 Policies and Procedures 6 9 8 88

 Test Plan and Execution Summary 2 3 4 73

 Maintenance Logs 2 3 2 211

Policies and procedures. Policies and procedures are the decisive links between

the vision of an organization and its daily operation. Researchers reported that thorough

155

documentation is essential along with the mandate to follow procedures as documented

and can be used to recreate works (Dyk & Meghzifene, 2017; Post, 2017). Six of the

eight participants reported a general need for a thorough documentation of policies and

procedures to optimize the software testing process. From the literature, Dyk and

Meghzifene (2017) and Skoulis et al. (2015) found thorough documentation essential to

policies and procedures. While test documentation improves communication about

testing tasks and processes, thoroughly written documentation with a focus on policies

and procedures helps teams to understand their level, scope, and types of testing

strategies to use (Strandberg et al., 2019). One participant reported using the online

documentation portal Confluence to create and share thoroughly documented policies and

procedures related to the testing process in the event of a new hire. Craft (2019) sheds

light on the use of online documentation portals to support the idea of thorough

documentation for policies and procedures.

An analysis of eight out of the 13 organizational documents supported the

subtheme of thorough documentation for policies and procedures. Eight organizational

documents supported the idea of thorough documentation of policies and procedures.

With that in mind, as part of document analysis, an organizational document titled

“Determination/Reason(s) Statement” is specific to concise content information that

explains the reasons behind the concluding decision. Chang, Seow, and Tam (2019)

supported the findings of this study. They confirmed that policies and procedures are in

place to reduce the risk of software errors. Also, they recognized that corrective policies

and procedures address software risks to correct source code and remove bugs after bug

156

detection. Organization 4-Participant 1 shared a similar view and added that nothing is

ever full proof, thus having policies and procedures in place to prevent software errors

from happening later on. Safa et al. (2019) supported the participant’s statement

acknowledging that policies and procedures are an effective and efficient method for

preventing software errors from happening later on.

The findings of this study demonstrated that thorough documentation for policies

and procedures is in alignment with existing literature. Budde et al. (2019) agreed that

there is a need for thorough documentation for policies and procedures in order to be able

to compare, relate, and replicate previous works. In a separate study, Schroder et al.

(2019) indicated that keeping track of all information during testing is essential since

thorough documentation is crucial. To that end, Goodman (2019) reported that thorough

documentation makes it easy for novice users to get started.

The conceptual framework that guided this study, Lehman’s second law of

software evolution, supported the findings of this study. Lehman (1996) noted that the

law of continuing change must be continually adapted, or it becomes less useful. When

viewing thorough documentation for policies and procedures through the lens of

Lehman’s second law of software evolution, the differences between data derived from

observations and computations may cause changes in the perception of the way software

is implemented, its documentation, or both to change. Versteeg et al. (2016) reported that

without the required knowledge, often writing thorough documentation for policies and

procedures becomes challenging as a result of changes or incomplete information,

causing the entire project to fail.

157

Test plan and execution summary. A good test plan helps organize and manage

the testing effort. Therefore, obtaining stakeholder preferences during test planning is

just as important as receiving feedback from stakeholders during the product design

phase. When a test plan leaves out an essential requirement, it relinquishes a source of

frustration for the next person who attempts to use it if not thoroughly documented

(Hooda & Chhillar, 2015). One participant pointed out the importance of ensuring that

test plans are thoroughly documented after observing more bugs come later on in the test

phase than expected. From the literature, Wright et al. (2018) noted that as a best

practice, the detail of the test plan should depend on the complexity of the designed logic.

As defined by IEEE Standard 829, a section of the test plan is standardized to include the

test plan identifier, introduction, test items, and features to be tested. Organization 3-

Participant 3 stated, “the documentation workflow process was created to standardize the

procedure in moving test plans and execution summary documentation through the whole

approval process.” In a separate study, Cazals and Dreyfus (2017) noted that thorough

documentation consists of user and reference manuals. When viewed through the lens of

software testing, user and reference manuals should be maintained regularly and

thoroughly documented, providing support for efficient testing. One participant talked

about providing a user guide with the delivery of a software application to give the user

direction. The advantage of a user guide explains the rationale of each test and how to

perform analysis (Nunes, Alvarenga, De Souza Sant’Ana, Santos, & Granato, 2015).

Another participant reported that any test strategy used should always be tailored.

Kukulies, Faulk, and Schmitt (2016) indicated that within test planning, test activities

158

determine the test strategy. According to Afzal et al. (2016), the test strategy aims at a

specific test method to meet the maximum test frequency.

An analysis of four out of the 13 organizational documents supported the

subtheme of thorough documentation for test plans and execution summaries. As part of

document analysis, an organizational document titled “Test Management Plan” provides

a detailed and documented approach to validate and verify that each solution is delivered

with confidence in the quality, integrity, scalability, reliability, and usability of the

released implementation. Moreover, other organizational documents were supporting

this idea to include an Execution Summary, which Ye, Zhang, Ruilin, Feng, and Tang

(2019) indicated that the execution summary informs the user about the current

executions of the test cases. One participant previously reported that the workflow

process created to standardize the procedure in moving the test plans and execution

summaries through the process for management approval. Kukreja, Singhal, and Bansal

(2015) supported the findings of this study. Kukreja et al. emphasized that no software

testing is carried out without a test management plan. The authors explained that a

detailed test management plan provides answers about what to test by forming test cases

for a project. Thus, software testing and the validation of software is a critical part of

software quality.

Thorough documentation such as test plans and execution summaries has long

been prominent on the list of best practices to improve software testing. Although

thorough documentation may be described as an artifact intended to communicate

159

information about the software product to end-users; however, the primary purpose is to

produce reliable software, and that thorough documentation helps to achieve the goal.

From the perspective of Lehman (1996), he demonstrated that a program must

continually adapt to the environment to maintain satisfactory performance. Lehman et al.

(1997) demonstrated in their empirical studies that software that continuously adapts rely

on thorough documentation. Skoulis et al. (2015) agreed that software that continuously

adapts needs thorough documentation. When viewed through the lens of software

testing, one participant reported, “in the development area; you may have developers

making changes while testing is ongoing and that can cause a huge risk. Any changes

made to code can affect all of the tests that have been completed, and this is why we

thoroughly document and have regression testing because we do not know what was

fixed.”

Maintenance logs. Excellent record keeping is an integral component of

thorough documentation. Through thorough documentation, maintenance logs can help

understand past errors and provide clues that will prohibit future mistakes; otherwise, it

would be difficult to understand (Hou et al., 2016). Two participants emphasized the

importance of thorough documentation through the use of maintenance logs. From the

literature, Gupta, Mehlawat, and Mahajan (2019) reported that maintenance logs measure

accuracy and improve software testing. For example, Organization 3-Participant 4 stated,

“the thing that I rely on the most is a running log of each of the steps in the program

because if there are 500 steps in your process and its wrong, you want to know where it

went wrong. So instead of guessing and you have the information for each of the 500

160

steps, you can look back to see where the problem is at.” Arif-Uz-Zaman, Cholette, Ma,

and Karim (2017) found maintenance logs to be immediately useful in improving the

estimation of failure times for real-world assets.

An analysis of two out of the 13 organizational documents corroborated the

subtheme of thorough documentation for maintenance logs. With that in mind, as part of

document analysis, maintenance log files in the format of Excel spreadsheets captured the

usage and maintenance of the system and workflow. Maintenance logs provide support

during system maintenance while capturing anomaly and intrusion detection, as well as

documenting software failure analysis. Shang, Nagappan, and Hassan (2015) indicated

that maintenance logs could be used to understand code quality better. When viewed

through the unique lens of Lehman’s laws of software evolution, maintenance logs align

well with the conceptual framework for this study. Lehman’s law of complexity reflects

the fact that with all maintenance, systems need to evolve due to its requirements to

operate real-world activities (Lehman, 1996). There are two layers of effort that need to

be addressed if the quality of the entire system is to be kept equal. The layers encompass

code design and the integration of the coding work performed on the system in terms of

code integration, documentation, adaptation of the design, and rework from other

sections. Lehman explained that maintenance could refer to the upkeep effort that has to

be expanded on the codebase.

The findings of this study demonstrate how the focus on thorough documentation

improves software testing and aligns with existing literature. According to Post (2017),

thorough documentation is necessary for understanding the past and also for recreating

161

works. Organization 8-Participant 2 stated, “I think the biggest challenge is being able to

recreate a problem. The hardest thing is when you have an issue, and you cannot reliably

recreate it. That is how we tell the testing team. If you can reliably recreate it, then we

will figure out how to fix it.” Support for this idea also exists in the literature, as

Dosemagen, Liboiron, and Molly (2016) indicated that thorough documentation allows

others to replicate experiments for more reproducible and transparent research.

Lehman’s laws of software evolution, which served as the conceptual framework

for this study aligns with the findings of the theme focus on thorough documentation.

The conservation of familiarity law and the law of complexity both support the theme of

the study. Lehman (1996) found that during the evolution of software systems, the

content of successive releases remained consistent because software developers needed to

have a thorough understanding of the source code and behavior coining this as the

conservation of familiarity law. In a separate study, Martin (2016) noted that a thorough

understanding in many cases involves a detailed study of the phenomenon, which is

accompanied by thorough documentation. On this point, Organization 3-Participant 4

stated,

 you have to go back to the step and find some information on what you are

 relying on and show it to the tester. It may be time-consuming, but it is

important because you are helping the tester to become a better tester. Whether it

is a challenge or not, you have to make certain that the tester has come up to

speed. Also, as part of a developer’s job is to make sure that everyone is on the

same page.

162

Equally important, Lehman’s research showed that the law of complexity reflects the fact

that with all maintenance, systems need to evolve due to its requirements to operate real-

world activities. According to Organization 3-Participant 3, “maintenance is generally

conducted once per month and performed after hours. I send an email to everyone

indicating that the server will be going offline, and from there, my project manager then

sends it out to everyone else to alert to save their work because the server will be going

down for approximately 30 minutes – 1 hour depending on what the maintenance is.”

Gupta and Singh (2017) reported that software systems are becoming much more

substantial and complex, containing several million lines of code and voluminous

documentation, which makes comprehension of the system difficult. The existing

literature reviewed for this study is in alignment with the findings of the study to make a

case for focusing on thorough documentation.

Theme 4: Focus on Automation Testing

The theme focus on automation testing was the last theme to emerge during the

data analysis phase of the study. The theme emerged based on the responses of all

participants, the data analyzed from the organizational documents, and confirmed by

previous and current research. Within this theme, there were several subthemes

mentioned by the participants, in the organizational documents, and recognized in

previous research that contributed to the focus on automation testing. Based on

participant interviews, automation testing speeds up execution and reduces the effort of

human involvement. Hanna, Aboutabl, and Mostafa (2018) confirmed that automation

testing speeds up execution and could reduce the overall software testing time. Garousi

163

and Pfahl (2016) noted that the goal is to identify undiscovered errors, not to prove that

no errors exist. Garousi and Pfahl added that the automation of test activities is a popular

approach in the software testing community. Meanwhile, Tramontana, Amalfitano,

Amatucci, and Fasolino (2019) reported that automation testing might represent an

effective solution to improve quality applications and to reduce testing costs. The

researchers’ views were consistent with the opinions of the participants, who indicated

that one of the benefits of automation testing is improved code quality.

The responses of all 10 participants supported the idea of automation testing.

According to Kononov and Rusakov (2018), automation testing helps to find bugs in

software applications. Seven participants acknowledged that their organization is slow to

automation testing. The remaining three conveyed that their organization’s testing team

supports automation testing. Tu, Lin, and Lee (2019) reported that automation provides

data with higher quality and more efficiency.

An analysis of 27 organizational documents supported the theme of focus on

automation testing by identifying a plan for implementing automation testing, which was

supported by existing literature (Chandraprabha, Kumar, & Saxena, 2015). According to

Meiliana, Septian, and Alianto (2018), automation testing is beneficial since it saves a lot

of time and money. Meanwhile, Fadel et al. (2015) noted that one of the contributing

factors to a slow transition to automation testing is due to the lack of skilled personnel.

Organization 3 Participant 4 stated, “time is money and we get paid to write code and not

to test.” To that end, Meiliana et al. pointed out that the availability of tools or

frameworks for automating tests is often not suitable for developer needs.

164

The findings of this study demonstrate how the focus on automation testing is in

alignment with existing literature. Researchers Muller, Vette, and Horauf (2015)

explained that adaptions are made to meet defined requirements. Then, Nouacer et al.

(2016) showed that due to a lack of automation, software testing tends to consume 40%-

50% of the development cost. According to Organization 3-Participant 4, “… the biggest

drawback of testing is that it requires developers to have knowledge and experience and

the know-how to do it.” However, software testing researchers Brichni, Dupuy-Chessa,

Gzara, Mandran, and Jeannet (2017) argued that the most significant factor should be to

automate and quickly integrate into the considered environment. Organization 3-

Participant 1 stated, “the honest answer is that we do not do much testing because of the

environment that we are in.” Although all participants from Organization 8 mentioned

that automation testing is the responsibility of the testing team, one other participant in

particular stated,

 I wish we did have automated testing because we can frequently run that in case

 of any changes outside of our app that we did not know were coming. We can

have our test suite running, perhaps every day. So, I wish there were easier ways

to implement automated testing and cheaper. I know that there are other suites

out there, but apparently, we cannot afford them.

Supporting the participant’s views was the study by Kumar and Mishra (2016), industry

experts suggested that software tests executed only a few times are best left for manual

execution, while those software tests that require large amounts of data and run more

frequently are best automated. In summary, the existing literature reviewed for this study

165

is in alignment with the findings of the study to make a case for a focus on automation

testing.

Automation testing is a technique for improving software quality. In the culture

of software testing, teams should focus on laying the groundwork for automation testing

through communication and collaboration with all stakeholders. As discussed earlier,

while it is critical to have accurate communication when testing, collaborating with all

stakeholders such as supervisors, system analysts, other software developers, software

testers, and end-users is crucial to avoid producing a defective software application

(Wang et al., 2019). Then, develop well-defined requirements and determine which test

cases to automate is essential since it is impossible to automate all levels of testing.

Lehman’s laws of software evolution, which served as the conceptual framework

for this study aligns with the findings of the theme focus on automation testing.

According to Lehman (1996), as time proceeds, software needs to be evolved

continuously to provide user satisfaction and to meet user requirements. Moreover,

Lehman’s laws of software evolution characterize the way that software applications will

become progressive between maintenance activities and unit tests. Organization 8-

Participant 2 stated, “primarily, I unit test. Pretty much just following the requirements

to do a thorough unit test.” On the other hand, Organization 3-Participant 3 stated, I do

not use load testing, but for me, the use of unit testing and performance testing would be

considered maintenance.” Pawlak and Poniszewska-Maranda (2018) reminded us that

unit tests verify the smallest independent and testable parts of the source code. When

viewing through the lens of Lehman’s law of software evolution, the idea focus on

166

automation testing supports the law of complexity, which suggests that as software

evolves, its complexity increases unless work is done to reduce it. Organization 3-

Participant 4 stated, “we strive to do as much testing as possible; however, the current

project is starting out manual, so now I am looking into making it more efficient using

automation.” In the end, the conceptual framework Lehman’s laws of software evolution

proved to be a helpful guide to retrofit the focus as a strategy to ensure the reliability of

software applications in the government contracting industry.

The data in Table 5 lists the subthemes of focus on automation testing. The study

participants’ identified these subthemes as results of their experiences encountered in

various projects at each of their respective organizations. Furthermore, Table 5

highlights the number of participants and the number of references in the organizational

documents supporting the subthemes.

Table 5

Subthemes of Focus on Automation Testing

 Participant Document

Major Theme Count References Count References

Focus on automation testing 10 37 27 98

 Test Cases 10 34 26 84

 Lack of Automation Testing 9 20 2 62

 Unit Testing 7 13 5 73
 Open Source Automation Tools 5 12 3 50

Test cases. Automation testing requires a test case for the requirement

understudy to be verified. When viewed through the lens of software testing, test cases

check regression issues against the latest code changes in order to improve the efficiency

and quality of the software. The responses from all 10 participants indicated the critical

167

role test cases play in the automation testing process. According to Em and Reedy

(2015), the success of automation testing is the determination of test cases. When asked

to discuss additional information about the testing strategies used to ensure the reliability

of software applications, Organization 8-Participant 2 stated, “test on the edges, test the

usual cases that will arise because I guarantee, it will happen when deployed to

production (chuckle). I would strongly advocate thorough requirements, documentation,

test cases, and test the extremes of whatever you are building.” In a separate study,

Hussain, Razak, and Mkpojiogu (2017) found that maximizing automation is an effective

way of expediting the testing process. When asked about automation testing,

Organization 3-Participant 1 stated,

I just want to reiterate that in today’s world, when new software is an option, the

only way to make sure that you are getting the correct results is to have an

environment with automated tests running. While it does not free up QA from

performing regression testing, it catches the defect much early on. Therefore, if

done correctly, when QA executes the tests, testing should go much smoother.

The benefit of automation testing is that it shortens development cycles, repetitive work,

and improves software quality (Garousi & Mantyla, 2016b). Organization 3-Participant 2

reported that their organization strives to do as much automation testing as possible;

however, efforts are in place to make testing more efficient using automation. Garousi et

al. (2018b) noted that many people think of automation testing only for automated

execution of test cases, but automation testing has been successfully implemented in

other test-related activities. Deciding when to automate testing is a frequently asked and

168

challenging question (Garousi & Pfahl, 2016). Therefore, choosing a good automation

test design determines how testing a particular function or feature should occur.

An analysis of 26 out of the 27 organizational documents included test cases for

the requirements to validate that each system workflow would behave adequately. From

the literature, De Souza Neto, Moreira, and Musicante (2018) noted that the test design is

the process of designing test cases that represent scenarios to be exercised on the system

under test. Moreover, Yu, Alegroth, Chatzipetrou, and Gorschek (2020) reported that

systems that execute a set of predefined test cases to check regression issues by the latest

code changes improve the efficiency and quality of the code. According to Meiliana et

al. (2018), automation testing can improve the effort per unit time and the accuracy per

test case. Hence, automation testing is nothing but the use of software to perform tests

and then determine whether the actual results and predicted results are identical (Eckhart,

Meixner, Winkler, & Ekelhart, 2019).

The findings of this study demonstrated that generating test cases for automation

testing is in alignment with existing literature. Ping, Xuan, and Xinyue (2017) proposed

generating test cases according to test strategies. In research carried out by Zein, Salleh,

and Grundy (2016), the authors reported a technique for performing regression testing

and the automatic testing of test cases. In another study by Adamsen, Mezzetti, and

Moller (2015), the challenge of improving test cases’ quality and effectiveness is

investigated. The study recognizes the problem of having manually written test cases,

not focusing on unusual events. Contributions by Ahmed, Ibrahim, and Ibrahim (2015),

which was cited in the professional and academic literature of this study also supported

169

the findings. Ahmed et al. provided a testing approach that addresses the problem of

reducing the redundancy in test cases by refactoring source code before test cases are

generated. According to Organization 3-Participant 4, “we tend to repeat tests and have

the results show up in a database to be verified.” Research carried out by Hamad (2018)

reported the benefits of automation testing is that automation is faster, frees up resources

for other projects, extensive test coverage, and the technique is more precise with less

human error.

When viewed through the unique lens of Lehman’s laws of software evolution,

the declining law and the increasing complexity law validates test cases for automation.

The declining law states that the quality of evolving software will decline unless the

software is strictly maintained, and significant attempts are made to improve it (Lehman,

1996). Meanwhile, Lehman created the increasing complexity law, which states that a

software system will become progressively more complex over time unless explicit work

is performed to reduce the complexity. In the culture of software testing, assuming that

test cases are suitable for automation, the criteria require frequent execution and large

volumes of data to perform the repetitive task. Moreover, since the automation of test

design and the test script have been advancing well, reducing the effort spent on creating

test cases is complex. When asked about the type of projects that are currently being

worked on, one participant used the analogy of a job application to illustrate the

complexity of automating test cases in a database. The participant stated, “first, you have

to have a full and clear understanding of how the database works. All the tables and

where the data is moving from one table to another, as you are moving through the front

170

end of the application. If you think of it like a job application, where is the first name,

last name, address, things like that? Where does it currently go? Based on the

requirements, that will tell me based on the new table data structure and where the data

will go.”

Lack of automation testing. A significant problem that hinders automated

designs is the lack of testing. Testing is significant for software products and plays a

vital role in the software development lifecycle. Nearly all of the participants reported a

lack of automation testing. Garousi and Mantyla (2016b) explained that the most

common obstacle that developers tend to experience when transitioning to an automation-

based testing strategy is the lack of testing with automation as most are accustomed to

conducting unit tests manually. Software testing is the process of verifying software to

find errors (De Souza Neto et al., 2018). Research carried out by De Souza Neto et al.

identified the majority of the works dealing with unit tests and the relative lack of

automation tools. Kos, Mernik, and Kosar (2016) explained that the lack of automation

testing is a result of the lack of experience in developing programming support tools and

the belief that high development costs are a contributing factor.

Two organizational documents pointed out the lack of automation testing; in fact,

the Execution Summary document stated, “that no automated testing will be performed.”

From the literature, Garousi and Mantyla (2016b) reported that test automation requires

different skills than manual testing. According to Garousi and Mantyla, if the

development and testing teams lack programming skills, introducing automation testing

to staff requires sufficient training or run the high risk of failure. Moreover, Bruder and

171

Hasse (2020) noted that a lack of understanding of the automated system leads to

overlooking or misinterpreting important information.

The findings in this study demonstrated that the lack of automation testing is in

alignment with existing literature. Rabah, Belqasmi, Mizouni, and Dssouli (2016)

indicated that the deployment of applications is a costly and complicated process, which

is a factor for the lack of automation. In a separate study, Lui et al. (2018) pointed out

that commercial software provides sophisticated evaluation tools and fast calculation;

however, they lack sufficient robustness to support automation testing.

The conceptual framework that guided this study, Lehman’s laws of software

evolution, did not support the findings of this study. Glaser and Strauss (1967) developed

a theory titled the grounded theory. The purpose of the grounded theory is to inductively

generate theory that is grounded in or emerges from the data. The theory identified three

conventional methods used in grounded theory: participant observation, interviewing, and

collection of artifacts and texts. Although the lack of automation testing emerged from

the data through interviews and organizational documentation, a detailed understanding

of the grounded theory is required to make that conclusion.

Unit testing. Unit tests are performed to ensure that a software product is defect-

free. Seven participants identified unit testing as a strategy used for testing. One

participant agreed that most of the unit testing as far as their organization is concerned is

performed by the developers. Another participant added that the first round of testing

uses a small set of data, then if confident of the task, more data is added to conduct

necessary testing. From the literature, Jan et al. (2016) confirmed that unit testing is

172

performed by software developers using a small set of data. Organization 3-Participant 1

stated, “the vast majority of the testing that I am involved in is unit testing.” Support for

this idea also exists in the literature, as Papadakis, Ali, and Perrouin (2019) pointed out

that an essential advantage to unit testing is automation. According to Organization 8-

Participant 1, “as a developer, we do some unit testing of the code. Our team once

conducted manual testing, but we are now writing the scripts for automation.” Alegroth,

Feldt, and Kolstrom (2016) found that executing automated unit tests early in the

lifecycle identifies defects earlier in the process and is a lot cheaper to fix than those

discovered in production. To that end, De Souza Neto et al. (2018) identified unit testing

as the verification of one software element in isolation.

An analysis of five out of the 27 organizational documents supported the

subtheme of focus on automation testing through unit testing. With that in mind, as part

of document analysis, the Unit Testing Design and Best Practices document supported

the idea of unit testing, discussing the most prominent best practices for unit testing.

From the literature, Yu et al. (2020) reported that the purpose of test automation is to

automatically run unit testing, integration testing, performance testing, and user

acceptance testing in environments set up for automation tests. In a separate study, Kos

et al. (2016) reported that unit testing is usually connected with the Junit testing

framework, which is used by developers when implementing unit testing in Java.

Unit tests are designed to make sure that a software product is defect-free. In the

culture of software testing, developers perform unit testing to validate code designs.

When Lehman (1996) proposed the law of declining quality, he noted that stakeholders

173

would perceive an E-type system that will have declining quality issues unless it is

rigorously maintained and adapted to its changing operational environment.

Additionally, the law of complexity also supports the subtheme of unit testing because it

is implied that the changes required for system evolution makes the system more

complex and decreases its quality. Contributions by Shehzad and Shaikh (2017) and

Amanatidis and Chatzigeorgeou (2016) validated the process of Lehman’s laws

suggesting that as the software is developed, frequent changes may be the result of other

underlying issues. Organization 3-Participant 1 stated, “a lot of what we do is bug fixes

and enhancements on legacy applications where it is virtually impossible to unit test.”

Automation tools. Automation testing requires the use of automation tools to

reduce human intervention and repeatable tasks. On this point, five participants reported

using open source automation tools such as Selenium, Cucumber, and software provided

by Kindle. From the literature, Garousi and Mantyla (2016b) and Gojare, Joshi, and

Gaigaware (2015) reported that popular open-source tools are often good options as they

have low cost and a large user base. Organization 3-Participant 2 stated, “… Selenium is

the most common tool you will see from an automation perspective.” Previous research

carried out by Kalbandi, Pawar, Nikhilkumar, and Bachate (2015) explored automation

testing tools such as Quick Time Professional (QTP) and LoadRunner to facilitate the

management of automation testing activities. One participant reported that adopting the

right automation tool is imperative for test automation since the goal is to make testing

easier. To that end, Organization 4-Participant 3 stated, “there could be some better

tools utilized, but that goes back to adding more resources to the testing environment.”

174

An analysis of 3 out of the 27 organizational documents supported the subtheme

of automation tools. Support for these ideas exist in the literature as Smada, Rotuna,

Boneca, and Petre (2018) supported automation software testing. Recent literature

further supports the theme focus on automation testing as a strategy software developers

can use to ensure the reliability of software applications in the government contracting

industry. Neethidevan and Chandraskaran (2018) discussed the benefits of using

automation testing to avoid manual effort, while Sharma and Chandra (2019) explored

the best technique for testing. Meanwhile, Nidagundi and Novickis (2016) argued that it

is always challenging to automate. According to Organization 3-Participant 4, “the thing

about testing is that you have to know the nature of the application to know the best

technique for testing it.” To that end, automation testing reduces software defects,

increases productivity, and maximizing organizational profits.

The findings of this study demonstrated that automation tools are in alignment

with existing literature. Vila, Novakova, and Todorova (2017) agreed that automation

testing uses tools to run tests based on software algorithms to compare the actual

outcomes with the expected outcomes. Vila et al. noted that automation testing does not

exclude human involvement and the necessity of manual testing because every test case

may not meet the conditions to automate. In another study, Yu et al. (2020) reported

examples of automation tools, including Junit, Jmeter, and the robot framework.

Automation is the most important means for keeping the cost of testing low while

guaranteeing an adequate degree of reliability.

175

The conceptual framework that guided this study, Lehman’s laws of software

evolution, did not support the findings of this study. Glaser and Strauss (1967) developed

a theory titled the grounded theory. The purpose of the grounded theory is to inductively

generate theory that is grounded in or emerges from the data. The theory identified three

conventional methods used in grounded theory: participant observation, interviewing, and

collection of artifacts and texts. Although the discussion of automation tools emerged

from the data through interviews and organizational documentation, a detailed

understanding of the grounded theory is required to make that conclusion.

Applications to Professional Practice

The specific IT problem that formed the basis of this research was the perceived

lack of testing strategies used by software developers to ensure the reliability of software

applications in the government contracting industry. Participants in this study provided

testing strategies that other software developers could apply to their government-

contracted organizations to reduce the risk of software defects. The participants’ thoughts

on testing strategies spanned from a discussion on unit testing to automation testing. The

goal was to identify testing strategies used by software developers in the government

contracting industry. There were different opinions on testing strategies used, indicating

that a myriad of best practices in the industry applied to various project types in an

assortment of ways. After evaluating the collected data, I identified four primary themes

associated with software testing strategies: communication and collaboration with all

stakeholders, develop well-defined requirements, focus on thorough documentation, and

focus on automation testing.

176

Organizational leaders should consider implementing a software development

methodology that maximizes the concept of communication and collaboration with all

stakeholders within the team. All of the participants in this research agreed that

communication and collaboration with all stakeholders are critical in the culture of

software testing as it lays the groundwork for software testing. Equally important, the

desired processes should be very flexible and efficient in dealing with change.

Communication and collaboration with all stakeholders should enable software

developers to design software in stages, making it easier to find and fix software defects.

Collaboration allows developers to solve complex problems and learn from each other.

Additionally, these processes should be managed throughout the life of the project,

coupled with the design, build, and test phases. On this point, a well-defined

requirements document should align with organizational expectations resulting in fewer

errors, less rework, and an overall improvement in project delivery.

Organizational leaders should establish adopting practices that produce thorough

documentation as a mandatory part of their software testing process. The documentation

should be clear and concise, generally maintained, and the standard procedure to follow

when documenting all policies and procedures. The process of thorough documentation

should allow organizational leaders the opportunity to see where there may be

inconsistencies or gaps in their current processes. Meanwhile, organizational leaders

should promote an open working environment that fosters direct communication. Direct

communication should be clear, compelling, and reduces the potential for

misunderstanding.

177

Last, organizational leaders should consider implementing automation testing.

While most organizational leaders tend to pass over the aspect of automation testing, the

strategy to adopt automation testing increases software efficiency and guarantees robust

software quality. All of the participants in this research expressed an interest in

automation testing. Organizational leaders can choose to decide the test cases to

automate, whether it is those that are more prone to human error or tests that are almost

impossible to perform manually. Additionally, there are a host of automation tools that

can effectively execute automated test cases without manual intervention; however,

organizational leaders can choose which is best for their environment. Participants in the

study recommended using tools such as Ranorex, Selenium, Cucumber, Watir, and

TestDriveOne for automation testing. These tools can scale tests for complete coverage,

prompt reproduction of bugs, perform exploratory tests, and improve software quality.

By implementing effective testing practices, organizations can improve software quality

that would aid in the deployment of a reliable software application. Cao, Yang, and Liu

(2019) noted that software testing is a compelling way to improve and guarantee software

reliability and is one of the essential phases in the software development process.

The results obtained from this data could be used as a set of guidelines or best

practices for organizations to improve or enhance their current testing processes. The

findings of this study may be valuable in professional practice by prompting software

developers to consider increasing their knowledge and understanding of effective IT

testing processes.

178

Implications for Social Change

The information from this research may impact social change by providing

software developers with the strategies to improve current testing processes. The

potential impact of this research is far-reaching for society in general. The benefits of

software testing are integral to any project as it allows for the removal of errors and bugs

to occur before the release of the product for public use. Whether end-users are accessing

websites that provide advice and information about veteran’s benefits to healthcare and

news and information on NASA space programs to streaming live events occurring at the

White House, software testing extends far beyond software development and reaches

every area of society. As the dependence on technology grows, a fast pace of change is a

warning sign because all changes can lead to risks causing the software to collapse by

accident (Hinsen, 2019). A study by Cavalcanti, do Carmo Machado, Anselmo da Motal

S. Neto, and Santana de Almeida (2016), found that a change in the software design

could impact the responsibility of many developers involved in the project. As noted

earlier, communication and collaboration are designed to work together. Collaboration

brings people from diverse backgrounds with different perspectives and skillsets together

to achieve a common goal. A society exists when people are interacting together, and it

is during those activities that people improve their communication and collaboration

skills. Therefore, society cannot exist without collaboration.

By adding to the existing body of knowledge, this study’s findings may help

provide information on testing strategies used to ensure the reliability of software

applications. As cited in the professional and academic literature, software errors cost the

179

U.S. economy an estimated $59.5 billion annually (Chang et al., 2019). This study may

be of value to society as its findings may better position organizational leaders for

success when considering testing strategies that produce reliable software applications.

Lehman’s laws of software evolution were vital as it relates to software testing because it

highlighted each of the theme areas explored.

This study may also benefit organizational leaders, as well as stakeholders,

system analysts, other software developers, software testers, and end-users, because it

illustrated testing practices that ensure successful testing of software projects. Critical

concerns for most organizations include productivity and profit potential. The knowledge

learned from this study could improve software quality, and software testing would

receive more emphasis as organizations will need to do more testing to ensure that their

products are not vulnerable to defects. As society’s dependence on software grows, the

knowledge from this study will become more valuable.

Recommendations for Action

The analysis of this study leads to recommendations for action in categories that

apply to software developers of government contracting organizations. The study

findings revealed an environment that promotes communication and collaboration with

all stakeholders as an environment that encourages participation. Organizational leaders

should explore adopting testing practices to promote collaboration throughout the

software lifecycle. Organizational leaders should use a pre-production testing

environment that resembles production to allow for accurate software testing results. I

recommend that organizational leaders explore techniques that create formal planning

180

and peer code review processes during all phases of the software lifecycle. Accurate

documentation should flow from well-defined requirements and should be the baseline

that explains why the features exist and why specific corrective actions form defects.

Moreover, organizational leaders should explore automated software testing as a

viable option because it saves time and money, improves software quality, and expands

test coverage. Automated testing should be considered as a testing strategy to speed up

test execution and to reduce redundant test cases. To that end, test cases should be well

documented and executed by multiple resources as it will improve software testing

knowledge and growth skills. Furthermore, automation testing has enabled organizations

to accomplish more activities with higher productivity, significantly increases the

functionality of the software application portfolio, and minimizes the effect of platform

changes.

This study may also benefit organizational leaders, as well as stakeholders,

system analysts, other software developers, software testers, and end-users because it

illustrated testing best practices that ensure successful testing of software projects. Once

the study is approved, I will disseminate the results of the literature through conferences,

scholarly journals, business journals, and training. Furthermore, copies of the final study

will be provided via email to all study stakeholders and participants.

Recommendations for Further Study

The purpose of this qualitative multiple case study was to explore the testing

strategies software developers use to ensure the reliability of software applications in the

government contracting industry. The population for the study consisted of software

181

developers of three government-contracted organizations who agreed to participate in this

study.

My recommendations for further research derive from the limitations related to

the research, from the literature, and from the information obtained while conducting

interviews. The first limitation of the study included a potential for bias and

preconceived ideas and values because the results are subjective and may result in

research limitations. I recommend additional research to be conducted using a different

design or method. For this reason, a quantitative study may examine the correlation of

the results. I also recommend that additional qualitative research studies include other

organizations, industries, and locations to determine whether the findings from new

research would correspond to my findings. Another recommendation would be to

explore the perceptions of quality assurance engineers, software testers, and others

involved in software development projects. Besides, future studies should incorporate

the effect of pair programming to determine if it is a significant factor for efficient

exploratory testing.

The second limitation of the study referenced participants responding to interview

questions based on what they believe the interviewer wants to hear. The participants

shared information regarding current processes and detailed information on why those

processes and procedures are in place. Therefore, researchers have the capability of

expanding on this research by broadening the scope of participants outside of the

software development team. For this reason, the researcher can explore the same

research with other groups to understand how testing strategies play a role in their

182

processes. In the end, this study has contributed to the literature and paved the way for

additional research in the IT industry.

Reflections

The doctoral research study was one of the most challenging academic decisions I

have ever experienced. Consequently, this study changed my perception of academic

research and intensified my admiration for those pursuing or have pursued the highest

level of academia that one can achieve. When I began the study, I did not realize that

there would be long days and nights ahead with few weekends to spare. For me, the

doctoral study was a journey filled with obstacles, but also enlightenment. Each time that

I encountered an obstacle, even if it was challenging, I persevered harder and expanded

my knowledge on the process. I made several essential notes while on my DIT doctoral

journey. First, writing the doctoral study calls for discipline and stamina. Second,

finding organizations to participate in my research was another obstacle that I found

challenging. From the government shutdown to organizations choosing not to participate

was daunting, but the reality of the fact was I continued to persevere. I did not know any

of the potential participants or organizations to avoid any bias. The positive outcome was

that participants from government contracting organizations were willing to share their

knowledge and experiences. Third, I followed the interview protocols and bracketing

techniques to mitigate potential bias or preconceived ideas and values to ensure the

credibility of the study. In the end, I gained an understanding of the qualitative research

method and case study design. I learned how to conduct academic research, how to

analyze data, and explain how research affects others.

183

Summary and Study Conclusions

The purpose of this qualitative multiple case study was to explore the testing

strategies software developers use to ensure the reliability of software applications in the

government contracting industry. In my efforts to reveal strategies that software

developers could use to ensure the reliability of software applications in the government

contracting industry, altogether I hope that I have provided information on the

importance of developing well-defined requirements, thorough documentation, and

automation testing in my research on the topic. The constant need for effective policies

and procedures in the area of software testing is all about meeting the needs and

expectations of the customer concerning the design, functionality, and reliability of

software.

Software testing is a skill and a complex process that involves creativity,

experience, and intuition. It is more than a bug hunting activity, but a process used to

verify and validate requirements and specifications. The process starts with the creation

of well-defined requirements and requires communication and collaboration with all

stakeholders. The process is thoroughly documented, providing a blueprint for future

software development work. A well-ordered and structured process can significantly

improve the efficiency and effectiveness of routine tasks.

Organizations make significant investments into their software systems, which are

crucial to business assets. While maintaining the value of business assets, the software

must be verified and thoroughly tested as a cost-effective means of implementing a

quality product. Recent studies showed that many organizations are starting to automate

184

their testing processes to save money and improve quality. As the dependence on today’s

technology grows, society is more invested in the quality and reliability of software

testing. Thus, spreading the awareness of software testing is beneficial to consumers,

businesses, and governments to foster a better understanding of the processes.

185

References

Aagard, J. (2017). Introducing post phenomenological research: A brief and selective

sketch of phenomenological research methods. International Journal of

Qualitative Studies in Education, 30(6), 519-533.

doi:10.1080/09518398.2016.1263884

Aceituna, D., & Do, H. (2019). Addressing the state explosion problem when visualizing

off-nominal behaviors in a set of reactive requirements. Requirements

Engineering, 24(2), 161-180. doi:10.1007/s00766-017-0281-y

Adamsen, C. Q., Mezzetti, G., & Moller, A. (2015). Systematic execution of android test

suites in adverse conditions. Proceedings of the 2015 International Symposium on

Software Testing and Analysis, ACM, 83-93. doi:10.1145/2771783.2771786

Adnan, N. F., & Ritzhaupt, A. D. (2018). Software engineering design principles applied

to instructional design: What can we learn from our sister discipline? TechTrends,

62, 77-94. doi:10.1007/s11528-017-0238-5

Afzal, W., Alone, S., Glocksien, K., & Torkar, R. (2016). Software test process

improvement approaches: A systematic literature review and an industrial case

study. The Journal of Systems and Software, 111, 1-33.

doi:10.1016/j.jss.2015.08.048

Ahmad, T., Truscan, D., & Porres, I. (2018). Identifying worst-case user scenarios for

performance testing of web applications using markov-chain workload models.

Future Generation Computer Systems, 84, 910-920.

doi:10.1016/j.future.2018.01.042

186

Ahmed, B. S., Abdulsamad, T. S., & Potrus, M. Y. (2015). Achievement of minimized

combinatorial test suite for configuration-aware software functional testing using

the cuckoo search algorithm, Information and Software Technology, 66, 13-29.

doi:10.1016/j.infsof.2015.05.005

Ahmed, M., Ibrahim, R., & Ibrahim, N. (2015). An adaption model for android

application testing with refactoring. International Journal of Software

Engineering & Applications, 9(10), 65-74. Retrieved from

http://www.airccse.org/journal/ijsea/ijsea

Alahyari, H., Gorschek, T., & Svensson, R. B. (2019). An exploratory study of waste in

software development organizations using agile or lean approaches: A multiple

case study at 14 organizations. Information and Software Technology, 105, 78-94.

doi:10.1016/j.infsof.2018.08.006

Alahyari, H., Svensson, R. B., & Gorschek, T. (2017). A study of value in agile software

development organizations. The Journal of Systems and Software, 125, 271-288.

doi:10.1016/j.jss.2016.12.007

Al-Dhaafri, H. S., & Al-Swidi, A. (2016). The impact of total quality management and

entrepreneurial orientation on organizational performance. International Journal

of Quality & Reliability Management, 33(5), 597-614. doi:10.1108/IJQRM-03-

2014-0034

Alegroth, E., Feldt, R., & Kolstrom, P. (2016). Maintenance of automated test suites in

industry: An empirical study on visual gui testing. Information and Software

Technology, 73, 66-80. doi:10.1016/j.infsof.2016.01.012

187

Alenezi, M., & Almustafa, K. (2015). Empirical analysis of the complexity evolution in

open-source software systems. International Journal of Hybrid Information

Technology, 8(2), 257-266. doi:10.14257/ijhit.2015.8.2.24

Alhammad, M. M., & Moreno, A. M. (2018). Gamification in software engineering

education: A systematic mapping. Journal of Systems and Software, 141, 131-

150. doi:10.1016/j.jss.2018.03.065

Ali, N., & Lai, R. (2016). A method of requirements change management for global

software development. Information and Software Technology, 70, 49-67.

doi:10.1016/j.infsof.2015.09.005

Allison, M., & Joo, S. F. (2015). An adaptive delivery strategy for teaching software

testing and maintenance. 2015 10th International Conference on Computer

Science & Education, IEEE, 237-242. doi:10.1109/ICCSE.2015.7250249

Almugrin, S., Albattah, W., & Melton, A. (2016). Using indirect coupling metrics to

predict package maintainability and testability. Journal of Systems and Software,

121, 298-310. doi:10.1016/j.jss.2016.02.024

Alnabhan, M., Hammouri, A., Hammod, M., Atoum, M., & Al-thnebat, O. (2018). 2d

visualization for object-oriented software systems. 2018 International Conference

on Intelligent Systems and Computer Vision, IEEE.

doi:10.1109/ISACV.2018.8354085

Alsaqaf, W., Daneva, M., & Wieringa, R. (2019). Quality requirements challenges in the

context of large-scale distributed agile: An empirical study. Information and

Software Technology, 110, 39-55. doi:10.1016/j.infsof.2019.01.009

188

Alvaro, P., & Tymon, S. (2017). Abstracting the geniuses away from failure testing.

Queue, 15(5), 10. doi:10.1145/3155112.3155114

Alzoubi, Y. I., Gill, A. Q., & Al-Ani, A. (2016). Empirical studies of geographically

distributed agile development communication challenges: A systematic review.

Information & Management, 53, 22-37. doi:10.1016/j.im.2015.08.003

Amanatidis, T., & Chatzigeorgeou, A. (2016). Studying the evolution of php web

applications. Information & Software Technology, 72, 48-67.

doi:10.1016/j.infsof.2015.11.009

Ammann, P., & Offutt, J. (2016). Introduction to software testing. Cambridge University

Press.

Anand, A., Singh, O., & Das, S. (2015). Fault severity based multi up-gradation modeling

considering testing and operational profile. International Journal of Computer

Applications, 124(4), 9-15. Retrieved from http://www.ijcaonline.org

Anderson-Cook, C. M., Lu, L., & Parker, P. A. (2019). Effective interdisciplinary

collaboration between statisticians and other subject matter experts. Quality

Engineering, 31, 164-176. doi:10.1080/08982112.2018.1530357

Andrews, A., Alhaddad, A., & Boukhris, S. (2019). Black-box model-based regression

testing of fail-safe behavior in web applications. The Journal of Systems &

Software, 149, 318-339. doi:10.1016/j.jss.2018.11.020

Andrews, A., Elakeili, S., & Alhaddad, A. (2015). Selective regression testing of safety-

control systems: A black box approach. 2015 IEEE International Conference on

http://www.ijcaonline.org/

189

Software Quality, Reliability, and Security-Companion, IEEE. 22-31.

doi:10.1109/QRS-C.2015.16

Anthonisz, S., & Perry, C. (2015). Effective marketing of high-rise luxury condominiums

in a middle-income country like Sri Lanka. Journal of Work-Applied

Management, 7, 61-83. doi:10.1108/jwam-10-2015-002

Anthopoulos, L., Reddick, C. G., Giannakidou, I., & Mavridis, N. (2016). Why e-

government projects fail? An analysis of the healthcare.gov website. Government

Information Quarterly, 33,161-173. doi:10.1016/j.giq.2015.07.003

Antinyan, V., & Staron, M. (2017). Rendex: A method for automated reviews of textual

requirements. Journal of Systems and Software, 131, 63-77.

doi:10.1016/j.jss.2017.05.079

Anu, V., Hu, W., Carver, J. C., Walia, G. S., & Bradshaw, G. (2018). Development of a

human error taxonomy for software requirements: A systematic literature review.

Information and Software Technology, 103, 112-124.

doi:10.1016/j.infsof.2018.06.011

Aovak, A., Gugan, K., Varga, M., & Domotor, A. (2018). Creation of an annotated

corpus of old and middle Hungarian court records and private correspondence.

Language Resources and Evaluation, 52,1-28. doi:10.1007/s10579-017-9393-8

Arif-Uz-Zaman, K., Cholette, M. E., Ma, L., & Karim, A. (2017). Extracting failure time

data from industrial maintenance records using text mining. Advanced

Engineering Informatics, 33, 388-396. doi:10.1016/j.aei.2016.11.004

190

Arora, P. K., & Bhatia, R. (2018). A systematic review of agent-based test case

generation for regression testing. Arabian Journal for Science and Engineering,

43(2), 447-470. doi:10.1007/s13369-017-2796-4

Arundell, F., Mannix, J., Sheehan, A., & Peters, K. (2018). Workplace culture and the

practice experience of midwifery students: A meta-synthesis. Journal of Nursing

Management, 26(3), 302-313. doi:10.1111/jonm.12548

Ashmore, S., Townsend, A., Demarie, S., & Mennecke, B. (2018). An exploratory

examination of modes of interaction and work in waterfall and agile teams.

International Journal of Agile Systems and Management, 11, 67-102.

doi:10.1504/IJASM.2018.091361

Aversano, L., Di Brino, M., Guardabascio, D., Salerno, M., & Tortorella, M. (2015).

Understanding enterprise open source software evolution. Procedia Computer

Science, 64, 924-931. doi:10.1016/j.procs.2015.08.609

Badenhorst, C. (2018). Citation practices of postgraduate students writing literature

reviews. London Review of Education, 16, 121-135. doi:10.18546/LRE.16.1.11

Badri, P., Wolfe, R., Farmer, A., & Amin, M. (2018). Psychosocial determinants of

adherence to preventive dental attendance for preschool children among filipino

immigrants in Edmonton, Alberta. Journal of Immigrant and Minority Health,

20(3), 658-667. doi:/10.1007/s10903-017-0599-z

Bagheri, H., Garcia, J., Sadeghi, A., Malek, S., & Medvidovic, N. (2016). Software

architectural principles in contemporary mobile software: From conception to

191

practice. Journal of Systems and Software, 119, 31-44.

doi:10.1016/j.jss.2016.05.039

Bagherzadeh, M., Kahani, N., Bezemer, C. P., Hassan, A. E., Dingel, J., & Cordy, J. R.

(2018). Analyzing a decade of linux system calls. Empirical Software

Engineering, 23(3), 1519-1551. doi:10.1007/s10664-017-9551-z

Bahamdain, S. S. (2015). Open source software (oss) quality assurance: A survey paper.

Procedia Computer Science, 56, 459-464. doi:10.1016/j.procs.2015/07.236

Bansal, M. S., Kellis, M., Kordi, M., & Kundu, S. (2018). Ranger-DTL 2.0: Rigorous

reconstruction of gene-family evolution by duplication, transfer and loss.

Bioinformatics, 34(18), 3214-3216. doi:10.1093/bioinformatics/bty314

Barnes, J. (2015). Qualitative research from start to finish (2nd Edition).

Neuropsychological Rehabilitation, 27(8), 1156-1158.

doi:10.1080/09602011.2015.1126911

Barnham, C. (2016). Quantitative and qualitative research: Perceptual foundations.

International Journal of Market Research, 57, 837–854. doi:10.2501/ijmr-2015

Barr, E. T., Harman, M., McMinn, P., Shahbaz, M., & Yoo, S. (2015). The oracle

problem in software testing: A survey. IEEE Transactions on Software

Engineering, 41(5), 507-525. Retrieved from https:// ieeexplore.ieee.org/

Bartels, D. M., Hastie, R., & Urminsky, O. (2018). Connecting laboratory and field

research in judgement and decision making: Causality and the breadth of external

validity. Journal of Applied Research in Memory and Cognition, 7, 11-15.

doi:10.1016/j.jarmac.2018.01.001

192

Baskarada, S. (2014). Qualitative case study guidelines. The Qualitative Report, 19(40),

1-25. Retrieved from http://nsuworks.nova.edu/tqr/

Batarseh, F. A., & Gonzalez, A. J. (2015). Validation of knowledge-based systems: A

reassessment of the field. Artificial Intelligence Review, 43(4), 485-500.

doi:10.1007/s10462-013-9396-9

Batool, A. (2015). A comprehensive analysis on software testing methodologies.

International Journal of Computer and Communication System Engineering

(IJCCSE), 2(3), 387-392. Retrieved from http://www.ijccse.com

Becher, E. H., & Wieling, E. (2015). The intersections of culture and power in clinician

and interpreter relationships: A qualitative study. Cultural Diversity and Ethnic

Minority Psychology, 21, 450-457. doi:10.1037/a0037535

Belady, L. A., & Lehman, M. M. (1976). A model of large program development. IBM

Systems Journal, 15(3), 225-252. doi:10.1147/sj.153.0225

Bell, J. S., Murray, F. Z., & Davies, E. L. (2019). An investigation of the features

facilitating effective collaboration between public health experts and data

scientists at a hackathon. Public Health, 173, 120-125.

doi:10.1016/j.puhe.2019.05.007

Beller, M. (2018). Toward an empirical theory of feedback-driven development. 2018

IEEE/ACM 40th International Conference on Software Engineering, IEEE, 503-

505. doi:10.1145/3183440.3190332

Bellery, L., Hodges, H., Camp, A., & Aduddell, K. (2016). Teamwork in acute care:

Perceptions of essential but unheard assistive personnel and the counterpoint of

http://www.ijccse.com/

193

perceptions of registered nurses. Research in Nursing & Health, 39(5), 337-346.

doi:10.1002/nur.21737

Beppe, T. A., de Sousa-Santos, I., Linhares de Araujo, I., Aragao, B. S., Ximenes, D., &

Andrade, R. M. C. (2018). Greatest: A card game to motivate the software testing

learning. SBES '18: Proceedings of the XXXII Brazilian Symposium on Software

Engineering, ACM. 298-307. doi:10.1145/3266237.3266254

Berger, R. (2015). Now i see it, now i don’t: Researcher’s position and reflexivity in

qualitative research. Qualitative Research, 15, 219-234.

doi:10.1177/1468794112468475

Bergmane, L., Grabis, J., & Zeiris, E. (2017). A case study: Software defect root causes.

Information Technology and Management Science, 20, 54-57. doi:10.1515/itms-

2017-0009

Berman, A. C., & Chutka, D. S. (2016). Assessing effective physician-patient

communication skills: “Are you listening to me, doc?” Korean Journal Medical

Education, 28(2), 243-249. doi:10.3946/kjme.2016.21

Beskow, L. M., Check, D. K., & Ammarell, N. (2014). Research participants’

understanding of and reactions to certificates of confidentiality. AJOB Primary

Research, 5, 12-22. doi:10.1080/21507716.2013.813596

Beverly, E. A., Hamel-Lambert, J., Jensen, L. L., Meeks, S., & Rubin, A. (2018). A

qualitative process evaluation of a diabetes navigation program embedded in an

endocrine specialty center in rural appalachian ohio. BMC Endocrine Disorders,

18, 1-15. doi:10.1186/s12902-018-0278-7

194

Bian, Y., Parande, M. A., Koru, G., & Zhao, S. (2016). Testing the theory of relative

dependency from an evolutionary perspective: higher dependencies concentration

in smaller modules over the lifetime of software products. Journal of Software:

Evolution and Process, 28(5), 340-371. doi:10.1002/smr.1774

Biros, M. (2018). Capacity, vulnerability, and informed consent for research. The Journal

of Law, Medicine, & Ethics, 46, 72-78. doi:10.11771107310518766021

Blackmon, S. (2017). [Insert emoji or avatar here]: Phenomenology and digital research.

Journal of Gaming & Virtual Worlds, 9(3), 193-205. doi:10.1386/jgvw.9.3.193_1

Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35, 64–69.

doi:10.1109/2.976920

Bonello, M., & Meehan, B. M. (2019). Transparency and coherence in a doctoral study

case analysis: Reflecting on the use of nvivo within a framework approach. The

Qualitative Report, 24(3), 483-498. Retrieved from https://nsuworks.nova.edu/tqr

Borgers, A., Pownall, R., & Raes, L. (2016). Acquaintance networks and attitudes to

climate change. Academic Homepage Louis Raes, 1-12. Retrieved from

http://www.louisraes.com

Bouras, Z. E., & Maouche, M. (2017). Software architectures evolution-based merging.

Informatica, 41, 111-120. Retrieved from http://www.informatica.si

Bowden, C., & Galindo-Gonzalez, S. (2015). Interviewing when you’re not face-to-face:

The use of email interviews in a phenomenological study. International Journal

of Doctoral Studies, 10, 79-92. Retrieved from http://www.informingscience.org

https://nsuworks.nova.edu/tqr
http://www.louisraes.com/
http://www.informingscience.org/

195

Braga de Vasconcelos, J., Kimble, C., Carreteiro, P., & Rocha, A. (2017). The

application of knowledge management to software evolution. International

Journal of Information Management, 37, 1499-1506.

doi:10.1016/j.ijinfomgt.2016.05.005

Brennan, P. F., & Bakken, S. (2015). Nursing needs big data and big data needs nursing.

Journal of Nursing Scholarship, 47, 477-484. doi:10.1111/jnu.12159

Brhel, M., Meth, H., Maedche, A., & Werder, K. (2015). Exploring principles of user-

centered agile software development: A literature review. Information and

Software Technology, 61, 163-181. doi:10.1016/j.infsof.2015.01.004

Brichni, M., Dupuy-Chessa, S., Gzara, L., Mandran, N., & Jeannet, C. (2017). BI4BI: A

continuous evaluation for business intelligence systems. Expert Systems with

Applications, 76, 97-112. doi:10.1016/j.eswa.2017.01.018

Britto, R., Mendes, E., & Borstler, J. (2015). An empirical investigation on effort

estimation in agile global software development. 2015 IEEE 10th International

Conference on Global Software Engineering, IEEE, 38-45.

doi:10.1109/ICGSE.2015.10

Bronckers, L. A., Roc’h, A., & Smolders, A. B. (2017). How tough are the front-end

requirements for 4g-and-beyond handsets? 2017 4th European Microwave

Conference, IEEE, 711-714. doi:10.23919/EUMC.2017.8230946

Bruder, C., & Hasse, C. (2020). What the eyes reveal: Investigating the detection of

automation failures. Applied Ergonomics, 82, 1-10.

doi:10.1016/j.apergo.2019.102967

196

Bruyn, P. D., Mannaert, H., Verelst, J., & Huysmans, P. (2018). Enabling normalized

systems in practice-exploring a modeling approach. Business & Information

Systems Engineering, 60, 55-67. doi:10.1007/s12599-017-0510-4

Buckley, I., & Buckley, W. (2017). Teaching software testing using data structures.

International Journal of Advanced Computer Science and Applications, 8(4). 1-4.

Retrieved from http://www.thesai.org

Budde, K., Zimmerman, J., Neuhaus, E., Schroder, M., Uhrmacher, A. M., & van Rienen,

U. (2019). Requirements for documenting electrical cell stimulation experiments

for replicability and numerical modeling. 2019 41st Annual International

Conference of IEEE Engineering in Medicine & Biology Society, IEEE, 1082-

1088. doi:10.1109/EMBC.2019.8856863

Burman, E., Hansbo, P., & Larson, M. (2018). A cut finite element method with

boundary value correction mathematics of computation. American Mathematical

Society, 87, 633-657. doi:10.1090/MCOM/3240

Cacari-Stone, L., Wallerstein, N. G., & Minkler, M. (2014). The promise of community

based participatory research for health equity: A conceptual model for bridging

evidence with policy. American Journal of Public Health, 104, 1615-1623.

doi:10.2105/AJPH.2014.301961

Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M., … &

Rodriguez, D. (2015). Moving fast with software verification. NASA Formal

Methods, 3-11. doi:10.1007/978-3-319-17524-9_1

http://www.thesai.org/

197

Caliz, D., Samaniego, G., & Caliz, R. (2016). Methodological proposal of policies and

procedures for quality assurance in information systems for software development

companies based on CMMI. Journal of Software, 11(3), 230-241.

doi:10.17706/jsw.11.3.230-241

Camilo, J. R. M., L'erario, A., Pagotto, T., & Fabri, J. A. (2018). A process for distributed

software evolution: A proprietary software case study. In Proceedings of the 13th

Conference on Global Software Engineering, ACM, 44-53.

doi:10.1145/3196369.3196376

Campanelli, A. S., Camilo, R. D., & Parreiras, F. S. (2018). The impact of tailoring

criteria on agile practices adoption: A survey with novice agile practitioners in

Brazil. The Journal of Systems and Software, 137, 366-379.

doi:10.1016/j.jss.2017.12.012

Canli, S., & Demirtaş, H. (2018). The effects of school principals' trust in teachers on

school climate. International Online Journal of Educational Sciences, 10, 105.

doi:10.15345/iojes.2018.01.010

Cao, P., Yang, K., & Liu, K. (2019). Optimal selection and release problem in software

testing process: A continuous time stochastic control approach. European

Journal of Operational Research. doi:10.1016/j.ejor.2019.01.075

Capgemini Group (2016). World quality report 2015-16 tech report. Retrieved from

http://www.capgemini.com/though-leadership/world-quality-report-2015-16

Capili, R. D. (2018). Using system dynamics modeling to understand the impact of

federal constraints in implementing the agile methodology within the United

http://www.capgemini.com/though-leadership/world-quality-report-2015-16

198

States federal government. (Doctoral dissertation, George Washington

University). Proquest id:10743636

Caretta, M. A. (2016). Member checking: A feminist participatory analysis of the use of

preliminary results pamphlets in cross-cultural, cross-language research.

Qualitative Research, 16(3), 305-318. doi:10.1177/1468794115606495

Carter, N., Bryant-Lukosius, D., DiCenso, A., Blythe, J., & Neville, A. J. (2014). The use

of triangulation in qualitative research. Oncology Nursing Forum, 41, 545-547.

doi:10.1188/14.ONF.545-547

Cashman, S., & Rosenblatt, H. J. (2014). Systems Analysis and Design (10th ed). Boston,

MA: Cengage Technology

Cavalcanti, Y. C., do Carmo Machado, I., Anselmo da Motal S. Neto, P., & Santana de

Almeida, S. (2016). Towards semi-automated assignment of software change

requests. Journal of Systems and Software, 115, 82-101.

doi:10.1016/j.jss.2016.01.038

Cazals, F., & Dreyfus, T. (2017). The structural bioinformatics library: Modeling in

biomolecular science and beyond. Bioinformatics, 33(7), 997-1004.

doi:10.1093/bioinformatics/btw752

Chandani, P., & Gupta, C. (2018). An exhaustive requirement analysis approach to

estimate risk using requirement defect and execution flow dependency for

software development. Journal of Information Technology Research, 11(2), 68-

87. doi:10.4018/jitr.2018040105

199

Chandraprabha, C., Kumar, A., & Saxena, S. (2015). Data driven testing framework

using selenium web driver. International Journal of Computer Applications,

118(18), 18-23. doi:10.5120/20845-3497

Chang, S. A., Seow, G., & Tam, K. (2019). Debugging debugging. Journal of

Multidisciplinary Research, 11, 51-64. Retrieved from www.jmrpublication.org

Chari, K., & Agrawal, M. (2018). Impact of incorrect and new requirements on waterfall

software project outcomes. Empirical Software Engineering, 23, 165-185.

doi:10.1007/s10664-017-9506-4

Charman, A. J., Petersen, L. M., Piper, L. E., Liedeman, R., & Legg, T. (2015). Small

area census approach to measure the township informal economy in South Africa.

Journal of Mixed Methods Research, 11, 36-58. doi:10.1177/1558689815572024

Charrada, E. B., Koziolek, A., & Glinz, M. (2015). Supporting requirements update

during software evolution. Journal of Software: Evolution and Process, 27(3)

166-194. doi:10.1002/smr.1705

Chen, L. H., Wu, C. H., Lin, S. H., & Ye, Y. C. (2018). Top down or bottom up? The

reciprocal longitudinal relationship between athletes' team satisfaction and life

satisfaction. Sport, Exercise, and Performance Psychology, 7, 1-12.

doi:10.1037/spy0000086

Chen, S. M., & Han, W. H. (2018). A new multiattribute decision making method based

on multiplication operations of interval-valued intuitionistic fuzzy values and

linear programming methodology. Information, Sciences, 429, 421-432.

doi:10.1016/j.ins.2017.11.018

http://www.jmrpublication.org/

200

Chen, T. H., Shang, W., Nagappan, M., Hassan, A. E., & Thomas, S. W. (2017). Topic-

based software defect explanation. Journal of Systems and Software, 129, 79-106.

doi:10.1016/j.jss.2016.05.015

Chen, T. Y., Kuo, F. C., Towey, D., & Zhou, Z. Q. (2015). A revisit of three studies

related to random testing, Science China. Information Sciences, 58(5), 1-9.

doi:10.1007/s11432-015-5314-x

Chiumento, A., Khan, M. N., Rahman, A., & Frith, L. (2015). Managing ethical

challenges to mental health research in post conflict settings. Developing World

Bioethics. doi:10.1111/dewb.12076

Clarke, P. J., Davis, D., King, T. M., Pava, J., & Jones, E. (2014). Integrating testing into

software engineering courses supported by a collaborative learning environment.

ACM Transactions on Computing Education, 14(3), 18:1-18:33.

doi:10.1145/2648787

Clarke, V., & Braun, V. (2018). Using thematic analysis in counselling and

psychotherapy research: A critical reflection. Counselling and Psychotherapy

Research, 18(2), 107-110. doi:10.1002/capr.12165

Coelho, J., Valente, M. T., Silva, L. L., & Shihab, E. (2018). Identifying unmaintained

projects in github. In Proceedings of the 12th ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, ACM, 15.

doi:10.1145/3239235.3240501

Coenen, M., Cabello, M., Umlauf, S., Ayuso-Mateos, J. L., Anczewska, M., & Leonardi,

M. (2016). Psychosocial difficulties from the perspective of persons with

201

neuropsychiatric disorders. Disability and Rehabilitation, 38(12), 1134-1145.

doi:10.3109/09638288.2015.1074729

Collette, A. E., Wann, K., Nevin, M. L., Rique, K., Tarrant, G., Hickey, L. A., …

Thomason, T. (2017). An exploration of nurse-physician perceptions of

collaborative behaviour. Journal of Interprofessional Care, 31(14), 470-478.

doi:10.1080/13561820.2017.1301411

Cooper, R. G., & Sommer, A. F. (2018). Agile-stage gate for manufacturers. Changing

the way new products are developed integrating agile project management

methods into a stage-gate system offers both opportunities and challenges.

Research-Technology Management, 61(2), 17-26.

doi:10.1080/08956308.2018.1421380

Cope, D. G. (2014). Methods and Meanings: Credibility and trustworthiness of

qualitative research. Oncology Nursing Forum, 41, 89-91.

doi:10.1188/14.ONF.89-91

Craft, A. R. (2019). Online documentation portals in library technical services: Shedding

light on local practices and procedures. Serials Review, 45(3), 171-175.

doi:10.1080/00987913.2019.1645531

Crevier, L. P., & Parrott, L. (2019). Synergy between adaptive management and

participatory modelling: The two processes as interconnected spirals. Ecological

Informatics, 53, 1-6. doi:10.1016/j.ecoinf.2019.100982

Cronin, C. (2014). Using case study research as a rigorous form of inquiry. Nurse

Researcher, 21(5), 19-27. doi:10.7748/nr.21.5.19.e1240

202

Crowe, M., Inder, M., & Porter, R. (2015). Conducting qualitative research in mental

health: Thematic and content analysis. Australian & New Zealand Journal of

Psychiatry, 49, 616-623. doi:10.1177/0004867415582053

Cruzes, D. S., Moe, N. B., & Dybå, T. (2016). Communication between developers and

testers in distributed continuous agile testing. In Global Software Engineering

(ICGSE), 2016 IEEE 11th International Conference, IEEE, 59-68.

doi:10.1109/ICGSE.2016.27

Cuellar, A. M. (2018). Self-reflexivity through journaling: An imperative process for the

practicing clinician. The William and Mary Educational Review, 5, 69-82.

Retrieved from https://scholarworks.wm.edu/wmer/

Cundiff, J., McCallum, T., Rich, A., Truax, M., & Ward, T. (2015). Healthcare.gov:

Opportunity out of disaster: Teaching case. Journal of Information Systems

Education, 25(4), 289-293. Retrieved from www.jise.org

Curcio, K., Navarro, T., Malucelli, A., & Reineher, S. (2018). Requirements engineering:

A systematic mapping study in agile software development. The Journal of

Systems and Software, 139, 32-50. doi:10.1016/j.jss.2018.01.036

Dadkhah, M., Araban, S., & Paydar, S. (2020). A systematic literature review on

semantic web enabled software testing. The Journal of Systems and Software,

162, 1-34. doi:10.1016/j.jss.2019.110485

Dalal, S., & Hooda, S. (2018) Aspect-oriented software testing techniques: A review.

International Journal of Advanced Research in Computer Science, 9(2), 211-216.

www.ijarcs.info/index.php/ijarcs

http://www.jise.org/

203

Dalal, S., & Solanki, K. (2018). Challenges of regression testing: A pragmatic

perspective. International Journal of Advanced Research in Computer Science, 9,

499-503. Retrieved from www.ijarcs.info

Daniel, B. K. (2018). Empirical verification of the “TACT” framework for teaching rigor

in qualitative research methodology. Qualitative Research Journal, 18(3), 262-

275. doi:10.1108/QRJ-D-17-00012

Daniel, J. (2014). Sampling essentials: Practical guidelines for making sampling choices.

Los Angeles, CA: Sage.

Dasan, S., Gohil, P., Cornelius, V., & Taylor, C. (2015). Prevalence causes and

consequences of compassion satisfaction and compassion fatigue in emergency

care: a mixed-methods study of UK NHS Consultants. Emergency Medicine

Journal, 32(8). 588-594. doi:10.1136/emermed-2014-203671

Dasgupta, M. (2015). Exploring the relevance of case study research. Vision (09722629),

19(2). 147-160. doi:10.1177/0972262915575661

David, S. L., & Hitchcock, J. H. (2018). Understanding patient trust in the athletic setting

through interviews. The Internet Journal of Allied Health Sciences and Practice,

16(2), 4. Retrieved from https://nsuworks.nova.edu/ijahsp

Deak, A., Stålhane, T., & Sindre, G. (2016). Challenges and strategies for motivating

software testing personnel. Information and Software Technology, 731-15.

doi:10.1016/j.infsof.2016.01.002

204

Decan, A., Mens, T., & Grosjean, P. (2018). An empirical comparison of dependency

network evolution in seven software packaging ecosystems. Empirical Software

Engineering, 1-36. doi:10.1007/s10664-017-9589-y.

DeGirolamo, A. M., Di Pillo, R., Porto, A. L., Todisco, M. T., & Barca, E. (2018).

Identifying a reliable method for estimating suspended sediment load in a

temporary river system. Catena, 165, 442-453. doi:10.1016/j.catena.2018.02.015

De Loo, I., Cooper, S., & Manochin, M. (2015). Enhancing the transparency of

accounting research. The case of narrative analysis. Qualitative Research in

Accounting & Management, 12, 34-54. doi:10.1108/QRAM-02-2013-0007

De Massis, A., & Kotlar, J. (2014). The case study method in family business research:

Guidelines for qualitative scholarship. Journal of Family Business Strategy, 5, 15-

29. doi:10.1016/j.jfbs.2014.01.007

Deng, J. (1982). Grey systems control. Systems & Control Letters, 1, 288-294.

doi:10.1016/S0167-6911(82)80025-X

Dennis, V., & Walcott, J. (2014). Federal financial management shared services: The

move is on. The Journal of Government Financial Management, 63(3), 18-24.

Retrieved from http://www.agacgfm.org/Resources/Journal-of-Government-

Financial-Management.aspx

Derobertmasure, A., & Robertson, J. E. (2014). Data analysis in the context of teacher

training: Code sequence analysis using qda miner. Quality and Quantity, 48(4),

2255-2276. doi:10.1007/s11135-013-9890-9

http://www.agacgfm.org/Resources/Journal-of-Government-Financial-Management.aspx
http://www.agacgfm.org/Resources/Journal-of-Government-Financial-Management.aspx

205

De Souza, E. F., De Almeida Falbo, R., & Vijaykuman, N. L. (2015). Knowledge

management initiatives in software testing: A mapping study. Information and

Software Technology, 57, 378-391. doi:10.1016/j.infsof.2014.05.016

De Souza Neto, J. B., Moreira, A. M., & Musicante, M. A. (2018). Semantic web

services testing: A systematic mapping study. Computer Science Review, 28, 140-

156. doi:10.1016/j.cosrev.2018.03.002

Despa, M. L. (2015). Formulating the isdf software development methodology.

Informatica Economica, 19, 66-80. doi:10.12948/issn14531305/19.2.2015.07

Dhandapani, S. (2016). Integration of user-centered design and software development

process. 2016 IEEE 7th Annual Information Technology, Electronics and Mobile

Communication Conference, IEEE, 1-5. doi:10.1109/IEMCON.2016.7746075

Di Alesio, S., Briand, L. C., Nejati, S., & Gotlieb, A. (2015). Combining genetic

algorithms and constraint programming to support stress testing of task deadlines.

ACM Transactions on Software Engineering and Methodology, 25, 4:1-4:37.

doi:10.1145/2818640

Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for

large-scale agile transformations: A systematic literature review. The Journal of

Systems and Software, 119, 87-108. doi:10.1016/j.jss.2016.06.013

Dolezel, M., & Buchalcevova, A. (2015). Test governance framework for contracted is

development: ethnographically information action research. Information and

Software Technology, 65, 69-94. doi:10.1016/j.infsof.2015.03.003

206

Dosemagen, S., Liboiron, M., & Molly, J. (2016). Gathering for open science hardware

2016. Journal of Open Hardware, 1, 4. doi:10.5334/joh.5

Dos Santos-Neto, B. F., Ribeiro, M., Da Silva, V. T., Braga, C., de Lucena, C. J. P., & de

Barros Costa, E. (2015). AutoRefactoring: A platform to build refactoring agents.

Expert Systems with Applications, 42(3), 1652-1664.

doi:10.1016/j.eswa.2014.09.022

Dou, E. (2016). Cost model for verifying requirements. 2016 IEEE AutoTestCon, IEEE,

1-5. doi:10.1109/AUTEST.2016.7589570

Douglas-Smith, D., Iwanaga, T., Croke, B. F. W., & Jakeman, A. J. (2020). Certain

trends in uncertainty and sensitivity analysis: An overview of software tools and

techniques. Environmental Modelling and Software, 124, 1-19.

doi:10.1016/j.envsoft.2019.104588

Drabble, L., Trocki, K. F., Salcedo, B., Walker, P. C., & Korcha, R. A. (2015).

Conducting qualitative interviews by telephone: Lessons learned from a study of

alcohol use among sexual minority and heterosexual women. Qualitative Social

Work,15, 118-133. doi:10.1177/1473325015585613

Dukes, S., Tourtillott, B., Bryant, D., Carter, K., McNair, S., Maupin, G., & Tamminga,

C. (2015). Finishing what was started: An analysis of theater research conducted

from 2010-2012. Military Medicine, 180(3), 8-13.

doi:10.7205/MILMED-D-14-00393

207

Duran, K., Burns, G., & Snell, P. (2013). Lehman's laws in agile and non-agile projects.

2013 20th Working Conference on Reverse Engineering, IEEE.

doi:10.1109/WCRE.2013.6671304

Dyk, J. V., & Meghzifene, A. (2017). Radiation oncology quality and safety

consideration in low-resource settings: A medical physics perspective. Seminars

in Radiation Oncology, 27(2), 124-135. doi:10.1016/j.semradonc.2016.11.004

Eckhart, M., Meixner, K., Winkler, D., & Ekelhart, A. (2019). Securing the testing

process for industrial automation software. Computer & Security, 85, 156-180.

doi:10.1016/j.cose.2019.04.016

Elberzhager, F., Munch, J., & Assman, D. (2014). Analyzing the relationships between

inspections and testing to provide a software testing focus. Information and

Software Technology, 56(7), 793-806. doi:10.1016/j.infsof.2014.02.007

Eler, M. M., Endo, A. T., & Durelli, V. H. S. (2016). An empirical study to quantify the

characteristics of Java programs that may influence symbolic execution from a

unit testing perspective. Journal of Systems and Software, 121, 281-297.

doi:10.1016/j.jss.2016.03.020

Em, A. R., & Reedy, E. M. (2015). Software test automation: An algorithm for solving

system management automation problems. Procedia Computer Science, 46, 949-

956. doi:10.1016/j.procs.2015.01.004

Emam, S. S., & Miller, J. (2015). Test case prioritization using extended diagraphs. ACM

Transactions on Software Engineering and Methodology, 25, 6:1-6:41.

doi:10.1145/2789209

208

Engstrom, E., & Petersen, K. (2015). Mapping software testing practice with software

testing research-serp-test taxonomy. 2015 IEEE Eighth International Conference

on Software Testing, Verification and Validation Workshops (ICSTW), IEEE,

2015, 1-4. doi:10.1109/ICSTW.2015.7107470

Estrada, L. M., & Koolen, M. (2018). Audiovisual media annotation using qualitative

data analysis software: A comparative analysis. The Qualitative Report, 23(13),

40-60. http://nsuworks.nova.edu/tqr

Evans, S., Taber, W., Drain, T., Smith, J., Wu, H. C., Guevara, M., … & Evans, J.

(2018). Monte: The next generation of mission design and navigation software,

CEAS Space Journal, 10, 79-86. doi:10.1007/s12567-017-0171-7

Fadel, E., Gungor, V. C., Nassef, L., Akkari, N., Abbas-Malik, M. G., Almasri, S., &

Akyildiz, I. F. (2015). A survey on wireless sensor networks for smart grid.

Computer Communications, 71, 22-23. doi:10.1016/j.comcom.2015.09.006

Feddock, S. (2016). An analysis of the software selection process using waterfall versus

agile methodologies: A simulation study. (Doctoral dissertation, Pace University).

Proquest id:10128878

Fernandez, D. M., Wagner, S., Kalinowski, M., Felderer, M., Mafra, P., Vetro, A., …

Wieringa, R. (2017). Naming the pain in requirements engineering. Empirical

Software Engineering, 22(5), 2298-2338. doi:10.1007/s10664-016-9451-7

Ferrell, O. C., & Ferrell, L. (2016). Ethics and social responsibility in marketing channels

and supply chains: An overview. Journal of Marketing Channels, 23, 2-10.

doi:10.1080/1046669X.2016.1147339

209

Fischer-Lokou, J., Gueguen, N., Lamy, L., Martin, A., & Bullock, A. (2014). Imitation on

mediation: Effects of the duration of mimicry on reaching agreement. Social

Behavior and Personality, 42(2), 189-195. doi:10.2224/sbp.2014.42.2.189

Fitzgerald, B., & Stol, K. J. (2017). Continuous software engineering: A roadmap and

agenda. Journal of Systems and Software, 123, 176-189.

doi:10.1016/j.jss.2015.06.063

Forster, D. G., & Borasky, D. (2018). Adults lacking capacity to give consent when is it

acceptable to include them in research. Therapeutic Innovation & Regulatory

Science, 52(3), 275-279. doi:10.1177/2168479018770658

Fortineau, V., Paviot, T., & Lamouri, S. (2019). Automated business rules and

requirements to enrich product-centric information. Computers in Industry, 104,

22-33. doi:10.1016/j.compind.2018.10.001

Fusch, P., Fusch, G. E., & Ness, L. R. (2018). Denzin's paradigm shift: Revisiting

triangulation in qualitative research. Journal of Social Change, 10, 19-32.

doi:10.5590/JOSC.2018.10.1.02

Fusch, P. I., & Ness, L. R. (2015). Are we there yet? Data saturation in qualitative

research. The Qualitative Report, 20, 1408–1416. Retrieved from

https://nsuworks.nova.edu/tqr

Fylaktopoulos, G., Skolarikis, M., Popadopoulos, I., Goumas, G., Sotiropoulos, A., &

Maglogiannis, I. (2018). A distributed modular platform for the development of

cloud-based applications. Future Generation Computer Systems, 78, 127-141.

doi:10.1016/j.future.2017.02.035

210

Gario, A., Andrews, A., & Hagerman, S. (2015). Fail-safe testing of safety-critical

systems: A case study and efficiency analysis. Software Quality Journal, 26, 3-48.

doi:10.1007/s11219-015-9283-5

Garousi, G., Garousi-Yusifoglu, V., Ruhe, G., Zhi, J., Moussavi, M., & Smith, B. (2015).

Usage and usefulness of technical software documentation: An individual case

study. Information and Software Technology, 57, 664-682.

doi:10.1016/j.infsof.2014.08.003

Garousi, V., Felderer, M., & Hacaloğlu, T. (2017). Software test maturity assessment and

test process improvement: A multivocal literature review. Information and

Software Technology, 85, 16-42. doi:10.1016/j.infsof.2017.01.001

Garousi, V., Felderer, M., Karapicak, C. M., & Yilmaz, U. (2018a). Testing embedded

software: A survey of the literature. Information and Software Technology, 104,

14-45. doi:10.1016/j.infsof.2018.06.016

Garousi, V., Felderer, M., Karapicak, C. M., & Yilmaz, U. (2018b). What we know about

testing embedded software. IEEE Software, 35(4), 62-69.

doi:10.1109/MS.2018.2801541

Garousi, V., & Kucuk, B. (2018). Smells in software test code: A survey of knowledge in

industry and academia. Journal of Systems and Software, 138, 52-81.

doi:10.1016/j.jss.2017.12.013

Garousi, V., & Mantyla, M. (2016a). A systematic literature review of literature reviews

in software testing. Information and Software Technology, 80, 195-216.

doi:10.1016/j.infsof.2016.09.002

211

Garousi, V., & Mantyla, M. K. (2016b). When and what to automate in software testing?

A multi-vocal literature review. Information and Software Technology, 76, 92-

117. doi:10.1016/j.infsof.2016.04.015

Garousi, V., Ozkan, R., & Betin-Can, A. (2018). Multi-objective regression test selection

in practice: An empirical study in the defense software industry. Information &

Software Technology, 103, 40-54. doi:10.1016/j.infsof.2018.06.007

Garousi, V., & Pfahl, D. (2016). When to automate software testing? A decision-support

approach based on process simulation. Journal of Software Evolution and

Process, 28, 272-285. doi:10.1002/smr.1758

Gelinas, L., Wertheimeir, A., & Miller, F. G. (2016). When and why is research without

consent permissible? Hastings Center Report, 46(2), 35-43. doi:10.1002/hast.548

Gentles, S., Charles, C., Ploeg, J., & McKibbon, K. A. (2015). Sampling in qualitative

research: Insights from an overview of the methods literature. The Qualitative

Report, 20(11), 1772-1789. Retrieved from Proquest Central Databases.

Gibbins, J., Bhatia, R., Forbes, K., & Reid, C. M. (2014). What do patients with advanced

incurable cancer want from the management of their pain? A qualitative study.

Palliative Medicine, 28, 71-78. doi:10.1177/0269216313486310

Glaser, B., & Strauss, A. (1967). The discovery of grounded theory: Strategies for

qualitative research. Chicago: Aldine

Glasgow, R. E., Huebschmann, A. G., & Brownson, R. C. (2018). Expanding the consort

figure: Increasing transparency in reporting on external validity. American

212

Journal of Preventive Medicine, 55(3), 422-430.

doi:10.1016/j.amepre.2018.04.044

Godboley, S., Panda, S., Dutta, A., & Mohapatra, D. P. (2017). An automated analysis of

the branch coverage and energy consumption using concolic testing. Arabian

Journal for Science and Engineering, 42(2), 619-637. doi:10.1007/s13369-016-

2284-2

Godfrey, M. W., & German, D. M. (2014). On the evolution of Lehman's laws. Journal

of Software: Evolution and Process, 26(7), 613-619.

doi:10.1145/2543581.2543595

Goel, J. N., & Mehtre, B. M. (2015). Vulnerability assessment and penetration testing as

a cyber defense technology. Procedia Computer Science, 57, 710-715.

doi:10.1016/j.procs.2015.07.458

Gojare, S., Joshi, R., & Gaigaware, D. (2015). Analysis and design of selenium web

driver automation testing framework. Procedia Computer Science, 50, 341-346.

doi:10.1016/j.procs.2015.04.038

Goltz, U., Reussner, R. H., Goedicke, M., Hasselbring, W., Martin, L., & Heuser, B. V.

(2015). Design for future: managed software evolution. Computer Science-

Research and Development, 30(1), 321-331. doi:10.1007/s00450-014-0273-9

Gomez, O. S., Cortés-Verdín, K., & Pardo, C. J. (2017). Efficiency of software testing

techniques: A controlled experiment replication and network meta-analysis. e-

Informatica, 11, 77-102. doi:10.5277/e-Inf170104

213

Goodell, L., Stage, V., & Cooke, N. (2016). Practical qualitative research strategies:

Training interviewers and coders. Journal of Nutrition Education and Behavior,

48(6), 578-585. doi:10.1016/j.jneb.2016.06.001

Goodman, M. W. (2019). A python library for deep linguistic resources. 2019 Pacific

Neighborhood Consortium Annual Conference & Joint Meetings, IEEE, 1-7.

Retrieved from http://www.ieeeplore.ieee.org

Granli, W., Burchell, J., Hammouda, I., & Knauss, E. (2015, August). The driving forces

of API evolution. In Proceedings of the 14th International Workshop on

Principles of Software Evolution, ACM. doi:10.1145/2804360.2804364

Grieb, S. D., Eder, M., Smith, K. C., Calhoun, K., & Tandon, D. (2015). Qualitative

research and community-based participatory research: Considerations for

effective dissemination in the peer-reviewed literature. Progress in Community

Health Partnerships, 9, 275-282. doi:10.1353/cpr.2015.0041

Groce, A., Alipour, M. A., Chaoqiang, Z., Yang, C., & Regehr, J. (2016). Cause

reduction: Delta debugging, even without bugs. Software Testing, Verification

and Reliability, 26, 40-68. doi:10.1002/stvr.1574

Grubb, P., & Takang, A. A. (2003). Software maintenance: concepts and practice. River

Edge, NJ: World Scientific.

Guan, F., Peng, L., Perneel, L., & Timmerman, M. (2016). Open source freertos as a case

study in realtime operating system evolution. The Journal of Systems and

Software, 118, 19-35. doi:10.1016/j.jss.2016.04.063

214

Gupta, H. (2018). Evaluating service quality of airline industry using hybrid best worst

method and vikor. Journal of Air Transport Management, 68, 35-47.

doi:10.1016/j.jairtraman.2017.06.001

Gupta, P., Mehlawat, M. K., & Mahajan, D. (2019). Multiobjective optimization

framework for software maintenance, component evaluation and selection

involving outsourcing, redundancy and customer to customer relationship.

Information Sciences, 483, 21-52. doi:10.1016/j.ins.2019.01.017

Gupta, S., & Singh, P. (2017). Comprehending scenario-level software evolution using

calling context trees. 2017 International Conference on Information Technology,

IEEE, 125-130. doi:10.1109/ICIT.2017.33

Haahr, A., Norlyk, A., & Hall, E. O. (2014). Ethical challenges embedded in qualitative

research interviews with close relatives. Nursing Ethics, 21, 6-15.

doi:10.1177/0969733013486370

Haegele, J. A., & Hodge, S. R. (2015). Quantitative methodology: A guide for emerging

physical education and adapted physical education researchers. Physical

Educator, 72(5), 59-75. doi:10.18666/TPE-2015-V72-I5-6133

Haitzer, T., Navarro, E., & Zdun, U. (2017). Reconciling software architecture and

source code in support of software evolution. The Journal of Systems and

Software, 123, 119-144. doi:10.1016/j.jss.2016.10.012

Halcomb, E., & Hickman, L. (2015). Mixed methods research. Nursing Standard

(2014+), 29(32), 41-47. doi:10.7748/ns.29.32.41.e8858

215

Hamad, R. M. H. (2018). Automation testing and monitoring lab on the cloud for IoT

smart fleet system. Proceedings of the Fourth International Conference on

Engineering & MIS, ACM, 42, 1-7. doi:10.1145/3234698.3234740

Hamill, M., & Goseva-Popstojanova, K. (2017). Analyzing and predicting effort

associated with finding software faults. Information and Software Technology, 87,

1-18. doi:10.1016/j.infsof.2017.01.002

Hamlet, D. (2015). Theory of software testing with persistent state. IEEE Transactions on

Reliability, 64(3), 1098-1115. doi:10.1109/TR.2015.2436443

Hammer, M. J. (2016). Informed consent in the changing landscape of research.

Oncology Nursing Forum, 43(5), 558-5610. doi:10.1188/16.ONF.558-560

Hanna, M., Aboutabl, A. E., & Mostafa, M. S. M. (2018). Automated software testing

framework for web applications. International Journal of Applied Engineering

Research, 13(11), 9758-9767. Retrieved from http://www.ripublication.com

Hashem, I. A. T., Yaqoob, I., Annuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U.

(2015). The rise of big data on cloud computing: Review and open research

issues. Information Systems, 47, 98-115. doi:10.1016/j.is.2014.07.006

Hatton, L., Spinellis, D., & van Genuchten, M. (2017). The long-term growth rate of

evolving software: Empirical results and implications. Journal of Software:

Evolution and Process, 29(5), 1847. doi:10.1002/smr.1847

Heeager, L. T., & Nielsen, P. A. (2018). A conceptual model of agile software

development in a safety-critical context: A systematic literature review.

216

Information and Software Technology, 103, 22-39.

doi:10.1016/j.infsof.2018.06.004

Heeager, L. T., & Rose, J. (2015). Optimising agile development practices for the

maintenance operation: Nine heuristics. Empirical Software Engineering, 20(6),

1762-1784. doi:10.1007/s10664-014-9335-7

Henard, C., Papadakis, M., Harman, M., Jia, Y., & LeTraon, Y. (2016). Comparing white

box and black box test prioritization. ICSE '16 Proceedings of the 38th

International Conference on Software Engineering, ACM, 523-534.

doi:10.1145/2884781.2884791

Henningsen, M. J., Sort, R., Møller, A. M., & Herling, S. F. (2018). Peripheral nerve

block in ankle fracture surgery: A qualitative study of patients' experiences.

Anaesthesia (Oxford), 73, 49-58. doi:10.1111/anae.14088

Herraiz, I., Rodriguez, D., Robles, G., & Gonzalez-Barahona, J. M. (2013). The evolution

of the laws of software evolution. ACM Computing Surveys, 46(2), 1-32.

doi:10.1145/2543581.2543595

Heuser, B. V., Fay, A., Schaefer, I., & Tichy, M. (2015). Evolution of software in

automated production systems: Challenges and research directions. The Journal of

Systems & Software, 110, 54-84. doi:10.1016/j.jss.2015.08.026

Hinsen, K. (2019). Dealing with software collapse. Computing in Science and

Engineering, IEEE. 21(3), 104-108. doi:10.1109/MCSE.2019.2900945

Holloway, I., & Galvin, K. (2016). Qualitative research in nursing and healthcare. (4th

ed.) John Wiley & Sons, UK: Blackwell Publishing.

217

Hooda, I., & Chhillar, R. S. (2015). Software test process, testing types and techniques.

International Journal of Computer Applications, 111(13), 10-14. Retrieved from

http://www.ijcaonline.org

Hora, A., Silva, D., Valente, M. T., & Robbes, R. (2018). Assessing the threat of

untracked changes in software evolution. Proceedings of the 40th International

Conference on Software Engineering, ACM. 1102-1113.

doi:10.1145/3180155.3180212

Horga, G., Kaur, T., & Peterson, B. (2014). Annual research review: Current limitations

and future directions in MRI studies of child-and adult-onset developmental

psychopathologies. Journal of Child Psychology and Psychiatry, 55, 659-680.

doi:10.1111/jcpp.12185

Hou, R., Zhou, H., Hu, K., Din, Y., Yang, X., Xu, G., … & Ma, Y. (2016). Thorough

documentation of the accidental aspiration and ingestion of foreign objects during

dental procedure is necessary: Review and analysis of 617 cases. Head and Face

Medicine, 12(23), 1-8. doi:10.1186/s13005-016-0120-2

Hoyland, S., Hollund, J. G., & Olsen, O. E. (2015). Gaining access to a research site and

participants in medical and nursing research: A synthesis of accounts. Medical

Education, 49(2), 224-232. doi:10.1111/medu.12622

Huang, J. (2017). Application of kano model in requirements analysis of y company’s

consulting project. American Journal of Industrial and Business Management, 7,

910-918. doi:10.4236/ajibm.2017.77064

218

Huang, J. C. (2014). Don’t fire the architect! Where were the requirements. IEEE

Software, 31(2), 27-29. doi:10.1109/MS.2014.34

Huang, J. C., & Wu, T. J. (2018). Development trend of quantity of patents of china

patent law. Journal of Discrete Mathematical Sciences & Cryptography, 21(2),

399-403. doi:10.1080/09720529.2018.1449320

Huber, S. T., Kuhm, T., & Sachse, C. (2018). Automated tracing of helical assemblies

form electron cryo-micrographs. Journal of Structural Biology, 202, 1-12.

doi:10.1016/j.jsb.2017.11.013

Huckabee, W. A. (2015). Requirements engineering in an agile software development

environment. Defense Acquisition Research Journal, 22, 394-415. Retrieved from

http://www.dau.mil/publications/DefenseARJ/default.aspx

Hussain, A., Razak, H. A., & Mkpojiogu, E. O. C. (2017). The perceived usability of

automated testing tools for mobile applications. Journal of Engineering Science

and Technology, 12(4), 89-97. Retrieved from

http://penerbit.uthm.edu.my/ojs/index.php/JST/index

Huzoree, G., & Ramdoo, V. D. (2015). A systematic study on requirement engineering

processes and practices in mauritus. International Journal of Advanced Research

in Computer Science and Software Engineering, 5(2), 40-46. Retrieved from

www.ijarcsse.com

IEEE (2013). IEEE international standard-software & systems engineering-software

testing-part 3: Test documentation. IEEE. 1-138.

doi:10.1109/IEEESTD.2013.6588540

http://www.dau.mil/publications/DefenseARJ/default.aspx
http://penerbit.uthm.edu.my/ojs/index.php/JST/index
http://penerbit.uthm.edu.my/ojs/index.php/JST/index
http://www.ijarcsse.com/

219

IEEE (2017). IEEE standard for system, software, and hardware verification and

validation. IEEE. doi:10.1109/IEEESTD.2017.8055462

IEEE (2018). IEEE 829-2008 ieee standard for software & system test documentation.

Retrieved from https://standards.ieee.org/standard

Inayat, I., Salim, S. S., Marczak, S., Daneva, M., & Shamshirband, S. (2015). A

systematic literature review on agile requirements, engineering practices and

challenges. Computers in Human Behavior, 51, 915-929.

doi:10.1016/j.chb.2014.10.046

Iniesto, F., McAndrew, P., Minocha, S., & Coughlan, T. (2016). Accessibility of moocs:

Understanding the provider perspective. Journal of Interactive Media in

Education, 20, 1-10. doi:10.5334/jime.430

International Software Testing Qualifications Board (2018). Foundation level syllabus.

Retrieved from http://www.istqb.org

Itkonen, J., Mantyla, M. V., & Lassenius, C. (2016). Test better by exploring: Harnessing

human skills and knowledge. IEEE Software, IEEE, 33(4), 90-96.

doi:10.1109/MS.2015.85

Ivanov, V., Reznik, A., & Succi, G. (2018). Comparing the reliability of software

systems: A case study on mobile operating systems. Information Sciences, 423,

398-411. doi:10.1016/j.ins.2017.08.079

Jacob, P. M., & Prasanna, M. (2016). A comparative analysis on black-box testing

strategies. 2016 International Conference on Information Science (ICIS), IEEE,

1-6, doi:10.1109/INFOSCI.2016.7845290

http://www.istqb.org/

220

Jamil, M. A., Arif, M., Abubakar, N. S. A., & Ahmad, A. (2016). Software testing

techniques: A literature review. 2016 6th International Conference on

Information and Communication Technology for The Muslim World (ICT4M),

IEEE. doi:10.1109/ICT4M.2016.045

Jan, S. R., Shah, S. T. U., Johar, Z. U., Shah, Y., & Khan, F. (2016). An innovative

approach to investigate various software testing techniques and strategies.

International Journal of Scientific Research Engineering & Technology, 2(2),

682-689. Retrieved from http://www.ijsrset.com

Javed, Y., & Alenezi, M. (2016). Defectiveness evolution in open source software

systems. Procedia Computer Science, 82, 107-114.

doi:10.1016/j.procs.2016.04.015

Jayaram, R., & Krishnan, R. (2018). Approaches to fault localization in combinatorial

testing: a survey. Smart Computing & Informatics, 78, 533-540.

doi:10.1007/978-981-105547-8_55

Jiang, Z. M. J. (2015). Load testing large-scale software systems. IEEE, 2(1), 955-956.

doi:10.1109/ICSE.2015.304

Joann, S. (2015). Software architecture for developers. IEEE Software, 32(5), 93-96.

doi:10.1109/ms.2015.125

Joppen, R., Enzberg, S., Kuhn, A., & Dumitrescu, R. (2019). Data map-method for

specification of data flows within production. Procedia CIRP, 79, 461-465.

doi:10.1016/j.procir.2019.02.127

221

Julia, S., Vale, L., & Passos, L. (2016). Functional testing using object workflow nets.

Computing & Informatics, 35, 719-743. Retrieved from

http://www.cai.sk/ojs/index.php/cai/index

Kaefer, F., Roper, J., & Sinha, P. (2015). A software-assisted qualitative content analysis

of news articles: Example and reflections. Forum Qualitative Sozialforschung,

16(2), 1-20. doi:10.17169/fqs-16.2.2123

Kalbandi, I., Pawar, M. V., Nikhilkumar, B. S., & Bachate, R. (2015). Iptv software

process and workflow. Procedia Computer Science, 50, 128-34.

doi:10.1016/j.procs.2015.04.074

Kandl, S., & Chandrashekar, S. (2015). Reasonability of mcidc for safety-relevant

software implemented in programming languages with short circuit elevation.

Computing, 97(3), 261-279. doi:10.1007/s00607-014-0418-5

Karpowicz, M. P., Arabas, P., & Niewiadomska-Szynkiewicz, E. (2018). Energy-aware

multilevel control system for a network of linux software routers: design and

implementation. IEEE Systems Journal, 12, 571-582.

doi:10.1109/JSYST.2015.2489244

Kaur, A., & Kaur, K. (2019). Investigation on test effort estimation of mobile

applications: Systematic literature review and survey. Information and Software

Technology, 110, 56-77, doi:10.1016/j.infsof.2019.02.003

Kaur, A., & Vig, V. (2016). Mining software repositories for empirical validation of laws

of software evolution for Java projects. International Journal of Computational

Systems Engineering, 2(3), 155-173. doi:10.1504/IJCSYSE.2016.079003

http://www.cai.sk/ojs/index.php/cai/index

222

Kaur, A., & Vig, V. (2017). Validating lehman’s laws of growth and familiarity for open

source java databases. Computer Communication, Networking, and Internet

Security, 5, 429-436. doi:10.1007/978-981-10-3226-4_43

Kaur, S., & Kaur, N. (2015). Software metrics evaluation: An open source case study.

International Journal of Computer Science and Information Technologies, 6(2),

1565-1568. Retrieved from http://www.ijcsit.com

Kaur, T., Ratti, N., & Kaur, P. (2014). Applicability of lehman laws on open source

evolution: A case study. International Journal of Computer Applications, 93(18),

40-46. Retrieved from http:// www.ijcaonline.org

Kebir, S., Borne, I., & Meslati, D. (2017). A genetic algorithm-based approach for

automated refactoring of component-based software. Information and Software

Technology, 88, 17-36. doi:10.1016/j.infsof.2017.03.009

Keutel, M., Michalik, B., & Richter, J. (2014). Towards mindful case study research in is:

A critical analysis of the past ten years. European Journal of Information Systems,

23(3), 256-272. doi:10.1057/ejis.2013.26

Khachaturian, A. S., Hayden, K. M., Mielke, M. M., Tang, Y., Lutz, M. W., Gold, M., …

& Khachaturian, Z. S. (2018). New thinking about two, part two. Theoretical

articles for alzheimer's and dementia. Alzheimer's and Dementia, 14(6), 703-706.

doi:10.1016/j.jalz.2018.05.002

Khan, F. (2016). An innovative approach to investigate various software testing

techniques and strategies. International Journal of Scientific Research

http://www.ijcsit.com/
http://www.ijcaonline.org/

223

Engineering & Technology, 2(2), 682-689. Retrieved from

http://www.ijsrset.com

Khan, R., & Amjad, M. (2016). Performance testing (load) of web applications based on

test case management. Perspectives in Science, 8, 355-357.

doi:10.1016/j.pisc.2016.04.073

Khan, S. (2014). Qualitative research method: Phenomenology. Asian Social Science, 10,

298-310. doi:10.5539/ass.v10n21p298

Khari, M., Lumar, P., Burgos, D., & Crespo, R. G. (2017). Optimized test suites for

automated testing using different optimization techniques. Soft Computing, 1-12.

doi:10.1007/s00500-017-2780-7

Khatiwada, S., Tushev, M., & Mahmoud, A. (2018). Just enough semantics: An

information theoretic approach for ir-based software bug localization. Information

and Software Technology, 93, 45-57. doi:10.1016/j.infsof.2017.08.012

Kim, J. H., Seo, M., & David, P. (2015). Alleviating depression only to become

problematic mobile phone users: Can face-to-face communication be the antidote.

Computers in Human Behavior, 51(Part A), 440-447.

doi:10.1016/j.chb.2015.05.030

Kirac, M. F., Aktemur, B., & Sozer, H. (2018). Visor: A fast image processing pipeline

with scaling and translation invariance for test oracle automation of visual output

systems. The Journal of Systems and Software, 136, 266-277.

doi:10.1016/j.jss.2017.06.023

224

Kirner, R., & Haas, W. (2014). Optimization compilation with preservation of structural

code coverage metrics to support software testing. Software Testing, Verification,

and Reliability, 24, 184-218. doi:10.1002/stvr.1485

Kitamura, T., Alegroth, E., & Ramler, R. (2017). Industry-academia collaboration in

software testing: An overview of taic part 2017. 2017 IEEE International

Conference on Software Testing, Verification, & Validation Workshops, IEEE,

42-43. doi:10.1109/ICSTW.2017.13

Klein, H. J., Polin, B., & Sutton, K. L. (2015). Specific onboarding practices for the

socialization of new employees. International Journal of Selection and

Assessment, 23(3), 263-283. doi:10.1111/ijsa.12113

Konnola, K., Suomi, S., Makila, T., Jokela, T., Rantala, V., & Lehtonen, T. (2016). Agile

methods in embedded system development: Multiple-case study of three

industrial cases. Journal of Systems and Software, 118, 134-150.

doi:10.1016/j.jss.2016.05.001

Konnola, K., Suomi, S., Makila, T., Jokela, T., Rantala, V., & Lehtonen, T. (2017). Can

embedded space system development benefit from agile practices? Eurasip

Journal on Embedded Systems, 2017(3), 1-16. doi:10.1186/s13639-016-0040-z

Kononov, V., & Rusakov, V. A. (2018). On the problems of developing klee based

symbolic interpreter of binary files. Procedia Computer Science, 145, 275-281.

doi:10.1016/j.procs.2018.11.058

225

Kos, T., Mernik, M., & Kosar, T. (2016). Test automation of a measurement system

using a domain-specific modeling language. Journal of Systems and Software,

111, 74-88. doi:10.1016/j.jss.2015.09.002

Kour, G., & Singh, P. (2016). Using lehman's laws to validate the software evolution of

agile projects. In Computational Techniques in Information and Communication

Technologies (ICCTICT), IEEE, 90-96. doi:10.1109/ICCTIT.2016.7514558

Kramer, J. P., Brandt, J., & Borchers, J. (2016). Using runtime traces to improve

documentation and unit test authoring for dynamic languages. Chi’16

Proceedings of the 2016 Chi Conference on Human Factors in Computing

Systems, ACM, 3232-3237. doi:10.1145/2858036.2858311

Kramer, M. (2018). Best practices in systems development lifecycle: An analyses based

on the waterfall model. Review of Business & Finance Studies, 9, 77-84.

Retrieved from http://www.theIBFR.com

Kropp, M., Meier, A., & Biddle, R. (2016). Teaching agile collaboration skills in the

classroom. In 2016 IEEE 29th International Conference on Software Engineering

Education and Training (CSEET), IEEE. doi:10.1109/CSEET.2016.27

Kruth, J. G. (2015). Five qualitative research approaches and their applications in

parapsychology 1. The Journal of Parapsychology, 79(2), 219-233. Retrieved

from https://www.parapsych.org

Kukreja, S., Singhal, A., & Bansal, A. (2015). A critical survey on test management in IT

projects. International Conference on Computing, Communication, &

Automation, IEEE, 791-796. doi:10.1109/CCAA.2015.7148481

http://www.theibfr.com/
https://www.parapsych.org/

226

Kukulies, J., Faulk, B., & Schmitt, R. H. (2016). Development of optimized test planning

procedures for stabilizing ramp-up processes by means of design science research.

Procedia CIRP, 51, 93-98. doi:10.1016/j.procir.2016.05.056

Kula, R. G., Ouni, A., German, D. M., & Inoue, K. (2018). An empirical study on the

impact of refactoring activities on evolving client-used apis. Information and

Software Technology, 93, 186-199. doi:10.1016/j.infsof.2017.09.007

Kumar, C., & Yadav, D. K. (2017). Software defects estimation using metrics of early

phases of software development lifecycle. International Journal of System

Assurance Engineering and Management, 8(4), 2109-2117.

doi:10.1007/s13198-014-0326-2

Kumar, D., & Mishra, K. K. (2016). The impacts of test automation on software’s cost,

quality and time to market. Procedia Computer Science, 79, 8-15.

doi:10.1016/j.procs.2016.03.003

Lakshmi, D. S. (2014). Reflective practice through journal writing and peer observation:

A case study. Turkish Online Journal of Distance Education, 15, 189-204.

Retrieved from http://www.tojde.anadolu.edu/tr

Lalitha, R., Latha, B., & Sumathi, G. (2016). A software design technique for developing

medical experts through use case analysis. Biomedical Research, 2. Retrieved

from http://www.biomedres.info

Langham, E., Thorne, H., Browne, M., Donaldson, P., Rose, J., & Rockloff, M. (2016).

Understanding gambling related harm: A proposed definition, conceptual

http://www.tojde.anadolu.edu/tr
http://www.biomedres.info/

227

framework, and taxonomy of harms. BMC Public Health, 16(80), 1-23.

doi:10.1186/s12889-016-2747-0

Larrea, M. L. (2017). Black-box testing technique for information visualization.

Sequencing constraints with low-level interactions. Journal of Computer Science

& Technology, 17, 37-48. Retrieved from http://jcst.ict.ac.cn/

Lawlor, D. A., Tilling, K., & Smith, G. D. (2016). Triangulation in aetiological

epidemiology. International Journal of Epidemiology, 45(6). 1866-1886.

doi:10.1093/ije/dyw314

Leedy, P. D., & Ormrod, J. E. (2015). Practical research: Planning and design (9th ed.).

Upper Saddle River, NJ: Merrill Prentice-Hall.

Lehman, M. M. (1996). Laws of software evolution revisited. Proceedings of the 5th

European workshop on software process technology, 1149, 108-124.

doi:10.1007/BFb0017737

Lehman, M. M., & Ramil, J. F. (2002). Software evolution and software evolution

processes. Annals of Software Engineering, 14(1-4), 275-309.

doi:10.1023/A:102055752

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W. M. (1997).

Metrics and laws of software evolution-the nineties view. Proceedings Fourth

International Software Metrics Symposium, IEEE.

doi:10.1109/METRIC.1997.637156

http://jcst.ict.ac.cn/

228

Lei, H., Ganj-eizadeh, F., Jayachandran, P. K., & Ozcan, P. (2017). A statistical analysis

of the effects of scrum and kanban on software development projects. Robotics &

Computer-Integrated Manufacturing, 43, 59-67. doi:10.1016/j.rcim.2015.12.001

Leins, D. A., Fisher, R. P., Pludwinski, L., Rivard, J., & Robertson, B. (2014). Interview

protocols to facilitate human intelligence sources' recollections of meetings.

Applied Cognitive Psychology, 28(6), 926-935. doi:10.1002/acp.3041

Lemos, O. A. L., Silveira, F. F., Ferrari, F. C., & Garcia, A. (2018). The impact of

software testing education on code reliability: An empirical assessment, The

Journal of Systems and Software, 137, 497-511. doi:10.1016/j.jss.2017.02.042

Leotta, M., Clerissi, D., Olianas, D., Ricca, F., Ancona, D., Delzanno, G., … & Ribaudo,

M. (2018). An acceptance testing approach for internet of things systems. IET

Software. doi:10.1049/iet-sen.2017.0344

Liebel, G., Tichy, M., Knauss, E., Ljungkrantz, O., & Stielbauer, G. (2018). Organisation

and communication problems in automotive requirements engineering.

Requirements Engineering, 23, 145-167. doi:10.1007/s00766-016-0261-7

Lincoln, Y., & Guba, E. (1985). Naturalistic inquiry. Newbury Park, CA: Sage.

Liu, L., Eisingerich, A. B., Auh, S., Merlo, O., & Chun, H. E. H. (2015). Service firm

performance transparency: How, when, and why does it pay off? Journal of

Service Research, 1-17, doi:10.1177/1094670515584331

Lonetti, F., & Marchetti, E. (2018). Chapter three-emerging software testing

technologies. Advances in Computers, 108, 91-143.

doi:10.1016/bs.adcom.2017.11.003

229

Low, J. K., Crawford, K., Manias, E., & Williams, A. (2016). A compilation of

consumers' stories: The development of a video to enhance medication adherence

in newly transplanted kidney recipients. Journal of Advanced Nursing. 72(4),

813-824. doi:10.1111/jan.12886

Lub, V. (2015). Validity in qualitative evaluation linking purposes, paradigms, and

perspectives. International Journal of Qualitative Methods, 14(5), 1-8.

doi:10.1177/1609406915621406

Lucas, G. M., Rizzo, A., Gratch, J., Scherer, S., Stratou, G., Boberg, J., & Morency, L. P.

(2017). Reporting mental health symptoms: Breaking down barriers to care with

virtual human interviewers. Frontiers in Robotics and AI, 4, 51.

doi:10.3389/frobt.2017.00051

Lucassen, G., Dalpiaz, F., E. M. van der Werf, J. M., & Brinkkemper, S. (2015). Forging

high-quality user stories: towards a discipline for agile requirements. 2015 IEEE

23rd International Requirements Engineering Conference, IEEE,

doi:10.1109/RE.2015.7320415

Luckmann, P. (2015). Towards identifying success factors for cross-cultural project

customer engagement: A literature review. Procedia Computer Science, 64, 324-

333. doi:10.1016/j.procs.2015.08.496

Luetsch, K., & Rowett, D. (2016). Developing interprofessional communication skills for

pharmacists to improve their ability to collaborate with other professions. Journal

of Interprofessional Care, 30(4), 458-465. doi:10.3109/13561820.2016.1154021

230

Lui, C., Kim, J., Kumarasiri, A., Mayyas, E., Brown, S. L., Wen, N., … Chetty, I. J.

(2018). An automated does tracking system for adaptive radiation therapy.

Computer Methods and Programs in Biomedicine, 154, 1-8.

doi:10.1016/j.cmpb.2017.11.001

Lyu, M. R. T. (2002). Software reliability theory. Encyclopedia of Software Engineering.

Hoboken, NJ: John Wiley & Sons.

Machado, I. C., McGregor, J. D., Cavalcanti, Y. C., & Almeida, E. S. d. (2014). On

strategies for testing software product lines: A systematic literature review.

Information and Software Technology, 56, 1183-1199.

doi:10.1016/j.infsof.2014.04.002

Maher, C., Hadfield, M., Hutchings, M., & de Eyto, A. (2018). Ensuring rigor in

qualitative data analysis: A design research approach to coding combining nvivo

with traditional material methods. International Journal of Qualitative Methods.

17, 1-13. doi:10.1177/1609406918786362

Maisikeli, S. G. (2016). Evaluation of software degradation and forecasting future

development needs in software evolution. International Journal of Software

Engineering, 7(6), 49-64. doi:10.5121/ijsea.2016.7604

Malik, S. (2017). Software testing: Essential phase of sdlc and a comparative study of

software testing techniques. International Journal of System & Software

Engineering, 5(2), 38-45. Retrieved from http://www.publishingindia.com/ijsse/

http://www.publishingindia.com/ijsse/

231

Malterud, K., Siersma, V. D., & Guassora, A. D. (2016). Sample size in qualitative

interview studies: Guided by information power. Qualitative Health Research,

26(13), 1753-1760. doi:10.1177/1049732315617444

Manikumar, T., Keumar, J. S. K., & Maruthamuth, R. (2016). Automated test data

generation for branch testing using incremental genetic algorithm. Sadhana,

41(9), 959-976. doi:10.1007/s12046-016-0536-1

Mariani, L., Pezze, M., & Zuddas, D. (2015). Chapter four-recent advances in automatic

black box-testing. Advances in Computers, 99, 157-193.

doi:10.1016/bs.adcom.2015.04.002

Marshall, C., & Rossman, G. B. (2016). Designing qualitative research (6th ed).

Thousand Oaks, CA: Sage.

Martin, J. (2017). Agile organizational change leveraging learnings from software

development. OD Practitioner, 49(3), 39-41. Retrieved from

https://www.odnetwork.org/page/ODPractitioner

Martin, J. W. (2016). Collecting and processing crustaceans: An introduction. Journal of

Crustacean Biology, 36(3), 393-395. doi:10.1163/1937240X-00002436

Mashia, E. O., van Wyk, N. C., & Leech, R. (2019). Support of adolescents to resist peer

pressure and coercion to sexual activity. International Nursing Review, 66(3),

416-424. doi:10.1111/inr.12512

Matharu, G. S., Mishra, A., Singh, H., & Upadhyay, P. (2015). Empirical study of agile

software development methodologies: A comparative analysis. ACM SIGSOFT

Software Engineering Notes, 40, 1-6. doi:10.1145/2693208.2693233

https://www.odnetwork.org/page/ODPractitioner

232

Mattman, I., Gramlich, S., & Kloberdanz, H. (2015). The inscrutable jungle of quality

criteria-how to formulate requirements for a successful product development.

Procedia CIRP, 36, 153-158. doi:10.1016/j.procir.2015.01.046

McCusker, K., & Gunaydin, S. (2015). Research using qualitative, quantitative or mixed

methods and choice based on the research. Perfusion, 30(7), 537-542.

doi:10.1177/0267659114559116

Meiliana, D., Septian, I., & Alianto, R. S. (2018) Comparison analysis of android gui

testing frameworks by using an experimental study. Procedia Computer Science,

135, 736-748, doi:10.1016/j.procs.2018.08.211

Memon, M. S., Lee, Y. H., & Mari, S. I. (2015). Group multi-criteria supplier selection

using combined grey systems theory and uncertainty theory. Expert Systems

Applications, 42, 7951-7959. doi:10.1016/j.eswa.2015.06.018

Mergel, I. (2016). Agile innovation management in government: A research agenda.

Government Information Quarterly, 33, 516-523. doi:10.1016/j.giq.2016.07.004

Merriam, S. B. (2014). Qualitative research: A guide to design and implementation. San

Francisco, CA: John Wiley & Sons

Milajic, A., Beljakovic, D., Davidovic, N., Vatin, N., & Murgul, V. (2015). Using the

big-bang-big crunch algorithm for rational design of an energy-plus building,

Procedia Engineering, 117, 911-918. doi:10.1016/j.proeng.2015.08.178

Misra, S. C., Bisui, S., & Mahapatra, G. (2018). Trust issues in ERP implementation:

modeling and analysis. Software Quality Professional, 20(3), 4-16. Retrieved

from http://www.asq.org

http://www.asq.org/

233

Mohammed, N. M., Niazi, M., Alshayeb, M., & Mahmood, S. (2017). Exploring software

security approaches in software development lifecycle: A systematic mapping

study. Computer Standards & Interfaces, 50, 107-115.

doi:10.1016/j.csi.2016.10.001

Mohan, M., & Shrimali, T. (2017). Hybrid data approach for selecting effective test cases

during the regression testing. International Journal on Smart Sensing &

Intelligent Systems, 10, 1-24. Retrieved from http://s2is.org/

Moon, K., Brewer, T., Januchowski-Hartley, S., & Blackman, D. (2016). A guideline to

improve qualitative social science publishing in ecology and conservation

journals. Ecology and Society, 21(3), 17-38. doi:10.5751/ES-08663-210317

Moran, A. (2015). Agile project management. In Managing Agile. 71-101. Springer,

Cham.

Morgan, S. J., Pullon, S. R., Macdonald, L. M., McKinlay, E. M., & Gray, B. V. (2017).

Case study observational research: A framework for conducting case study

research where observation data are the focus. Qualitative Health

Research, 27(7), 1060-1068. doi:10.1177/1049732316649160

Morrison, A. D., & Luttenegger, K. C. (2015). Measuring pedagogical content

knowledge using multiple points of data. The Qualitative Report, 20(6), 804-816.

Retrieved from http://nsuworks.nova.edu/tqr/

Morse, J. M. (2015). Critical analysis of strategies for determining rigor in qualitative

inquiry. Qualitative Health Research, 25(9), 1212-1222.

doi:10.1177/1049732315588501

http://nsuworks.nova.edu/tqr/

234

Muller, R., Vette, M., & Horauf, L. (2015). An adaptive and automated bolt tensioning

system for the pitch bearing assembly of wind turbines. Robotics and Computer

Integrated Manufacturing, 36, 119-126. doi:10.1016/j.rcim.2014.12.008

Munir, H., Runeson, P., & Wnuk, K. (2018). A theory of openness for software

engineering tools in software organizations. Information and Software

Technology, 97, 26-45. doi:10.1016/j.infsof.2017.12.008

Murphy, D., & Wright, L. T. (2018). Silver bullet or millstone? A review of success

factors for implementation of marketing automation. Cogent Business &

Management, 5, 1-10. doi:10.1080/23311975.2018.1546416

Murtazina, M. S., & Avdeenko, T. V. (2019). An ontology-based approach to support for

requirements traceability in agile development. Procedia Computer Science, 150,

628-635. doi:10.1016/j.procs.2019.02.044

Nakash, O., Nager, M., & Maymon, Y. K. (2015). What should we talk about? The

association between the information exchanged during the mental health intake

and quality of the working alliance. Journal of Counseling Psychology, 62(3),

514-520. doi:10.1037/Cou0000074

National Commission for the Protection of Human Subjects of Biomedical and

Behavioral Research (1978). The Belmont Report: Ethical principles and

guidelines for the protection of human subjects of research. Bethesda, MD: ERIC

clearinghouse.

235

Neethidevan, V., & Chandraskaran, G. (2018). Database testing using selenium web

driver-a case study. International Journal of Pure and Applied Mathematics,

118(8), 559-566. Retrieved from http://www.ijam.eu

Neuman, D. (2014). Qualitative research in educational communications and technology:

A brief introduction to principles and procedures. Journal of Computing in Higher

Education, 26, 69-86. doi:10.1007/s12528-014-9078-x

Nichita, D. V. (2018). Volume-based phase stability testing at pressure and temperature

specifications. Fluid Phase Equilibria, 458, 123-141.

doi:10.1016/j.fluid.2017.10.030

Nidagundi, P., & Novickis, L. (2016). Introduction to lean canvas transformation models

and metrics in software testing. Applied Computer Systems, 19, 30-36.

doi:10.1515/acss-2016-0004

Nidagundi, P., & Novickis, L. (2017). Introducing lean canvas model adaptation in the

scrum software testing. Procedia Computer Science, 104, 97-103.

doi:10.1016/j.procs.2017.01.078

Nikiforova, A., & Bicevska, Z. (2018). Application of lean principles to improve business

processes: A case study in latvian it company. Baltic Journal of Modern

Computing, 6(3), 247-270. doi:10.22364/bjmc.2018.6.3.03

Njie, B., & Asimiran, S. (2014). Case study as a choice in qualitative methodology.

Journal of Research & Method in Education, 4(3), 35-40. Retrieved from

http://www.iosrjournals.org

http://www.ijam.eu/
http://www.iosrjournals.org/

236

Nouacer, R., Djemal, M., Niar, S., Mouchard, G., Rapin, N., Gallois, J. P., … & Mac-

Eachen, B. (2016). Equitas: A tool-chain for functional safety and reliability

improvement in automotive systems. Microprocessors and Microsystems, 47,

252-261. doi:10.1016/j.micpro.2016.07.020

Novais, R., Santos, J. A., & Mendonca, M. (2017). Experimentally assessing the

combination of multiple visualization strategies for software evolution analysis.

The Journal of Systems and Software, 128, 56-71. doi:10.1016/j.jss.2017.03.006

Nunes, C. A., Alvarenga, V. O., De Souza Sant’Ana, A., Santos, J. S., & Granato, D.

(2015). The use of statistical software in food science and technology:

Advantages, limitations, and misuses. Food Research International, 75, 270-280.

doi:10.1016/j.foodres.2015.06.011

O'Cathain, A., Goode, J., Drabble, S. J., Thomas, K. J., Rudolph, A., & Hewison, J.

(2014). Getting added value from using qualitative research with randomized

controlled trials: A qualitative interview study. Trials, 15, 1-20.

doi:10.1186/1745-6215-15-215

Odzaly, E. E., Greer, D., & Stewart, D. (2018). Agile risk management using software

agents. Journal of Ambient Intelligence and Humanized Computing, 9(3), 823-

841. doi:10.1007/s12652-017-0488-2

Ogbodo, I. (2014). Effects of conflicts between developers, testers, and business analysts

on software development (Doctoral dissertation, Walden University). Proquest

id: 3620039

237

Oghenovo, E. (2014). Software dysfunction: Why do software fail? Journal of Computer

and Communications, 2, 25-35. doi:10.4236/jcc.2014.26004

Ojo, A. I., & Popoola, S. O. (2015). Some correlates of electronic health information

management system success in nigerian teaching hospitals. Biomedical

Informatics Insights, 7, 1-9. doi:10.4137/BII.s20229

Okoye, K., Naeem, U., & Islam, N. (2017). Semantic fuzzy mining: enhancement of

process models and event logs analysis from syntactic to conceptual level.

International Journal of Hybrid Intelligent Systems, 14, 67-98.

doi:10.3233/HIS-170243

Okwu, P. I., & Onyeje, I. N. (2014). Software evolution: Past, present, and future.

American Journal of Engineering Research, 3(5), 21-28. Retrieved from

http://www.ajer.org

Olatunji, M. A., Oladele, R. O., & Bajeh, A. O. (2017). Empirical study of continuous

change of open source system. International Journal of Computing & ICT

Research, 11, 31-52. Retrieved from http://www.ijcir.mak.ac.ug

Oliveira, R. P., & Almeida, E. S. (2016). Evaluating Lehman's laws of software evolution

for software product lines, IEEE Software, 33(3), 90-93. doi:10.1109/MS.2016.78

Oliveria, R. P., Santos, A. R., Almeida, E. S., & Gomes, G. S. (2017). Evaluating

lehman’s laws of software evolution within software product lines industrial

projects. The Journal of Systems and Software, 131, 347-365.

doi:10.1016/j.jss.2016.07.038

http://www.ajer.org/
http://www.ijcir.mak.ac.ug/

238

O'Sullivan, D., & Conway, P. F. (2016). Underwhelmed and playing it safe: Newly

qualified primary teachers’ mentoring and probationary-related experiences

during induction. Irish Educational Studies, 35(4), 1-18.

doi:10.1080/03323315.2016.1227720

Panichella, A., & Molina, U. R. (2017). Java unit testing tool competition – Fifth round.

2017 IEEE/ACM 10th International Workshop on Search Based Software Testing,

IEEE, 32-38. doi 10.1109/SBST.2017.7

Papadakis, M., Ali, S., & Perrouin, G. (2019). Editorial to the theme section on model-

based testing. Software and Systems Modeling, 18(2), 795-796.

doi:10.1007/s10270-018-0699-9

Parampreet, K., & Rajeev, S. (2018). A modeling framework for automotive software

design and optimal test path generation. Journal of Intelligent and Fuzzy

Systems, 34(3), 1731-1742. doi:10.3233/JIFS-169466

 Parsons, D., Susnjak, T., & Lange, M. (2014). Influences on regression testing strategies

in agile software development environments. Software Quality Journal, 22(4),

717-739. doi:10.1007/s11219-013-9225-z

Patel, M. R., Shah, K. S., & Shallcross, M. L. (2015). A qualitative study of physician

perspectives of cost-related communication and patients' financial burden with

managing chronic disease. BMC Health Services Research, 15, 1-7.

doi:10.1186/s12913-015-1189-1

239

Patenaude, A. F., Pelletier, W., & Bingen, K. (2015). Communications, documentation

and training standards in pediatric psychosocial oncology. Pediatric Blood &

Cancer, 62, 870-875. doi:10.1002/pbc.25725

Pauly, D., Michalik, B., & Basten, D. (2015). Do daily scrums have to take place each

day? A case study of customized scrum principles at an e-commerce company.

2015 48th Hawaii International Conference on Systems Sciences, IEEE, 5074-

5083. doi:10.1109/HICSS.2015.601

Pawlak, M., & Poniszewska-Maranda, A. (2018). Software test management approach for

agile environments. Information Systems in Management, 7, 47-58.

doi:10.22630/ISIM.2018.7.1.5

Percy, W. H., Kostere, K., & Kostere, S. (2015). Generic qualitative research in

psychology. The Qualitative Report, 20(2), 76-85. Retrieved from

www.nsuworks.nova.edu/tqr/

Pereira, J. C., & de F. S. M. Russo, R. (2018). Design thinking integrated in agile

software development: A systematic literature review. Procedia Computer

Science, 138, 775-782. doi:10.1016/j.procs.2018.10.101

Peticca-Harris, A., de Gama, N., & Elias, S. (2016). A dynamic process model for finding

informants and gaining access in qualitative research. Organizational Research

Methods, 19(3), 376-401. doi:10.1177/1094428116629218

Petunova, O., & Berzisa, S. (2017). Test case review processes in software testing.

Information Technology and Management Science, 20, 48-53.

doi:10.1515/itms-2017-0008

http://www.nsuworks.nova.edu/tqr/

240

Phillips, D. (2004). The software project manager’s handbook: principles that work at

work (2nd ed). Wiley-IEEE Computer Society Press

Ping, P., Xuan, Z., & Xinyue, M. (2017). Research on security test for application

software based on spn. Procedia Engineering, 174, 1140-1147.

doi:10.1016/j.proeng.2017.01.267

Politowski, C., Fontoura, L. M., Petrillo, F., & Gueheneuc, Y. G. (2018). Learning from

the past: a process recommendation system for video game projects using

postmortems experiences. Information and Software Technology, 100, 103-118.

doi:10.1016/j.infsof.2018.04.003

Post, C. (2017). Preservation practices of new media artists. Journal of Documentation,

73(4), 716-732. doi:10.1108/JD-09-2016-0116

Poth, A. (2016). Effectivity and economical aspects for agile quality assurance in large

enterprises. Journal of Software: Evolution and Process, 28(11), 1000-1004.

doi:10.1002/smr.1823

Prechelt, L., Schmeisky, H., & Zieris, F. (2016). Quality experience: A grounded theory

of successful agile projects without dedicated testers. In 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE), IEEE. 1017-1027.

doi:10.1145/2884781.2884789

Primiero, G., & Raimondi, F. (2015). Software theory change for resilient near-complete

specifications. Procedia Computer Science, 52, 988-995.

doi:10.1016/j.procs.2015.05.091

241

Purohit, S. K., & Sharma, A. K. (2016). Evaluation of programming tools for the

development of data mining driven forecasting software tool for quality function

deployment. Computational Intelligence & Communication Technology (CICT),

IEEE, 134-139. doi:10.1109/CICT.2016.35

Rabah, S., Belqasmi, F., Mizouni, R., & Dssouli, R. (2016). An elastic hybrid sensing

platform: Architecture and research challenges. Procedia Computer Science, 94,

113-120. doi:10.1016/j.procs.2016.08.019

Rais, A. A. (2016). Interface based software testing. Journal of Systems Integration, 7(4),

46. doi:10.20470/jsi.v7i4.277

Ramanathan, S., Faulkner, G., Berry, T., Deshpande, S., Latimer-Cheung, A. E., Rhodes,

R. E., … & Tremblay, M. S. (2018). Perceptions of organizational capacity to

promote physical activity in canada and participaction’s influence five years after

its relaunch: A qualitative study. Health Promotion and Chronic Disease

Prevention in Canada, 38(4), 170-178. doi:10.24095/hpcdp.38.4.03

Ramos, F. M., Kreutz, D., & Verissimo, P. (2015). Software-defined networks: On the

road to the softwarization of networking. Cutter IT Journal, 1-7. Retrieved from

https://www.cutter.com/

Ranney, M. L., Meisel, Z. F., Choo, E. K., Garro, A. C., Sasson, C., & Morrow, K.

(2015). Interview-based qualitative research in emergency care part II: Data

collection, analysis and results reporting. Academic Emergency Medicine. 22(9),

1103-1112. doi:10.1111/acem.12735

242

Rapport, F., Clement, C., Doel, M. A., & Hutchings, H. A. (2015). Qualitative research

and its methods in epilepsy: Contributing to an understanding of patients lived

experiences of the disease. Epilepsy and Behavior, 45, 94-100.

doi:10.1016/jiyebeh.2015.01.040

Raschke, W., Zilli, M., Loineg, J., Weiss, R., Steger, C., & Kreiner, C. (2015). Where

does all the waste come from? Journal of Software: Evolution and Process, 27,

584-590. doi:10.1002/smr.1732

Rastogi, V. (2015). Software development life cycle models-comparison, consequences.

International Journal of Computer Science and Information Technologies, 6, 168-

172. Retrieved from http://www.ijcsit.com

Reeves, D., Howells, K., Panagiotti, M., Bower, P., Sidaway, M., Blakemore, A., &

Hann, M. (2018). The cohort multiple random controlled trial design was found to

be highly susceptible to low statistical power cord internal validity bias. Journal

of Clinical Epidemiology, 95, 111-119. doi:10.1016/j.jclinepi.2017.12.008

Rempel, P., & Mader, P. (2015). A quality model for the systematic assessment of

requirements traceability. 2015 IEEE 23rd International Requirements

Engineering Conference, IEEE. doi:10.1109/RE.2015.7320420

Rempel, P., & Mader, P. (2017). Preventing defects: The impact of requirements

traceability completeness on software quality, IEEE Transactions on Software

Engineering, 43(8), 777-797. doi:10.1109/TSE.2016.2622264

Ridder, H. (2017). The theory contribution of case study research designs. Business

Research 10, 281-305. doi:10.1007/s40685-017-0045-z

http://www.ijcsit.com/

243

Rigoni, A., Manduchi, G., Luchetta, A., Taliercio, C., & Shroder, T. (2018). A

framework for the integration of the development process of linux fpga system on

chip devices. Fusion Engineering and Design, 128, 122-125.

doi:10.1016/j.fusengdes.2018.01.042

Robinson, O. C. (2014). Sampling in interview-based qualitative research: A theoretical

& practical guide. Qualitative Research in Psychology, 11, 25-41.

doi:10.1080/14780887.2013.801543

Rola, P., Kuchta, D., & Kopczyk, D. (2016). Conceptual model of working space for

agile (scrum) project team. Journal of Systems and Software, 118, 49-63.

doi:10.1016/j.jss.2016.04.071

Roldan, M. L., Vegetti, M., Gonnet, S., Leone, H., & Marciszack, M. (2019). An

ontology for specifying and tracing requirements engineering artifacts and test

artifacts. CLEI Eletronic Journal, 22, 1-19. Retrieved from

www.clei.cl/cleiejindex.html

Ross, C., Rogers, C., & Duff, D. (2016). Critical ethnography: an under-used research

methodology in neuroscience nursing. Canadian Journal of Neuroscience

Nursing, 38, 4-6. Retrieved from http://www.cann.ca

Roy, K., Zvonkovic, A., Goldberg, A., Sharp, E., & Larossa, R. (2015). Sampling

richness and qualitative integrity challenges for research with families. Journal of

Marriage and Family, 77, 243-260. doi:10.1111/jomf.12147

http://www.cann.ca/

244

Ruohonen, J., Hyrynsalmi, S., & Leppanen, V. (2015). Time series trends in software

evolution. Journal of Software: Evolution and Process, 27, 990-1015.

doi:10.1002/smr.1755

Ryan, J. (2013). Book review: Karin olson, essentials of qualitative interviewing.

Qualitative Research, 13(2), 254. doi:10.1177/1468794112450832

Sadath, L., Karim, K., & Gill, S. (2018). Extreme programming implementation in

academia for software engineering sustainability. 2018 Advances in Science and

Engineering Technology International Conferences (ASET), IEEE.

doi:10.1109/ICASET.2018.8376925

Saeed, S., Khan, F. H., Khan, S. A., & Islam, N. (2018). Conceptions of software testing

as a service. Journal of Fundamental and Applied Sciences, Retrieved from

http://www.jfas.info

Safa, N. S., Maple, C., Furnell, S., Azad, M. A., Perera, C., Dabbagh, M., & Sookhak, M.

(2019). Deterrence and prevention-based model to mitigate information security

insider threats in organisations. Future Generation Computer Systems, 97, 587-

597. doi:10.1016/j.future.2019.03.024

Saini, M., Mehmi, S., & Chahal, K. K. (2016). Understanding open source software

evolution using fuzzy data mining algorithm for time series data. Advances in

Fuzzy Systems, 2016, 1-13. doi:10.1155/2016/1479692

Salmona, M., Kaczynsk, D., & Smith, T. (2015). Qualitative theory in finance: theory

into practice. Australian Journal of Management, 40, 403-413.

doi:10.1177/0312896214536204

http://www.jfas.info/

245

Sanchez, A. B., Delgado-Perez, P., Segura, S., & Medina-Bulo, I. (2018). Performance

mutation testing: Hypothesis and open questions. Information and Software

Technology, 103, 159-161. doi:10.1016/j.infsof.2018.06.015

Sanchez-Morcilio, R., & Quiles-Torres, F. (2017). The taxonomy of estimation in

software development projects. Issues in Information Systems, 18(3), 116-128.

Retrieved from http://www.iacis.org/iis/iis.php

Sapna, P. G., & Balakrishnan, A. (2015). An approach for generating minimal test cases

for regression testing. Procedia Computer Science, 47, 188-196.

doi:10.1016/j.procs.2015.03.197

Saunders, B., Kitzinger, J., & Kitzinger, C. (2015). Anonymising interview data:

challenges and compromise in practice. Qualitative Research, 15(5), 616-632.

doi:10.1177/1468794114550439

Scatalon, L. P., Barbosa, E. F., & Garcia, R. E. (2017). Challenges to integrate software

testing into introductory programming courses. 2017 IEEE Frontiers in Education

Conference, IEEE, 1-9. doi:10.1109/FIE.2017.8190557

Scheibe, A., Grasso, M., Raymond, H. F., Manyuchi, A., Osmand, T., Lane, T., &

Struthers, H. (2018). Modelling the unaids 90-90-90 treatment cascade for gay,

bisexual and other men who have sex with men in south africa: Using the findings

of a data triangulation process to map a way forward. AIDS and Behavior, 22(3),

853-859. doi:10.1007/s10461-017-1773-y

Schrems, B. M. (2014). Informed consent, vulnerability and the risks of group-specific

attribution. Nursing Ethics, 21(7), 829-843. doi:10.1177/0969733013518448

246

Schroder, M., Raben, H., Kruger, F., Ruscheinski, A., van Rienen, U., Uhrmacher, A., &

Spors, S. (2019). Provenance patterns in numerical modelling and finite element

simulation processes of bio-electric systems. 2019 41st Annual International

Conference of the IEEE Engineering in Medicine and Biology Society, IEEE,

3377-3382. doi:10.1109/EMBC.2019.8856841

Schwartz, A., Puckett, D., Meng, Y., & Gay, G. (2018). Investigating faults missed by

test suites achieving high code coverage. Journal of Systems and Software, 144,

106-120. doi:10.1016/j.jss.2018.06.024

Seitz, S. (2016). Pixilated partnerships, overcoming obstacles in qualitative interviews via

skype: A research note. Qualitative Research, 16(2), 229-235.

doi:10.1177/1468794115577011

Sen, S., Marijan, D., & Gotlieb, A. (2018). Certus: An organizational effort towards

research-based innovation in software verification and validation. International

Journal of System Assurance Engineering and Management, 9(2), 313-322.

doi:10.1007/s13198-015-0352-8

Shang, W., Nagappan, M., & Hassan, A. E. (2015). Studying the relationship between

logging characteristics and the code quality of platform software. Empirical

Software Engineering, 20, 1-27. doi:10.1007/s10664-013-9274-8

Sharma, D., & Chandra, P. (2019). A comparative analysis of soft computing techniques

in software fault prediction model development. International Journal of

Information Technology, 11, 37-46. doi:10.1007/s41870-018-0211-3

247

Shehzad, K., & Shaikh, M. U. (2017). A critique base solution on lehman’s law. Science

International, 29(3), 503-507. Retrieved from http://www.sci-int.com/

Shin, K. W., & Lim, D. J. (2018). Model-based automatic test case generation for

automotive embedded software testing. International Journal of Automotive

Technology, 19, 107-119. doi:10.1007/s12239-018-0011-6

Shirazi, F., Kazemipoor, H., & Tavakkoli-Moghaddam, R. (2017). Fuzzy decision

analysis for project scope management. Decision Science Letters, 6(4), 395-406.

doi:10.5267/j.dsl.2017.1.003

Sifeng, L., Tao, L., Xie, N., & Yang, Y. (2016). On the new model system and

framework of grey system theory. Journal of Grey System, 28, 1-15.

doi:10.1109/GSIS.2015.7301810

Sills, D., Tunks, K., & O'Leary, J. (2017). Scaling agile for government: using agile on

large, complex projects in government. New York, NY: Deloitte University Press

Singh, A. S. (2014). Conducting case study research in non-profit organisations.

Qualitative Market Research: An International Journal, 17, 77–84.

doi:10.1108/QMR-04-2013-0024

Singh, S., & Kaur, S. (2017). A systematic literature review: Refactoring for disclosing

code smells in object-oriented software. Ain Shams Engineering Journal.

doi:10.1016/j.asej.2017.03.002

Singhal, N., & Bhola, P. (2017). Ethical practices in community-based research in non-

suicidal self-injury: A systematic review. Asian Journal of Psychiatry, 30, 127-

134. doi:10.1016/j.ajp.2017.08.015

http://www.sci-int.com/

248

Sipes, J. B. A., Roberts, L. D., & Mullan, B. (2019). Voice-only skype for sue in

researching sensitive topics: A research note. Qualitative Research in Psychology,

1-17. doi:10.1080/14780887.2019.1577518

Skoulis, I., Vassiliadis, P., & Zarras, A. V. (2015). Growing up with stability: How open-

source relational databases evolve. Information Systems, 53, 363-385.

doi:10.1016/j.is.2015.03.009

Smada, D., Rotuna, C., Boneca, R., & Petre, I. (2018). Automated code testing system for

bug prevention in web-based user interfaces. Informatica Economica, 22(3), 23-

32. doi:10.12948/issn14531305/22.3.2018.03

Snyder, E. J., Zhang, W., Jasmin, K. C., Thankachan, S., & Donnelly, L. F. (2018).

Gauging potential risk for participants in pediatric radiology by review of over

2,000 incident reports. Pediatric Radiology, 1-8. doi:10.1007/s00247-018-4238-1

 Sohaib, O., Solanki, H., Dhaliwa, N., Hussain, W., & Asif, M. (2018). Integrating design

thinking into extreme programming. Journal of Ambient Intelligence and

Humanized Computing, 1-8. doi:10.1007/s12652-018-0932-y

Sohn, B. K., Thomas, S., Greenberg, K., & Pollio, H. R. (2017). Hearing the voices of

students & teachers: A phenomenological approach to educational research.

Qualitative Research in Education, 6(2), 121-148. Retrieved from

http://www.hipatiapress.com

Stake, R. (1995). The art of case study research. Thousand Oaks, CA: Sage.

http://www.hipatiapress.com/

249

Stavova, V., Dedkova, L., Ukrop, M., & Matyas, V. (2018). A large-scale comparative

study of beta testers and regular users. Communications of the ACM, 61(2), 64-71.

doi:10.1145/3173570

Steinberger, M., Reinhartz-Berger, I., & Tomer, A. (2018). Cross lifecycle variability

analysis: Utilizing requirements and testing artifacts. Journal of Systems and

Software, 143, 208-230. doi:10.1016/j.jss.2018.04.062

Steinert, Y., & Thomas, A. (2016). When I say… literature reviews. Medical Education,

50(4), 398-399. doi:10.1111/medu.12998

Steinke, G. H., Al-Deen, M. S., & LaBrie, R. C. (2017). Innovating information system

development methodologies with design thinking. In Proceedings of the 5th

International Conference on Applied Innovations in IT, 51-55. Retrieved from

http://icaiit.org/

Stillwell, P., Hayden, J. A., Rosiers, P. D., Harman, K., French, S. D., & Curran, J. A.

(2018). A qualitative study of doctors of chiropractic in a nova scotian practice-

based research network: Barriers and facilitators to the screening and management

of psychosocial factors for patients with low back pain. Journal of Manipulative

and Physiological Therapeutics, 4, 25-33. doi:10.1016/j.jmpt.2017.07.014

Stockman, C. (2015). Achieving a doctorate through mixed methods research. Electronic

Journal of Business Research Methods, 13(2), 74-84. Retrieved from

http://www.ejbrm.com

Stol, K. J., & Fitzgerald, B. (2015). Theory-oriented software engineering. Science of

Computer Programming, 101, 79-98. doi:10.1016/j.scico.2014.11.010

http://icaiit.org/
http://www.ejbrm.com/

250

Strandberg, P. E., Enoui, E. P., Afzal, W., Sundmark, D., & Feldt, R. (2019). Information

flow in software testing: An interview study with embedded software engineering

practitioners. IEEE Access, 7, 46434-46453. doi:10.1109/ACCESS.2019.2909093

Subramanian, G. H., Pendharkar, P. C., & Pai, D. R. (2017). An examination of

determinants of software testing and project management effort. Journal of

Computer Information Systems, 57(2), 123-129.

doi:10.1080/08874417.2016.1183428

Suffian, M. D. M., Fahrurazi, F. R., Ann, L. F., Aman, N. F., & Bajuri, N. (2018). Rating

of software trustworthiness via scoring of system testing results. International

Journal of Digital Enterprise Technology, 1(1-2), 121-134.

doi:10.1504/IJDET.2018.092637

Sun, Q., Wu, J., Rong, W., & Liu, W. (2019). Formative assessment of programming

language learning based on peer code review: Implementation and experience

report. Tsinghua Science and Technology, 24(4), 423-434.

doi:10.26599/TST.2018.9010109

Sun, X., Li, B., Leung, H., Li, B., & Li, Y. (2015). MSR4SM: Using topic models to

effectively mining software repositories for software maintenance tasks.

Information and Software Technology, 66, 1-12. doi:10.1016/j.infsof.2015.05.003

Sutton, J., & Austin, Z. (2015). Qualitative Research: Data collection, analysis and

management. Canadian Journal of Hospital Pharmacy, 68(3), 226-231.

https://www.cjhp-online.ca/index.php/cjhp/index

https://www.cjhp-online.ca/index.php/cjhp/index

251

Swarts, J. (2015). Help is in the helping: an evaluation of help documentation in a

networked age. Technical Communication Quarterly, 24(2), 164-187.

doi:10.1080/10572252.2015.1001298

Tan, T. K., Weerakkody, R., Mrak, M., Ramzan, N., Baroncini, V., Ohm, J. R., … &

Sullivan, G. J. (2016). Video quality evaluation methodology and verification

testing of hevc compression performance. IEEE Transactions on Circuits and

Systems for Video Technology, 26, 76-90. doi:10.1109/TCSVT.2015.2477916

Thomas, D. R. (2017). Feedback from research participants are member-checks useful in

qualitative research? Qualitative Research in Psychology, 14, 23-41.

doi:10.1080/14780887.2016.1219435

Tissenbaum, M. (2020). I see what you did there! Divergent collaboration and learner

transitions from unproductive to productive states in open-ended inquiry.

Computers & Education, 145, 1-15. doi:10.1016/j.compedu.2019.103739

Tomar, D., & Agarwal, S. (2016). Prediction of defective software modules using class

imbalance learning. Applied Computational Intelligence and Soft

Computing, 2016, 6. doi:10.1155/2016/7658207

Tong, A., & Dew, M. A. (2016). Qualitative research in transplantation: Ensuring

relevance and rigor. Transplantation, 100(4), 710-712.

doi:10.1097/TP.0000000000001117

Tramontana, P., Amalfitano, D., Amatucci, N., & Fasolino, A. R. (2019). Automated

functional testing of mobile applications: A systematic mapping study. Software

Quality Journal, 27, 149-201. doi:10.1007/s11219-018-9418-6

252

Tripp, J. F., & Armstrong, D. J. (2018). Agile methodologies: Organizational adoption

motives, tailoring, and performance. Journal of Computer Information Systems,

58(2), 170-179. doi:10.1080/08874417.2016.1220240

Trnka, S. (2017). The fifty-minute ethnography: Teaching theory through fieldwork. The

Journal of Effective Teaching, 17, 28-34. Retrieved from

http://www.uncw.edu/cte/et

Tsunoda, T., Washizaki, H., Fukazawa, Y., Inoue, S., Hanai, Y., & Kanazawa, M. (2018).

Empirical study on specification metrics to predict volatility and software defects.

2018 IEEE Region 10 Conference, IEEE, 2479-2484.

doi:10.1109/TENCON.2018.8650274

Tu, H., Lin, Z., & Lee, K. (2019). Automation with intelligence in drug research. Clinical

Therapeutics, 41, 2436-2444. doi:10.1016/j.clinthera.2019.09.002

Tuffley, D. (2011). Software test plans: A how-to guide for project staff. USA: Altiroa.

Underwood, S. (2016). Exploring organizations’ software quality assurance strategies

(Doctoral dissertation, Walden University). Proquest id:10162955

Unterkalmsteiner, M., Gorschek, T., Feldt, R., & Klotins, E. (2015). Assessing

requirements engineering and software test alignment-five case studies. The

Journal of Systems and Software, 109, 62-77. doi:10.1016/j.jss.2015.07.018

U.S. Department of Health & Human Services. (1979). The Belmont Report. Retrieved

from http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html

http://www.uncw.edu/cte/et
http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html

253

U.S. Government Accountability Office (GAO) (2014). Healthcare.gov: Ineffective

planning and oversight practices underscore the need for improved contract

management. Washington, DC: U.S. Government Accountability Office.

Vaismoradi, M., Jones, J., Turunen, H., & Snelgrove, S. (2016). Theme development in

qualitative content analysis and thematic analysis. Journal of Nursing Education

and Practice. 6(5), 100-110. doi:10.5430/jnep.v6n5p100

Vasanthapriyan, S., Tian, J., Zhao, D., Xiongi, S., & Xiang, J. (2017). An ontology-based

knowledge sharing portal for software testing. IEEE International Conference on

Software Quality, Reliability & Security Companion, IEEE, 472-479.

doi:10.1109/QRS-C.2017.82

Versteeg, S., Du, M., Bird, J., Schneider, J. G., Grundy, J., & Han, J. (2016). Enhanced

playback of automated service emulation models using entropy analysis.

Proceedings of the International Workshop on Continuous Software Evolution &

Delivery, ACM, 49-55. doi:10.1145/2896941.2896950

Vijayasarathy, L. R., & Butler, C. W. (2016). Choice of software development

methodologies. Do organizational project and team characteristics matter? IEEE

Software, 33(5). doi:10.1109/MS.2015.26

Vila, E., Novakova, G., & Todorova, D. (2017). Automation testing framework for web

applications with selenium webdriver: Opportunities and threats. 2017

Proceedings of the International Conference on Advances in Image Processing,

ACM, 144-150. doi:10.1145/3133264.3133300

254

Vora, U. (2015). Precepts and evolvability of complex systems. Procedia Computer

Science, 62, 565-574. doi:10.1016/j.procs.2015.08.533

Vukovic, V., Trninic, J., & Djurkovic, J. (2018). A business software testing process-

based model design. International Journal of Software Engineering and

Knowledge Engineering, 28(5), 701-749. doi:10.1142/s0218194018500201

Wahler, M., Drofenik, U., & Snipes, W. (2016). Improving code maintainability: A case

study on the impact of refactoring. In Software Maintenance and Evolution

(ICSME), 2016 IEEE International Conference, IEEE, 493-501.

doi:10.1109/ICSME.2016.52

Wang, H., Wang, G., & Duan, F. (2016). Planning of step-stress accelerated degradation

test based on the inverse gaussian process. Reliability Engineering & System

Safety, 154, 97-105. doi:10.1016/j.ress.2016.05.018

Wang, Y., Graziotin, D., Kriso, S., & Wagner, S. (2019). Communication channels in

safety analysis: An industrial exploratory study. The Journal of Systems and

Software, 153, 135-151. doi:10.1016/j.jss.2019.04.004

Wang, Y., Wan, Q., Guo, J., Jin, X., Zhou, W., Feng, X., … Shang, S. (2020). The

influence of effective communication, perceived respect and willingness to

collaborate on nurses’ perceptions of nurse-physician collaboration in China.

Applied Nursing Research, 41, 73-79. doi:10.1016/j.apnr.2018.04.005

Wang, Y., Zheng, J., Zhang, A., Zhou, W., & Dong, H. (2018). Visualization maps for

the evolution of research hotspots in the field of regional health information

255

networks. Informatics for Health and Social Care, 43(2), 186-206.

doi:10.1080/17538157.2017.1297304

Weidner, A. K. H., Pauwels, J., McGuire, M., & Davis, A. (2017). Collaboration between

acgme and aoa programs to enhance success in single accreditation system: A

process paper. Journal of the American Osteopathic Association, 117, 705-711.

doi:10.7556/jaoa.2017.133

Wohlin, C., Smite, D., & Moe, N. B. (2015). A general theory software engineering:

Balancing human, social and organizational capitals. The Journal of Systems and

Software, 109, 229-242. doi: 10.1016/j.jss.2015.08.009

Wolgemuth, J. R. (2014). Analyzing for critical resistance in narrative research.

Qualitative Research, 14(5), 586–602. doi:10.1177/1468794113501685

Wood, L., Burke, E., Byrne, R., Enache, G., & Morrison, A. P. (2016). Semistructured

interview measure of stigma (SIMS) in psychosis: Assessment of psychometric

properties. Schizophrenia Research, 1-6. doi:10.1016/j.schres.2016.06.008

Wright, A., Ash, J. S., Aaron, S., Ai, A., Hickman, T. T., Wiesen, J. F., … & Sittig, D. F.

(2018). Best practices for preventing malfunctions in rule-based clinical decision

support alerts and reminders: Results of a delphi study. International Journal of

Medical Informatics, 118, 78-85. doi:10.1016/j.ijmedinf.2018.08.001

Xiao, P., Liu, B., & Wang, S. (2018). Feedback based integrated prediction: Defect

prediction based on feedback from software testing process. The Journal of

Systems and Software, 143, 159-171. doi:10.1016/j.jss.2018.05.029

256

Yadav, H. B., & Yadav, D. K. (2015). A fuzzy logic-based approach for phase-wise

software defects prediction using software metrics. Information and Software

Technology, 63, 44-57. doi:10.1016/j.infsof.2015.03.001

Yague, A., Garbajosa, J., Diaz, J., & Gonzalez, E. (2016). An exploratory study in

communication in agile global software development. Computer Standards &

Interfaces, 48, 184-197. doi:10.1016/j.csi.2016.06.002

Yao, Y., & Liu, J. (2018). Metamorphic testing for oracle problem in integer bug

detection. International Journal of Performability Engineering, 14(7), 1481-1486.

doi:10.23940/ijpe.18.07.p11.14811486

Yates, J., & Leggett, T. (2016). Qualitative research: An introduction. Radiologic

Technology, 88(2), 225-231. Retrieved from http://www.asrt.org

Yazan, B. (2015). Three approaches to case study methods in education: Yin, Merriam,

and Stake. The Qualitative Report, 20(2), 134-152. Retrieved from

http://nsuworks.nova.edu/tqr/

Ye, J., Zhang, B., Ruilin, L., Feng, C., & Tang, C. (2019). Program state sensitive parallel

fuzzing for real world software. IEEE Access, 7, 42557-42564.

doi:10.1109/ACCESS.2019.2905744

Yi, J., Tan, S. H., Mechataev, S., Bohme, M., & Roychoudhury, A. (2018). A correlation

study between automated program repair and test suite metrics. In Proceedings of

the 40th International Conference on Software Engineering ACM, 24.

doi:10.1145/3180155.3182517

http://www.asrt.org/
http://nsuworks.nova.edu/tqr/

257

Yin, R. K. (2018). Case study research and applications: Design and methods (6th ed).

Thousand Oaks, CA: Sage.

Yip, C., Han, N. L. R., & Sng, B. L. (2016). Legal and ethical issues in research. Indian

Journal of Anaesthesia, 60(9), 684-688. Retrieved from Walden University

Databases

Yip, P. M., Venner, A. A., Shea, J., Fuezery, A., Huang, Y., Massicotte, L., … & Shaw,

J. L. V. (2018). Point of care testing: A position statement from the Canadian

society of clinical chemists. Clinical Biochemistry, 53, 156-159.

doi:10.1016/j.clinbiochem.2018.01.015

Yoon, K., Dols, R., Hulscher, L., & Newberry, T. (2016). An exploratory study of library

website accessibility for virtually impaired users. Library & Information Science

Research, 38(3), 250-258. doi:10.1016/j.lisr.2016.08.006

Yu, L., Alegroth, E., Chatzipetrou, P., & Gorschek, T. (2020). Utilising CI environment

for efficient and effective testing NFRs. Information and Software Technology,

117, 1-19. doi:10.1016/j.infsof.2019.106199

Zachariah, B. (2015). Optimal stopping time in software testing based on failure size

approach. Annals of Operations Research, 235, 771-784. doi:10.1007/s10479-

015-1959-5

Zalewski, J., & Gonzalez, F. (2017). Evolution in the education of software engineers:

Online course on cyberphysical systems with remote access to robotic devices.

International Journal of Online Engineering, 13(8), 133-146.

doi:10.3991/ijoe.v13i08.7377

258

Zein, S., Salleh, N., & Grundy, J. (2016). A systematic mapping study of mobile

application testing technique. Journal of Systems and Software, 117, 334-356.

doi:10.1016/j.jss.2016.03.065

Zhang, X., Woud, M., Velten, J., Margraf, J., & Kuchinke, L. (2017). Survey method

matters: Online/offline questionnaires and face-to-face or telephone interviews

differ. Computers In Human Behavior, 71, 172-180.

doi:10.1016/j.chb.2017.02.006

Zhao, M., & Chen, S. (2018). The effects of structured physical activity program on

social interaction and communication for children with autism. BioMed Research

International, 2018, 1-13. doi:10.1155/2018/1825046

Zhi, J., Garousi, Y., Sun, B., Garousi, G., Shahnewaz, S., & Ruhe, G. (2015). Cost,

benefits and quality of software development and documentation: A systematic

mapping. The Journal of Systems and Software, 99, 175-198.

doi:10.1016/j.jss.2014.09.042

Zhou, Z. Q., Sinaga, A., Susilo, W., Zhao, L., & Cai, K. (2018). A cost-effective software

testing strategy employing online feedback information. Information

Sciences, 422, 318-335. doi:10.1016/j.ins.2017.08.088

Zhu, M., & Pham, H. (2018). A software reliability model incorporating martingale

process with gamma-distributed environmental factors. Annals of Operations

Research, 1-22. doi:10.1007/s10479-018-2951-7

259

Appendix A: Human Subject Research Certificate of Completion

260

Appendix B: Interview Protocol

Interview Title: Exploring testing strategies to ensure the reliability of software

applications in the government contracting industry

Participant ID: ______________ Date: _____________

Interview Mode: Phone or Skype Telephone: _____________ Starting Time: _____

A. I will introduce myself to the participant and thank him or her for their voluntary

participation

B. I will verify receipt of the consent form and answer any questions or concerns the

participant may have

C. I will remind the participant that the interview will be recorded, and the interview

will remain confidential

D. I will begin recording announcing the participant’s anonymous code along with

the date and time of the interview

E. I will start the interview with the first background question and continue through

the process until the last question has been asked

1. Can you tell me about yourself and your current role?

2. How many years of experience do you have as a software developer?

3. How long have you been performing software testing tasks?

4. What type of project(s) are you currently working on?

F. I will start the interview with the first interview question and continue through

the process until the last question has been asked

 1. What is the primary software development methodology you are using?

261

2. How is software testing organized in your organization?

3. What testing strategies have you used to ensure the reliability of software

applications?

4. How do you assess the effectiveness of the testing strategies used to ensure the

 reliability of software applications?

5. How satisfied are you with the development and testing environments that you

have?

6. What challenge(s) have you faced where you find yourself in a disagreement

over a software defect?

7. How has these challenges impacted your testing of software applications?

8. What testing strategies do you find the most efficient in detecting software

defects?

9. How much time is allocated for testing software applications in your

organization?

10. What additional information would you like to share about software testing

that would ensure the reliability of software applications?

G. End the interview questions and ask if there is any additional information that

they would like to add that might be applicable and that we did not discuss?

H. Thank the participant for participating in the study. Confirm that the participant

has contact information for any follow-up questions or concerns.

Ending Time: ____________

262

Appendix C: Background/Interview Questions

Background Interview Questions

1. Can you tell me about yourself and your current role?

2. How many years of experience do you have as a software developer?

3. How long have you been performing software testing tasks?

4. What type of project(s) are you currently working on?

Interview Questions

1. What is the primary software development methodology you are using?

2. How is software testing organized in your organization?

3. What testing strategies have you used to ensure the reliability of software

applications?

4. How do you assess the effectiveness of the testing strategies used to ensure the

reliability of software applications?

5. How satisfied are you with the development and testing environments that you

have?

6. What challenges have you faced where you find yourself in a disagreement over a

software defect?

7. How has these challenges impacted your testing of software applications?

8. What testing strategies do you find the most effective in detecting software

defects?

9. How much time is allocated for testing software applications in your

organization?

263

10. What additional information would you like to share about testing strategies that

would ensure the reliability of software applications?

264

Appendix D: Permission to Use Figures #1

265

Appendix E: Permission to Use Figures #2

266

Appendix F: Permission to Use Figures #3

267

Appendix G: Permission to Use Figures #4

268

Appendix H: Permission to Use Figures #5

	Exploring Software Testing Strategies Used on Software Applications in the Government
	tmp.1583205122.pdf.RgR5A

