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Abstract 

The purpose of this correlational quantitative study was to examine the possible 

relationship between user-driven parameters, user ratings, and ranking algorithms. The 

study’s population consisted of students and faculty in the information technology (IT) 

field at a university in Huntington, WV. Arrow’s impossibility theorem was used as the 

theoretical framework for this study. Complete survey data were collected from 47 

students and faculty members in the IT field, and a multiple regression analysis was used 

to measure the correlations between the variables. The model was able to explain 85% of 

the total variability in the ranking algorithm. The overall model was able to significantly 

predict the algorithm ranking discounted cumulative gain, R2 = .852, F(3,115) = 220.13, p 

< .01. The Respondent DCG and Search term variables were the most significant 

predictor with p = .0001. The overall findings can potentially be useful to content 

providers who focus their content on a specific niche. The content created by these 

providers would most likely be focused entirely on that subgroup of interested users. 

While it is necessary to focus content to the interested users, it may be beneficial to 

expand the content to more generic terms to help reach potential new users outside of the 

subgroups of interest. User’s searching for more generic terms could potentially be 

exposed to more content that would generally require more specific search terms. This 

exposure with more generic terms could help users expand their knowledge of new 

content more quickly.  
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Section 1: Foundation of the Study  

Background  

The web has quickly become a part of people’s everyday life and the utilization of 

search engines is a key part of this (Schroeder, 2014). Search engines remain somewhat 

generic in how sites are ranked, meaning each user searching for a term will get the same 

result set (Luh & Huang, 2016). While this can provide the users with the information 

they need, it is often manipulated with techniques of search engine optimization 

(Kritzinger & Weideman, 2017). This study looked at the correlation between user-driven 

parameters, user ratings, and ranking algorithms to help content providers better 

understand this relationship.  

Problem Statement 

The manipulation of website content is a common practice, which allows content 

providers to trick search engines into thinking their site is more important than others 

(Luh & Huang, 2016). Content providers manipulate content to get their website higher 

in a result set, so their site will be more likely to be visited because 62% of users do not 

go past the first page of results (Giomelakis & Veglis, 2016). The general IT problem is 

that website content can be manipulated in order to make a page appear more important 

to ranking algorithms. The specific IT problem is that the content providers lack 

information on the relationship between user-driven parameters, user ratings, and ranking 

algorithms. 
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Purpose Statement 

The purpose of this correlational quantitative study was to examine the possible 

relationship between user-driven parameters, user ratings, and ranking algorithms. This 

information could potentially help content providers to provide users with content that is 

better suited to their needs as opposed to content tailored towards search engine 

optimization. This study utilized a correlational design in which participants from a local 

university in Huntington, West Virginia ranked a listing of web pages for a specified 

search term on a 1 to 5 scale as well as provided their internet usage information. The 

independent variables were the user-driven parameters and the user ratings. The 

dependent variable was the ranking algorithm. The implications for positive social 

change include producing more relevant results for users which will help them find more 

relevant information more efficiently. 

Nature of the Study 

Quantitative methodology was utilized for this study. Quantitative research relies 

on statistical information regarding the connections between independent and dependent 

variables (Maher, Markey, & Ebery-May, 2013). The justification of the quantitative 

method for this study resulted from the need to determine what the correlation was 

between variables such as user-driven parameters, user ratings, and ranking algorithms. 

Qualitative and mixed methods rely, to some extent, on the collection of open-ended 

information through methods such as interviews or observations (Frels & Onwuegbuzie, 

2013). This study focused on the analysis of data collected using different search ranking 
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algorithms and the use of observational data would not have added to the results of this 

study, therefore qualitative and mixed methods was not appropriate.  

In this study, I utilized a correlational design. Correlational design is utilized to 

find possible relationships between variables (Venkatesh, Brown, & Bala, 2013). In this 

study, I looked at the relationship between user-driven parameters, user ratings, and 

ranking algorithms. Utilizing a correlational design, I was able to examine the possible 

relationship between variables but was not required to manipulate the independent 

variables in order to determine if any relationship existed. Feedback from participants 

was from the same question set (see Appendix A) and this feedback was utilized to 

determine if a relationship existed between user-driven parameters, user ratings, and 

ranking algorithms. 

An experimental design utilizes the manipulation of independent variables in a 

study to better understand how these affect a dependent variable (Frels & Onwuegbuzie, 

2013). While an experimental design could be utilized to look at the effects between 

independent and dependent variables, the manipulation and randomization of the 

independent variable required for an experimental design was not needed for this study. 

The need to control the independent variables in a study made an experimental design 

inappropriate for this study.  

 A quasiexperimental design is similar to an experimental design, except it lacks 

the aspects of randomization utilized by an experimental design (Campbell, Parks, & 

Wells, 2015). Quasiexperimental designs are often utilized to evaluate the impact of a 

variable on a process (Campbell et al., 2015). Quasiexperimental design was not 
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appropriate for this study because I was not trying to determine the specific impact 

variables had on one another, rather I was simply looking for a possible relationship 

between variables. While quasiexperimental design would have worked for this study at 

this phase it would have required more in-depth research that may not be necessary if no 

true relationship existed between variables. 

Research Question 

What is the relationship between user-driven parameters, user ratings, and ranking 

algorithms? 

Hypotheses 

Null Hypothesis (H0): There is no statistically significant relationship between 

user-driven parameters, user ratings, and ranking algorithms. 

Alternative Hypothesis (H1): There is a statistically significant relationship 

between user-driven parameters, user ratings, and ranking algorithms. 

Theoretical Framework 

Kenneth J. Arrow developed the impossibility theorem in 1951 (Arrow K. J., 

2012). Arrow’s impossibility theorem identifies the following five conditions that a social 

choice rule should satisfy (Arrow K. J., 2012): First is the complete condition. The 

complete condition states the social choice rule should provide a complete ranking of all 

alternatives. Second is the paretian condition. The paretian condition states if every 

individual prefers A to B, then the social choice rule should rank A above B. Third is the 

transitive condition. The transitive condition states if the social choice rule ranks A above 

B and B above C, then A should be ranked higher than C. Fourth is the independence of 
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irrelevant alternatives condition. The independence of irrelevant alternatives condition 

states the ranking of A compared to B should not depend on preferences for other 

alternatives. Fifth is the nondictatorial condition. The nondictatorial condition states the 

social choice rule should not depend on the preferences of only one individual (a 

dictator). According to Arrow, it is impossible to find a situation that will satisfy all five 

of these conditions when three or more options exist. 

 Preference aggregation is an important concept in Arrow’s impossibility theorem 

and social choice theory (Arrow K. J., 2012). The key variables considered in this model 

are the following: (a) the individual, (b) individual preferences, and (c) the individual 

rating for each option. Utilizing this information, the results are combined to determine 

how the group feels about each option presented. This concept aligns with the concepts of 

this study because I was looking at what the correlation is between user-driven 

parameters, user ratings, and ranking algorithms, which are similar to the key variables 

considered by Arrow.  

 For the purposes of recommendation engines for web searching the following key 

items need to be considered: (a) the number of users using the system, (b) the importance 

assigned to pages by the user, (c) the importance of pages assigned by ranking 

algorithms, and (d) the user’s personal preferences. This information allows web pages, 

as well as users, to be placed into specific groups and can be utilized to help build 

relationships among both sites and users. As the amount of data available grows the 

relationships should begin to be more closely knit and the results offered based off of 

those recommendations should continuously improve. 
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There are more variables than those presented in the social choice theory, but they 

do tie together nicely. Sites visited and rated by users all tie to the individual’s ratings for 

a given page and will be used in combination with a ranking algorithm that utilizes 

backlinks on pages to determine a page’s importance to create a new ranking for the page 

based on user input. In addition, sites visited can help to determine users who have 

simply rated a site without visiting it first and can be utilized to help weight the 

importance of the ratings provided by the user. In addition, the ratings provided by the 

users can be combined with the ratings generated from a ranking algorithm that only uses 

backlinks to determine a page’s importance to potentially create a more reliable listing of 

search results that would be much more difficult to manipulate utilizing search engine 

optimization techniques. 

Definition of Terms 

Collaborative filtering: Describes techniques used to recommend items to users 

based on similar preferences of other users (da Silva, Camilo-Junior, Pascoal, & Rosa, 

2016).  

Personalization: Describes the customization of web content to help provide users 

with a unique experience (Bodoff & Ho, 2016). 

Assumptions, Limitations, and Delimitations 

Assumptions 

When conducting research, the reliability of data being utilized is important, 

however, it is common to encounter things that the researcher simply assumes to be true, 

even if there is no scientific evidence to support it, which needs to be identified to the 



7 

 

reader (Grant, 2014). The first assumption of this study was that participants honestly 

rated the sites of the search results presented to them. The second assumption is that 

participants would not attempt to provide ratings that could sway the results for their own 

personal benefits. 

Limitations 

Research studies are not perfect. They have certain aspects that may limit the data 

that can be collected. The reader needs to be made aware of limitations in the data in 

order to better understand areas of the study that may limit the results of the current study 

(Brutus, Aguinis, & Wassmer, 2012). The first limitation of this study was that search 

engines require a large amount of data in order to allow the user to search the web. 

Datasets as large as popular search engines were not available to me for this study. The 

second limitation is that search topics were provided to the participants and the data sets 

were limited to sites within the category of the selected topic. The third limitation of this 

study is that the population was limited to students and faculty members in the IT field in 

the area of Huntington, WV. 

Delimitations 

Like many large-scale projects, research studies must have a well-defined scope, 

or delimitations, that the reader needs to be aware of so to better understand the 

boundaries the researcher has defined (Spitzmuller & Warnke, 2011). The primary 

delimitation of this study was the ranking algorithm examined. Many different algorithms 

are utilized by search engines to determine the order of results presented to the user, for 

this study I was only looking at the relationship between user ratings, user-driven 
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parameters, and ranking algorithms. Another delimitation of this study was the location 

of the participants. Participants were all either students or faculty members from a 

university in Huntington, WV. 

Significance of the Study 

Contribution to Information Technology Practice  

The internet is filled with an almost endless supply of information and the amount 

of information is growing almost every day. As more information gets added searching 

the web becomes a much more time-consuming task. Users are provided with page after 

page of results that they must sort through in order to find the information they are 

looking for. Algorithms try to rank web pages in order to limit the results a user must go 

through before finding what they are searching for. Collaborative filtering techniques are 

commonly used to help users find information on popular sites such as Netflix and 

Amazon but are not as common with larger datasets, such as those found in search 

engines. This study is significant to IT practice in that it may provide content providers 

with a better understanding of how users view web content and how those views can 

potentially affect the results provided by search engines. Improvements to the content 

providers understanding of this topic can potentially result in higher quality content being 

provided by search engines and can lead to decreasing the amount of time required to 

find information on the web. 

Implications for Social Change 

The implications for positive social change include producing more relevant 

results for users and help them find more relevant information more efficiently. Utilizing 
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collaborative filtering allows for search results to be grouped and ranked based off what 

similar users found the most helpful. Users searching for similar information would first 

be presented with results that others seeking the same information found to be the most 

successful and can potentially decrease the amount of time spent searching the web. 

Helping users find higher quality information can help them learn about topics much 

faster which can help to increase the level of innovation in any number of fields. An 

increase in innovation may lead to improvements that could potentially improve the 

quality of life for people around the world. 

A Review of the Professional and Academic Literature 

The literature review examines topics pertinent to this study, including Arrow’s 

impossibility theorem, search engine ranking algorithms such as Google’s PageRank 

algorithm, collaborative filtering techniques, discounted cumulative gain, and search 

engine personalization. Conducting searches on these topics yielded 157 articles of which 

141(90%) are peer-reviewed and 137(87%) were published within the last five years. 

Seventy-nine articles reviewed have been utilized within the literature review section 

74(93%) are peer-reviewed, and 73(92%) have been published within the last five years. 

The table below shows a breakdown of all the sources in this study. 
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Table 1.  

Breakdown of Sources 

 > 5 years < 5 years  Peer Reviewed Not Peer 

Reviewed 

Literature Review 6 73 74 5 

Total Sources 20 137 147 10 

The articles within the literature review provide an analysis of the relevance and 

importance of the independent and dependent variables. In addition, the articles utilized 

outline the key components behind the central idea of the study and how these 

components can be utilized together to potentially provide users with more relevant 

search results. The articles will be examined based on themes surrounding the 

impossibility theorem, search ranking algorithms, and collaborative filtering. These 

themes will show the individual components of the study. The articles utilized in the 

literature review are accessible through various databases including Google Scholar, 

ProQuest, IEEE, and ACM. To find articles for this study I utilized many different 

keywords, such as collaborative filtering, recommendation engines, social choice theory, 

impossibility theorem, search algorithms, search engine optimization, ranking algorithms, 

personalization, and discounted cumulative gain. 

The purpose of this correlational quantitative study is to examine the correlation 

between user-driven parameters, user ratings, and ranking algorithms. This information 

could potentially help designers to consider new techniques for algorithms that could 

improve the ranking of pages. This study utilized a correlational design in which 
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participants from a local university in Huntington, West Virginia ranked different 

websites for different search terms which were utilized to examine the correlation 

between a ranking algorithm that looks at a combination of backlinks and user provided 

information and searches conducted by a search tool using a ranking algorithm that only 

looks at backlinks on websites. The independent variables are the user-driven parameters 

and user ratings. The dependent variable is the algorithm rankings. The implications for 

positive social change include producing more relevant results for users which will help 

them find more relevant information more efficiently. The null hypotheses for this study 

is, there is no correlation between user-driven parameters, user ratings, and ranking 

algorithms. The alternative hypotheses for this study is, there is a correlation between 

user-driven parameters, user ratings, and ranking algorithms. 

Theoretical Framework - Arrow’s Impossibility Theorem 

 Kenneth J. Arrow developed the impossibility theorem in 1951(Arrow, 2012). 

Arrow’s impossibility theorem identifies the following five conditions that a social 

choice rule should satisfy (Maddux, 2014): 

1. Complete. The social choice rule should provide a complete ranking of all 

alternatives. 

2. Paretian. If every individual prefers A to B, then the social choice rule should 

rank A above B. 

3. Transitive. If the social choice rule ranks A above B and B above C, then A 

should be ranked higher than C. 
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4. Independent of irrelevant alternatives. The ranking of A compared to B should not 

depend on preferences for other alternatives. 

5. Nondictatorial. The social choice rule should not depend on the preferences of 

only one individual (a dictator). 

Arrow states that it is impossible to find a situation that will satisfy all five of these 

conditions when three or more options exist (Ben-Yashar & Nitzan, 2017). In terms of 

search engines, this would indicate that is not possible to provide a results list that would 

be an accurate representation of all users’ opinions. Despite this, some researchers 

believe meeting all five exactly is not necessary (Coban & Sanver, 2014; Gibbard, 2014). 

Not meeting all five conditions does not mean that any condition is completely ignored, 

rather the rules for some conditions are a little more relaxed in order to accommodate 

scenarios where some conditions would be unrealistic. Exactly how Arrow’s theorem is 

applied is also debated. Some groups see certain areas as an aggregation of criteria and 

not as individual preferences and with this difference Arrow’s theorem would no longer 

apply (McComb, Goucher-Lambert, & Cagan, 2017). While it may not be possible for an 

algorithm to meet all five conditions when creating a result set for all users, an algorithm 

may come closer to satisfying all five conditions by creating a result set that is 

personalized to individual users. In addition to this as you become closer and closer to 

meeting some criteria, then the end results should also be closer to the group’s overall 

opinion. This closeness to meeting the criteria is the fundamental concept for this study 

and how improvements could be made to search algorithms. To better understand this, we 

will look at the five conditions in more depth. 
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 Complete. For this condition to be met every person voting would need to rank 

every item being voted on. An election with three candidates, republican, democrat, and 

libertarian can be utilized to better understand the complete condition. In this situation, if 

voters only choose their top pick there is no way of determining who their second choice 

would be. Limiting to only the top choice can lead to the overall winner not being an 

accurate representation of how the entire voting population feels (Kapeller, Schutz, & 

Steinerberger, 2013; Makovi, 2016). However, if all three candidates are ranked by every 

voter from top choice to bottom choice these rankings could be combined to arrive at a 

more accurate representation of the entire group. Consider the following scenario, there 

are 1000 voters and 450 are voting republican, 350 are voting democrat, and 200 are 

voting libertarian by simply tallying the top choices the republican is the favorite. When 

the second and third choices are considered the outcome can be different. Traditionally if 

the republican candidate drops out of the race, most of those votes would fall to the 

democrat, if the democrat drops out those votes would go to the republican, and if the 

libertarian drops out those votes would go to the democrat. Utilizing a borda count, which 

voters rank their options by preference and assign a value to each preference, a different 

result occurs (Morreau, 2015). The top choice gets three points, the second choice gets 

two points and the third choice gets one point. Utilizing the borda count method the tally 

is as follows: 

  



14 

 

Table 2.  

Borda Count Example 

 Republican Democrat Libertarian 

Republican 450 * 3 = 1350 450 * 2 = 900 450 * 1 = 450 

Democrat 350 * 2 = 700 350 * 3 = 1050 350 * 1 = 350 

Libertarian 200 * 1 = 200 200 * 2 = 400 200 * 3 = 600 

Total 2250 2350 1400 

 

In this situation, by looking at the top choice only the republican is the winner. Utilizing 

the borda count method, where every candidate is ranked, the group as a whole prefer the 

democrat over the republican candidate. In terms of search engines, this condition is 

possibly the most difficult one to meet, in fact, it is arguably impossible. In order to meet 

this condition, every item in a result set needs to be ranked by every user that searches for 

a given term. While this condition may not be possible to meet entirely, as users rank 

more sites within a result set those that the user has ranked can be utilized in combination 

with other users’ rankings to improve their results. The closer the system gets to meeting 

this condition the more accurate the results should become. This type of ranking is very 

similar to the concepts of approval voting. In approval voting, voters would be permitted 

to vote for as many candidates as they want but can only vote one time. Once voting is 

completed the votes are counted and the candidate with the most votes is the winner 

(Maniquet & Mongin, 2015). This type of voting would closely relate to how voting 

could be done with search engines. A user could place a vote on any website that is 
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returned to them, but not have to vote for them all, essentially picking out the sites that 

are liked within the result set.  

 Paretian. This condition, by itself, is relatively simple. The paretian condition 

states that in situations where every voter prefers one option over another the system 

should as well (Ritesh, 2015). In terms of a search engine, when someone types in the 

search term “news” he/she is presented with a list of news related sites that users have 

rated. Among the list presented to the user are Fox News and CNN. In a situation where 

every user rates Fox News higher than CNN, Fox News should appear above CNN in the 

list of results. This condition states exactly what you would expect a search engine to do. 

The most popular item appears before all other items on the list. The difficulty with this 

condition is that rarely will all users prefer one site over another. User preferences will be 

a mixture of opinions (Cina & Endriss, 2016). Search engine optimization techniques are 

currently used by many websites in an effort to have their site appear higher on the results 

list (Luh & Huang, 2016). Search engine optimization techniques can lead to the 

possibility of skewed results that may not accurately reflect the opinions of the users of a 

given search engine. Personalization techniques could be utilized to help meet the 

paretian condition to some degree. The effects search engine optimization has on-site 

positions within a result set could also be limited with personalization techniques. By 

grouping users together based on their interests or past ratings of websites the likelihood 

of users being more similar in their preference of sites would increase (Orlikowski & 

Scott, 2015). By increasing the likelihood that users are grouped together based on 

similarities the chances the paretian condition could be met would increase for the 
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specific groups. Grouping similar users would not guarantee that every user within that 

group prefers one option over another, but when users are grouped with other users with 

similar interests the likelihood of users having similar opinions would increase. 

 Transitive. This condition is related to the transitive property in mathematics. 

The transitive condition states that in situations where the system shows option one is 

better than option two and option two is better than option three then option one is better 

than option three (Jacobs, de Poel, & Osseweijer, 2014). Expanding on the example of a 

search for “news” from above, add BBC to Fox News and CNN. Above we said that Fox 

News is preferred to CNN and now we say that CNN is preferred to BBC, with this 

example we can also say that Fox News is preferred to BBC. The search results can be 

ordered Fox News, CNN, and then BBC (Cina & Endriss, 2016). This condition orders 

more than two options based on popularity (Coban & Sanver, 2014). Similar to the 

paretian condition the transitive condition does exactly what a search engine should do, 

order a result set based on popularity. Like the paretion condition, the transitive condition 

would benefit from grouping similar users because this condition would be extremely 

unlikely to ever be met for all users. Grouping similar users together can help to increase 

the likelihood of this condition being met within a group. 

 Independent of irrelevant alternatives. This condition is often seen as one of 

the more difficult conditions to meet (McComb, Goucher-Lambert, et al., 2017). When 

looking at two options the preferences for those two options should not change given any 

changes to any other options within a set (Stegenga, 2015). Using the example of news 

sites from above, if Fox News is preferred to CNN, then the addition of BBC should not 
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affect that order. No matter what a person’s opinion of BBC is that opinion should not 

cause Fox News to go below CNN. The addition of BBC could cause these options to 

move down on the list, but this addition should not change the preference of Fox News 

over CNN. While this condition seems fairly simple to satisfy, it is not easily met by 

many voting systems. Take the example given above regarding voting for republican, 

democrat, or libertarian. By doing a straight popular vote the republican candidate would 

come out the winner. If the libertarian drops out of the race the democrat would take the 

lead. In order to truly satisfy this condition, the votes for each candidate would have to be 

independent of one another and the libertarian dropping out should not affect the 

preference of republican over democrat (Morreau, 2015). This would be very difficult to 

accomplish in a typical voting system because voters typically know what they are going 

to do if their candidate drops out, and therefore the alternatives are not independent of 

one another. 

 Search ranking algorithms can potentially adhere to this a little more easily. 

Ranking in terms of a search engine would not be based on one site over another, just the 

user’s overall thoughts of a given site (Shafiq, Alhajj, & Rokne, 2015). These overall 

thoughts can then be combined with the opinions of others and help to provide a listing to 

users (Saxena, Agarwal, & Katiyar, 2016). Since the ranking is done independently for 

each site changes to one ranking should not impact the general preference of other sites 

on the list (Kritzinger & Weideman, 2017). Looking at the example of news sites above, 

if users utilize a five-star rating system and give Fox News five stars, CNN three stars, 

and BBC two stars changes to the star rating of BBC will not affect the general 
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preference of Fox News over CNN, because they will remain at five and three stars. This 

condition is a perfect fit for search results ranking because sites should be rated based on 

their own content and not the content of others.  

Nondictatorial. This condition states that the results given are not based on the 

opinions of just one individual, rather they are based on the combination of the opinions 

of others (Saari, 2016). In terms of ranking algorithms, both collaborative filtering and 

the Page Rank algorithm satisfy this condition (Abdel-Hafez, Xu, & Jøsang, 2015; Jilani, 

Fatima, Baig, & Mahmood, 2015). The one exception to this is the beginning phases of 

collaborative filtering techniques. In the beginning, before any user input is received, 

collaborative filtering techniques do not have a way to prioritize results and therefore the 

prioritization is left up to the system. Depending upon how the system handles this 

prioritization the system could be considered a dictator and the sole means of ranking 

results (Igersheim, 2017; Wei, He, Chen, Zhou, & Tang, 2017). The Page Rank algorithm 

provides a ranking that is determined based on the number of links going to a page. The 

system tallies those links but does not determine how many links exist, which helps to 

prevent the system from being a dictator (Gleich, 2015). By combining the Page Rank 

algorithm with collaborative filtering methods a more meaningful result set can be 

provided in the beginning stages of a collaborative filtering system, without having the 

system act as a dictator. 

Preference aggregation. Arrow’s impossibility theorem and social choice theory 

do closely examine the ideas of preference aggregation. The concepts of preference 

aggregation are extremely beneficial to search engine ranking algorithms (Gibbard, 
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2014). Preference aggregation is utilized to take the preferences of several individuals 

and calculate a single collective set of the alternatives (Fotso & Fono, 2015; McComb, 

Cagan, & Kotovsky, 2017). The key variables for this study are the items being ranked, 

the individual preference for each item, collective preferences for each item, and general 

user information. While preference aggregation may include additional variables, the 

variables chosen for this study are the fundamental variables required for preference 

aggregation. A combination of individual preferences for the items being ranked makes 

up a profile. A profile is simply a set of all user preferences (Stegenga, 2015). At this 

point, some type of function is applied to these different preferences to come up with one 

single preference that represents the group’s overall opinion, similar to how some 

collaborative filtering techniques work (Wei et al., 2017; Yu, 2015). According to 

Arrow’s theorem, it is not possible to combine a set of individual preferences into a 

single group preference that is representative of every individuals’ opinion when there are 

more than two items being ranked (Ninjbat, 2015; Okasha, 2015). While it may not be 

possible to meet all five of Arrow’s criteria with more than two options, many have 

argued that loosening some of the restrictions can provide a good representation of group 

opinions (Gibbard, 2014).  McComb, Goucher-Lambert, and Cagan defined what they 

call conditional arrow fairness (2017). In order to meet conditional arrow fairness, an 

aggregation function must meet the paretian, independent and irrelevant alternatives, and 

non-dictatorial criteria (McComb, Goucher-Lambert, et al., 2017). Conditional arrow 

fairness leaves two conditions that do not necessarily have to be met, the transitive and 

complete conditions. The complete condition can be extremely difficult to meet, 
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depending on the population size and number of items being rated because the complete 

condition requires data regarding every participants’ opinions of every possible option 

(McComb, Cagan, & Kotovsky, 2017). Relaxing this criterion can open the door for more 

aggregation functions. For this study, it is not possible to collect every single user’s 

opinion about every single website returned within a search result, and therefore the 

complete condition could not actually ever be met on a large scale. Even though the 

complete condition cannot be met 100%, how close to 100% complete you are can be 

monitored. Monitoring how close aggregated results are to individual responses as you 

approach 100% complete it is possible to determine how the complete criteria affect the 

aggregated results. The concepts of collaborative filtering provide a good example of this 

concept. Collaborative filtering techniques cannot provide helpful recommendations to 

users without any type of feedback from the user (Wei et al., 2017). As the user begins 

supplying feedback, the recommendations that are given to the user become more useful 

(Moradi & Ahmadian, 2015). Netflix’s recommendations work on this principle (Chen, 

Chen, & Wang, 2015). As users watch and rate programs within a system the 

recommendations provided by the system become more accurate. Each rating provided 

by users within their system brings them closer to meeting the complete criteria of 

Arrow’s framework. While they will most likely never completely meet this criterion, 

each step closer provides an improvement to their recommendations. 

 The general idea behind Arrow’s theorem is that in order to create a perfect single 

group preference set the aggregation function must meet all five criteria. One must keep 

in mind that we do not live in a perfect world and very few if any, scenarios will 
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completely meet all five criteria. Even though the criteria may not all be met in their 

entirety, they are important to consider and to note situations that may arise that will 

prevent them from being met. The importance of each of the five criteria is not universal 

and depends upon what you are ranking (Gibbard, 2014; McComb, Goucher-Lambert, et 

al., 2017). Noting which criteria are met, and how close you are to meeting others can 

provide insight into the accuracy of the results set. 

Variables 

 User-driven parameters. User-driven parameters are one of two independent 

variables that were discussed in this study. User-driven parameters are key elements that 

relate specifically to the user, such as user preferences, user interests, and profile 

information (Bostan & Ghasemzadeh, 2014; Chen et al., 2015; Yeung, 2016). Many 

popular websites, such as Netflix and Amazon, rely very heavily on this type of 

information in order to help provide their users with recommendations of things they may 

be interested in (Chen et al., 2015; Moradi & Ahmadian, 2015). The utilization of user-

driven parameters has truly changed the internet. User-driven parameters can be used to 

help provide every user with a unique experience on any number of sites. Currently, user-

driven parameters are primarily utilized by specialized sites where metadata being 

utilized for items can be controlled to some extent (Ramesh & Andrews, 2015). Being 

able to expand this methodology to more extensive data sets, like those utilized by search 

engines, could potentially lead to improvements in results provided to users when 

searching the internet. Content providers gaining a better understanding of how user-

driven parameters effect result sets can lead to better content targeted to the users’ needs 



22 

 

rather than to how the search engines look at it. Following are examples of types of user-

driven parameters that are commonly utilized within collaborative filtering algorithms 

and how these parameters can be used to help users find information they may be 

interested in. 

User history. In some situations, content providers with websites that provide 

recommendations do not want to have to ask their users to provide them with information 

about their interests, but still want to be able to provide some kind of feedback regarding 

other things the user might be interested in (Guo & Chen, 2016). When this is the case 

content providers can utilize implicit information based off of the user’s activity on the 

site (Jerath, Ma, & Park, 2014). For example, content providers can track the links a user 

clicks as well as the amount of time a user spends looking at specific pages. Using this 

information, algorithms can be implemented that can calculate a user’s interest in specific 

items. These algorithms can categorize those interests to help group users and provide 

them with recommendations of other items they may be interested in. Utilizing history 

alone can have issues. Algorithms that only utilize a user’s history must make a lot of 

assumptions when determining a user’s interest in a given item (Singh & Sethi, 2016). 

Just because a user clicks on an item and spends some time looking over the page does 

not mean the user is actually interested in that item. As a result, the algorithm may place 

a higher interest value on that item then is actually necessary. 

User history was not utilized within this study. User history data could have been 

utilized with the user-driven parameters variable. While user history data can provide 

valuable data, the ability to collect user history data was outside the scope of this study.  
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User ratings.  A user’s opinion is an extremely powerful resource that can be 

utilized in ways to benefit all users of a system. In collaborative filtering, items get 

assigned ratings by users. User ratings can be utilized to estimate the user’s interest in the 

given item (Guo, Zhang, & Yorke-Smith, 2015). With a single user, this information is 

not extremely useful, however with multiple users, this information can be combined to 

help group users together who share similar interests. Once users are grouped together 

collaborative filtering algorithms can be utilized to find items that similar users were 

highly interested in. Items that users within the group showed interest in that others 

within that group have not given an opinion on can be suggested to those users (Yeung, 

2016). As users continue to use these systems and rate more items the accuracy of the 

recommendations that are provided to the user should increase (Zhang & Min, 2016). 

Zhang & Min showed that user ratings combined with user data can help to provide users 

with more personalized data that can be utilized to improve the overall user experience. 

The true benefit to this is that the user responses help to build a large amount of data that 

has the potential to help many people, not just themselves. While using user ratings with 

collaborative filtering can provide benefits to users, it also has some issues that can make 

it a difficult solution to implement. 

User ratings directly relate to Arrow’s impossibility theorem. Arrow looked at 

traditional voting systems which is essentially the concept behind ranking algorithms, to 

determine what items a user prefers over other items. The ratings provided by the user 

can simply be looked at as a vote for that item. User ratings are an important part of 

evaluating ranking algorithms because how the user feels about sites within a result set is 
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the best way to determine if the ranking algorithm performs to the user’s satisfaction. 

User ratings were utilized within this study to determine the discounted cumulative gain 

for search terms used in this study.  

User interests and demographics. Utilizing collaborative filtering requires some 

kind of data from the users and the items in a system. The need for this data presents a 

problem with new systems. One of the biggest issues with collaborative filtering is a lack 

of data regarding new users and items (Wei et al., 2017). In order for these systems to 

provide recommendations to users the system contain information about the user as well 

as information regarding the items that will be recommended to the user. When a user 

first joins his/her interests are not known to the system and therefore the users can’t be 

grouped with similar users (Sehgal, Chaudry, Biswas, & Jain, 2016). Some sites can get 

around this by adding questions to the registration process about the users’ specific 

interests (Singh & Sethi, 2016). The responses to questions about the user’s specific 

interests can be utilized to group the user with those who have similar interests without 

the need to look at other information such as user history or user ratings. Being able to 

group users together without the need for user history or ratings can help to provide 

recommendations to the user when he/she first comes to a webpage. A user’s interests 

can be utilized in place of detailed search history to group users into groups of similar 

users (Chen, Ji, & Wang, 2017). The first use of a collaborative tool can be limited in 

terms of recommendations because accurate recommendations are dependent upon the 

data provided by the user. The use of user interests and demographic questions can be 

utilized to alleviate this issue (Yeung, 2016). Questions pertaining to user interests and 
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demographics can later be combined with additional information to help improve 

recommendations. Zhang and Min utilize a combination of information pertaining to the 

user, items, and item ratings in order to determine whether or not to recommend items 

(2016). Initially user interest and demographic questions can be helpful in grouping the 

user with similar users. As the user provides more information user interest and 

demographic data can be combined with additional information such as item ratings. 

Combining user provided interest and demographic questions with additional information 

such as the how the user rates items within the system can help to ensure that the users 

recommendations are being based on the appropriate group of users.  

User interests and demographics can mean a variety of things. When discussed in 

terms of collaborative filtering the primary purpose for collecting user interests and 

demographic data is to help group similar users together. Al-Shamri utilized users’ age, 

gender, and occupation in different combinations to explore different approaches to 

utilizing demographic data (2016). Son utilized age, education, number of children, and 

living standards to help group similar users together (2014). Using demographic based 

data can be helpful in developing an initial user profile. User demographics alone do not 

provide the best possible solution for grouping users, but grouping based on 

demographics is better than randomly assigning a user to a group (Pazzani, 1999). The 

initial grouping of users can be modified later on using other information provided by the 

user such as item history, ratings, or user interests. As users interact with a system more 

data gets collected. As the amount of data about the user increases the accuracy of 

recommendations should increase as well. 
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User interests and demographics were utilized in this study for the user-driven 

parameters variable. While this does not directly relate to Arrow’s impossibility theorem 

it can be utilized to help address the viability of the concept of conditional Arrow’s 

fairness. The idea behind conditional Arrow’s fairness is that the complete rule is to strict 

but can be looked at as how close to complete a voting system is (McComb, Goucher-

Lambert, et al., 2017). By breaking down ratings into groups you can compare smaller 

sets of meaningful data to the overall data set to determine the viability of conditional 

Arrow’s fairness. 

This study utilized user interests to help group participants together. Groups were 

based on how the participants primarily utilize the internet. Feng, Wong, Wong, and 

Hossain utilized the groups of Facebook usage, study usage, and entertainment usage 

(2019). For this study I utilized similar groupings, social media, news/research, and 

games/media. This type of information is easily collected and does not require the 

collection of large amounts of participant usage data. The additional benefit to using user 

interest questions is the ability to test how the user groups data can help with the cold 

start problem with collaborative filtering. 

Item information. Whether you are looking at user ratings, user history, or some 

combination of the two, information about the items being looked at is extremely 

important. In order to provide a user with valid recommendations, you must have some 

kind of data that allows you to group these items into groups (Abdel-Hafez et al., 2015). 

This study looked at how these tools can potentially be utilized to recommend websites to 

users, using this as an example, keywords on a web page can be utilized to help group 
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sites together and help to narrow down the pool of sites that are recommended to a user 

based on his/her own interests (Singh & Sethi, 2016). The links that are presented on a 

web page can also be utilized to help group pages together. In many cases pages are only 

going to link to other pages they feel their users might be interested in and therefore these 

pages could be considered similar (Brin & Page, 2012). Using this information, keywords 

from these pages can be utilized as well to help expand the potential pool of sites that 

may be of interest to a given user based off of his/her own interests. These techniques are 

commonly utilized by search engines when ordering links in result pages. 

Ranking algorithms. Ranking algorithms are utilized by search engines to help 

determine the importance of a website given a specific search term and is one of the 

independent variables that was used in this study. Many different ranking algorithms are 

utilized by different search engines, but they all have the same end goal in mind, which is 

to provide users with the most relevant websites first in order to help shorten the amount 

of time a user spends going through the list of sites provided to them (Barboucha & 

Nasri, 2015). This study focused primarily on an algorithm designed by the founders of 

Google called the Page Rank algorithm (Brin & Page, 2012). While improvements have 

been made to the Page Rank algorithm since its creation, the original algorithm is still 

capable of producing quality results for the user when no feedback has been provided 

(Yan et al., 2014). In this study, I focused on the collaborative ranking of search results. 

With collaborative ranking, an initial ranking still needs to be present to be able to 

provide results to users that have not provided appropriate feedback (Wei et al., 2017). 
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By implementing collaborative filtering techniques around existing ranking algorithms 

these types of issues can be limited. 

Page Rank algorithm.  Search engines utilize different methods to prioritize the 

results given to the users. Page Rank is one algorithm utilized by Google to help 

determine the importance of a website (Jilani et al., 2015). In the Page Rank algorithm, 

all web pages in the database are assigned a value which is determined by the number of 

other pages that link to them. The more websites that link to a site the higher the 

importance of that site and therefore the higher the site is on the list of results provided to 

the user (Kumar & Prakash, 2015). The idea is relatively simple, the more sites that link 

to a page the more likely that page has useful content and is most likely a quality site. 

The algorithm gets a little bit more complicated when determining the weight of the 

importance of each of these backlinks (Yan et al., 2014). A website that has a higher 

importance value, or page rank, carries more weight than a site with a lower value. If this 

site links to a page this would increase that page’s importance by more than a page with a 

lower value linking to it (Pirouz & Zhan, 2016).  

In order to better understand the concept behind the Page Rank algorithm, we can 

look at it in respect to a random web surfer (Gleich, 2015). In this concept a user is 

looking at a web page, the user clicks a button that takes them to another page, the new 

page will either be a page that was linked from the page the user is currently looking at or 

a completely random page. The likelihood of the random page being useful to the user is 

relatively low, but the page linked off of the site they are looking at is much more likely 

to be useful to the user, and therefore is more important. This idea is fundamental to the 
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Page Rank algorithm. When a web page is created, there is typically a theme behind it 

and therefore the links present on the site are highly likely to follow that theme. By 

following the link structure of the web page a general model can then be derived counting 

the number of links going to a page. Links going to a page are looked at as a vote for that 

page, the more votes for the page the more important the page is considered.  

One issue with the Page Rank algorithm is that a page’s importance is determined 

by a combination of backlinks and keywords, and can, to some degree, be manipulated by 

the creator of a web page by setting up relationships with other websites to link to their 

site as well as wording their website in such a way to emphasize the importance of certain 

words to help bring the importance of the page up for specific keywords (Mavridis & 

Symeonidis, 2015).  

There are two basic principles regarding how to conduct searches, keyword and 

semantic-based searches (Singh & Sethi, 2016). While this study is primarily focused on 

the ranking algorithms utilized by search engines, understanding how searches are 

conducted is also important because the two go hand in hand. Searching provides a listing 

of sites that can then be passed to the ranking algorithm to determine the importance of 

the site (Fang, 2016; Saxena et al., 2016). Understanding the two basic methods for 

search will help to provide some insight into how the searching and ranking algorithms 

work together. 

Keyword-based searches look almost entirely at the words on the page to 

determine how relevant a page is to given search term. These search methods do not only 

look at the words that are visible on the page, but they also look at words utilized in tags, 
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such as the <meta> tag within the HTML code (Mahendru, Singh, & Sharma, 2014). This 

method of searching, by itself, is highly susceptible to manipulation, because the more 

prevalent a term is on the page, the higher it will be ranked within the search results. 

Keyword-based searches can produce results relatively quickly. Keyword searches run a 

simple query for a specific set of words (Singh & Sethi, 2016). The downside to this 

method is the creators of websites can easily manipulate results by targeting specific 

keywords in their text. Targeting specific keywords increases the keyword count and 

causes these algorithms to place a site higher on the list of results (Singh & Varshney, 

2013). Semantic-based searches have methods in place to try to prevent this from 

occurring.  

Semantic-based searches are a little more complex. Semantic searches utilize a 

knowledgebase of search terms and refine and extend a search term to allow for more 

keywords to be included within a search (Dascalu, Trausan-Matu, McNamara, & Dessus, 

2015). The concept behind semantic search is fundamentally similar to keyword-based 

searching. The user enters a search term and pages that contain that search term are 

returned. The difference is before the pages are searched the search term entered is 

compared to terms in the knowledge base to find other search terms that are connected to 

it (Singh, Sharma, & Dey, 2015). Search results are presented based on not only the 

original search term, but the connected terms as well. By expanding these terms new 

potentially beneficial sites will be presented to the users. Semantic methods are often able 

to present the user with higher quality results, because it does not look for a specific 

keyword set, rather a set of related keywords. Utilizing a keyword set can help to weed 
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out the less desirable sites that are trying to manipulate the system (Meusel, Ritze, & 

Paulheim, 2016). The downside to semantic-based searching is that it is not as fast as 

keyword-based searching (Dong et al., 2017). 

The types of search methods available are important to consider along with the 

ranking algorithm. The Page Rank algorithm is separate from the search method being 

utilized. The ranking of pages takes place after the search has been conducted and 

determines how those results will get ordered, but the 2 processes are closely connected. 

In situations where pages have the same Page Rank the prevalence of keywords among 

the pages could help to decide which site the user would rather see over the other. 

Utilizing either keyword or semantic searching methods you can track the count of 

keywords, or similar keywords, on a webpage to determine how closely related a site is to 

the original search term and then utilize this information in combination with a Page 

Rank value as a tiebreaker when necessary. 

Combining Page Rank with User Opinions 

The concepts outlined above played a key role in this study. The Page Rank 

algorithm was the first algorithm utilized by Google and helped make them a household 

name synonymous with search (Chen et al., 2017). Google has made many improvements 

to their search algorithms since its release, but the simplicity of this algorithm provides a 

perfect base for this study. The Page Rank algorithm takes into account the number of 

sites that link to an existing page in order to determine a site’s importance (Jilani et al., 

2015). User opinions are not taken into account in the original Page Rank algorithm (Brin 

& Page, 2012). Taking a calculated Page Rank and combining it with the opinions of 
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users through a simple star-based rating system of web pages, can potentially provide a 

more accurate representation of how users feel about certain websites and their content 

(Mala & Hema, 2014). This information can be taken one step further because the 

information provided is enough to actually start personalizing the results provided to a 

specific user (Gupta & Chavhan, 2014; Zhang & Min, 2016). With enough user feedback, 

given a search term, we can utilize the concepts of collaborative filtering to take the 

results of the search and find the pages that similar users were more interested in and 

prioritize the list of results provided. 

 Correlation between user provided rankings and algorithm rankings. 

Balakrishnan, Ahmadi, and Ravana (2015) examined the differences between five 

different feedback models for ranking search results. The five models were the following: 

1. Baseline. A model with no user feedback. 

2. Rating. A model which included users’ ratings. 

3. Comment. A model which included users’ comments. 

4. Referral. A model which included users’ referrals to websites. 

5. CoRRe. An integrated model which included facets of all models. 

Balakrishnan et al. (2015) utilized discounted cumulative gain to evaluate the precision of 

the result sets for each model using the top-five, top-ten, and top-15 results. The findings 

showed that the CoRRe and Rating models outperformed all of the other models. 

Balakrishnan et al. conducted an independent sample t-test and found the differences 

between the baseline and CoRRe model to be significant at all 3 document levels: top-

five (t(18) = -3.049, p = 0.016), top-ten (t(18) = -5.158, p = 0.001), and top-15 (t(18) = -
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5.344, p = 0.01). Zhitomirsky-Geffet, Bar-Ilan, and Levene (2016) conducted a similar 

study looking at individual user ratings versus search engine rankings. Zhitomirsky-

Geffet et al. (2016) found that aggregated rankings were much more reliable than 

individual user ratings. When looking at the difference between aggregated users’ 

rankings and search engines’ rankings Zhitomirsky-Geffet et al. found a difference of 20-

60% for the top-ten ranked sites. The findings of Balakrishnan et al. and Zhitomirsky-

Geffet et al. show that the addition of user ratings can provide improved results to search 

engine algorithm rankings.  

 Suruliandi, Rajkumar, and Selvaperumal (2015) conducted a study looking at the 

performance of personalization techniques in search engines by comparing web results 

without personalization, web results with personalization using content analysis, and web 

results with personalization using user groups. Suruliandi et al. (2015) collected 

precision, recall, and f-measure data for each method, see table 3. 
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Table 3 

Comparison of Precision, Recall, and f-Measure data. 

Method Precision Recall f-measure 

Web results without 

personalization 

0.715 .8231 .7652 

Web results with 

personalization 

using content 

analysis 

0.7206 0.7513 0.7356 

Web results with 

personalization 

using user groups 

0.8437 0.8658 0.8546 

Note. Adapted from “Validating the performance of personalization techniques in search 

engine,” by Suruliandi et al., 2015, ICTACT Journal On Soft Computing Note, 5(3), 965-

970. 

 

The findings of Suruliandi et al. (2015) show the addition of personalization using user 

groups provides higher quality results then utilizing the standard search engine algorithm 

and personalization using content analysis. The data collection within this study is based 

on the study conducted by Suruliandi et al. (2015). Sureuliandi et al. collected data by 

having participants rate sites on a search results page, for my study participants were 

asked to rate websites that were presented by a search engine for a given search term. The 
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primary difference between the data collection methods is how the sites were presented, 

rather than presenting a results page in my study participants were presented with 

questions and asked to rate those pages in question format. 

This study looked at the correlation between user-driven parameters, user 

rankings of websites, and algorithm rankings. Specifically, I looked at the difference 

between algorithm ranking and simple combined user rankings. The idea was that while 

the algorithm ranking and combined user rankings both can provide good results to a 

user, there may be a correlation between these methods. The understanding that a 

correlation may exist can help content providers realize that by focusing efforts solely on 

achieving a higher ranking on a search engine is not enough. By understanding this, 

content providers may focus more effort on the users and can provide higher quality 

content.  

Collaborative filtering techniques utilize the opinions of similar users to help 

recommend options a user might like (Gautam & Bedi, 2017). In terms of a search 

engine, when a user provides a search term the system can order results based on the 

ratings from the user and similar users. This concept is used heavily to help recommend 

items to users in many popular websites today, like Netflix (Li, Zhang, Wang, Chen, & 

Pan, 2017). As more and more users utilize the system and provide more ratings for web 

pages the accuracy of the results provided should begin to increase. In addition to 

increased accuracy of search results, the system could eventually begin to recommend 

new topics of interest to specific users based on this information (Abdel-Hafez et al., 

2015). While collaborative filtering is capable of providing good recommendations to the 
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users, it can only do so if the user provides with ratings for items within the system 

(Najafabadi, Mahrin, Chuprat, & Sarkan, 2017). Other methods of collaborative filtering 

have been devised in order to get around this limitation. 

 Memory-based recommendation is one method commonly utilized to get around 

the issue with sparse user ratings (McKechnie & Prithwiraj, 2016; Wei et al., 2017). 

Memory-based systems monitor user activity to determine areas of interest and can 

suggest other areas of possible interest based off of the activity of other users (Abdel-

Hafez et al., 2015; Bodoff & Ho, 2016; Yang, Guo, Liu, & Steck, 2014). This type of 

collaborative filtering is most commonly found in commercial systems, such as Amazon, 

to help users find other products they may be interested in (Abdel-Hafez et al., 2015; 

Bodoff & Ho, 2016). This method of collaborative filtering has its issues, in order to 

make suggestions the system must be able to determine the similarity between items, but 

if this data is sparse the ability to find similar items becomes difficult (Moradi & 

Ahmadian, 2015). One solution to this issue is to use a model-based approach which 

simply combines a rating based system with a memory based system (da Silva et al., 

2016). With the model-based system ratings are not simply used to find similar users, 

rather the ratings are utilized in combination with user activity to help develop a model of 

similarities between items. These similarities can then be utilized to make connections 

between items within the system rather than connections between users. 

Regardless of the collaborative filtering method utilized a significant amount of 

data is required. New users will not have provided enough feedback to truly benefit from 

collaborative filtering methods (Chen et al., 2015). Combining collaborative filtering 
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techniques with an existing ranking algorithm could help to alleviate this issue. The Page 

Rank algorithm does not take into account any user feedback and only produces results 

based off of links going to a specific site (Brin & Page, 2012). The general idea is that the 

more links going to the site, the more popular the site must be. This concept is extremely 

powerful and can produce fairly good results. The information provided by this algorithm 

can be utilized as a baseline for this study. One of the biggest problems with 

personalization techniques is acquiring the data required in order to successfully 

implement the solution (Orso, Ruotsalo, Leino, Gamberini, & Jacucci, 2017). 

Personalization techniques require a large amount of data that must be provided by the 

user in order to work, before this data is acquired there is no way to effectively rank items 

within the system (Bostan & Ghasemzadeh, 2014; Ghose, Ipeirotis, & Li, 2014). The 

Page Rank algorithm can potentially provide a mechanism to rank items and present them 

to the user in a somewhat meaningful fashion.  Utilizing Page Rank as a base algorithm 

for collaborative filtering could potentially provide new users with quality results that can 

improve over time as they provide feedback to the system. 

 Collaborative filtering and algorithm rankings. This study was interested in the 

possible relationship between the techniques of collaborative filtering and algorithm 

rankings. Both concepts are extremely powerful on their own, but they also have 

limitations. Collaborative filtering requires huge amounts of data that must be provided 

by the user (Aghaiipour-Chafuchahi & Ahmadi-Abkenari, 2015). Algorithm ranking does 

not require any user data to be provided to rank a web page. This lack of user input 

results in generic result lists that may or may not be what the user is actually interested in 
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(Gleich, 2015). The combination of the two techniques can potentially alleviate the 

weaknesses of one another. The algorithm ranking can provide a good starting point for 

new users who utilize the system. As these users provide ratings for sites this information 

can be utilized to combine collaborative filtering values to the ranking provided by the 

algorithm to present the user with a personalized listing of results.   

Algorithm ranking utilizes the links going to a page as a type of vote for the site. 

Using this concept, the votes can be combined with user votes to establish a new 

importance value for a web page (Liu, Chen, et al., 2016). This combination of values can 

help to produce a ranking value for search results that can be driven more by the users 

rather than just the structure of the web. Early implementations of such a ranking system 

would rely heavily on the values produced by the ranking algorithm because user ratings 

would be very limited. As more users utilize the system more user ratings will be put into 

the system, as this occurs the rankings of the web pages will become more based on the 

users as opposed to the algorithm ranking value alone. 

Differences among Algorithms 

 Each of the algorithms used in this study can provide an ordered listing of 

websites given a search term. These listings should all be ordered in a meaningful way, 

but these orderings can potentially be very different and may not be representative of how 

the user may order these sites. In this study, I looked at the correlation between different 

types of personalization methods and algorithm rankings. By looking at each algorithm 

with an identical set of search results we should be able to determine whether or not the 

addition of user opinions to existing algorithms can help to provide results that would be 
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an improvement to the group as a whole or if the existing algorithms more closely 

represent the group's views. In order to compare the different algorithms, a measurement 

tool is needed. 

 Search engines utilize different methods to rank the websites in a set of search 

results when making modifications to algorithms search engines need some way to 

determine if changes are improvements or not. One of the most common methods of 

doing this is calculating a discounted cumulative gain value (Jayashree & Christy, 2015). 

Discounted cumulative gain takes user opinions into consideration to determine an ideal 

ranking of web pages and then compares values from algorithms to determine which 

method more closely resembles the opinions of the users (Almulla, Yahyaoui, & Al-

Matori, 2015; Benabbou, Perny, & Viappiani, 2017). The calculations for the discounted 

cumulative gain are fairly simple but can produce very good results for determining the 

quality of a ranking algorithm. 

The discounted cumulative gain not only looks at the quality of sites within a 

result set but also takes the order of those sites into account. In order to calculate the 

discounted cumulative gain, you must have a rating for the sites in the list as well as the 

position of those sites in the results set (Demeester, Aly, Hiemstra, Nguyen, & Develder, 

2016; Liu, Song, et al., 2016). The calculation simply takes the log of the position plus 

one and divides it by the ranking of that site, this is done for all pages in a result set and 

then the summation of those values is calculated. This calculation must be done multiple 

times, first, the ideal value is calculated, this is the value when the result set is ordered 

exactly the way the user would order the sites. Then the calculation is done again for how 
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the ranking algorithm orders the sites, the algorithm which has a discounted cumulative 

gain closer to the ideal discounted cumulative gain would be the algorithm that more 

closely represents the ideal ranking set (Ignatov, Nikolenko, Abaev, & Poelmans, 2016; 

Palotti, Hanbury, Muller, & Kahn, 2016; Sugumaran, Ravi, & Shanmugam, 2017). 

Rather than comparing entire lists of results discounted cumulative gain provides a single 

value for each result set that can easily be compared to determine how close an 

algorithm’s results reflect the opinions of the user. This study was interested in the 

differences between search algorithms and the discounted cumulative gain provided a 

perfect method for comparing the different algorithms in the study. 

Transition and Summary 

In Section 1 the objective of this study and a review of the literature about the 

topic was discussed. The objective of this study is to determine if a significant correlation 

exists between user-driven parameters, user rankings, and rankings derived from other 

algorithms. To help determine this, a correlational quantitative study was conducted to 

examine the correlation between user-driven ranking methods and traditional ranking 

algorithms and whether or not the combination of the two can help create a more 

personalized search experience for the users. The literature review examined topics 

pertinent to this study, including Arrow’s impossibility theorem, search engine ranking 

algorithms such as Google’s Page Rank algorithm, collaborative filtering techniques, 

discounted cumulative gain, and search engine personalization. The articles utilized 

helped to provide an analysis of the relevance and importance of the dependent and 
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independent variables in the study and how these components can potentially be utilized 

together to provide users with more relevant search results. 

In Section 2, I provide a description of the role of the researcher, the research 

method and design, population and sampling, data analysis, ethical considerations of the 

participants, and issues concerning validity and instrumentation. The role of the 

researcher section will detail how I was involved with the study and its participants. Key 

ethical points from the Belmont Report will be looked at and how this study was 

conducted to ensure fair treatment of all participants. The research method and design 

section will provide a more detailed look at quantitative methodologies and experimental 

designs and why they were chosen for this study. Population and sampling will look at 

the specific populations being looked at for this study and the samplings methods that 

were applied. The data analysis section will look at how data collected will be looked at 

and the tools that were used for these comparisons. Ethical considerations will look at 

how the participants were protected throughout this study, specifically it will show how 

privacy was maintained and how participants could opt out of the study. The validity 

section will examine issues that can occur with study validity and how I worked to 

alleviate these concerns as needed. 

Section 3 will provide detailed information regarding the findings of this research 

study. This will include a presentation of findings, possible applications to professional 

practice, implications for social change, recommendations for action, and reflections of 

my experience while working on the study. 
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Section 2: The Project 

This section will outline more detailed information regarding how this research 

study will be conducted. More detailed information regarding plans for this study will be 

provided to give the reader a better understanding of how I moved forward with this 

study. Specifically, it will discuss the purpose of the study, the role of the researcher, the 

specifics of participants, the research method and design utilized, ethical considerations, 

the data instruments, data collection, data analysis techniques, and study validity 

concerns. 

Purpose Statement 

The purpose of this correlational quantitative study was to examine the possible 

relationship between user-driven parameters, user ratings, and ranking algorithms. This 

information could potentially help content providers to provide users with content that is 

better suited to their needs as opposed to content tailored towards search engine 

optimization. This study utilized a correlational design in which participants from a local 

university in Huntington, West Virginia ranked a listing of web pages for a specified 

search term on a one to five scale as well as provided their internet usage information. 

The independent variables were the user-driven parameters and user ratings. The 

dependent variable was the ranking algorithm. The implications for positive social 

change include producing more relevant results for users which will help them find more 

relevant information more efficiently.  
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Role of the Researcher 

The role of the researcher is to develop the research for the problem he/she has 

identified. This role includes formulating a hypothesis, collecting and analyzing data, and 

formulating conclusions from the data analysis (Kyvik, 2013). In the data collection and 

analysis process, I was able to separate my own opinions on the topic from the data in 

order to provide accurate information without any personal bias (Thamhain, 2014). In this 

correlational study, I ignored my own personal experiences and thoughts regarding search 

engine ranking algorithms. The interpretation of data can be prone to personal bias and it 

was imperative that I did not allow my own opinions to influence the interpretation of 

data (Sohn, Thomas, Greenberg, & Pollio, 2017). All the data collected from the 

participant responses were looked at in an unbiased fashion and the interpretation of the 

results was not influenced by my own personal experiences and thought processes.  

Participants for this study were selected from higher education institutions in the 

area of Huntington West Virginia. I have worked for these institutions and have a 

continuing professional relationship with many employees at these institutions. As the 

researcher, it was my responsibility to ensure that these relationships did not affect the 

results of this study. The existing relationships I have with these institutions were utilized 

to help find participants who were willing to be included in the study, but it was my 

responsibility to ensure those participants selected had no previous relationship with 

myself in order to prevent any potential bias in their responses. 

This study was conducted to determine the possible relationship between user 

ratings, user-driven parameters, and ranking algorithms. With a better understanding of 
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this relationship, content providers may potentially see that tailoring content to the user 

instead of to search engines can be an effective technique that could lead to higher quality 

content. My interest in this topic has grown from an interest in better understanding 

search engine technologies and a passion for recommendation engines. Over many years 

I have formed my own thoughts on how these technologies could be related, but have 

never tested these thoughts. This study was my opportunity to test these thoughts on a 

small scale to determine whether or not further research on the topic would be viable. 

Working with human participants presents challenges. It is important to ensure 

that participants are treated fairly. As the researcher, I must ensure that I act ethically 

when working with the participants and their data. The Belmont Report outlines three 

basic ethical principles that should be considered when conducting research with human 

participants respect for persons, beneficence, and justice (U.S. Department of Health and 

Human Services, 1979). 

Respect for persons is to ensure the autonomy of all participants and if autonomy 

is diminished that those participants are protected (Faden et al., 2013). In addition to 

autonomy, it is important to ensure that all participants are aware of what the research 

entails and can make an informed decision about whether or not to participate (Judkins-

Cohn & Kielwasser-Withrow, 2014). As the researcher, it was my responsibility to 

ensure that all participants were provided with sufficient information in order to make an 

informed decision regarding whether or not they wanted to be included in the study. This 

information included how the information they provided was utilized, the potential 

benefits of the study, and how the information they included was protected. The 
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anonymity of the participants is extremely important, and it was my responsibility to 

ensure that participants names were in no way associated with any responses that were 

provided. 

Beneficence is to ensure that participants are treated ethically, no harm comes to 

them, and possible benefits of the study (Laage et al., 2017). Experiments in this study 

was based on data collected via survey monkey, so participants were not in danger of any 

physical harm. The identity of participants was completely confidential, and no names 

were associated with any responses. The results of this study can potentially help to 

improve the quality of search result ranking algorithms, which can potentially benefit all 

participants in the study. 

Justice looks at the fair distribution of any potential benefits from the study and is 

to ensure that all participants have an equal opportunity to share in the potential benefits 

(Lantos & Spertus, 2014). In this study all participants were given the same set of 

questions to answer, so all participants had an equal say in all data that was utilized when 

formulating the results. The weight of responses was equal for all participants regardless 

of the person’s background or responses. 

Participants 

I select participants from a local community college and university in Huntington 

West Virginia. Participants included both faculty members and students from programs 

within the IT field who are 18 years of age or older. Faculty and students from higher 

education institutions are among the group whose use of the internet is greater than other 

groups (Salam et al., 2015; Verma, Jha, & Mitra, 2016). Limiting to a group whose use of 
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the internet is higher than others helped to ensure that participants were familiar with 

browsing the web. By narrowing it down to a specific field, the search terms utilized in 

the study could be controlled to areas that all participants were at least somewhat familiar 

with.  The research question was looking for any correlation that may exist between user-

driven parameters, user ratings, and ranking algorithms. Anyone who utilizes search 

engines would truly align with this research question, I chose to limit the participants to a 

specific field because user rankings of web pages could then be narrowed down to only 

sites within that field and all participants should have knowledge of the subject matter. 

In order to gain access to participants within these organizations, I contacted the 

deans of the appropriate programs with an invitation and consent form via e-mail to 

forward on to current students and faculty. Utilizing a sponsor that the participants are 

familiar with can help to improve the number of potential participants who take part in 

the study (Rindfuss, Choe, Tsuya, Bumpass, & Tamaki, 2015). Participants must be made 

aware of what they are participating in and their anonymity must be protected (Faden et 

al., 2013). The Belmont report outlines the need to protect all participants’ privacy 

(Judkins-Cohn & Kielwasser-Withrow, 2014).  Privacy of participants can be protected 

by providing informed consent and ensuring the participant's anonymity (Roberts & 

Allen, 2015). The usage of a sponsor can potentially lead to issues where potential 

participants feel obligated to participate in the study. Ensuring the participants of their 

anonymity will help to alleviate this concern (Lantos & Spertus, 2014). Emails sent to 

potential participants contained details about the study as well explained the potential 

benefits participating in the study could bring to the field. In addition to this, the e-mail 
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included details of how participant’s information was secured to ensure they understand 

their information would remain confidential if they chose to participate.  

In order to establish a working relationship with the participants, I began with an 

introduction email where I explained my background and my intentions for the study. 

This email can be found in Appendix B. By doing this the student participants should 

have felt a connection to me because they were able to see that I was once in their 

position. Similarly, the faculty members were able to relate because of their past 

experiences conducting research projects. Establishing common ground between the 

researcher and the participants can help to build rapport between the two (Bowden & 

Galindo-Gonzalez, 2015). Limiting participants to the IT field helped to establish this 

rapport with the participants because I am a member of the IT community, this provided 

some common ground between myself and the participants. Allowing participants the 

opportunity to receive personal attention from me can help to establish rapport as well 

(Goode, Lin, Tsai, & Jiang, 2015). In order to help give the participants the opportunity 

to receive this personal attention, I provided personal contact information for myself to 

allow the participants to easily follow up with me with any questions or concerns they 

may have had.  

Research Method and Design 

Method 

Quantitative methodology was utilized for this study. Quantitative research relies 

on statistical information regarding the connections between independent and dependent 

variables (Thamhain, 2014). Data collection within quantitative studies is done by 
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different methods including questionnaires, correlational analysis, and systematic 

observations (Green et al., 2015). In quantitative research, a hypothesis is formulated and 

then tested using the data that the is collected during the research (Bryman, 2001; 

Westerman, 2014). In this this study I needed to utilize statistical analysis to determine if 

a correlation existed between user-driven parameters, user ratings, and ranking 

algorithms. In this study, I collected data from participants regarding their opinions on 

various websites given within a set of search results and their internet usage. This data 

was then compared to results of the ranking algorithms to determine if there was a 

correlation between the user ratings, user-driven information, and the ranking algorithm. 

Qualitative methodology would not be appropriate for this study because 

qualitative methodologies utilize open-ended information regarding a phenomenon in 

order to examine the relationship between variables (McCusker & Gunaydin, 2015; Yin, 

2014;). Typically, qualitative study results in a more open-ended analysis of participants’ 

thoughts on the subject (Green et al., 2015). The results of a qualitative study are broken 

down based on themes that emerge during the study to form a narrative around the 

phenomenon being studied (Bryman, 2001; Yin, 2014). Qualitative methodology could 

potentially have been utilized for this study to determine the individual participants own 

feelings about the differences between the ranking algorithms, but this would have given 

the participants opinions and not a true statistical difference. The results of this study 

needed to be more statistical than open-ended and therefore a quantitative method was a 

better choice than a qualitative method. 
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Mixed methods utilize a combination of both quantitative and qualitative 

methodologies (Bryman, 2001; Green et al., 2015; McCusker & Gunaydin, 2015). The 

combination of both quantitative and qualitative methods can help to alleviate certain 

restrictions of each individual method (Bryman, 2001). Mixed methods are often done by 

utilizing qualitative research to help formulate a research question and hypothesis that 

can then be tested utilizing quantitative methods (McCusker & Gunaydin, 2015). This 

study focused on the statistical analysis of data collected utilizing different search ranking 

algorithms. While open-ended information could potentially have been collected to get 

individual participants overall views, the addition of this data collection would not have 

added to the results of this study and therefore a mixed method study was not appropriate. 

Research Design 

In this study, I utilized a correlational design. This design was chosen because it is 

utilized to find possible relationships between variables (Venkatesh et al., 2013). A 

correlational design tries to determine how variables in a study are related and how strong 

this relationship is (Simon, 2013). Data in a correlational design is looked at without any 

control or manipulation (Becker et al., 2016). This study explored the possible 

relationship between user-driven parameters, user ratings, and ranking algorithms. A 

correlational design allowed me to collect data from participants without a need to 

control or randomize data collected. Specifically, this study presented the user with 

multiple lists of web pages and asked them to provide a ranking for each site on the list. 

The rankings the user provided were utilized with their internet usage data to set a 
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baseline score for each page which was then utilized to see if a correlation existed 

between the user ratings, user-driven parameters, and the ranking algorithms.  

Experimental design allows the researcher to manipulate the independent 

variables in a study to better understand how they affect the dependent variable (Spector 

& Meier, 2014). The manipulation of variables is often done to demonstrate a cause and 

effect (Lucero et al., 2016). Another characteristic of experimental design is the ability to 

randomize the data collection and utilization (Roosta, Ghaedi, Daneshfar, Sahraei, & 

Asghari, 2014). This study was trying to determine the correlation between the 

independent and dependent variables and not to determine the causation for that 

relationship. Since an experimental design is utilized to determine what the relationship 

between independent and dependent variable is it was not be appropriate for this study.  

A quasiexperimental design is similar to an experimental design, except it lacks 

the aspects of randomization utilized by an experimental design (Campbell et al., 2015). 

Quasiexperimental designs are often utilized to evaluate the impact of a variable on a 

process (Campbell et al., 2015). Quasiexperimental design was not appropriate for this 

study because I was not trying to determine the specific impact variables have on one 

another, rather I was simply looking for a possible relationship between variables. While 

quasi-experimental design would have worked for this study at this phase it would have 

required more in-depth research that may not be necessary if no true relationship existed 

between variables. 
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Population and Sampling 

The population for this study included students and faculty from higher education 

institutions in the computer science field located near Huntington West Virginia. 

Limiting the population to a specific field made it easier to narrow down search results to 

a specific knowledge area that all participants were familiar with. Including both faculty 

and students in the study helped to broaden the age and educational background of 

participants. 

The sampling method for this study was nonprobability sampling. In 

nonprobability sampling each participant does not have a known probability to be 

selected to participate in the study (Raschke, Krishen, Kachroo, & Maheshwari, 2013). 

When utilizing a nonprobability sampling method researchers are not able to generalize 

the results of the study (Acharya, Prakash, Saxena, & Nigam, 2013). Nonprobability 

sampling methods are often utilized when the researcher does not have enough 

information about the population (Raschke et al., 2013). Convenience sampling was the 

subcategory of nonprobability sampling that was utilized in this study. With convenience 

sampling, everyone within the target population who was willing to take part in the study 

could do so (Acharya et al., 2013). This sampling method worked well with this study 

because it allowed everyone who wanted to participate the opportunity to do so 

regardless of the type of participant. The exact makeup of the population being sampled 

was not known, therefore trying to limit to specific groups would be difficult. Responses 

from all participants that completed the survey were loaded into an Access database 

which was queried to pull random rating and ranking data for each site within the result 
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set for each group of participants. This data was then utilized to calculate the discounted 

cumulative gain for both the user data and the ranking algorithm data. The ranking 

algorithm’s ranking data was derived from the location each site was found in when 

doing a simple search from a fresh browser installation. 

For this study, I have utilized G*Power 3.1 to conduct an F-test for linear multiple 

regression to calculate a priori the required sample size given the effect size, the error 

probability, the power, and the number of predictors. G*Power is a statistical software 

designed to help determine appropriate sample size using power analysis (Faul, 

Erdfelder, Buchner, & Lang, 2009). Doing an a priori power analysis, assuming an effect 

size (f = .30) and an error probability (a = .05), indicated a minimum sample size of 36 

participants is required to achieve a power .80. Increasing the sample size to 75 will 

increase the power to .99. The effect size (f = .30) and error probability have been derived 

from correlational studies that utilized multiple linear regression for data analysis 

(Hoxha, 2017; Johnson, 2017; Udom, 2017). These studies all utilized an effect size of 

.30 and an error probability of .05. In addition to other researchers utilizing a medium 

effect size in studies where they used the same methodologies studies have been 

conducted that validated the appropriateness of utilizing a medium effect size in scientific 

research (Bosco, Aguinis, Singh, Field, & Pierce, 2015; Eisend, 2015). Therefore, I 

utilized a medium effect size and seek between 36 and 75 participants for this study 

(Figure 1). 
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Figure 1. Power as a function of sample size. 

Ethical Research 

In this study many ethical considerations were taken into account before any 

communication with potential participants occurred I obtained approval from the 

Institutional Review Board at Walden University to ensure my study followed 

appropriate ethical considerations. Participants in research must sign up willingly and 

understand exactly what they are agreeing to participate in (Stang, 2015). Invitations to 

this study were sent out via email which contained information regarding the purpose of 

the study, how their responses would be protected, how they could withdraw from the 

study, and a link to the questionnaire itself, which can be found in Appendix A. 

Participation in this study was entirely voluntary and no incentives were given to 

participants. While offering incentives to participate in the study may help to attract 

participants, this can lead to biased responses from participants that are only interested in 
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what they get out of participating (Ardern, Nie, Perez, Radhu, & Ritvo, 2013). When the 

user clicked the link provided in the email they were presented with a consent statement 

that they had to agree to before beginning the survey. By agreeing to this statement, 

participants acknowledged that they understand this information and were willing to 

participate in this study.  

Throughout the study participants could decide that they no longer wanted to 

participate. Informed consent to participate in research is not a one-time thing at any 

point during the study if the participant changes their mind they should be able to 

withdraw from the study (Marshall et al., 2014). This study was conducted with an online 

questionnaire, see Appendix A, at any time during the questionnaire participants could 

leave. When data was compiled any incomplete questionnaires were considered as 

withdrawn and deleted from the results. In addition to this, at the end of the questionnaire 

participants were presented with a question asking if they would like their responses 

included in the study. If they answered no their responses were not included in the results 

of the study.    

Part of my responsibility was to ensure that the participants privacy was 

protected, and if at any point an individual participant’s responses are needed when 

presenting the results of the study I must be able to present this without any information 

that might identify the participant (Dempsey, Dowling, Larkin, & Murphy, 2016). In 

order to do this, all participants were given a unique identifier. This unique identifier will 

allow me to call out any specific participant information needed to explain the results 

without using any identifying information. Similarly, the names of the organizations 
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where participants were found should be protected. For this study, the names of these 

organizations will be known only by me and will not be included in any of the study’s 

findings. To ensure the data remains secure and meets all of the IRB requirements 

outlined by the University, all data collected for this study has been stored within a 

password protected cloud-based system and is accessible only to me. To help ensure 

participant’s privacy no personally identifying information was collected. All data will be 

maintained for a period of five years. When this period is over, all data will be destroyed. 

Data Collection 

Instrumentation 

This study utilized a close-ended questionnaire, comprised of Likert scaled 

questions for the data collection instrument. The questionnaire that will be utilized can be 

found in Appendix A. The Likert scale was developed by Rensis Likert in 1932 (Artino 

Jr, La Rochelle, Dezee, & Gehlbach, 2014). In this study, I measured participants’ 

opinions of websites that would have been presented to them given a specific search 

term. A Likert scale is an interval scale of measurement commonly utilized to measure 

someone’s opinions about a given idea, this is commonly done utilizing a one to five 

scale ranging from one being strongly dislike and five being the strongly like (Wu, Jia, & 

Enders, 2015). For this study one indicated the participant strongly dislikes a website, 

two was dislikes a website, three was neither likes nor dislikes a website, four was likes a 

website, and five indicated a strong like for a website. This method of rating is commonly 

seen on websites to get user feedback about items and can then be utilized to help 

personalize the user's experience on the site (de Sáa, Gil, González-Rodríguez, López, & 
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Lubiano, 2015). Given that this method of rating items is common in existing sites it was 

fitting to have participants use a similar scale to rate items within this study. 

This study was administered using a web-based survey tool called 

Surveymonkey.com. The data will be maintained on Surveymokey.com for a period of 

five years, during this time I will be the only person with access to the data stored on 

Surveymokey.com. Data will be made available upon request. After five years I will 

delete all data from Surveymonkey.com. Upon deleting the data Surveymonkey.com will 

maintain a backup of the data for 90 days, after 90 days Surveymonkey.com purges all 

data associated with the deleted survey. 

Participants in this study were presented with a series of questions pertaining to 

how they utilize the internet as well as a series of web pages and a search term that was 

utilized to find the webpage. Web pages were rated using a one to five scale, one being a 

strong dislike for a website and five being a strong like for a website. This rating 

provided me with an ordinal value that was utilized to determine how participants feel 

about specific sites returned for a given search term. In addition to the ratings, 

participants were asked to order the websites previously rated in the order they felt they 

should appear in the result set. This provided me with an ordinal value that was utilized 

to sort the participant’s ratings. Questions regarding the participant’s internet usage 

provided me with a nominal value that was utilized to group similar participants together. 

The values provided by user ratings were utilized to calculate the discounted cumulative 

gain for the search results provided. The discounted cumulative gain is a common 

measurement utilized to measure how effective a search engine result set is (Liu, Song, et 
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al., 2016). The nominal data provided in regards to the participant’s internet usage was 

applied to the user-driven parameters variable. The user-driven parameters variable was a 

nominal value, this variable was utilized to group participants together into three groups 

and is represented by Games/Media, News/Research, and Social Media in the model. The 

ordinal data provided in regards to the participant’s ratings and ordering of web pages 

was utilized to calculate the discounted cumulative gain which was applied to the user 

rating variable. The user rating variable was an interval value. These ratings were also 

applied with the ordering of web pages by the ranking algorithm to calculate a discounted 

cumulative gain for the ranking algorithm which was applied to the algorithm ranking 

variable. The ranking algorithm was an interval variable.  

 A Likert type scale can be used in many different types of ways (de Sáa et al., 

2015). Netflix has used a rating system very similar to allow its users to provide opinions 

about what they are watching, in fact, portions of this data was made public during the 

Netflix prize (Wei et al., 2017).  Wei et al. utilized data from Netflix to help explore 

possible solutions to the cold start problem suffered by collaborative filtering algorithms 

(2017). In general, recommendation systems often utilize some type of Likert type scale 

(Parsons & Ralph, 2014; Yeung, 2016). Unless the site is only looking at what the user is 

doing on their site in order to recommend other items they must collect some type of 

feedback from the user, which you will see very often via a star-based rating system as 

well as some type of user preference data to help group similar users together (Guo & 

Chen, 2016). The questionnaire was utilized with this study, see Appendix A, contains a 

combination of questions that allowed for similarities among participants to emerge. 
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Some basic internet usage questions, as well as the rating of various websites, could be 

combined to allow for various types of collaborative filtering to be tested. 

 To address the validity of an online questionnaire using the Likert scale as a data 

collection instrument I have found studies measuring similar data. Bodoff and Ho utilized 

a Likert like scale to have participants gauge the personalization of given pages (2016). 

This study was not focusing on personalization of pages but having participants rank sites 

overall, but the underlying concept is similar. Similarly, McKechnie and Prithwiraj used 

a Likert type scale to measure different areas of satisfaction for specific product listings 

on a webpage (2016). While this study was not looking at specific items on a web page 

the idea is very similar, thinking of the web pages participants rated as different products 

that were listed. Zhao, Zhang, Cheng, and Chen utilized a Likert type scale from data 

collected from MovieLens to test a rating based collaborative filtering technique (2014). 

This study was extremely similar to this, instead of rating movies, this study was rating 

websites.  

 To address the reliability of this study I utilized the internal consistency reliability 

methods. Internal consistency looks for similarities between participant responses. This 

study looked at concepts of recommendation engines, therefore, the comparison of user 

responses had to occur, during this analysis, the reliability of data collected was 

examined. If major discrepancies were found this data was removed from the study. It is 

understood that the participants had their own opinions and some differences would 

occur, but major discrepancies among similar users could have indicated an unreliable 

participant. 
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While some of the studies that were mentioned above utilized a scale of one to 

seven, this study only be utilized a scale of one to five. This change was made to mimic 

the five-star rating system commonly seen on the web. A copy of the data collection 

instrument that was utilized for this study can be found in Appendix A.  

Data Collection Technique 

Data for this study was collected using an online survey. The questions on this 

survey gave the participant a search term and a website that would be presented with the 

given search term and then asked to rate that site on a one to five scale, one being the 

worst and five being the best. This series of questions allowed me to see how the 

participants felt about each site individually within the search result set and help to 

provide a baseline to compare the results from other algorithms. After rating the sites, the 

user was then asked to order the sites how he/she believes they should be ordered by a 

search engine. These questions allowed me to calculate the discounted cumulative gain 

for the users’ ratings. In addition to rating and ordering sites, participants were asked a 

series of questions about how they utilize the internet. Internet usage questions were used 

to group participants together with similar participants. While other methods to group 

users together exist, such as tracking user history, these methods require a lot of historical 

data. Collecting historical data would not be feasible for this study, therefore, collecting 

internet usage data was sufficient to group similar participants together. 

The results of the participant data were utilized to calculate the discounted 

cumulative gain. Discounted cumulative gain is an analysis tool commonly utilized to 

measure the quality of the ranking of a search engine result set (Benabbou et al., 2017; 
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Jayashree & Christy, 2015). In this study, I was examining the correlation between user-

driven parameters, user ratings, and ranking algorithms and the discounted cumulative 

gain provided a perfect mechanism for assigning a single value to each result set that 

could be easily compared. The discounted cumulative gain is calculated by getting the 

summation of (User rating)/Log2(Position in results + 1) for all sites within the result set 

(Almulla et al., 2015). 

For this study, I looked at the discounted cumulative gain for individual users as 

well as the average score for all users. The average score would be representative of all 

users opinions. In addition to this, I looked at how the addition of user preferences affect 

the ranking algorithms, to do this, participants were grouped with similar users. User 

similarity was determined based on responses to how they utilize the internet. The 

discounted cumulative gain was calculated for these groups like was done for the entire 

participant population. The grouping of participants allowed me to determine the 

difference, if any, that existed between standardized algorithms and algorithms that focus 

more on user preferences.  

There are other methods utilized to determine the effectiveness of search engines. 

The first method is simply the cumulative gain. Cumulative gain simply looks at the 

result set returned to the user and does not take into account the position of the results  

(Benabbou et al., 2017; Jayashree & Christy, 2015). This method is actually a portion of 

the discounted cumulative in which the scores of each site in the result set are combined 

to give an overall score of the results returned. While this value can be useful when 
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looking at the search aspect of a search engine it does not provide any feedback for the 

ranking aspect, which is what this study was interested in. 

 Online survey data collections have many advantages that make it ideal for this 

study. Online surveys are relatively easy to administer (Bateson, McPeake, & O’Neill, 

2014). Many different tools are available to help administer online surveys for little or no 

cost which makes them a cost-effective option (Rice, Winter, Doherty, & Milner, 2017). 

In addition to being cost effective and easy to administer online surveys also make it 

easier to reach a larger number participants and do not have any major time constraints 

for the participants (Khazaal et al., 2014). This study was focusing on the input from 

students and faculty in the IT fields of higher education institutions, which can result in 

difficulty finding a time when all potential participants can be available to take part in the 

study. For this study, I was primarily interested in how the participants feel about sites 

within a set of search results which is information that can easily be collected at the 

participant's convenience. An online survey was easily set up and sent out to a pool of 

potential participants to fill out whenever they had the time to do so. 

While there are advantages to online surveys, there are also disadvantages. One of 

the biggest disadvantages of online surveys is participants misrepresenting themselves 

(LaRose & Tsai, 2014). Since online surveys are conducted without the researcher 

present there is no way to ensure that the individual participating in the study is who they 

say they are. Many survey websites, like surveymonkey.com, provide features to help 

reduce these types of situations, for example, surveys can be made private and require a 
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password to access. While this is not a foolproof method to completely eliminate this 

concern it can help to alleviate this issue. 

Data Analysis  

The research question for this study was, what is the relationship between user-

driven parameters, user ratings, and ranking algorithms? The null hypothesis was, there is 

no statistically significant relationship between user-driven parameters, user ratings, and 

ranking algorithms. The alternative hypotheses for this study was, there is a statistically 

significant relationship between user-driven parameters, user ratings, and ranking 

algorithms.  

Data sampling was done using convenience sampling. Responses from all 

participants that completed the survey were loaded into an Access database which was 

queried to pull random rating and ranking data for each site within the result set for each 

group of participants. This data was then utilized to calculate the discounted cumulative 

gain for both the user data and the ranking algorithm data. The ranking algorithm’s 

ranking data was derived from the location each site was found in when doing a simple 

search from a fresh browser installation. 

The results of participant data were analyzed using multiple linear regression. 

Multiple linear regression is utilized when two or more independent variables are utilized 

to help the researcher predict the value of a dependent variable (Woodside, 2013). Simple 

linear regression only looks at the relationship between a dependent variable and a single 

independent variable (Enayatollahi, Bazzazi, & Asadi, 2014). Other types of regression 

analysis, such as hierarchical and stepwise regression, allow some form of control over 
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the order in which independent variables are included in the regression equation (Hanisch 

& Rau, 2014). In this study, I was determining if a relationship exists between two 

independent variables and one dependent variable and did not require any control over 

the variables, therefore traditional multiple linear regression was appropriate for this 

study. The general linear regression model for this study was Ranking Algorithm = B0 + 

B1 (Respondent DCG) + B2 (User Interests) + B3 (Search Term) + B4 (Search Term)(User 

Interests) + B5 (Search Term)(Respondent DCG). The ranking algorithm variable is an 

interval variable that represents the discounted cumulative gain value of result set 

provided by the ranking algorithm. The user ranking variable was an interval variable that 

represented the discounted cumulative gain value of the result set provided by the user 

ranking. The discounted cumulative gain was a continuous number that represented the 

effectiveness of ranking methods. The user-driven parameter variable was a nominal 

variable that represented the group participant responses belonged to. For this study, 

participants were grouped using the questions about how they primarily use the internet. 

Asking questions like this is commonly utilized in collaborative filtering methods to help 

provide recommendations to users before they have provided any information about 

items within the system (Chen et al., 2017). Feng et al. (2019) utilized the groups of 

Facebook usage, study usage, and entertainment usage. For this study I utilized similar 

groupings for the user-driven parameters, which were broken down into four groups, 

Games/Media, News/Research, Social Media, and Overall which contains participants 

from each group, these groupings were then utilized to compute discounted cumulative 

gains for specific groups. In order to utilize a nominal variable as an independent variable 
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in multiple linear regression it is necessary to modify this variable. Each group was 

assigned a numeric value, 1 = Social Media, 2 = News/Research, 3 = Games/Media, and 

4 = Overall. In addition to grouping participants the type of search term was utilized. The 

type of search term was utilized to differentiate between the search term all participants 

should be familiar with within their field of study and a more generic term. For this study 

all participants were students or faculty in the IT field. The search term “Programming” 

was utilized as a search term that all participants should be familiar with. The search term 

“Recipes” was utilized as a generic search term that participants may or may not be 

familiar with. The search term was a nominal variable where a value of 1 = Programming 

and 0 = Recipes. 

 B0 is the intercept value which indicates the value where the regression line meets 

the y-axis, this indicates the point on the regression line where the user ranking and user-

driven parameter values are all 0. B1 indicates the slope of the regression line, the slope of 

the line indicates the strength of the correlation between the variables. A negative slope 

would indicate a negative correlation, for this model it would show that as the ranking 

algorithm increases the user ranking decreases. B4 and B5 represent the possible 

interactions between the independent variables. These were included to determine if the 

interaction between the independent variables have a significant effect on determining the 

Algorithm DCG. 

For this study, the participant was asked questions about how he/she primarily 

uses the internet that was utilized to group similar participants together. Participant 

groups were represented by a nominal value that represented the user-driven parameters. 
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Multiple discounted cumulative gains were then calculated. The discounted cumulative 

gain was calculated for the entire participant pool as they would order the results, the 

entire participant pool as the algorithm would order the results, the participants grouped 

with similar users as they would order the results, and the participants grouped with 

similar users as the algorithm would order the results. Calculating the discounted 

cumulative gain for each scenario assigns a score for the result sets for both the user 

ratings and the ranking algorithm. The discounted cumulative gains are an interval value 

that represented the algorithm and user ranking variables. 

Analysis of the data was done using SPSS. Many different statistical values are 

available from SPSS. For this study, I was primarily interested in the R2 and the sig (p) 

values. R2 is a value ranging from zero to one which indicates how well the independent 

variables can be utilized to predict the dependent variables. The sig (p) value, is utilized 

to determine if the null hypothesis is true. The p-value can range from zero to one. A p-

value less than .05 indicates strong evidence against the null hypothesis. A p-value > .05 

indicates weak evidence against the hypothesis.   

The normality assumption is the assumption that there is a normal distribution of 

variables (Korkmaz, Goksuluk, & Zararsiz, 2014). Normality can be tested for with a 

Normal Probability Plot (P-P) of Regression Standardized Residuals and a scatterplot of 

the standardized residuals. The points on the P-P Plots should form a straight line (Zhou 

& Shao, 2014).  In situations where normality is violated transformation values can be 

applied to the variables to try to correct this issue (Zhou & Shao, 2014). This study did 

not require transformations to be applied. 
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Linearity is the assumption that a linear relationship exists between the 

independent and dependent variables (Hopkins & Ferguson, 2014). Linearity can be 

tested with a scatterplot. A linear relationship should be able to be seen. In situations 

where linearity is violated, a transformation can be applied to the independent or 

dependent variables to correct linearity issues. A common transformation is to apply the 

log of the independent or dependent variable (Jamshidian, Jalal, & Jansen, 2014). 

Transformations help when linearity is not met by helping to make the data better fit the 

chosen model. In this study, no transformation was needed. 

Multicollinearity is a correlation between independent variables (Yu, Jiang, & 

Land, 2015). In situations where the independent variables are not truly independent of 

one another, the results of the study can be biased (Yoo et al., 2014). Winship and 

Western discuss that correlations between independent variables should not be higher 

than .80 (2016). In order to assess multicollinearity, a correlation matrix can be utilized 

(Winship & Western, 2016). A correlation matrix is simply a table of correlations 

between variables. For this study, correlations were calculated using SPSS and put into a 

correlation matrix to assess multicollinearity. In addition to a correlation matrix, 

multicollinearity can be tested by calculating the Variance Inflation Factor (VIF) where 

values above 10 indicate multicollinearity (Yoo et al., 2014).  

Homoscedasticity assumes that the variance of errors is similar among the values 

of the independent variables (Hopkins & Ferguson, 2014). Homoscedasticity can be 

tested for using a scatterplot, if a clear pattern exists homoscedasticity may be a concern. 

In situations where homoscedasticity is violated a transformation of variables can help to 
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reduce the issue. Taking the square root of the independent or dependent variables is a 

common transformation. (Hopkins & Ferguson, 2014). In this study, no transformation 

was needed. 

Bootstrapping can be utilized in situations where the violation of an assumption 

occurs (Banjanovic & Osborne, 2016). Bootstrapping helps to determine standard errors 

of the coefficients for the predictor variables and helps address issues with a random 

sampling (Bro & Smilde, 2014). In some situations, data may also need to be adjusted in 

order to address violations of assumptions in multiple regression analysis by applying a 

logarithm or square root to the variables (Hopkins & Ferguson, 2014). For this study, no 

transformation was needed. 

Data for this study did not require any additional clean up, however ordering of 

the data was required to calculate the discounted cumulative gains. Site rankings were 

ordered from highest to lowest in order to calculate an ideal discounted cumulative gain 

for each participant (Benabbou et al., 2017; Jayashree & Christy, 2015). For this study, I 

assumed that participants provided honest rankings for the sites provided, but exceptions 

to this might have occurred. To help alleviate this, responses were examined for any 

major outliers as well as responses of all the same rankings for every site. No major 

outliers were found in the data.  

For this study, only complete response sets were utilized. Any incomplete 

questionnaires were viewed as a withdraw from the study. This decision was made based 

on the complete rule of Arrow’s impossibility theorem which states the social choice rule 

should provide a complete ranking of all alternatives (Morreau, 2015). This means that in 
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order to have a vote that is truly representative of the group as a whole every possible 

item must be ranked by every participant. In reality, this would be extremely difficult, if 

not impossible to achieve, but for the purposes of this study, it was followed, as it showed 

under perfect circumstances what could be possible. Recommendation engines are a good 

example that shows the more items that are ranked the more accurate the results can be 

(Aghaiipour-Chafuchahi & Ahmadi-Abkenari, 2015; Gleich, 2015; Wei et al., 2017). The 

idea for this study was if all items are ranked, the recommendations, or result rankings 

should be more accurate than if only some are ranked.  

I utilized an F-test to validate the model derived from my data analysis. Utilizing 

an F-test allowed me to assess multiple coefficients at the same time. The F-test 

compares the statistical model to an intercept only model and determines if the new 

model is significantly different from the intercept only model. This test can be utilized to 

determine whether or not to reject the null hypothesis and to determine if the statistical 

model provides a better fit for the data then the intercept only model. 

To analyze the data in this study I utilized SPSS. I explored other tools, such as 

Microsoft Excel 2016. While I was more experienced with Excel, SPSS provided 

additional features that helped validate the analysis of data.  

Study Validity 

External validity needed to be addressed for this study. The external validity of a 

study is how the results of the study can be applied to populations other than those that 

participated in the study (Rouf, Grech, & Allman-Farinelli, 2017). For this study the 

population was very specific, higher education faculty and students in the IT field in 
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Huntington WV, therefore care had to be taken to ensure the study’s results were 

applicable to other areas. Both faculty and students were included in order to get a wider 

range of experience and age. The decision to limit the field of study to IT was made 

simply to limit the topic of websites being reviewed to a specific topic that all 

participants will be familiar with. For this study, it was not feasible to open the study to 

any topic available, by limiting to a specific population the subject matter could be 

controlled to that group's knowledge area. The questions that were asked of participants 

were simple satisfaction ratings of websites and were not specific to a single area. The 

main assumption of this study was that all participants answered questions honestly and 

they did not try to sway the results in any way. In order to address the reliability of 

participants answers, I utilized the internal consistency reliability method.  

 Internal validity was not a major concern in this study. Internal validity deals with 

the connections between the dependent and independent variables (Abowitz & Toole, 

2010; Halperin, Pyne, & Martin, 2015; St. Clair, Cook, & Hallberg, 2014). The collection 

of data from participants did not truly affect the internal validity at all, because this data 

was only collected and then utilized for the study, any manipulation that occurred was 

done to the algorithms being tested. The nature of this study helped to ensure that there 

was no issue with the internal validity. The data provided by participants was be fed into 

various ranking algorithms and the results were compared. By simply running these 

various algorithms the internal validity was tested against the various algorithms. 

 Statistical conclusion validity was not a major issue in this study. Statistical 

conclusion validity looks at whether or not the relationship found between variables is 
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correct, specifically looking at if a correlation is found and none actually exists or if no 

correlation is found and one actually exists (Aravamudhan & Krishnaveni, 2015; 

Kratochwill & Levin, 2014). While this was something to be concerned about, the way 

this study was conducted these types of errors should be greatly reduced. Each set of 

responses were tested against various algorithms so any relationships between variables 

that may or may not be found were explored against different data sets, by doing this I 

was able to determine whether the observed relationships occurred reliably across 

multiple algorithms. 

While this study was conducted in a limited area the results will be able to be 

generalized to other areas as well. None of the questions asked were specific to a single 

area and therefore the location of the study did not have any effect on the results. The 

study was limited to a specific field of study, which could have potentially caused 

problems with generalizing the results, in order to help with this two types of sites were 

rated within the study, sites within the IT field and then another generic topic that is not 

field specific. By including both types of sites the study was able to obtain ratings for two 

different types of searches, research and entertainment based search results. Multiple 

types of sites allowed me to determine whether or not the result sets were applicable to 

specific field type searches or if they only applied to more generalized searches. This 

differentiation was important to this study because users do search for things out of their 

areas of expertise and the ranking method utilized may or may not prove to be as 

successful when searching for an unfamiliar topic. Participants could potentially have 

utilized different browsers when completing this survey, while this could cause some 
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sites to appear differently I chose not to try to control this. Requiring a specific browser 

to be utilized would not be reflective of every day usage by the participant, rather than 

requiring this to be done the participant was asked what browser he/she was utilizing and 

was then be applied to user preferences to determine if the browser utilized had any effect 

on his/her ratings. A power analysis was conducted to determine the appropriate sample 

size. To achieve a minimum power of .80 36 participants were needed, increasing the 

sample size to 75 increased the power to .99, therefore I sought between 36 and 75 

participants for this study. 

Transition and Summary 

In Section 2, I provided a description of the role of the researcher, the research 

method and design, population and sampling, data analysis, ethical considerations of the 

participants, and issues concerning validity and instrumentation. The role of the 

researcher section detailed how I am responsible for formulating a hypothesis, collecting 

and analyzing data, formulating conclusions, and how I will separate myself from 

personal experiences in order to conduct the study. The research method and design 

section provided a more detailed look at quantitative methodologies and experimental 

designs and why they have been chosen for this study and why other designs and 

methodologies were not appropriate. Population and sampling identified college students 

and faculty in the Huntington, WV area as the target population for this study with a 

minimum of 36 participants being required based on a priori power analysis. The data 

analysis section looked at the discounted cumulative gain analysis tool commonly 

utilized to measure the ranking quality of search engine result sets and why this method is 
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appropriate when looking at the results of this study. Ethical considerations looked at 

how the participants will be protected throughout this study, specifically explaining how 

no personal information will be linked to the participant's responses. The validity section 

examined issues that can occur with study validity and how I will work to alleviate these 

concerns as needed. 

Section 3 will provide detailed information regarding the findings of this research 

study. This will include a presentation of findings, possible applications to professional 

practice, implications for social change, recommendations for action, and reflections of 

my experience while working on the study. 
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Section 3: Application to Professional Practice and Implications for Change 

This study utilized a correlational quantitative research method that analyzed the 

relationship between user-driven parameters, user ratings, and ranking algorithms. In this 

section I will present the results of the analysis of the data gathered through the online 

surveys completed by the participants of the study. 

Overview of Study 

 The purpose of this correlational quantitative study was to examine the possible 

relationship between user-driven parameters, user ratings, and ranking algorithms. Using 

G*Power 3.1, I calculated the required sample size given the effect size, the probability, 

the power, and the number of predictors. The analysis indicated that a minimum of 36 

responses would achieve a statistical power of 0.80 while 75 responses would increase 

the statistical power to 0.99. I gathered data from 47 participants including both faculty 

and students in the IT field at a local university in Huntington, WV. Survey invitations 

were sent out to a total of 178 possible participants meaning that I received a response 

rate of approximately 26%. For this study I utilized a 95% confidence interval and 

anything above a 0.05 significance level indicated that a significant relationship did not 

exist.  

 The results of the data analysis showed that there was not a statistically significant 

relationship between user-driven parameters, user ratings, and ranking algorithms. The 

user ratings did show a significant relationship to the ranking algorithms, but the user-

driven parameters did not show a statistically significant relationship, therefore I cannot 

say with any statistical significance that there is a relationship between all three variable. 
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I must reject the alternative hypothesis of, there is a statistically significant relationship 

between user-driven parameters, user ratings, and ranking algorithms.  

Presentation of the Findings 

 In this portion of the study, I will analyze the methods used to test the 

assumptions involved with the methodology, present the statistical results of the data 

analysis, provide a detailed reporting of the findings, and summarize the findings. 

Test of Assumptions 

 In Section 2 I presented multicollinearity, normality, linearity, homoscedasticity, 

and independence of residuals as assumptions evaluated in this study. I evaluated these 

assumptions and present the findings below, which did not indicate any major violations 

to these assumptions. 

 Multicollinearity. I utilized a correlation matrix to test for multicollinearity 

within my data. Table 4 depicts the bivariate correlations within my data. The bivariate 

correlation between variables the variables Search Term and Algorithm DCG indicated a 

fairly strong correlation (.709), as well as between the interaction variables, therefore 

additional testing was needed to ensure multicollinearity was not a concern. 
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Table 4 

Bivariate Correlations  

 Algorithm 

DCG 

User 

DCG 

User 

Interest 

Search 

Term 

Search 

Term * 

User 

Interests 

Search 

Term * 

User 

DCG 

Algorithm 

DCG 

1 .428 .057 .709 .627 .828 

User DCG .428 1 .051 -.210 -.132 .008 

User Interests .057 .051 1 -.011 .372 .008 

Search Term .709 -.210 -.011 1 .944 .966 

Search Term * 

User Interests 

.627 -.132 .372 .844 1 .830 

Search Term * 

User DCG 

.828 .008 .008 .966 .830 1 

 

 For additional testing I utilized the Variance Inflation Factor (VIF) where values 

above 10 indicate multicollinearity (Yoo et al., 2014). The interaction variables presented 

problems for multicollinearity because the VIF values were above 10. Removing the 

interaction terms from the model corrected this problem. Table 5 shows the VIF values 

for my variables after the interaction terms were removed. The VIF values for 

Respondent DCG, User Interests, and Search Term were 1.049, 1.003, 1.046 respectively. 

All the VIF values were much lower than the threshold of multicollinearity, which is a 

good indicator that multicollinearity was not an issue. 
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Table 5 

VIF Values  

   Collinearity Statistics 

 t-Statistic Sig. Tolerance VIF 

Constant .612 .004   

Respondent DCG .586 .000 .954 1.049 

User Interests .026 .324 .997 1.003 

Search Term 1.366 .000 .956 1.046 

 

 Normality, linearity, homoscedasticity, and independence of residuals.  

Normality, linearity, homoscedasticity, and independence of residuals were evaluated by 

looking at the Normal Probability Plot (P-P) of Regression Standardized Residual (Figure 

2) and the scatterplot of the standardized residuals (Figure 3). Examining these plots did 

not indicate that there were any major violations of these assumptions. The points on the 

P-P Plots lie close to a straight line which is a good indicator that there was not a major 

violation of normality (Zhou & Shao, 2014). The scatterplots did not indicate a clear 

pattern of the standardized residuals which supported the assumptions being satisfactory.  
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Figure 2. Normal P-P Plot of regression standardized residual. 
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Figure 3. Scatterplot of standardized residuals and predicted values. 

Descriptive Statistics 

 

 I received a total of 59 responses to my survey. 12 responses were eliminated due 

to missing data, resulting in 47 responses utilized in the data analysis for this study. Of 

the 47 usable response sets only six were faculty members and 41 were students. The 

small response set from faculty members did not warrant breaking down these 

demographics within the analysis. Similarly, the preferred search engine 43 preferred 

Google, three preferred DuckDuckGo, and one preferred Yahoo. The small response set 

that preferred a search engine other than Google did not warrant breaking down these 

demographics within the analysis. The age of respondents ranged from 18 to 67. Of the 

usable respondents nine were 18 to 19, 23 were 20 to 29, 10 were 30 to 39, two were 40 

to 49, two were 50 to 59, and one was over 60. The browsers utilized to fill out the survey 

was primarily Chrome with 39 participants. The remaining eight participants utilized 
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Safari. The browser the participant utilized was included in the questionnaire in case any 

major outliers were found in the responses to determine if the browser may have caused 

this. No outliers were found therefore the browser the participants utilized was not 

needed for the analysis. The responses contained ratings for two sets of seven websites as 

well as how the participant would order those websites within a search result set. This 

provided 329 ratings for the keyword “Programming” and “Recipes.” Responses from all 

participants that completed the survey were loaded into an Access database which was 

queried to pull random rating and ranking data for each site within the result set for each 

group of participants. This data were then utilized to calculate the discounted cumulative 

gain for both the user data and the ranking algorithm data. The ranking algorithm’s 

ranking data were derived from the location each site was found in when doing a simple 

search from a fresh browser installation. No outliers existed within the data collected that 

required any data manipulation. These responses were utilized to calculate the discounted 

cumulative gain for each site rated. The discounted cumulative gain was calculated by 

getting the summation of (User rating)/Log2(Position in results + 1).  Table 6 shows the 

descriptive statistics for the data collected. 
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Table 6 

Descriptive Statistics 

Variable Mean (M) Standard Deviation 

(SD) 

Bootstrapped 95% 

Confidence Interval 

(CI) (M) 

Respondent DCG 5.35 .84 [5.19, 5.49] 

Algorithm DCG 4.50 .82 [4.35, 4.65] 

User Interests 2.5 1.1 [2.31, 2.72] 

Search Term .50 .50 [.41, .58] 

Note: N=120.  

Inferential Statistics 

 This study used standard multiple linear regression, α = .05 (two-tailed), to 

examine the effectiveness of the user-driven parameters, and the Search Term with the 

Respondent DCG in predicting the Ranking Algorithm’s DCG value. The independent 

variables were user interests, search term, and Respondent DCG. The dependent variable 

was the Algorithm DCG. The null hypotheses and alternative hypothesis were: 

Null Hypothesis (H0): There is no statistically significant relationship between 

user-driven parameters, user ratings, and ranking algorithms. 

Alternative Hypothesis (H1): There is a statistically significant relationship 

between user-driven parameters, user ratings, and ranking algorithms. 
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Table 7 

Model Summary 

Model R R2 Std. Error Sig. F Change 

Model .923 .852 .320 .000 

a. Predictors: (Constant), User Interests, Respondent_DCG, Search Term 

 

 The model as a whole was able to significantly predict the ranking algorithm’s 

discounted cumulative gain, p = .000 and R2 = .852 for the data collected (Table 7). The 

R2 value for the data collected indicated that the model could explain 86% of the total 

variability in the ranking algorithm’s discounted cumulative gain (R2=.852, F(3,115) = 

220.13, p < .01). 

The final predictive equation based on the predictor variables (Table 9) was: 

Ranking Algorithm DCG = .612 + .586(Respondent DCG) + 1.366(Search Term) 

 The model was validated utilizing a F-test. The F-test was highly significant for 

the data collected (Table 8). This testing indicates that the model explains a significant 

amount of the variance in the Algorithm DCG. This indicates that the regression model is 

a good fit for the data collected in the study, this means that the independent variables 

can significantly predict the dependent variable. This means that the regression model is 

more accurate than the simple intercept model.   
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Table 8 

F-Test Data 

Model Sum of 

Squares 

df Mean Square F Sig. 

Predictive 

Model 

67.752 3 22.584 220.138 .000 

11.798 115 .103  

79.550 118 

 

Table 9 

Regression Analysis 

Model Unstandardized  

Coefficients 

Standardized  

Coefficients 

t Sig. 

B Std. Error Beta   

1 

 

 

 

 

(Constant) .612 .210  2.914 .004 

Respondent_DCG .586 .036 .601 16.354 .000 

User Interests .026 .026 .036 .990 .324 

Search Type 1.366 .060 .836 22.748 .000 

a. Dependent Variable: Algorithm DCG 

 

  Search Type * Respondent DCG. Analysis was initially run including the 

interaction term between Search Type and Respondent DCG. For the data collected the 

interaction term between Search Type and Respondent DCG had a positive slope of .806 

but this was not a significant predictor of the Algorithm DCG because p > .05. Since 

Search Type * Respondent DCG was not a significant predictor and the VIF value was 
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greater than 10 this interaction term was removed from the model and analysis was done 

again without this interaction term. 

 Search Type * User Interests. Analysis was initially run including the 

interaction term between Search Type and User Interests. For the data collected the 

interaction term between Search Type and User Interests had a negative slope of .093 but 

this was not a significant predictor of the Algorithm DCG because p > .05. Since Search 

Type * User Interests was not a significant predictor and the VIF value was greater than 

10 this interaction term was removed from the model and analysis was done again 

without this interaction term. 

Respondent DCG. For the data collected, Respondent DCG has a positive slope 

of .586 which indicates that for every point of increase in Respondent DCG there is a 

.586 increase in the Algorithm DCG. The increase in the Respondent DCG only accounts 

for a partial change in the Algorithm DCG, the change must also be combined with the 

constant slope value, .612. This would indicate for every point of increase in Respondent 

DCG there is a 1.198 increase in the Algorithm DCG. These values are only 

representative of the overall grouping and does not take into account the subgroups 

utilized in this study. The respondent DCG was a significant predictor for the Algorithm 

DCG because p < .05. This means that when the overall group’s DCG value increases it 

can be said that it will significantly predict the increase to the Algorithm DCG.  

 User interests. User interests has a positive slope of .026 for the data collected. 

This indicates that for every point of increase in the user interests there is a .026 increase 

in the Algorithm DCG. These changes to the Algorithm DCG must be looked at in 
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combination with the changes indicated for the Respondent DCG variable, meaning that 

the change in Algorithm DCG would be 1.198 + .026 = 1.224. The user interests were not 

a significant predictor for the Algorithm DCG because p > .05. This means that it cannot 

be said that the user interests will significantly predict the Algorithm DCG. Since user 

interests was not a significant predictor it was not included in the final model. 

 Search term. Search term has a positive slope of 1.366 for the data collected. 

This indicates that for every point of increase in the DCG when searching within the 

user’s knowledge area there is a 1.366 increase in the Algorithm DCG. These changes to 

the Algorithm DCG must be looked at in combination with the changes for the 

Respondent DCG variable, meaning that the change in Algorithm DCG would be 1.198 + 

1.366 = 2.564. The search term was a significant predictor for the Algorithm DCG 

because p < .05. This means that it can be said that the search term will significantly 

predict the Algorithm DCG.  

 Analysis summary. The purpose of this study was to determine if there was a 

statistically significant relationship between user-driven parameters, user ratings, and 

ranking algorithms. I utilized multiple linear regression to examine the effectiveness of 

the predictor variables. The assumptions surrounding multiple regression were evaluated 

and no serious violations were found. The overall model was able to significantly predict 

the algorithm ranking discounted cumulative gain, R2=.852, F(3,115) = 220.13, p < .01 

see table 9. While the model as a whole was able to significantly predict the algorithm 

ranking discounted cumulative gain the user interests variable was not a significant 

predictor. The Respondent DCG and Search Term were the most significant predictors 
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with p = .000. This would indicate that a significant relationship exists between user 

ratings and the ranking algorithm when the user is searching within his/her knowledge 

area. 

 Theoretical conversation on findings. After analyzing the data collected for my 

study I was able to show that the overall model could significantly predict the ranking 

algorithm’s DCG. None of the individual groupings alone were a significant predictor for 

the algorithm’s DCG. The participant DCG and search term however did have a 

significant relationship with the ranging algorithm’s DCG. These findings suggest that 

there may be a correlation between the user’s ratings and the ranking algorithm but the 

user-driven parameters do not play a major role in this correlation.  

 In studies performed to examine the applications of personalization on search 

ranking algorithms it has been shown that personalization techniques can provide users 

with more relevant search results over standard search algorithms (Ramesh & Andrews, 

2015). The personalization techniques from these studies often utilized collaborative 

filtering techniques to group users together in order to increase the accuracy of search 

results. The biggest problem with collaborative filtering techniques is not having enough 

data to provide recommendations for new users (Wei et al., 2017). Some studies have 

utilized a user’s interests to get around this lack of data (Guo & Chen, 2016). This study 

has focused on whether existing ranking algorithms utilized by search engines have a 

correlation with user ratings and user-driven parameters. 

 In this study I found that user ratings can be a significant predictor to rankings 

provided by existing ranking algorithms. The user groups within this study were not 
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significant predictors by themselves for the algorithm rankings. Several studies have 

found that the addition of personalization factors to search ranking algorithms actually 

increase the reliability of existing ranking algorithms (Saxena, Agarwal, & Katiyar, 

2016).  Balakrishnan et al. (2015) found that utilizing user rankings for website 

significantly outperformed standard search engine ranking algorithms. Specifically 

Balakrishnan et al. found the CoRRe model utilized to be significant at three different 

document levels: top-five (t(18) = -3.049, p = 0.016), top-10 (t(18) = -5.158, p = 0.001), and 

top-15 (t(18) = -5.344, p = 0.01). My study differed from Balakrishnan et al. in the way I 

looked at the data. In my study I looked at existing result sets and had participants rank 

sites that were provided by the ranking algorithm instead of generating different result 

sets based on different criteria. While my study was different, the findings of my study 

align with Balakrishnan et al. (2015) in that the respondents’ calculated discounted 

cumulative gains were higher than the algorithms calculated discounted cumulative gains, 

which indicates that the user rankings provide a better representation of a search results 

set than the algorithm ranking. My model was able to significantly predict 85% of the 

total variability in the ranking algorithm’s discounted cumulative gain (R2=.852, F(3,115) 

= 220.13, p < .01). Being able to significantly predict the variability indicates there is a 

correlation between my variables and that the addition of user ratings could potentially 

help to improve the discounted cumulative gain of ranking algorithms which is similar to 

the findings of Balarishnon et al. 

 Grouping users into subgroups is commonly done in an effort to further improve 

result sets (Guo & Chen, 2016). Suruliandi et al. (2015) looked at grouping users based 



87 

 

on both content analysis and user interest groups and found that user groups produced 

higher quality results then both the search engine algorithms and personalization 

algorithms based on content analysis. In my study I grouped participants based on their 

interests pertaining to how they most often utilized the internet. The grouping data in my 

study indicated that while the addition of these groups did provide some change to the 

respondent DCG values, the change was not statistically significant. This differs from the 

findings of Suruliandi et al. (2015). The difference in my findings versus the findings of 

Suruliandi et al. (2015) does not necessarily mean that the addition of group data cannot 

provide more accurate results. Differences can easily be explained by the way 

participants were grouped in the different studies. I chose to group participants based on 

how they primarily utilize the internet, but drilling down even further and getting more 

specific regarding user interests could help to improve upon user groupings and possibly 

result in more statistically significant results. When search term was added within this 

study I did find a significant relationship for search term. This could indicate that users 

searching within their own content area view those websites differently than websites 

outside of their own content area. 

 In this study I looked at Arrow’s impossibility theorem in relationship to ranking 

algorithms. Arrow outlined five rules that must be met in order to truly represent a groups 

opinion. Arrow states that it is impossible to meet all five rules when three or more 

options exist (Ben-Yashar & Nitzan, 2017). As outlined in the literature review, four of 

these rules are easily met by ranking algorithms, however the his “Complete” rule would 

essentially be impossible to meet. Some studies have suggested relaxing these rules to 
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meet a conditional Arrow fairness (McComb, Goucher-Lambert, et al., 2017). This study 

supports the idea that the ranking algorithm actually meets the requirements behind 

conditional Arrow fairness. The subgroups were not significant predictors of the 

algorithm rankings, but the overall participant rankings were. This could potentially 

suggest that the subgroups did not contain enough information to significantly predict the 

algorithm ranking value, but when combined provided a much more significant 

prediction. This is in line with conditional Arrow fairness because as more and more data 

is collected the accuracy of rankings should become more in line with the group opinion 

as a whole.  

Applications to Professional Practice 

 This study aimed at examining the correlation between user-driven parameters, 

user ratings, and ranking algorithms. The results of this study will provide content 

providers with a better understanding of how users view web content as a whole. With a 

better understanding of this topic the quality of content created may improve and help 

content providers to focus more on content rather than search engine optimization. 

 The findings of this study show that the subgroups utilized within this study were 

not significant predictors of the ranking algorithm by themselves, while the overall 

participant ratings were significant predictors. It also showed that the search term was 

also a significant predictor of the ranking algorithm. The overall findings can potentially 

be very useful to content providers who focus their content on a specific niche. The 

content created by these providers would most likely be focused entirely on that subgroup 

of interested users. While it is necessary to focus content to the interested users, it may be 
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beneficial to expand the content to more generic terms to help reach potential new users 

outside of the subgroups of interest.  

 In this study, two search terms were utilized. The first term, “Programming,” was 

selected because every participant should have some general knowledge or interest about 

this term. The second term, “Recipes,” was selected as a generic term that everyone 

should know about, but may not necessarily have much interest or knowledge about. The 

difference in search terms was chosen to look at how searches measured with participants 

who had a professional interest in one term, but may or may not have a professional 

interest in the other.  The type of search term was a significant predictor for the 

Algorithm DCG with p < .05.  

 The significance of the search type in this study is an important distinction for 

content providers to consider when creating web pages. The analysis within this study 

showed that the search term was a significant predictor of the ranking algorithm. Content 

providers can potentially utilize this information to their advantage while considering 

methods for search engine optimization. Understanding more about your target audience 

and the type of content being provided is important. Targeting generic keywords, like 

recipes, that users from many different backgrounds may search for, search engine 

optimization techniques could be more difficult. Just because a page does not make it to 

the first position of the search results does not mean that users do not like the page better 

than other pages. This is a good example of why content providers should be concerned 

more with the quality of their pages instead of algorithm rankings.  
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 Search rankings are important to content providers, because the higher in a result 

set a page is the more likely users are to find that page. The position a page appears in a 

result set is not necessarily an indicator of the page’s quality. Content providers need to 

understand this, while it is important to try to get higher in a result set, focusing on 

keywords within their content is not necessarily going to help in the long run. User 

opinions are what will truly define the success of a web page. Being the first site listed on 

a search engine may help drive people to a web site, but it is the content of the site that 

will help to bring them back. 

Implications for Social Change 

 This study was done to help provide a better understanding of the correlation 

between user-driven parameters, user ratings, and ranking algorithms to content 

providers. The results of this study showed that the user-driven parameters alone were not 

a significant predictor of ranking algorithms, while the user ratings were a significant 

predictor. Understanding that the user ratings are actually a significant predictor 

regardless of the user-driven parameters can potentially lead to a significant change in 

how content is derived. Some content providers, for niche content, may focus less time 

on utilizing niche keywords in an effort to push their websites higher on the search results 

page and begin focusing more time on the content regardless of keywords.  

 When the content providers broaden the scope of keywords utilized their content 

would begin to fall into more searches, exposing their content to a wider range of users 

searching for similar content. A couple of benefits could occur as a result of broadening 

the scope of keywords. User’s searching for more generic terms could potentially be 
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exposed to more content that would generally require more specific search terms. This 

exposure with more generic terms could help users expand their knowledge new content 

more quickly. The need for users to expand upon their search term to be more specific 

could be greatly reduced allowing them to conduct their search within a single result set. 

These possible changes to how users can find information within a search result set can 

lead to users finding new topics of interest and expanding their knowledge more quickly. 

The faster expansion of knowledge into new topics can lead to innovations within 

countless topics. Innovations can in turn lead to improvements to how people live 

everyday life. 

Recommendations for Further Research 

 This study was limited by the amount of data and the location of participants. 

Ranking algorithms require large amounts of data and this amount of data was not readily 

available for this study. To collect data, I chose the search terms and randomly selected 

websites to have participants rate. The participants were IT students and faculty in 

Huntington, WV, limiting to a specific field was simply done in order to be able to 

choose a search term that was relevant to the participants’ field of interest.  

 Further studies could expand upon the search terms utilized and use a larger area 

for participants. The limitation of using a specific field could be eliminated for future 

studies and derive sites from various fields showing relevant search terms to participants 

based off of a series of interest questions. In addition, this study could utilize a larger 

number of participants to determine if different topics could produce different results.  
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 Future studies could also expand on the groupings utilized in this study. The 

groups within this study were generic based upon how participants primarily utilized the 

internet. Expanding upon these groups to more specific user groupings could produce 

very different results. Another possible approach would be to utilize the same groupings 

with a larger participant pool and further divide those groups based upon how 

participants rated each site similar to how many collaborative filtering algorithms work. 

 Future researchers can also utilize this study as a source to try to develop new 

ranking algorithms. This study showed that the user-driven parameters were not 

significant predictors of existing ranking algorithms. The development of new ranking 

algorithms that focus on user-driven parameters is still a potential research topic. Future 

studies could try to modify algorithms to try to base results on user-driven parameters in 

an effort to improve upon result sets for specific users.  

Reflections 

 I have spent my entire professional career working in higher education, as a result 

furthering my education became a goal that I truly wanted to achieve. This entire process 

has been an amazing experience and has helped me find new interests and directions for 

my career. Finding and reading the many different studies and looking at them and how 

the different topics can be utilized together has truly changed the way I think. In my 

current job I have found myself doing a great deal more research and thinking more 

outside the box to try to improve the quality of service I provide.  

 I have learned a great deal throughout this process about myself and worked very 

hard on improving some professional shortcomings that I had, such as organizational and 
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time management skills. This has been a long process for me, as I had several personal 

issues arise that have required me to shift focus away from my study and to my family 

and friends. Despite this I would not trade this experience for anything because I truly 

feel it has helped me improve both my professional and personal life. 

Summary and Study Conclusions 

 The analysis did not show a statistically significant between user-driven 

parameters, user ratings, and ranking algorithms. The user ratings variable did show a 

statistically significant relationship, but the user-driven parameters did not. The overall 

user ratings, regardless of user interests, are where content providers should focus their 

efforts when designing web content. 

 The results of this study do not readily suggest any changes should be made to 

how content providers implement search engine optimization techniques. This study did 

not find a statistically significant relationship between algorithm rankings and user-driven 

parameters but did show a statistically significant relationship between user ratings and 

algorithm ranking. This finding indicates that search ranking algorithms may be more 

predictable among overall user usage as opposed to predicting rankings based on subsets 

of users. Content providers can utilize this information to help improve their overall site 

quality by broadening keywords utilized to focus more towards a larger group of users as 

opposed to subsets of users.  

This would indicate a slight shift in how some content providers think. Many 

content providers currently focus on keyword sets in an effort to get their websites higher 

within a result set. While this is important, this study showed that there is a relationship 
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between overall user ratings and the algorithm ranking. Gaining a better understanding of 

what this relationship is an important next step in order to provide content providers with 

a complete picture of how they can improve upon their content and still maintain a high 

ranking among search result pages. 
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Appendix A: Questionnaire 

Demographic Section 

The following questions are used for demographic purposes only all responses will be 

kept completely confidential. 

1. Are you a Faculty member or a student? 

a. Faculty 

b. Student 

2. What is your age? 

3. Which of the following search engines do you prefer to use when searching the 

web? 

a. Google 

b. Yahoo 

c. Other (if other please specify) 

4. Do you utilize the internet for social media? 

a. Everyday 

b. A few times a week 

c. A few times month 

d. Never 

5. Do you utilize the internet for research? 

a. Everyday 

b. A few times a week 

c. A few times a month  

d. Never 

6. Do you utilize the internet for news? 

a. Everyday 

b. A few times a week 

c. A few times a month 

d. Never 

7. Do you utilize the internet for games? 

a. Everyday 

b. A few times a week 

c. A few times a month 

d. Never 

8. Do you utilize the internet for media, such as videos or music? 

a. Everyday 

b. A few times a week 

c. A few times a month 

d. Never 

9. Of the following, which would you say is your primary usage of the internet? 

a. Social Media 

b. Research 
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c. News 

d. Games 

e. Media, such as videos or music 

10. What browser are you currently using to fill out this survey? 

a. Chrome 

b. Firefox 

c. Internet Explorer 

d. Safari 

e. Other 

 

The following sites were found using the search term given. Please rate each site using a 

1 to 5 scale where 1 is strongly dislike and 5 is strongly like. For your answer please 

consider the term provided when ranking. 

(For the actual survey the following questions will be randomized so the sites are not 

presented in any particular order) 

1. Search Term: Computer Programming  

Site: https://en.wikipedia.org/wiki/Computer_programming 

2. Search Term: Computer Programming 

Site: http://guyhaas.com/bfoit/itp/Programming.html 

3. Search Term: Computer Programming 

Site: http://www.programmingbasics.org/en/beginner/gettingstarted.html 

4. Search Term: Computer Programming 

Site: https://en.wikiversity.org/wiki/Introduction_to_Programming/About_Progra

mming 

5. Search Term: Computer Programming 

Site: https://www.quora.com/topic/Computer-Programming 

6. Search Term:  Computer Programming 

Site: http://www.sciencedirect.com/science/journal/01676423?sdc=1 

7. Search Term: Computer Programming 

Site: http://www.computerscience.org/careers/computer-programmer/ 

8. Search Term: Recipes 

Site: http://allrecipes.com/ 

9. Search Term: Recipes 

Site: http://www.recipe.com/ 

10. Search Term: Recipes 

Site: http://www.food.com/recipe 

11. Search Term: Recipes 

Site: http://www.seriouseats.com/recipes 

12. Search Term: Recipes 

Site: http://www.health.com/recipes 

13. Search Term: Recipes 

Site: https://minimalistbaker.com/recipes/ 

https://en.wikipedia.org/wiki/Computer_programming
http://guyhaas.com/bfoit/itp/Programming.html
http://www.programmingbasics.org/en/beginner/gettingstarted.html
https://en.wikiversity.org/wiki/Introduction_to_Programming/About_Programming
https://en.wikiversity.org/wiki/Introduction_to_Programming/About_Programming
https://www.quora.com/topic/Computer-Programming
http://www.sciencedirect.com/science/journal/01676423?sdc=1
http://www.computerscience.org/careers/computer-programmer/
http://allrecipes.com/
http://www.recipe.com/
http://www.food.com/recipe
http://www.seriouseats.com/recipes
http://www.health.com/recipes
https://minimalistbaker.com/recipes/
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14. Search Term: Recipes 

Site: http://www.foodandwine.com/recipes 

 

 

The next set of questions place the websites in the order you feel would be most 

appropriate for a search engine to return the sites for the given search term. 

 

1. Search Term: Computer Programming  

a. Site: https://en.wikipedia.org/wiki/Computer_programming 

b. Site: http://guyhaas.com/bfoit/itp/Programming.html 

c. Site: http://www.programmingbasics.org/en/beginner/gettingstarted.html 

d. Site: https://en.wikiversity.org/wiki/Introduction_to_Programming/About

_Programming 

e. Site: https://www.quora.com/topic/Computer-Programming 

f. Site: http://www.sciencedirect.com/science/journal/01676423?sdc=1 

g. Site: http://www.computerscience.org/careers/computer-programmer/ 

2. Search Term: Recipes 

a. Site: http://allrecipes.com/ 

b. Site: http://www.recipe.com/ 

c. Site: http://www.food.com/recipe 

d. Site: http://www.seriouseats.com/recipes 

e. Site: http://www.health.com/recipes 

f. Site: https://minimalistbaker.com/recipes/ 

g. Site: http://www.foodandwine.com/recipes 

 

 

 

 

 

http://www.foodandwine.com/recipes
https://en.wikipedia.org/wiki/Computer_programming
http://guyhaas.com/bfoit/itp/Programming.html
http://www.programmingbasics.org/en/beginner/gettingstarted.html
https://en.wikiversity.org/wiki/Introduction_to_Programming/About_Programming
https://en.wikiversity.org/wiki/Introduction_to_Programming/About_Programming
https://www.quora.com/topic/Computer-Programming
http://www.sciencedirect.com/science/journal/01676423?sdc=1
http://www.computerscience.org/careers/computer-programmer/
http://allrecipes.com/
http://www.recipe.com/
http://www.food.com/recipe
http://www.seriouseats.com/recipes
http://www.health.com/recipes
https://minimalistbaker.com/recipes/
http://www.foodandwine.com/recipes
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Appendix B: Invitation Email 

 Hello, My name is Gary Michael Taylor, a doctoral student at Walden University. 

I graduated from Marshall University with a Bachelor of Science in Computer 

Information Technology in 2006 and then obtained my Masters of Science in Software 

Engineering from West Virginia University in 2010. I have worked in higher education 

since I graduated in 2006 at various organizations including Marshall University, 

Mountwest Community & Technical College, and most recently INTO Marshall 

University. 

 I would like to invite you to participate in a research study to help determine how 

user’s rankings of websites differ from existing search ranking algorithms. The findings 

of this study can potentially help designers to consider new techniques for search ranking 

algorithms which could lead to improvements in the quality of search results. By 

improving the quality of search results you could potentially find information you are 

looking for faster. 

 

Thanks in advance for your participation, 

Gary Michael Taylor 
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