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Abstract 

Although early mathematics instruction is predictive of future mathematics achievement, 

the effects of STEM-based mathematics instruction on mathematics gains in elementary 

school have been largely unexplored. The purpose of this quantitative study was to 

determine whether mathematics scores from third grade student state-mandated 

standardized mathematics test differ between students who were enrolled in STEM 

schools and students who were enrolled in non-STEM schools in the largest school 

district located in a Southwestern state in the United States. Polya’s problem-solving 

heuristics formed the theoretical framework because of their relevance to concepts on the 

third grade mathematics test. Two research questions focused on intraindividual changes 

and interindividual changes over time in standardized mathematics test scores of third 

grade students who were enrolled in 18 STEM and 18 non-STEM schools. Analyses 

included growth curve modeling and a one-way random effect ANOVA to determine 

individual growth trajectories of mathematics test scores from individual schools over 

time from 2012 through 2017. The results indicated that there were no intraindividual 

differences in growth over time within schools, and there were interindividual changes in 

growth over time between schools, but the changes could not be explained by the 

independent variables, STEM and non-STEM schools. Findings were not consistent with 

the literature, which indicated early STEM-based mathematics instruction is more 

beneficial than traditional instruction. This study offers implications for positive social 

change by demonstrating equivalent results of STEM to non-STEM instruction, which 

may encourage more hands-on, inquiry-based learning for all children.   
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Chapter 1: Introduction to the Study 

In this study, I examined the difference on state-mandated standardized 

mathematics test scores between third grade students who were enrolled in science, 

technology, engineering, and mathematics (STEM) schools and third grade students who 

were not enrolled in STEM schools. STEM support is more beneficial when introduced 

during early childhood education, and the level of mathematical skill gained in preschool 

is predictive of mathematics achievement throughout high school (Clements & Sarama; 

2016; McClure et al., 2017; Oberle, Schonert-Reichl, Hertzman, & Zumbo, 2014; 

Rosicka, 2016). Despite growing evidence about the advantages of early mathematics 

instruction, virtually no research exists that compares the effect of STEM and non-

STEM, or traditional education, on third grade student performance on high- or low-

stakes standardized mathematics tests (Chiu, Price, & Ovrahim, 2015; Clements & 

Sarama, 2016; Ejiwale, 2013; McClure et al., 2017).  

The results of this research provided information to advance positive social 

change by clarifying the importance of early-grade STEM pedagogy in supporting 

mathematics achievement, especially because third grade students are now subject to 

standardized testing. The results of this study can help educational stakeholders in 

educational planning for early-grade instruction. In addition, this study’s results might 

catalyze changes in local, state, or national educational decisions, including policies and 

funding that influence endorsement of high quality STEM programs and curricula in 

elementary education, which is partly provided by an arm of the federal government, the 
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Committee on Science, Technology, Engineering and Math Education (Lamberg & 

Trzynadlowski, 2015).  

This chapter includes a brief review of the background and outlook on STEM 

education in the primary grades and early mathematics instruction and provides a 

description of the problem and purpose of this study, its theoretical foundation, and the 

research questions (RQs) that guided data collection. I also address the limitations, 

assumptions, scope and delimitations of this study and identify the steps taken to ensure 

ethical treatment of data and stakeholders. 

Background 

A survey of educational stakeholders on trends regarding STEM education across 

all grade levels showed that 53% believed STEM education should be implemented in 

elementary school, while 30% supported STEM implementation in junior high school, 

11% supported STEM learning in all grades simultaneously, and 6% advocated for 

STEM instruction in high school (Tanenbaum, 2016). The work of Gravemeijer, Stephan, 

Julie, Lin, and Ohtani (2017) emphasized a critical need for mathematics literacy in 

elementary education to meet the demands of STEM-focused curricula, which students 

will experience as they progress academically and sit for international assessments 

(Allen-Lyall, 2018). While there is growing body of literature on the importance of early 

STEM-based mathematics instruction, only a few studies have researched the effect of 

early STEM instruction on mathematics gains in elementary school (Doerschuk et al. 

2016). STEM disciplines are uniquely interlocked, and the importance of STEM-focused 

mathematics is observed when students are engaged in activities that promote 
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investigations in engineering, science, and technological principles in which primary 

grade students thrive (Confrey & Maloney, 2015).  

Platas et al. (2016) and the Organization for Economic Cooperation and 

Development (OECD; 2016a) posited that students who demonstrate early interest and 

talent in mathematics education are more likely to be self-efficacious and motivated to 

pursue STEM studies in later years. Gunderson, Park, Maloney, Beilock, and Levine 

(2018) found that students who are motivated to learn mathematics experience positive 

learning trajectories from first grade through postsecondary education. Some of the 

benefits that educational opportunities in STEM disciplines provide include student 

personal welfare, intellectual growth, and the establishment of a competitive nation on 

the global playing field (National Academy of Sciences, 2005). While STEM education is 

a key facet of the U.S. standing in the global economy, a vast majority of the nation’s 

schools teach from a traditional curriculum (National Academy of Sciences2005), and 

many students who are STEM educated work in non-STEM fields, which increasingly 

seek STEM knowledge and skills (Grinis, 2017).  

A correlation between early STEM instruction and later success in mathematics is 

evident in previous studies; at the same time, the lack of instruction in mathematics 

fundamentals leads to low mathematics achievement (Kermani & Aldemir, 2015; 

McClure et al., 2017; Romar & Matthews, 2015). Children are naturally curious and 

often exhibit a set of informal mathematical skills before the third grade that researchers 

have found to be instinctive, broad ranging, and complex, which teachers can tap into 

with intentional teaching methods such as teaching problem-solving skills in problem-
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based learning in STEM classes (Daugherty, Carter, Swagerty, & Daughtery, 2016). 

Educational experts voice interest in early-stage STEM instruction in elementary school 

based on research that children are naturally inclined towards STEM learning due to their 

explorative natures and innate interest in mathematics naturally found in their 

surroundings (Stipek, 2017; Weiland & Yoshikawa, 2013). At the same time, well-

designed instruction in mathematics fundamentals supports children’s achievement as 

measured on standardized tests (Darling-Hammond, 2017). 

Therefore, the effect of STEM education in the primary school years on 

mathematics achievement as it is assessed by school districts is an action worthy of study. 

By studying the achievement of third grade students who were enrolled in STEM 

education compared to third grade students who were not enrolled in STEM education, I 

intended to determine if STEM education and its approaches to learning have an effect on 

student outcomes on the third grade state-mandated mathematics test. This study is 

important because it can lead to more specific teacher development, improvements to 

STEM-based elementary curricula, and increased student achievement in mathematics 

assessments.  

Problem Statement 

The problem that formed the basis for this study is the lack of information about 

the effect of early-stage STEM instruction on student state-mandated standardized 

mathematics achievement test results. Current literature (Nguyen et al., 2016; Schoenfeld, 

2016) indicates that educational stakeholders understand the importance of early 

mathematical instruction to enable children’s success in more complex mathematics 



5 

 

classes in secondary and postsecondary education. Parents also are concerned about their 

children’s early mathematics learning and achievement because those who are proficient 

in mathematics tend to advance into high paying technologically based fields (Bailey, 

Siegler, & Geary, 2014; Fayer et al., 2017; Nguyen et al., 2016). Knowledge about the 

effect of early STEM instruction on later mathematics success is relevant to educational 

systems because American students have underperformed in several cycles of 

international assessments in mathematics and continue to score well below East Asian 

countries (McDonald, 2016; OECD, 2016b).  

There is a lack of research on whether early STEM instruction predicts later 

mathematics achievement (Nguyen et al., 2016). Previous research findings indicate that 

only 8% of high school graduates are ready for STEM majors in college, thus affecting 

the number and quality of STEM talent recruited into STEM careers (Carnevale, Smith, 

Gulish, & Hanson, 2015; Emeagwali, 2015; Krehbiel & Piper, 2017; Lachapelle et al., 

2014; Nguyen et al., 2016; Rothwell, 2013). As a result, more than 80% of manufacturing 

executives worldwide have expressed concerns about a shortage of STEM talent to meet 

the exigencies of STEM jobs, given consumer demands of STEM-based products and 

services (Bryson, Mulhall, Lowe, & Stern, 2018; Holzer, 2017).  

STEM instruction in the early grades has received little attention from influential 

stakeholders (Chiu et al., 2015; Ejiwale, 2013; McClure et al., 2017). This lack of 

information about the effect of early STEM instruction on children’s mathematics 

achievement is the problem that formed the basis for this study.  
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Purpose of the Study 

The purpose of this quasi-experimental study using retrospective, longitudinal 

data, and individual growth curve (IGC) models was to determine whether mathematics 

scores from third grade student state-mandated standardized mathematics test, the 

dependent variable, differed between students who were enrolled in STEM-based schools 

and students who were not enrolled in STEM-based schools (non-STEM). In this study, 

the independent variable of school type was dichotomous because it includes two 

categories of STEM and non-STEM schools. Since IGC models focus on developmental 

changes over time (Shek & Ma, 2011), the factor of time (the 6 years between 2012 and 

2017) constitutes another independent variable in this study. State-mandated standardized 

mathematics assessment scores of third grade students formed the dependent variable. 

The STEM-based schools and the non-STEM schools were in the same school district in 

a Southwestern state of the United States. 

It is important to note for this study that IGC models have two levels of analysis, 

Level 1 model and Level 2 model, which I used to test two RQs. I analyzed 

intraindividual and interindividual differences in growth over time based on the results 

from third grade student standardized mathematics test. The Level 1 model focused on 

RQ1 and the Level 2 model focused on RQ2. To address the purpose of this study I 

conducted a longitudinal data analysis using IGC models to answer RQ1 and RQ2 by 

analyzing results from third grade student state-mandated mathematics standardized tests 

administered from 2012 to 2017.  
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Research Questions 

Two questions guided this study:  

RQ1: What are the individual changes in growth over time in mathematics scores 

from a state-mandated standardized test of third grade students who were enrolled 

in STEM-based schools and students who were not enrolled in STEM-based 

schools?   

H01: There are no statistically significant changes in growth over time in 

mathematics scores from a state-mandated standardized test of third grade 

students who were enrolled in STEM-based schools and students who were 

not enrolled in STEM-based schools. 

H11: There are statistically significant changes in growth over time in 

mathematics scores from a state-mandated standardized test of third grade 

students who were enrolled in STEM-based schools and students who were 

not enrolled in STEM-based schools. 

RQ2: What are the between-person or interindividual changes in growth over time 

in mathematics scores from a state-mandated standardized test of third grade 

students who were enrolled in STEM-based schools and students who were not 

enrolled in STEM-based schools?  

H02: There are no statistically significant differences in between-person or 

interindividual changes in growth over time in mathematics scores from a 

state-mandated standardized test of third grade students who were enrolled in 
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STEM-based schools and students who were not enrolled in STEM-based 

schools. 

H12: There are statistically significant differences between-person or 

interindividual changes in growth over time in mathematics scores from a 

state-mandated standardized test of third grade students who were enrolled in 

STEM-based schools and students who were not enrolled in STEM-based 

schools. 

Theoretical Foundation for the Study 

The theoretical foundation that guided this study was Polya’s (1957) theory of 

mathematics problem solving and heuristics. Four key elements of Polya’s (1957) state 

that students must (a) understand what the problem is to determine the best possible 

method to generate solutions, (b) devise a plan of strategies to solve the problem, (c) 

execute the plan, and (d) look back on the problem and the outcomes and explore 

additional paths to the answer. Polya (1957) asserted that the teacher’s role is to facilitate 

learning and find a balance to avoid giving the student insufficient or too much 

assistance, which fostered student-centered learning and independent thinking. Polya 

(1957) posited that students usually stop working once they solve the problem and 

posited that they should work exhaustively to find solutions and new ways to answer 

mathematical problems. Tanenbaum (2016) and English (2017) noted similar habits in 

terms of working hard and tenaciously. Polya (1957) discussed trial and error and 

guesswork as a natural part of working through problems, which Tanenbaum (2016) also 

mentioned. Past research on teaching mathematics by implementing Polya’s problem-
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solving method in elementary school indicated that students are less likely to abandon the 

task because of perceived failure and will resort to problem-solving skills in search of 

solutions (Selmer & Kale, 2013).  

Schoenfeld (2013), who has researched Polya’s work at length, recalled 

theoretical analyses he developed on why people succeeded or failed at solving a broad 

range of mathematics problems. Schoenfeld (2013) discussed four actions that 

determined a successful problem solver, which stated (a) the student must be 

knowledgeable about the problem area, (b) students must know possible strategies to find 

solutions to problems, (c) the student must autonomously regulate his progress and 

responses to the problem, and (d) the student must practice flexibility when solving math 

problems. Schoenfeld (2016) found some of Polya’s (1957) strategies to be expansive, 

particularly Step 2, which urged students to decide on a strategy despite the fact that there 

could be a myriad of strategies from which to select. 

Polya’s (1957) model provided a framework for this study through which to 

investigate whether third grade student participation in a STEM-based mathematics 

course resulted in a statistically significant difference in mathematics test scores 

compared to those of students enrolled in non-STEM schools. In many cases, traditional 

methods of teaching math still use rote learning and memorization of facts (Abdullah, 

Halim, & Zakaria, 2014), which O’Connor, Morsanyi, and McCormack (2018) believed 

has value when students are developing counting and ordering mathematical skills. Fan 

and Yu (2017) highlighted the problem-solving process and the engineering design 

process as effective tenets of a STEM program in the report, STEM 2026, which are 
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similar to Polya’s (1957) approach to teaching and learning mathematics using problem-

solving processes.  

According to Tanenbaum (2016), students who repeatedly sought solutions to the 

challenging problems learned through trial and error and guesswork, but they also used 

different techniques to pursue answers. Students who were encouraged to follow Polya’s 

(1957) problem-solving process developed persistence, confidence, critical thinking 

abilities, and metacognitive skills. These attributes are concomitant with quality STEM 

education. Authentic STEM programs include practical application through hands-on 

investigation, solution design, collaboration, real world contexts for learning, 

opportunities to experience failure, opportunities to communicate with other learners, 

student-centered instruction, and teacher facilitation of student thinking (Tanenbaum, 

2016). Polya’s ideas are in concordance with these applications and confirm that this 

theory formed an appropriate foundation for this study.  

Nature of the Study 

The purpose of this retrospective, longitudinal study using (IGC models was to 

determine whether mathematics scores from third grade student state-mandated 

standardized test, the dependent variable, differed between students who were enrolled in 

STEM-based schools and students who were not enrolled in STEM-based schools. I 

examined state-mandated standardized mathematics test scores of third grade students 

enrolled in one school district in the Southwestern United States to determine if there was 

any difference in the growth over a 6-year time period from 2012 to 2017. 
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The quantitative data I used to answer the RQs were extracted from 2012 to 2017 

from a database of scores from a standardized mathematics test that is administered every 

spring in the district that was the target of this study. These data were publicly available 

on the analytic portal of the website of the state educational agency responsible for 

primary and secondary public education and issues related to student testing and 

accountability. I analyzed the data using a longitudinal, retrospective method utilizing 

IGC models to determine growth trajectories. STEM-based schools were cluster-sampled 

and non-STEM schools were stratified sampled from 13,755 third grade students 

attending 21 STEM schools and 138 non-STEM schools during the academic years of 

2012 through 2017.  

The intent of achievement testing is to monitor student performance levels based 

on instruction they experienced in a given subject during the academic school year, as 

well as to gather data on student academic growth over time (Petscher, Kershaw, Koon, 

& Foorman, 2014). Given this, the retrospective, longitudinal design in this study was the 

best fit to examine student performance and monitor student progress. Using a 

longitudinal, retrospective approach supports observation of repeated measures of the 

same variables and individuals and has the power to describe the direction of change over 

time (Caruana, Roman, Hernandez-Sanchez, & Solli, 2015). Employing a longitudinal, 

retrospective method using IGC models offered the power to reveal any rates of change 

measured over six time points from third grade student standardized mathematics test 

outcomes based on STEM or non-STEM instruction. Participant attrition issues such as 

withdrawal from the study or loss of contact with participant can be problematic when 
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conducting longitudinal studies (Young, Powers, & Bell, 2006); however, given the 

retrospective nature of this current study, participant attrition was not a concern.  

IGC models gained popularity in longitudinal data analysis in educational 

research due to their strength and generalizability (Willett, Singer, & Martin,1998). They 

are flexible in nature (Singer & Willett, 2003) and can efficiently model patterns of 

change over time in student outcomes based on chronicity and timing of the data 

(Caruana et al., 2015). To analyze data, IGC models must have at least three time periods 

to assess growth; however, with five or more time periods, such as in this study, which 

had six time periods, estimation of hypothesized IGCs are possible (Burchinal, Nelson, & 

Poe, 2006). In addition, using IGC models can facilitate estimation of intraindividual and 

interindividual achievement growth or lack of growth over time to determine trends in 

standardized mathematics test scores (Shek & Ma, 2011) of third grade students who 

experienced STEM or non-STEM instruction.  

Generally, an analysis of variance (ANOVA) model is used to analyze changes 

over time; however, an ANOVA would have been ill-fitted to this study for several 

reasons. ANOVA requires the use of independent data (Heck, Thomas, & Tabata, 2013), 

and the data in this study are not considered truly independent due to a higher-level of 

clustered units, which is time. ANOVA requires the study to have a balanced design 

(Grilli, Panzera, & Rampichini, 2018), and when performing a longitudinal study, it is 

common that the nature of the data includes unbalanced data in that there are not an equal 

number of observations across time periods. In addition, the ANOVA model can only 

focus on group differences in patterns of growth trajectories, while IGC models can be 
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used to examine change in both group and individual levels (Heck et al, 2013). Because 

this study had a higher number of waves, meaning the number of time periods (2012 to 

2017), IGC models were expected to estimate change parameters with greater accuracy 

than could an ANOVA (Heck et al., 2013). Lastly, IGC modeling is a more powerful 

statistical test than ANOVA in that IGC allows detection of individual and group 

differences that exist within the study, whereas ANOVA is limited to use in finding 

differences only at the group level (Heck et al., 2013). 

Definitions 

The following definitions were important to this study:  

Individual growth curve modeling (IGC): According to Shek and Ma (2011), IGC 

modeling is a technique by which a researcher may describe systematic change in 

individual cases and differences between cases in outcomes over time across distinct 

measurement waves.  

STEM: According to National Academy of Sciences (2017), STEM is an acronym 

including disciplines of science, technology, engineering, and mathematics, and is used to 

promote the study of the four disciplines as connected rather than taught in isolation. 

STEM pipeline: The National Research Council (National Research Council 

[NRC], 2013) defined K-12 STEM pipeline as the educational pathway for students 

ranging from kindergarten to high school who are involved in STEM classes, and/or 

planning to study a STEM field upon graduation, and extending into the workforce.   
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Assumptions 

This study was based on the assumption that the instructional methods for 

mathematics followed STEM protocols in the STEM schools and followed traditional 

protocols in the non-STEM schools. I also assumed that the 20 non-STEM schools 

randomly selected to represent outcomes for traditional mathematics instruction were 

representative of the larger population in the target school district of 158 non-STEM 

schools. I assumed that students enrolled in STEM and non-STEM schools shared similar 

characteristics and differed from each other only in the instructional model followed at 

their schools. I further assumed that students enrolled in third grade in both STEM and 

non-STEM schools were enrolled in the same or similar STEM or non-STEM programs 

in Grades K through 2, so that third grade test results reflected the cumulative effect of 

primary grade instruction that was consistently STEM or non-STEM for each child. 

Scope and Delimitations 

The scope of this study comprised mathematics test scores of third grade students 

enrolled in either STEM or non-STEM schools within a single public school district in a 

major city in a Southwestern state. This study was delimited to include existing 

standardized mathematics achievement test data from third grade students in 18 STEM 

designated schools and 18 non-STEM schools. Archived mathematics test scores of all 

third grade students enrolled at the 36 schools from 2012 through 2017 provided data for 

this study.  
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Limitations 

Several limitations affected the generalizability of findings in this study. One 

limitation that affected the validity of the results obtained in this study was that students 

whose mathematics scores were included for data analysis may have experienced 

different levels of STEM and non-STEM instruction in Grades K through 2, which might 

have had an effect on mathematics achievement in third grade. Because this was a 

longitudinal study based on existing data of students from many different classrooms and 

teachers, it was not possible to confirm the degree to which traditional or STEM 

instruction was delivered with integrity. It was also possible that parents may have 

decided to locate their families within the STEM or non-STEM enrollment area of an 

included school because of personal preference for STEM or traditional education, and 

this preference may have affected children’s learning in unknown ways. In the interest of 

gathering as large a sample as feasible for this study, there was no attempt to exclude 

students based on their personal history of STEM education, meaning that children may 

have experienced from 1 to 3 years of STEM or traditional instruction in their 3 years 

prior to mathematics testing. These limitations may have affected the validity or 

generalizability of the results; however, these limitations were offset to some extent by 

the large size of the data set.  

Significance of the Study 

The results of this study demonstrated differences in third grade student results on 

a state-mandated standardized mathematics test based on the type of instruction, STEM 

or non-STEM, received in early childhood. Consequently, the results of this study inform 
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early educators of the relative value of STEM education and the importance of teacher 

development programs that focus on STEM instruction. Moreover, the results of this 

study inform the development of primary grade curriculum regarding STEM-related 

instruction.  

Furthermore, the results of this study are significant because the investigation of 

research-based programs that facilitate early STEM learning and outcome was warranted 

(English & King, 2015). Because a bulk of STEM-focused research concentrated on 

secondary grades, a gap existed in the literature about the benefit of researching STEM 

education in primary grades (Chiu et al., 2015). With the outcomes of this study, the body 

of knowledge gained a clearer picture of the effects of STEM education in elementary 

schools and increased understanding of factors that affect mathematics achievement in 

the elementary grades. 

Summary 

STEM education is an integral part of the advancement of a myriad of industries 

(Mann, Rehill, & Kashefpakdel, 2018), but there is a shortage of talented STEM 

graduates who might fill positions in those industries (Holzer, 2017). The benefits of 

STEM education in mathematics achievement and advancement in STEM pursuits are 

not yet fully understood because of the lack of research on STEM education delivered in 

the primary grades (Subramanian & Clark, 2016). In this quasi-experimental study using 

longitudinal, archival data, I determined whether mathematics scores on third grade 

required assessments administered over a 6-year period from 2012 to 2017 differed 

between students who participated in STEM-focused education in Grades K to 3 and 
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those who participated in traditional education. In this chapter, I presented the problem of 

the current lack of understanding of the effect of early STEM education on children’s 

mathematics achievement. In Chapter 2, I provide a review of literature related to STEM 

education. In Chapter 3 I describe the quantitative research design and rationale, the 

methodology, and the plan for data analysis.  
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Chapter 2: Literature Review 

The purpose of this quantitative, retrospective, longitudinal study using IGC 

models was to determine whether mathematics scores from third grade student state-

mandated standardized mathematics test differ between students who were enrolled in 

STEM-based schools and students who were not enrolled in STEM-based schools. 

Information provided in this chapter further supports how integral this study is to 

understanding the importance of early mathematics instruction, mathematics as the 

foundation for working in STEM fields, STEM-focused and non-STEM mathematics 

education in elementary school, and the connection between early mathematics 

instruction and later mathematics achievement.  

By 2020, unless viable reforms emerge that support early STEM education, only 

34% of individuals in the United States will be qualified to fill the 123 million highly-

skilled, high paying STEM jobs that will be available in the workforce (Noonan, 2017; 

Rothwell, 2013, Sithole et al., 2017). Extensive evidence has shown that early-grade 

mathematical ability in a broad range of skills is indicative of later mathematical 

achievement (Cerda, Im, & Hughes, 2014; Davies, Janus, Duku, & Gaskin, 2016; Oberle 

et al., 2014; Rosicka, 2016).  

In this chapter, I provide a synopsis of what is known about the effects of STEM 

education in the primary grades as well as the current gaps in knowledge. I also describe 

the literature search strategy, explicate Polya’s (1957) problem-solving heuristics as the 

theoretical foundation of this study, and conclude the chapter with a summary.  
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Literature Search Strategy 

I primarily used the Walden University Online Library to access peer-reviewed 

journal articles to develop this study. I accessed most of the information through 

Academic Search Complete and ERIC and Education Source Combined Search. Other 

databases I utilized were Child Care and Early Education Research Connections, National 

Academies Press, OECD iLibrary, ProQuest Central, and SAGE Journals. The primary 

key search terms I used included the categories (a) early mathematics instruction, (b) 

mathematics achievement, (c) problem-solving strategies, and (d) STEM education. 

Secondary search terms I used in conjunction with the primary key terms were brain 

activity patterns, child development, elementary students, later achievement, 

standardized mathematics test, and third grade. Additional secondary key terms included 

elementary school, primary school, early learners, PISA, TIMSS, STEM workforce, 

traditional education, problem-based mathematics, process standards, and Polya.  

To validate original resources provided on STEM jobs, STEM attrition, and 

STEM degrees, I accessed government websites such as the National Institutes of 

Science, U.S. Department of Labor, and U.S. Department of Education. Pertinent 

information on the school district from which the STEM and non-STEM schools were 

targeted originated from its web portal. The majority of the data I used were published 

within the last 5 years; however, I utilized older reports to provide still-relevant historical 

perspective.  
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Theoretical Foundation 

Polya’s (1981, 1957) theoretical viewpoint on mathematics problem solving 

provided the theoretical foundation for this study. Polya’s (1957) framework for 

mathematical problem solving and heuristic approaches includes four basic principles of 

(a) understanding a problem, (b) devising of a plan, (c) implementing the plan, and (d) 

evaluating the outcome. In his seminal work How to Solve it (1957) and Mathematical 

Discovery (1981), Polya defined solving a problem as finding a process that can be 

applied despite existing barriers and achieving the desired outcome despite initial 

inability to do so. Polya (1957) prescribed a set of heuristics for each principle for 

teachers to utilize to guide students through the arduous process of finding solutions to 

mathematical problems, which Polya believed was recursive and dynamic rather than a 

set of rigid or linear rules.  

Step 1 of Polya’s approaches to solving problems is to understand the problem. 

This first step was designed to prompt students to first read the problem for 

comprehension and consider prior learning or knowledge about the strand of problem 

presented. Step 2, devise a plan, taught students how to choose the most appropriate 

strategy to solve the problem once the conditions of it were established in the first step. 

Step 3 of Polya’s (1957) method, carrying out the plan, required students to implement 

the best strategy to perform calculations to ascertain answers to the problem. Step 4, 

looking back, is the final and reflective component of the framework in which Polya 

(1957) specified students should examine their answers to the mathematical problem they 
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solved and check their results to ensure they responded to all of the conditions of the 

question and considered the use of alternative techniques in the process (Polya, 1981).  

Polya (1957) promoted the use of problem-solving heuristics because he believed 

that challenging grade-appropriate mathematical problems would boost student curiosity 

and confidence, develop independent thinking skills, and create an excitement about 

discovery and inventiveness if they had a proven method upon which to rely. Polya 

(1957) also believed that his nonlinear approach to solving mathematical problems 

prepared students with the necessary strategies to handle complex, nonroutine 

mathematical problems in subsequent grade levels. 

In Mathematical Discovery, Polya (1981) offered several topics for teachers’ use 

for professional development or as strategies they could implement that would engrain 

mathematical habits within student thinking, which are:  

1. Be interested in your subject: Polya (1981) told teachers that boredom begets 

boredom; therefore, they should mask any tedium about teaching a familiar 

topic, as it would diminish student interest in the lesson and math learning.  

2. Know your subject: Polya (1981) wrote that interest in teaching a subject was 

indispensable but not a sufficient condition to teach it, because a lack of 

knowledge in mathematics meant that students would receive faulty 

information and methods in the instructional process.  

3. Know methods of learning: Polya (1981) explained that providing students 

with every answer to mathematical problems robbed them of learning how to 

think as well as depriving them of developing the ability to self-discover.  
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4. Understand facial expressions of students: Polya (1981) suggested teachers 

closely watch student physical movements and facial expressions to look for 

instances where they faced genuine obstacles and needed guidance. 

5. Guess: Polya (1981) stated that making reasonable guesses was important in 

solving problems, particularly in extreme situations when students faced 

obstacles; conversely, making wild guesses lacked basis and substance.   

6. Look Back: Looking back on the work performed to solve the problem was 

vital, because students verified whether the answers were true or not, which 

helped students check for errors or determine whether they understood, 

planned, and executed the problem properly (Polya, 1981).   

7. Pattern: Polya (1981) taught that patterns emerged as students solved 

problems; for example, the process of outlining the problem created patterns 

as the solver approached the answer. (e.g. multiplication of twos: 2, 4, 6, 8, 

10, ___, 14, 16, 18, 20). The student could then make a reasonable guess that 

the answer in the example would be 12 given that the student observes a 

pattern of each following answer being two points higher.  

8. Analogy: Polya (1981) said that teachers should train students to look for 

analogous problems by comparing the current problem to similar problems, or 

looking for analogous approaches to solving the problem if challenges arose 

in the problem-solving process.  

9. Make suggestions: Polya (1981) believed that teachers should be facilitators 

who did not provide answers for students but allowed them to develop 
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independent, inductive, and reflective thinking skills by letting them ask 

questions and provide their own answers to the problem.  

These elements have relevance for teachers of children at all ages and grade levels.  

While literature on the use of Polya’s math problem-solving method in a 

longitudinal study on third grade student mathematics achievement is nonexistent, limited 

information is available that mentions Polya’s techniques in STEM education and 

mathematics problem-solving. In addition, however, Griffin and Jitendra (2009) found 

that techniques from Polya’s method are widely implemented in traditional elementary 

and secondary school mathematics textbooks. As documented throughout this section, 

Polya’s (1957) problem-solving approach was a good fit for this study; therefore, using 

his heuristics to guide this study was appropriate. In the remaining pages of this literature 

review, I present ideas relating to the importance of early mathematics instruction, the 

importance of mathematics education generally, early mathematics instruction in 

elementary school following a traditional and a STEM model, both generally and in the 

school district that is the focus of this study, and an overview of assessment of 

mathematics achievement at the third grade level. 

The Importance of Mathematics Instruction 

The NRC (2013) reported that mathematical sciences, defined as several 

disciplines that are not purely mathematical in nature but have mathematical 

underpinnings, have made major innovative strides in complex applications in 

computation and digitalization, information technology, and automatization. 

Mathematical sciences are beneficial to industries that rely on science, technology, and 
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engineering (NRC, 2013). For example, the application of mathematics is integral to 

many STEM fields, including computer sciences, engineering disciplines, medicine, 

chemistry, physics, astronomy, defense, and manufacturing. Other nonmathematics areas 

that rely on mathematical sciences include communications, information processing, and 

the psychological and social sciences.  

There is concern about results from the 2015 administration of the PISA 

mathematics test that showed mathematics scores for American students were statistically 

significantly below average for the 35 PISA participating countries worldwide (OECD, 

2016a). Alden, Schwartz, and Strauss (2016) and Hausman and Johnston (2014) noted 

that the 2015 PISA measurement is an indication that America’s global competitiveness 

might be in decline. The PISA mathematics results from last administration of the test in 

2015 showed that the U.S. score of 470 was an 11-point drop from its 2012 average score 

of nations, which was 481 (Jackson & Kiersz, 2016; OECD, 2013, 2016b). Asian 

countries including China and Singapore continue to outperform their U.S. counterparts 

in essential mathematics concepts, skills, and knowledge they should have already 

learned (OECD, 2016b). Arik and Geho (2017) and McClure et al. (2017) suggested that 

mathematical training must begin in early education because it is difficult for students to 

acquire high-level mathematical talent in later educational years. In contrast, Clements 

and Sarama (2016) found a lack of information about the effect of early-stage STEM 

instruction on student mathematics achievement.  
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The Importance of Early Mathematics Instruction 

Children exhibit a set of informal mathematical skills before the third grade that 

researchers have found to be instinctive, broad ranging, complex, and sophisticated 

(Daugherty et al., 2016). For example, children enjoy using building blocks and can 

distinguish between different relative sizing and patterns of block shapes and determine 

sorting, measurement, and order when erecting structures (Stipek, 2017; Weiland & 

Yoshikawa, 2013). Hands-on learning, including with blocks and shapes, makes children 

competent in basic geometric skills (Yoshikawa, Weiland, & Brooks-Gunn, 2016; 

Weiland & Yoshikawa, 2013). Before third grade, students have implicit scientific skills 

and they grasp basic concepts of physics, amounts and measurement, chemistry, and 

psychology (Daugherty et al., 2016). Third grade students are flexible thinkers, perform 

well at collaborating and planning advanced tasks, and can be inventive in creating 

alternative strategies to solve a mathematical problem (Shoenfeld, 2016). Nunes, Bryant, 

Evans, and Barros (2015), in a longitudinal study of seven- to nine-year old children’s 

mathematical achievement, found that preschool and primary school children have a 

strong sense of quantitative relationships, which boosts their ability to make multiple 

representations in mathematical relationships and problem modeling. Therefore, young 

children are naturally inclined to learn mathematics and providing them with 

opportunities for formal instruction in mathematics throughout the early years makes 

sense (Hefty, 2015).  

According to Watts, Duncan, Siegler, and Davis-Kean (2014), mathematics is an 

incremental discipline, with understanding of advanced concepts dependent on basic 
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understanding established earlier. Mathematics education has depended on the idea that 

students learn new information presented in a particular school year, and also build on 

their prior mathematics knowledge, since students usually cannot solve advanced 

mathematical problems without having learned basic mathematics processes in earlier 

grades (Watts et al., 2014). According to Harris, Petersen, and Wulsin (2016), exposing 

young children early on to age appropriate mathematical concepts related to numbers and 

emergent counting, sorting, patterns and shapes, and measurement, supports higher 

mathematics skill development, application of mathematics skills to solve problems later 

on, and confidence in solving mathematics problems. Watts et al. (2014) reported that 

early grade mathematics ability can predict mathematics achievement in adolescence. 

Nguyen et al. (2017) found that preschool students who mastered counting skills were 

advanced mathematics students throughout elementary school. Therefore, mathematical 

training must begin in early education so that students might acquire high-level 

mathematics achievement in later educational years (Arik & Geho, 2017; McClure et al., 

2017). 

Vertically Aligned Performance Standards from P-16 

Vertical alignment ensures that students state-learn required knowledge and skills 

as they progress from one grade to the other (Moore et al., 2014). The state of focus in 

this study is one of 44 states in the union with state-mandated vertically aligned 

curriculum standards (Schoenfeld, 2016). Vertically aligning standards from grades P-16 

is one of three initiatives that involves the state’s educational association and workforce 

commission in the effort to connect primary, secondary and post-secondary educational 
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systems to provide students with a solid mathematics foundation from early years into the 

workforce (Daily, 2014). P-16 mathematics standards are aligned sequentially with the 

curriculum, as well as to the state’s assessment instrument (Daily, 2014). 

The educational association in the state that is the focus of this study designed the 

mathematics curriculum in a comprehensive system that vertically aligned the curriculum 

and performance standards starting with college and career readiness standards in high 

school, down through elementary grades, and then projecting forward throughout college 

in order that students broaden their skills in each subsequent grade (Polly & Orrill, 2012). 

The reverse design in the vertical alignment was intended to ensure that students are 

prepared to function successfully throughout postsecondary education and compete on 

the global stage.  

The school district that is the focus of this study is within the target state’s energy 

and STEM corridor, which is one of the largest in the nation, and prides itself in 

preparing STEM-talented students. One of the reasons for the school district’s vertical 

alignment map was to establish an approach to better deliver standards that more 

successfully connect elementary student achievement with continued success throughout 

high school in its effort to decrease the high school dropout rate. The school district’s 

high school dropout rate, according to the target state’s Academic Performance Report 

(APR) from the 2016-2017 school year, was 16.1%, which concerns state officials.  

Every student enrolled in grades 3-8 in the target state is required to pass the 

mathematics high-stakes standardized test in order to achieve promotion to subsequent 

grades. Scores from the 2017 mathematics standardized test show that 73% of third grade 
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students and 67% of seventh-grade students scored in the Approaches Grade Level 

(AGL) range, while 79% of eighth-grade students and 73% of high school Algebra I 

students managed AGL expectations. The AGL range mean that these students met the 

minimum standards and will be promoted, but are likely to require targeted skill building 

intervention in order to be successful in mathematics in later grades. 

The APR of the targeted school district is 46% which means that the total 

population of students in the district who took the standardized mathematics test scored 

in the Meets Grade Level (MGL) range. Students in the MGL range demonstrated that 

they understood the subject matter and ready for postsecondary studies, but some may 

receive minimal, targeted interventions, as the state believes that there is room for 

improvement). The 2017 mathematics results concern educational stakeholders because 

extensive efforts were invested into establishing a comprehensive vertical alignment 

system with fewer, more rigorous performance standards. Nonetheless, statistical results 

from the targeted school district show that a high percentage of students lack 

understanding of specific grade level content knowledge and skills they should have been 

taught starting in the lower grades.  

While performance standards provide a framework that defines what knowledge 

and skills teachers must reliably teach, the most effective instructional strategies that 

successfully connect student achievement and academic development with the standards 

are separately determined by each school district (Chang & Silalahi, 2017). Determining 

instructional approaches that meet the needs of the diversity of students enrolled in a 

large school district is a major undertaking (Dolan & Collins, 2015; Schanzenbach, 
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2014). With that said the instructional tools and techniques that the district implements to 

meet student learning needs based on the standards do make a difference in terms of 

individual student performance and improving student achievement (Booth et al., 2017; 

Koedinger, Booth, & Klahr, 2013). Instructional methods employed by the district that is 

the focus of this study will be discussed next.  

Early Mathematics Instruction with Traditional Focus 

Traditional education has longstanding practices dating from the early years of the 

one-room schoolhouse in the late 1800s where teachers were the central figures of 

knowledge, which they directly dispensed to students who were considered passive 

learners (Dewey, 1915) and receptacles of transmission of knowledge, which Freire 

(1996) characterized as the banking model of learning. The National Council of Teachers 

of Mathematics (National Council of Teachers of Mathematics [NCTM], 2000) reformed 

its prescribed standards for K-12 mathematics education in 2000 to indicate a shift 

towards a more active learning, constructivist method of learning (Moody & DuCloux, 

2015; NCTM, 1995, 2000, 2006). The traditional focus of learning early mathematics 

centers on repeated and rigorous arithmetical computations and memorization of 

mathematical proofs to develop basic problem solving skill. Prototypically, traditional 

teaching methods consist of students exhaustively practicing learned algorithms, which 

promote memorization of facts (Boaler, 2015). This motorized model of learning that 

Ono (1966) experimented with showed that habit-strength acquisition practice times 

within a controlled situation is Pavlovian in nature, as per Hull (1943), and akin to the 

modern “drill and kill” learning conditions practiced in the today’s classrooms.  
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The NCTM (2000) also altered its principles and standards to promote newer 

methods of communicating mathematically because it argued that the demand of 

technological advancements in most industries, and the aftereffects on student 

development, performance on standardized and international assessments, and their 

ability to live and work successfully in real world occupations in adulthood was eminent 

(NCTM, 2010; OECD, 2017). Furthermore, NCTM determined that traditional teaching 

of early mathematics was not sufficient to push students and teachers out of their comfort 

zones, thereby, questioning the effectiveness of its strategies (NCTM, 2006; Nguyen et 

al., 2016). Despite the change, traditionalists still believe that modernized standards and 

instructional strategies supported by NCTM undermine traditional teaching cultures, and 

teacher experience (Nguyen et al., 2016). In addition, opponents of reform mathematics 

have not easily relinquished the initiator and controller factor of teaching mathematics in 

exchange for a more facilitative approach with students (Fullan, Langworthy, & Barber 

2014; Lameras & Moumoutzis, 2015). Traditional approaches to teaching early 

mathematics is controversial to certain stakeholders and policymakers because the 

methods are teacher-focused, and some believe that the “sage on a stage” approach robs 

students of deeper learning activities that shape the ability to communicate 

mathematically, observe relationships in patterns, and enhance projective, collaborative 

and divergent thinking (Lithner, 2017). 

Compliance oriented students become used to nonassociative learning which is 

linked to the Pavlovian theory of classical conditioning, in that students develop 

behaviors to particular stimuli which are formed in response to repeated events overtime, 
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for example, in a classroom (Anderman, 2010; Bray & Tangney, 2017; Pavlov, 1927; 

Rescorla, 1988; Skinner, 1953, 1957, 1969). In traditionally instructed classrooms, 

student collaboration and solving mathematical problems that have been designed to 

reflect real world contexts are nearly non-existent. Instead, students focus mainly on 

content-oriented processes (Castronova, 2002) such as mastering fixed formulas and 

basic algorithms (Bray & Tangney, 2017; Lameras & Moumoutzis, 2015; Maab & 

Artigue, 2013). Memorizing quantitative procedures to later master assessments (Haridza 

& Irving, 2017) reduces the need for student feedback, interpretation, or discovery 

(Castronova, 2002). Mathematics accounts for 60% of the curriculum in Chinese schools, 

and while China is often criticized for implementing rote learning and memorization as 

the sole means of teaching early mathematics, it continues to flourish as a top performer 

on international exams (Zhao, 2014).  

In traditional methods of teaching early algebraic mathematics as found in pre-

packaged lessons in textbooks, students are normally provided an example problem, 

given step-by-step explanations for each variable in the problem, and armed with 

memorization of formulas and algorithms, students are provided worksheets containing 

problems (Corlu, 2013). Traditional methods of teaching early mathematics are still 

practiced today in many parts of the U.S. and other countries, including parts of East Asia 

and Europe, many of which, in comparison to the U.S., perform better on the PISA 

mathematics test (OECD, 2016c). Proponents of traditional education insist that its 

conventional approaches to learning mathematics promote student achievement and 

compete with reform mathematics techniques to teaching and learning early mathematics, 
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and are equally effective in meeting the demands of rapidly advancing and emerging 

technologies (Mbodila & Muhandji, 2012).  

Traditional Mathematics Instruction in the School District of Focus 

In the school district of focus in this study, traditional mathematics is delivered by 

general education teachers through a published curriculum using the textbook, GoMath! 

Students receive instruction via traditional textbook methods; however, the curriculum 

has a digital component that provides opportunities for interactive activities online 

through K-6 Think Central. The district adheres to mathematics standards as outlined by 

the educational association of authority in the state, and requires general and special 

education teachers to create relevant learning experiences based on student backgrounds 

at home, work, recreation, and leisurely interests. The district’s curriculum department 

trains general and special education teachers to use effective math instructional strategies 

and systematic assessments that gauge student achievement. District policy established 

90 minutes a day for third grade students to receive mathematics instruction and practice 

using the Go Math! platform, and buoys students who require supplementary help or 

intervention with additional time in math tutorials.  

The goals that the district established for each traditionally taught school is to 

build a foundation of basic mathematics understanding in each of the focal areas 

including numbers and numerical relationships, arithmetic computation and algebra, 

geometry, measurement, processes of data analysis and consumer math. In order to solve 

problems in each focal area, third grade students are expected to (a) manipulate numbers 

up to 6 digits and solve sums and differences using graphs, number lines, and algorithms; 
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(b) demonstrate understanding of what it means to multiply or divide whole numbers;  

and (c) be able to manipulate fractional parts of wholes and also to name and sort 

geometric figures and solids.  

Early Mathematics Instruction with STEM Focus 

According to Kelley and Knowles (2016), teachers can deliver early mathematics 

instruction from a STEM-based perspective, using pedagogical practices that involve 

investigative inquiry (Kelley & Knowles, 2016). STEM-focused mathematics can be 

achieved through the process of investigating mathematics concepts that are linked to 

engineering projects that nurture student abilities to develop mathematical skills (Kelley 

& Knowles, 2016). In addition, teachers can provide quality mathematics instruction by 

involving students in a variety of learning methods that include hands-on activities and 

active participation, such as in project- and problem-based learning (Denson, Austin- 

Stallworth, Hailey, & Householder, 2015) and by permitting collaborative work (Kelley 

& Knowles, 2016). In addition, teachers can present mathematics problems with ill-

structured themes, similar to the complexity of real-world challenges that cultivate 

student sense-making capacities and promote mathematical inquiry (Fielding-Wells, 

Dole, & Makar, 2014). When students are involved in solving problems, it forces them to 

develop supportive argumentation in explaining and defending their ideas and so they 

learn to negotiate collaboration, and to enhance their skills in comparison, reasoning, and 

analysis as they apply mathematical principles (Fielding-Wells et al., 2014; Sullivan, 

Clarke, & Clarke, 2009; Zembal-Saul, McNeill, Hershberger, 2013).  
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Inquiry-based learning, involving student active participation in the learning 

process, can be designed through a variety of activities that are engaging, relevant, 

involve teams, and are based on real life events and complex situations (Freeman et al., 

2014; Rissanen, 2014). Incorporating opportunities for primary students to develop 

mathematical skills through technology and engineering projects establishes a culture of 

active learning and inquiry in the classroom that helps students develop mathematical 

thinking skills (Honey et al., 2014; Kelley & Knowles, 2016; Kennedy and Odell, 2014; 

NRC, 2014). According to Fielding-Wells et al. (2014), a case study with fourth-grade 

students showed that student mathematics abilities in number operations, fractions, ratios, 

recognizing patterns, measurement, and comparative reasoning increased through work 

on an inquiry-based project. Operationalizing mathematics education through project- 

and problem-based learning supports student math sensibilities when purposeful 

mathematical concepts and problems are interwoven into the project and contextualized 

to real life (Fielding-Wells, 2014; Sullivan et al. 2009).  

Mathematics process standards provide a framework by which teachers help 

students enrolled in inquiry-based learning to acquire the cognitive and problem-solving 

skills needed to solve a range of mathematics problems, such as required on the 

standardized mathematics test. For example, a study of robotics education with early 

childhood learners determined the effects on computational thinking involved in 

programming a robot to perform a dance (Bers, Flannery, Kazakoff, & Sullivan, 2014). 

The robotics curriculum included major aspects of engineering and computer science 

principles, two domains that involve mathematical thinking, and started with a lesson on 
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the engineering design process, that provided a framework for planning, testing, and 

making improvements throughout the project (Bers et al., 2014). Additional activities 

included debugging the robot, following programming instructions, and controlling flow 

attributes. The process of programming the robot to perform a dance enhanced student 

ability to apply suitable solutions to solve problems. They were able to design a plan, and 

troubleshoot unexpected problems by debugging. The tasks of programming the robot’s 

movement was accomplished with the use of symbols, which developed student symbolic 

language and mathematical communication and representations. Students also 

strengthened their number sense and estimation ability through control flow tasks, and 

used procedural thinking skills to follow sequencing instructions, which rely on order of 

operations knowledge (Bers et al., 2014). Through rich, hands-on activities such as the 

robot project, STEM-based education provides a mechanism by which even young 

children acquire skill in mathematical thinking and computation. 

STEM Approach to Mathematics Instruction in the State of Focus 

The content standards, which are the essential skills and knowledge that students 

should possess in order to solve mathematical routine and non-routine problems, are the 

same for the student populations across the state, regardless of school type (Opfer, 

Kaufman, & Thompson, 2016). However, content standards are delivered differently in 

STEM schools than they are in the traditional, non-STEM schools (Opfer et al., 2016). 

Process standards require teachers to train students to identify, understand, apply, and 

create ways to find solutions to complex problems. According to a district mathematics 

specialist, STEM programs incorporate real world contexts that students experience 
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through field trips, which promote collaborative and investigative learning, which are a 

mainstay component of STEM education and mathematical achievement (McDonald, 

2016). The district created its STEM program to promote mathematical literacy through 

an alternate model of education that was in addition to its general transmissive 

educational models used in most of its schools, which involve learning procedural facts 

and algorithms through rote learning and memorization methods. Project and problem-

based learning opportunities provide a vehicle by which to promote mathematical 

thinking through hands-on projects that are challenging, fun, and interesting (Fielding-

Wells et al., 2014; McDonald, 2016).  

Standardized Mathematics Assessment of Grade 3 Standard Categories 

The primary focal areas of third grade mathematics essential knowledge and skills 

(EKS) include basic arithmetic operations, including manipulation of place value, and 

fractions. The three focal areas of the third grade essential knowledge and skills are 

supported by math problems in number and numerical operations, measurement, 

geometry, elementary algebraic understanding, and problem solving through processes of 

analysis. Non-routine problems based on place value on the third grade state-mandated 

standardized mathematics test; for instance, will prompt students to begin implementing 

specific approaches to problem questioning system in order to spur active and critical 

thinking, which would help them to avoid mistakes and faulty assumptions about the 

terms and conditions of the given problem. Making annotations throughout the problem 

solving process around formulas or drawn tables or diagrams Polya (1957) helps students 

develop written and oral communication skills, and enhances mathematics vocabulary 
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and computational capabilities in the third grade Powell et al. (2017), which are required 

in the grade level essential knowledge and skills. 

In 1989, the NCTM released Curriculum and Evaluation Standard, for School 

Mathematics, which set uniform standards for students to learn math content objectives, 

and by which it expected math programs to perform. By 1995, NCTM decided to enhance 

its standards that included the higher order functions of problem solving strategies to 

solve math problems, and process standards were implemented (Davis, Choppin, Drake, 

Roth McDuffie, & Carson, 2018). The process standards were more demanding criteria, 

which provided a structure for the teaching and learning of mathematics with an 

emphasis on development of reasoning and skills of analysis (Meltzer, 2018). NCTMs 

process standards include (a) the ability to solve problems, (b) principles of reasoning and 

proof, (c) the ability to express mathematics ideas verbally, (d) the ability to make 

connections between ideas, and (e) the ability to represent mathematics ideas, which the 

state of focus in this study incorporated into its Grades 3-8 essential knowledge and skills 

(NCTM, 2014). The NCTM developed five content standards based on core functions of 

mathematics that students are expected to learn include (a) numbers and operations, (b) 

algebra, (c) geometry, (d) measurement, and (e) data analysis and probability (NCTM, 

2014). The NCTM believed that quality instruction based on problem solving strategies 

created a solid foundation for all students to learn math in a world increasingly driven by 

quantitative decisions, and developed a set of process standards it deemed would prepare 

students for the 21st century (Leong & Janjaruporn, 2015).  
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Even though the NCTM standards were not nationally mandated, several states, 

including the target state designed grade level mathematics standards on the association’s 

standards, as a result, the essential knowledge and skills place emphasis on the process 

standards since they are cognitive function standards based on Polya’s four-step 

framework, and engages students in higher order thinking to solve complex mathematics 

problems (NRC, 2011). The state educational association incorporated process standards 

into its third grade essential knowledge and skills, which requires students to use 

problem-solving strategies to solve math problems based on each mathematics focal area 

on the mathematics standardized exam. According to Leong and Janjaruporn (2015), the 

NCTM based its industry-wide mathematics process standards on problem-solving 

strategies found in Polya’s (1957) book, How to Solve it, and the essential knowledge and 

skills listing contains mathematics process standards that are based on the NCTM’s 

Polya-based problem solving strategies. The school district implements the essential 

knowledge and skills in the effort to provide methodical thinking and problem-solving 

strategies to students to solve complex mathematics problems that might have a positive 

effect on the standardized test scores.  

The overarching goal of the state’s third grade mathematics process standards is 

to teach students how to apply and use mathematics in solving mathematics problems. 

There are seven process standards that the district of focus in this study has been using 

since 1997, which are illustrated in Table 1.  



39 

 

Table 1.  

 

Mathematical Process Standards 

 

Grade 3 mathematics standards in the focus state 

A
p
p
li

ca
ti

o
n
 o

f 

m
at

h
em

at
ic

s 

A The student uses mathematics in solving problems that arise in 

everyday situations 

B The student uses problem-solving strategies to analyze information 

and formulate a plan to address a problem, to solve the problem 

justifiably, and to evaluate their own thinking and the suitability of 

the solution. 

C The student manipulates objects, creates drawings or notes, or 

employs technology, and applies heuristics, to solve problems. 

U
n
d
er

st
an

d
in

g
 o

f 

m
at

h
em

at
ic

s 

D The student discusses mathematical concepts, solution paths, and 

alternatives, using words, manipulatives, and two-dimensional 

representations. 

E The student records mathematical thinking coherently and can share 

their thinking with others. 

F The student analyzes conceptual relationships to make connections 

between mathematical ideas. 

  

 

The process standards aid students in operationalizing the next group of 

expectations, knowledge and skills statements, which are the five different mathematical 

areas that students are taught and are assessed on as shown in Table 2. 



40 

 

Table 2.  

 

Grade 3 Reporting Categories and Benchmarks 

 
N

u
m

b
er

 a
n
d
 

O
p
er

at
io

n
s 

The student uses mathematics in representing and comparing whole 

numbers and demonstrates understanding of place value 

The student uses mathematics to demonstrate understanding of 

fractions 

The student uses mathematics to solve problems using computational 

algorithms accurately and efficiently. 

A
lg

eb
ra

ic
 

R
ea

so
n
in

g
 

The student uses mathematics to observe and describe conceptual 

relationships and patterns. 

G
eo

m
et

ry
  
&

 

m
ea

su
re

m
en

t The student uses mathematics to describe geometric figures of two-

dimensional and their characteristics 

The student uses mathematics to solve measurement problems 

involving customary and metric units and tools. 

D
at

a 

A
n
al

y
si

s 

The student uses mathematics to create, organize, and interpret data 

needed to solve problems, and to present solutions. 

P
er

so
n
al

 

F
in

an
ci

al
 

L
it

er
ac

y
 

The student applies mathematics to problems of getting and spending 

money and managing finances, and demonstrates understanding of 

basic financial concepts. 
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The mathematics standardized test has 32 questions, which are built around the 

five reporting categories. There are eight questions on number and operations, 13 

questions on computations and algebraic relationships, seven questions on geometry and 

measurement, and four questions on data analysis and personal financial literacy. The 

composition of this assessment was important in analyzing the results of this study. 

Summary and Conclusions 

In this chapter, I reviewed literature relevant to my study of the effect of 

mathematics pedagogy on third grade student mathematics achievement. I presented a 

rationale for this study, given the importance of mathematics ability for the American 

workforce, and also presented information about mathematics curriculum and the 

differences between traditional mathematics pedagogy and mathematics instruction in a 

STEM focus. In Chapter 3, I will present the method by which I conducted this study. 



42 

 

Chapter 3: Research Method 

The purpose of this quasi-experimental study using retrospective, longitudinal 

data and IGC model analysis was to determine whether mathematics scores from third 

grade student state-mandated standardized mathematics differ between students who 

were enrolled in STEM-based schools and students who were not enrolled in STEM-

based schools (non-STEM). For this current study, I chose a longitudinal, retrospective 

design using IGC modeling to statistically explain any interindividual and intraindividual 

changes of mathematics test scores of third grade students who were enrolled in STEM-

based schools and students who were not over six time periods between 2012 and 2017.  

In Chapter 3 I explain the rationale for the study design and the process by which 

I accessed the archival data and analyzed them. I discuss threats to internal, external, and 

construct validity, and the potential for any moderating or mediating situations that may 

influence the study outcomes. Lastly, I elaborate on procedures to avoid any ethical 

issues relating to this study.  

Research Design and Rationale 

Study Variables 

The independent variable in this study was the use of STEM or non-STEM 

mathematics pedagogy. The dependent variable was student mathematics scores on the 

state-mandated standardized test administered at the end of the third grade year.  

In this longitudinal study I used IGC analyses to measure changes over time at 

both the aggregate and the individual perspectives. There are two levels in IGC models. 

The Level 1 model is used to test for interindividual changes over time and precludes 
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predictor variables (Shek & Ma, 2011). For this study, Level 1 was focused on each 

individual school mean mathematics scores to describe changes in average scores over 

time. For instance, IGC analyses will capture how a school has performed against itself 

over time (Shek & Ma, 2011). Level 2 will capture whether the rates of change vary 

across individual schools in a systematic way. In this study, Level 2 captured whether the 

rate of change varied across individual schools in a systematic way (Shek & Ma, 2011). 

Essentially, the model shows how schools perform against each other over time. By 

analyzing both the interindividual differences and the intraindividual changes over time, I 

hoped to determine if there are statistically significant differences in children’s 

mathematics scores over time, dependent upon STEM and non-STEM pedagogy. IGC 

analyses do not require balanced data across different waves of data, such as unequal 

sample sizes, missing data, or inconsistent time intervals (Shek & Ma, 2011).  

The school district, as of the 2017 testing season, included 159 elementary 

schools enrolling a total of 13,755 third grade students. Test data are publicly available 

on the state-run website of the educational agency and were used to determine if there are 

any differences in the mathematics scores of third grade students enrolled in STEM and 

non-STEM educational methods.   

Research Design and Research Questions 

I used a nonexperimental design to answer the RQs. Nonexperimental approaches 

do not allow the researcher to actively manipulate the independent variables, and 

participants cannot be randomly assigned to groups (Cook & Cook, 2008; Creswell, 

2013). Nonexperimental design in longitudinal research is a good fit because 
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retrospective research involves analyzing old data and comparing it to present data from 

the cases in the data set (Johnson, Figueroa-Colon, Huang, Dwyer, & Goran, 2001). 

Longitudinal research is used to analyze educational data such as test scores from the 

same subjects over two or more waves and can predict event occurrences over different 

waves (Henson & Hinerman, 2013). I studied the rate of change between mathematics 

test scores using inferential statistics from longitudinal data analysis using IGC models. 

IGC is an advanced technique that I used to examine changes in student mathematics 

scores across time. IGC techniques modeled systematic changes within STEM schools 

and within non-STEM schools, as well as between-school mathematics score differences 

across a 6-year period. The term individual growth curve is frequently used to examine 

aggregates of individual curves instead of separate analysis of each IGC (Shek & Ma, 

2011). For example, I examined the aggregate score of all STEM schools over each year, 

and the aggregate of all non-STEM schools over each year, rather than the aggregate of 

each school individually over each year. In this study, I tested whether pedagogy for 

STEM and non-STEM education is predictive of student state-mandated mathematics test 

scores and determine the trajectory of student achievement in math scores across time. 

Time and Resource Constraints 

IGC models do not have assumption constraints such as the ANOVA models. I 

did not experience any time and resource constraints because the data including third 

grade student state-mandated mathematics test scores for the 6-year period covering 2012 

to 2017 was publicly accessible through the state-run website of the educational agency 

analytic portal, the Assessment Management System (AMS). There were no costs 
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involved to obtain and download the data through the AMS. The time involved to analyze 

the data once it was downloaded from AMS was consuming. I entered data from AMS 

into Excel and imported into SPSS. To prepare the data for SPSS analysis, I converted 

information from wide format to long format where each row represented a school and 

the wave periods were represented in the proper columns.  

I chose a longitudinal study using IGC analyses to investigate differences between 

STEM and non-STEM standardized mathematics scores to advance knowledge in the 

discipline because there was no 6-year study of third grade student performance on the 

state-mandated standardized mathematics test in the largest school district in the area 

based on whether they are STEM educated or non-STEM educated.  

Methodology 

Target Population  

The target population encompasses predetermined elements to be observed in the 

study (Daniel, 2012). The observation in this study was the standardized mathematics test 

scores of third grade students in a public school district in a Southwestern state in the 

United States. Specifically of interest in the present study were the standardized 

mathematics test scores of third grade students who were enrolled in one public school 

district’s STEM and non-STEM elementary schools. Third grade student test scores were 

examined longitudinally across six different time periods from 2012 to 2017. A district-

wide relevant population structure of 13,755 third grade student standardized 

mathematics test scores was divided into two sample groups, STEM and non-STEM. 

There were 159 total elementary schools including 138 non-STEM campuses and 21 



46 

 

STEM campuses. The protocol I used to select the school district and its STEM and non-

STEM schools is described in the following section.  

Sampling and Sampling Procedures 

I used a one-stage cluster sampling technique to identify eligible participant data. 

A sample is a subset of a population (Creswell, 2013), and one-stage cluster sampling is 

used when clusters of all participants that represent the population are identified and 

included in the sample. IGC models handle clustered data as they measure patterns of 

mean-level changes over time as in longitudinal studies. Clustered sampling can be 

drawn in two or more stages, which is common to survey sampling, but in one-stage 

studies, random clustered samples of schools, gender, or achievement scores are common 

(see Hedges & Rhoads, 2010).  

Sample clustering procedure and sampling frame. There were 21 STEM 

elementary schools and 138 non-STEM schools in the district that was the focus of this 

study. The sampling frame for the study included 18 STEM schools because three of the 

21 STEM schools did not meet eligibility requirements as described in the next section. 

While the STEM schools were cluster-sampled, the non-STEM schools were stratified 

sampled in order to select 18 schools from the pool of 138 to meet the assumptions of 

homogeneity. Each cluster in the non-STEM school group was assigned a number from 

one to 138 because each school must have an identification code and cannot be assigned 

to more than one cluster. I used the Longpower package to conduct a power analysis in 

order to determine the effective research sample size because the Longpower package is 
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designed to compute linear models of sample longitudinal designs (see Donohue, Garnst, 

Edland, & Donohue, 2013).  

Inclusion and exclusion criteria. I identified eligible schools for this study from 

information from the state-run website of the educational agency responsible for student 

testing and accountability in primary education. I also obtained information on school 

progress and student achievement from the website of the school district in which this 

study was conducted. The school district had 256 total schools, including 138 elementary 

non-STEM schools and 21 elementary STEM schools. Three elementary schools in the 

STEM school population were purged from the sample. Two schools were eliminated 

because they were mixed education facilities, simultaneously housing elementary and 

middle school students, which violated the assumption of homogeneity. Furthermore, 

elementary school students learning in the same facility with middle school students 

could potentially present biological, social, or cognitive variables that could have undue 

influence on student academic performance, especially for females (Simmons, 2017). 

While many schools house elementary and middle grades together, Simmons (2017) 

reported that early adolescence (12- to 14-years-old) can be tumultuous; Dockrell et al. 

(2017) suggested this could negatively affect younger student academic achievement. 

The second school was eliminated from the study sample because it also violated the 

assumption of homogeneity, as it was the only non-Title I elementary school in the 

district, meaning its student population comprised a higher socioeconomic status than the 

other schools. The exclusions and delimitations made here helped to make the results 
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more accurate and to create a sampling cluster that was as error free as possible (see 

Caruana et al., 2015). 

Power analysis. Power analysis determines the best sample size of the study, 

which helps to conclude statistical significance (Heck et al., 2013). I used Longpower 

package R software, version 3.4.2, to calculate the power analysis and determine the 

optimal sample size.  

Data Collection 

The data I needed to conduct this study were publicly available. The targeted 

school district was the most appropriate school district because it had a magnet program 

with distinction schools, such as STEM, non-STEM, Montessori, International 

Baccalaureate, fine arts, and other school type designations. In addition, the school 

district is large, registering 256 schools with over 200,000 students, which ensured that 

this study had ample sample size. Because this current study focused on outcomes of 

student performance hinging on STEM and non-STEM instruction, this study featured 

STEM and non-STEM schools in the district. Information about the target school district 

was located on its home page, which was publicly accessible. Because a goodly amount 

of current information on each school was provided on the school district’s website, and 

statistical data on all schools, mean averages, gender, and other demographics were 

available on the analytic portal of the state-run website of the educational agency, overall 

recruitment processes that involved locating, enlisting, and selecting participants were not 

necessary.  
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I placed a telephone call to the administrative offices of the educational agency 

and explained my intent to use mathematics test data from Grade 3 for a longitudinal 

research study. The operator transferred me to the Department of Assessment and 

Accountability, which connected me to the voicemail of the director of the Division of 

Performance Reporting. The division informed me that the Data Interaction for Student 

Assessments through the state-run analytic portal page was not password protected, and 

contained only standardized test data of overall school district performance was 

accessible to any person in the public. Individual student names and other biographical 

data were sealed. I was advised of the Analytic Portal Help Guide that is the 

downloadable user manual, which helps any person to navigate the website for access to 

analytical data from any school district in the state. Standardized assessment data are 

archived starting from the 2012 testing cycle.   

In the Analytic Portal, the testing program, grade level, years tested, subject 

tested, individual organization, state, and individual schools can be selected. I selected 

the standardized testing program for grades 3 to 8, and then clicked the Grade 3, which is 

the grade level for my study. I selected the spring testing seasons for the years 2012 

through 2017. I selected mathematics as the subject and typed in the name of the school 

district. There was an option to get the full report from the school district’s website on 

particular groups of students based on specific variables of interest. The AMS system 

produces a full report of group summary by performance levels including the name of the 

school district, its identification number, the years tested, grade level, number of students 

tested, average scale score, and the performance levels of each year by satisfactory, 
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advanced, unsatisfactory, or did not meet, approaches, meets, and masters. The data can 

be filtered by disaggregating into the following subgroups: Gender, ethnicity, 

economically disadvantaged, Title I, Part A, migrant, Limited English Proficiency, 

bilingual, English as a second language, special education, gifted and talented, at risk, 

and military connected. All participants included in the study may not have documented 

standardized math test scores from 2012 to 2017 with the educational agency. Since 

standardized mathematics test records are accessible on the public portal, informed 

consent for each subject in the study was not required.  

Instrumentation 

The instrument that the state of focus in this study uses to measure third grade 

student performance in mathematics is the newest designed assessment instrument to 

gauge academic readiness, established in 2012 as a comprehensive accountability system 

to increase the rigor of assessing student knowledge in mathematics and other core 

subjects, and to improve the educational system. All students in state are required to take 

the standardized test, which assesses student knowledge on content standards as found in 

the essential knowledge and skills specifically in order to prepare students for 

postsecondary readiness. The state education association devised its accountability 

instrument based on strict standards for authentic assessment and accountability 

predicated on a number of state laws related to standardized testing, and assessment tools 

and instruments. The state education association collaborated with Pearson Education to 

develop the mathematics instrument, which is directly aligned with curriculum essential 

knowledge and skills. Since the state education association owns the instrument, and all 
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public school districts in the state must administer the standardized tests and report 

disaggregated results, no requirement was necessary to seek permission to use the 

instrument.  

Standardized Testing Program Instruments. The standardized testing program 

includes annual assessments for mathematics and reading in grades 3 through 8, writing 

in grades 4 and 7, science at grades 5 and 8, and social studies for grade 8. The testing 

program Alternate 2 instrument assesses the same levels and subjects, but is an 

accommodated format for students in grades 3 through 8 who receive special education 

services. The Online Testing Platform is also an accommodated version that assesses 

students in grades 3 to 8 who receive special education services, or have cognitive 

disabilities, in all standardized tested subjects. The standardized Spanish assessment is 

available for students in grades 3 to 5 who participate in bilingual education programs, 

while becoming proficient in the English language. The third grade mathematics 

standardized assessment, which was the focus of this study, is delivered in mostly paper-

and-pencil format and includes 32 test items based on the mathematics categories 

including (a) numbers and numerical relationships, (b) arithmetic computation and basic 

algebraic ideas, (c) geometry and measurement, and (d) analysis of data and application 

of mathematics to everyday problems of finance.  

The 32 test questions are based on the relationship between the mathematics 

content or readiness standards and process or supporting standards that students must 

understand in order to solve the more rigorous and non-routine mathematics problems. 

Category 1, numerical representations and relationships has eight questions on the 
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standardized instrument, Category 2, computations and algebraic relationships, has 13 

questions, Category 3, geometry and measurement, has seven questions, and Category 4, 

data analysis and personal finance literacy, has four questions. There are a total of 13 

readiness standards and 31 supporting standards, which the test assesses. There were 29 

multiple-choice questions and three questions requiring students to use a grid to record 

answers.  

Standardized Test Performance Levels. The federal accountability law, the 

NCLB Act, required the state education association to establish at least three achievement 

levels as a way to determine satisfactory achievement, and establish performance 

indicators when reporting and categorizing student levels of performance on the 

standardized test. The state education association worked with higher education 

coordinating board of the target state to assemble a Performance Descriptor Advisory 

Committee (PDAC), consisting of a diverse panel of seasoned educators from public 

education and higher education, as well as professionals from education advocacy groups 

to establish three performance levels, define them, and create guiding policies for each 

level. PDAC was careful to create labels that represented each student’s performance 

level in the appropriate corresponding category, establish labels that represented each 

performance level, and ensuring that the performance labels focused on guiding policies 

rather than on student performance. The state education association and the higher 

education board provided the PDAC the research information and data based on 

empirical evidence to facilitate the validation of the standardized instrument. The 

committee reached a consensus after a two-day brainstorming and planning meeting, and 
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recommended three levels of academic performance: 1) Level III: Advanced; 2) Level II: 

Satisfactory; and Level I: Unsatisfactory. 

Third grade students who have developed reasoning and evaluative skills and can 

apply mathematics process skills to solve non-routine mathematics problems that involve 

adding and subtracting whole numbers, linear measurement, and observing relationships 

between mathematics operations are performing on Level III. By the spring third grade 

math standardized test administration, students who have learned to describe geometric 

figures and fractional equations using technical terms, solve basic arithmetic problems, 

identify patterns in related number pairs such as 10 + ____ = 20. Mathematics problems 

that involve measurement are achieving at Level II. Level I performance on the third 

grade math standardized test indicates that students have not developed mathematics 

proficiencies beyond recognizing fractional problems, or up to three-dimensional 

geometric shapes, symmetric lines, and congruent shapes, as well as using math models 

counting U.S. currency, or to identify multiplication or division patterns in mathematics 

sentences.  

The standardized third grade mathematics instrument has 32 question items that 

are linked to Grade 3 essential knowledge and skills, which were redesigned to promote 

mathematics fluency on a level that requires a list of complex thinking skills that students 

should have developed before and throughout the third grade to solve the problems 

successfully. The state education association provided a list of complex cognitive skills, 

which include analyzing the problem, implementing problem-solving skills to solve non-

routine math problems, developed conceptual knowledge, procedural fluency, applying 
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strategic and adaptive reasoning, communicating and justifying responses, and 

persistence. Of the total of 32 questions on the mathematics instrument, 24 questions 

must be answered correctly to pass, and 28 questions must be answered correctly to 

achieve mastery level on the test. Students have four hours to complete the third grade 

mathematics test. 

Reliability and Validity. Reliability in quantitative research refers to the 

accuracy of the consistency and dependability of the measurement instrument and 

whether testing and retesting will yield the same results every time that it is administered 

in the same setting with the same participants at each interval (Sullivan, 2011; Creswell, 

2013). Typically, internal consistency reliability is analyzed in large-scale educational 

assessments, such as the standardized mathematics test to determine how well test 

questions link to the essential knowledge and skills and measure what they are intended 

to measure. The state education association discussed the importance of the design of the 

third grade mathematics instrument, which was intended to adequately measure the 

essential knowledge and skills at the highest achievement level. Educators split the 

standards into readiness and supporting standards to ensure a clear connection between 

what the essential knowledge and skills required students to know. However, content 

linking was not sufficient to ensure validity; therefore, the state education association 

ensured that test items on the mathematics instrument were aligned with the higher 

cognitive complexity, and the mathematics test included open-ended items to assess 

student ability to think and solve problems independently.  
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The readiness standards are prominent on the mathematics assessment because 

they are essential knowledge and skills designed to develop student knowledge on current 

and subsequent grade levels. The content standards measure what students need to know 

for promotion to the next grade level. While instruction is predicated on the supporting, 

or content standards, not all of the supporting standards were included in the mathematics 

assessment. The mathematics assessment tested grade-level content standards and not an 

accumulation of essential knowledge and skills standards from previous grades. Item 

analysis is performed annually. 

In this study, I examined how third grade students in the state of focus in this 

study performed on the standardized mathematics assessment based on their enrollment 

in STEM and non-STEM schools from 2012 to 2017. The standardized measurement 

instrument was administered in 2012 in all state K-12 public schools. Since the 

instrument was a new design administered initially in 2012, the state educational agency 

phased in the passing requirements by increasing the number of test items students 

needed to answer correctly over time from 2012 until 2016. This extended phase-in 

method provided students and teachers necessary time to adjust to the rigor of the exam. 

The state contracted with Human Resources Research Organization (HumPRO) based on 

the house bill from the state legislature, HB743, which mandated that the assessment 

instrument be empirically vetted for validity and reliability by an independent 

organization before being administered to students. The state education association met 

the empirical evidence standard by establishing three tasks. Task 1 was to identify that 

the contents on the mathematics instruments were valid by rating the sufficiency of each 
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test item to the state expectations that it meant to measure. Task 2 was to ensure that the 

projected reliability and conditional standard error of measurement (CSEM) estimates 

were acceptable. In addition, Task 3 was a review of the procedures followed to construct 

the instrument was and the methods established by the state education association to 

score the instrument, which the state education association found to be consistent with 

industry standards of validity and reliability in test construction. 

The state education association established three criteria to analyze for validity. 

First, Grade 3 standardized mathematics scores needed to represent each student’s 

knowledge and mathematics fluency, which would signify an alignment between grade 

level essential knowledge and skills expectations and the instrument. Second, the third 

grade mathematics scores should indicate the level of student knowledge gain when 

compared to test scores from the previous year to interpret growth between grade levels. 

Third, the third grade mathematics scores should indicate student potential achievement 

levels on future tests. The state education association deemed that validity evidence for 

the second theme, interpreting growth, was out of the scope of review since third grade is 

the first year of the mathematics administration meaning that no comparison is available 

as there are no second grade mathematics scores to determine student growth in 

knowledge gain during the first interval. The third theme, anticipated growth rates, was 

also determined to be out of the scope for review because the state education association 

only provides values from standardized test progress measures starting from Grade 4, 

which is compared to Grade 3.  
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HumPRO trained its reviewers to rate every test item in categories of (a) fully 

aligned, (b) partially aligned, and (c) not aligned. Three to four reviewers assessed the 

test form, and the final ratings were an average of the results from the reviewers at the 

state education association. A fully aligned rating indicated that each test item fully 

connected within the set of essential knowledge and skills expectations upon which the 

test item was based. Partially aligned meant that some of the content standards did not 

meet the content standards, and not aligned indicated that the test question fell outside of 

the contents within the essential knowledge and skills expectations. 

According to the state education association, HumPRO found that overall ratings 

linking the essential knowledge and skills to instrument were highly positive. HumPRO 

reviewed the 2016 Grade 3 mathematics instrument, and three of the 46 items were rated 

as partially aligned, with the remaining 43 items rated as fully aligned. HumPRO 

evaluated each of the four categories in the essential knowledge and skills and found that 

numerical representations and relationships was 92% aligned with readiness standards, 

and the last three categories including computations and algebraic relationships, 

geometry and measurement, and data analysis and personal financial literacy were in full 

alignment with the readiness standards. After rigorous examination of the testing 

instrument, HumPRO reported that educational association testing processes and scores 

were valid and reliable.  

Data Analysis Plan 

IBM SPSS Statistics version 24.0 is the software I used to prepare the data for 

analysis. The data, which was archived by the educational agency in the state of focus, 



58 

 

was publicly available. I organized the data by school type, STEM and non-STEM, and 

each school will be assigned a unit number. The data were further organized according to 

the years tested (2012 to 2017) for each school, whole school average scale score for each 

school, the number of students tested in each school, gender, and predominant ethnicity 

of students within each school. I imported these data into a Microsoft Excel spreadsheet. 

The RQs and hypotheses were analyzed by using a longitudinal, retrospective method 

using IGC models in order to determine any growth trajectories. Shek and Ma (2011) 

stated that using IGC models are increasingly used as an analytic tool to capture 

individual change over time. 

STEM schools were cluster-sampled and non-STEM schools were stratified 

sampled from 13,755 third grade students attending 21 STEM schools and 138 non-

STEM schools during the academic years of 2012 through 2017. The independent 

variables, comprised years tested (time) related to school type (STEM, non-STEM), were 

analyzed against any rates of change between the dependent variable of mathematics test 

scores, described using inferential statistics from longitudinal data and IGC 

techniques. IGC models demonstrated any systematic changes in mathematics test scores 

within STEM schools and within non-STEM schools. IGC modeling also revealed any 

differences between-school mathematics scores over time from 2012 to 2017. 

I analyzed intraindividual and interindividual differences in growth over time, 

given the results from third grade student standardized mathematics test. In order to 

accomplish that, two levels of IGC modeling were used. Level 1 model was used 

to analyze RQ1 and Level 2 modeling was used to answer RQ2. To plot the IGC in SPSS, 
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Version 24.0, the data was converted from “wide” format to “long” format. Two steps or 

models of IGC analysis were initially used in this study. The first model involved 

constructing the unconditional mean model, which is a one-way ANOVA model, using 

input commands in SPSS in order to assess the amount of outcome variation that exists in 

both intraindividual and interindividual levels. Interindividual differences over time can 

be determined by the intercept and the slope; therefore, the second model involved 

constructing the unconditional linear growth curve model using SPSS commands to 

determine the slope and intercept parameters, which determined if the linear growth 

rate was constant over time.  

A negative slope indicates decrease, and a positive slope indicates increase, while 

zero indicates constancy. The intercept value (time) gives the initial status of the 

dependent variable. The Estimates of Fixed Effect (p-value) output from SPSS was run to 

determine if the slope was significant. If the p-value was less than .05 then the slope was 

significant and the variability of the parameters could be explained by interindividual 

predictors. If there was no interindividual difference in trajectory over time the slope 

could not be considered statistically significant. In this case, there would be no need to 

perform further growth curve modeling analysis. However, to test for a nonlinear 

individual growth trajectory across time, other higher-order polynomial trends, including 

quadratic and cubic slope models could have been included (Shek & Ma, 2011). The 

results of this study were interpreted using a confidence interval of 95% and the p-value 

was considered statistically significant at 0.05.  
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Given the above explanations, I described the rate of change over time in third 

grade student achievement in mathematics test scores using the following basic linear 

growth models: 

Level 1 Model: Yij = β0j + β1j (Time) + rij 

Level 2 Model: Yij = γ0i + γ1i (Time) + γ2i (Time2) + γ3i (Time3) + γ4i Wj + rij 

The level-one model was developed as shown below using the inserted variables 

to test the first RQ. The model enabled me to examine any significant variation within 

individual school changes over time, and to assess any outcome variations across 

individuals. The level-two model was developed as shown below using the inserted 

variables to test the second RQ. The model permitted me to examine any significant 

variation between individual school changes over time. 

Level 1 Model (Measures within Individual School Change over Time) 

The formula for this analysis is: 

MATHij = β0j + β1j (Time) + rij 

where MATHij is an individual school average STANDARDIZED TEST score at 

TIMEi; β0j is the expected estimation of the MATH score for an individual school at 

TIME zero; β1j is the average annual rate of change in estimation of the MATH score for 

an individual school over time; and rij is the residual within the outcome variable for an 

individual school at TIME.  

Level 2 Model (Measures between Individual School Change over Time) 

The formula for this analysis is: 

MATHij = γ0i + γ1i (Time) + γ2i (Time
2
) + γ3i (Time

3
) + γ4i Wj + rij 
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where MATHij is the grand mean for the STANDARDIZED TEST scores for the whole 

sample at TIMEt; γ0i is the initial average STANDARDIZED TEST score for the whole 

sample at TIMEt; γ4i tests if TIME is associated with growth parameters; Wj measures 

the effect of TIME on interindividual variation on MATH scores; and rij refers to the 

amount of variance that are unexplained by TIME. 

Statistical Programming 

According to Shek and Ma (2011), the following syntax can be programmed into 

SPSS to perform an analysis for the unconditional linear growth curve model. I ran the 

following program developed by Shek and Ma (2011) to test the unconditional mean 

model for non-STEM schools: 

mixed Math_Average_Scale_Score_NS with YearTraditional 

/fixed intercept YearTraditional 

/random intercept YearTraditional | subject(Unit_ID_Traditional) covtype(un) 

/print solution testcov /method ml. 

More detailed programming commands connected to the syntax for the non-STEM 

school analysis as shown above and their interpretation are illustrated in Appendix A. 

I used the following syntax developed by Shek and Ma (2011) to test the 

unconditional mean model for STEM schools: 

mixed Math_Average_Scale_Score_S with YEARSTEM 

/fixed intercept YEARSTEM 

/random intercept YEARSTEM | subject(Unit_ID_STEM) covtype(un) 

/print solution testcov /method ml. 
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More details regarding the programming commands connected to the syntax for the 

STEM school analysis as shown above and their interpretation are illustrated in Appendix 

B. Through this analysis I expect to be able to determine differences between 

mathematics achievement of children enrolled in the primary grades in STEM and non-

STEM schools, and also change over time within STEM and non-STEM schools 

regarding children’s mathematics achievement.  

Threats to Validity 

According to Yu and Ohlund (2010), different types of external and internal 

validity threats exist, and particular factors might cause potential problems in data 

interpretation; therefore, the design of the research is critical and must be considered in 

order to minimize potential threats. External validity is important in quantitative research, 

because it determines whether findings from a research study can be generalized to other 

populations (Creswell, 2013; Yu & Ohlund, 2010).  

The educational agency minimized potential threats to external validity by 

addressing particular design aspects of the instrument. The assessment instrument is 

reliable and valid. There were no obvious threats to validity because of the structure in 

which the educational agency established the instrument. The educational agency 

minimized threats to validity through its processes as described in detail earlier in this 

Instrumentation section. No generalizations were established beyond the bounds of the 

sample population in order to avoid threats to external validity. Because data were 

preexisting, there were no internal validity threats.  
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Ethical Procedures 

This study was conducted following approval from the Walden Institutional 

Review Board (approval # 11-07-18-0024471). In order to adhere to ethical procedure, all 

participants in this study were protected as they remained anonymous and not used for 

any economic or personal gain. The school district that is the focus of the study was also 

protected in that its name will remain anonymous. The data used in this study were and 

are publicly available, and student names are not linked to test scores or any other 

personally identifiable information. The names of the schools are listed in the analytic 

portal, but not mentioned herein. I examined the records of the school district’s third 

grade students. The school district that was the focus of this study is different from my 

own work environment and the grades under study were different from the grade level 

that I teach.  

Summary 

The retrospective, longitudinal approach using IGC models for this study allowed 

me to determine whether mathematics scores from third grade student state-mandated 

standardized test differed between students who were enrolled in STEM-based schools 

and students who were not enrolled in STEM-based schools. By examining state-

mandated standardized mathematics test scores of third grade students using growth 

curve modeling, I determined if there were any within-school or intraindividual 

differences in the growth trajectory over time, or if there were any interindividual 

differences between schools over the six-year time period observed in this study from 

2012 to 2017.  
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I used the Longpower package to calculate the appropriate sample size for 

longitudinal data, and the methodology was be a retrospective, longitudinal IGC model to 

analyze and interpret the results. In Chapter 4, I will present the statistical analysis based 

on the RQs, and I will explain and interpret the results. 
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Chapter 4: Results 

The purpose of this quasi-experimental study using retrospective, longitudinal 

data and IGC models, which comprises two levels of analysis (Level 1 and Level 2), was 

to determine whether mathematics scores from third grade student state-mandated 

standardized mathematics test differ between students who were enrolled in STEM-based 

schools and students who were enrolled in non-STEM schools. The two categories or 

domains that were measured in this research study included standardized mathematics 

test scores of third grade students enrolled in STEM schools and standardized 

mathematics test scores of third grade students enrolled in non-STEM or traditional 

schools in an urban public school district in a Southwestern state of the United States. 

The data represented in my study were publicly available. The sample included third 

grade student average mathematics scores from the annual state-mandated standardized 

test, which were examined longitudinally across six different time periods from 2012 to 

2017. The RQs and hypotheses that guided this study were:  

RQ1: What are the individual changes in growth over time in mathematics scores 

from a state-mandated standardized test of third grade students who were enrolled 

in STEM-based schools and students who were not enrolled in STEM-based 

schools? 

H01: There are no statistically significant changes over time in mathematics 

scores from a state-mandated standardized test of third grade students who 

were enrolled in STEM-based schools and students who were not enrolled in 

STEM-based schools. 
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H11: There are statistically significant changes over time in mathematics 

scores from a state-mandated standardized test of third grade students who 

were enrolled in STEM-based schools and students who were not enrolled in 

STEM-based schools. 

RQ2: What are the between-person or interindividual changes in growth over time 

in mathematics scores from a state-mandated standardized test of third grade 

students who were enrolled in STEM-based schools and students who were not 

enrolled in STEM-based schools? 

H02: There are no statistically significant differences in between-person or 

interindividual changes over time in mathematics scores from a state-

mandated standardized test of third grade students who were enrolled in 

STEM-based schools and students who were not enrolled in STEM-based 

schools. 

H12: There are statistically significant differences between-person or 

interindividual changes over time in mathematics scores from a state-

mandated standardized test of third grade students who were enrolled in 

STEM-based schools and students who were not enrolled in STEM-based 

schools.   

This chapter includes an overview of (a) the data collection process that I used to 

analyze each RQ, (b) baseline descriptive statistics, (c) demographic characteristics, and 

(d) data analyses procedures I used to address the statistical assumptions of the study to 

determine whether the underlying requirements of the analyses performed were met. I 
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then present the results from the statistical analyses and provide justifications based on 

the analyses of the sample to demonstrate whether any interindividual and intraindividual 

changes over time in average mathematics scores from a state-mandated standardized test 

of third grade students who were enrolled in STEM-based schools and students who were 

not enrolled in STEM-based schools exists.  

Data Collection 

The data for this study comprised multiyear state-mandated standardized 

mathematics test scores of third grade students enrolled in STEM schools and third grade 

students enrolled in non-STEM schools in the largest urban public school district in a 

Southwestern state. I followed a systematic process to extract the variables that define the 

data, which were publicly available to me on the Data Interaction Page for Student 

Assessments, the assessment arm of the educational agency in the state of focus in this 

study. I collected data at different measurement points including Spring 2012, Spring 

2013, Spring 2014, Spring 2015, Spring 2016, and Spring 2017. No missing data were 

reported. Of the 159 elementary schools in the target district, 21 are STEM schools, and 

138 are non-STEM schools. Two elementary schools were ineligible because they are 

separately a part of the district’s elementary and middle school combination, meaning 

they are housed in the same educational facility as a middle school. The third school was 

excluded because it was the single school out of 159 schools not part of the Title I 

program that supports achievement in high-minority, low income areas (see Kainz, 2019), 

and so its student population may have been distinct from the populations in the 

remaining schools. The three schools that were not included in my final analysis finalized 
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the sample size of STEM schools at 18. I limited my sample of non-STEM schools to 18 

to ensure a balance in the number of eligible STEM schools.  

To achieve a balance in the number of 18 STEM to 138 non-STEM schools, I 

used the R Project for Statistical Computing (R) software. Longitudinal studies can be 

designed using balanced and unbalanced data (Shek & Ma, 2011), but an unbalanced 

design is considered incomplete (Laird, 2004). I created a balanced design because all 

individuals (n = 216) were measured at the same occasions from 2012 through 2017. 

Based on an assumption of IGC models, balanced data across different observation years 

of data is not necessary. However, when possible, using an equal sample size is suitable, 

as it ensures the study has larger statistical power, is less susceptible to homoscedasticity, 

and is complete, and it facilitates analysis and interpretation (Laird, 2004; Shek & Ma, 

2011).  

Once I used R to generate a random set of 18 schools from a list of 138 non-

STEM schools, I followed the same systematic process to generate the report for the non-

STEM schools from the Data Interaction Page for Student Assessments Portal: 

Assessments, the assessment arm of the educational agency of the state of focus in this 

study. Reviewing individual average scale scores of each school over time, including 

examination of the average scale scores, took approximately 2 weeks to complete.  

Demographics 

The school district of focus in this study describes its enrollment policy as a 

district of choice. It does not recognize attendance zones for its specialized schools, 

which are all a part of its magnet programs. Entry into the district STEM schools is based 
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on a three-phase application timeline it devised for students who meet eligibility 

guidelines for the program. The application process is opened to any registered student 

who lives within the district’s boundaries and also to children of active school district 

employees. If the program has more applicants than there are spots, student names are 

entered into a lottery system. Once eligible students are placed in the STEM schools, 

students who are considered out-of-district are placed in STEM schools as space is 

available. Students who attend non-STEM schools in the district and do not desire to 

apply for transfers to specialized schools must enroll in the school zoned to their homes. 

Excluding the 13 students over time who did not identify a gender, the number of 

participants who took the state-mandated mathematics standardized test is recorded in 

Table 3. While gender or ethnicities were not foci of the study, the data was publicly 

available and recorded when data was collected and is included as a part of the 

demographics of the sample. The majority of the students in this study who took the 

mathematics standardized test were female (52%, n = 36) to male (48%, n = 36) also 

shown in Table 3.  

Table 3. 

Number of Participants at Each Measurement Occasion 

Year 
Spring 

2012 

Spring 

2013 

Spring 

2014 

Spring 

2015 

Spring 

2016 

Spring 

2017 

N(School) 36 36 36 36 36 36 

Number of participants 11090 11053 12136 12657 13322 13755 

 Male 5575 5560 6092 6400 6670 7017 

 Female 5509 5493 9044 6257 6651 6735 

 No gender reported 6 0 0 0 1 6 
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Results 

Descriptive Statistics 

The Level 1 stage of analysis of the individual growth trajectory over time of 

overall average mathematics test scores of the non-STEM school participants (M = 

1431.81, SD = 53.734, n = 108) compared to the overall average mathematics test scores 

over time of STEM school participants (M = 1431.17, SD = 51.665, n = 108) revealed 

that there was no distinguishable difference between individual test scores. The 

relationship between the STEM-based mathematics instruction and the shape of each 

STEM school individual growth trajectory over time compared to the relationship 

between each non-STEM school mathematics instruction and the shape of each non-

STEM school individual growth trajectory over time indicates that there is no difference 

between mathematics test scores; therefore, the findings were nonsignificant. Higher 

standard deviations indicate greater levels of performance inconsistency in relation to 

mean scores. Based on the higher standard deviations in both the STEM and non-STEM 

scores, there were greater levels of performance inconsistencies as shown in Figure 1.  
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Figure 1. Mean mathematics scores of non-STEM and STEM schools over time. 

 

Individual group mean scores over time, the overall average of each domain, and 

standard deviations from non-STEM schools and STEM schools are shown in Table 4.  
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Table 4. 

 

Mean Test Scores for Non-STEM and STEM Schools over Time 

 

Mean mathematics test scores between groups  Year N Mean 
Standard 

deviation 

Non-STEM mathematics mean score 2012 18 1430.89 54.051 

Non-STEM mathematics mean score 2013 18 1421.28 59.522 

Non-STEM mathematics mean score 2014 18 1434.28 46.729 

Non-STEM mathematics mean score 2015 18 1425.22 48.704 

Non-STEM mathematics mean score 2016 18 1433.22 56.432 

Non-STEM mathematics mean score 2017 18 1445.94 59.866 

Overall mean test score – non-STEM group   108 1431.81 53.734 

     

STEM mathematics mean score 2012 18 1428.56 34.104 

STEM mathematics mean score 2013 18 1431.94 55.847 

STEM mathematics mean score 2014 18 1442.11 57.562 

STEM mathematics mean score 2015 18 1421.83 56.096 

STEM mathematics mean score 2016 18 1433.28 54.621 

STEM mathematics mean score 2017 18 1429.28 53.290 

Overall mean test score – STEM group  108 1431.17 51.665 

 

Data Analysis Procedure  

Model Building–Level 1 and Level 2. I analyzed the data by using a mixed-

effect model with maximum likelihood estimation (MLE), as MLE is flexible and most 

appropriate when handling real data. This method modeled individual changes over time, 

determined the shape of the growth curves, explored systematic differences in change, 

and examined the effects of predictors in the initial status and the rate of growth. This is 

an appropriate approach in the study of individual change because it creates a two-level 

hierarchical model that nests time (year) within individuals. There are two levels in IGC 

models. The Level 1 model in this study encompasses Equation 1 and Equation 2, 
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answers the first RQ by describing within-individual or intraindividual changes (i.e., 

repeated measures) over time. Level 1 focuses on the individual school average 

mathematics test scores and describes each one’s developmental changes or variations 

over time. The Level 2 model, which is modeled in Equation 3, answers RQ2, and 

captures whether the rate of change varies across individuals in a systematic way. 

Basically, it describes any variation related to the interaction between the population 

samples. The growth parameters such as the within-subjects intercepts and slope of Level 

1 (RQ1) are the outcome variables to be predicted by the between-subjects variables at 

Level 2. Because of the complexity of the IGC model, two outside statisticians were 

asked to and did confirm the analysis and my presentation of the results. 

Level 1 Model–Equation 1 

The Level 1 model of analysis answers the first RQ, which was: 

RQ1: What are the individual changes in growth over time in mathematics scores 

from a state-mandated standardized test of third grade students who were enrolled 

in STEM-based schools and students who were not enrolled in STEM-based 

schools? 

H01: There are no statistically significant changes over time in mathematics 

scores from a state-mandated standardized test of third grade students who 

were enrolled in STEM-based schools and students who were not enrolled in 

STEM-based schools. 

H11: There are statistically significant changes over time in mathematics 

scores from a state-mandated standardized test of third grade students who 
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were enrolled in STEM-based schools and students who were not enrolled in 

STEM-based schools. 

The Level 1 model represents intraindividual or within-school changes that each 

school is expected to experience from the initial status (Year 1 = 2012) and the rate of 

change over time (2013 through 2017). No predictors are included in the Level 1 model, 

as it focuses strictly on outcome values, which are time-variant. The outcome values in 

the Level 1 model are time-variant meaning that the growth trajectory depend explicitly 

on how the scores change with time. There are two equations in the Level 1 model, 

Equation 1 (1) and Equation 2 (2). The basic linear growth model, Equation 1, is 

described below:  

Level 1 Model (Equation 1):  

Yij = β0j + β1j (Time) + rij      (1)   

In this model, Yij is the repeated measurement of average mathematics test scores for an 

individual school i at Time t, where β0 is the initial status, the first year of the 

longitudinal trajectory (Year 1 = 2012) of the average mathematics test scores for 

individual schools i, and where j represents each observation year (2012 through 2017). 

β1j is the linear rate of change for individual schools j, and rij is the residual in the 

outcome variable y for individual schools j at Time t. The residual is the difference 

between the observed y-value and the predicted y-value for a given x-value on the 

regression line. For example, if the predicted score from my model were 1500, then rij = 

(observed y-value of 1471) – (predicted y-value of 1500). RESIDUAL i =1, 1 being year 

2013, j = 3, 3 being the name of the school, (School 4) then (observed y-value 1471) – 
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(predicted y-value 1500) = 29. The residual variance determines whether there is linear 

rate of change or nonlinear rate of change. If the effect of linear growth (Time, β1) is not 

statistically significant, there is no need to perform further growth curve modeling 

analysis.  

Level 1 Model–Equation 2 

To test a nonlinear individual growth trajectory across time, other higher-order 

polynomial trends including quadratic and cubic slopes can also be used for model 

testing, which is shown in Equation 2 below:  

Level 1 Model (Equation 2) was:  

Yij = β0j + β1j (Time) + β2j (Time
2
) + β3j (Time

3
) + rij   (2) 

In Equation 2 of the Level 1 Model, Time in the linear slope, β1, remains in the equation, 

while Time
2
 in the quadratic slope, β2, and Time

3
 in the cubic slope, β3, are added. The 

linear slope suggests that the rate of growth remains constant across time and is 

represented by a straight line. Higher-order polynomial trends indicate that the rate of 

growth may differ over time. The quadratic individual change trajectory, the second-

order polynomial, has a curved line and no constant common slope as the data can 

fluctuate between gains and losses over time, and consists of a single stationary point 

including a peak and trough. A cubic trajectory has two stationary points with one peak 

and one trough that is S-shaped.  

Level 2 Model–Equation 3 

The Level 2 model of analysis answers the second RQ:  
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RQ2: What are the between-person or interindividual changes in growth over time 

in mathematics scores from a state-mandated standardized test of third grade 

students who were enrolled in STEM-based schools and students who were not 

enrolled in STEM-based schools? 

H02: There are no statistically significant differences in between-person or 

interindividual changes over time in mathematics scores from a state-

mandated standardized test of third grade students who were enrolled in 

STEM-based schools and students who were not enrolled in STEM-based 

schools. 

H12 – There are statistically significant differences between-person or 

interindividual changes over time in mathematics scores from a state-

mandated standardized test of third grade students who were enrolled in 

STEM-based schools and students who were not enrolled in STEM-based 

schools. 

On the Level 2 model, which is represented by Equation 3, an explanatory 

variable (Wj) would be included to analyze the predictor’s effect on interindividual 

variation on the outcome variable. When a variable is not completely independent, it is 

explanatory in that it offers additional explanation for patterns of change in individual 

growth trajectory (Singer & Willett, 2003). The errors are assumed to be independent and 

normally distributed, and the variance is equal across individuals. The Level 2 model, 

Equation 3 (3), is shown below:  

Level 2 Model (Equation 3) was:  
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Yij = γ0i + γ1i (Time) + γ2i (Time2) + γ3i (Time3) + γ4i Wj + rij (3) 

In this equation, Yij is the grand mean for the mathematics test scores for the whole 

sample at Time t. γ0i is the initial status of the mathematics test scores for the whole 

sample at Time t. γ1i is the linear slope of change relating to the mathematics test scores 

for the whole sample at Time t. γ2i is the quadratic slope of change relating to the 

mathematics test scores for the whole sample at Time t. γ3i is the cubic slope of change 

relating to the mathematics test scores for the whole sample at Time t. γ4i is used to test 

whether the predictor (e.g., group) is associated with the growth parameters (i.e., initial 

status, linear growth, quadratic growth, and cubic growth). Random effects (i.e., amount 

of variance) that are unexplained by the predictor are referred to as rij.  

Step 1: Unconditional Mean Model (Model 1)  

IGC modeling was used to examine the individual growth trajectory of each 

school can be examined in the empirical growth plot of each school, which is found in 

Appendix C and Appendix D. Since this step focused only on the patterns of change in 

test scores over time, there is no predictor included in it. This step serves as a baseline 

model in the outcome variable without regard to time. This model assesses (1) the mean 

of the outcome variable and (2) the amount of outcome variation that exists in 

intraindividual and interindividual levels. This latter information is important as it helps 

determine which level (i.e., Level 1, time-variant or Level 2, time-invariant) of predictors 

to add when fitting the subsequent models. If the variation is high, it suggests that the 

predictors at that level could explain certain amount of outcome variation. According to 

Shek and Ma (2011), one of the strengths of the IGC model is that it examines the 
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proportion of total outcome variation that is related to interindividual differences (i.e., 

intraclass correlation coefficient [ICC]). The ICC describes the amount of variance in the 

outcome that is attributed to differences between the STEM schools and the non-STEM 

schools. It evaluates the necessity of modeling the nested data structure (i.e., any 

significant variation in individual initial status of the outcome variable). It is also a 

measure of the average autocorrelation of the outcome variable over time, meaning it is 

the expected correlation between any two randomly chosen schools in the same group 

(Heck et al., 2014).  

The higher ICC value indicates the estimated average stability or consistency of 

the dependent variable over time within groups, meaning that a substantial variance 

indicates that the groups are relatively homogeneous, which determines that they are 

likely highly different from each other (Heck et al., 2014). Stability or instability of test 

scores over time has important implications for establishing effective policy regarding 

potential factors that influence patterns of change. ICC values range from 0 to 1. When 

an ICC value is close to 1 it is considered a higher value, which indicates a high 

similarity between test scores from the same group. When the ICC value is low, which 

will be close to zero, it reveals that the values within the same group are not similar. 

Research Question 1 results: Individual intraindividual changes in growth over 

time within the non-STEM schools average mathematics test scores were non-significant 

(p = 0.09). Individual intraindividual changes in growth over time of the STEM average 

mathematics test scores were non-significant (p = 0.07). Based on the results there are no 

statistically significant changes in growth over time in mathematics scores from a state-
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mandated standardized test of third grade students who were enrolled in STEM-based 

schools and students who were not enrolled in STEM-based schools. Results showed that 

when the STEM and non-STEM average mathematics standardized test scores of third 

grade students in the school district of focus were compared, the growth trajectories were 

statistically nonsignificant as seen in Figure 2, and illustrates that there was no statistical 

difference in test scores over time between the STEM group and the non-STEM group.  

Figure 2. Mean outcome values of STEM and non-STEM mathematics test scores. 

 

Koo and Li (2016) and Spybrook, Raudenbush, Liu, Congdon, and Martinez 

(2006) stated that ICC values that exceed 0.40 are common in longitudinal social research 

studies. ICC results from the estimates of covariance parameters for non-STEM schools, 

which can be found in Appendix E, was 1541.54/(1541.54 + 1319.03) = 0.539. This 
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value suggested that about 53.9% of the total variation in the average test scores was due 

to interindividual differences (see Figure 3). Generally, IGC modeling is required if ICC 

is 0.25 or above. Given that the ICC for this study is above 0.25 (53.9%) an ANOVA 

would have been an inappropriate statistical method to use to analyze the data; it cannot 

answer my RQs. According to Shek and Ma (2011), if the ICC is low, IGC might not 

perform better than the traditional method (e.g., ANOVA) in estimating fixed effects. The 

estimated average stability of the average test scores at 0.539 is an alert that there are 

possible mediating and, or moderating effects on outcome variables.  

 
Figure 3. Dotplot of non-STEM population scores. 

 

The ICC for STEM schools was 1559/(1559+1086) = 0.589, as shown in Figure 

4, suggesting that about 58.9% of the total variation in the average test scores was due to 

interindividual differences (RQ2 – between-person changes). The estimated average 
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stability of the average test scores was 0.589. If ICC is low, closer to zero, the IGC might 

not perform better than the traditional method (e.g., ANOVA) in estimating fixed effects. 

Given that the ICC for STEM schools is 53.9% and 58.9% for non-STEM schools, which 

are both higher than 0.25, IGC modeling is required. The higher ICC percentages 

demonstrate the estimated average stability of the dependent variable over time showing 

that the non-STEM schools had higher stability in outcome values. Furthermore, it is an 

alert that there are possible mediating and, or moderating effects on outcome variables.  

 
Figure 4. Dotplot of STEM population test scores.  

 

Step 2: Unconditional Linear Growth Curve Model (Model 2) 

This model serves as the baseline growth curve model to examine individual 

variation of the growth rates (i.e., any significant variations in individual trajectory 

changes over time) and will answer the second RQ. Unlike the unconditional mean 

model, which only assesses the outcome variation across individuals (i.e., the differences 
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between the observed mean value of each school and the true mean from the population) 

this model also examines individual changes over time (i.e., how each school rate of 

change deviates from the true rate of change of the population). If there is no 

interindividual difference in trajectory change over time (i.e., Time is not statistically 

significant), further model testing would not be performed.  

Research Question 2 results: In this study, the non-STEM data shows no 

interindividual or between-school group (non-STEM and STEM) differences over time, 

because time was not statistically significant (p = .308); therefore, higher model testing 

such as the quadratic and cubic growth curve models, after Step 2, were not needed. The 

significant values in both the intercept and linear slope parameters indicate that the initial 

status and linear growth rate were not constant over time. The mean estimated initial 

status and linear growth rate for the non-STEM group was -4442.22 (Appendix F). This 

mean estimate was not significant because the p-value was .438. The linear growth rate 

for the sample was 2.92, and since the linear growth rate trended towards being positive, 

the non-STEM schools mean test score trended upwards with time. The random error 

terms associated with the intercept and linear effect were not significant (p > 0.05), 

suggesting that the change in these parameters could not be explained by between-

individual predictors, or cannot be explained by interindividual non-STEM differences. 

Further research that examines other mediating or moderating variables of concern to the 

target district will be necessary to determine intraindividual and interindividual 

differences in test scores.  
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The within-individual changes demonstrate that there were differences within the 

same schools in the non-STEM group over time. The correlation (β = -164221, SE = 

95203, p =.085, p > 0.05) found in Appendix F between the intercept and the linear 

growth parameter trended towards being negative. This suggests that non-STEM schools 

with high average test scores trended towards a linear decrease, whereas non-STEM 

schools with low average test scores trended towards a faster decrease in linear growth 

over time (see Figure 5).  

 
Figure 5. Estimated marginal means of mathematics scores of Non-STEM schools. 

 

The significant values in both the intercept and linear slope parameters of STEM 

schools indicate that the initial status and linear growth rate were not constant over time. 

The linear growth rate in the average test scores found in STEM schools trended upwards 

(β = -.362, SE = 2.46, p = .885). The mean estimated initial status and linear growth rate 
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for the STEM schools sample was 2160.22. Even though this was the mean estimate for 

STEM schools, it was not significant because the p-value was .885 (p = .885, p > 0.05). 

The linear growth rate for the sample was -.362; the values can be found in Appendix G. 

Since the linear growth rate trended towards being negative, the dependent variable 

decreased with time. This suggested that the mean score for STEM schools was 1431.17, 

and the growth trajectory showed that it trended upwards with time. The random error 

terms associated with the intercept and linear effect were not significant (p >. 0.05), 

suggesting that the change in these parameters could not be explained by between-

individual predictors, or cannot be explained by interindividual STEM differences.  

The suggestion is that there are intraindividual differences in STEM schools. 

There are differences within the same schools in the STEM group over time (see Figure 

6). Unexplained differences in individual growth parameters suggest that multiple related 

factors exist that can explain the variability. The correlation (β = -118956, SE = 75252, p 

=.114, p > 0.05) between the intercept and the linear growth parameter trended towards 

being negative (see Appendix G). This suggests that STEM schools with high average 

test scores trended towards a slower linear decrease, whereas STEM schools with low 

average test scores trended towards a faster decrease in linear growth over time.  
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Figure 6. Estimated marginal means of mathematics scores of STEM schools. 

 

Additional findings: The largest ethnic group within the participants in each year 

in the sample was Hispanic or Latino with a steady increase of participants from 5524 in 

the initial year (2012) to 7420 in the last time period (2017). Further information on each 

ethnicity in the study sample is in Table 5. The American Indian, Native Hawaiian, and 

two or more participants were in single and double digits. Fewer than 3% of individuals 

from each year did not provide an ethnic background. Asian students had the highest 

mathematics test scores in each observation year. Of the students who provided an 

ethnicity in each year, the African American students had the lowest mathematics test 

scores. The study sample is representative of the population of interest, and proportional, 

given that I used probability sampling to determine the non-STEM population.  
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Table 5. 

 

Number of Participants by Ethnicity at Each Measurement Occasion 

 Spring 

2012 

Spring 

2013 

Spring 

2014 

Spring 

2015 

Spring 

2016 

Spring 

2017 

Hispanic or Latino 5524 5534 6122 6661 7052 7420 

Black or African American 3655 3530 4094 4086 4160 3996 

White or Caucasian 1268 1225 1207 1172 1259 1348 

Asian 491 489 496 529 592 749 

Two or more races 100 141 171 165 178 197 

American Indian or Alaskan 

Native 
26 28 20 20 20 20 

No ethnicity provided 17 86 7 6 50 15 

Native Hawaiian or Other 

Pacific Islander 
9 20 19 18 11 10 

 

Summary 

This research document describes individual growth trajectories of standardized 

mathematics test scores over time of third grade students who were enrolled in 18 STEM 

schools compared to third grade students who were enrolled in 18 non-STEM schools in 

the same school district. The study was guided by two RQs that sought to predict within-

individual changes in growth over time and between-individual variability in growth of 

outcome values from third grade student standardized mathematics test scores based on 

their learning experiences in STEM-based mathematics instruction and non-STEM 

mathematics instruction. In addition to time (year), which is considered as an independent 

variable in growth analysis, STEM-based mathematics instruction and non-STEM 

mathematics instruction were predictors of change used to analyze systematic variation in 

growth trajectories over time. Based on the results from the individual growth patterns 
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the average mathematics scores over time between the STEM and non-STEM schools 

were statistically insignificant as related to RQ1.  

The linear growth rate of the non-STEM schools was not constant over time, and 

there were differences within the same schools in the non-STEM group over time. The 

linear growth rate of the STEM schools as related to RQ2 trended towards being 

negative. The fluctuations in the growth trajectory over time were not significant, which 

implies that the growth patterns in the scores cannot be explained by the between-school 

predictors, but possibly by further researched of multiple covariates. Demographic results 

displayed that the majority of the third grade students in this study who took the 

mathematics standardized test were female. The demographic composition of the sample 

showed that Latino or Hispanic students represented a higher percentage than African 

American, White, and Asian students. In Chapter 5, I will present an interpretation of 

these findings, along with implications for social change, recommendations for action, 

and recommendations for further study.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

The purpose of this quantitative study was to determine whether mathematics 

scores from third grade student state-mandated standardized mathematics test scores 

differ between students who were enrolled in STEM-based schools and students who 

were not enrolled in STEM-based schools. In this quantitative, retrospective, longitudinal 

study of change, I used a simple two-level growth model that encompasses Level 1 and 

Level 2. The Level 1 model focused on within-individual patterns of change over time, 

and it is these patterns that characterized each school’s individual growth trajectory over 

time. The Level 2 model asks what predicted the variability in the growth rates from the 

STEM schools and the growth rates from the non-STEM schools that were produced 

from the Level 1 model, as well as any explanations for the patterns of within-individual 

change over time between each group (STEM and non-STEM) and within each 

individual school. I used IBM SPSS version 24 to analyze the data and generate results. 

The sample in this study included 18 STEM schools balanced with 18 non-STEM 

schools. The sample was gathered from the largest school district located in a 

Southwestern state, which is the only district in the vicinity with a large number of 

dedicated elementary STEM schools in addition to its body of 138 non-STEM elementary 

schools.  

Key findings from the Level 1 model demonstrated that the IGC from each school 

was nonlinear. However, the group growth curve, which included the weighted mean 

from STEM schools (M = 1431.17) and the weighted mean from the non-STEM schools 

(M = 1431.81) was not significantly different over time. In examining empirical growth 
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records of within-school individual outcome values over time, almost every school’s 

results fluctuated, some more significantly than others. Key findings from the Level 2 

model showed that there were between-school variations in growth rates over time of 

mathematics test scores but left unexplored possible variables of gender, ethnicity, 

teacher efficacy, and ecological or contextual factors and how these may have influenced 

discontinuity observed in test scores over time as demonstrated in Level 1. In this 

chapter, I further discuss the implications of the findings, the limitations of the study, 

recommendations for further research, recommendations for practice, implications for 

positive social change, and conclusions. 

Interpretation of Findings 

Research Question 1 

RQ1 asked about the individual changes in growth over time of mathematics 

scores from a state-mandated standardized test of third grade students who were enrolled 

in STEM-based schools and students who were not enrolled in STEM-based schools. Key 

findings from RQ1 demonstrated that: (a) the average mathematics scores over time 

between the groups, STEM and non-STEM schools, was statistically insignificant; (b) 

within-school growth trajectory over time of the STEM schools and within-school school 

growth trajectory over time of the non-STEM schools was not significant; and (c) the 

ICC for STEM schools was five percentage points lower than that of the ICC for non-

STEM schools, which meant that the estimated average scores over time of the non-

STEM schools had higher stability than the estimated average scores over time of the 

STEM schools.   



90 

 

These findings were not consistent with current literature that indicated that a 

STEM-based approach to mathematics instruction in the target state of focus in this study 

could have a positive effect on standardized test scores and increase the possibility of 

mathematical achievement (McDonald, 2016). Singer and Willett (2003) stated that 

significant variance in individual growth parameters on Level 1 analysis indicates the 

influence of possible covariates. My RQ focused singly on individual growth patterns 

over time to determine the effects of STEM and non-STEM education on standardized 

mathematics test scores using IGCs. Additional covariates were not included as 

supplementary questions in the RQ structure but would serve the district well as future 

research in its quest to provide top rate education for all. It is the nature of growth curve 

analysis to first determine individual growth trajectories before including explanatory 

variables to clarify the intraindividual and interindividual differences. 

While traditional methods of teaching have some advantages for student learning, 

mathematics instruction that is STEM-based aligns with tenets found in Polya’s (1957) 

heuristics of problem-solving, which are promoted by NCTM (2000) and other 

educational stakeholders. As described in the literature review, both STEM and non-

STEM disciplines rely on talented workers with STEM-related skills to accomplish job-

related tasks in computation, programming language, and digitalization as a means to 

keep pace with technological trends and innovation. Because STEM-based education 

typically is student-centered, project-based, and hands-on, some research describes it as 

more relevant to students than are traditional methods (NCTM, 2000), more connected to 

real-world contexts, and more motivating for young learners. Government agencies, 
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educational associations, school districts, and other stakeholders believe in the relevancy 

of STEM education as a more modernized and sensible approach to student learning, 

which is most effectively achieved with teacher facilitation. As a result, many of the 

above-named agencies and stakeholders are now implementing STEM-based teaching 

and learning in some manner in their professional paradigms. The finding of RQ1, that no 

difference in mathematics achievement occurred for students taught in STEM schools 

compared to those taught in non-STEM schools, suggests that STEM education in the 

target district can be embraced wholeheartedly, with confidence in the continued 

mathematics achievement and the added benefit of infusing fun in a subject that some 

students find difficult to learn. 

Research Question 2 

RQ2 asked about the between-person or interindividual changes in growth over 

time in mathematics scores from a state-mandated standardized test of third grade 

students who were enrolled in STEM-based schools and students who were not enrolled 

in STEM-based schools. The Level 2 model analysis, which detects the heterogeneity in 

patterns of change across schools that were presented from the Level 1 model analysis, 

links the changes in patterns with the cause, which would be the result of a predictor (e.g. 

teacher experience, ethnicity, or socioeconomic status). What factors caused fluctuations 

in growth trajectories were not explored in this study, which is common as an initial step 

in basic IGC analysis.  

Key findings from RQ2 related to non-STEM schools demonstrated that: (a) the 

differences between test scores that were found at each time period of the non-STEM 
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group were not statistically significant, and therefore, there are no between-school or 

interindividual differences over time; (b) the outcome values produced in both the 

intercept and linear slope parameters indicated that initial status and linear growth rate of 

the non-STEM schools was not constant over time; (c) even though the mean estimated 

initial status and linear growth rate for the non-STEM group was not statistically 

significant over time, the group experienced a linear growth rate that trended towards 

being positive, demonstrating that its test scores increased over time; (d) the random error 

terms associated with the intercept and linear effect were not significant, which suggests 

that the change in the parameters could not be explained by between-school predictors, 

meaning there were no significant effects on the test scores based on the non-STEM 

curriculum; (e) the change in the parameters over time of the non-STEM scores also 

cannot be explained by between-school or interindividual differences found between 

individual growth trajectory of each non-STEM school; (f) the correlation between the 

intercept and the linear growth parameter in non-STEM schools trended towards being 

negative, suggesting that non-STEM schools with high average test scores had a slower 

linear decrease, whereas non-STEM schools with low average test scores had a faster 

decrease in linear growth over time; and (g) there are differences within the same schools 

in the non-STEM group over time, which can possibly be explained by researching 

further with mediating and/or moderating variables.  

Key findings from RQ2 related to STEM schools demonstrated that: (a) there are 

within-school or intraindividual differences over time within the schools in the STEM 

group, and therefore, potential effects of multiple explanatory, mediating, or moderating 
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predictors could be researched to determine the nature of the differences; (b) the 

significant values in the intercept and linear slope parameters showed that the initial 

status and linear growth rate were not constant over time, but the average score over time 

from the initial status and linear growth rate of the STEM population increased; (c) the 

linear growth rate trended towards being negative, and therefore, test scores decreased 

with time, which means that the mean of the STEM group increased over time; and (d) 

the fluctuations in the growth trajectory over time was not statistically significant, 

meaning that the patterns of change in the STEM scores cannot be explained by the 

between-school predictors or by interindividual STEM differences, the STEM-based 

mathematics instruction approach to learning. 

As discussed in Chapter 2, children have a natural affinity for mathematics 

concepts early on; however, few quantitative studies on the effect of early STEM-based 

mathematics instruction on third grade student performance on standardized mathematics 

tests are found in the peer-reviewed literature. Instead, most studies focus on a variety of 

areas of STEM education predicated on its effect on standardized mathematics tests and 

mathematics achievement in secondary and postsecondary education (Arik & Geho, 

2017; Chiu et al., 2015; Clements & Sarama, 2016; Ejiwale, 2013; McClure et al., 2017; 

Nguyen et al., 2016; OECD, 2016a). Results of this study that there are no between-

school or interindividual differences between mean scores of STEM and non-STEM 

schools deviates from the general conclusion as reported in the literature review that early 

STEM education is effective and may positively influence student performance on 

mathematics test scores.  
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Summary 

My intent in this study was to determine if STEM education and its approaches to 

learning have an effect on student outcomes on the third grade state-mandated 

mathematics test. Results of this study indicated that STEM education compared to non-

STEM education demonstrated no significant difference on student outcomes on the third 

grade state-mandated mathematics test. The averages of the between-group (STEM and 

non-STEM) schools were statistically the same. The results from the empirical growth 

plots revealed fluctuations in each school individual growth trajectory in which the 

parameters show similarity in variance between the slope and integers. Such fluctuations 

indicate that particular predictors other than STEM-based mathematics instruction 

influenced the interindividual differences in changes over time. Further testing is required 

to determine what predictors influenced what differences.  

Limitations of the Study 

The initial intent of this study was to determine if there were statistically 

significant differences in third grade student standardized mathematics test scores 

overtime dependent upon STEM and non-STEM pedagogy. In Chapter 1 I reviewed 

several limitations that may have affected generalizability of findings in this study. 

Included are limitations due to students who enrolled in STEM programs in the target 

district with varying levels of STEM exposure in kindergarten through second grade, 

which may affect mathematics achievement in the third grade in unknown ways. Second, 

there were no measures available to determine the quality or degree of STEM instruction 

that students in the sample experienced given the number of classrooms involved and 
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levels of teacher experience. Third, students who live in residential zones different from 

which the STEM school in which they won lotteries to attend is located are required to 

transport themselves to school, and this added adjustment for the family may influence 

student learning in unexpected ways for an unknown period of time.  

The following additional findings are not generalizable to all school districts for 

several reasons: (1) not every school district has established dedicated STEM schools 

under a specialized magnet program, in addition to traditional, non-STEM schools, as is 

the case in the school district of focus in this study, (2) there are broad differences in 

instructional strategies, operational practices, policies, and programmatic implementation 

in STEM schools across school districts in the state of focus, (3) the research only 

examined third grade students and not later grade levels to test for longitudinal 

differences in mathematics achievement, (4) teacher self-efficacy and teacher experience 

and training levels of education and proficiency in implementing STEM programs may 

vary widely and might affect student achievement on standardized mathematics test 

scores, and (5) the target district has experienced administrative difficulties and failure to 

meet accountability standards, which might affect the application of these findings even 

in the target district in analysis of more recent data than were included in this study. 

Therefore, applying these results outside of the scope of this study may be unsuitable.  

Recommendations 

First, this study provided important empirical data on interindividual variability, 

which supports further study individual-related factors that account for the variability. 

Also, the results of the study support a lack of a statistically significant relationship 
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between-school groups or within individual schools, making it reasonable to recommend 

that a general study on how STEM-based mathematics instruction is designed and 

delivered in the target district, and in other, similar large school districts. Results of this 

study dissented from current literature that found a positive interaction between STEM-

based mathematics instruction and mathematics achievement, which illustrates the need 

for expanded, specific, and ongoing research in regards to both the outcomes of this 

study, and the target district’s internal practices and policies regarding its STEM 

program. In order to best understand the effect of STEM education on mathematics 

achievement in elementary grades, I recommend that each school district individually 

analyze outcome measures for its unique population.  

The results of this study demonstrated that there is no difference in test scores 

between STEM and non-STEM schools, indicating that STEM-based education is not 

academically superior or inferior to traditional education. Given this discovery in the 

target district, I would recommend that STEM-based mathematics instruction be scaled 

throughout the district in a STEM-for-all model, which is growing more popular in many 

school districts and supported by businesses and the federal government. One school 

district north of the target district has established a partnership with a major company to 

create a STEM-for-all model as a means to reshape how STEM subjects are delivered and 

in an effort to make learning relevant for all students. Since the target district in this study 

has a high population of Title I and economically disadvantaged students who are 

otherwise under-represented in STEM disciplines and have low enrollment is specialized 

STEM programs, the STEM-for-all program may provide these at-risk students with an 
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approach to learning that will develop high need skills that are needed throughout their 

lives and in the workforce (Noonan, 2017; Rothwell, 2013, Sithole et al., 2017).  

Trends in individual growth trajectories allow the target district to see patterns of 

achievement from individual STEM schools, individual non-STEM schools, and between 

each group. Given the information from the growth patterns, the results suggest that more 

in depth studies are recommended to pinpoint exact explanations for the intraindividual 

or within-school variations in test scores, as well as any relationships or interactions 

between STEM-based mathematics instruction and mathematics achievement, to explain 

the interindividual differences. For example, because scores varied within schools for 

unknown reasons, research might focus on factors that possibly caused test scores of 

STEM and non-STEM schools to increase or decrease over time. Further studies will be 

necessary to determine what extrinsic factors played a role in the growth trajectories. 

Factors such as teacher efficacy, teacher accountability, or different teaching styles may 

have had an effect on student performance that should be considered.  

Similarly, future studies might investigate whether differences in growth 

trajectories found in this study happened because some students learned STEM-based 

material in earlier grades, or at a faster rate than others, or whether students enrolled in 

non-STEM approaches to learning retain information at higher rates than STEM students 

due to the rote memorization practices found in the traditional model. There could be 

differences due to a student’s early mathematics education experiences or STEM 

exposure from pre-kindergarten through second-grade. Research found that children are 

mathematically inclined starting at a very young age, which would support this predictor. 
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Further research might focus more specifically on teaching methods and teacher 

professional development programs, and their effects on student achievement on 

mathematics assessments. An experimental study, in which teachers specifically trained 

in either STEM or non-STEM methods of mathematics instruction, with a comparison of 

student achievement results, might help elucidate the issue of curricular faithfulness 

assumed in my study. In addition, in my study I ignored possible teacher differences in 

self-efficacy regarding mathematics instruction, but this might have been a key factor, 

because my study compared achievement resulting from primary grade teaching, when 

school subjects are typically taught by generalists, not by subject matter specialists. 

Future research, therefore, might explore the effect of teacher self-efficacy in 

mathematics on student achievement and whether feelings of efficacy vary by STEM or 

non-STEM curricular model.  

This study also identified opportunities for further longitudinal research on the 

effects of early STEM-based mathematics instructional strategies on children’s learning 

at the end of the primary grades and throughout their middle school, high school, and 

college careers, and subsequent employment choices. The influence of a district-wide 

STEM program, from the earliest years through high school graduation, on student 

learning and careers, is as yet unknown. Since authentic STEM programs provide 

practical application to real world contexts for learning through hands-on lessons that 

provide intrinsically appealing opportunities for problem-solving and investigation 

(Tanenbaum, 2016; Polya, 1957), it is possible that STEM education would result not 

only in similar achievement to non-STEM, as found in this study, but also increases in 
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student attendance, motivation for school, and graduation rates. Such longitudinal effects 

should be explored in future research.  

Implications 

The results from this study showed that there was no significant difference 

between the average test score between third grade students in STEM schools compared 

to third grade students in non-STEM schools, meaning that STEM instruction is as 

effective as non-STEM instruction in mathematics. Therefore, STEM-based instruction 

can be embraced vigorously and STEM elements may be introduced into more traditional 

instruction without loss of student learning. Because gains in problem-solving ability and 

student interest may result from a STEM-based inquiry curriculum, as suggested by 

Kellye and Knowles (2016), greater use of STEM instruction may encourage student 

achievement. I recommend that STEM teachers, with the support of district 

administrators, open up their classrooms to the community and local news organizations, 

to increase the public’s understanding of the possible benefits of STEM training and 

education to student development, with no loss of mathematics achievement. I 

recommend that STEM instruction be adopted more widely, for the same reasons.  

Because many specific STEM education teacher training programs are not locally 

available or affordable for teachers, I recommend that school districts provide specific 

STEM-based professional development training opportunities for teachers, which may 

increase teacher self-efficacy, which in turn may influence student achievement. Because 

research showed that early mathematics instruction influences mathematics achievement 

in secondary education, I recommend that local universities, policymakers, and other 
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educational stakeholders invest in early-stage STEM programs in their local school 

districts, and support teacher in-service training programs to increase the number of 

STEM-confident teachers.  

In addition, the results of this study could prompt school districts to examine how 

STEM-based mathematics instruction is delivered in various zones within the district. 

Since my results differed from current literature that suggested that STEM-based 

education, in which students apply knowledge from the classroom to real world settings 

through hands-on experiences, may influence mathematics achievement, it is possible 

that STEM pedagogy in the target district fell short of what is described in the literature. 

In order to ensure a rigorous and effective STEM-based mathematics curriculum, each 

school district that offers STEM-based mathematics instruction should analyze its 

program in order to meet the needs of its early learner population. Given that the target 

district’s content standards are delivered using Polya’s (1957) problem-solving heuristics, 

which are a core component of STEM-based tenets, I recommend that it consider 

examining the information resulting from this study to possibly develop interest-based 

curricula for populations of students who are underrepresented in STEM-based programs 

and STEM fields because they are relegated to traditional educational environments for 

one reason or another.  

The findings of this study offer implications for positive social change. First, the 

lack of statistically significant differences in average mathematics test scores between 

STEM and non-STEM schools presents the opportunity for the target school district to 

pilot STEM-based mathematics instructional strategies to all third grade students in its 
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159 elementary schools. This action by the school district could have positive social 

change implications since prior research shows that STEM-based instructional strategies 

enhance student problem-solving abilities and critical functional skills, which are 

essential academic habits that are necessary in later academic years. Second, the findings 

from this study may inspire changes to the traditional mathematics curriculum, to include 

a more student-centered focus, and concentrate, as STEM education does, on developing 

student metacognitive abilities, persistence in solving challenging problems, critical 

thinking ability, collaborative learning, and student enjoyment (Allen-Lyall, 2018; 

Gravemeijer et al., 2017; Polya, 1957; Tanenbaum, 2016).  

Third, the results could provide information on how different populations of 

students learn and how outside factors may affect their learning. Most of the target 

district’s schools are Title I, and adopting STEM curriculum for at-risk students could 

result in positive social change, since research shows that students learn best when they 

have hands-on opportunities such as those found in STEM approaches to learning. 

Fourth, the focus of RQ1 was on individual changes in growth over time to determine the 

effects of the approaches to learning of STEM and non-STEM schools and how they 

influenced mathematics assessments. Given the results of no group difference in average 

test scores, further research is required to determine the broader effects of additional 

predictors such as gender, ethnicity, and socioeconomic status, or Title I designation.  

The data for these variables are publicly available and the results of further studies may 

influence positive social change in STEM education. Other variables that deserve further 

examination to determine prediction of state-mandated standardized mathematics test 
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scores include income and educational levels of parents, amount of homework 

prescribed, classroom size, or even physical activity, or accessibility to music and art 

classes. Finally, the results of this study can benefit officials involved with devising 

interventions for populations of students who tend to score below meets standards level. 

Given that there were interindividual differences in test scores over time between gender 

and ethnicity, this study could influence positive social change by closing the 

achievement gap in mathematics test scores.  

Conclusion 

Through this study, I found that average mathematics test scores of third grade 

students who were enrolled in STEM schools in one urban school district in the 

southeastern United States were no different from mathematics test scores of third grade 

students who were enrolled in non-STEM schools in the same district. The empirical 

growth plots illustrated results from Level 1 in which each school’s individual growth 

trajectory demonstrated fluctuations in outcomes values over time, including the 

variations in growth rate. Results from RQ2 revealed that there were interindividual 

differences and variability in average test scores between students within each school, 

which indicates that further research needs to be performed to determine what kinds of 

additional predictors or factors could be influencing the individual growth trajectory over 

time of each school. The predictors could be due to population differences or school-

based factors. Because the Level 2 model describes the relationship between 

interindividual differences in the Level 1 individual growth parameters and the time-

invariant characteristics of the individual, further research is warranted. Mathematics 
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achievement of STEM students was equal to that of non-STEM students. The conclusions 

of this study support development of STEM-for-all programs, backed by strong teacher 

training in STEM pedagogy, given that STEM instruction has potential to deliver 

achievement similar to non-STEM instruction while inspiring the next generation of 

STEM-field workers through hands-on, project based early learning.  
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Appendix A: Statistical Program Commands for non-STEM School Analysis 

 

 

Command Syntax (non-STEM school) Interpretation 

1 mixed 

Math_Average_Scale_Score_NS 

with YearTraditional 

This MIXED syntax statement will 

request the mixed-level analysis 

procedure to perform an output analysis 

of the math average scale score of non-

STEM schools at each TIME (2012-

2017). 

2 /fixed intercept YearTraditional This syntax will list the fixed-effect 

variables of time and school type. 

3 /random intercept 

YearTraditional | 

subject(Unit_ID_Traditional) 

covtype(un) 

This syntax will list the random-effect 

variable (intercept). The SUBJECT 

statement specifies the classification 

variable, the unit identification (ID, 

school type) and the COVTYPE 

statement that captures the error 

covariance structure type that will best 

fit the data. 

4 /print solution testcov /method 

ml. 

This PRINT SOLUTION syntax 

statement will request an output with 

specific results (i.e., fixed-effect 

estimates, its standard errors, a t-test for 

the parameter, and significance tests for 

the estimated variance components). The 

TESTCOV will perform significance 

tests for the estimated variance 

components. Maximum Likelihood 

(ML) will estimate the model.  
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Appendix B: Statistical Program Commands for STEM School Analysis 

 

Command Syntax (STEM School) Interpretation 

1 mixed 

Math_Average_Scale_Score_S 

with YEARSTEM 

 

This MIXED syntax statement will 

request the mixed-level analysis 

procedure to perform an output analysis 

of the math average scale score of non-

STEM schools at each TIME (2012-

2017). 

2 /fixed intercept YEARSTEM 

 

This syntax will list the fixed-effect 

variables of time and school type. 

3 /random intercept YEARSTEM | 

subject(Unit_ID_STEM) 

covtype(un) 

 

This syntax will list the random-effect 

variable (intercept). The SUBJECT 

statement specifies the classification 

variable, the unit identification (ID, 

school type) and the COVTYPE 

statement that captures the error 

covariance structure type that will best fit 

the data. 

4 /print solution testcov /method 

ml. 

This PRINT SOLUTION syntax 

statement will request an output with 

specific results (i.e., fixed-effect 

estimates, its standard errors, a t-test for 

the parameter, and significance tests for 

the estimated variance components). The 

TESTCOV will perform significance 

tests for the estimated variance 

components. Maximum Likelihood (ML) 

will estimate the model.  
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Appendix C: Empirical Growth Plots of Non-STEM Schools Mean Mathematics Scores 
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Appendix D: Empirical Growth Plots of STEM Schools Mean Mathematics Scores  
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Appendix E: Tables of Unconditional Mean Model of Non-STEM Schools 

 

Model Dimension
a
 

 

Number of 

Levels 

Covariance 

Structure 

Number of 

Parameters Subject Variables 

Fixed 

Effects 

Intercept 1 
 

1 
 

Random 

Effects 

Intercept 1 Identity 1 Unit_ID_Non-

STEM 

Residual   1  

Total 2  3  

a. Dependent Variable: Math_Average_Scale_Score_NS. 

 

Information Criteria
a
 

-2 Log Likelihood 1119.890 

Akaike's Information Criterion (AIC) 1125.890 

Hurvich and Tsai's Criterion (AICC) 1126.121 

Bozdogan's Criterion (CAIC) 1136.937 

Schwarz's Bayesian Criterion (BIC) 1133.937 

a. Dependent Variable: Math_Average_Scale_Score_NS.  

 

Type III Tests of Fixed Effects
a
 

Source Numerator df Denominator df F Sig. 

Intercept 1 18.0 20950.2 .000 

a. Dependent Variable: Math_Average_Scale_Score_NS. 

 

Estimates of Fixed Effects
a
 

Parameter Estimate 

Std. 

Error df t Sig. 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Intercept 1431.8 9.8 18.0 144.7 .000 1411.0 1452.5 

a. Dependent Variable: Math_Average_Scale_Score_NS. 
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Estimates of Covariance Parameters
a
 

Parameter Estimate 

Std. 

Error Wald Z Sig. 

95% Confidence 

Interval 

Lower 

Bound 

Upper 

Bound 

Residual 1319.0 196.6 6.7 .000 984.8 1766.6 

Intercept 

[subject = 

Unit_ID_ 

Traditional] 

Variance 1541.5 588.0 2.6 .009 729.8 3255.7 

a. Dependent Variable: Math_Average_Scale_Score_NS. 
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Appendix F: Mixed Model Analysis of Non-STEM Schools 

  

Model Dimension
a
 

 

Number 

of Levels 

Covariance 

Structure 

Number of 

Parameters 

Subject 

Variables 

Fixed 

Effects 

Intercept 1  1  

YearTraditional 1  1  

Random 

Effects 

Intercept + 

YearTraditional
b
 

2 Unstructured 3 Unit_ID_ 

Traditional 

Residual   1  

Total 4  6  

a. Dependent Variable: Math_Average_Scale_Score_NS. 
 

 

 

 

 

Information Criteria
a
 

-2 Log Likelihood 1111.2 

Akaike's Information Criterion (AIC) 1123.2 

Hurvich and Tsai's Criterion (AICC) 1124.0 

Bozdogan's Criterion (CAIC) 1145.3 

Schwarz's Bayesian Criterion (BIC) 1139.3 

a. Dependent Variable: Math_Average_Scale_Score_NS.    

 

Type III Tests of Fixed Effects
a
 

Source Numerator df Denominator df F Sig. 

Intercept 1 18.0 .630 .438 

YearTraditional 1 18.0 1.1 .308 

a. Dependent Variable: Math_Average_Scale_Score_NS. 

 

Estimates of Fixed Effects
a
 

Parameter Estimate 

Std. 

Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept -4442.2 5595.7 18.0 -.794 .438 -16197.9 7313.4 

YearTraditional 2.9 2.7 18.0 1.0 .308 -2.9 8.7 

a. Dependent Variable: Math_Average_Scale_Score_NS. 
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Estimates of Covariance Parameters
a
 

Parameter Estimate Std. Error 

Wald 

Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 1003.934 167.320 6.0 .000 724.1 1391.7 

Intercept + 

YearTraditional [subject 

= Unit_ID_Traditional] 

UN (1,1) 330806788.0 191780731.1 1.7 .085 106194471.4 1030497440.1 

UN (2,1) -164221.2 95202.9 -1.7 .085 -350815.6 22373.0 

UN (2,2) 81.524 47.2 1.7 .085 26.1 253.9 

a. Dependent Variable: Math_Average_Scale_Score_NS. 
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Appendix G: Mixed Model Analysis of STEM Schools 

Model Dimension
a
 

 

Number 

of Levels 

Covariance 

Structure 

Number of 

Parameters 

Subject 

Variables 

Fixed 

Effects 

Intercept 1  1  

YEARSTEM 1  1  

Random 

Effects 

Intercept + 

YEARSTEM
b
 

2 Unstructured 3 Unit_ID_STEM 

Residual   1  

Total 4  6  

a. Dependent Variable: Math_Average_Scale_Score_S. 

 

Information Criteria
a
 

-2 Log Likelihood 1095.1 

Akaike's Information Criterion (AIC) 1107.1 

Hurvich and Tsai's Criterion (AICC) 1107.9 

Bozdogan's Criterion (CAIC) 1129.2 

Schwarz's Bayesian Criterion (BIC) 1123.2 

a. Dependent Variable: Math_Average_Scale_Score_S.                                        

 

Type III Tests of Fixed Effects
a
 

Source Numerator df Denominator df F Sig. 

Intercept 1 18.0 .190 .668 

YEARSTEM 1 18.0 .022 .885 

a. Dependent Variable: Math_Average_Scale_Score_S. 

 

Estimates of Fixed Effects
a
 

Parameter Estimate 

Std. 

Error df t Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Intercept 2160.2 4961.1 18.0 .435 .668 -8262.6 12583.0 

YEARSTEM -.361 2.4 18.0 -.147 .885 -5.5 4.8 

a. Dependent Variable: Math_Average_Scale_Score_S. 
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Estimates of Covariance Parameters
a
 

Parameter Estimate Std. Error Wald Z Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Residual 878.345 146.3 6.0 .000 633.5 1217.6 

Intercept + YEARSTEM 

[subject = 

Unit_ID_STEM] 

UN (1,1) 239355580.7 151504420.2 1.5 .114 69224564.1 827612203.0 

UN (2,1) -118955.9 75252.3 -1.5 .114 -266447.8 28535.8 

UN (2,2) 59.1 37.3 1.5 .114 17.1 204.1 

a. Dependent Variable: Math_Average_Scale_Score_S 
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