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Abstract 

Hospitals stand to lose millions of dollars in revenue due to patients who leave without 

treatment (LWT).  Grounded in queueing theory, the purpose of this correlational study 

was to examine the relationship between daily arrivals, daily staffing, triage time, 

emergency severity index (ESI), rooming time, door-to-provider time (DTPT), and LWT 

rates.  The target population comprised patients who visited a Connecticut emergency 

room between October 1, 2017, and May 31, 2018.  Archival records (N = 154) were 

analyzed using multiple linear regression analysis.  The results of the multiple linear 

regression were statistically significant, with F(9,144) = 2902.49, p < .001, and R2 = 0.99, 

indicating 99% of the variation in LWT was accounted for by the predictor variables.  

ESI levels were the only variables making a significant contribution to the regression 

model.  The implications for positive social change include the potential for patients to 

experience increased satisfaction due to the high quality of care and overall improvement 

in public health outcomes.  Hospital leaders might use the information from this study to 

mitigate LWT rates and modify or manage staffing levels, time that patients must wait for 

triage, room placement, and DTPT to decrease the rate of LWT in the emergency room.  
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 Section 1: Foundation of the Study 

Background of the Problem 

From 1994 to 2014, emergency room (ER) visits in the United States increased 

from 90.5 to 136.3 million (American Hospital Association [AHA], 2016). At the same 

time, the AHA (2016) reported that the number of ERs to meet this demand dropped from 

4,960 in 1994 to 4,408 in 2014.  The increase in visits and a decrease in service capacity 

has resulted in overcrowding in U. S. hospitals. 

ER overcrowding is a worldwide crisis as well (Khalifa & Zabani, 2016). 

Congestion leads to long wait times for patients, and some eventually grow tired of 

waiting and leave without treatment (LWT) from a medical provider.  The LWT problem 

concerns hospital leaders owing to lost revenue and lower patient satisfaction scores.  

According to Lucas, Batt, and Soremekun (2014), a linear relationship exists between the 

time a customer spends in the queue and the probability that he or she will abandon the 

queue before service.  I have described the background regarding the LWT phenomenon 

and will now focus on the problem statement for my study.  

Problem Statement 

Patients who visit hospital ERs and LWT negatively influence hospital revenue 

(Lucas et al., 2014).  The average hospital loses approximately $1,233 for every LWT in 

the ER, based on the median charge for the 10 most commonly treated outpatient 

conditions (Caldwell, Srebotnjak, Wang, and Hsia, 2013).  The general business problem 

is that hospitals are losing potential reimbursement when patients LWT.  The specific 

business problem is that some hospital leaders do not know the relationship between 
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daily arrivals, daily staffing, triage time, emergency severity index (ESI), rooming time, 

door-to-provider time (DTPT), and LWT rates in the ER. 

Purpose Statement 

The purpose of this quantitative correlational study was to examine the 

relationship between the predictor variables of daily arrivals, daily staffing, triage time, 

ESI, rooming time, DTPT, and the dependent variable LWT.  The targeted population 

included patients of all ages who visited the participating ER between October 1, 2017, 

and May 31, 2018.  Implications for positive social change resulting from this study 

include the potential for patients to experience increased satisfaction due to the high 

quality of care and overall better public health outcomes.  Hospital leaders may use the 

information from this study to project the potential for LWT and modify or manage the 

staffing levels, and times that patients must wait for triage, room placement, and DTPT to 

decrease the rate of LWT in the ER.  

Nature of the Study 

My research question and purpose made this study inherently quantitative.  

Because the research question pertains to relationships between variables, there was no 

role for qualitative inquiry.  A researcher may choose to use qualitative, quantitative, or 

mixed-methodology to conduct a study (Gibson, 2017).  Qualitative researchers seek to 

answer questions by collecting individual or group data about the lived experiences of 

people and formulating conclusions inductively (Moon et al., 2013). 

Conversely, quantitative researchers use a deductive approach, starting with a 

generalized hypothesis and then using numerical data for support (Moon et al., 2013).  
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The quantitative methodology was the most appropriate choice for my study because I 

only collected statistical data. A researcher using mixed methodology includes both 

qualitative and quantitative elements to answer the research question (Gibson, 2016; 

Spillman, 2014).  My study did not consist of any qualitative data, so the mixed 

methodology was not an appropriate choice. 

Quantitative research designs include, but are not limited to, correlation designs, 

experimental designs, and causal-comparative designs (Bleske-Rechek, Morrison, & 

Heidtke, 2015; Hudson & Llosa, 2015).  According to Hudson and Llosa (2015), 

researchers choose correlation to find relationships between variables, whereas the 

desired outcome of experimental design is to explain causality between variables.  A 

researcher uses causal-comparative design to compare two or more groups for the same 

outcome variable (Doody & Bailey, 2016).  The purpose of this study was to find 

relationships between the predictor variables and the dependent variable. Uncovering the 

exact causes of LWT was beyond the scope of this study, and there were no groups for 

comparison.  Therefore, the correlation design was the most suitable choice to answer my 

research question. 

Research Question 

What is the relationship between daily arrivals, daily staffing, triage time, ESI, 

rooming time, DTPT, and LWT rates in the ER? 

Hypotheses 

H0: There is no relationship between daily arrivals, daily staffing, triage time, ESI,  

rooming time, DTPT, and LWT rates in the ER. 
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H1: There is a relationship between daily arrivals, daily staffing, triage time, ESI, 

rooming time, DTPT, and LWT rates in the ER. 

Theoretical Framework 

According to Bhat (2015) and Roy (2016), A. K. Erlang is the father of queueing 

theory (QT) because he had many essays related to QT concepts that were published by 

Copenhagen Telephone Company to resolve problems of congested telephone traffic and 

to improve operations in telecommunications.  All of Erlang’s original works were 

published in Danish and later in French (for a chronological list of publications, see 

Appendix A).  However, the only publications translated into English are found in The 

Life and Works of A. K. Erlang (Brockmeyer, Halström, & Jensen, 1948).  Erlang’s work 

fell into several categories including probability theory, stochastic processes, theoretical 

physics, and population statistics (Brockmeyer et al., 1948).  QT later became a branch of 

operations research using a mathematical approach to study congestion and delays of 

waiting in line (Bhat, 2015).  Although QT has origins in operations research, the theory 

helps users to make wise business decisions regarding efficient and cost-effective 

workflow in the ER (Hu, Barnes & Golden, 2018).  According to Bhat, QT allows 

researchers to examine every aspect of waiting in line for service, including the arrival 

process, service process, number of servers, number of stops within the system, and the 

number of customers.  Furthermore, QT allows researchers to calculate performance 

metrics such as wait time, average queue length, and the proportion of customers that the 

organization has to turn away from service (Gupta, 2013; Hu et al., 2018). 
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Key variables of QT relating to the ER environment include daily patient arrivals, 

regular direct care staff, waiting times for service, and the priority in which patients 

receive assistance (Vass & Szabo, 2015).  The hypotheses for this study indicated that the 

following variables would or would not significantly predict LWT rates in the ER: Daily 

arrivals, daily staffing, triage time, ESI, rooming time, and DTPT.  The tenability of these 

hypotheses was based upon extant literature where researchers found significant 

relationships between queueing variables and ER outcomes such as LWT (see Alavi-

Moghaddam et al., 2012; Armony et al., 2015; Casalino et al., 2016; Handel et al., 2014; 

Pines, Decker, & Hu, 2012; Tropea et al., 2012; Vass & Szabo, 2015). 

Operational Definitions 

Daily patient arrivals: The daily patient arrivals are an indication of the total 

number of patients that sign up for service in the ER on a regular basis (Krall, Cornelius, 

& Addison, 2014). 

Daily staffing: Daily staffing refers to the number of direct care staff available to 

provide service to customers during a 24 hour time frame (Armony et al., 2015). 

Emergency severity index (ESI): The ESI is a triage tool the nurse uses to 

anticipate the number of diagnostic tests and procedures the patient will utilize and to 

assign an acuity level (Gilboy, Tanabe, Travers, & Rosenau, 2012).  According to Gilboy 

et al. (2012), ESI levels are as follows: ESI1 (resuscitation), ESI2 (emergent), ESI3 

(urgent), ESI4 (less urgent), and ESI5 (nonurgent). 

 Kendall’s notation: A taxonomy that represents the various elements of a 

queueing model (Bhat, 2015). 
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Left without treatment or leave without treatment (LWT): LWT refers to the total 

number of patients who depart or departed from the ER before an examination by a 

provider which includes a physician, advanced practice registered nurse (APRN), or 

physician’s assistant (Wiler et al., 2015). 

Door-to-provider time (DTPT): The DTPT is the time it takes for the provider to 

initiate the medical screening evaluation after the staff member places the patient in a 

room (Krall et al., 2014). 

Queueing discipline: The queueing discipline is synonymous with the order in 

which customers receive service (or the priority) also known as a class in queueing theory 

(Bhat, 2015). 

Queueing network:  The queueing network is the flow of patients through a 

hospital system with an entrance and exit point, where medical staff work in single or 

multiserver nodes (Bhattacharjee & Ray, 2014). 

Rooming time: The rooming time is the amount of time that passes from when the 

patient first signs into the ER until a staff member places the patient in a room or 

treatment area to wait for the medical screening evaluation (Pielsticker, Whelan, Arthur, 

& Thomas, 2015). 

Triage time: The triage time is the amount of time that passes between ER 

registration and the triage process, where the nurse assigns the patient an acuity level 

(Storm-Versloot, Vermeulen, van Lammeren, Luitse, & Goslings, 2014). 
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Assumptions, Limitations, and Delimitations 

Assumptions, limitations, and delimitations are critical restrictions that a 

researcher must reveal regarding the availability of resources or other issues or 

shortcomings that arise throughout the study (Simon & Goes, 2013).  In the next section, 

I will describe some assumptions, limitations, and delimitations for my research.  

Assumptions 

Assumptions are information the researcher takes for granted, or assumes as truth, 

even though no concrete proof validates the information (Simon & Goes, 2013).  I was 

assuming that the hospital staff entered the information correctly into the database 

ensuring the accuracy of the archival data for this study.  I also assumed that the sample I 

chose for my research would represent the ER population so that conclusions from my 

analysis would apply to other ERs with similar characteristics. 

Limitations 

Limitations refer to potential weaknesses of the study or an uncontrollable threat 

to the internal validity of a study (LoBiondo-Wood & Haber, 2013).  One limitation is 

that correlational research design can only help the researcher to predict a relationship 

between variables, not determine a causal relationship between variables (Simon & Goes, 

2013).  Another limitation is that archival data collection comprises the secondary 

analysis of existing data (Schulz, Hoffman, & Reiter-Palmon, 2005; Cheng & Phillips, 

2014).  The limitation of the secondary analysis is that the researchers who are analyzing 

the data are not the same individuals involved in the data collection process (Cheng & 

Phillips, 2014).  According to Cheng & Phillips (2014), this is problematic because the 
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researcher is not aware of glitches in the data collection process which may end up 

compromising the validity of the study results.  

Delimitations 

Delimitations refer to the bounds or scope of the study within the researcher’s 

control such as the choice of a problem to study (Simon & Goes, 2013).  Many internal 

hospital problems and external factors may influence LWT.  However, to narrow the 

scope of this study, I only included variables relating to QT.  The Health Insurance 

Portability and Accountability Act (HIPAA) places limits on the researchers’ abilities to 

directly access and contact patients (U.S. Department of Health & Human Services, 

2013).  To comply with HIPAA, the dataset for this study did not include other variables 

that may impact LWT, such as zip codes, race, ethnicity or specific age groups of the 

study population.  This study consisted of archival data records from only one community 

ER, located in Connecticut, so results could differ depending on the location of the ER 

(e.g., environment, state, nation).  The population for this study includes patients of all 

ages and ESI2, ESI3, ESI4, and ESI5.  I did not include ESI1 patients in this study 

because these patients require resuscitation or life-saving interventions and cannot LWT. 

Significance of the Study 

According to Anderson, Pimentel, Golden, Wasil, and Hirshon (2015), hospital 

leaders should understand the variables related to ER operations and LWT to improve the 

efficiency and effectiveness of care provision.  ER staff delivers an essential public 

service by providing care 24 hours a day and 365 days a year, without any attention to 

patients’ socioeconomic status (Gul & Guneri, 2015; Verelst, Wouters, Gillet, & van den 
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Berghe, 2015).  In ERs, a large population of potential patients exists, and the number of 

patients receiving or awaiting service does not influence the arrival rate (Hall, Belson, 

Murali, & Dessouky, 2013).  QT has had applications in other industries besides health 

care, but there exists a gap in QT literature regarding the ER.  Yiadom et al. (2015) held a 

consensus conference to advance research in ER operations to develop a framework for 

the understudied area of operations research in the ER.  The key initiatives for 

improvement in ER operations research were: 1) the development of standard measures 

for ER patient care processes; 2) best practice compliance and process efficiency with 

attention on patient outcomes; 3) studies in multiple ERs to allow for more generalizable 

knowledge; 4) mixed-methods studies for further comprehension of the social community 

and human behaviors that affect ER operations; 5) the development of robust research 

registries for better evidence-based research; 6) prioritization of crucial research 

questions with the input of patients, providers, payers, and other stakeholders; 7) 

obtaining more consistent definitions for ER components including fast tracks, waiting 

rooms, and subunits such as radiology and laboratory; and 8) dissemination of  

knowledge to all disciplines in emergency medicine, public health, operations research, 

general medicine, and other publications (Yiadom et al., 2015).  The significance of 

filling a research gap in the area of ER research is the awareness it will provide leaders, 

so every patient can equally experience access to care and emergency resources.  

Furthermore, hospital leaders can apply the information to reduce LWT, which is a 

significant quality indicator.  Ideally, no patient would ever leave without service, and the 

hospital would receive full payment for every resource.  Patient satisfaction is an 



10 

essential aspect of health care, and total reimbursement for care depends on high Hospital 

Consumer Assessment of Healthcare Providers and Systems (HCAHPS) scores, a 

national satisfaction survey (Centers for Medicare & Medicaid Services [CMS], 2015). 

At the time of this study, the HCAHPS scores affected only inpatient 

reimbursement, but an Emergency Department Patient Experiences with Care (EDPEC) 

survey is in the pilot phase (CMS, 2016).  According to CMS (2018), the surveys will 

question patients about their experiences upon arrival to the ER, their care in the ER, and 

their experiences after they are admitted to the hospital or discharged from the ER.  The 

CMS website (2018) authors advise readers that the patient experience data will allow for 

comparison of ER’s nationally to assist patients with effective communication and 

coordination of ER care.  The EDPEC survey is still in the development phase (CMS, 

2018). 

When patients LWT, their expectations are unmet and, due to low satisfaction, 

they may not recommend the hospital to people they know (Ameh, Sabo, & Oyefabi, 

2013).  A high LWT rate indicates many poor patient experiences and can contribute to a 

poor public image for a hospital (Anderson et al., 2016).  Cochrane et al. (2015) found 

hospitals with higher patient satisfaction scores also had a shorter average DTPT and 

fewer LWT.  Access block refers to the patient’s inability to gain entry to the appropriate 

hospital bed because of overcrowding and throughput issues (Crawford et al., 2014).  

Hospital leaders may be able to identify areas of potential access block and act to reduce 

the problem of ER congestion (Ajmi et al., 2015).  According to Abo-Hamad and Arisha 

(2013), understanding all aspects of patient flow through the ER is necessary for hospital 
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leaders to make effective business decisions and provide solutions for ER process 

improvement.  It is crucial for hospital leaders to know what factors relate to queue 

formation and waiting because of the many adverse consequences of waiting for care 

(e.g., frustration for patients and family, patient health deterioration, possible escalation 

of a psychiatric emergency, and increased potential for mortality). 

Implications for Social Change  

Patients who LWT are a high-risk group for medical and legal reasons, and 

operational outcomes, such as patient satisfaction (Pielsticker et al., 2015).  If hospital 

leaders understand factors relating to LWT, they can mitigate the effects of overcrowding 

and long waits in the ER.  It is unrealistic to expect a zero rate for LWT because some 

patient complaints safely resolve after arrival to the ER without any medical intervention 

(Vierheller, 2013).  Nevertheless, hospital leaders should attempt to achieve or beat the 

national benchmark by striving to keep the LWT rate below 2% (Handel et al., 2014).  

Meeting the benchmark for LWT rates is an opportunity for hospital leaders to increase 

patient satisfaction and to allow their staff to provide quality care. 

A Review of the Professional and Academic Literature 

Onwuegbuzie and Frels (2016) defined a comprehensive literature review as a 

multi-modal approach a researcher uses to inform his or her knowledge base and to 

confirm, modify, or expand on a theory.  I found the majority of journal articles for this 

literature review in online databases, predominately Science Direct, which only posts 

peer-reviewed material.  The other databases that I used were: Academic Search 

Complete, Business Source Complete, CINAHL Plus with Full Text, Directory of Open 
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Access Journals (DOAJ), Dissertations and Theses @ Walden University, IEEE Xplore 

Digital Library, Medline with Full Text, ProQuest Central, SAGE Journals, Taylor and 

Francis Online, Thoreau Multi-Database Search, and Ulrich’s Periodicals Directory.  I 

verified 85% of the total sources were peer-reviewed on Ulrich’s or visited the journal 

home pages to confirm the refereed status of the literature.  The other 15% were books 

and government websites.  I focused on peer-reviewed studies less than 5 years old at the 

time of conducting my doctoral research.  Out of 144 resources, 20 were published before 

2013.  Therefore, 13% of resources do not fall within the 5-year requirement, and 87% of 

the resources do (meeting the 85% rule).  I only cited earlier publications for the 

necessity of introducing work by pioneers in the field of queueing theory or when no 

current research was available on the ER variables.  The key search terms for the 

literature review were combinations of the following words: queues, abandonment, 

reneging, call centers, left without being seen (LWBS), left without treatment (LWT), 

emergency department, emergency room, queueing theory, and also an alternative 

spelling queuing theory. 

The first portion of the literature review contains an analysis and synthesis of 

literature related to queueing theory research.  More specifically, there is a review of the 

queueing theory research as it applies to call centers to give the reader a foundation on 

the queueing variables.  I have organized the variables sequentially to follow the natural 

progression of events in a call center or ER.  The queueing variable names for call centers 

are different from the ER owing to the context of the setting.  For example, where the 

dependent variable is LWT in the ER, the same queueing variable is caller abandonment 
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in a call center.  Predictor variables will have different names as well.  When comparing 

the ER predictor variables to call center variables, note that servers correspond to agents.  

Patient arrivals equate to call arrivals.  Triage time, rooming time, and DTPT compare to 

service rates.  Finally, the ESI level corresponds to the priority of service. 

After the discussion of queueing variables as they relate to call centers, I will 

continue the literature review with an overview of the research on the queueing variables 

for my study.  First, I will present studies regarding the dependent variable LWT.  Next, I 

will discuss the predictor variables in this sequence: Patient arrivals, staffing, triage time, 

ESI, rooming time, and DTPT.  There is very little research available using QT to 

improve operational outcomes in the ER.  Researchers have used other models, besides 

QT, to frame problems in the ER, without offering any practical solutions.  For example, 

Asplin et al. (2003) presented a conceptual model dividing the ER into three 

interdependent components: Input, throughput, and output.  Despite the goal of Asplin et 

al. (2003) to provide a practical framework to organize research, policy, and operations 

agenda, the problem of ER crowding is not alleviated 15 years later.  According to 

Khalifa and Zabani (2016), research and application of healthcare analytics are no longer 

merely descriptive, but moving into sophisticated diagnostic, predictive, and prescriptive 

approaches.  I hope to fill a gap in ER operations research by showing hospital leaders 

how to transfer queueing principles from the call center industry to healthcare to reduce 

LWT effectively. 
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QT 

Batt and Terwiesch (2015) studied the behavioral attributes of waiting, the 

adverse impact it has on customers, and the loss of revenue that businesses incurred from 

making customers wait for service.  When designing a queueing system, Armony et al. 

(2015) studied the psychology of waiting and considered how people perceived their 

waits.  Queueing scientists are concerned with congestion, waiting and blocking, and 

limitations in resources (He, Liu, & Whitt, 2016).  According to Bhat (2015), before the 

introduction of call waiting buffers, telephone systems operated as loss systems and 

traffic engineers used Erlang’s loss formula, or Erlang’s first formula to calculate the 

number of customers who could not enter the system.  An Erlang is a measurement of the 

offered load (ratio of the arrival rate to the service rate) in teletraffic (Bhat, 2015).  Barrer 

(1957) later referred to impatient customers as those who would only wait a fixed amount 

of time, after which the business would lose the customer.  Barrer’s solution had minimal 

applications with one primary parameter of interest (ratio of the average departure rate to 

the average arrival rate) and reference to only single server cases where customers 

arrived on a first come first serve (FCFS) basis.  Developers of other formulas and 

methods considered the queueing system in a steady state only and did not take into 

account arrival rates that varied with time.  Little’s law (L = λ W) is the most basic 

queueing model but assumes all arrivals are Poisson distribution and service times are 

exponential (Little & Graves, 2008).  In other words, the long-term average (L) equals the 

average effective arrival rate (λ) multiplied by the average wait time in the system (W).  

According to Little and Graves (2008), a Poisson distribution in statistics shows the likely 
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number of times that an event will occur within a specific interval of time. It is used for 

independent events which occur at a constant rate within a given interval of time. The 

Poisson distribution is a discrete function, meaning that the event can only be measured 

as occurring or not occurring where the service rate is constant, and two events cannot 

occur at the same time.  Fractional occurrences of the event are not a part of the model, so 

only whole numbers can fit into the model.  Considering that the rate at which events 

occur is never constant in a call center or ER, a discrete frequency model is not helpful 

for predicting ER arrivals or call arrivals.  Liu and Whitt (2017) expanded on Little’s law 

and Poisson models by studying call systems with time-varying arrivals, multiple servers, 

and more than one service phase. 

Abandonment in call centers.  Mandelbaum and Zeltyn (2013) argued that 

queueing models including abandonment or impatience were more robust and 

numerically stable than models that ignored abandonment.  Erlang models can only 

represent simple single skill inbound call centers where all calls are similar, and agents 

handle calls in the same manner (Akşin, Ata, Emadi, & Su, 2013).  Jouini, Koole, and 

Roubos (2013) and Robbins (2016) studied the assumptions of the Erlang C model, also 

known as Erlangs’s delay formula or Erlang’s second formula.  Jouini et al. (2013) found 

the Erlang A model was more accurate than the Erlang C (the most common model) 

because it assigned abandonment times.  However, Robbins (2016) did not find the 

Erlang A model reliable because the call center performance was better than what the 

model predicted.  When the manager staffed based on the model, there was a gross 

underestimation of production resulting in lost revenue from overstaffing and idle time of 

https://www.investopedia.com/terms/d/discrete-distribution.asp
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agents.  Ding, Remerova, van der Mei, and Zwart (2015) found the Erlang A model was 

numerically valid for a busy call center with redials and reconnects.  Therefore, Erlang A 

was more useful in practice, allowing successful calculation of service levels and 

abandonment probabilities as long as the total arrival rates were available as inputs. 

Conley (2013) used Kaplan-Meier survival analysis to obtain a full picture of 

caller impatience by analyzing, not only the calls the agents answered, but also caller 

abandonment.  According to Conley (2013), Kaplan-Meier was a method of analysis used 

to determine the length of survival time in medical studies, where mortality was the event 

of interest.  Kaplan-Meier allows for the use of censored data for the event of interest.  

Call abandonment was considered right-censored when the agents answered the calls 

before the caller reached their maximum level of patience and abandoned.  Therefore, it 

was not known how long the callers would have waited, but there was information on 

how long they did wait, which was included in the study.  Conley (2013) found that 

including the wait times for both the abandoned and the answered calls gave a complete 

picture of caller patience.   

Conley and Grabau (2013) conducted four separate experiments with a 

concentration on increasing the number and use of designated-hybrid or hybrid resources. 

The four experiments were as follows: 1) elimination of all types of hybrids; 2) moving 

all designated-hybrids to hybrids; 3) moving all resources to designated-hybrids for their 

respective channel; 4) moving all resources to hybrids.  They compared the as-is results 

from the validated model to each to-be experiment to determine impact.  Conley and 
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Grabeau found across all experiments, hybrid resources, a combination of billing and 

claims agents, was best for lowering caller abandonment. 

Akşin, Ata, Emadi, and Su (2013) modeled endogenous behavior such as rewards 

and costs of waiting including the decision making process of callers to abandon a call or 

continue to wait.   Akşin, Ata, et al. modeled caller utility as a function of the cost of 

waiting and reward for service.  They used a random-coefficients model to capture the 

heterogeneity of the callers and estimate the cost and reward parameters of the callers 

using the data from individual calls made to an Israeli call center. They also conducted a 

series of what-if analyses to test the effects of changes in service discipline on resulting 

waiting times and abandonment rates. Their analysis revealed that modeling endogenous 

caller behavior was significant when there was a change in service discipline.  However, 

using a model with an exogenously specified abandonment distribution was misleading.  

Akşin, Ata, et al. (2013) formulated structural estimation problems to find callers’ 

patience time distributions in comparison to exogenous data.  For the structural 

estimation, Akşin, Ata et al. needed data on the state of the call center and data regarding 

caller choices.  Under a static policy, they found a significant difference between the 

exogenous and the endogenous models, illustrating the importance of modeling the caller 

as a strategic decision maker. 

Number of agents.  The varying demand for service in call centers is a constant 

challenge to managers when trying to schedule the number of agents (Zhang van 

Leeuwaarden, & Zwart, 2012).  Chromy and Kavacky (2016) estimated the optimal 

number of agents by placing modified parameters into the Erlang C equation.  According 
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to Chromy and Kavacky, the most critical part of the call centers were the agents and 

having accurate measurements of activities during work.  They included a parameter for 

the number of calls the agent handled during peak hours.  They also took into account 

other factors, such as time for breaks and time for other activities besides serving the 

customer, such as administrative tasks.  

 Flexible architecture, cross-trained servers, and pooling of resources may lead to 

better performance in call centers operating under demand uncertainty (Akşin, Cakan, 

Karaesmen, & Ormeci, 2015; Legros, Jouini, & Dallery, 2015).  Akşin, Cakan et al. 

(2015) found there were systems improvements when managers used resource flexibility 

and cross-trained agents, otherwise known as skills-based routing.  Legros et al. (2015) 

stated that a flexible call center design with single pooling decreased the blocking effect 

of long service times.  Qin, Nembhard, and Barnes (2015) suggested queueing models or 

the Markov decision process as methods for implementation of teamwork or floating 

classes of workers to areas of greatest need.  Qin et al. (2015) attempted to match staffing 

with demand using the Markov process as a tool to model systems and queueing theory 

for evaluating performance, and for improving system operation while optimizing its 

performance.  Kim, Klimenok, and Dudin (2016) also used Markov process to provide an 

accurate representation of system performance measures and performed numerical 

experiments to confirm that the call center profited when there was an adequate number 

of agents.  The problem with calculating staffing needs in steady-state conditions is it 

does not take into account the randomness which occurs with time-varying arrivals.  In a 

deterministic queueing model, a number of arrivals and the availability of resources are 
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known (Fores & Krarup, 2013).  However, in dynamic queueing networks, such as ERs 

and call centers, changes in demand and resources over time make it difficult for 

managers to determine staffing needs (Kim & Whitt, 2014).  Bhat (2015) defined a 

stochastic process as a sequence of random variables that are indexed by a parameter 

such as time.  Stochastic programming is an approach that takes into account the 

indefinite number of call arrivals in workforce scheduling (Excoffier, Gicquel, & Jouini, 

2016). 

Number of call arrivals.  Time variations for call arrivals impact abandonment 

rates because direct observation of all interarrival times and service times is not always 

possible.  Goeva, Lam, and Zhang (2014) found that in call centers and clinics, data were 

available only for system outputs, where sometimes only the waiting time or the queue 

length data were collected for economic or operational reasons.  The data on the input 

distribution, such as interarrival and service times were limited or unavailable. Goeva et 

al. (2014) studied the problem of estimating interarrival times and service when only 

output data was available.  Goeva et al. were interested in stochastic simulation to 

generate the outputs. They proposed an iterative scheme via simulation to estimate 

interarrival times and service times and found only minor discrepancies between 

distributions and estimations when they ran over 1,000 iterations.  Yet, previous research 

by Kim and Whitt (2014) provided evidence that even 1000 iterations were not sufficient 

for call centers and hospitals. 

Service systems such as call centers and hospital ERs typically have strongly 

time-varying arrival rates. Thus, Kim and Whitt (2014) tested the nonhomogenous 
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Poisson process (NHPP) using a Kolmogorov-Smirnov (KS) test of a Poisson process.  

The NHPP is a natural model for the arrival process in a queueing model for performance 

analysis.  The KS statistic helps to transform the NHPP into a sequence of random 

variables that are uniformly distributed and then performing a logarithmic transformation 

of the data.  Kim and Whitt (2014) conducted the final data transformation and 

considered what form it should take.  They conducted extensive simulation experiments 

to study the power of alternative statistical tests.  They concluded that the KS test, 

without any additional data transformation, was the best test against alternative 

hypotheses. 

Chu, Chen, and Yu (2016) also simulated a stochastic or random process by 

estimating arrival distributions to find average wait times, queue lengths, and to improve 

service performance.  Chu et al. (2016) proposed a new resource provision approach 

using service simulation and arrival rate estimation.  They clustered days that have 

similar arrival patterns together.  From each cluster, they were able to reveal and separate 

days having different reasons for time-varying demands of the service.  They adopted a 

business factor model to estimate multi-interval Poisson arrival distributions on daily 

bases for simulating stochastic processes.  By applying simulation on queueing models 

with multi-interval Poisson arrival processes, they observed stochastic changes of 

customer waiting time, queueing lengths and number of workers under different service 

strategies.  Chu et al. (2014) then conducted a case study in an electricity service call 

center to demonstrate adequate resource provision and estimation using historical data to 

improve real-life operations. 
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Service rates.  In some service operations settings, such as call centers and health 

clinics, financial or operational managers may collect data regarding only waiting times 

and queue lengths because data for interarrival and service times are not available (Goeva 

et al., 2014).  Ibrahim, L’Ecuyer, Shen, and Thiongane (2016) stated that traditionally, 

both researchers and practitioners relied on standard Erlang queueing models to analyze 

call center operations. But there is an extension of simple models as evidenced by 

theoretical advances in the recent literature. Ibrahim et al. carried out a large-scale data-

based investigation of service times in a call center with many heterogeneous agents and 

multiple call types.  They observed that the service-time distribution depended strongly 

on the individual agent and they developed stochastic models that accounted for changes 

over time and correlations across successive days or weeks.  When comparing their 

models to simpler ones, commonly used in practice, they found that their proposed 

models had a better goodness-of-fit, both in-sample and out-of-sample.  They also 

performed simulation experiments to demonstrate that the choice of model can have a 

significant impact on the estimates of standard measures for service quality in the call 

center.  Ibrahim et al. recommended further research experimenting with nonparametric 

functions for trends to evaluate similar alternative models with daily or intra-daily 

random effects when modeling individual service times.  Their more detailed call-by-call 

dataset better tested how models exemplified entire distributions of the individual service 

times in the system.  The new and realistic service time models can help managers 

evaluate performance measures such as service levels and average waiting times, for 
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constructing optimal work schedules for agents, and routing calls according to the 

stochastic algorithms (Ibrahim et al., 2016). 

Gong and Li (2014) found that when customers heard the service time 

information immediately upon arrival to the queue; they waited longer with knowledge of 

their estimated wait time with periodic updates.  The abandonment rates decreased when 

the prompts notified them of shorter waiting times, and when patients observed an 

increased service rate.  Batt and Terwiesch (2015) detailed how pricing and queueing 

delays had an impact on the customer’s behavior and the rate of arrival.  They showed 

how the flow of patients in and out of the waiting room influenced abandonment where 

arrivals increased LWT and departures decreased LWT. Batt and Terwiesch found that 

when new patients arrived in the ER waiting room, the patients in the waiting room were 

more likely to LWT when new patients arrived after them.  Patients responded differently 

with first-come-first-serve (FCFS) priority.  For example, observing an additional waiting 

room departure that maintained the FCFS order reduced the probability of abandonment 

by 0.6 percentage points, equivalent to a 19-minute reduction in wait time.   

Baumann and Sandmann (2017) considered multi-server tandem queues where 

both stations had a finite buffer and all service times were phase-type in distribution. 

Arriving customers entered the first queueing station if buffer space was available and 

continued through each phase of service if space was available.  Baumann and Sandmann 

provided an exact computational analysis of various steady-state performance measures 

such as loss and blocking probabilities.  They provided numerical results for their 

representative examples.  Van Houdt (2012) also studied Markovian multi-type queues 
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with customer impatience.  He introduced an adaptive arrival process and analyzed the 

adaptive queue.  Van Houdt explored an adaptive queueing system where different types 

of customers with different arrival types (e.g., Markovian inter-arrival times) and the 

same customer types were fed to a single server queue using thresholds. Service times 

were phase-type and depended on the type of customer in service.  The way the arrival 

process changed its state after generating a specific customer was dependent on whether 

the customer was accepted or rejected.  Van Houdt (2012) considered Markovian multi-

type queues with customer impatience a subclass of the queues and developed a 

numerical method to determine the probability of abandonment and the waiting time 

distribution.  For general customer impatience, numerical examples showed accurate 

approximate results.  He included numerical examples with adaptive sources that 

modeled certain types of admission.  Also, he found that congestion control determined 

upper and lower bounds of continuous waiting time distribution to the relative probability 

of abandonment.   

Priority of service.  It is imperative to prioritize service to meet the needs of all 

types of customers to maintain a competitive advantage in business and avoid business 

loss.  Legros et al. (2016) observed the value of offering a callback option to minimize 

costs related to caller abandonment in congested situations and large call centers.  Yu, 

Benjaafar, and Gerchak (2015) examined a preemptive priority policy in queueing 

systems with finite service rates.  According to Bhat (2015), the priority assigned to a 

class of customers is either preemptive or not preemptive.  If a customer preempts 

another customer, the lower priority customer’s service is interrupted to serve the higher 
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priority customer.  When preemption of service is permitted, the service to the preempted 

customer will resume after the priority customers are served.  Yu et al. (2015) stated that 

organizations decide on the service rate capacity to minimize service-level delays.  

Organizations can decide to operate shared facilities, but must also decide on a scheme 

for sharing the capacity cost.  Yu et al. formulated their research problem as a 

cooperative game and identified settings under which capacity sharing is beneficial.  

They determined a cost allocation that is the core of the FCFS policy or optimal priority 

policy.  Yu et al. determined that capacity sharing may not be beneficial in settings where 

organizations have service variabilities.  They filled a gap in the literature regarding the 

nature of the optimal priority policy in the presence of both delay costs and service level 

requirements.  When certain types of customers preempted others, causing interruptions 

in their service, there was a challenge in terms of routing the callers that did not have 

equal service requirements. 

Jouini, Akşin, Karaesmen, Aguir, and Dallery (2015) examined the problem of 

calculating customer delays for customers with different service level requirements 

(classes).  Jouini et al. (2015) studied delays experienced by customers with different 

priorities.  They modeled the queueing system in Kendall’s notation as an M(t)/M/s(t) 

queue with priorities, thus ignoring some of the real features like abandonments and 

retrials.  They proposed two delay estimators and tested the estimators in a series of 

simulation experiments.  Jouini et al. made use of the actual state‐dependent waiting time 

data from their call center.  They estimated the delay announcements to minimize a 

newsvendor‐like cost function.  The newsvendor model is used in operations 
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management and applied economics to determine optimal inventory levels.  A 

newsvendor model is characterized by fixed prices and uncertain demand for a perishable 

product where each unit ordered above demand is lost in potential sales.  Jouini et al. 

found that an Erlang distribution‐based estimator performed well for a range of different 

under‐announcement penalty to over‐announcement penalty ratios.   

Due to the complexity of operations in the ER, it is helpful to look at how 

scholars and practitioners apply QT to other complex industries such as 

telecommunications and translate the queueing principles from the call center industry to 

the healthcare industry.  According to Carmen and van Nieuwenhuyse (2014), call center 

and ER settings are similar because they both have time-varying arrivals and it is difficult 

for customers to estimate their expected delays in both environments.  Therefore, 

researchers may use studies on call centers to address the lack of analytical models that 

are available for the LWT problem in the ER.  Due to the limited availability of QT 

applications in ER literature, it was necessary to include the use of QT in call centers as 

part of this research effort. 

LWT 

Patients LWT for many reasons.  The most common reasons patients LWT are 

long waiting times (see Abo-Hamad & Arisha, 2013; Bellow & Gillespie, 2014; Liu et 

al., 2014; Lucas et al., 2014; Pimental & Barrueto, 2014; Sharieff et al., 2013; Tropea et 

al., 2012) and overcrowding (see Sharieff et al., 2013; Wiler et al., 2013).  ER 

overcrowding is a worldwide problem that occurs when the demand for ER services 

exceeds available resources (Higginson, 2012; Khalifa & Zabani, 2016).  According to 
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Fayyaz, Khursheed, Mir, and Mehmood (2013), LWT is the best indicator of ER 

overcrowding. 

Non-queueing predictor variables.  The next section includes a discussion of 

non-queueing predictor variables of LWT found in the literature.  I divide the non-

queueing variables into patient-specific variables and hospital-related variables.  

Although the concentration of my research effort is on queueing related variables, it is 

valuable for hospital leaders to become familiar with both patient-level and 

organizational-level variables that are relevant to LWT. 

Patient-level variables.  There are patient characteristics that are predictive of the 

LWT dependent variable.  Carron et al. (2014), Crilly et al. (2013), and Tropea et al. 

(2012) found a correlation between younger age and LWT.  Crilly et al. indicated the 

median age of LWT patients was 25 years old, (IQR 18-38), while the median for the 

group that waited for treatment was 32 (IQR 19-54, p < 0.001).  Tropea et al. compared 

patient-level characteristics of those whom LWT and those who completed treatment and 

found that patients 15-24 years of age had the highest LWT (20.1%, p < 0.0001) followed 

by patients 25-34 years of age (18.7%, p < 0.0001).  The patient’s gender was also a 

subject of discussion in the LWT literature.  For example, Crilly did not find significance 

in gender (p = 0.48), but Clarey and Cooke (2012) indicated that 62% of LWT patients 

were males.  Carron et al. (2014) reported only a slight predominance of male patients 

LWT, while Tropea et al. pointed out that 52.6% of LWT patients were males.  Although 

the researchers have made associations between younger patients, and possibly that male 
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patients more frequently LWT, they did not make any attempt to explain why the 

demographic factors were significant.   

Organizational-level variables.  Anderson et al. (2016) hypothesized that larger 

volume, urban, non-profit hospitals would have worse LWT and longer ER length of 

stays.  Handel et al. (2014) conducted multiple regression (MLR) analysis with a sample 

of 445 hospitals taken from the Emergency Department Benchmarking Alliance database 

and found not-for-profit hospitals had a higher association with patients LWT.  For-profit 

status was associated with a statistically significant decrease in LWT (Anderson et al., 

2016).  Pines, Decker, and Hu (2012) found higher LWT in academic medical centers 

located in Metropolitan Statistical Areas.  There are obvious difficulties in accepting the 

reliability of data from secondary sources.  For example, there is no way to ensure the 

accuracy of information in more massive databases.  Nevertheless, these studies provide 

enough insight to indicate that policymakers should consider hospital-level determinants 

of LWT before inflicting payment penalties on hospitals that serve vulnerable 

populations. 

Queueing predictors of LWT.  The next section includes a review of the 

variables related to QT.  The queueing variables include the daily arrivals, staffing, triage 

time, ESI, rooming time, and DTPT.  The order of the variable presentation is similar to 

the way patients progress through the average ER.  They arrive at the ER, the number of 

servers (NOS) may determine the amount of time that elapses before they receive a triage 

evaluation.  Then, they are assigned an ESI level by the triage nurse.  Next the staff 

escorts them to a treatment area, and finally, they await medical screening by a provider. 



28 

Daily patient arrivals.  There is an association between increased numbers of 

patients who LWT and high ER census and overcrowding.  Bergs et al. (2016) posited 

that a common misconception is that the overcrowding problem is related to patients 

making unnecessary or inappropriate ER visits.  Nagree, Gosbell, McCarthy, Moore, and 

Mountain (2013) found that it was not the number of low acuity patients that led to 

overcrowding, but other factors such as lack of inpatient beds, an increase in elderly 

patients, complex patients from residential facilities, and more mental health crisis 

patients.  Casalino et al. found a significant linear correlation between the number of 

daily arrivals and ER length of stay (p = 0.0002, r = 0.268).  However, Anderson et al. 

(2016) found no significant relationship between annual patient volumes and LWT (p = 

.16).  Other researchers have found evidence suggesting that higher volume ERs have a 

pattern of higher LWT rates (Handel et al., 2014; Pines, Decker & Hu, 2012; Tropea et 

al., 2012).  There were higher rates of LWT in higher volume ERs (OR = 2.20, 99% CI = 

2.15 to 2.26) especially in hospitals with more than 200,000 yearly ER presentations 

(Tropea et al., 2012).  Another queueing factor that may influence LWT is the direct care 

staff available to care for patients. 

Staffing.  There is a significant amount of existing literature regarding the impact 

of staffing levels on LWT rates.  Brown et al. (2012) found on days where the RN 

schedule was less than 90% full due to call-outs or poor scheduling, LWT rates were 2.4 

times more likely to be high.  Anderson et al. (2016) used regression modeling and found 

no significant association between RN staffing and LWT (p = .06), although there was a 

significant association between physician staffing and LWT (p = .05).  These results 
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provide valuable insights that, rather than increasing staffing numbers, it may be more 

efficient to make changes in the ER process to improve LWT rates. 

Hospital leaders can implement operational changes to successfully decrease 

LWT without increasing any working staff or working hours.  Khalifa and Zabani (2016) 

found the addition of a fast track and internal waiting area reduced the LWT rate from 

17% in 2014 to 9% in 2016.  Huang et al. (2013), after adding a clinical assistant, LWT 

went from 329 in the control period to 242 patients during the case period (p = 0.004).  

Niyirora and Zhuang (2017) introduced a variation of the square root staffing rule and 

used Pontryagin’s maximum principle to calculate the optimal number of providers to 

lower waiting times and staffing costs.  In conclusion, hospital leaders may be able to 

increase efficiency and throughput by reorganizing or redistributing staff, not necessarily 

by adding more staff. 

Triage time.  Patients leave the ER before triage for a variety of reasons.  Many 

patients leave because the triage nurse is taking too long to triage other patients.  Lengthy 

triage occurs because triage is no longer an area where patients are quickly sorted to 

evaluate the urgency of care (Scrofine & Fitzsimons, 2014).  According to Christensen et 

al. (2016), triage has evolved into a place for gathering mandatory screenings, medication 

lists, full vital signs, and initiating protocols and treatments.  Therefore, patients’ 

expectations of a timely greeting and a quick assessment of their complaint or injury 

cannot occur because one triage nurse may have responsibility for 30 to 40 waiting 

patients (Venella, Papa, & Baren, 2012).  A nurse that is skilled and trained for triage can 

judge immediately on a patient’s appearance if the patient is low, medium, or high acuity 
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and route them to the appropriate care area within a few minutes.  However, quick triage 

is not a policy or procedure that ERs commonly exercise. 

Another common reason patients leave the ER before triage is that they see how 

crowded the waiting room is and they decide to go.  One easy method of telling if a 

patient LWT before or after triage is to identify whether or not the nurse has documented 

an ESI level on the medical record.  For example, if an ESI score is missing from the 

chart, this is a clear indication that the patient did not receive a triage evaluation before 

leaving the ER.  Van der Linden, Meester, & van der Linden (2016) found patients were 

twice as likely to leave the ER during periods of crowding and when they had to wait 

more than 10 minutes to see the triage nurse.  Van der Linden et al. used an occupancy 

ratio (total number of ER patients/number of ER beds, occupancy ratio >1 was an 

indication of crowding) for a sample of (n = 49,539).  To illustrate, in a case of an ER 

with 20 beds or treatment areas, with a total of 50 patients in the ER and waiting room 

combined, the ratio of 2.5 would indicate a period of crowding.  During periods of 

overcrowding, van der Linden et al. found ESI acuity levels missing from 2.2% of 

records and missing from only 1.6% of records when the occupancy ratio was < 1 (p < 

.001).  Patients who arrived during crowding did not meet the triage target of 10 minutes 

when compared to patients who came during non-crowding (49.7% vs. 24.9%, p < 

0.001). 

ESI.  Acuity level was found to be a strong predictor of LWT in many studies.  

Crilly et al. found lower acuity patients had higher odds of LWT; ESI4 (OR 2.76, 95% CI 

2.60-2.93) and ESI5 (OR 3.93, 95% CI 3.51-4.37).  Likewise, in another study, 63.4% (n 
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= 130,202) of LWT patients were ESI4 in comparison to 54.7% of patients who 

completed their visits.  Whereas, for ESI5 patients, 30.3% LWT in contrast to 18.8% of 

ESI5 patients that completed their ER visits (Tropea et al., 2012).  Clarey and Cooke 

(2012) found that lower acuity patients had a greater tendency to LWT.  Similarly, 

Tropea et al. (2012) using logistic regression, found nonurgent patients had the highest 

LWT rates (OR = 8.21, 99% CI = 8.00 to 8.43).  

Ashour and Kremer (2013) developed a triage algorithm using fuzzy analytic 

hierarchy process (FAHP) and multi-attribute utility theory (MAUT) to rank patients 

according to chief complaint, age, gender, pain level, and vital signs.  Using discrete 

event simulation (DES), Ashour and Kremer compared the traditional ESI system with 

the FAHP-MAUT algorithm.  Ashour and Kremer recommended the use of a FAHP-

MAUT algorithm which used quantitative measures to assign a priority for each patient, 

rather than the ESI algorithm which relied on nursing judgments.  The ESI is a nominal 

level of measuring patient acuity, and the nurse must place each patient into one category.  

There is no way to categorize the priority of patients within each category.  For example, 

ESI3 patients are often the highest LWT category, with the longest waits because many 

ER policies do not allow ESI4 and ESI5 to have providers see them in fast track 

(Soremekun et al., 2014).  It is difficult to tell from the extant literature, but the ERs with 

fast tracks may have longer waits for ESI3 patients and those without may have longer 

waits for ESI4 and ESI5.  The researchers did not always differentiate whether the study 

ER had a fast track, so researchers might consider fast track as a confounding variable. 



32 

 

Zhao (2017) studied advanced nursing protocols to reduce LWT rates and did not 

find a statistical significance in LWT rates before and after the implementation, days with 

protocols (41/575, 7.13%) compared with days without protocols (46/611, 7.52%, 

p=0.07).  However, Zhao did note that the use of advanced protocols had an impact on 

the LWT rates among specific ESI levels.  On days where nurses used the advanced 

triage protocols, there were higher LWT among the lower triage acuity levels (M = 3.7, 

SD = 0.7) versus days before the nurses were using the advanced protocols (M = 3.6, SD 

= 0.7, t = -6.3, p < .001).  Before the implementation of protocols, approximately one 

third (n =15) of LWT patients were ESI3, and post-implementation the rate of LWT for 

ESI3 patients was 24.4% (n =10; χ2 =10.1, p = .001).  ESI4 patients comprised 65.2% (n 

= 30) pre-implementation and 61.3% post-implementation (n = 25; χ2 = 6.7, p = .009).  

The ESI5 patients experienced the most significant negative impact between pre-

implementation and post-implementation of the protocols (2% vs.10.2% respectively, χ2 

= 71.5, p < .001).  Given these results, Zhao suggested having a provider in triage to 

quickly move the lower acuity patients in and out of the ER which may eliminate the high 

proportion of LWT rates for lower acuity levels. 

Rooming time.  Pielsticker et al. (2015) analyzed the relationship between door-

to-room-time (DTRT) and LWT at a 700-bed hospital.  Pielsticker et al. considered LWT 

goal met if the daily LWT was under 1% and the authors divided the mean into a dozen 

ordinal time slots.  There was a significant association between DTRT slots and the 

chances of meeting the LWT goal (p < 0.001).  Pielsticker et al. determined that on study 

days when mean DTRT was within 20 minutes, they met the LWT goal (87.5% of study 
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days).  When the DTRT was < 35 minutes, they met the LWT goal less often (77% of 

study days).  Furthermore, prolonging rooming times to longer than 35 minutes was 

associated with a significant drop in meeting the LWT goal in a multivariate logistic 

regression model with 95% confidence intervals.  The evidence is suggestive that for 

each incremental increase in rooming times, the LWT risk also increases.  Rogg, White, 

Biddinger, Chang, and Brown (2013) implemented a physician triage screening program 

called Supplemented Triage and Rapid Treatment (START) and included the outcome 

measures, ER length of stay, LWT, DTRT, and number of patients discharged directly 

from START.  Despite a 12% increase in ER volume over the 4-year study period 

(researchers examined data for one year before implementation of START and three 

years after implementation), there were significant improvements in all of the outcome 

measures.  The median length of stay decreased by 56 minutes/patient (p < 0.0001).  The 

LWT rate dropped significantly (4.8% to 2.9%, p < 0.0001).  The number of patients 

discharged without needing a bed increased from 18% to 29% and the median DTRT 

decreased from 18.4 minutes to 9.9 minutes (p < 0.0001).  Hospital leaders may decrease 

LWT by determining cutoff points for patients’ willingness to wait for a room or by 

implementing a START program. 

DTPT.  The implementation of a split flow model, a medical provider in triage, 

and simple changes in ER design and process are methods to reduce DTPT and 

subsequently LWT rates.  Abdulwahid, Booth, Kuczawski, and Mason (2016), in a meta-

analysis of comparative studies, found a significant reduction in DTPT when a senior 

doctor was in triage to identify emergencies and initiate diagnostic testing and treatment 
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(median reduction –15 minutes; IQR –7.5 to –18).  Similarly, Love, Murphy, Lietz, and 

Jordon (2012) found that placing a provider in triage reduced DTPT from 75 minutes 

down to 25 minutes and decreased LWT from 3.6% to 0.9%.  Melton, Blind, Hall, 

Leckie, and Novotny (2016) implemented a physician in triage and immediate bedding.  

Melton et al. reported LWT was 0.49% after implementation versus 4% before 

implementing the interventions (difference 3.51 percentage points; 95% CI = 3.43–3.58; 

p < 0.0001).  Bonalumi et al. (2017) implemented a Super Track to treat low acuity 

patients and found statistically significant differences in pre-intervention and post-

intervention DTPT intervals (Mann–Whitney U=2686474, p < .001).  Also, the LWT 

decreased by 40% after implementation of the Super Track.  Sharieff et al. (2013) 

proposed a parallel model of care where physicians and nurses assessed the patient 

together to avoid the repetition of information.  Sharieff et al. only used monitored beds 

for acute patients and other patients received care in recliners or waited for an available 

space in the staging area.  Sharieff et al. found the DTPT pre-implementation and post-

implementation were a mean of 126.7 minutes in 2009 (SD 37.03) vs. a mean of 26.3 

minutes in 2010 (SD 1.17, p < 0.001).  Simple changes in ER design and process changes 

can have a significant impact on DTPT.  

Transition 

The problem of patients LWT is a concern for hospital leaders due to lost revenue 

and lower patient satisfaction scores.  Grounded in QT, the purpose of this quantitative 

correlation study was to examine the relationship between daily patient arrivals, staffing, 

triage time, ESI, rooming time, DTPT and LWT rates in the ER.  This study consisted of 
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archived data records from a community hospital, located in Connecticut and covered 

visits between October 1, 2017, and May 31, 2018.  I assumed that hospital staff 

accurately recorded archived data that I used for the study, allowing for reliable results.  I 

believe the sample I chose for my research represents the ER population, and therefore 

conclusions from my study should apply to other ERs with similar characteristics.  As a 

correlational researcher, I can only demonstrate the ability to predict a relationship 

between variables.  Correlational research is limited in that it does not determine a causal 

relationship between variables (Simon & Goes, 2013).  The scope of this study covered 

variables relating to queueing theory, and I narrowed the focus to only input factors that 

impact LWT.    I did not include ESI1 patients because the severity of their medical 

condition limits their ability to LWT.  The significance of filling a research gap in QT 

and LWT is the knowledge that hospital leaders will gain, so every patient can equally 

experience access to care and emergency resources.  Also, hospital leaders will satisfy a 

significant quality indicator if they learn to reduce LWT percentages.  Ideally, no patient 

would ever LWT, the hospital would receive full payment for all of its resources, and 

every patient would depart with the highest level of satisfaction.  The next section of this 

study, Section 2, will include the method and design for this study, and then Section 3 

will consist of the study results, applications for professional practice and implications 

for social change. 
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Section 2: The Project 

Section 2 includes information regarding the method and design for the present 

study.  First, I will restate the purpose of the study.  Second, I will present my role in the 

study design, including limitations and how I mitigated these challenges to ensure 

reliability and validity.  Third, I will discuss strategies for gaining access to the 

participants for the present study, including ethical and legal considerations.  Finally, I 

will expand on the research method as an extension of the Nature of the Study discussion 

from Section 1, as well as discuss the data analysis plan. 

Purpose Statement 

The purpose of this quantitative correlational study was to examine the 

relationship between the predictor variables of daily arrivals, daily staffing, triage time, 

ESI, rooming time, DTPT, and the dependent variable LWT.  The targeted population 

comprised patients of all ages who visited the participating ER between October 1, 2017, 

and May 31, 2018.  The implications for positive social change as a result of this study, 

include the potential for ER patients to experience increased satisfaction from the high 

quality of care and overall better public health outcomes.  Hospital leaders may use the 

information from this study to project the potential for LWT and modify or manage the 

staffing levels, and times patients must wait for triage, room placement, and DTPT to 

decrease the rate of LWT in the ER.   

Role of the Researcher 

According to Simon and Goes (2013), in theory, the researcher does not have a 

role in quantitative research.  In other words, the participants are independent of the 
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researcher.  Quantitative analysis contrasts with qualitative research, where the researcher 

plays an active participatory role in collecting data.  In this quantitative correlational 

study, my position as the researcher was to reduce bias and subjectivity throughout the 

study process.  As a researcher, I did not have any direct interaction with participants as I 

only collected archival data, analyzed the results, and synthesized the findings with the 

literature.  Because I employed a non-experimental, correlational design, it was vital that 

I did not draw causal inferences from my study results.  Bleske-Rechek, Morrison, and 

Heidtke (2015) suggested avoiding terms such as consequences, effects, or negative 

impact in reporting results for non-experimental studies.   

I applied some basic principles from The Belmont Report (1979) that a researcher 

must follow when conducting biomedical and behavioral research with human subjects.  

Researchers should always have informed consent of participants and maintain the 

privacy of the research site (Ignacio & Taylor, 2013).  There was no informed consent 

because individuals did not participate in this study.  Respect, privacy, and anonymity 

were necessary to ensure all patient information was kept confidential (Ignatio & Taylor, 

2013).  My role as a researcher was to have a reliable process where there was no bias in 

the instrument or assessment tool.  Thus, I made my study method standard enough so 

that other researchers could repeat the process and draw similar conclusions. 

Participants 

I used archival data to conduct my study, so I did not interact with individual 

participants.  The archival data consisted of a community hospital’s ER records for all 

visits occurring between October 1, 2017, and May 31, 2018.  I gained access to the 
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archival data through the hospital administrators after obtaining written permission from 

the hospital’s IRB and hospital administration (see Appendices B and C).  The data came 

from a for-profit, 156-bed acute care hospital, which serves both adult and pediatric 

populations in the ER.  According to online data from 2016, the hospital had operating 

revenue of $226.8 million (FY 15) and 1008 employees, of which 396 were physicians.  

The hospital provided a broad spectrum of services to meet the needs of the community 

and had 51,903 ER visits last year.        

Research Method and Design 

Research Method 

I employed a quantitative methodology while conducting this study.  Park and 

Park (2016) advised that the objectives of the quantitative method are to predict and 

control social phenomena.  Additional goals are measuring, evaluating, and generalizing 

findings to a population, allowing other researchers to replicate the results quickly.  In 

quantitative studies, researchers use numerical data to assess the presence of statistically 

significant relationships or differences (Howell, 2013; Tabachnick & Fidell, 2013).  A 

quantitative method should align with the research question, procedures, and the intended 

statistical analysis (Field, 2013).   

Other optional methods to conduct a study include qualitative and mixed 

methodology.  Qualitative researchers seek to answer questions by collecting individual 

or group data about the lived experiences of people and formulating conclusions 

inductively (Moon et al., 2013).  Qualitative research involves hermeneutic 

understanding and researcher-driven thematic analysis of patterns that emerge from the 
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interview process (Gergen, Josselson, & Freeman, 2015).  Conversely, quantitative 

researchers use a deductive approach, starting with specific hypotheses and then using 

numerical data to support the assumptions (Moon et al., 2013).  I collected statistical data 

to answer the research question for this study.  Quantitative methodology was the most 

appropriate method to establish statistically significant relationships or determine 

correlations among variables.  Researchers use mixed methods to integrate qualitative 

and quantitative approaches for data collection, analysis, and interpretation (Powell, 

Mihalas, Onwuegbuzie, Suldo, & Daley, 2008).  My study does not have any qualitative 

elements, so a mixed methods approach was not appropriate for my study.  According to 

Field (2013), in mixed methods research, there is a focus on quantified data to inform 

findings related to testable hypotheses.    

Research Design 

   Quantitative research designs include, but are not limited to, correlation designs, 

experimental designs, descriptive and quasi-experimental designs (Bleske-Rechek et al., 

2015; Hudson & Llosa, 2015).  According to Hudson and Llosa (2015), researchers 

choose correlation designs to determine relationships between variables, whereas the 

desired outcome of experimental design is to explain causality between variables.  

Correlational analyses are appropriate when the researcher intends to assess associations 

between variables without manipulating the variables of interest (Field, 2013; Tabachnick 

& Fidell, 2013).  Accordingly, I employed a correlation design.  Correlation design was 

appropriate for this study because it was not possible to randomly assign participants to 

groups or to manipulate the study variables.  
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A critical aspect of experimental research is that researchers can manipulate the 

levels of the independent variables (Tabachnick & Fidell, 2013).  Within experimental 

studies, researchers may control the conditions of the study and randomly assign 

participants to groups for comparison (Field, 2013).  Experimental studies typically 

involve intervention or treatment where the researcher intends to assess the influence of 

such treatment (Cohen, Manion, & Morrison, 2013).  These aspects of experimental 

research did not align with my study, so I did not use an experimental approach. 

Descriptive designs facilitate an exploratory investigation to describe the 

variables or constructs of interest (Bleske-Rechek et al., 2015).  Within quantitative 

descriptive studies, researchers typically report descriptive statistics to define the selected 

variables within the sample (Howell, 2013).  Frequencies and percentages are the 

appropriate descriptive statistics for categorical variables, while means and standard 

deviations are suitable for continuous variables (Field, 2013).  A descriptive approach 

was not necessary because I did not intend to describe the variables associated with 

LWT.  However, I did include the mean and standard deviation for each variable in the 

results section to provide additional information to the reader (see Table 3).   

Finally, quasi-experimental studies involve the grouping of participants 

(Campbell & Stanley, 2015).  A critical difference between experimental and quasi-

experimental studies is a lack of random assignment to groups (Campbell & Stanley; 

Cook, 2015; Valenzuela, Arriagada, & Scherman, 2014).  A quasi-experimental design 

was not suitable because I was not grouping or categorizing individuals within this study. 
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Population and Sampling 

The target population consisted of all archival data records of individuals who 

visited a community ER in CT between October 1, 2017, and May 31, 2018.  I conducted 

a census, gathering all available archival data for the variables of interest during the 

selected time frame. Using the data for approximately 160 days, I assessed the 

relationship between the predictor variables of daily arrivals, daily staffing,  triage time, 

ESI, rooming time, DTPT, and the dependent variable LWT. 

A census approach incorporates every available observation within the target 

population (Singh & Masuku, 2014).  Census approaches minimize issues related to 

sampling error because they comprise all the available observations in the dataset (Singh 

& Makusu).  Additionally, census approaches allow researchers to avoid problems related 

to the representativeness of a sample because the study does not rely on a subsection of 

the population to draw inferences (Moser & Kalton, 2016).  Census approaches are 

weaker because of the potential for undercounting of specific sections of the population 

(Singh & Makusu).  A census approach was feasible for this study because the target 

population was small, and I collected all available data points for visits between October 

1, 2017, and May 31, 2018. 

Sample size calculation is critical in quantitative analysis.  Quantitative studies 

typically require larger sample sizes to achieve statistical validity (Field, 2013).  

Additionally, larger sample sizes that are representative of the target population enhance 

the generalizability of the inferential statistics (Mullinix, Leeper, Druckman, & Freese, 

2015).  I conducted a power analysis using G*Power to determine the sample size 
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necessary to achieve statistical validity within this study.  G*Power is a statistical 

software package used to calculate sample size and conduct a power analysis (Faul, 

Erdfelder, Buchner, & Lang, 2009).  Using  G*Power version 3.1.9 software, I conducted 

an a priori power analysis to determine the minimum sample size required for the study.  

For the G*Power analysis a medium effect size (f 2= .15), alpha = .05, and power of .80 

were the input parameters.  I used the established parameters for MLR with six predictors 

and determined that the minimum sample size required was 146 participants, or units of 

(see Figure 1).  I collected data for 244 days to make sure I would have a complete 

sample.  After eliminating 85 days with data missing for one or more variables, I was 

able to exceed the necessary units of analysis, a total of 159 days.  After removing the 

outliers, the final sample was N = 154. 

Figure 1. Graphical depiction of power analysis. A statistical power analysis using 

G*Power 3.1. Adapted from Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). 
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Ethical Research 

According to Ignacio and Taylor (2013), the most common ethical problems in 

research consisted of three main branches: Privacy/confidentiality, informed consent, and 

researcher-participant relations.  HIPAA is an essential consideration in healthcare 

research (LoBiondo-Wood & Haber, 2014).  I needed a password to collect the data for 

my study, and all information was kept strictly confidential.  Also, I removed all hospital 

identifiers from printouts that I took home from hospital grounds (e.g., staffing sheets).  I 

plan to keep all paper records secured for at least 5 years in a locked filing cabinet 

because the staffing sheets have employee information on them.  After the 5-year storage 

minimum is met, I will shred all paperwork related to my study. 

I collected archival data, so there were no procedures for participant withdrawal, 

participant informed consent, or incentives.  I received only de-identified numerical data, 

so there were no concerns over protecting patient identifiers such as names or contact 

information.  However, I have safeguarded employee information such as names that 

were on the staffing sheets (there are no other personal identifiers on staffing sheets 

besides the employee's names).  I withheld details and descriptions in the doctoral study 

that would permit a reader to identify the hospital.  I signed confidentiality and data use 

agreements, so hospital leaders had informed consent regarding my study.   

The IRB approval number for this study is 06-21-18-0460492.  I followed the IRB 

requirements and articulated the data collection steps during the proposal 

phase.  Appendices B and C contain the confidentiality agreement and data use 

agreement (originals prior to obtaining signatures to protect hospital identity).  There 
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were no names or contact info recorded in the research records.  The research procedure 

included all possible measures to avoid direct or indirect disclosure of the study hospital.  

There were no psychological or physical risks to address before or during the study.  I 

was an employee of the hospital and acknowledge this as a relationship or professional 

risk.  The hospital did not suffer from loss of privacy, economic decline, or damage to 

professional reputation as a result of my research there.  I proactively managed the 

potential conflict of interest and maintained a professional relationship with 

administrators.  I did not conduct any data collection or work related to my research on 

hospital time to cause a financial conflict of interest.  All data collection took place in my 

time.  There was no risk to objectivity because everything was numerical data, but I 

avoided bias in the interpretation of the results.  There was no pressure to get a specific 

result from this study to benefit the organization or for my professional gains.  I did not 

overlook essential data or alter my perception of critical observations as I collected, 

analyzed, or interpreted the data.  The research design had a minimal burden on the 

institution; minimal time and effort were required from the business administrator and 

medical director to obtain the information I needed for this study and for review of my 

results for validity. 

Most of my variables were standard metrics that were collected daily and stored 

in a database.  These variables only required that the hospital administration gave me 

electronic access to triage times, DTPT, daily patient arrivals, and LWT numbers 

according to ESI level.  The medical director provided me with the staffing of physicians 

and physician assistants (mid-level practitioners), while the clinical staffing coordinator 
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provided printouts of all nursing and patient care technician staffing.  The administrators 

for the study hospital provided the signed Data Use Agreement granting permission for 

all appropriate data access, facility use, and staff time for research purposes.  I received 

approval from the hospital IRB and the Walden University IRB to conduct my research 

prior to data collection.  

Data Collection – Instruments 

I did not collect any primary data for my study.  I gained access to information 

that clerical staff gathered at the study ER and analyzed the pre-existing data for my 

research.  The electronic health record (EHR) contained all data for the predictor 

variables and the dependent variable.  According to Ward et al. (2014), the federal 

government offered $17 billion as an incentive for hospitals and providers to adopt and 

use EHRs, and organizations with noncompliance by 2015 would receive financial 

penalties.  Therefore, accuracy and reliability of the records were necessary for the 

hospital.  Quality metrics are reportable to regulatory agencies, such as The Joint 

Commission and Center for Medicare and Medicaid, which perform random audits of the 

information (Agency for Healthcare Research Quality [AHRQ], 2014).  Many of the 

variables in this study were hospital metrics required by regulatory agencies to prove the 

adequacy of performance measures.  I will describe each variable and identify their scales 

of measurement below.  I will also discuss the derivation and meaning of each variable.  

Appendix B presents permission to use the data.  The Emergency Department 

Benchmarking Alliance (EDBA)  provided standardized definitions for performance 

measures to allow for a more accurate comparison of ERs in research and practice (Wiler 
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et al., 2015).  I used the EDBA definitions of measurement for service time standards and 

measures of ER utilization. 

Daily Patient Arrivals 

  The daily patient arrivals, a ratio scale of measurement, included the number of 

patients arriving at the ER per day.  According to Wiler et al. (2013), most hospital 

administrators track arrivals as an annual census.  However, for this study, days are the 

unit of analysis.  I collected a daily number of patient arrivals (NOPA) to accommodate 

the unit of analysis for the data within this study.  NOPA was a predictor variable for this 

study. 

Staffing 

The number of servers (NOS) was the number of daily ER staff involved in direct 

patient care.  I collected the staffing variable, a ratio measurement, by counting the 

number of employees engaged in direct patient care in the ER each day.  Wiler et al. 

(2013) advised that administrators divide ER staffing into the following categories: full-

time physician equivalents (FTEs), physician assistant FTEs, advanced practice nurse 

FTEs, nurse FTEs, technician FTEs, pharmacist FTEs, social work FTEs, case manager 

FTEs, and other administrative FTEs.  I only counted direct care staff FTEs including 

physicians, advanced practice clinicians, patient care technicians, and nurses working in 

the ER for each day during the study period.  NOS was a predictor variable in this study. 

 Triage Time 

I measured the door-to-triage-time (DTTT), a ratio level, as the number of 

minutes between the patients’ arrival to the ER, and the start of triage.  The DTTT is the 
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number of minutes that elapse between arrival and triage evaluation by the RN.  DTTT 

was a predictor variable for this study.   

ESI 

ESI is as an ordinal level of measurement ranging from ESI1 (most urgent) to 

ESI5 (least urgent).  The nurse determines the ESI level by evaluating the patient’s need 

for immediate intervention if they are high risk, and the number of resources the patient 

requires for care (Mistry et al., 2017; Gilboy et al., 2012).  However, for this study, ESI 

measurements reflected a ratio level of measurement.  I calculated the number of patients 

that LWT for each ESI level.  Although there are 5 ESI levels, I dropped ESI1 patients 

because there was a 0% rate of ESI1 patients that LWT.  Therefore, this study only 

included ESI2, ESI3, ESI4, and ESI5. 

Rooming Time  

The next variable I collected for my study was rooming time or door-to-room-

time (DTRT), which represented the time it took for the patient to reach a treatment area 

after check-in.  Wiler et al. (2015) defined ER treatment spaces as ER rooms, ER non-

room bed-spaces, ER non-room chair spaces, and ER observation unit treatment spaces.  

For this study, DTRT was a ratio measurement.  I assessed DTRT as averages in minutes 

for each day during the study period.  DTRT was a predictor variable describing the time 

it took for the patient to arrive to any of the above treatment areas.   

DTPT 

The DTPT is the amount of time it takes for the provider to have initial contact 

with the patient for diagnostic evaluation (Wiler et al., 2015).  For this study, DTPT was 
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a ratio measurement.  I measured the DTPT as daily averages in minutes for each day 

during the study period.  DTPT was a predictor variable for this study. 

LWT 

I measured the number of patients who LWT as the number of patients who left 

the ER before having an evaluation by a medical provider.  For this study, the ratio level 

measurement was the number of patients who departed either before or after triage but 

were not seen by a provider.  This number does not include elopements or patients that 

left the ER against medical advice (AMA) or after the provider evaluation.  I excluded 

days, from the original data set that did not have an ESI level assigned for the LWT. 

Data Collection Technique 

I accessed archived hospital records for ER visits between October 1, 2017, and 

May 31, 2018.  Archival data collection comprises the secondary analysis of existing data 

(Schulz, Hoffman, & Reiter-Palmon, 2005).  According to Schulz et al. (2005), the 

advantages of archival data collection techniques include savings of resources, ease of 

data transfer and storage, and the availability of larger samples, longitudinal data, and 

cross-cultural data.  

The advantage of this technique is practicality due to time constraints.  The 

disadvantage is that the data is not random and may not represent the behaviors of the 

larger population.  I received the printouts of daily staffing numbers and transferred the 

information into an Excel spreadsheet.  I accessed all the other variables for my study in 

the EHR.  I collected data manually for 244 days covering all visits between October 31, 

2017, and May 31, 2018.  The staffing sheets contained only employee names, hours that 
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they worked, and information for sick-calls.  I will save the printed information in a 

locked filing cabinet for no longer than 5 years, and then I will shred paper records (to 

protect employee privacy).  I used statistical analyses to evaluate the level of confidence, 

risk and levels of precision for my study. 

Data Analysis 

The research question for this study was: What is the relationship between daily 

arrivals, daily staffing, triage time, ESI, rooming time, DTPT and LWT rates in the ER? 

H0: There is no relationship between daily arrivals, daily staffing, triage time, ESI, 

rooming time, DTPT, and LWT rates in the ER.   

H1: There is a relationship between daily arrivals, daily staffing, triage time, ESI, 

rooming time, DTPT, and LWT rates in the ER.   

I used SPSS version 24.0 for Windows to perform MLR analysis.  Researchers 

use MLR to assess the predictive relationship between a combination of independent 

variables and one predictor variable (Pallant, 2016).  According to Salkind (2017), in 

multiple regressions, the combination of variables should predict Y better than any one of 

the variables would predict alone.  When discussing MLR, authors sometimes refer to the 

dependent variable as a response variable, criterion variable, or outcome variable (Cohen, 

Cohen, West, & Aiken, 2013; Pagano, 2013; Pituch & Stevens, 2016; Salkind, 2017; 

Tabachnick & Fidell, 2013).  Whereas,  independent variables are also known as 

predictor variables (Cohen et al.; Pagano; Pituch & Stevens; Salkind; Tabachnick & 

Fidell).  According to Cohen et al., there are three types of regression analyses a 

researcher may choose to conduct depending on the nature of the study: simultaneous, 
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hierarchical, and stepwise.  In simultaneous multiple regression, all the predictor 

variables carry the same footing, and there is no logical or theoretical basis for 

considering an independent variable to have priority over another independent variable 

(Cohen et al., 2013).  Simultaneous MLR is appropriate for my study because I am 

examining how several independent variables contribute to the prediction of the 

dependent variable in a group and not analyzing the variables in individual blocks.  MLR 

allows the researcher to examine the collective effect of the predictor variables on the 

criterion variable while reducing the risk of committing a Type I error (Pituch & Stevens, 

2016). 

I determined that an alternative approach such as a hierarchical MLR was not best 

for my study.  With hierarchical MLR, predictors are cumulative according to an order 

that the researcher pre-specifies using the purpose and the logic of the research as a guide 

(Cohen et al. 2013; Tabachnick & Fidell, 2013).  Furthermore, a researcher uses 

hierarchical regression to confirm the combination of predictor variables that support a 

theory (Ray-Mukherjee, Nimon, Morris, Slotow, & Hamer, 2014).  Hierarchical MLR 

approach was not appropriate for my study because I did not pre-determine an order of 

inclusion of variables into the regression model supporting a specific theory. 

Before conducting the simultaneous MLR analysis, I cleaned the dataset by 

screening for outliers in the continuous variables within the archival data.  Field (2013) 

recommended calculating z scores to represent the distance of each value of the 

continuous variables from the mean of the variable.  According to Stevens (2009) and 

Tabachnick and Fidell (2013), z scores with values higher than ±3.29 are considered 
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outliers, and the researcher should address them appropriately.  Therefore, I removed 

those cases from further analysis.  For this study, the only missing information from the 

original data collection included days where patients left before triage and nursing did not 

assign an ESI level.  The cases without assigned ESI levels were excluded from the 

dataset because ESI level is a predictor variable for the study. 

The researcher must assess the assumptions of MLR analysis including 

multicollinearity, normality, linearity, and homoscedasticity (Pallant, 2013; Stevens, 

2009; Tabachnick & Fidell, 2013).  Furthermore, many authors suggest using variance 

inflation factors (VIF) to ensure the absence of multicollinearity (Field, 2013; Pallant, 

2013; Tabachnick & Fidell, 2013).  VIFs greater than 10 are evidence of 

multicollinearity, and a Pearson correlation analysis is useful to determine which 

variables are highly correlated.  Field (2013), Pallant (2013), and Pagano (2013) 

suggested removing one predictor from the regression model for any pairs of predictors 

with a correlation coefficient of .9 or above.  Pallant advised that multicollinearity and 

singularity are contributors to a poor regression model and the researcher should address 

these issues at the start of the study.  Following the advice of Pallant, I evaluated the 

relationship among the chosen predictor variables for this study.   

Pallant (2016) recommended the interpretation of residual scatterplots in IBM 

SPSS to assist the researcher in checking the normal distribution of scores on the 

dependent variable.   Also, Field (2013) suggested that Shapiro-Wilk tests with p values 

less than .05 are indicative of a violation of the assumption of normality.  Stevens (2009) 

posited that the MLR is robust to violations of normality with a sample size of greater 
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than 50 observations.  Because my sample exceeded 50 observations, my report was 

robust to any violations of normality.   

I screened the residual scatterplots for each regression analysis to ensure that I 

met the assumptions of linearity and homoscedasticity.  The residual scatterplot must 

show a straight line to indicate a relationship between the predictor and criterion variable 

in order to satisfy the assumption of linearity (Field, 2013; Tabachnick & Fidell, 2013; 

Pallant, 2016).  To meet the assumption of homoscedasticity, the data points must be 

approximately evenly distributed around ‘0’ and must be roughly rectangular (Pallant, 

2016; Tabachnick & Fidell, 2013). 

To report the findings of the MLR analysis I interpreted the p-value, adjusted R2, 

and B.  The p-value indicates the probability that the observed coefficient is possible if 

the true population value was zero (Field, 2013).  The researcher reports the adjusted R2

to show the amount of variation in the criterion variable that the researcher might 

attribute to the combination of predictor variables (Pallant, 2016).  The overall regression 

model was statistically significant, so I interpreted the unstandardized beta coefficient, B, 

for each statistically significant predictor.  A researcher uses the unstandardized beta 

coefficient to assess the change in the criterion variable for each unit increase in the 

statistically significant predictor variable (Pagano, 2013; Tabachnick & Fidell, 2013). 

Threats to Statistical Conclusion Validity 

Threats to statistical conclusion validity (SCV) are factors that affect the Type I 

Error and Type II Error (Cronk, 2016).  A Type I Error occurs when the researcher 

incorrectly rejects the null hypothesis even though it is true (Cronk, 2016; Hales, 2016). 
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A Type II Error occurs when the researcher incorrectly sustains a false null hypothesis 

(Cronk, 2016; Hales, 2016).  According to Garcia-Perez (2012), these error types are 

fundamental aspects of statistical decision theory in regards to significance testing.  

Therefore, the researcher has the potential for either one of the errors to occur.  Garcia-

Perez advised that the researcher can preserve SCV with a proper analysis of data where 

the results provide a meaningful probability of accurately answering the research 

question.   My primary goal was to generalize my findings to the broader population 

following a quantitative scientific method.  Garcia-Perez discussed some threats to SCV 

including reliability of the instrument, data assumptions, and sample size.  I will address 

these risks to SCV as they apply to my study. 

Instrumentation Reliability 

Instrument reliability was not applicable to this study because I did not use a 

formal instrument for data collection.  Suter and Suter (2015) stated that there is a threat 

to conclusion validity when the researcher’s definition of the construct 

(operationalization) under investigation does not represent the chosen label.  In other 

words, variations in operational definitions amongst studies may lead to different 

conclusions.  I have made every attempt to standardize my variables according to 

operational definitions in similar studies cited in the literature review.  

Data Assumptions 

The researcher can take steps to minimize the common threats to SCV by 

checking assumptions of statistical tests.  According to Cerqueti et al. (2017), 

bootstrapping is an analytical method to adjust for any possible influences of assumption 
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violations.  With the violation of assumptions, the researcher must report the 95% 

bootstrap confidence (Cerqueti et al., 2017).  An assumption of bootstrapping is that the 

original sample is representative of the underlying population (Neiheisel, 2017). 

Sample Size 

The branch of inferential statistics allows researchers to generalize about 

populations considering only a sample and to draw conclusions regarding the relationship 

between the sample and the population (Powner, 2017).  A power analysis was conducted 

to identify the minimum sample size required to achieve the minimum power of .80.  

Using the power analysis, I determined that a minimum of 146 cases was necessary for 

the final analysis, but the final dataset went over the minimum requirement (N = 154).  

Transition and Summary 

In Section 2, I described my role as a researcher in the data collection process.  

Although I did not have any participants because I am using archival data, I did discuss 

the application of some basic principles from the Belmont Report and procedures for 

conducting ethical research.  I distinguished the research method as a quantitative study 

and the research design as MLR analysis, which is correlational.  I also included a 

description of the population and justified the sample size via power analysis.  Because 

there is no specific instrument for the study, I reviewed the collection process for 

secondary data, as well as the advantages and disadvantages of the secondary data 

analysis.  I described and defended in detail the reasons why MLR analysis was an 

appropriate choice to answer the research question for this study.   
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In Section 3, I will present the findings of this study, discuss the testing of 

assumptions, and provide a summary of QT as it relates to the conclusions.  I will also 

detail how hospital leaders can apply the study findings to address the specific business 

problem.  After the analysis and discussion of the study results, I will suggest 

implications regarding tangible improvements for social change in the ER and how 

individuals, communities, and society, in general, can benefit from a solution.  Finally, I 

will recommend useful actions for hospital leaders to make changes and also suggest 

areas for further research. 
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Section 3: Application to Professional Practice and Implications for Change 

Introduction 

In this study, I conducted a simple MLR to assess the relationship between 

NOPA, NOS, DTTT, ESI, DTRT, DTPT, and LWT.  The null hypothesis was that there 

is no relationship between the predictor variables, NOPA, NOS, DTTT, ESI, DTRT, and 

DTPT, and the dependent variable LWT.  The alternative hypothesis was that NOPA, 

NOS, DTTT, ESI, DTRT, and DTPT would significantly predict LWT rates in the ER. 

Presentation of the Findings 

The results of the MLR were statistically significant, with F (9,144) = 2902.49, p 

< .001, and R2 = .99, indicating 99% of the variation in LWT was accounted for by the 

predictor variables.  Therefore, the null hypothesis was rejected.  The results of the 

regression analysis are presented in Table 1.  In the final model, ESI2 ESI3, ESI4, and 

ESI5 were statistically significant to the variation in LWT, p < .001.  The final predictive 

equation was: Y = -.068 -0.001 (NOPA) + 0.003 (NOS) + 0.004 (DTTT) + 1.016 (ESI2) 

+ 0.999 (ESI3) + 1.015 (ESI4) + 1.021 (ESI5) + 0.002 (DTRT) + 0.001 (DTPT). 

I conducted bootstrapping on the data to decrease the potential for violations 

using 1,000 samples and a 95% confidence interval (see Table 1).  Bootstrapping is a 

resampling technique that helps the researcher address confidence intervals on variables 

and decreases the probability that the researcher will make unreasonable assumptions 

(Efron, Rogosa, & Tibshirani, 2015).   The overall regression model was statistically 

significant, so I interpreted the unstandardized beta coefficient, B, for each statistically 

significant predictor.  A researcher uses the unstandardized beta coefficient to assess the 
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change in the criterion variable for each one unit increase in the statistically significant 

predictor variable (Pagano, 2013; Tabachnick & Fidell, 2013). 

 

Table 1  

Regression Analysis Summary for Predictor Variables 

Variable β SE Β t p 
Bootstrap 95% 

CI (β) 
(Constant) -.068 0.13  -.525 .600 [-.323, .187] 
NOPA -.001 .001 -.012 -1.625 .106 [-.003, .000] 
NOS .003 .003 .006 .904 .367 [-.004, .009] 
DTTT .004 .004 .007 1.111 .269 [-.003, .012] 
ESI2 1.016 .022 .294 46.387 .000 [.972, 1.059] 
ESI3 .999 .008 .851 124.454 .000 [.983, 1.015] 
ESI4 1.015 .019 .341 53.016 .000 [.978, 1.053] 
ESI5 1.021 .069 .094 14.748 .000 [.884, 1.158] 
DTRT .002 .004 .005 .553 .581 [-.006, .010] 
DTPT .001 .001 .008 .844 .400 [-.001, .003] 

 
Note. N = 154 

 

I examined the normal P-P plot for the regression standardized residuals and the 

scatterplot of the standardized residuals to assess the assumptions of the absence of 

outliers, normality, linearity, homoscedasticity, and independence of residuals.  I 

screened the plots to ensure that the assumptions were not violated, looking for a 

relatively straight-line distribution of points extending diagonally from the bottom left to 

the top right of the P-P plot and a random distribution of the data points in the scatterplot.   

Examination of these plots indicated the presence of mild violations of the assumptions.   
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Tests of Assumptions 

Multicollinearity.  I assessed multicollinearity using the VIF values and made 

sure there were no outliers by examining the standardized values for each data point.  VIF 

values are calculated and screened to ascertain elevated levels of collinearity among 

predictor variables (Tabachnick & Fidell, 2012).  VIFs ensure the absence of 

multicollinearity where VIFs greater than 10 are evidence of multicollinearity (Field, 

2013; Pallant, 2013; Tabachnick & Fidell, 2013).  For my study, values for the predictors 

met the threshold value of 10; therefore, I satisfied the assumption of the absence of 

multicollinearity.  Table 2 presents VIF values for the predictor variables. 

Outliers.  The presence of outliers was assessed using standardized values, or z 

scores, for each data point.  According to Tabachnick and Fidell (2012), z scores higher 

than 3.29 units from the sample mean are evidence of outliers.  I screened and removed 

Table 2 

Multicollinearity of the Predictor Variables 

Predictors VIF 
NOPA 1.53 
NOS 1.21 
DTTT 1.04 
ESI2 1.05 
ESI3 1.23 
ESI4 1.09 
ESI5 1.07 
DTRT 2.35 
DTPT 2.47 
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five outliers from the dataset.  I removed two outliers from DTTT, two from DTRT, and 

one from LWT.  The final dataset consisted of 154 cases. 

Normality.  I assessed the assumption of normality with a Shapiro-Wilk test.  

NOPA was a non-significant finding (p = .574).  According to Field (2013), a non-

significant test (p > .05) indicates that the sample distribution is not significantly different 

from a normal distribution.  However, the results of the analysis indicated that I did not 

meet the assumption for the variables NOS (p = .025), DTTT (p = .034), DTRT (p = 

.006), DTPT (p = .000), and LWT (p <.001).  Field (2013) advised that the distribution is 

significantly different from normal distribution when p < .05.  Field also advised that, 

although the Shapiro-Wilk test is a simplistic way of determining normal distribution, it 

is not the best test of normality for large samples.  Stevens (2009) also cautioned that 

with sample sizes larger than 50 cases, MLR analyses are robust to violations of 

normality.  In summary, I ran the normal P-P plot of the regression standardized residuals 

(see Figure 2) to assess normality and determined that normality was violated. 
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Figure 2. Normal probability plot (P-P) of the regression standardized residuals. 

 

Linearity and Homoscedasticity.  I examined the assumptions of linearity and 

homoscedasticity through screening of the residual scatterplot to assess if the points in 

the plot were randomly distributed around a mean value of 0 (see Figure 3).  The 

assumption of homoscedasticity was not met because the residual line did not resemble 

the actual values.  I also examined linearity with a screening of the residual scatterplot to 

assess the presence of any curvature which would indicate a non-linear relationship 

between the predictor and dependent variables.  Examination of the residual scatterplot 

indicated that the assumption of linearity was met (see Figure 3). 
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Figure 3. Residual scatterplot for linearity and homoscedasticity. 

 

Descriptive Statistics 

 I calculated descriptive statistics for the study variables including the mean (M) 

and the standard deviation (SD).  The M is a measure of central tendency computed by 

dividing the sum of all values in the group by the number of values in that group 

(Salkind, 2017).  The SD represents the average amount of variability of the data around 

the mean or the distance from the mean (Salkind, 2017).  See Table 3 for the presentation 

of descriptive statistics.   
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Table 3  

Descriptive Statistics 

Variable N M SD 
NOPA 154 135.42 16.15 
NOS 154 35.43 3.10 
DTTT 154 12.11 2.43 
DTRT 154 8.90 3.56 
DTPT 154 28.48 12.75 
LWT 154 1.55 1.50 
ESI2 154 0.18 0.44 
ESI3 154 1.11 1.28 
ESI4 154 0.25 0.51 
ESI5 154 0.02 0.14 

 

Theoretical conversation on findings.  The findings extend knowledge of QT 

and relationships among queueing variables.  For the ER, LWT in QT resembles 

impatient customers or abandonment in other industries, such as call centers.  One 

primary objective of this study was to show hospital leaders how QT models might 

translate to the ER to reduce the phenomena of clients leaving without service.  During 

this research, the one major obstacle I encountered with translating QT from call centers 

to the ER was the time variation that occurs in the ER, where service times for call 

centers occur in minutes, compared to hours for the ER.  However, there were still many 

parallels between caller abandonment in call centers and patients who LWT in the ED.  

Caro et al. (2016) and Hall et al. (2013) have used queueing models, and DES to model 

abandonment in call centers and these concepts are becoming more prolific for 

management of patient flow, reducing delays in healthcare delivery, as well as, health 

technology assessment. 
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I found in this study that factors such as NOS, NOPA, and DTPT were not 

significant predictors for LWT.  These findings are not consistent with the findings of 

Ramsey (2018) who found that decreased nursing staffing was a significant predictor of 

LWT.  However, I confirmed the findings of other authors who found acuity level to be 

the strongest predictor of LWT. 

ESI levels were found to be a strong predictor of LWT in this study, where the 

magnitude of the t value was the greatest for ESI3 (t = 124.454), followed by ESI4 (t = 

53.016), then ESI2 (t = 46.387).  ESI5 patients had the lowest magnitude (t = 14.748).  I 

confirmed the findings of Soremekun (2014) and Deflitch, Geeting, and Paz (2015) who 

found that ESI3 patients LWT most frequently.  This study disconfirmed the findings of 

Crilly et al. who found lower acuity patients had higher odds of LWT; ESI4 (OR 2.76, 

95% CI 2.60-2.93) and ESI5 (OR 3.93, 95% CI 3.51-4.37).  This study also disconfirmed 

the findings of Tropea et al. (2012) who determined that 63.4% (n = 130,202) of LWT 

patients were low acuity (OR = 8.21, 99% CI = 8.00 to 8.43).  This study confirmed the 

research of Lucas et al. (2014) who studied LWT rates by triage class and found ESI3 

most significant for LWT. 

Applications to Professional Practice 

Hospital leadership can use this information in professional practice by paying 

attention to the tendencies of specific ESI levels to LWT. Precisely, the reasons why 

ESI3 patients are the most likely group of patients to walk out of the ER without service.  

Hospital leaders may apply the findings of this research by using strategies to decrease 

LWT among ESI3 patients.  This research confirms the magnitude of LWT rates for ESI3 
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patients that are impacted by long waits.  Hospital leaders can help make ESI3 patients a 

less vulnerable sub-population of patients and affect massive social change (by 

decreasing harm that could result from not getting medical care). 

Implications for Social Change 

Patients who LWT are a high-risk group for medical and legal reasons, and 

operational outcomes, including patient satisfaction (Pielsticker et al., 2015; Rathlev et 

al., 2018).  If hospital leaders understand factors relating to LWT, they can mitigate the 

effects of overcrowding and long waits in the ER.  Meeting the benchmark for LWT rates 

is an opportunity for hospital leaders to increase patient satisfaction and to allow their 

staff to provide quality care.  DeFlitch, Geeting, and Paz (2015) indicated that bottlenecks 

create disparities between patients’ needs and the ability to provide services.  The ER 

staff should strive to provide the best care to patients and their families in emergency 

situations, with a goal to get every patient the desired outcome, without harm and waste 

of resources.  The development of best practices and gold standards in emergency care 

will lead to process improvements and make positive contributions to public health. 

Recommendations for Action 

There are several recommendations for useful action that hospital leaders might 

employ to address the conclusions of this study and improve business practice.  Hospital 

leaders, such as ER directors, and ER managers should pay attention to the study results 

and apply strategies to reduce LWT.  Since ESI3 patients had the highest predictive 

power for LWT in this study, hospital leaders may consider re-designing patient flow to 

meet the needs of middle-acuity patients.  In this study, it should concern hospital leaders 
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that ESI2 was a more magnificent predictor of LWT than ESI5 because ESI2 patients are 

high-acuity and at-risk for rapid decompensation in their health status.  ESI2 patients 

were the second most significant predictor of LWT in this study.  The recommendations 

for hospital leaders to reduce LWT according to acuity level are (a) streaming, (b) split-

flow, (c) physician-directed queueing, and (d) revised triage. 

Streaming 

Streaming is an evidence-based practice improvement strategy in the ER.  One 

way that hospital leaders can mitigate the LWT rate for ESI3 patients is to implement 

streaming of ESI3 patients.  Streaming is the smooth flow of patients as they enter, move 

through a system, and flow out, either to home or as a hospital admission (Morrish, 2012).  

The stream must not freeze, must remain free from large branches, rocks, or dams in order to 

maintain the flow for communities at the far end of the stream to rely on a sustainable stream 

for the present and the future (Morrish, 2012).  Streaming is redirecting patients to the 

most appropriate care in the most appropriate setting.  

England’s National Health Service set a goal for all hospitals with an Accident 

and Emergency Department to expand to a front door streaming service by the end of 

October 2017, so that ER staff would have the ability to take care of the most urgent 

patients.  Kmietowicz (2017) stated that the National Institute for Health Research was 

carrying out a study on the use of special accommodations for patients intoxicated from 

alcohol to ensure their safety while easing the pressure of ER staff.  Iacobucci (2016) 

advised that having a more extensive array of health care professionals in the ER (general 

practitioners, psychiatrists, mental health or addiction specialists, and community 
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pharmacists) would help make care more efficient and reduce ER overcrowding by using 

multiple professionals to stream patients arriving at the ER.  The general practitioner 

could refer patients to primary health care, the ER, or another appropriate service setting 

for the chief complaint.  Streaming may help drive efficiencies in ERs internationally.

Split-Flow 

Split-flow allows the staff to split the ESI3 patients into horizontal and vertical 

categories (Bish et al., 2016).  According to Bish et al. (2016), ESI4 and ESI5 patients go 

to a rapid care treatment area (e.g., fast-track), along with ESI3 patients that require fewer 

resources.  Bish et al. considered ESI3 patients requiring fewer resources vertical when 

they only required brief treatment and were ambulatory, and did not require undressing 

for assessment.  In this respect, ER bed space was for ESI patients that required more 

resources and needed to be horizontal in an ER bed.  The suggestion for split-flow came 

from AHRQ, and Bish et al. (2016) and Christensen et al. (2016) studied split-flow as a 

strategy to reduce LWT.  According to AHRQ (2014), horizontal patients go to the main 

ER because they have complaints that require more invasive testing and will most likely 

end up facing a hospital admission.  Whereas, vertical patients, after assessment and 

treatment, will probably get discharged from the ER.  ER providers should attempt to 

keep patients vertical, when appropriate, in an attempt to facilitate timely discharge 

(Christensen et al., 2016). 

Physician-Directed Queueing 

DeFlitch et al. (2015) expanded on the concepts of the provider in triage and split-

flow in their PDQ model.  PDQ means that the provider quickly evaluates all patients as 
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they arrive.  The provider handles patients that require few resources and directs more 

complex patients to the main ED for evaluation (DeFlitch et al., 2015).  In the PDQ  

model, every patient receives an immediate provider evaluation, regardless of arrival 

mode and the provider orders the necessary testing, routing the patient to the appropriate 

queue for treatment.  DeFlitch et al. also reviewed Press Ganey satisfaction surveys and 

found that patients had higher degrees of satisfaction when they did not have to repeat 

their clinical story to various care providers.  The PDQ model allows for a fast acuity 

assessment to determine the ESI level so that the physician can equally distribute 

resources throughout the ER.  As a result of the case study, Deflitch et al. were able to 

eliminate the waiting room entirely and nearly eradicate the LWT rate (5.7% at baseline 

and 0.6% 1-year post-PDQ). 

Revised Triage 

There are many methods of revised triage practices that promote quick triage of 

patients for classification into an ESI category.  Christensen et al. (2016) studied the use 

of a pivot triage process in an ER.  In their study, the pivot triage included only the 

necessary information to assign an acuity: Chief complaint, heart rate, oxygen saturation, 

and acuity level.  The traditional triage contained chief complaint, full vital signs, 

medical history, surgical history, medication history, suicide screen, abuse screen, and 

acuity level.  The faster triage process was an improvement in business practice because 

the patient could have a rapid assessment and immediately go to the most suitable 

treatment area.  The study demonstrated that the patient was less likely to LWT from the 

waiting room if the nurse did a quick assessment, rather than having the patient wait for a 
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prolonged period without any contact from a medical professional.  Christensen et al. 

found a reduction in LWT from 2.6% before implementation of pivot triage to 1.0%  after 

implementation of pivot triage.   

Ashour and Kremer (2013) developed a triage algorithm using FAHP and MAUT 

to rank patients according to chief complaint, age, gender, pain level, and vital signs.  

Using DES, Ashour and Kremer compared the traditional ESI system with the FAHP-

MAUT algorithm.  Ashour and Kremer recommended the use of a FAHP-MAUT 

algorithm, which uses quantitative measures to assign a priority for each patient, rather 

than the ESI algorithm which relies on nursing judgments.  The ESI is a nominal level of 

measuring patient acuity, and the nurse must place each patient into one category.  There 

is no way to categorize the priority of patients within each category.  Many hospitals do 

not allow ESI3 patients to have an evaluation in fast track (Soremekun et al., 2014).  For 

this reason, ERs with fast tracks may have longer waits for ESI3 patients, and those 

without fast tracks may have longer waits for ESI4 and ESI5.  Riordan, Dell, and Patrie 

(2016) derived and validated a model and designed a nomogram for ESI patients on 

arrival to predict discharge disposition that was especially helpful for appropriating ESI3 

patients. 

Recommendations for Further Research 

There remains a gap in the ER literature to help hospital leaders use queueing 

principles in the ER to improve patient flow.  The hospital queueing system as a whole 

has many inefficiencies that contribute to LWT, including lack of inpatient bed 

availability and other internal delays such as radiology and laboratory issues that cause 
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bottlenecks.  Future studies may focus on additional factors affecting throughput using 

queueing variables.  This study only covers ER arrivals over a 6 month period, whereas 

years of historical data may provide more insight as to volume variability throughout the 

year, including specific days, seasons, and holidays.  There were some limitations in this 

study that researchers could address in future studies.  For example, the accuracy of 

archival data is subject to human error during entry into the electronic system.  There are 

also limitations of the correlational research design.  For example, a correlational 

researcher cannot determine causation for relationships between variables and is only 

able to predict a relationship between variables.  To mitigate this limitation, researchers 

may want to find situations where it is possible to randomly assign participants to groups 

or to manipulate the study variables.  DeFlitch et al., (2015) posited that there is a need 

for more research using engineering and systems-based solutions because previous 

strategies such as standing orders, split-flow models, waiting room management, and 

immediate bedding have not made drastic improvements in the system.  Therefore, 

DeFlitch et al. recommended further study of operational methods in the ER, including 

queueing models and simulation. 

Reflections 

This doctoral journey taught me about the endless options for solving problems 

through research.  I missed many events, family occasions, leisure with friends, and 

sacrificed many things in this pursuit.  However, if I can affect any positive change as a 

result of this work, then the time I sacrificed with friends and family was not in vain.  

Since beginning the pursuit of this degree, I have lost people that I held dear to me, and 
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the guilt of not seeing them more was overwhelming.  However, I know that these loved 

ones would not have wanted me to do things any differently.  I regret that they are not on 

this earth to hear that I finally finished this project and became Dr. Gibbs, but they would 

have been so proud of me.  I want to encourage those who are still struggling through the 

doctoral process and wonder if the time, money, and effort spent are worthwhile.  It is 

worth it; do not give up the fight.  Take a break from the program if you need to, but do 

not let the program break you. 

Conclusion 

ER crowding is a significant problem in healthcare leading to poor quality of care 

and patients not having access to care.  It is necessary to recognize bottlenecks in the ER 

and create new methods to increase patient flow.  The take-home message for readers of 

this study is that patients are more likely to leave if they have to wait.  The fundamental 

reason for QT research is to find out what delays influence waiting and to make every 

effort to eliminate those delays.  One might conclude from this study that patients of 

specific acuity levels have certain expectations of how long they will wait for treatment. 

Hospital leaders have no way of knowing the outcomes for patients that LWT, including 

permanent preventable disability or even mortality. 
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Appendix B: Confidentiality Agreement 

Name of Signer: Joy Gibbs  
 
I am aware that I will have access to information which is confidential while collecting 
data for this research: “Queueing Variables and Left without Treatment Rates in the  
Emergency Department.”   I acknowledge that the information must remain confidential, 
 and that improper disclosure of confidential information can be damaging to 
 the hospital.  
 
By signing this Confidentiality Agreement, I acknowledge and agree that: 
1. I will not disclose or discuss any confidential information with others, including 

friends or family. 
2. I will not in any way divulge, copy, release, sell, loan, alter or destroy any 

confidential information without authorization from hospital administration. 
3. I will not discuss confidential information where others can overhear the 

conversation.  I understand that it is not acceptable to discuss confidential data even 
if I do not use the name of the hospital. 

4. I will not make any unauthorized transmissions, inquiries, modification or purging of 
confidential information. 

5. I agree that my obligations under this agreement will continue after termination of 
the job that I will perform. 

6. I understand that violation of this agreement will have legal implications. 
7. I will only access or use systems or devices I am officially authorized to access, and I 

will not demonstrate the operation or function of systems or devices to unauthorized 
individuals. 

 
Signing this document, I acknowledge that I have read the agreement and I agree to 

comply with all the terms and conditions stated above. 
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Appendix C: Data Use Agreement 
 
This Data Use Agreement (“Agreement”), effective as of March 16, 2018, is entered into 
by and between Joy Gibbs (“Data Recipient”) and Midstate Medical Center (“Data 
Provider”).  The purpose of this Agreement is to provide Data Recipient with access to a 
Limited Data Set (“LDS”) for use in research in accord with the HIPAA and FERPA 
Regulations.   
Definitions.  Unless otherwise specified in this Agreement, all capitalized terms used in 
this Agreement not otherwise defined have the meaning established for purposes of the 
“HIPAA Regulations” codified at Title 45 parts 160 through 164 of the United States 
Code of Federal Regulations, as amended from time to time. 
Preparation of the LDS.  Data Provider shall prepare and furnish to Data Recipient a LDS 
in accord with any applicable HIPAA or FERPA Regulations  
Data Fields in the LDS.  
No direct identifiers such as names may be included in the Limited Data Set (LDS). 
The researcher will also not name the organization in the doctoral project report that is 
 published in Proquest. In preparing the LDS, Data Provider or designee shall 
 include the data fields specified as follows, which are the minimum necessary to  
accomplish the research: approximately 5 months of daily data (October 1, 2017, through 
February 28, 2018) for the Emergency Department (ED):  

• Arrivals to the ED; 
• Left Without Treatment (LWT) rate; 
• Average time until triage; 
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Use or disclose the LDS only as permitted by this Agreement or as required by law; 
Use appropriate safeguards to prevent use or disclosure of the LDS other than as 
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Report to Data Provider any unintentional use or disclosure of the LDS of that I find is 
not allowed by this Agreement or required by law; 
Require any of its subcontractors or agents that receive or have access to the LDS to 
agree to the same restrictions and conditions on the use and disclosure of the LDS that 
apply to Data Recipient under this Agreement; and 
Not use the information in the LDS to identify or contact the participating hospital.  
Permitted Uses and Disclosures of the LDS.  Data Recipient may use and disclose the 
LDS for its research activities only.   
Term and Termination. 
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Term.  The term of this Agreement shall commence as of the Effective Date and shall 
continue for so long as Data Recipient retains the LDS, unless sooner terminated as 
outlined in this Agreement. 
Termination by Data Recipient.  Data Recipient may terminate this agreement at any time 
by notifying the Data Provider and returning or destroying the LDS.   
Termination by Data Provider.  Data Provider may terminate this agreement at any time 
by providing thirty (30) days prior written notice to Data Recipient.   
For Breach.  Data Provider shall provide written notice to Data Recipient within ten (10) 
days of any determination that Data Recipient has breached a material term of this 
Agreement.  Data Provider shall afford Data Recipient an opportunity to cure said alleged 
material breach upon mutually agreeable terms.  Failure to agree on mutually agreeable 
terms for cure within thirty (30) days shall be grounds for the immediate termination of 
this Agreement by Data Provider. 
Effect of Termination.  Sections 1, 4, 5, 6(e) and 7 of this Agreement shall survive any 
termination of this Agreement under subsections c or d.   
Miscellaneous. 
Change in Law.  The parties agree to negotiate in good faith to amend this Agreement to 
comport with changes in federal law that materially alter either or both parties’ 
obligations under this Agreement.  Provided, however, that if the parties are unable to 
agree to mutually acceptable amendment(s) by the compliance date of the change in 
applicable law or regulations, either Party may terminate this Agreement as provided in 
section 6. 
Construction of Terms.  The terms of this Agreement shall be construed to give effect to 
applicable federal interpretative guidance regarding the HIPAA Regulations. 
No Third Party Beneficiaries.  Nothing in this Agreement shall confer upon any person 
other than the parties and their respective successors or assigns, any rights, remedies, 
obligations, or liabilities whatsoever. 
Counterparts.  This Agreement may be executed in one or more counterparts, each of 
which shall be deemed an original, but all of which together shall constitute the same 
instrument. 
Headings.  The headings and other captions in this Agreement are for convenience and 
reference only and shall not be used in interpreting, construing or enforcing any of the 
provisions of this Agreement. 
IN WITNESS WHEREOF, each of the undersigned has caused this Agreement to be duly 
executed in its name and on its behalf. 
DATA PROVIDER    DATA RECIPIENT 
 
Signed:                             Signed:       
 
Print Name:        Print Name:       
Print Title:        Print Title:       
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