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Abstract 

Cause-specific mortality (CSM), among other global health estimates, has garnered 

prominence in the contemporary public health field. CSM has been associated with 

several factors, however, research comparing CSM for prefracking versus postfracking 

periods is sparse. Hydraulic fracturing or fracking is a technique of extracting oil and gas 

from deep underground. The purpose of this study was to evaluate the difference among 

mean CSM scores from 1975 through 2015 in the available cities and counties of 

residence in Colorado and to determine the impact of gender, marital status, county of 

residence, and city of residence on CSM scores (prefracking period 1975-1977 versus 

postfracking period 1999-2015) among adults aged 45-70 years. In this retrospective 

quantitative study, the socioecological model of health was used to analyze 73,251 cases 

obtained from the Colorado Department of Public Health and Environment. One-way 

analysis of variance and multiple regression were used to analyze data. Results showed 

that Denver County had a higher mean CSM score compared to other counties in 

Colorado. Regression results revealed a significant but weak association between CSM 

scores and gender, marital status, city of residence, and county of residence. If gender, 

marital status, and county of residence can be significant predictors of CSM, this 

information could have social change implications by influencing decisions regarding 

CSM and fracking. 
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Chapter 1: Introduction to the Study 

Introduction 

Cause-specific mortality (CSM), among other global health estimates, has 

garnered prominence in the contemporary public health field. Fine particulate matter 2.5 

micrometers or smaller (abbreviated PM2.5), ozone (O3), and nitrogen dioxide (NO2) 

have been associated with nonaccidental and cause-specific mortality in single-pollutant 

models (Brauer et al., 2015). Cause-specific death has also been associated with 

overweight and obesity in three large cohorts of health professionals in the United States 

(Hu et al., 2017). Jin et al. (2015) opined that all cause-specific cardiovascular mortality 

in Beijing had stronger cold and hot effects than those in Shanghai. Additionally, in the 

United States, cardiovascular disease (CVD), the leading cause of mortality, has been 

associated with CSM (Feeser, Fuller, O’Neill, & Sarnat; 2017). Epidemiological, clinical, 

pathophysiological, and mechanistic studies show that air pollution is associated with 

general morbidity and mortality resulting from respiratory and CVD. 

Air pollution, both indoors and outdoors, constitutes a major threat to global 

human health. Most sources of air pollution, including industrial production, 

transportation, heat, power generation, and burning of solid waste, releases harmful 

chemicals or pollutants such as sulphur dioxides (S02), nitrogen dioxides (NOx), carbon 

monoxide (CO), particulate matter (PM), volatile organic compounds (VOCs), and lead 

(Pb; Balali-Mood, Ghorani-Azam, & Riahi-Zanjani; 2016). Balali-Mood, Ghorani-Azam, 

& Riahi-Zanjani (2016) posited that air pollution containing PM2.5 and particulate manner 

10 micrometers or smaller (PM10) may cause premature death in people with heart and/or 

lung disease including cardiac dysrhythmias, nonfatal heart attacks, aggravated asthma, 
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and decreased lung functions.. Statistically significant associations have been found 

between PM10 and heart disease and between SO2, NO2, PM10, and CVD mortality (X. 

Chen et al., 2015). 

According to the World Health Organization (WHO, 2017), air pollution 

constitutes a huge environmental risk, and about 92% of the global population lives in 

areas where WHO air quality guideline levels are not met. Due to this great risk, WHO 

came up with guideline values for some pollutants, as shown in Table 1.  

Table 1 

World Health Organization Air Pollution Guideline Values 

 

PM2.5 PM10 NO2 O3 SO2 

10 μg/m3 

annual mean 

20 μg/m3 

annual mean 

40 μg/m3 

annual mean 

100 μg/m3 8-

hour mean 

20 μg/m3 24-

hour mean 

 

25 μg/m3 24-

hour mean 

50 μg/m3 24-

hour mean 

200 μg/m3 1-

hour mean 

 500 μg/m3 10-

minute mean 

Note. Data from WHO (2017). 

Hydraulic fracturing (HF) is becoming a global health problem. Its history in the 

United States dates to the 1940s (Geological Society of America, n.d.). A budding 21st-

century technology, HF has been used for well completion in Colorado since the 1970s 

(Colorado Oil and Gas Conservation Commission, 2011). There are perceived human 

health implications associated with this technological means of extracting oil and gas 

from deep underground (Finkel & Hays, 2016). Governments at all levels (i.e., 

international, national, and local), the oil and gas industries, private citizens, not-for-

profit organizations, and academic institutions have posited and presented various 

positions on HF.  
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These multiple points of view range in their focus from perceived population 

health impacts of HF, economic benefits, social and environmental implications, and 

effects on the ecosystem (Bugos et al., 2015; Cappa, Moridis, Rinaldi & Rutqvist, 2013). 

Those who live near fracking sites have complained about adrenal and pituitary tumors, 

headaches, nausea, joint pain, and respiratory problems (Brown, Bonaparte, Lewis, & 

Weinberger, 2014). 

 Proponents of other schools of thought have suggested that HF has economic 

benefits and the potential of making the United States and the world energy-self-

sufficient. In the process of oil and gas exploration, chemicals are released into the 

ambient air. For example, residents of Porter Ranch, California, have been exposed to 

benzene from gas leaks, which may cause increased cancer risk (South Coast Air Quality 

Management District, 2014). Chemicals such as benzene and methane that are used 

during HF processes could be associated with several human health impacts (Brown et 

al., 2014). As results of several studies have shown, these chemicals often emitted into 

the ambient air constitute air pollution. CO, Pb, NO2, O3, PM10, PM2.5, and SO2 are some 

classes of those pollutants. Prior research has shown that there is an association between 

CO, Pb, NO2, O3, PM10, PM2.5, and SO2 and certain human health risks (Cao, Chen, Kan, 

Xu, & Xu, 2012; Bell et al., 2006; Anderson, Bell, Dominici, Krall, & Peng, 2013; Bell et 

al., 2009). 

CSM, on the other hand, has been compared to coffee consumption (Freedman et 

al., 2017), travel time (Ghosn, Menvielle, Rey, & Rican, 2017), nut consumption (Aune, 

2016), paid sick-leave (Kim, 2017), weight history (Yu et al., 2017), and exposure to 

crystalline silica (Y. Liu et al., 2017). Mortality was defined as mortality from major 
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cardiovascular diseases (International Classification of Diseases, 10th Revision (ICD-10 

Codes I00–I78), which included deaths from diseases of the heart (I00–I09, I11, I13, I20–

I51), essential hypertension and hypertensive renal disease (I10, I12, I15), and 

cerebrovascular disease (CBD; I60–169; Klein & Miniño, 2010). CSM (underlying cause 

of death) was defined using ICD Code 9 for data from 1975 to1977 and ICD Code 10 for 

data from 1999-2015.  

This study has implications for positive social change, in that it may inform public 

health planning and policy making and the use of county-level mortality estimates to 

identify pressing local needs. Certified causes-of-death data, which are neither 

confidential nor restricted, were obtained from the vital statistics records of the Colorado 

Department of Public Health and Environment (CDPHE). CSM data included in the 

CDPHE data were as follows: major CVD (ICD-9; 390-448 and ICD-10; 100-178), 

chronic lower respiratory disease (ICD-10; J40-J47), asthma (ICD-9; 493 and ICD-10; 

J45), chronic obstructive pulmonary disease (COPD; ICD-9; 490-496 and ICD-10; J44), 

CBD (ICD-9; 430-438 and ICD-10; 160-169), and diseases of the heart (ICD-9; 390-398, 

402, 404-429 and ICD-10; I00-I09, I11, I13, I20-I51). Data on the underlying cause of 

death were coded according to ICD-9 (1975-1977) and ICD-10 (1999-2015). The 

underlying cause of death was carefully chosen according to the coding and selection 

rules of the ICD in use at the time of death (i.e., ICD-9 for 1975-1977 and ICD-10 for 

1999-2015). The purpose of this study was to evaluate the difference among the mean 

scores for CSM from 1975 through 2015 in all of the available cities and counties of 

residence in Colorado and to determine the contributions of gender, marital status, county 
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of residence, and city of residence in CSM periods (prefracking period, i.e., 1975-1977, 

and postfracking period, i.e., 1999-2015) among adults ages 45-70 living in Colorado. 

Hydraulic Fracturing Process 

During hydrological fracturing, a rig usually drills deep into the gas-bearing shale 

formation and the well is lined with steel pipe (Taylor & Weltman-Fahs, 2013). After 

this, the well is sealed with cement at about 1,000 feet. This process prevents 

groundwater contamination. Then the well is extended horizontally to about 1,000 feet or 

more, where pores or holes are made through the steel casing and the rocks. Chemicals, 

sand, and water are coercively injected into the shale. This forceful or pressurized 

injection of chemicals, sand, and water makes the geologic or shale formation permeable 

and porous and allows for oil and gas escapes through the fissures. In turn, these 

chemicals, sand, and water are pushed out of the deep underground up to the surface 

(Taylor & Weltman-Fahs, 2013). The hydraulic fracturing process involves drilling a 

well, first vertically and then horizontally.   

Background of the Study 

It is vital for policymakers in states and counties to understand the CSM of their 

populations in other to make informed decisions.  

In a prospective cohort study, Hu et al. (2017) investigated the risks for all-cause 

and cause-specific death associated with overweight and obesity in three large cohorts of 

health professionals in the United States. These authors used diagnostic codes from the 

eighth ICD revision (ICD-8) to classify deaths as due to CVD (including heart failure, 

coronary heart disease, stroke, and any other vascular causes;  ICD-8 Codes 390 to 459 

and 795), coronary heart disease (mainly ischemic heart disease [IHD]; ICD-8 Codes 410 
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to 414), stroke (ICD-8 Codes 430 to 438), cancer (ICD-8 Codes 140 to 239), respiratory 

diseases (ICD-8 Codes 460 to 519), and other causes (such as Alzheimer’s disease, 

infectious diseases, and accidents). Study outcomes showed associations for CVD 

mortality (overweight HR, 1.21 [CI, 1.15 to 1.28]; obese I HR, 1.63 [CI, 1.52 to 1.74]; 

obese II HR, 2.74 [CI, 2.53 to 2.97]), particularly death due to coronary heart disease 

(overweight HR, 1.32 [CI, 1.21 to 1.44]; obese I HR, 1.97 [CI, 1.78 to 2.19]; obese II HR, 

3.34 [CI, 2.95 to 3.79]). 

Jin et al. (2015) determined the associations between extreme temperatures and 

population mortality for CVD, CBD, IHD, and hypertensive disease (HPD) in Beijing 

and Shanghai, China. Causes-of-death data were obtained from the Center for Public 

Health Surveillance and Information Service of China Centre for Disease Control and 

Prevention (China CDC) and were classified using the International Classification of 

Diseases, 10th Revision (ICD-10). The outcome of this research showed that all cause-

specific cardiovascular mortality in Beijing had stronger cold and hot effects than those in 

Shanghai. In addition, the effects of extremely low and high temperatures differed by 

mortality types in the two cities. However, HPD in Beijing was inclined to both 

extremely high and extremely low temperatures. In Shanghai, people with IHD showed 

the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. 

It is important to note that many diseases are impacted by weather changes but 

there have been sparse studies examining the association between some of these diseases 

and cause-specific mortality in low- and middle-income countries. Researchers conducted 

a study to estimate the effects of heat and cold days on total and cause-specific mortality 

in the Vadu Health and Demographic Surveillance System (HDSS) area in western India 
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using a quasi-Poisson regression model allowing for overdispersion to examine the 

association of total and cause-specific mortality with extremely high (98th percentile, > 

39°C) and low temperature (2nd percentile, < 25°C) from January 2003 to December 

2012 (Ingole, Juvekar, Rocklov, & Schumann, 2015). Results of this study showed that 

heat was significantly associated with daily deaths from noninfectious diseases (RR = 

1.57; CI: 1.18-2.10). Results also showed that there was an increase in the risk of total 

mortality for those 12-59 years of age on lag 0 day (RR = 1.43; CI: 1.02-1.99). Further, 

there was a high increase in total mortality among men at lag 0 day (RR = 1.38; CI: 1.05-

1.83). In any case, these researchers did not find any short-term association between total 

and cause-specific mortality and cold days; rather, there was an immediate association 

between high temperatures and noninfectious disease mortality in a rural population 

located in western India during 2003-2012. 

Azim, Linhart, Morrrell, Taylor, and Vithana (2014) investigated trends by age 

and sex through cause-of-death analysis for 1950-2006 in adults aged 15-64 years in Sri 

Lanka. Data on deaths were obtained from the WHO mortality database for 1950 to 2003, 

and the Department of Census and Statistics Sri Lanka for 1992-1995 and 2004-2006 

where WHO data were unavailable. Adult deaths were categorized by age (15-34 and 35-

64 years) and sex into infectious diseases; external causes; circulatory diseases; cancers; 

digestive diseases; respiratory diseases; pregnancy-related; ill-defined; and other causes. 

Results of this study showed that mortality declined in females aged 15-34 years by 85% 

over 1950-2006. Among males aged 15-34 years, the mortality decline was less at 47%, 

due to a rise in external-cause mortality during 1970-2000. There was 67% mortality 

decline among females aged 35-65 years over 1950-2006 and a decline in mortality in 
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males aged 35-64 years. This study concluded that significant disparities were 

demonstrated in Sri Lankan cause-specific adult mortality by sex and age group for 1950-

2006. Female mortality progressively declined while male mortality demonstrated 

periods of increase and stagnation. 

Ameling, et al. (2015) aimed at determining relationships between long-term 

exposure to air pollution and nonaccidental and cause-specific mortality in the 

Netherlands. These researchers used an existing database on mortality, individual 

characteristics, residence history, neighborhood characteristics, and national air pollution 

maps based on land use regression (LUR) techniques for particulates with an 

aerodynamic diameter ≤ 10 μm (PM10) and NO2. Study outcomes showed that PM10 and 

NO2 were associated with nonaccidental mortality (hazard ratio [HR] = 1.08; 95% CI: 

1.07, 1.09 and HR = 1.03; 95% CI: 1.02, 1.03, respectively), respiratory mortality (HR = 

1.13; 95% CI: 1.10, 1.17 and HR = 1.02; 95% CI: 1.01, 1.03, respectively), and lung 

cancer mortality (HR = 1.26; 95% CI: 1.21, 1.30 and HR = 1.10 95% CI: 1.09, 1.11, 

respectively). Overall, the study supported the conclusion that there was an association 

between PM10 and NO2, and nonaccidental and cause-specific mortality. 

With the Cox proportional hazard model, Bernstein et al. (2015) analyzed a 

statewide cohort of > 100,000 women from the California Teachers Study to estimate the 

association between pollutants and all-cause, cardiovascular, IHD, and respiratory 

mortality. The study showed statistically significant (p < 0.05) associations of IHD with 

PM2.5 mass, nitrate, elemental carbon (EC), copper (Cu), and secondary organics and the 

sources of these pollutants: gas - and diesel-fueled vehicles, meat cooking, and high-
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sulfur fuel combustion. There was also a positive association between IHD and several 

Ultrafine components, including EC, Cu, metals, and mobile sources. 

Cao et al. (2012) analyzed the relationship between PM2.5 constituents and 

mortality. These authors collected daily mortality and daily concentration data on PM2.5, 

organic carbon (OC), and EC from 2004-2008 and measured the concentrations of 15 

elements from 2006-2008. Findings showed that huge contributors to PM2.5 mass were 

OC, EC, sulfate, nitrate, and ammonium. The study showed significant associations of 

total, cardiovascular or respiratory mortality with OC, EC, ammonium, nitrate, chlorine 

ion, chlorine, and nickel for at least 1 lag day. In addition, nitrate showed stronger 

associations with cardiovascular mortality than PM2.5 mass. However, the study 

concluded that PM2.5 constituents from the combustion of fossil fuel may have an 

influence on the health effects attributable to PM2.5 in Xi’an, where the study population 

lived. By narrowing the focus on zip codes and location monitors, I sought to distinguish 

PM2.5 from fossil-fuel combustion from PM2.5 from fracking. 

Brauer et al. (2015) investigated associations between CSM and ambient 

concentrations of fine particulate matter (≤ 2.5 μm; PM2.5), O3, and NO2 in a national 

cohort of about 2.5 million Canadians. The outcome of this research showed that PM2.5, 

O3, and NO2 were associated with nonaccidental and cause-specific mortality in single-

pollutant models. However, PM2.5 exposure alone could not appropriately explicate the 

risk of mortality associated with exposure to ambient pollution. These researchers 

concluded that there were positive associations between several common causes of death 

and exposure to PM2.5, O3, and NO2. 
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Bell et al. (2006) examined the risks of cardiovascular and respiratory hospital 

admissions associated with short-term exposure to PM2.5 using daily counts of hospital 

admissions from 1999-2002 retrieved from the billing claims of Medicare enrollees. 

More recent studies have validated and furthered these findings (Coull, Kloog, Koutrakis, 

Ridgway, & Schwartz, 2013). PM2.5 data were obtained from the U.S. Environmental 

Protection Agency (EPA) Air Quality System database. Per these authors, short-term 

exposure to PM2.5 was associated with increases in hospital admission for cardiovascular 

and respiratory diseases. In the study, heart failure had a 1.28% (95% CI, 0.78%–1.78%) 

increase in risk per 10-μg/m3 (10 micrograms per cubic meter of air) increase in same-

day PM2.5. Though this is not statistically significant, the implication is that at some 

point, when PM2.5 exceeds > 10-μg/m3, the increase in risk would be statistically 

significant. Ambient air quality guidelines as suggested by the WHO stand at an annual 

mean PM2.5 concentration limit of 10μg/m3 and 25μg/m3 for the 24-hourly mean 

(Giannadaki, Lelieveld, & Pozzer, 2016). The clinical significance of this study shows 

that short-term exposure to PM2.5 increases the risk for hospital admission for 

cardiovascular and respiratory diseases. 

Anderson et al. (2013), in a study of short-term PM exposures, looked at the 

association between mortality effects of PM2.5 constituents and concluded that regulating 

PM total mass may not be sufficient to protect human health. This study obtained data 

from the EPA Chemical Speciation Network data and National Center for Health 

Statistics from 2000-2005. The researchers analyzed organic carbon matter (OCM), EC, 

silicon, sodium ion, nitrate, ammonium, and sulfate, which constituted 79-85% PM2.5 

mass. Anderson et al. (2013) reported that interquartile range increases in OCM, EC, 
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silicon, and sodium ion were associated with estimated increases in mortality. However, 

the study did not find any proof that associations between mortality and PM2.5 or PM2.5 

constituents differed by season or region. Bonaparte et al. (2014) reflected on the 

inadequacy of protocols used in assessing compliance with ambient air standards and 

further submitted that modeling for air dispersion indicates the effect of local weather on 

individual exposures. This constituted a study limitation for b my study because I was not 

able to determine to what degree PM2.5 produced in Greeley impacts air quality in 

Denver-Aurora and vice versa. 

Bell et al. (2009) investigated the association between hospital admission for 

CVD and respiratory disease and the chemical components of PM2.5 in the United States. 

This study illustrated that an interquartile range (IQR) increase in EC was associated with 

a 0.80% increase in risk of sameday cardiovascular admissions. The study found that 

ambient levels of EC and OCM from vehicle emissions, diesel engines, and wood 

burning were associated with the largest risk of emergency hospital admissions for CVD 

and respiratory disease in both single- and multiple-pollutant models. The study also 

found an association between OCM and respiratory admissions. For the cardiovascular 

outcome, all four estimates showed strong evidence of an association between PM2.5 and 

hospital admissions on the same day. 

Using a Poisson regression, Schwartz and Zanobetti (2009) examined the 

association of mean PM2.5 and coarse particulate matter (PM) coarse with daily deaths. 

By applying city- and season-specific Poisson regression in 112 U.S. cities, these 

researchers examined the association of mean (day of death and previous day) PM2.5 and 

PM coarse with daily deaths. The study found a 0.98% (95% confidence interval [CI], 
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0.75-1.22) increase in total mortality, a 0.85% (95% CI, 0.46-1.24) increase in CVD, a 

1.18% (95% CI, 0.48–1.89) increase in myocardial infarction (MI), a 1.78% (95% CI, 

0.96–2.62) increase in stroke, and a 1.68% (95% CI, 1.04–2.33) increase in respiratory 

deaths for a 10-μg/m3 increase in 2-day averaged PM2.5. Mortality data were obtained 

from 2001 through 2005 from each state in the country (except Hawaii and Idaho) 

through the National Center for Health Statistics (NCHS). In addition, researchers 

obtained data on PM2.5 from the U.S. EPA Air Quality System Technology Transfer 

Network. Finally, this study concluded that there was an increased risk of mortality for all 

and specific causes associated with PM2.5. This study, though generic for PMs, has 

practical significance in showing that thousands of early deaths per year could be avoided 

by reducing particle concentration. 

Adgate, McKenzie, Newman, and Witter (2012) reported that cumulative cancer 

risks were 10 in a million and 6 in a million for residents living ≤ ½ mile and > ½ mile 

from wells, respectively, with benzene as the major contributor to the risks in rural 

Colorado. The authors suggested that the noncancer health impact from air emissions 

from unconventional gas (UNG) production is greater for people living near oil and gas 

wells. However, though they considered this a preliminary outcome that needs further 

research, the authors identified higher cancer risk for people living closer to wells than 

for people located further away from wells. Benzene was identified as the key contributor 

to the cancer risk. 

Y. Liu et al. (2015), using case-crossover design, evaluated the relationship 

between daily mean concentrations of ambient air pollutants PM10, SO2, and NO2 and 

daily CVD mortality in Wuhan, China. Their study found increases in NO2 and SO2 
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associated with daily CVD mortality. The study also found no statistically significant 

association for PM10. The study also looked at gender-stratified and age-stratified 

analysis and found no statistical significance between pollutants and CVD mortality in 

females but only statistical significance among males when it comes to NO2 and CVD 

mortality. On age-stratification analysis, study found that NO2 was associated with daily 

CVD mortality among study participants over 65 years of age.  

Brief Historical Background 

Greeley is a city in Weld County, Colorado. Per the map of Weld County, 

Greeley is 15 miles east of Interstate 25, about 40 miles from Interstate 76, and 50 miles 

south of Interstate 80 in Wyoming (Upstate Colorado Economic Development, n.d.). 

Development of oil and gas dates to the 1970s in Greeley (City of Greeley, n.d.). 

Moreover, Weld County is the largest oil- and gas-producing county in the Denver-

Julesburg Basin, and Greeley has been seen as a hotspot for hydraulic fracturing 

operations (American Petroleum Institute, 2008). The history of oil and gas development 

in Colorado dates back to 1862, when the first oil and gas well was drilled (Neslin, 2011).  

Almost all of the active wells in Colorado have been fracked or fractured. In the 

year 2008, the number of applications for permits to drill oil and gas in Colorado rose to 

7,870, compared to 2,003 in 1939 (Adgate et al., 2013). The Wattenberg Field covers an 

area of 978 square miles (2,530 km2; Nelson & Santos, 2011). Current studies have 

shown that the Wattenberg Field of oil and gas sits on a 2,000-square-mile field (Carlson, 

Douglas, Goodwin, Knox, & Rein, 2014).  

The Wattenberg Field is in the Denver-Julesburg (DJ) basin. Hydraulic fracturing 

activity began over three decades ago in the Wattenberg Field, which stretches about 50-
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70 miles. In the DJ basin, which houses approximately 20,000 active wells, almost 

11,000 of the active wells are in the Wattenberg Field alone (American Petroleum 

Institute, 2008). The wells in the Wattenberg Field, which has produced about 2.8 trillion 

cubic feet of natural gas, are between 6,000 and 8,000 feet in depth. 

In Colorado, CVD is a leading cause of death (Colorado Department of Public 

Health and Environment, 2017). CVD encompasses heart attack, stroke, heart failure, 

hypertensive heart disease, and diseases of the arteries, veins, and circulatory system. 

Evidence shows that in Colorado in 2002, there were 6,403 deaths due to heart disease, 

1,907 deaths due to stroke (the third leading cause of death), and 1,015 deaths due to 

heart failure, hypertensive heart disease, and diseases of the arteries, veins, and 

circulatory system (CDPHE, 2017).  

Problem Statement 

Jin et al. (2015) determined the associations between extreme temperatures and 

population mortality for CVD, CBD, IHD, and HPD in Beijing and Shanghai, China and 

reported that all cause-specific cardiovascular mortality in Beijing had stronger cold and 

hot effects than those in Shanghai. Equally vital is the fact that heat was significantly 

associated with daily deaths from noninfectious diseases (RR = 1.57; CI: 1.18-2.10; 

Ingole et al., 2015). 

However, there has been no short-term association between total and cause-

specific mortality and cold days; rather, there has been an immediate association between 

high temperatures and noninfectious disease mortality in a rural population located in 

western India during 2003-2012 (Ingole et al., 2015). Cause-of-death analysis for 1950-

2006 in adults aged 15-64 years in Sri Lanka showed that mortality declined in females 
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aged 15-34 years by 85% (Azim et al., 2014). Among males aged 15-34 years, the 

mortality decline was less at 47%, due to a rise in external-cause mortality during 1970-

2000. There was a 67% mortality decline among females aged 35-65 years over 1950-

2006 and a decline in mortality in males aged 35-64 years. This study concluded that 

significant disparities were demonstrated in Sri Lankan cause-specific adult mortality by 

sex and age group for 1950-2006.  

With all of these indices, it has become pertinent for scholars to study gaps that 

may exist between CSM and environmental factors. Hydraulic fracturing contributes to 

human health issues. Hence, studies examining associations between and comparing 

differences in CSM from prefracking periods to postfracking periods are necessary.  

Purpose of the Study 

The purpose of this study was to evaluate the difference among mean scores for 

CSM from 1975 through 2015 in all of the available cities and counties of residence in 

Colorado (CO) and to determine the contributions of gender, marital status, county of 

residence, and city of residence in CSM periods (prefracking period, i.e., 1975-1977, and 

postfracking period, i.e., 1999-2015) among adults aged 45-70 years living in Colorado.  

Nature of the Study 

The research was a retrospective, quantitative study. A retrospective design was 

used to determine the difference among the mean scores for CSM from 1975 through 

2015 in all of the available cities and counties of residence in Colorado, as well as to 

evaluate the contributions of gender, marital status, county of residence, and city of 

residence in CSM periods (prefracking period, i.e., 1975-1977, and postfracking period, 

i.e., 1999-2015) among adults aged 45-70 years living in Colorado. I obtained data from 
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CDPHE Health Statistics Data on Colorado resident deaths during the years 1975-1977 

and 1999-2015 as registered with Colorado’s Vital Statistics Program. The choice of this 

population was based on the limited amount of research evaluating CSM rates from the 

prefracking period (Pre-FP; 1975-1977) to the postfracking period (Po-FP; 1999-2015) 

among adults aged 45-70 years living in Colorado. Methods are explained in greater 

detail in Chapter 3. 

Research Questions and Hypotheses 

The following were the research questions and hypotheses: 

Research Question 1: To what extent or degree are there differences in the mean 

scores for cause-specific mortality (CSM) from 1975 through 2015 in all of 

the available cities and counties of residence in CO? 

Ha1.  There is a significant difference among the mean scores for cause-

specific mortality (CSM) from 1975 through 2015 in all of the 

available cities and counties of residence in CO. 

H01. There is no significant difference among the mean scores for 

cause-specific mortality (CSM) from 1975 through 2015 in all of 

the available cities and counties of residence in CO. 

Research Question 2: To what degree are the contributions of gender, marital 

status, county of residence, and city of residence significant in the cause-

specific mortality (CSM) periods (prefracking period, i.e., from 1975 

through 1977, and postfracking period, i.e., from 1999-2015)? 

Ha2. Gender, marital status, county of residence, and city of residence 

are significant factors in the cause-specific mortality (CSM) 
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periods (prefracking period, i.e., from 1975 through 1977, and 

postfracking period, i.e., from 1999-2015). 

H02.  Gender, marital status, county of residence, and city of residence 

are not significant factors in the cause-specific mortality (CSM) 

periods (prefracking period, i.e., from 1975 through 1977, and 

postfracking period, i.e., from 1999-2015). 

The above purpose, research questions, and hypotheses are discussed further in 

Chapter 3. 

Theoretical Base 

To address the RQs of this study, a sound theoretical construct was needed. As 

such, for this epidemiological study, I used the social-ecological model of health (SEMH) 

construct to explain the RQs. The SEMH posits that there are several levels of influence 

on individual health outcomes or that some characteristics of the environment influence 

individual health outcomes (Brookmeyer, Harper, & Steiner, 2018; Hal, Kampen, & 

Nyambe, 2016). Such multilevel interrelated and integrated variables include individual 

or biological factors (age, sex, and marital status), cultural factors (city and county of 

residence), and environmental contingencies (policymaking, economy, governance, and 

cause of death).  

I developed the framework in Figure 1 to illustrate the factors that may be used in 

evaluating the difference among the mean scores for CSM from 1975 through 2015 in all 

of the available cities and counties of residence in Colorado and determining the 

contributions of gender, marital status, county of residence, and city of residence in CSM 

periods (prefracking period, i.e., 1975-1977, and postfracking period, i.e., 1999-2015) 
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among adults ages 45-70 living in Colorado. 

 

Figure 1. A review framework for applying the socioecological model constructs. 

This study did not consider some of the above biocultural and environmental 

influences as confounding variables because doing so would have resulted in a larger 

investigation. The application of the SEMH offers explication to issues surrounding the 

determination of the difference among the mean scores of CSM. Additionally, the 

difference between CSM scores, Pre-FP and Po-FP, and gender, marital status, city and 

county of residence may help to identify factors to focus on during interventions (Baral, 

Beyrer, Grosso, Logie, & Wirtz, 2013; Cairns et al., 2010). Using this framework, I 

determined the difference among the mean scores for CSM from 1975 through 2015 in all 

of the cities and counties of residence in Colorado, and I evaluated the contributions of 

gender, marital status, county of residence, and city of residence in CSM periods 
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(prefracking period, i.e., 1975-1977, and postfracking period, i.e., 1999-2015) among 

adults aged 45-70 living in Colorado.  

In tandem with the SEMH is positivist theory. The positivist philosophical 

foundation is based upon determining and evaluating an inherent philosophy in which 

causes affect outcomes. Positivism posits that real problems exist that these are often 

driven by natural laws. This theoretical paradigm encompasses several forms, such as 

Comtean positivism, which emphasizes that knowledge comes from experience, 

experiment, and analysis; logical positivism; and behaviorism. Mostly associated with 

quantitative research, the positivist paradigm assumes a fixed, orderly reality that can be 

analyzed and evaluated using statistical tests. 

Applying this theoretical construct or paradigm in conjunction with the SEMH 

framework, I aimed at discovering the general laws applicable to an understanding of the 

relationship between the phenomena of interest. Hence, the goal of this study using the 

SEMH and positivism was to determine the difference among the mean scores for CSM 

from 1975 through 2015 in all of the cities and counties of residence in Colorado, and to 

determine the contributions of gender, marital status, county of residence, and city of 

residence in CSM periods (prefracking period, i.e., 1975-1977, and postfracking period, 

i.e., 1999-2015) among adults aged 45-70 living in Colorado.  

Definition of Terms 

Age: Age was defined as all of the age-related data obtained from CDPHE 

regarding study participants aged 45-70 years in Denver-Aurora and Greeley from 1975-

1977 and 1999-2015.  
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Air quality data: These are data collected at outdoor monitors. AirData come from 

the Air Quality System (AQS) database (EPA, 2017a). 

Cause-specific mortality (CSM): For the purposes of this study, I defined CSM 

using the International Classification of Diseases (ICD), Tenth Revision (ICD-10) I00–

I78), which includes deaths from diseases of the heart (ICD–10 Codes I00–I09, I11, I13, 

I20–I51); and CBD (I60–169; Klein & Miniño, 2010) from 1999-2015 and ICD-9 (from 

1975-1977). 

Cause of death (CoD): I defined CoD as major cardiovascular disease (MCD), 

chronic lower respiratory disease (CLRD), asthma, COPD, CBD, or diseases of the heart. 

CoD refers to the disease that starts the chain of events that ultimately leads to death 

(Jemal, Ma, Siegel, & Ward, 2015). 

City of residence: I defined potential cities of residence as all of the available 

cities in Colorado based upon the CSM data obtained from the CDPHE. 

County of residence: I defined potential counties of residence as all of the 

available counties in Colorado based upon the CSM data obtained from the CDPHE. 

Criteria air pollutants: These are chemicals with the following pollutants: carbon 

monoxide (CO), lead, nitrogen oxides (N0x, or NO and N02), ground-level ozone, particle 

pollution or particulate matter (coarse, PM10, and PM2.5), sulfur oxides (SO2), and volatile 

organic compounds (EPA, 2016a; Finnbjornsdottir, Olafsson, Rafnsson, Thorsteinsson, & 

Zoega, 2013). 

Fine particulate matter (PM2.5) pollutant: Fine particles (Analitis et al., 2012) of 

2.5 micrometers or less. Data were obtained from the EPA AirData website for two 

communities, Greeley and Denver-Aurora. HF occurs in Greeley but not in Denver-
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Aurora. This database was defined by pollutant, year, city (as defined by Core Based 

Statistical Areas [CBSA] monitor site), and exceptional events (EPA, 2014a). 

Exceptional events were defined, in this study, as unusual or naturally occurring events 

that may impact air quality but are not reasonably controllable using techniques that 

tribal, state, or local air agencies may implement to attain and maintain National Ambient 

Air Quality Standards.  

Fracturing, fraccing, fracking, or hydraulic fracturing: This is an operation where 

high-pressure fluid is pumped into reservoir rock to fracture the rock for inducing 

artificial permeability (Finkel & Law, 2016). Simply put, small cracks are created in deep 

underground geological formations to make way for oil and gas to flow up a well 

(Colorado Oil and Gas Conservation Commission, n.d.). It is also a way of tapping 

unconventional oil and gas reserves that are otherwise unreachable and inaccessible 

(Boudet et al., 2014). This is defined as a way of extracting oil and gas from deep 

underground by forcefully injecting water, sand, and chemicals to allow for underground 

porosity or create fissures in a tightly shaped shale formation (Adgate et al., 2012). 

Hydraulic fracturing involves a combination of two drilling techniques to drill shale 

formations vertically and laterally, in which a slurry of fluids is injected underground at 

very high pressure to crack open dense shale rock, allowing gas or oil to flow to the 

surface, where it is captured for use. It is a way of mining gas from deep strata.  

Fugitive air emission: Emissions emanating from well-heads and silica sand that 

are produced from the mixing of hydraulic fracking fluids, the use of hydraulic fracturing 

machinery at a worksite or drill site, and accumulated effects from diesel trucks traveling 

to and from fracking sites (EPA, 2016c). 
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Year of death: In this study, defined as Pre-FP (1975-1977) or Po-FP (1999-

2015). 

Assumptions 

The main assumption in this study was that the mortality data obtained from 

CDPHE Health Statistics Data were valid and reliable. 

Limitations 

Data on mortality were obtained from the CDPHE. I did not have control over the 

data that were provided. The CDPHE data on CSM did not precede the year 1975. 

Additionally, CSM data were not available from the CDPHE from 1978 to 1998. 

Furthermore, there may be other confounding variables that this study could not have 

considered. In addition, the results obtained from this study should not be generalized to 

the U.S. population; conclusions may only be inferred regarding the studied area. 

Furthermore, other factors such as socioeconomic status (SES), length of residence, 

occupation, race, smoking, alcohol consumption, and education that might be associated 

with CSM were not involved in this study.  

Delimitations 

This study determined the difference among the mean scores for CSM from 1975 

through 2015 in all counties of residence in Colorado among residents aged 45-70, and 

the contributions of gender, marital status, county of residence, and city of residence in 

CSM periods (prefracking period, i.e., 1975-1977, and postfracking period, i.e., 1999-

2015). This study did not take into consideration the association between the above 

variables outside the given or defined geographical boundaries.   
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Significance of the Study 

Currently, there is a gap in knowledge regarding the difference among mean 

scores for CSM from Pre-FP to Po-FP and between CSM scores for the prefracking 

period (1975-1977) and postfracking period (1999-2015) in relation to gender, marital 

status, county of residence, and city of residence. With this inadequacy of research, 

public health practitioners and policymakers are ill equipped to determine and recognize 

health implications of hydraulic fracturing and to implement changes. 

Positive Social Change 

This study may support positive social change by doing the following: 

1. Help researchers and public health practitioners to make decisions regarding 

CSM and gender, marital status, county of residence, and city of residence. 

2. Assist researchers, state and county health departments, and communities in 

understanding whether there is any significant relationship between or 

difference in CSM Pre-FP and Po-FP. 

Summary and Transition 

In this introductory chapter, I presented a brief analysis of the current state of 

knowledge about comparing CSM Pre-FP & Po-FP. Definitions of relevant terms were 

presented. Additionally, the problem, research question, hypotheses, assumptions, and 

boundaries of the study were explained.  

I described positive social changes that may result from comparing CSM Pre-FP 

and Po-FP. Additional explication and clarification of details are provided in subsequent 

chapters. This research may provide valuable information to state and county health 

departments, physicians, researchers, and communities. Future chapters, especially 
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Chapter 3, provide more in-depth understanding of how I compared CSM Pre-FP and Po-

FP. Chapter 3 provides a discussion of the study methodology.  
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Chapter 2: Literature Review  

Background, Introduction, and Description of the Literature Search 

It is important for states and counties to have an accurate picture of CSM rates. 

Comparing CSM data Pre-FP and Po-FP entails a lucid and vivid accounting and 

clarification of all variables of interest that could possibly lead to the desired research 

outcome for the population of interest. In order to develop this necessary understanding, a 

review of a few studies on CSM and human health effects of hydraulic fracturing is 

presented. The resources used in this study were mainly published from 2013-2018. I 

conducted numerous searches using bibliographic databases, including MEDLINE with 

full text, PubMed, CINAHL Plus with full text, Science Citation Index Expanded (ISI 

Web of Science), Psychological Abstracts, Health Science databases, Educational 

Resources Information Center (ERIC), University Microfilms International (UMI) 

Dissertation Abstracts, Walden University Dissertation database, University of Colorado, 

Anschutz Campus Library database, the American Journal of Public Health search 

engine, Google Scholar, and the Environmental Health Perspectives website. Keywords 

such as cause-specific mortality, cause-specific mortality and fracking, hydraulic 

fracturing and cardiopulmonary disease, fracking and cardiopulmonary disease, cause-

specific mortality from hydraulic fracturing, cause-specific mortality from fracking, 

human health impacts of hydraulic fracturing, fine particulate matters and human health 

implications, fracking, hydraulic fracturing, and hydro-fracking were applied in most of 

the literature searches. 
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For a lucid and basic understanding of the various variables in this study, salient 

keyword searches were conducted using authoritative websites. For example, the U.S. 

EPA, Centers for Medicare & Medicaid Services (CMS), Agency for Health Research 

and Quality (AHRQ), Centers for Disease Control and Prevention (CDC), and CDPHE 

websites were explored to examine current data on county- and city-level CSM and 

hydraulic fracturing. Given the richness of these websites, helpful data on the research’s 

variables of interest were gathered. The observations below have been validated, and the 

points raised by these authors reflect the current state of knowledge on the subject. 

The Dominant Themes 

CSM has been associated with maximum overweight (Hu et al., 2017). In a 

prospective cohort study, Hu et al. (2017) investigated the risks for all-cause and cause-

specific death associated with overweight and obesity in three large cohorts of health 

professionals in the United States. These authors used diagnostic codes from the ICD-8 to 

classify deaths as due to CVD (including heart failure, coronary heart disease, stroke, and 

any other vascular causes; ICD-8 Codes 390 to 459 and 795), coronary heart disease 

(mainly IHD; ICD-8 Codes 410 to 414), stroke (ICD-8 Codes 430 to 438), cancer (ICD-8 

Codes 140 to 239), respiratory diseases (ICD-8 Codes 460 to 519), and other causes (such 

as Alzheimer’s disease, infectious diseases, and accidents). Study outcomes showed 

association for CVD mortality (overweight HR, 1.21 [CI, 1.15 to 1.28]; obese I HR, 1.63 

[CI, 1.52 to 1.74]; obese II HR, 2.74 [CI, 2.53 to 2.97]), particularly death due to 

coronary heart disease (overweight HR, 1.32 [CI, 1.21 to 1.44]; obese I HR, 1.97 [CI, 

1.78 to 2.19]; obese II HR, 3.34 [CI, 2.95 to 3.79]). 
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Jin et al. (2015) determined the associations between extreme temperatures and 

population mortality from CVD, CBD, IHD, and HPD in Beijing and Shanghai, China. 

Causes-of-death data were obtained from the China CDC and were classified using the 

ICD-10. The outcome of this research shows that for all cause-specific cardiovascular 

mortality, Beijing had stronger cold and hot effects than Shanghai. In addition, the effects 

of extremely low and high temperatures differed by mortality types in the two cities. 

However, HPD in Beijing was inclined to both extremely high and low temperatures. In 

Shanghai, people with IHD showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 

1.34) to extremely low temperature. 

Studies have determined that hospital mortality data can inform planning for 

health interventions and may also assist in the optimization of resource allocation 

(Gathara, 2017). This study contributed to the understanding of health system 

performance, the description of mortality and its variabilities, and analysis of the impact 

of clinical characteristics on inpatient mortality. Study data were obtained from the 

Clinical Information Network, which spanned 12 county hospitals from September 2013 

to March 2015. Study conclusions showed that all-cause mortality is highly variable 

across hospitals and associated with clinical risk factors identified in disease-specific 

guidelines. 

Some cohort studies in North America have shown an association between 

increased risk of mortality and long-term exposure to fine particles (PM2.5). However, no 

such studies have been reported in China, where higher levels of exposure are 

experienced. As a result, researchers estimated the association between long-term 

exposure to PM2.5 with nonaccidental and cause-specific mortality in a cohort of Chinese 
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men (Yin, 2017). Using the Cox proportional hazards regression model, Yin et al. (2017) 

examined a prospective cohort study of 189,793 men 40 years of age or older during 

1990-1991 from 45 areas in China. Results of this study showed that the mean level of 

PM2.5 exposure during 2000-2005 was 43.7 μg/m3 (ranging from 4.2 to 83.8 μg/m3) and 

the mortality HRs (95% CI) per 10-μg/m3 increase in PM2.5 were 1.09 (1.08, 1.09) for 

nonaccidental causes; 1.09 (1.08, 1.10) for CVD; 1.12 (1.10, 1.13) for COPD; and 1.12 

(1.07, 1.14) for lung cancer. Hence, this study concluded that long-term exposure to 

PM2.5 was associated with nonaccidental, CVD, lung cancer, and COPD mortality in 

China. 

Using prospective cohort data from the Third National Health and Nutrition 

Examination Survey (NHANES III), researchers determined all-cause and cause-specific 

mortality disparities by race, age, sex, and poverty status (2016). For this study, age, sex, 

and poverty income ratio-adjusted hazard rates were higher among Non-Hispanic Blacks 

(NHBs) than among Non-Hispanic Whites (NHW). In addition, income, education, diet 

quality, allostatic load, and self-rated health were among key mediators explaining NHB 

versus NHW disparities in mortality. NHBs had higher CVD-related mortality risk 

compared to NHW, which was explained by factors beyond SES. Conclusively, 

racial/ethnic disparities in all-cause and cause-specific mortality (particularly 

cardiovascular and neoplasms) were partly explained by sociodemographic, SES, health-

related, and dietary factors, and differentially by age, sex, and poverty strata. 

Though about 4.3 million deaths were attributable to exposure to household air 

pollution in 2012, studies in household coal use remain sparse (Kim, 2016). These 

researchers investigated the association of cooking coal and all-cause and cause-specific 
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mortality in a prospective cohort of primarily never-smoking women in Shanghai, China. 

This study showed that ever-use of coal was associated with mortality from all causes 

[hazard ratio (HR) = 1.12; 95% confidence interval (CI): 1.05, 1.21], cancer (HR = 1.14; 

95% CI: 1.03, 1.27), and IHD (overall HR = 1.61; 95% CI: 1.14, 2.27; HR for myocardial 

infarction specifically = 1.80; 95% CI: 1.16, 2.79) when compared with never-use of 

coal. Moreover, the risk of cardiovascular mortality increased with increasing duration of 

coal use compared with the risk in never users, and the association between coal use and 

IHD mortality diminished with increasing years since cessation of coal use. 

It is important to note that although many diseases are impacted by weather 

changes, there have been sparse studies examining the association between some of these 

diseases and CSM in low- and middle-income countries. Researchers conducted a study 

to estimate the effects of heat and cold days on total and cause-specific mortality in the 

Vadu HDSS area in western India using a quasi-Poisson regression model allowing for 

overdispersion to examine the association of total and cause-specific mortality with 

extremely high (98th percentile, > 39°C) and low temperature (2nd percentile, < 25°C) 

from January 2003 to December 2012 (Ingole, Rocklov, Juvekar, & Schumann; 2015). 

Result of this study showed that heat was significantly associated with daily deaths from 

noninfectious diseases (RR = 1.57; CI: 1.18-2.10). Results also showed that there was an 

increase in the risk of total mortality in the age group 12-59 years on lag 0 day (RR = 

1.43; CI: 1.02-1.99). Additionally, there was a high increase in total mortality among men 

at lag 0 day (RR = 1.38; CI: 1.05-1.83). In any case, these researchers did not find any 

short-term association between total and cause-specific mortality and cold days; rather, 
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there was an immediate association between high temperatures and noninfectious disease 

mortality in a rural population located in western India during 2003-2012. 

Vithana et al. (2014) investigated trends by age and sex through cause-of-death 

analysis for 1950-2006 in adults aged 15-64 years in Sri Lanka. Data on deaths were 

obtained from the World Health Organization (WHO) mortality database for 1950 to 

2003, and the Department of Census and Statistics Sri Lanka for 1992-1995 and 2004-

2006 where WHO data were unavailable. Adult deaths were categorized by age (15-34 

and 35-64 years) and sex into infectious diseases; external causes; circulatory diseases; 

cancers; digestive diseases; respiratory diseases; pregnancy-related; ill-defined; and other 

causes.  

Results of this study show that mortality declined in females aged 15-34 years by 

85% over 1950-2006. Among males aged 15-34 years, the mortality decline was less at 

47%, due to a rise in external-cause mortality during 1970-2000. There was a 67% 

mortality decline among females aged 35-65 years over 1950-2006 and a decline in 

mortality in males aged 35-64 years. This study concluded that significant disparities 

were demonstrated in Sri Lankan cause-specific adult mortality by sex and age group for 

1950-2006. Female mortality progressively declined while male mortality demonstrated 

periods of increase and stagnation. 

Using a time-stratified case-crossover methodology, Zeka, Browne, McAvoy, and 

Goodman (2014) assessed the relationship between cold temperature and daily mortality 

in the Republic of Ireland (ROI) and Northern Ireland (NI). These researchers also 

examined any differences in population responses between the ROI and NI from 1984 

through 2007. Zeka et al. found that in the ROI, the impact of cold weather in winter 
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persisted up to 35 days, with a cumulative mortality increase for all causes of 6.4% (95% 

CI = 4.8%-7.9%) in relation to every 1°C drop in daily maximum temperature, similar 

increases for CVD and stroke, and twice as much for respiratory causes. However, in NI, 

these associations were less pronounced for CVD causes. In conclusion, the study 

findings indicated strong cold weather-mortality associations in Ireland; these effects 

were less persistent, and for CVD mortality, smaller in NI than in the ROI. 

Kaiser (2007) looked at the impact of the 1995 Chicago heat wave on all-cause 

and cause-specific mortality. Using Poisson regression, Kaiser et al. modeled excess 

mortality and mortality displacement over a 50-day period, but with specific focus on the 

day in which the heat wave temperature peaked. The study estimated that there were 692 

excess deaths from June 21, 1995, to August 10, 1995. Of these 692 excess deaths, 26% 

were owing to mortality displacement. RR for all-cause mortality on the day with peak 

mortality was 1.74 (95% confidence interval = 1.67, 1.81). In the end, these scholars 

concluded that the 1995 Chicago heat wave enormously impacted all-cause and cause-

specific mortality, but mortality displacement was limited. 

Further studies have examined the relationship between CSM and coffee drinking. 

For instance, Saito (2015) analyzed the association between habitual coffee drinking and 

mortality from all causes, cancer, heart disease, CBD, respiratory disease, injuries, and 

other causes in a large-scale, population-based cohort study in Japan. Researchers studied 

90,914 Japanese persons aged between 40 and 69 years without a history of cancer, CBD, 

or IHD at the time of the baseline study using the Cox proportional hazards regression 

model.  
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The outcome of this study showed an inverse association between coffee intake 

and total mortality in both men and women. Thus, coffee was inversely associated with 

mortality from heart disease, CBD, and respiratory disease. Saito et al. (2015) opined that 

the habitual intake of coffee is associated with lower risk of total mortality and three 

leading causes of death in Japan. 

Freedman, Park, Abnet, Hollenbeck, and Sinha (2012) examined the association 

of coffee drinking and total and cause-specific mortality among 229,119 men and 

173,141 women in the National Institutes of Health–AARP Diet and Health Study aged 

50 to 71 years at baseline. Results showed that coffee appeared to be inversely associated 

with major causes of death in both men and women, such as heart disease, respiratory 

disease, stroke, injuries and accidents, diabetes, and infections. However, there was no 

significant association between coffee consumption and deaths from cancer in women. 

The study also showed a borderline positive association in men: Among 13,402 deaths 

from cancer, 880 deaths were reported among men who drank 6 or more cups of coffee 

per day (hazard ratio for the comparison with men who did not drink coffee, 1.08; 95% 

CI, 0.98 to 1.19; P = 0.02 for trend). 

With regard to ambient air pollutants, PM2.5 is associated with increased mortality 

in most cities in the United States (Cao et al., 2012; Dockery et al., 1993; Levy, Diez, 

Dou, Barr, & Dominici, 2012). Per Levy et al; 2012), 11 all-cause time-series mortality 

estimates yielded an estimated 1.2% increase in mortality per 10-μg/m3 increase in PM2.5 

concentrations, and individual constituents yielded estimates of 0.4%, 1.4%, 2.8%, and 

2.7% per 10-μg/m3 increase in EC, organic carbon matter, sulfate, and nitrate 

concentrations, respectively. Statistically significant association existed between ambient 
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pollution and mortality rate after adjusting for cigarette smoking among study 

participants (Dockery et al., 1993). With the goal of evaluating the role or impact of 

ambient air pollution on mortality while putting into consideration confounding variables 

such as sex, age, educational level, occupational exposure, body-mass index, and 

smoking status, Dockery et al., (1993) suggested, in their retrospective cohort study, that 

mortality was highly associated with fine, inhalable, and sulfate particles. 

Looking at the difference in air pollution level equal to that between the most 

polluted and the least polluted cities and with inhalable, fine, and sulfate particles, 

Dockery et al. (1993) found that the adjusted rate ratios were almost equal at 1.27 (95% 

CI, 1.08-1.48), 1.26 (95% CI, 1.08-1.47), and 1.26 (95% CI, 1.08-1.47) for inhalable 

particles, fine particles, and sulfate particles. Moreover, the mixture of combustion 

products along with constant movement of trucks to and from fracking sites contributed 

to increased levels of sulfate and fine particulate air pollution (Dockery et al., 1993). 

Thus, the findings of numerous studies indicate that there is a link between particulate air 

pollution and lung function and cough, shortness of breath, and asthma (Dockery et al., 

1993).  

The six United States cities study, which reported on a 14- to 16-year prospective 

follow-up of > 8,000 adults living in six U.S. cities, found an association between daily 

mortality counts and PM2.5. There was PM-mortality statistical significance between 

daily mortality counts and air pollution in the study conducted on the eight largest 

Canadian cities. Mostly, as findings in studies have shown, there has been increasing 

concentration of fine particulate matter, especially PM2.5 components, in cites or locations 

across the United States where oil and gas activities or development seem to occur 
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(Petron et al., n.d.). Furthermore, ambient concentration has been associated with 1.3% 

(95% CI, 0.6%-2%) increase in myocardial infarction risk in a study using 21 United 

States cities with >300,000 myocardial infarction events. 

Benzene (C6H6) and volatile organic compounds (VOCs) can be released at any 

time during unconventional gas development (UGD) or oil and gas processing, 

production, and exploration (Petron et al., 2012). Approximately 46% of the Denver and 

Colorado Northern Front Range (DNFR) Federal Non-Attainment Areas’ (NAAs’) VOC 

emissions were attributed to oil and gas emissions in 2006. Following that, in 2007, the 

coalition of the Independent Petroleum Association of Mountain States (IPAMS) and 

Western Regional Air Partnership (WRAP) built a process-based inventory of total VOC 

sources involved in oil and gas exploration and production.  

When compared to North East (NE) wind sector data (r2 =  0.69), C6H6 winter 

correlation is highest for the South and West wind sectors from Boulder Atmospheric 

Observatory (BAO) samples (r2 = 0.85 for S; 0.83 for W). Sociodemographics, 

seasonality, and community area are among the microenvironmental attributes that define 

individual’s exposure to air pollution (Delgado-Saborita, Alama, Pollitta, Starka, & 

Harrison, 2009). For compounds such as benzene and toluene, home concentration 

accounts for 60-75% of the variance in personal exposure (PE) while accounting for 40-

55% for xylenes and pyridine. Because people spend about 62% of their time in the home 

microenvironment, home microenvironment affects PE. Air pollutants such as benzene, 

VOCs, and PMs have been associated with low birth weight and preterm birth (McKenzie 

et al., 2014). For example, there was 5.3 times likelihood of prevalence of neural crest 
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malformations in children born to 298 mothers who were exposed to benzene compared 

to children born to parents not exposed to benzene (95% CI: 1.4, 21.1). 

Regarding odd ratios, an odd ratio of 1.3 for highest tertile (95% CI: 1.2, 1.5) as 

prevalence for congenital heart defects (CHD) and odds ratio of 2.0 (95% CI: 1.0, 3.9) as 

prevalence for neural tube defects (NTDs) increased with exposure to tertiles. Findings in 

some studies have shown that pre-mature deaths due to PM2.5 have been approximated to 

be between 63,000 to 88,000, and nitrogen oxide (NOx) and VOCs, when combined, 

forms O3, and leads to important ingredients of PM2.5 known as nitrate and secondary 

organic aerosols (Grabow et al., 2009; Ebersviller et al., 2011). Recognized as criteria air 

contaminants (CACs) or pollutants are carbon monoxide (CO), lead, nitrogen oxides 

(N0x, or NO and N02), ground-level ozone, particle pollution or particulate matter 

(coarse, PM10, and PM2.5), sulfur oxides (SO2), and volatile organic compounds (EPA, 

2014b; Finnbjornsdottir et al., 2013). Particle pollutants or the coarse, PM10, and PM2.5 

are commonly known to pose widespread health threat and frequent emergency 

department (ED) visits (EPA, 2016b).  

Daily mortality has been associated with PM2.5. Outcome of studies have 

demonstrated that increased count of day-to-day mortality is directly linked to particulate 

matters with an aerodynamic size under 2.5 µm (Dockery, Laden, Neas, & Schwartz, 

2000). For example, a 10 µg/m3 increase in PM2.5 from mobile sources accounted for a 

3.4% increase in daily mortality (Dockery et al., 2000). Here, there is greater propensity 

for fine particles to lodge or be deposited in the periphery of the lung and inner lining of 

the arteries (in respiratory bronchioles and alveoli; Flanders, 2005; Schwartz et al., 1996) 

leading to deaths from ischemic heart disease, chronic obstructive pulmonary disease 
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(COPD), and atherosclerosis. Results of some studies have suggested also that long-term 

exposure to fine particulate matter could be associated with cardiovascular incidents in 

men (8%–43% increase per 10-μg/m3 increment) and not in women (Burnett et al., 2014) 

and like the Harvard Six Cities Study where each 10-μg/m3 increment in ambient PM2.5 

was associated with 26–28%. This finding was associated and consistent with rural PM2.5 

and men who were farmers. However, reduction in PM2.5 exposures could have a 

concurrent effect in mortality risk (Dockery, Laden, Schwartz, & Speizer, 2006; Coull et 

al., 2016).  

Fugitive air emissions are associated with the hydraulic fracturing process 

(Adgate et al., 2012). Cumulative cancer risks accounted for 6 in a million for residents 

>½ from wells and 10 in a million for residents ≤ ½ mile from wells. On the other hand, 

benzene (84%) and 1,3-butadiene (9%) were the primary contributors to cumulative 

cancer risk for residents >½ mile from wells. As suggested, fugitive air emissions could 

emanate from well-heads, silica sand produced during the mixture of fracking fluids, 

hydraulic fracturing machineries at the worksite or drill site, and accumulated effects 

from diesel trucks to and from fracking site (American Public Health Association, 2014). 

Not only that fugitive air emission from hydro-fracking activities constitute occupational 

hazards, they also add to the local, regional, and national air pollution.  

The petroleum hydrocarbons, benzene, ethyl benzene, toluene, and xylene 

(BTEX) could result into cancer, nonlymphocytic leukemia, anemia, immunological 

defects, neural tube disorders, eye, nose, and throat irritation, difficulty in breathing, and 

impairments of the nervous system (Adgate et al., 2012). Metals from particulate matters 

(PM) are air toxics or hazardous air pollutants and constitute health risk (Charrier, 
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Hafner, McCarthy, & O’Brien, 2009). For instance, concentrations of benzene, arsenic, 

ethylene oxide, and formaldehyde were above the cancer risk level or benchmark of 10–6.  

Chemicals, radionuclides, odors, traffic, noise, seismic operations, and explosions 

from gas handling are some of the severe hazards associated with UNGD (Fryzek, 

Garabrant, Jiang, & Pastula, 2013). A before and after drilling analysis for number of 

cancer found a standardized incidence ratio (SIR) of 0.94; 95% CI, 0.90 to 0.99 and SIR 

= 1.02; 95% CI, 0.98 to 1.07, respectively. It would have been an interesting study to 

calculate SIRs relative to CPD incidence temporal trend data and assessing correlation 

temporal trends in air quality data across the period of this study period but doing this 

will result into a much larger investigation and could be explored in future studies. 

Children are more susceptible or prone to carcinogenic exposure because of 

chemicals emitted during hydraulic fracturing activities. However, as some studies have 

suggested, childhood cancer, leukemia, and central nervous system breakdown and tumor 

did not increase after hydraulic fracturing drilling (Fryzek et al., 2013). SIR for leukemia 

before drilling = 0.97 [95% CI, 0.88 to 1.06]; SIR for leukemia after drilling = 1.01 [95% 

CI, 0.92 to 1.11]). In certain HF sites, about 1700 diesel trucks deliver up to 5 million 

gallons of water needed to fracture a well and another 750 diesel trucks deliver 

approximately 1.5 million pounds of proppant in a couple of weeks. Such exacerbates the 

cumulative increase of 6-10 million incidences of lifetime cancer risk for benzene.  

Indoor and outdoor particulate matter with aerodynamic diameter of 2.5 (PM2.5) 

have been exhaustively studied (Chow et al., 2008; Al-Maskari et al., 2012). In the 

presence of domestic animals, personal PM2.5 concentrations would increase by 12% 

(95% CI ¼ 1–25%). With the presence of molds in homes, there would be an increase of 
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27% (95% CI ¼ 11–48%) in PM2.5 concentrations. During cooking, PM2.5 individual 

personal exposures would increase by 27% (CI ¼ 12–43%). And in houses where aerosol 

was used, personal PM2.5 concentrations would increase by 17% (CI ¼ 4–31%) (Chow et 

al., 2008).  

Household SO2 concentrations in the range of 0.010–0.507 ppm, or 26.2–1327 

µg/m3 were 1.79-4.6 times likely to report symptoms of asthma. But association between 

outdoor SO2 and respiratory symptoms have shown different outcomes; no evidence in 

SO2 concentrations ranging from 0.0001 to 0.0166 ppm and evidence was found in 

increased wheezing (OR 1.17; 95% CI: 1.01, 1.35) per 10-µg/m3 increase in SO2 in a 

cross-sectional study of 3,045 children (Al-Maskari et al., 2012). Outdoor sources of 

ambient air pollution might contribute to indoor concentrations of air pollutants (Chen, 

Hsieh, & Yang, 2005). Levels of BTEX (the acronym for benzene, toluene, ethylbenzene, 

and xylene) were found to be two times higher at night at market sites in Southern 

Taiwan (Chen, Hsieh, & Yang, 2005).  

Profound and paramount sources of personal exposure to PM2.5 are cooking, 

proximity to smokers, and vacuuming or dusting (Chow et al., 2008). For example, being 

present during cooking would increase personal PM2.5 exposures by 27% (CI ¼ 12–43%). 

Indoor sources, as well as outdoor sources, of PM2.5 have been found to be associated 

with human health conditions, especially with individuals with pre-existing health 

conditions like COPD (Chow et al., 2008).  

In line with the above viewpoints, studies have expressed the importance of 

evaluating and assessing the level of PM2.5 exposures among highly susceptible sub-

populations (Farhood, Forouzanfar, Hosseinpoor, Naieni, & Yunesian, 2005; Box et al., 
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2003). As seen in Type 2 diabetes mellitus patients, exposure to PM2.5 resulted into 

increase in adipose tissue as exemplified by an increase in F4/80 macrophages and a pro-

inflammatory ‘‘M1 phenotype’’ typified by TNF-α, IL-6 and a decrease in IL-10, MgI1 

gene expression (Box et al., 2003). Seasonal variations could contribute to PM2.5 impact 

on this population i.e. those in the susceptible bracket. Studies have shown that life stage, 

genetic polymorphisms, preexisting cardiovascular and respiratory diseases, and SES, 

may increase the susceptibility of populations to PM-related health effects (Brown et al., 

2010).  

For instance, there has been evidence of increased CVD hospital admissions 

among older adults compared with all ages or ages < 65 years and cardiovascular and 

respiratory hospitalization, and death in adults’ ≥ 75 years of age when exposed to PM2.5 

(Brown et al., 2010). Exposure to PM2.5 has been associated with risk of hospitalization 

for patients with Parkinson’s disease (3.23%, 1.08, 5.43) and diabetes (1.14% increase, 

95% CI: 0.56, 1.73 for a 10μg/m3 increase in the 2 days’ average) (Dominici, Schwartz, 

Wang, & Zanobetti, 2014). Though thorough clarity has been proffered with regards to 

the impact of ambient pollution on CBD, studies have suggested a relationship between 

fine particulate matters (PM2.5) and rise in blood pressure (BP), decreased brachial artery 

diameter, increased C-reactive protein and atherosclerosis (Dominici et al., 2014). The 

above finding is in consonance with another study that assessed the association between 

long-term exposure to PM2.5 and diabetes mortality.  

This study concluded that there is a link between long-term exposures to PM2.5 

and a significant increase in diabetes-related mortality (Brook et al. 2013). About 

10µg/m3 increase in long-term PM2.5 exposures, among 2.1 million Canadians, has the 
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chances of increasing the risk for non-accidental and ischemic heart disease deaths by 15 

and 31%, correspondingly. Elderly populations with CVD are prone to hazardous health 

effects from PM2.5. Associations were found between fine particulate matter-associated 

changes in autonomic nervous system control of heart rate and ventricular re-polarization 

(Cascio et al., 2010). With an increase in 10µg/m3 PM2.5, there was a significant 

association between PM2.5 and Interleukin (IL)-6 and tumor necrosis factor alpha. To add, 

studies have equally revealed that obese populations are highly vulnerable to indoor 

PM2.5 and NO2. This is particularly true with children who have asthma and are living in 

cities or urban locations (Aloe et al., 2013). In the absence of a cold, 10-fold increase in 

PM2.5 level could be associated with a 3- to 5- fold increase in the odds of cough among 

overweight and obese populace. In this vein, due to the relationship between PM2.5 and 

respiratory symptoms, it has been recommended by several investigators that being 

overweight and increased indoor pollution among children living in urban areas could 

lead to asthma morbidity and mortality among this population.  

Therefore, among African-American children ages 5-17, there have been 

heightened chances that being obese could make them susceptible to pulmonary effects 

because of exposure to indoor PM2.5 and NO2 (Aloe et al., 2013). Thus, other studies have 

suggested an association between exposure to PM2.5 and other air pollutants and type 2 

diabetes mellitus (DM; Harkema, Liu, Rajagopalan, Sun, & Ying, 2013). Studies, even 

adjusting for possible confounders like age, gender, body mass index (BMI), waist 

circumference, physical activity, and healthy eating index, shows that there is a 

relationship between PM2.5 and diabetes prevalence (Harkema et al., 2013). Hence, 

insulin sensitivity could be worsened via exposure to ambient particulate matters. 
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Moreover, populations exposed to high levels of PM2.5 could have distorted ventricular 

repolarization and systemic inflation which are often linked to insulin resistance (Cascio 

et al., 2010). Using a 24-hour electrocardiogram (ECG) time domain parameters, the 

mean number of times an hour in which change in successive normal sinus (NN) interval 

is more than 50 ms (Goldberger, Goldsmith, Henry, Mietus, & Peng, 2002) (pNN50) 

increased with a lag of 2 and 3 days, and root-mean-square of successive differences 

(RMSSD) increased with a lag of 3 days showing that there was a PM2.5 association. 

Ischemic heart disease (IHD) has also been linked to exposure to PM2.5 (Balluz et 

al., 2007; Brown et al., 2014). People exposed to higher level of PM2.5 air quality index 

(AQI) have greater chances of ischemic heart disease (adjusted OR 5 1.72, 95% CI 1.11, 

2.66). According to Balluz et al., (2007), prevalence of study respondents exposed to 

annual mean PM2.5 AQI increased from 6.9% (>50) as the cutoff value increased (7.2% 

for >55 and >60). Populations exposed to elevated levels of PM2.5 have been found to 

have health issues relating to heart and lungs. As plaques build up in the arteries, the 

arteries narrow, and less blood is supplied to the heart. As the most common heart 

concern as it pertains to long-term exposure to fine particulate matters, ischemic heart 

disease, otherwise called coronary artery disease (CAD) or coronary heart disease 

(CHD), may be prevalent in communities with low SES, environmental concerns, and 

poor lifestyles. IHD has been associated with outdoor air pollution and physical inactivity 

(Brauer, Hankey, & Marshall, 2012). IHD mortality due to exposure to PM2.5 was 

approximately 30 deaths/100,000/year), but the difference between neighborhoods was 9 

more IHD deaths/100,000/year in high- vs. low-walkability. Notably, researchers have 

also found that certain particles emitted during industrial activities and the burning or 
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combustion of fossil fuel is related to an increased risk of IHD or CAD (Burnett et al., 

2009). Relative risk (RR) for fossil fuel combustion has been estimated to be above 1.0 

for IHD deaths. Long-term occupational exposure to PM2.5 has also been associated with 

incidents of mortality and morbidity among patients with ischemic heart disease (Brown 

et al., 2014). Hazard ratio (HR) for PM2.5 and incident IHD went up in the fabrication 

department of a manufacturing process to 1.5 at 1.25 mg/m3 and was statistically 

significant throughout most of the exposure range but in the smelters, it rose to an HR of 

1.5 at 9 mg/m3, though only statistically significant around the mean.  

Thus, the global fraction of death due to PM2.5 for all cause for IHD has been 

estimated to be about 17.5% as compared to 12.1% for cardiopulmonary disease and 

16.8% for lung cancer (Burnett et al., 2012). Furthermore, studies have also shown that 

there is an association between hospitalization or hospital admissions for IHD and PM2.5 

(Chiu, Peng, Wu, & Yang, 2013). For example, considerable number of IHD admissions 

were significantly associated with PM2.5 on both warm (> 23°C) and cool days (< 23°C), 

with an interquartile range increase associated with a 12% (95% CI = 10%–14%) and 4% 

(95% CI = 2%–6%) increase in IHD admissions, respectively. Similarly, association 

between fine particulate matters with aerodynamic dimension of about 2.5 (PM2.5) and 

heart failure has been studied (Carll et al., 2010). A 10μg/m3 increase PM2.5 exposures 

were related to heart failure by 1.28 (95% CI 0.78% to 1.78%). Evidence has shown that 

a 14-day lagged average of 10μg/m3 PM2.5 was associated with a 13.1% (95% confidence 

interval 1.3 to 26.2) increase in HF admissions. In addition, a 10μg/m3 elevation in 

concurrent-day PM2.5 was associated with a 1.28% (95% CI 0.78% to 1.78%) increase in 
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heart failure admissions. In the presence of hypertension, a 10μg/m3 rise in PM2.5 was 

associated with an adjusted OR of 1.05 (CI 1.00 to 1.10).  

The key source of most of these exposures has been seen to be the 30%-70% flow 

back fluid containing fracking chemicals (American Public Health Association, 2012). 

Another relevant source of air pollution from hydraulic fracturing activity that could also 

impact animal health emanate from diesel engines of trucks used to haul heavy duty 

equipment and oil and gas drilling tools (American Public Health Association, 2012). 

The Marcellus and Utica shales, underlying the Appalachian region, are well 

known for multi-diversity of animal, mammals, and crustacean species including 

salamanders, stream fishes, freshwater mussels, and crayfishes (Gillen & Kiviat, 2012). 

Most of these species are confined to a given region, thereby increasing their chances of 

extinction. With increase in fracking and the occupation of lands for drill pads, pipelines, 

truck traffics, and multiple other uses, there is greater propensity for extinction of these 

species of animals, mammals, and crustaceans. Studies have concluded that dispersal of 

terrestrial salamanders could be decreased by approximately 97% when multiple roads 

are created (Gillen & Kiviat, 2012). Per Taylor & Weltman-Fahs (2013), about 26% of 

brook trout habitat intersects with the Marcellus Shale.  

Dissolved solids and high concentration of metals from hydraulic fracturing has 

been associated with diminishing growth of brook trout. Chemical contamination and air 

pollution from fracking activities could impact the fecundity of brook trout (Taylor & 

Weltman-Fahs, 2013). Species endangerment, loss and disintegration of habitat, and 

wildlife mortality, morbidity, and invasion have equally been attributed to large scale oil 

and gas development (Jones & Pejchar, 2013). Oil and gas accounted for 70.9% habitat 
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loss per plot, 75.5% biomass carbon loss per plot, and 62% of increased fragmentation. 

Studies have suggested a direct and indirect association between energy development and 

its effects on ecosystem and biodiversity, especially in Colorado and Wyoming axis 

(Jones & Pejchar, 2013). Out of the 365 oil and gas wells used in the Jones and Pejchar 

(2013) study, oil and gas resulted in almost 15.8 tons (+/– 2.98 SE) of carbon lost per plot 

and approximately 711,228 gallons of water per plot is consumed from oil and gas 

production annually. Unconventional natural gas development contributed to a 

monumental degree to the loss of wildlife, decrease in aquatic habitat, and fragmentation 

of habitat.  

There is some evidence of association between UNGD and human health 

concerns. A study conducted among study population of residents of the Marcellus Shale 

region indicated a huge concern about health implications linked with hydraulic 

fracturing or fracking (Emmet, Green-McKenzie, Powers, Propert, & Saberi 2014). Out 

of the study’s 72 respondents, 22% perceived UNGD as a health concern, 13% attributed 

medical symptoms to UNGD exposures, and 42% attributed some of their medical 

symptoms to UNGD. Data were gathered through survey questionnaire and concluded 

that residents have some health concerns in relation to unconventional natural gas 

development (UNGD). Further studies suggested a relationship between UNGD and 

perceived health effects. This self-reported health outcome research identified 

approximately 59 unique health impacts and 13 stressors to Marcellus Shale development 

(Christen et al., 2013). 

In summary, outcome of many studies have shown association between PM2.5 and 

human health concerns such as debilitating lung function, cancer, skin reactions, heart 
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diseases, and headaches. In the United States of America, for instance, fine particulate 

matters have been linked with increased mortality rate (Barr et al., 2012). This, increased 

mortality rate and exposure to fine particulate matters, has global impacts as well (Cao et 

al., 2012). In addition, long-term exposure to ambient fine particulate matters affect the 

human pathophysiological pathways (Dockery & Pope 111, 2006). With large deposit of 

fine particulate matters in metropolitan populations and places where oil and gas 

production occur, there have been unprecedented concerns about human health 

conditions (Frost et al., 2012).  

These concerns mainly arise from incidences and possibilities of fine particulate 

matters lodging in the periphery of human lungs. To add, fugitive air emissions from 

hydraulic fracturing could lead to anemia, immunological conditions, difficulty breathing, 

and breakdown of the human nervous system (Adgate et al., 2012). In sub-populations, 

especially people with preexisting cardiovascular and respiratory health conditions, 

exposure to PM2.5 have been linked to the exacerbations of these human health diseases 

(Brown et al., 2010). Accordingly, SES could increase susceptibility to particulate 

matters-related health situations. 

Relevance of Theoretical Concept 

In the 1970s, Urie Bronfenbrenner developed the SEMH theory (Eriksson, 

Ghazinour, & Hammarström; 2018). At the core of the SEMH was the fact that that 

humans live in, and are exposed to various environments and situations, and these 

environments or situations could likely affect their behavior and beliefs (Brown, 2015). 

Bronfenbrenner’s theory consists of four different systems: the microsystem, the 

mesosystem, the exosystem, and the macrosystem. The microsystem was described as the 
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interacting relationships between the individual and the immediate environment. For the 

mesosystem, Bronfenbrenner saw it as the interrelations between major settings 

containing an individual. The exosystem comprised of the social structures or the major 

institutions of the society. Finally, the macrosystem was seen in the light of policies, laws 

and regulations, and equally all the unprinted rules and norms. In this study, SEMH will 

be used to guide policymakers, create or increase awareness of the outcome of this study 

in communities, among organizations, and individuals. 

Chan, Loke, and Ma (2017) used the social-ecology model to provide a 

wholesome understanding of the health seeking behaviors of sex workers and their access 

to health care services. In this review study, it was founded that the SEMH could be used 

to categorize the variables which influence health-seeking behaviors of sex workers. As 

such, this study used SEMH to identify such variables as intrapersonal, interpersonal, 

institutional, community, and policy level factors. This, in other words, shows that 

something needs to be done about these barriers. 

Elder et al. (2017) noted that the hallmark of ecological theory pertaining to 

specific health risks and behaviors are environmental and policy-making. Thus, in their 

study, these researchers used 2 environmental settings, the school and the community, to 

examine the effectiveness of interventions to reduce the decline of physical activity in 

adolescent girls. The trial of activity for adolescent girls (TAAG) intervention, a multi-

center randomized controlled trial, also targeted policy and organizational change in 

schools and community agencies. Using the socio-ecological component of policy and 

organizational change in schools and communities, this study aimed at creating an 
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environment at school, and in the community that facilitate physical activity, enhance 

social support, and give the girls the opportunity to seek out activity in all settings. 

These past studies, like this study, have used the SEMH to illustrate how the 

environment and policy-making could be used in addressing pertinent health risks and 

behaviors. In addition, as in this study, past researchers have used SEMH to portray a 

holistic understanding of health-seeking behaviors. 

Summary and Conclusion 

In summary, this chapter looked at the relevant literature for comparing CSM to 

Pre-FP & Po-FPs. In Chapter 3, this researcher will describe research design, study 

sample, data collection method, and statistical analyses that will be employed in testing 

the hypotheses. 
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Chapter 3: Research Method 

Introduction 

In this chapter, the following are described: the research design, study sample, 

data collection method, and statistical analyses employed in determining the difference 

among the mean scores for CSM from 1975 through 2015 in all of the available cities and 

counties of residence in Colorado as well as evaluating the contributions of gender, 

marital status, county of residence, and city of residence in CSM periods (prefracking 

period, i.e., 1975-1977, and postfracking period, i.e., 1999-2015) among adults aged 45-

70 years living in Colorado. CSM information was obtained from the CDPHE Vital 

Health Statistics dataset containing information on deaths among Coloradoans. Before 

conducting this study, I submitted all required institutional documents to the Walden 

University Institutional Review Board (IRB). The expectation was that this study would 

be held to the standards, policies, and procedures required for the protection of human 

subjects per Walden University. 

Research Design and Approach 

This study had a retrospective research design that is used when the outcome of 

an event is already known. Retrospective research design was chosen over other public 

health research designs because using secondary data would minimize time constraints, 

be less expensive, maximize sample size, and offer an elegant way of combining novel 

questions with historical data (Dekker, Euser, Jager & Zoccali, 2009; Demissie, 

Hamusse, Lindtjorn, & Teshone, 2014). It is a kind of research design that looks 

backward (i.e., toward the past) and examines exposures to suspected risk or protective 

factors in relation to an outcome that is established at the start of the study. In this study, I 
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studied a cohort of deaths as well as identified and classified some deaths in the past and 

followed up to the present to determine incidental rates and associated variables for the 

deaths. I obtained a dataset containing information on deaths among Coloradoans from 

the CDPHE. I used SPSS versions 21 and 25 to analyze the data collected.  

Research Questions and Hypotheses 

Using secondary data obtained from DPHE Health Statistics, I analyzed the 

following research questions (RQs) and hypotheses (Hs): 

Research Question 1: To what extent or degree are there differences in the mean 

scores for cause-specific mortality (CSM) from 1975 through 2015 in all 

of the available cities and counties of residence in CO? 

Ha1.  There is a significant difference among the mean scores for cause-

specific mortality (CSM) from 1975 through 2015 in all of the 

available cities and counties of residence in CO. 

H01.  There is no significant difference among the mean scores for 

cause-specific mortality (CSM) from 1975 through 2015 in all of 

the available cities and counties of residence in CO. 

Research Question 2: To what degree are the contributions of gender, marital 

status, county of residence, and city of residence in the cause-specific 

mortality (CSM) periods (prefracking period, i.e., from 1975 through 

1977, and postfracking period, i.e., from 1999-2015)? 

Ha2. Gender, marital status, county of residence, and city of residence 

are significant factors in the cause-specific mortality (CSM) 
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periods (prefracking period, i.e., from 1975 through 1977, and 

postfracking period, i.e., from 1999-2015). 

H02. Gender, marital status, county of residence, and city of residence 

are not significant factors in the cause-specific mortality (CSM) 

periods (prefracking period, i.e., from 1975 through 1977, and 

postfracking period, i.e., from 1999-2015). 

Sample Size Estimation 

In this study, I used all CSM information obtained from the CDPHE Vital 

Statistics department. I used all decedent information obtained from CDPHE, which 

encompassed 73,251 men and women aged 45-70 years. These mortality data were 

uploaded into Statistical Package for Social Sciences (SPSS) software Versions 21 and 25 

for analysis. Using one-way analysis of variance (ANOVA) F-test, chi-square test (χ2) of 

independence at 5% alpha level, and multiple linear regression, I examined all of the 

mortality data obtained from CDPHE.  

Inclusion and Exclusion Criteria 

I used secondary data obtained from CDPHE Health Statistics on CSM based on 

Colorado resident deaths during 1975-1977 and 1999-2015 as registered with Colorado's 

Vital Statistics Program. All males and females aged 45-70 years were included in this 

study. This age bracket was chosen because of the suspected occurrence of hydraulic 

fracturing and CSM associated with the age bracket. I did not compare all or total 

mortality data Pre-FP and Po-FP. I excluded mortality due to external causes for all-cause 

mortality because external causes of mortality are less likely to be related to 

environmental quality (Grabich, 2017). 
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Variables 

In this study, multiple variables were considered and analyzed. The independent 

or predictor variables in this study were county of residence for RQ1 and pre- and 

postfracking periods for RQ2. CSM was the dependent or outcome variable. Gender, 

marital status, city of residence, and counties of residence were additional predictor 

variables of interest for this study. 

Independent or predictor variables (IVs or PVs): County of residence and pre- 

and postfracking periods constituted the IVs in this study; the covariates 

were gender, marital status, city of residence, and county of residence.  

Dependent or outcome variable (DV or OV): CSM (underlying cause of death), 

defined using ICD Code 9 (data from 1975-1977) and ICD Code 10 (data 

from 1999-2015), was the primary outcome variable. 

Data Collection 

I obtained cause-specific data spanning 1975-1977 and 1999-2015 from CDPHE 

Vital Health Statistics. CSM information was obtained from CDPHE Health Statistics 

data on Colorado residents aged 45-70 years from the prefracking years (1975-1977) and 

postfracking years (1999-2015) as registered with Colorado's Vital Statistics Program. 

Data Analysis 

IBM SPSS Statistics Versions 21 and 25 were used to analyze the data collected. 

Data analysis included descriptive and analytic methods.  

Inferential Statistics 

Descriptive statistics such as mean, standard deviation, and contingency 

coefficient statistics were used to answer the research questions. Specifically, Research 
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Question 1 was answered with mean and standard deviation statistics, while Research 

Question 2 was answered with contingency coefficient statistics. Mean and standard 

deviation were used to ascertain the difference and variations among the mean scores for 

CSM from 1975 through 2015 in all of the countries of residence, while contingency 

coefficient statistics were used to ascertain the relationship between the variables in the 

study. Contingency coefficient statistics are used when there is categorization of variables 

(dependent and independent) in the form of cross-tabulation. ANOVA was used to 

analyze RQ1, while multiple linear regression was used to analyze RQ2. The hypotheses 

were tested at 0.05 level of significance. 

Protection of Participants 

I received all needed IRB approval to conduct the study. The data obtained will be 

stored for 5 years according to Walden’s IRB guidelines. The Walden University IRB 

approval number for this research is 10-25-18-0365113.  

There was minimal risk involved in this study because I had no direct or physical 

contact with research participants, in that all data were obtained from a secondary source. 

In addition, the importance of this study in filling a gap in knowledge far outweighed the 

potential risk when this researcher was comparing CSM with Pre-FP and Po-FP. The 

thumb drive used for storing a copy of the data from CDPHE has been kept in locked 

cabinets. Finally, access to the data and research records has been limited to me, the 

statistician, and other people involved in data authorization. 

Internal and External Validity 

To support the internal and external validity of the results of this study, I ensured 

that the instruments measured precisely the characteristics or attributes that they were 
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intentionally designed to measure. I also ensured that all other factors that were not 

studied in this study could not have any influence on the ones used. However, I used all 

of the data that were registered with Colorado's Vital Statistics Program for the analysis. 

This helped in making a broader generalization of the results within the limitations of the 

study. Consequently, I ensured that both the independent and dependent variables met the 

assumptions criteria for using the statistics. 

Summary and Conclusion 

In summary, this chapter addressed the research design, study sample, data 

collection method, and statistical analyses that were employed in testing the hypotheses. 

In Chapters 4 and 5, I describe data collection and analysis and the outcomes or results 

of this study. 
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Chapter 4: Results 

Introduction 

In this chapter, I present the results and interpretations of the data for this study 

according to the research questions. 

Findings 

Research Question 1 

Research Question 1 was as follows: To what extent or degree are there 

differences in the mean scores for cause-specific mortality (CSM) from 1975 through 

2015 in all of the available cities and counties of residence in CO? 

Ha1.  There is a significant difference among the mean scores for cause-specific 

mortality (CSM) from 1975 through 2015 in all of the counties of 

residence. 

H01.  There is no significant difference among the mean scores for cause-

specific mortality (CSM) from 1975 through 2015 in all of the counties of 

residence. 

Table 2 presents important descriptive statistics for this study, including the mean, 

standard deviation, and 95% confidence interval (CI) for the dependent variable. The N in 

the first column refers to the number of cases used for calculating the descriptive 

statistics. As these numbers are equal to my sample sizes it simply means that there are 

no missing values on the dependent variable. Table 3 indicates that there is a statistically 

significant difference between the group means. In this ANOVA table, the significance 

value is .000 (i.e., p = .000), which is below 0.05; therefore, there is a statistically 

significant difference in the mean number for mortality.  
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Table 2 

Descriptive statistics for Arapahoe, Denver, Douglas, El Paso, and Weld counties 

Counties N Mean 

Std. 

deviation Std. error 

95% confidence interval 

for mean 

Minimum Maximum 

Lower 

bound 

Upper 

bound 

Arapahoe 20 807.70 219.639 49.113 704.91 910.49 392 1111 

Denver 20 1318.85 156.925 35.089 1245.41 1392.29 1134 1663 

Douglas 20 205.90 106.315 23.773 156.14 255.66 14 371 

El Paso 20 958.05 231.641 51.796 849.64 1066.46 532 1312 

Weld 20 372.00 98.440 22.012 325.93 418.07 212 538 

Total 100 732.50 437.565 43.757 645.68 819.32 14 1663 

 

Table 3 

Between groups and within groups 

 Sum of squares df Mean square F p 

Between groups 16152039.500 4 4038009.875 136.865 .000 

Within groups 2802837.500 95 29503.553   

Total 18954877.000 99    
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In Table 4, I present data analysis for Research Question 1 and Hypothesis 1. As 

shown in the table, the mean scores for CSM from 1975 through 2015 in all of the 

counties of residence were 807.70, 1318.85, 205.90, 958.05, and 372.00 for Arapahoe, 

Denver, Douglas, El Paso, and Weld, respectively. It was shown that Denver County had 

a higher mean CSM from 1975 through 2015 than any other county. Second in line was 

El Paso, followed by Arapahoe, then Weld, and finally Douglas County. 

Table 4 

Sample Size (n), Mean Score (�̅�), Standard Deviation (S), and One-Way ANOVA F-Test 

Statistics of Significant Difference Among the Means 

 
County of residence n �̅� S 

Arapahoe 20 807.70 219.639 

Denver 20 1318.85 156.925 

Douglas 20 205.90 106.315 

El Paso 20 958.05 231.641 

Weld 20 372.00 98.440 

ANOVA Sum of squares Degree of 

freedom 

Mean square Fcal Ftab Remark 

Between 

groups 

16152039.500 4 4038009.875  

 

136.865 

 

 

2.45 

 

 

Reject 

Ho 

Within 

groups 

2802837.500 95 29503.553 

Total 18954877.000 99  

 

The results of the analysis in Table 4 also reveal that the degree of freedom for the 

numerator is 4 while that of the denominator is 95. The Fcal (calculated F) is 136.865, and 

the Ftab (tabulated F) is 2.45. Because the Fcal (calculated F) of 136.865 is greater than the 

Ftab (tabulated F) of 2.45, the alternative hypothesis is accepted and the null hypothesis is 

rejected, indicating that there is a significant difference among the mean scores for CSM 

from 1975 through 2015 in all of the counties of residence. 
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Evidence for the Assumptions of ANOVA 

 
Figure 2. Bar graph of standardized residual scores for assumption of normality. 

 

Figure 2 shows the evidence that the data used for the analysis met the key 

required assumptions for using one-way ANOVA to carry out this analysis. This simple 

bar chart graph of standardized residual for scores shows that the assumption of 

normality was duly met. This is shown in the normal distribution curve shape of the 

graph.  

Research Question 2 

Research Question 2 was as follows: To what degree are the contributions of 

gender, marital status, county of residence, and city of residence significant in the cause-

specific mortality (CSM) periods (prefracking period, i.e., from 1975 through 1977, and 

postfracking period, i.e., from 1999-2015)? 
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Ha2. Gender, marital status, county of residence, and city of residence are 

significant factors in the cause-specific mortality (CSM) periods 

(prefracking period, i.e., from 1975 through 1977, and postfracking 

period, i.e., from 1999-2015). 

H02. Gender, marital status, county of residence, and city of residence are not 

significant factors in the cause-specific mortality (CSM) periods 

(prefracking period, i.e., from 1975 through 1977, and postfracking 

period, i.e., from 1999-2015). 

It is shown in Table 5 that with sample size of 12,098, the multiple correlation 

coefficient of 0.17 was obtained, which indicates that there was a very low degree of 

relationship among gender, marital status, country of residence, city of residence, and 

CSM periods. Additionally, only 2.9% (R2) of the variation in the dependent variable can 

be explained by the independent variables. Table 6 further shows that, with the degree of 

freedom of 12097, F = 89.706 is significant, leading to the rejection of the null 

hypothesis and the conclusion that the coefficient of multiple correlation among gender, 

marital status, and county of residence and CSM scores was significant. 

Table 5 

 

Model Summary for gender, marital status, city of residence and county of residence 

 

Model R R square Adjusted R square 

Std. error of the 

estimate 

1 .170a .029 .028 6.664 
aPredictors: (Constant), city of residence, marital status, county of residence, gender. 
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Table 6 

Degree of freedom (df) for gender, marital status, city and county of residence 

ANOVAa 

Model Sum of squares df Mean square F p 

1 Regression 15933.515 4 3983.379 89.706 .000b 

Residual 536989.422 12093 44.405   

Total 552922.937 12097    
aDependent variable: Scores. bPredictors: (Constant), city of residence, marital status, county of residence, 

gender. 

 

 

Table 7 

Coefficients for gender, marital status, city and county of residence 

Coefficientsa 

Model 

Unstandardized coefficients 

Standardized 

coefficients 

t p B Std. error Beta 

1 (Constant) 22.811 .250  91.256 .000 

Gender 1.129 .121 .083 9.299 .000 

Marital status .556 .045 .111 12.413 .000 

County of residence -.498 .044 -.101 -11.289 .000 

City of residence -.071 .081 -.008 -.869 .385 
aDependent variable: Scores. 
 

Summary of Findings 

 From the analyses of the study, the following findings were made for the research 

questions and hypotheses: 

1. Denver County had a higher mean CSM scores from 1975 through 2015 than 

any other county in Colorado. Second in line was El Paso, followed by 

Arapahoe, then Weld, and lastly Douglas. When tested, the result showed that 

there was a significant difference among the mean scores for CSM from 1975 

through 2015 in all of the counties of residence. 



60 

 

2. The contribution of gender, marital status, and county of residence in CSM 

scores was significant but also very low in the CSM periods, i.e. prefracking 

and postfracking. 
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Chapter 5: Conclusions, Summary, and Recommendations 

Introduction 

 This chapter contains subsections with discussion of the findings, limitations of 

the study, recommendations, suggestions for further study, a summary of the entire study, 

and a conclusion. 

Discussion of Findings  

CSM From 1975 Through 2015 in All of the Counties of Residence 

 It was revealed that Denver County had a higher mean CSM from 1975 through 

2015 than any other county in Colorado. Second in line was El Paso, followed by 

Arapahoe, then Weld, and lastly Douglas. When tested, the result showed that there was a 

significant difference among the mean scores for CSM from 1975 through 2015 in all of 

the counties of residence. This finding is an indication that CSM during the said years 

differed significantly with respect to county of residence. In other words, county of 

residence had an influence on CSM. The significance of this finding could not be 

attributed to chance. The high CSM recorded for Denver could be linked to the 

environmental nature of the county. This could also be linked to the exposure of some 

CSM-induced related factors. In addition, Dockery and Pope (2006) stressed that long-

term exposure to ambient fine particulate matters affects human pathophysiological 

pathways. The similarities in the findings could be linked to similar characteristics of the 

study areas. 
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Contributions of Gender, Marital Status, and County of Residence in Cause-

Specific Mortality (CSM) Periods 

 According to the regression results, the contributions of gender, marital status, 

and county of residence in CSM scores was significant but very low. Azim et al. (2014) 

showed that mortality declined in females aged 15-34 years by 85% over 1950-2006. 

Among males aged 15-34 years, the mortality decline was less at 47%, due to a rise in 

external-cause mortality during 1970-2000. There was a 67% mortality decline among 

females aged 35-65 years over 1950-2006 and a decline in mortality in males aged 35-64 

years. This study concluded that significant disparities were demonstrated in Sri Lankan 

cause-specific adult mortality by sex and age group for 1950-2006. Female mortality 

progressively declined while male mortality demonstrated periods of increase and 

stagnation. The contradictions recorded above could be linked to the use of different 

locations.  

The findings indicate that marital status and CSM do not have much association, 

but the existing association proved to be significant and thus was not by chance. 

Supporting this, Brauer et al. (2017) showed that the mean level of PM2.5 exposure during 

2000-2005 was 43.7 μg/m3 (ranging from 4.2 to 83.8 μg/m3) and the mortality HRs (95% 

CI) per 10-μg/m3 increase in PM2.5 were 1.09 (1.08, 1.09) for nonaccidental causes: 1.09 

(1.08, 1.10) for CVD, 1.12 (1.10, 1.13) for COPD, and 1.12 (1.07, 1.14) for lung cancer. 

Hence, this study concluded that long-term exposure to PM2.5 was associated with 

nonaccidental, CVD, lung cancer, and COPD mortality in China.  

Beydoun (2016) conclusively revealed that racial/ethnic disparities in all-cause 

and cause-specific mortality (particularly cardiovascular and neoplasms) were partly 
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explained by sociodemographic, SES, health-related, and dietary factors, and 

differentially by age, sex, and poverty strata. This could mean that marital status was one 

of the SES factors studied by Beydoun et al.  

In the literature, dissolved solids and high concentration of metals from hydraulic 

fracturing have been associated with diminishing growth of brook trout. Chemical 

contamination and air pollution from fracking activities could impact the fecundity of 

brook trout (Taylor & Weltman-Fahs, 2013). Jones and Pejchar (2013) reiterated that 

species endangerment; loss and disintegration of habitat; and wildlife mortality, 

morbidity, and invasion have equally been attributed to large-scale oil and gas 

development. The findings of the present study proved that county of residence has a 

significant but very low association with CSM. This implies that geographical location 

may have a contribution to and link with CSM.  

 However, the research of Jin (2015) showed that in relation to all cause-specific 

cardiovascular mortality, Beijing had stronger cold and hot effects than Shanghai. In 

addition, the effects of extremely low and high temperatures differed by mortality types 

in the two cities. However, HPD in Beijing was inclined to both extremely high and low 

temperatures. Moreover, the mixture of combustion products along with constant 

movement of trucks to and from fracking sites contribute to increased levels of sulfate 

and fine particulate air pollution (Dockery et al., 1993). Thus, the findings of numerous 

studies posit that there is a link between particulate air pollution and lung function and 

cough, shortness of breath, and asthma (Dockery et al., 1993). 
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Limitations of the Study 

Because this study was not an experimental study, the generalization of the 

findings of this study to other geographical locations that were not incorporated in the 

study should be done with caution. This implies that what is obtainable in other areas 

might not be the same in the present area of the study. Consequently, I cannot use the 

results obtained from this study to generalize the U.S. population; inferences can be made 

only about the studied area. Moreover, other factors such as socioeconomic status (SES), 

occupation, race, smoking, alcohol consumption, and education that could be associated 

to CSM were not involved in this study.  

Recommendations 

 Based on the findings of this study, I recommend the following: 

1. Before any policy relating to CSM is made in a county, county of residence 

should be considered. 

2. Policymakers who are concerned about CSM should consider gender, marital 

status, and county of residence in making decisions that could affect CSM. 

3. The present study should be replicated with a national sample to test the 

generalizability of the findings. 

4. Stakeholders need to integrate CSM awareness programs into public health 

programs involving hydraulic fracturing and routine medical treatment in other to 

improve public health practice in the state of Colorado. 

Implications for Social Change 

 The findings support Walden’s mission by increasing understanding of the 

difference among mean scores for CSM and determining the contributions of gender, 
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marital status, and county of residence to CSM scores among adults aged 45-70 years 

living in Colorado from prefracking to postfracking periods. The objective is to use the 

study’s outcomes to raise awareness about CSM and gender, marital status, and county of 

residence. This investigation suggests that people living in Colorado should be aware that 

CSM is linked with gender, marital status, and county of residence. At the macro level, 

there is a need for policymakers to promote programs that will make Colorado residents 

aware that CSM could be linked with gender, marital status, city of residence and county 

of residence from prefracking to postfracking times. The results of this study prove that 

CSM scores have significant links with gender, marital status, and county of residence. 

This implies that gender, marital status, and county of residence may be significant 

predictors that could influence every decision regarding CSM. The results of this study 

also showed that CSM differs significantly with respect to county of residence. This 

implies that county of residence has an influence on CSM. Therefore, individuals must be 

aware of these areas that induce CSM.  

Conclusion 

This study evaluated the difference among mean scores for CSM 1975 through 

2015 in all of the available cities and counties of residence in Colorado and determined 

the contributions of gender, marital status, and county of residence in CSM periods 

(prefracking period, i.e., 1975-1977, and postfracking period, i.e., 1999-2015) among 

adults aged 45-70 years living in Colorado. 

Results revealed that Denver County had a higher mean CSM score from 1975 

through 2015 than any other county in Colorado. Additionally, regression results revealed 

a significant but weak association between CSM scores and gender, marital status, and 
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county of residence from prefracking period (1975-1977) and postfracking period (1999-

2015). 

There were some limitations to this study that need to be taken into consideration 

that could contribute to further literature. Among the limitations were that data on 

mortality were obtained from the CDPHE, and I did not have control over the data 

provided. Another crucial limitation was that the CDPHE data on CSM did not precede 

the year 1975, and CSM data were not available from the CDPHE from 1978 to 1998. 

Furthermore, other factors such as socioeconomic status (SES), length of residence, 

occupation, race, smoking, alcohol consumption, and education that could be associated 

to CSM were not involved in this study. 

The results of this study add to the literature on CSM scores in Colorado from 

1975-1977 and 1999-2015. The study could also serve as a benchmark for further studies 

that may be conducted by any researcher in any county in the state of Colorado. 

The main conclusion that can be derived from this study is that CSM scores could 

be significantly associated with the following variables: gender, marital status, and 

county of residence. Stakeholders need to integrate CSM awareness programs into public 

health programs involving hydraulic fracturing and routine medical treatment in other to 

improve public health practice in the state of Colorado. 
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