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Abstract 

Childhood obesity is disproportionately higher among children from Hispanic backgrounds. 

Ethnicity is a social and cultural construct and does not capture true ancestral heterogeneity. 

Hispanic Americans have a wide variety of genetic admixture proportions of European (EUR), 

Native American (AMR), and African (AFR) ancestry. The objective of this cross-sectional 

study was to assess the contribution of ancestral genetic composition to body mass index (BMI), 

and to evaluate the relationship of obesity risk factors to BMI among 154 2-year-old Hispanic 

American children. The theory of Evolutionary Developmental Biology was utilized to 

investigate the relationship between children’s growth process and ancestral background. Their 

genetic admixture was estimated using the ancestry and kinship toolkit and BMI was calculated 

and evaluated using the Center for Disease Control and Prevention (CDC) BMI charts. Three 

simple linear regressions assessed the association between standard EUR, AMR, and AFR to 

BMI. A backward, stepwise, linear regression was performed to evaluate the influence of sex, 

birth weight, and juice consumption frequency as well as mother’s age, BMI, education, and 

region of birth on the child’s BMI. No associations were found between BMI and genetic 

admixture proportion, and the regression model revealed that only birth weight was positively 

associated with BMI; higher maternal education was negatively associated with BMI. Contrary 

to adulthood obesity studies, EUR, AMR, and AFR proportions were not associated with BMI at 

age 2, which suggests that the influence of genetic composition on BMI may vary by age. This 

information has the potential to create positive social change by developing preventions that 

target modifiable risk factors, such as maternal education.   



 

 

 

Association Between Genetic Ancestry and Body Mass Index Among a  

Cohort of Hispanic American Children  

by 

Sahel Hazrati 

 

MPH, George Mason University, 2012 

BS, Shahid Beheshti University of Medical Sciences, 1995 

 

 

Dissertation Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Doctor of Philosophy 

Public Health 

 

 

Walden University 

November 2018 



 

 

Dedication 

I dedicate my PhD dissertation to Ramtin, my one and only son. He has always been my 

inspiration to work hard and continue my education as in the United States. He motivates me to 

be enthusiastic and passionate to make world a better place for women and children. Without his 

love and support I wouldn’t be able to accomplish this journey. I also dedicate this dissertation to 

my parents, my sisters, my brothers and my niece Sarina.  

 



 

 

Acknowledgments 

I would like to express that I am very grateful to all who supported and guided me during 

the process of my dissertation. I especially thank my faculty chair, Dr. Namgyal Kyulo, my 

committee member Dr. Scott McDoniel and my URR Dr. Chinaro Kennedy.  

I also express my appreciation and gratitude to the Inova Translational Medicine Institute for 

allowing me to use data collected for “The First 1,000 Days of Life and Beyond Study” (“The 

First 1,000 Days of Life and Beyond”, 2018).



 

i 

Table of Contents 

List of Tables .......................................................................................................................v 

List of Figures .................................................................................................................... vi 

Chapter 1: Introduction to the Study ....................................................................................1 

Background ....................................................................................................................2 

Problem Statement .........................................................................................................4 

Purpose of the Study ......................................................................................................5 

Research Questions and Hypotheses .............................................................................6 

Theoretical Framework for the Study ............................................................................7 

Nature of the Study ........................................................................................................9 

Operational Definitions ..................................................................................................9 

Dependent Variables ............................................................................................... 9 

Independent Variable ............................................................................................ 10 

Admixture Proportions Super Groups .................................................................. 10 

Confounding Variables ......................................................................................... 10 

Other Terms .......................................................................................................... 11 

Assumptions .................................................................................................................12 

Scope and Delimitations ..............................................................................................12 

Limitations ...................................................................................................................14 

Significance..................................................................................................................14 

Social Change Implications .........................................................................................15 

Summary ......................................................................................................................15 



 

ii 

Chapter 2: Literature Review .............................................................................................17 

Literature Search Strategy............................................................................................18 

Evolutionary Developmental Biology .........................................................................19 

Epigenetic ....................................................................................................................20 

Overweight and Obese Children ..................................................................................22 

Types of Obesity ..........................................................................................................23 

Monogenic Obesity ............................................................................................... 23 

Polygenic or Common Obesity ............................................................................. 23 

Prevalence of Childhood Obesity in the United States ................................................25 

Body Mass Index Percentile (BMI) and Sex-Specific BMI-for-Age Percentile .........27 

BMI Percentile ...................................................................................................... 28 

Interpretation of BMI and BMI Percentile............................................................ 32 

Economic Impact of Obesity .......................................................................................32 

Risk Factors for Childhood Obesity ............................................................................33 

Genetics................................................................................................................. 33 

Social, Environmental, and Behavioral ................................................................ 33 

Disparity of Childhood Obesity Among Races and Ethnicities...................................35 

Race and Ethnicity as Social and Cultural Constructs .................................................35 

Ancestry Genetic Admixture with Complex Diseases, and Obesity ...........................37 

Summary ......................................................................................................................43 

Chapter 3: Research Method ..............................................................................................47 

Research Design and Rationale ...................................................................................48 



 

iii 

Study Variables ..................................................................................................... 48 

Research Design and Connection to the Research Questions ............................... 48 

Population ....................................................................................................................49 

Sampling and Sampling Procedures ..................................................................... 49 

Sample Size and Power Analysis .......................................................................... 50 

Using Archival Data & Access Procedure ...................................................................54 

Instrumentation and Operationalization of Constructs ................................................55 

Admixture Proportion ........................................................................................... 55 

Food Frequency Questions ................................................................................... 57 

Reported Weights and Heights ............................................................................. 57 

Maternal Education Household Income................................................................ 57 

Birth Weight and Sex ........................................................................................... 57 

Parental Country of Birth ...................................................................................... 57 

Operationalization of the Variables .............................................................................57 

Dependent Variable .............................................................................................. 57 

Other Terms Used in This Study .......................................................................... 58 

Independent Variables .......................................................................................... 58 

Confounding Variables ......................................................................................... 59 

Data Analysis Plan .......................................................................................................59 

Data Quality Control, Cleaning, and Preparation ................................................. 60 

Research Questions and Hypotheses .................................................................... 60 

Assumptions of Statistical Tests ..................................................................................62 



 

iv 

Interpretation of Statistical Tests .................................................................................62 

Threats to Validity .......................................................................................................63 

Ethical Procedures .......................................................................................................63 

Summary ......................................................................................................................64 

Chapter 4: Results ..............................................................................................................65 

Purpose of the Study ....................................................................................................65 

Research Questions and Hypotheses ...........................................................................65 

Organization of Chapter 4 ............................................................................................66 

Data Collection, Management, and Quality Control ...................................................66 

Results: Descriptive Statistics and Analyses ...............................................................68 

Inferential Statistical Analyses ....................................................................................78 

Potential Covariates: Evaluating Environmental, Clinical, and Social Risk 
Factors Associated with BMI.................................................................... 78 

Association of Genetic Admixture Proportion to BMI ......................................... 81 

Summary ......................................................................................................................84 

Chapter 5: Discussion, Conclusions, and Recommendations ............................................86 

Interpretation of the Findings, Comparison, and Synthesis of Other Research 
Studies ..............................................................................................................87 

Limitations of the Study...............................................................................................90 

Recommendations ........................................................................................................90 

Social Change Implication ...........................................................................................91 

Conclusion ...................................................................................................................92 

References ..........................................................................................................................94 



 

v 

List of Tables 

Table 1. BMI Percentile Classifications 27 

Table 2. BMI-for-Age for 24-Month-Old Boys ................................................................. 29 

Table 3. BMI-for-Age for 24-Month-Old Girls ................................................................. 29 

Table 4. BMI Percentile Categories by Frequency and Percent ...................................... 67 

Table 5. Demographic Characteristics ............................................................................. 68 

Table 6. Linear Regression for BMI Based on Genetic Background ............................... 83 

 

 

 

  
 



 

vi 

List of Figures 

Figure 1. Genetic overlap between obesity loci across various ethnic groups ................. 25 

Figure 2. BMI-for-age percentiles, boys 2–20. ................................................................ 30 

Figure 3. BMI-for-age percentiles, girls 2–20. ................................................................. 31 

Figure 4. Proportions of African and Native American ancestry for Mexicans and Puerto 
Ricans. ....................................................................................................................... 37 

Figure 5. Minimum required sample size. ........................................................................ 52 

Figure 6. Calculated effect size. ....................................................................................... 53 

Figure 7. Polymorphic variants within sampled populations. .......................................... 55 

Figure 8. Ancestry and kinship toolkit (AKT). ................................................................ 56 

Figure 9. Distribution of children’s BMI. ........................................................................ 69 

Figure 10. Distribution of children’s BMI (log transformed). ......................................... 70 

Figure 11. Distribution of five super population genetic admixture. ............................... 71 

Figure 12. Distribution of American (AMR) ancestry. .................................................... 72 

Figure 13. Distribution of African (AFR) ancestry. ......................................................... 72 

Figure 14. Distribution of European (EUR) ancestry. ...................................................... 73 

Figure 15. Distribution of South Asian (SAS) ancestry. .................................................. 74 

Figure 16. Distribution of East Asian (EAS) ancestry. .................................................... 75 

Figure 17. Distribution of maternal age at delivery. ........................................................ 76 

Figure 18. Distribution of maternal prepregnancy body mass index (BMI). ................... 76 

Figure 19. Distribution of maternal child birth weight..................................................... 77 

Figure 20. Distribution of juice consumption frequency per week at 24 months. ........... 78 

Figure 21. Distribution of BMI residuals. ........................................................................ 80 

Figure 22. Distribution of log transformed BMI residuals. .............................................. 81 



 

vii 

Figure 23. Residual by predicted for children’s BMI. ...................................................... 82 

Figure 24. Comparison of genetic admixture proportion among underweight, normal 
weight, overweight, and obese children. ................................................................... 83 

 



1 

 

Chapter 1: Introduction to the Study 

From 1971 to 2012 in the United States, childhood obesity increased from 5.2% 

to 16.9% among children and adolescents 2–19 years old (Fryar, Carroll, & Ogden, 

2012). Childhood obesity is a major health problem in the United States and it is 

disproportionately higher among Hispanic American children (Isasi, 2016). Childhood 

obesity occurs when a child’s weight is above a level considered healthy for their age and 

height. According to the Centers for Disease Control and Prevention (CDC), excessive 

weight gain in children is due to environmental, behavioral, and genetic factors, just as it 

is for adults (CDC, 2016a). Obese children will more likely develop type II diabetes and 

cardiovascular diseases and remain obese into adulthood (Sahoo et al., 2015). Some 

studies have reported higher consumption of less nutritious food and drinks among 

Hispanic American children as compared to non-Hispanic Whites, such as French fries 

and sugar-sweetened beverages (Batis, Hernandez-Barrera, Barquera, Rivera, & Popkin, 

2011); however, non-overweight Hispanic and overweight Hispanic children have a 

similar quality diet (National Council of La Raza &Wilson, 2009). Hispanic Americans 

are the fastest-growing ethnicity in the United States; by 2060, 33.5% of American 

children will be of Hispanic descent; therefore, addressing the disparity of obesity is 

important for U.S. healthcare and productivity of country (Colby & Ortman, 2015).  

Obesity is a complex disease with multifactorial causation; however, disparities in 

the prevalence of obesity may demonstrate a substantial genetic component along with an 

obesogenic environment (Dubois et al., 2012). The genomic composition of Hispanic 

American is a tri-ethnic genetic admixture of Native American (AMR), European (EUR), 
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and African (AFR) traits (Hunninghake, Weiss, & Celedón, 2006). The specific 

proportions of this genetic admixture in Hispanic American children may contribute to 

the etiology of obesity beyond ethnic classification. Cardel et al. (2011) studied the 

association between AFR and EUR in the etiology of racial differences in body 

composition during childhood among children from different reported races, they 

suggested that EUR is associated with lower lean mass and AFR is associated with lower 

fat mass and higher bone mineral content. In this study, I investigated the association 

between genetic admixture proportions and BMI among Hispanic American children 

from 24 different parental countries of origin in the Washington, DC, metropolitan area. 

The discovery of any association or no association between genetic ancestry admixture 

proportion and obesity among Hispanic American children could help healthcare 

providers develop more efficient policies to prevent and control obesity and to decrease 

its economic burden in the U.S. healthcare system.  

Background 

Obesity is an outcome of a positive energy imbalance between energy intake and 

expenditure; however, recent studies indicate that genetic background is another 

important obesity risk factor, and that some children are at a higher risk due to genetic 

factors (Garver et al., 2013; Sahoo et al., 2015). Childhood obesity influences physical 

and psychological health. Obese children will more likely stay obese and develop other 

chronic conditions, such as type II diabetes and cardiovascular diseases (Sahoo et al., 

2015).  
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The National Health and Nutrition Examination Survey (NHANES) reported the 

prevalence of obesity as 21.9% for Hispanic children and 14.7% for non-Hispanic White 

children, aged 2–19 years. As the number of Hispanic Americans is rapidly growing in 

the United States, the total number of Hispanic American obese children will continue to 

increase if all factors are not investigated and addressed. In the NHANES dataset, 

participants reported their self-identified race and ethnicity (Ogden, Carroll, Kit, & 

Flegal, 2014). In general, race and ethnicity are misunderstood terms among scientists 

(Yudell, Roberts, DeSalle, & Tishkoff, 2016). The use of self-identified race and 

ethnicity categories is not sufficient for characterizing the genetic background of 

Hispanics (Mersha & Abebe, 2015). Genetic admixture represents a biological aspect of 

race and ethnicity and has been used to investigate the association between ancestry and 

risk of diseases. Also, it may help to identify genes that may contribute to certain 

conditions (Fernandez, Pearson, Kell, & Brown, 2013). The genetic ancestry of Hispanic 

individuals varies across geographic locations (Bryc, Durand, Macpherson, Reich, & 

Mountain, 2015). Generally, Hispanics have a varied range of ancestry admixture 

proportions of EUR, AMR, and AFR (Hunninghake et al., 2006). According to Skotte, 

Korneliussen, and Albrechtsen, (2013) “Admixture occurs when isolated populations 

begin interbreeding and their offspring represent a mixture of alleles from different 

ancestral populations” (p. 693).  

Due to new genotyping and sequencing technologies, knowledge about the 

genetic susceptibility of obesity has increased (Herrera, Keildson, & Lindgren, 2011). 

Cardel et al. (2011) suggested that the AFR admixture influences levels of adiposity in 
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young children. Furthermore, the associations between ancestry admixture and other 

chronic diseases—such as cancer and type 2 diabetes—have been reported in the 

literature (Divers et al., 2013; Ricks-Santi et al., 2012). The specific admixture 

proportions of children may contribute to the etiology of childhood obesity among 

Hispanics. Knowledge about the association between genetic admixture and obesity may 

help to develop targeted obesity prevention and interventions for Hispanic children from 

different ancestry backgrounds. Targeted and precision preventions may decrease the 

incidence of childhood obesity and effectively eliminate disparities of obesity between 

different groups of American children and the consequences of obesity over time. 

Problem Statement 

Childhood obesity is a major public health concern in the United States and it is 

higher among ethnic minorities. According to Ogden et al. (2014), 29.8% and 16.7% of 

Hispanic American preschool children were overweight and obese, respectively; this is 

twice the national average for this age group. Obesity is a complex disease, and many 

studies have contributed to our understanding of the major risk factors of obesity, such as 

dietary intake and physical activity. Excessive exposure to unhealthy food and limited or 

no access to healthy options, such as healthy grocery stores in disadvantaged 

neighborhoods, is related to the high prevalence of obesity seen in minorities living in 

these communities (Ellaway, Anderson, & Macintyre, 1997; Kahn, Tatham, Pamuk, & 

Heath, 1998). Furthermore, epidemiologic studies argue that intrauterine exposure to 

smoking and higher than recommended weight gain during pregnancy may increase 

glucose levels and result in early onset obesity; too much screen time including TV and 
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video games and short sleep duration may also increase risks for obesity (Taveras, Rifas-

Shiman, Oken, Gunderson, & Gillman, 2008).  

The prevalence of childhood obesity among Hispanic American children is 

partially explained by socioeconomic and cultural factors (Taveras, Gillman, Kleinman, 

Rich-Edwards, Rifas-Shiman, 2013); however, knowledge about disparities within 

ethnicities is not well investigated. Hispanic American children’s parents are originally 

from South or Central American countries, with a wide variety of admixture proportions 

of EUR, AMR, and AFR ancestry. An association of West African, EUR and AMR 

ancestry and adult body mass index (BMI) has been reported in the United States 

(Fernandez et al., 2013; Shaffer et al., 2007). Cardel et al. (2011) suggested that genetic 

factors may contribute to total body fat accumulation among children. Nevertheless, the 

association between genetic admixture proportion and obesity among Hispanic American 

children has not been investigated. Ancestral genetic background may explain some 

differences in the prevalence of obesity among Hispanic American children, with similar 

obesogenic factors and socioeconomic status (Fernandez et al., 2013; Higgins, Fernández, 

Goran, & Gower, 2005).  

Purpose of the Study 

The purpose of this quantitative, cross-sectional research study was to investigate 

the contribution of children’s genetic admixture proportion—including EUR, Native 

AMR and AFR—to childhood obesity through the use of BMI among 2-year-old 

Hispanic American children. I also investigated whether this association remained 

significant after controlling for obesogenic risk factors of early life, including frequency 
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of daily juice consumption at age 2, sex, birth weight. maternal education, and household 

income.  

The independent variable in this study was the admixture proportion (EUR, AMR, 

and AFR). The dependent variable was BMI at age 2. Potential confounding variables 

were as follows: (a) frequency of juice consumption at age 2; (b) sex; (c) maternal 

education, (d) mother’s BMI (e) mother’s age (f) mother’s region of birth and (g) birth 

weight (Brophy, 2009; Sahoo et al., 2015).  

Research Questions and Hypotheses 

This study was guided by three research questions. 

 RQ1: Is there an association between children’s EUR genetic background and 

BMI among 2-year-old Hispanic American children?  

 H01: There is no statistically significant association between children’s EUR 

genetic background and BMI among Hispanic American children.  

 HA1: There is a statistically significant association between children’s EUR 

genetic background and BMI among Hispanic American children.  

To examine RQ1, simple linear regression analysis was conducted to assess 

whether EUR genetic background of children influences BMI. If an association was 

found, then multiple linear regression would have been conducted to determine whether 

this association remained significant even after controlling for confounding variables.  

 RQ2: Is there an association between AMR genetic background and BMI among 

2-year-old Hispanic American children?  
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 H02: There is no statistically significant association between children’s AMR 

genetic background and BMI among Hispanic American children.  

 HA2: There is a statistically significant association between children’s AMR 

genetic background and BMI among Hispanic American children.  

 To examine RQ2, simple linear regression analysis was conducted to assess 

whether AMR genetic background of children is associated with BMI. If an association is 

found, then multiple linear regression would have been conducted to determine whether 

this association remained even after controlling for confounding variables.  

 RQ3: Is there an association between children’s AFR genetic background and 

BMI among 2-year-old Hispanic American children?  

 H03: There is no statistically significant association between children’s AFR 

genetic background and BMI among Hispanic American children.  

 HA3: There is a statistically significant association between children’s AFR 

genetic background and BMI among Hispanic American children.  

 To examine RQ3, simple linear regression analysis was conducted to determine 

whether AFR genetic background of children was associated with BMI. If an association 

was found, then multiple linear regression would have been conducted to determine 

whether this association remained significant even after controlling for confounding 

variables.  

Theoretical Framework for the Study 

The theory of evolutionary developmental biology (evo-devo) was used to 

investigate the relationship between children’s growth process and ancestral background. 
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Ancestral genetic background may explain some differences in the prevalence of obesity 

among Hispanic American children with similar social and environmental risk factors. 

Precise understanding of association of ancestry background of Hispanic children and the 

prevalence of obesity may help to develop more precise and personalized prevention and 

intervention policies.  

The genetic background of AFR, AMR, and EUR ancestry is associated with the 

body composition of adults in the United States (Klimentidis, Miller, & Shriver, 2009). 

Similar to many other individuals in the United States, Hispanic Americans have this 

kind of admixed ancestry. According to Salzano and Sans (2014), “Latin American 

populations can be viewed as natural experiments for the investigation of unique 

anthropological and epidemiological issues.” Evo-devo explains the relationship between 

growth process and ancestral background. The Life-History Theory (Hill, 1993) is an 

evo-devo domain that provides an important conceptual framework to address questions 

about health and disease (Gluckman, Low, Buklijas, Hanson, & Beedle, 2011).  

Many features of human anatomy are related to consequences of evolutionary 

history. The principles of evolutionary biology may provide new insights into childhood 

obesity and enable an integrated understanding of human biology (Gluckman et al., 

2011). Epigenetic findings have increased knowledge of the molecular mechanisms that 

may contribute to the programming of obesity (Kappil, Wright, & Sanders, 2016). These 

concepts are explored in more detailed analysis in Chapter 2. 
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Nature of the Study 

This is a cross-sectional study investigating the contribution of children’s genetic 

admixture proportion to childhood obesity through use of BMI among 2-year-old 

Hispanic American children, adjusted for major obesogenic risk factors of early life 

obesity such as juice consumption and socioeconomic risk factors. The data for my study 

was obtained from the Inova Translational Medicine Institute. Inova’s “The First 1,000 

Days of Life and Beyond” is a genomic longitudinal cohort study based in the Inova 

Health System in the Washington, DC metropolitan area. R 3.1.2 and SAS 9.4 were used 

to conduct analyses of descriptive and inferential statistics. This is further addressed in 

Chapter 3. 

Operational Definitions 

Dependent Variables  

BMI: BMI is the ratio of person’s body weight in kilograms to person’s height 

square. BMI is used to classify and assess individuals as overweight and obese. BMI can 

estimate how much body fat a person has (Nuttall, 2015).  

Obesity: For children and adolescents 2–19 years old, obesity is defined as having 

a BMI at or above the 95th percentile of the sex-specific BMI on the CDC Age growth 

chart (CDC, 2016b).  

Overweight: For 2–19 years old children and adolescents “overweight” is defined 

as having a BMI at or above the 85th percentile of the sex-specific BMI on the CDC Age 

growth chart (CDC, 2016b).  



10 

 

Independent Variable 

Genetic ancestry admixture proportion: “Admixture occurs when isolated 

populations begin interbreeding and their offspring represent a mixture of alleles from 

different ancestral populations. Estimating the admixture proportions of an individual is a 

valuable tool in both population genetics and genetic epidemiology” (Skotte et al., 2013, 

p. 693). The ancestry of study children was estimated by the ancestry and kinship toolkit 

(AKT; Arthure, Schulz-Trieglaff, Cox, & O’Connell, 2016) using 17,535 reliable and 

common single-nucleotide polymorphisms (SNPs) by projecting the samples into the 

1,000 genomes (Auton et al., 2015) principal components (PCs), followed by assigning 

the PCs to admixture proportions.  

Admixture Proportions Super Groups 

• EUR: European,  

• AFR: African,  

• AMR: Americas,  

• SAS: South Asia, and 

• EAS: East Asia. 

Confounding Variables  

• Juice consumption frequency at age 2, 

• Maternal education,  

• Maternal age, 

• Maternal BMI, 

• Maternal region of birth, 
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• Birth weight, and 

• Sex 

Other Terms 

Obesogenic factors: factors that contribute to obesity such as high-calorie food 

intake and physical inactivity.  

Epigenetic factors: Epigenetics is the study of chemical reactions that activate or 

deactivate parts of the genome in certain times and locations (Genetic Science Learning 

Center, 2018).  

Evo-devo: According to Hall (2012), “Evolutionary developmental biology (evo-

devo) as a discipline is concerned, among other things, with discovering and 

understanding the role of changes in developmental mechanisms in the evolutionary 

origin of aspects of the phenotype” (p. 184). In a very real sense, evo-devo opens the 

black box between genotype and phenotype, or more properly, phenotypes as multiple 

life history stages arise in many organisms from a single genotype (Hall, 2012).  

Genome-wide association study (GWAS): According to the National Human 

Genome Research Institute: 

A genome-wide association study is an approach that involves rapidly scanning 

markers across complete sets of DNA, or genomes, of many people to find 

genetic variations associated with a particular disease. Once new genetic 

associations are identified, researchers can use the information to develop better 

strategies to detect, treat and prevent the disease. Such studies are particularly 

useful in finding genetic variations that contribute to common, complex diseases, 
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such as asthma, cancer, diabetes, heart disease and mental illnesses. (National 

Human Genome Research Institute, 2015) 

Assumptions 

The study population included about 150 2-year-old Hispanic American children 

who were recruited into “The First 1,000 Days of Life and Beyond” study (The First 

1,000 Days of Life and Beyond, 2018). I assumed that the sample was representative of 

Hispanic American children in the Washington, DC metropolitan area. For this research, 

I used secondary data, and I assumed that the parentally reported anthropometrics were 

accurate, and that other reported data were truthful. I also assumed that the secondary 

data were retrieved correctly. I assumed that the AKT used in bioinformatics department 

is a reliable, statistical genetics tool for analyzing large cohorts of whole-genome 

sequenced samples. 

Scope and Delimitations 

This quantitative study evaluated 2-year-old Hispanic American children who 

were recruited into “The First 1,000 Days of Life and Beyond,” a genomic study at Inova 

Health System from July 2012 to 2015 in Falls Church, Virginia. The goal of this study 

was to investigate the contribution of children’s genetic admixture proportion (EUR, 

AMR, and AFR) to childhood obesity (determined via BMI) for 2-year-old Hispanic 

American children. Furthermore, major obesogenic risk factors of early life obesity such 

as juice consumption and socioeconomic risk factors were evaluated. Hispanics have a 

varied range of ancestry admixture proportions of EUR, AMR, and AFR (Hunninghake, 

2006). When an isolated population starts interbreeding, their offspring represents a 
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mixture of alleles from various ancestries; this constitutes admixture. Estimating the 

admixture proportions of an individual is valuable in both population genetics and genetic 

epidemiology. In population genetics, admixture analysis allows the researcher to classify 

individuals with unknown races into discrete populations. This has been used to 

successfully describe the genetics of different populations and even extinct populations 

(Rasmussen, 2010; Rosenberg et al., 2002). Knowing individual admixture proportions is 

also useful in genetic association studies.  

The objective of study objective was chosen to investigate how a mixture of 

alleles from different ancestral populations contributes to childhood obesity regardless of 

cultural and social risk factors. I considered all the available confounding variables 

including prenatal, clinical, socioeconomic, and early life dietary variables to improve 

internal validity. Anthropometric values were used to calculate age-sex-specific BMI; 

weights and heights were parentally reported; I used the interquartile outlier rule to detect 

and remove outliers (Hazrati et al., 2016). Furthermore, I removed all the physiologically 

impossible parentally reported anthropometrics. I believe Hispanic American children in 

my study were representative of Hispanic American children in the Washington, DC 

metropolitan area. In general, retrospective studies can be riddled with threats to both 

internal and external validity. Although a cause-and-effect relationship cannot be 

determined using retrospective studies, they are useful for providing preliminary data and 

in guiding the development of future prospective studies (Tofthagen, 2012).  
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Limitations 

This was a cross-sectional study using parentally reported anthropometrics; some 

of the confounding variables—including dietary values—are parentally reported. 

Therefore, differential misclassification and information bias may have occurred during 

data collection, and internal validity could be jeopardized. Another threat to validity of 

this study is participation bias: firstly, parents who agreed to participate in the genomic 

study may have had different demographics than the ones who did not agree to participate 

in a longitudinal genomic study; secondly, parents who did not complete longitudinal 

surveys may have had a particular problem affecting this cross-sectional study. This is a 

particular problem when the characteristics of non-responders differ from responders 

(Shepherd, Power, & Carter, 1998).  

This study was limited to 2-year-old Hispanic American children residing in the 

Washington, DC metropolitan area who were recruited into “The First 1,000 Days of 

Life” study and whose parents had completed longitudinal surveys. Although the children 

in this study are likely representative of Hispanic American ancestry admixture in the 

Washington, DC metropolitan area, the result may not be generalizable to different 

acculturation and assimilation processes in other regions of the United States.  

Significance 

Hispanic children have a higher prevalence of obesity compared to non-Hispanic 

White children in the United States (Ogden et al., 2014). However, knowledge about 

association of obesity and children’s ancestry genetic background is lacking. The use of 

mother’s self-identified Hispanic ethnicity is not sufficient to explain the disparities in 
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childhood obesity, and this issue has not been well studied among Hispanic American 

children from different ancestries. Very little is known about how admixture proportions 

may affect childhood obesity. A study of the associations between obesity and genetic 

admixture proportions of Hispanic American children—along with other social and 

clinical factors—could help to better understand the higher prevalence and etiology of 

childhood obesity among Hispanic children.  

Social Change Implications 

If the prevalence or severity of childhood obesity among Hispanic children is 

related to specific ancestry background, then knowledge of this association is beneficial; 

it can help healthcare providers develop more effective and practical public health 

policies to prevent and treat childhood obesity for this population. The information 

gained from this study has the potential to create positive social change by developing 

precision preventions. The knowledge may help to develop targeted obesity prevention 

interventions for Hispanic children from different ancestry backgrounds. Targeted and 

precision prevention may decrease childhood obesity and more effectively eliminate the 

disparity of obesity and lower the consequences of obesity over time.  

Summary 

In this chapter I have provided some background on the prevalence and disparities 

in childhood obesity in the United States. Childhood obesity is a main public health issue, 

and it is disproportionately higher for Hispanic American children. Hispanic Americans 

are the fastest growing minority group in the United States, and it seems high prevalence 

of childhood obesity will continue to be an issue if all the risk factors of obesity are not 
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investigated precisely. As stated before, in the collection of national health data such as 

NHANES, people reported their self-identified and socially assigned race or ethnicity. 

Hispanic Americans have an admixed ancestry background and use of self-reported 

ethnicity is not sufficient to investigate the biological aspects? of their background. As 

theory of evo-devo explains the relationship between growth process and ancestral 

background, I intend to use genetic ancestry to investigate the association between the 

biological aspect of children’s backgrounds and obesity. I used a genetic admixture of 

Hispanic American children as a surrogate for the biological aspect of their ancestry. A 

precise understanding of the association between ethnic background and obesity could 

help to develop more precise and personalized prevention and treatment policies. 

In Chapter 2, I briefly explain the literature search strategy and reviewe studies 

that gave more background on the issues of childhood obesity and disparities in obesity. I 

discuss the theoretical framework and the economic impact of childhood obesity. I also 

argue the insufficiency of the social constructs of race and ethnicity in scientific study.  
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Chapter 2: Literature Review 

Childhood obesity is a major public health concern in the United States, and it is 

higher among ethnic minorities. According to Ogden et al. (2014), 29.8% and 16.7% of 

Hispanic American preschool children were overweight and obese, respectively. This is 

twice the national average for this age group. Racial and ethnic disparities in childhood 

obesity among Hispanic American children are partially explained by socioeconomic and 

cultural factors; however, these disparities within single ethnicities are not well 

investigated. Hispanic American children’s parents are originally from South or Central 

American countries and have a wide range of variation in ancestry admixture proportions 

(of EUR, AMR, and AFR alleles). Shaffer (2007) and Fernandez (2013) have reported on 

associations between West African, EUR, and AMR parental populations, and BMI for 

adults in the United States.  

In this chapter, I briefly explain the literature search strategy and review studies 

that gave more background on the issues of childhood obesity and disparities in obesity. I 

then discuss the theoretical framework for my study, evo-devo, which explains how 

alterations in the mechanisms of embryonic development influence or direct 

evolutionary changes in any and all stages of the life cycle (Hall, 2012). This chapter 

also defines the main outcome and predictive variables and fundamental concepts 

including obesity, BMI, ancestry genetic admixture, as well as epigenetics and 

environmental and genetic risk factors of obesity. I briefly discuss the economic impact 

of childhood obesity and disparities in the prevalence of obesity among different races 

and ethnicities. I go on to discuss the insufficiency of the social constructs of race and 
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ethnicity in scientific study. Ancestry genetic admixture has been suggested as a 

surrogate for children’s parentally reported race and ethnicity, and so I conclude by 

reviewing literature on the association between genetic admixture and diseases.  

Literature Search Strategy 

I searched several electronic databases including PubMed, Google Scholar, the 

NHGRI-EBI catalog of published GWAS (GWAS Catalog), and Open Thesis, as well as 

dissertations at Walden. The following key search terms were used: genetic admixture, 

epigenetic, childhood obesity, disparity of obesity, risk factors of obesity, Hispanic 

children obesity, National Health Statistics, consequence of childhood obesity and 

genetics of obesity, early life obesogenic factors prevalence of childhood obesity, 

definition of childhood obesity, evolutionary developmental biology, and life-history 

theory.  

The following keyword combinations were used to search for more relevant 

literature: Childhood obesity and Hispanics, genetics and childhood obesity, admixture 

proportion and childhood obesity, admixture proportion and chronic diseases and 

admixture proportion, Hispanic childhood obesity, and obesity theoretical framework 

and genetics of complex diseases. The search was limited to English-language peer-

reviewed journals published from 1984 to present. A total of 250 were designated as 

potentially useful sources; 85 were used in this study. This time frame was chosen 

because there is no study of admixture proportion and health condition prior to that date.  
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Evolutionary Developmental Biology 

The theoretical framework is a very important aspect of any research process. 

Theory-driven thinking is crucial for the development of the research topic, and 

questions. It is like the blueprint of a house. The theoretical framework serves as a 

structure and support for the study, and it provides a grounding base for literature review 

as well as the study design, methods, and analysis plan (Grant & Osanloo, 2014). The 

life-history theory is an evo-devo domain that provides an important conceptual 

framework to address questions about health and disease (Gluckman, 2011; Hill, 1993). 

Evo-devo serves as the theoretical framework for this study to investigate the 

relationship between growth processes and ancestral background. As Hall (2012) wrote, 

“Evolutionary Developmental Biology (EvoDevo) is part of biology involved in 

understanding how alterations in the mechanisms of embryonic development influence 

or direct evolutionary changes in any and all stages of the life cycle” (p. 184). Calow is 

zoologist and environmentalist who used the term evolutionary developmental biology 

for the first time in the University of Sheffield in England. Evo-devo theory is 

concerned with the relationship between changes in embryonic development during 

single generations and the evolutionary changes between generations. Charles Darwin 

explained that embryonic development is an important concept to understand in human 

evolution (Hall, 2012). The evo-devo approach to phenotypic novelty seeks to provide a 

mechanistic explanation of morphological change (Peterson & Müller, 2016). An 

appreciation of the fundamental principles of evo-devo provides new insights into major 

diseases and enables an integrated understanding of human biology and medicine. Public 
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health professionals are familiar with the physiological basis of disease; an understanding 

of evo-devo will help them to gain a better understanding of and appreciation for the 

occurrence of diseases (Gluckman et al., 2011). 

Recently, molecular genetics revolutionized the theory of evo-devo by 

integrating a molecular understanding into evolutionary theory, with operational 

mechanisms interacting at different levels including gene, cell, tissues, organs, whole 

organism, and organism–environment. At the gene level, evolutionary developmental 

mechanisms operate for regulation, networks, interactions, genome size, and epigenetic 

processes. At the environmental level, evolutionary developmental mechanisms operate 

for Phenotypic responses to chemicals released by predators, and food supplies (Hall, 

2012). Generally, controls on gene regulation and function are considered under the 

purview of “epigenetics.” Epigenetic is a term coined by the British geneticist and 

embryologist Conrad Waddington for the causal factors that control gene action during 

development (Hall, 2012).  

Epigenetic  

According to Hall (2003) epigenetics is “the sum of the genetic and non-genetic 

factors acting upon cells to control selectively the gene expression that produces 

increasing phenotypic complexity during development” (p. 492). The genetic aspect of 

epigenetics has shown that organisms do not start their lives as naked nuclear DNA. 

They possess DNA in their mitochondria—epigenetic “marks” in their nuclear DNA—

and they inherit mRNA and proteins that were produced under the control of their 

mother’s DNA and deposited into the egg cytoplasm (Hall, 2012). Patterns of epigenetic 
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markers for obese people are different from those of nonobese individuals (Martínez, 

Milagro, Claycombe, & Schalinske, 2014). 

The prevalence of obesity in modern society has two major contributory factors: a 

historical environmental change, and a genetic predisposition that has its origins in our 

evolutionary history. From an evolutionary perspective, one of the explanations is that 

most mutations in the genes that predispose us to obesity are neutral and have been 

drifting over evolutionary time—so-called “drifty genes” that lead some individuals to be 

obesity prone and others to be obesity resistant (Speakman, 2016). Obesity results from 

interactions between environmental and genetic factors. Despite a relatively high 

heritability of common, nonsyndromic obesity (40-70%), the search for genetic variants 

contributing to susceptibility has been a challenging task. GWAS have dramatically 

changed the pace of detection of common genetic susceptibility variants. Recent genome-

wide association studies have identified many SNPs associated with adult and childhood 

BMI (Monnereau¸ 2017). Several genetic variants have been associated with obesity and 

fat distribution. However, since these variants do not fully explain the heritability of 

obesity, other forms of variation such as epigenetics marks must be considered.  

Epigenetic marks, or “imprinting,” affect gene expression without actually 

changing the DNA sequence. Failures in imprinting are known to cause extreme forms of 

obesity (e.g., Prader-Willi syndrome) but have also been convincingly associated with 

susceptibility to obesity. Furthermore, environmental exposures during critical 

developmental periods can affect the profile of epigenetic marks and result in obesity 

(Herrera et al., 2011). When methyl groups add to DNA strands, it can affect the activity 
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of nearby genes. Methylation is controlled by both genetic and environmental factors and 

altered patterns of DNA methylation are seen in some diseases. It is therefore an ideal 

biological process to study to determine how race or ethnicity and ancestry contribute to a 

person’s susceptibility to disease (Galanter et al., 2017). Epigenetic modification of the 

genome through methylation plays a key role in the regulation of diverse cellular 

processes (Smith, 2013).  

Stryjecki, Alyass, and Meyre (2017) have used examples from evolution, 

heritability, admixture, and monogenic and polygenic studies of obesity to provide 

explanations for ethnic differences in the prevalence of obesity. Multiethnic studies may 

provide a better understanding of disparities in obesity to create more targeted and 

personalized obesity treatments. 

Overweight and Obese Children 

Obesity is one of the most important causes of chronic disease in the world. 

Obesity contributes to cardiovascular disease, diabetes mellitus, and other physical and 

mental chronic disorders. Although severe obesity or monogenic obesity has been more 

studied in the clinical setting, most chronic conditions are due to moderate or polygenic 

obesity. Moderate obesity is a multifactorial condition and needs greater attention in the 

development of a public health strategy for the general population (Grundy, 1998). 

Childhood obesity is a complicated disease. A child is considered overweight or obese if 

he or she is above a designated normal weight for his or her age, sex, and height. 

Unhealthy weight gain in children comprises various factors such as high calorie/low 

nutrient diets, low levels of physical activity, and genetics (CDC, 2016a).  
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Childhood obesity is related to several chronic conditions in childhood and adult 

life including high blood pressure, high cholesterol, cardiovascular disease (CVD), and 

increased risks of impaired glucose tolerance, type 2 diabetes, asthma, sleep apnea, and 

joint problems (Bacha, 2016; Cote, Harris, Panagiotopoulos, Sandor, & Devlin, 2013). 

Furthermore, childhood obesity is associated with anxiety, depression, low self-esteem, 

and social problems (Morison, 2015). Obese children are more likely to remain obese as 

adults, and adult obesity is associated with increased risks of heart disease, type 2 

diabetes, and cancer (Bass & Eneli, 2015).  

Types of Obesity 

Monogenic Obesity 

Multiple rare forms of obesity are caused by mutations in single genes called 

monogenic mutations. These mutations in genes control appetite, food intake, and energy 

homeostasis (Hu, 2008). Obesity is also a characteristic of other genetic syndromes 

caused by chromosomal abnormalities or mutation, such as Prader–Willi and Bardet-

Biedl syndromes. In these syndromes, obesity is present along with mental retardation or 

reproductive anomalies (Farooqi & O’Rahilly, 2006).  

Polygenic or Common Obesity 

Although in the 21st century obesity can affect everyone in Westernized and non-

Westernized societies, some people tend to be more susceptible. Evidence from animal 

models, twin studies, and genome-wide association studies of large populations suggests 

that the variation in human susceptibility to obesity has a genetic component along with 

obesogenic environmental factors. Despite monogenic obesity, many genes may 
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influence common or polygenic obesity. Genome-wide association studies scan several 

genetic markers among thousands of individuals’ complete sets of DNA to find gene 

variations called SNPs such as the fat mass and obesity-associated (FTO) gene on 

chromosome 16. People who carry FTO or other obesity-related variants have higher risk 

of obesity (Loos et al., 2008). Several GWAS among EUR and other racial ethnic groups 

suggest a partial genetic overlap between obesity loci across various ethnic groups (see 

Figure 1). 
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Figure 1. Genetic overlap between obesity loci across various ethnic groups. From 
“Common Variants Near MC4R Are Associated with Fat Mass, Weight and Risk of 
Obesity,” by R. J. Loos, C. M. Lindgren, S. Li, E. Wheeler, J. H. Zhao, I. 
Prokopenko, . . . K. L. Mohike, 2008, Nature Genetics, 40(6), p. 768.  
 

Prevalence of Childhood Obesity in the United States 

The prevalence of childhood obesity has more than tripled in the past five decades 

(Fryar et al., 2012). The prevalence of obesity among U.S. youth was 17.0% in 2011–

2014. Overall, the prevalence of obesity among preschool-aged children (2–5 years; 

8.9%) was lower than among school-aged children (6–11 years; 17.5%) and adolescents 

(12–19 years; 20.5%). The same pattern was seen in both males and females (Ogden, 

Carroll, Fryar, & Flegal, 2015). However, recent data suggest that the prevalence of 
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childhood obesity may be decreasing among certain populations. According to the 

National Heart Lung and Blood Institute (2016), obesity is defined as having excess body 

fat. Overweight is defined as having excess body weight for a particular height from fat, 

muscle, bone, water, or a combination of these factors. BMI is a widely used screening 

tool for measuring whether an individual qualifies as overweight or obese. BMI 

percentile is preferred for measuring children and young adults (ages 2–20), because this 

measure considers the fact that they are still growing, and that they could be growing at 

different rates depending on their age and sex. Health professionals use growth charts to 

see whether a child’s weight falls into a healthy range for the child’s height, age, and sex. 

Children with a BMI at or above the 85th percentile and less than the 95th percentile are 

considered overweight. Children at or above the 95th percentile are considered obese 

(CDC, 2016b; see Table 1). 
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Table 1 

BMI Percentile Classifications 

Weight Status Category Percentile Range 

Underweight Less than the 5th percentile 

Normal or healthy weight 5th percentile to less than the 85th percentile 

Overweight 85th to less than the 95th percentile 

Obese Equal to or greater than the 95th percentile 

 

Body Mass Index Percentile (BMI) and Sex-Specific BMI-for-Age Percentile  

BMI is a person’s weight in kilograms divided by the square of height in meters 

(rounded to one decimal place). For children and teens, BMI is age- and sex-specific, and 

is often referred to as BMI-for-age. According to the CDC (2017), obesity represents a 

BMI at or above the 95th percentile of the sex-specific CDC BMI-for-age growth charts 

in children and adolescents aged 2 to 19 years. Overweight was defined by the CDC as 

possessing a BMI between the 85th and 95th percentiles. There is no recommended 

definition of obesity in children younger than 2 years; excess weight for children under 

age 2 was defined as a weight for recumbent length at or above the 95th percentile on the 

CDC sex-specific weight for recumbent length growth charts (Ogden & Flegal, 2010). A 

high BMI can be an indicator of high body fatness. Although BMI does not measure body 

fat directly, research has shown that BMI is correlated with more direct measures of body 

fat such as skinfold thickness measurements, bioelectrical impedance, densitometry 

(underwater weighing), dual energy x-ray absorptiometry (DXA), and other methods 

(Freedman, Horlick, & Berenson, 2013; Garrow & Webster, 1985; Wohlfant-Veje, 2014). 
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BMI can be considered an alternative to direct measures of body fat. In general, BMI is 

an inexpensive and easy-to-perform method of screening for weight categories that may 

lead to health problems. 

BMI Percentile 

Children’s BMI is expressed as a percentile and it can be obtained from either a 

graph or a percentile calculator. These percentiles express a child’s BMI relative to 

children in the United States who participated in national surveys that were conducted 

from 1963–1965 and 1988–1994. Because weight and height change during growth and 

development, as does their relation to body fatness, a child’s BMI must be interpreted 

relative to other children of the same sex and age. The BMI-for-age percentile growth 

charts are the most commonly used indicator to measure the size and growth patterns of 

children and teens in the United States. BMI-for-age weight status categories and the 

corresponding percentiles were based on expert committee recommendations and BMI-

for age for 2-year-old boys and girls (24 months) are shown in the following table and 

graphs (see Tables 2 and 3 and Figures 2 and 3; CDC, 2001). 
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Table 2 

BMI-for-Age for 24-Month-Old Boys 

Percentile BMI Value 

3rd  14.52095 
5th  14.73732 
10th  15.09033 
25th  15.74164 
50th  16.57503 
75th  17.55719 
85th  18.16219 
90th  18.60948 
95th  19.33801 
97th  19.85986 

Note. Adapted from “Data Table of BMI-for-Age Charts (Males),” by Centers for 
Disease Control and Prevention (CDC), 2001a. Retrieved from https://www.cdc.gov 
/growthcharts/html_charts/bmiagerev.htm#males. Copyright 2001 by the CDC.  
 

Table 3 

BMI-for-Age for 24-Month-Old Girls 

Percentile BMI Value 

3rd  14.14735 
5th  14.39787 
10th  14.80134 
25th  15.52808 
50th  16.42340 
75th  17.42746 
85th  18.01821 
90th  18.44139 
95th  19.10624 
97th  19.56411 

Note. Adapted from “Data Table of BMI-for-Age Charts (Females),” by Centers for 
Disease Control and Prevention (CDC), 2001b. Retrieved from https://www.cdc.gov 
/growthcharts/html_charts/bmiagerev.htm#females. Copyright 2001 by the CDC.  
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Figure 2. BMI-for-age percentiles, boys 2–20. Adapted from by Centers for Disease 
Control and Prevention, 2001. Retrieved from https://www.cdc.gov/growthcharts/data 
/set1clinical/cj41c023.pdf. Copyright 2001 by CDC. Reprinted with permission. 
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Figure 3. BMI-for-age percentiles, girls 2–20. Adapted from by Centers for Disease 
Control and Prevention, 2001. Retrieved from https://www.cdc.gov/growthcharts/data 
/set1clinical/cj41c024.pdf. Copyright 2001 by CDC. Reprinted with permission. 
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Interpretation of BMI and BMI Percentile 

BMI is currently used in the medical profession to screen for weight status and 

weight-related health problems, and a child with a high BMI for their age and sex should 

be seen by a health care provider for further assessments such as skinfold thickness 

measurements, evaluations of diet, physical activity, family history, and other appropriate 

health screenings. BMI is interpreted differently for children and teens even though it is 

calculated the same way. Because there are changes in weight and height with age, BMI 

levels among children and teens need to be expressed relative to other children of the 

same sex and age.  

Economic Impact of Obesity 

The high prevalence of childhood obesity is an important burden on U.S. public 

health and the economy. Furthermore, obesity has a large economic impact on individuals 

and families (Tremmel, Gerdtham, Nilsson, & Saha, 2017). There are several economic 

impacts associated with the obesity epidemic including productivity costs (such as 

disability and premature mortality) and medical costs (which can be as much as 100% 

higher for an obese individual as compared to a healthy weight adult). Obesity also 

engenders transportation costs and human capital costs. The overall economic impact of 

obesity in the United States appears to be substantial (Hammond & Levine, 2010). 

According to Hammond (2010), the total annual economic costs associated with obesity 

are about $215 billion. The worldwide economic impact of obesity was estimated to be 

$2.0 trillion, which is equal to 2.8% of the global gross domestic product (Dobbs et al., 

2014).  
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Risk Factors for Childhood Obesity 

Obesity is a global health problem and has increased dramatically in recent 

decades. Childhood obesity is associated with type 2 diabetes mellitus, cardiovascular 

disease, some types of cancer, steatohepatitis, and increased risks of premature death in 

adulthood (Must, Phillips, Naumova, 2012; Williams et al., 2005). Very early life is a 

critical period, hypothesized to be especially predictive of later obesity risk (Young, 

2012). Obesity is a multifactorial disease encompassing genetic, environmental, social, 

and clinical factors.  

Genetics 

GWAS have identified multiple genes such as FTO, which relate to BMI (Fall & 

Ingelsson, 2014). Cecil, Tavendale, Watt, Hetherington, and Palmer, (2008) studied 2,726 

children for associations with the rs9939609 variant of the FTO gene and found strong 

associations with BMI and weight. Some studies showed that variants in gene MC4R are 

also associated with fat mass, weight, and risk of obesity. In children, these MC4R 

variants may possibly relate to regulation of weight through energy intake and energy 

expenditure (Loos et al., 2008). Furthermore, a study of 11,653 school children in 

England found that increased parental BMI is significantly associated with rapid weight 

gain between the ages of 3 and 5 years (Griffiths, Hawkins, Cole, & Dezateux, 2010). 

Social, Environmental, and Behavioral  

The fundamental cause of obesity is an energy imbalance between consumed and 

expended calories. Therefore, obesity is mainly the outcome of feeding or eating 

behaviors coupled with a sedentary life style. Breastfeeding is found to reduce the risk of 
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obesity; although controlling for parenting and environmental effects is difficult, 

breastfeeding is a protective factor according to several studies. Metzger (2010) 

compared breastfed and nonbreastfed siblings and examined the presence of obesity in 

adolescence. In sibling pairs in which one was breastfed, and one was not, the breastfed 

sibling had a lower BMI in adolescence and was less likely to be overweight or obese. 

Sugar-sweetened beverages are associated with excess weight gain. The largest dietary 

source of fructose (a lipogenic sugar) provides extra calories; however, these calorie 

sources may not be well-emphasized compared to solid food such as fast food. These 

beverages may also replace milk and decrease calcium consumption (Fiorito, Marini, 

Francis, Smiciklas-Wright, & Birch, 2009).  

Screen time is a modifiable risk factor for obesity; most obese children have more 

than 2 hours of television or computer time a day. African American children have the 

highest amount of screen time compared to European American and Mexican American 

children (Vos, 2010). Factors that are associated with increased screen time are lower 

family income and the presence of a TV in the child’s bedroom (He, Harris, Piché, & 

Beynon, 2009). Examination of cardiorespiratory fitness in school-aged children 

demonstrated that children with low fitness had a significantly higher risk of being 

overweight, and had disproportionate increases in weight gain (McGavock, Torrance, 

McGuire, Wozny, & Lewanczuk, 2009). Family factors are also associated with obesity. 

The availability of healthy food in the house and familial food preferences influence the 

foods that children eat. Education, income, poor zip code neighborhoods and lack of 

access to healthy food and safe outdoor activities, along with some cultural factors are 
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also associated with increased risks of obesity (Faith & Kral, 2006; Hesketh, Waters, 

Green, Salmon, & Williams, 2005).  

Disparity of Childhood Obesity Among Races and Ethnicities  

Childhood obesity is a serious problem in the United States, putting kids at risk 

for poor health. Despite recent declines in the prevalence of obesity in children aged 2–5 

years, obesity amongst all children—particularly Hispanics and African Americans—is 

still too high. According to the CDC data brief (2017), the prevalence of childhood 

obesity was 21.9% and 19.5% among Hispanics and non-Hispanic blacks respectively, as 

compared to 14.7% of non-Hispanic whites. In 2014, the prevalence of obesity was 

14.5% for among the Women, Infants, and Children (WIC) participants aged 2–4 years. 

The prevalence of obesity among these young children was higher for Hispanic children 

(17.3%) as compared to non-Hispanic White (12.2%; Pan, 2016). The overall prevalence 

of childhood obesity is higher than the Healthy People 2020 goal of 14.5%, and it is 

disproportionately higher for Hispanic children (Ogden et al., 2015). 

Race and Ethnicity as Social and Cultural Constructs 

Self-reported race and ethnicity is used in epidemiological studies to evaluate 

individuals’ origins and understand the roles and interactions between individuals’ 

biology and environment. Although the concepts of race and ethnicity have evolved over 

time, they are still indistinctly defined terms (Lin & Kelsey, 2000). Usually, participants 

in the United States specify a race or ethnicity group based on six categories: White, 

Black, Black Hispanic, White Hispanic, Asian, or other. In the collection of NHANES 

data, participants reported their self-identified race and ethnicity (Ogden et al., 2014). 
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Race and ethnicity are related and often used interchangeably; however, race refers to a 

person’s physical appearance—such as skin color and eye color—while ethnicity 

encompasses cultural heritage, language, social practice, traditions, and geopolitical 

factors (Mersha, 2015).  

Usually one family member declares for the rest, thus preventing detailed analysis 

of individuals with multiple (and differing) origins. For example, a child of mixed 

parentage (one black and one white) is typically socially classified as black, even though 

genetically the child could just as easily be considered white (with a 50/50 genotype). In 

general, race and ethnicity are problematic and misunderstood terms among scientists 

(Yudell et al., 2016). The use of self-identified race and ethnicity categories in scientific 

studies is not sufficient for characterizing the biologic and genetic backgrounds of 

populations to precisely explore the epidemiology of diseases (Mersha, 2015).  

The genetic ancestry of Hispanic individuals widely varies across geographic 

locations (Bryc et al., 2015). Hispanics who can be of any race are the largest ethnic 

minority in the United States. They are expected to represent 24% of the U.S. population 

by 2050 (Lee, 2010). The Hispanic population is genetically diverse, representing a 

heterogeneous mix of EUR, AFR, and AMR ancestry (Gonzalez et al., 2005). Therefore, 

a Hispanic individual may self-identify as a single race or as multiple races. There are 

wide variations across and within Hispanic ethnic groups in terms of genetic, 

socioeconomic, and cultural factors and geographic origins. Generally, Hispanics have a 

varied range of ancestry admixture proportions of EUR, AMR, and AFR alleles 

(Hunninghake et al., 2006). The use of a single Hispanic or Latino ethnic category is 
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insufficient for characterizing genetic background and disease prevalence (Lara, 

Akinbami, Flores, & Morgenstern, 2006). For example, Hispanic Americans who are of 

Mexican origin have a higher proportion of AMR ancestry on average as compared to 

Hispanic Americans who are of Puerto Rican origin. Puerto Ricans have a higher 

proportion of AFR ancestry; this may be the reason for the higher prevalence of asthma 

Puerto Ricans (Chen et al., 2014). Figure 4 compares the proportion of AFR and AMR 

ancestry for Mexicans and Puerto Ricans (Mersha, 2015). 

 

Figure 4. Proportions of African and Native American ancestry for Mexicans and Puerto 
Ricans. 

 

Ancestry Genetic Admixture, Complex Diseases, and Obesity 

The use of parental self-reported race and ethnicity for study of childhood obesity 

for Hispanic participants can be problematic, because parents may not be fully aware of 

their own complex ancestry mixture. The complicated genetic structure of Hispanic 

populations has several important implications for conducting epidemiology studies. 

Although it is known that prevalence of childhood obesity is higher among Hispanics, 

there is no population stratification referring to the proportions of their mixed ancestry. 
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Race, ethnicity, and genetic ancestry have a controversial history in research and practice 

(Yudell et al., 2016). Race and ethnicity are considered social constructs and cannot 

capture the heterogeneity within racial and ethnic groups, especially in an admixed 

population (Borrell, 2005). To account for the heterogeneities, the genetics community 

has grouped individuals by their genetic ancestry instead of by race and ethnicity (Yudell 

et al., 2016). Genetic ancestry may better explain the prevalence and disparity of specific 

medical conditions. However, racial and ethnic categories can usually explain the known 

risk factors related to the shared cultures, experiences, and exposures such as low 

socioeconomic status (Nguyen, 2014). 

Genetic admixture has been used as a surrogate for biological aspects of race and 

ethnicity, to investigate the association between ancestry and disease risk. Also, it may 

help to identify genes that contribute to certain conditions (Fernandez et al., 2013). 

Stryjecki et al. (2017) have used examples from evolution, heritability, admixture, and 

monogenic and polygenic studies of obesity to provide explanations for ethnic 

differences in the prevalence of obesity. Multiethnic studies may provide a better 

understanding of the disparities of obesity and help to create more targeted and 

personalized obesity treatments. 

Genetic markers, such as ancestry informative markers may provide more 

accurate information on Hispanics. Ancestry informative markers and newly developed 

statistical methods are making the genetic estimation of ancestry increasingly more 

feasible and accurate (Hoggart et al., 2003). According to Skotte et al. (2013), 

“Admixture occurs when isolated populations begin interbreeding and their offspring 
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represent a mixture of alleles from different ancestral populations” (p. 693). Genetics 

admixture is a valuable tool to classify individuals with unknown ancestry and to 

describe the genetics of different populations (Rosenberg et al., 2002). With next-

generation sequencing technologies, it is possible to obtain genetic data for all accessible 

genetic variations in the genome. For example, using a panel of genetic polymorphisms 

that present large differences in allelic frequencies between EUR and AFR, it is possible 

to estimate the degree of EUR and AFR admixture among Hispanics (Ziv et al., 2006).  

The 1,000 Genomes Project provides a comprehensive description of common 

human genetic variation by applying whole-genome sequencing to a diverse set of 

individuals from multiple populations. This project reconstructed the genomes of 2,504 

individuals from 26 populations using a combination of low-coverage whole-genome 

sequencing, deep exome sequencing, and dense microarray genotyping. They 

characterized a broad spectrum of genetic variation—over 88 million variants—all 

phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a 

frequency of >1% for a variety of ancestries. They describe the distribution of genetic 

variation across the global sample and discuss the implications for common disease 

studies (The 1,000 Genomes Project Consortium, 2015). The 1,000 Genomes Project has 

already elucidated the properties and distribution of common and rare variations, 

provided insights into the processes that shape genetic diversity, and advanced 

understandings of disease biology (The 1,000 Genomes Project Consortium, 2012). 

The majority of Americans possess an intermixture of EUR, AFR, and AMR 

ancestries from colonization of New World; therefore, genetic variation of these 
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populations has established new combinations of genes. Genetic admixture studies may 

be able to explain differences in populations that cannot be explained by self-reported or 

socially assigned races or ethnicities. For instance, despite homogenous socioeconomic 

status, African Americans are 1.5 times more likely to be obese compared to European 

Americans; this suggests that differences in genetic background may account for ethnic 

differences in obesity risk (Cheng et al., 2010). Using genome-wide admixture mapping 

in 15,280 African Americans, Cheng et al. (2010) identified a negative correlation 

between BMI and the percentage of EUR ancestry, suggesting that the EUR genome may 

contain either fewer obesity-risk alleles or more obesity-protective genetic factors.  

Genome-wide association studies have identified about 100 loci associated to 

BMI; however, these variants only explain 2.7% of the variation in BMI. Therefore, 

many other variants remain unidentified due to small sample sizes, genetic heterogeneity, 

or epigenetic, gene-gene, or more importantly gene-environment interactions (Locke et 

al., 2015).  

Fine-mapping efforts have focused on the FTO locus, due to its strong association 

with obesity-related traits; however, initial attempts to fine-map the causal variant(s) in 

FTO in populations of AFR ancestry have yielded inconsistent results (Lu, 2013). Similar 

to fine-mapping, admixture mapping is a method for genetic investigation and identifying 

disease-causing variants in complex diseases like obesity (McKeigue, 2005). Knowing 

that the prevalence of certain complex diseases such as diabetes and obesity varies with 

ethnicity, admixture studies scan the genome for regions where the proportion of one 

ethnicity is significantly different than average. Admixture mapping has a better 
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statistical power to identify variants with modest effects and has successfully reported 

associations between risk of obesity and increased BMI in West African and AMR 

populations (Fernandez et al., 2013). Furthermore, individuals of mixed ancestral 

background have been found to have an above-average BMI, suggesting that differences 

in ancestral background may partially explain ethnic differences in the prevalence of 

obesity (Fernandez et al., 2013). 

Epigenetic changes also may explain the missing heritability in obesity. As 

Suzuki and Bird (2008) wrote, “Epigenetics is defined as changes in gene transcription 

and expression that do not involve changes to the underlying DNA sequence” (p. xxx). 

Epigenetic modifications include DNA methylation, histone post translational 

modifications, and chromatin remodeling or the inheritance of mRNAs that regulate gene 

expression (Pigeyre, Yazdi, Kaur, & Meyre, 2016). DNA methylation consists of the 

addition of methyl groups to cytosine residues, and is typically associated with gene 

silencing (Suzuki & Bird, 2008). Kühnen et al. (2016) reported that methylation within a 

variably methylated region in proopiomelanocortin is strongly associated with BMI in a 

multiethnic cohort (Kühnen et al., 2016).  

Herrera et al. (2011) argued that common obesity is heritable, but that detecting 

contributing genetic variants to susceptibility of obesity is very challenging. Furthermore, 

environmental exposures may affect epigenetic markers and result in obesity. Cardel et 

al. (2011) evaluated the effect of ancestral genetic background on body composition 

among African American and EUR children. They reported that, after adjusting for age, 

height, sex, and socioeconomic status, greater EUR admixture was associated with lower 
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lean mass. Norden-Krichmar et al. (2014) explored the influence of the degree of AMR 

admixture on BMI in 846 Native Americans. According to this study, genetic factors may 

explain some of the variations in obesity among Native Americans. Comuzzie et al. 

(2012) investigated the genetics of obesity among Hispanic children and found novel 

genes with unknown function in obesity pathogenesis. Association of AMR ancestry and 

BMI was investigated and found to be positively correlated in 846 AMR adults; multiple 

linear regression was used to test the relationship, controlling for socioeconomic and 

cultural factors (Norden-Krichmar et al., 2014). On the other hand, there is a negative 

relationship between EUR genetic admixture and the percentage of body fat and BMI 

among Hispanics and Native Americans (Klimentidis et al., 2009). 

The association of genetic ancestry and admixture with other diseases has been 

studied; for example, Asian admixture was found to be associated with a higher risk for 

type 2 diabetes among Native Hawaiians (Maskarinec et al., 2016). A case-control study 

of association of colorectal adenomas and adenocarcinomas with patient ancestral 

background showed that AFR ancestry was significantly higher in adenomas and cancer 

cases compared to controls in Columbia (Hernandez-Suarez et al., 2014). Munoz (2016) 

evaluated the effect of ancestral genetic composition on cardio-metabolic risk factors 

among Colombian youths. They found that triglyceride levels were associated with the 

AMR component, and systolic blood pressure was associated with the EUR and AFR 

components. Furthermore, insulin level resistance was associated with the AFR 

component. The relationship between genetic admixture and body composition has been 

studied among Puerto Rican adults living in the United States. EUR ancestry was 
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associated with lower bone mineral density at the trochanter and femoral neck, and AMR 

ancestry was associated with lower bone mineral density of the trochanter. AFR ancestry 

was associated with a higher bone mineral density at the trochanter and femoral neck; 

however, ancestry was not associated with fat mass, lean mass, or waist circumference 

(Noel, 2017). Furthermore, EUR ancestry has been identified as a risk factor for multiple 

sclerosis in Mexicans (Ordoñez et al., 2015).  

Genetic ancestry has an association with several chronic diseases. Hispanic 

American children are heterogeneous and have diverse socioeconomic backgrounds. 

Hispanic Americans are from any South and Central American country previously under 

Spanish rule. As discussed previously, prevalence of childhood obesity is higher among 

Hispanic Americans. The prevalence of childhood obesity within Hispanic Americans 

may vary by proportion of their genetic ancestry or country of origin. The CDC reports 

the prevalence of childhood obesity among Hispanics using their reported races and 

ethnicities; hence, there is a lot of variability in genetic ancestry background of Hispanic 

Americans that has not been adequately assessed.  

Summary  

Childhood obesity is a complicated disease; a child is considered overweight or 

obese if he or she is above a defined normal weight for his or her age, sex, and height. 

The process of unhealthy weight gain in children is very similar to adults and includes 

various factors such as a high calorie/low nutrient diet, a low level of physical activity, 

and genetic factors (CDC, 2016a). The prevalence of childhood obesity has more than 

tripled in the past five decades (Fryar et al., 2012). The prevalence of obesity among U.S. 
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youth was 17.0% in 2011–2014. Overall, the prevalence of obesity among preschool-

aged children (2–5 years; 8.9%) was lower than among school-aged children (6–11 years; 

17.5%) and adolescents (12–19 years; 20.5%). The same pattern was seen in both males 

and females (Ogden et al., 2015). Children with a BMI at or above the 85th percentile 

and less than the 95th percentile are considered overweight. Children at or above the 95th 

percentile are considered obese (CDC, 2017). The high prevalence of childhood obesity 

is a burden to U.S. public health and economy. Furthermore, obesity has a large 

economic impact on individuals and families (Tremmel et al., 2017).  

According to the CDC (2017), the prevalence of childhood obesity (ages 2–19) 

was 21.9% and 19.5% among Hispanics and non-Hispanic blacks respectively, as 

compared to 14.7% of non-Hispanic whites. In 2014, the prevalence of obesity among 

WIC participants aged 2 to 4 years was 14.5%. The prevalence of obesity among these 

young children was higher (17.3%) among Hispanic children as compared to non-

Hispanic White (12.2%) and non-Hispanic Black children (11.9%; Pan, 2016). The 

overall prevalence of childhood obesity is higher than the Healthy People 2020 goal of 

14.5%, and it is disproportionately higher among Hispanic children (Ogden et al., 2015). 

Self-reported race and ethnicity is used in epidemiological studies to evaluate 

individuals’ origin and to understand the interactions between an individuals’ biology and 

their environment. Although the concepts of race and ethnicity have evolved over time, 

they are still indistinctly defined terms (Lin, 2000). Usually, participants in the United 

States specify a race or ethnicity group based on six categories: White, Black, Black 

Hispanic, White Hispanic, Asian, or other. In the collection of NHANES data, 
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participants reported their self-identified race and ethnicity (Ogden et al., 2014). Race 

and ethnicity are related and often used interchangeably; however, race refers to a 

person’s physical appearance—such as skin color and eye color—while ethnicity 

encompasses cultural heritage, language, social practice, traditions, and geopolitical 

factors (Mersha, 2015).  

The genetic ancestry of Hispanic individuals varies widely across geographic 

locations (Bryc et al., 2015). Hispanics of any race are the largest ethnic minority in the 

United States. They are expected to represent 24% of the U.S. population by 2050 (Lee, 

2010). The Hispanic population is genetically diverse, representing a heterogeneous mix 

of EUR, AFR, and AMR ancestry (Gonzalez Burchard et al., 2005). Therefore, a 

Hispanic individual may self-identify as a single race or as multiple races. There are wide 

variations across and within Hispanic ethnic groups in terms of genetic, socioeconomic, 

or cultural factors and geographic origin. Hispanics have a varied range of ancestry 

admixture proportions of EUR, AMR, and AFR (Hunninghake et al., 2006). The use of a 

single Hispanic or Latino ethnic category is insufficient for characterizing genetic 

background and disease prevalence associated with Hispanics or Latinos (Lara et al., 

2006). Genetic admixture has been used as a surrogate for the biological aspect of race 

and ethnicity in order to investigate association between ancestry and risk of diseases. 

Also, it may help to identify genes that contribute to or influence the development of 

certain conditions (Fernandez et al., 2013). Genetic admixture studies may be able to 

explain differences in populations and certain races or ethnicities that cannot be explained 

by self-reported or socially assigned races or ethnicities or the environmental and cultural 
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aspects of races and ethnicities. Although some studies have evaluated the relationship 

between genetic admixture and childhood obesity, no study has investigated the 

association of genetic admixture proportions and early childhood obesity among Hispanic 

American children. I intended to study the influence and contribution of genetic ancestry 

to variation of prevalence and severity of obesity for Hispanic American children. 

In Chapter 3 I present the research questions, hypotheses, variables, research methods, 

and statistical analyses. I also explain the dependent and independent variables, statistical 

tests and the process of IRB approval.  
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Chapter 3: Research Method 

Childhood obesity is a major public health concern in the United States and it is 

higher among ethnic minorities. According to Ogden et al. (2014), 29.8% and 16.7% of 

Hispanic American preschool children were overweight and obese, respectively; this is 

twice the national average for this age group. Obesity is a complex disease and many 

studies have contributed to understanding of the major risk factors of obesity, such as 

dietary intake and physical activity. Furthermore, epidemiologic studies argue that 

intrauterine exposure to smoking and higher-than-recommended weight gain during 

pregnancy may increase glucose levels and result in early onset obesity; in addition, too 

much screen time and short sleep durations may increase risks for obesity (Taveras et al., 

2008).  

Racial/ethnic disparities in the rates of childhood obesity among American 

children are partially explained by socioeconomic and cultural factors; however, 

disparities within ethnicities are not well investigated. Hispanic American children’s 

parents are originally from South or Central American countries with a wide variety of 

ancestry admixture proportions of EUR, AMR, and AFR. An association between West 

African, EUR, and AMR ancestry and adult BMI has been reported in the United States 

(Fernandez et al., 2013; Shaffer et al., 2007). Cardel et al. (2011) suggested that genetic 

background may contribute to total body fat accumulation in children. Nevertheless, the 

association of genetic admixture proportions and obesity in Hispanic American children 

has not been well investigated. Ancestral genetic background may explain some 

differences in the prevalence and severity of obesity among Hispanic American children 
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with similar obesogenic factors and socioeconomic status (Fernandez et al., 2013; 

Higgins et al., 2005). 

This chapter presents the research questions, hypotheses, variables, research 

methods, and statistical analyses. I present the dependent and independent variables and 

identify their measurement level in order to demonstrate the choice of appropriate 

statistical test. The target population is 2-year-old girls and boys whose mothers were 

recruited into “The First 1,000 Days of Life and Beyond” study in Northern Virginia. The 

required sample size was calculated using G*power, and the process of accessing 

archived data is explained. Then, I describe the study and examine the potential threats to 

validity. I also discussed ethical procedures, present the IRB approval number for this 

study, and describe data processing and privacy procedures.  

Research Design and Rationale 

Study Variables 

• Dependent variable: BMI. 

• Independent variables: genetic admixture groups including EUR, AFR, and AMR. 

• Confounding variables: Sex, birth weight, juice consumption frequency at age 2, 

maternal education, maternal BMI, maternal age, and maternal region of birth. 

Research Design and Connection to the Research Questions 

The purpose of this cross-sectional study was to investigate the contribution of 

children’s genetic admixture proportion—including EUR, AMR and AFR—to childhood 

obesity through the use of BMI among 2-year-old Hispanic American children, adjusted 

for major obesogenic risk factors of early life such as juice consumption, and 
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socioeconomic risk factors. The association between genetic admixture data (as 

independent variables) and children’s BMI (as dependent variable) was tested using a 

simple linear regression. In order to identify significant clinical and social risk factors 

associated to BMI, a backward stepwise multiple linear regression was conducted to test 

the contribution of sex, birth weight, juice consumption, mother’s age, mother’s BMI, 

mother’s education, and mother’s region of birth on variability of BMI among Hispanic 

American children. 

Population 

The target population were 2-year-old girls and boys whose mothers were 

recruited to “The First 1,000 Days of Life and Beyond” study in their second or third 

trimester of pregnancy, and whose parentally reported ethnicity was “Hispanic or 

Latino.” The data for this study was obtained from the Inova Translational Medicine 

Institute. Inova’s “The First 1,000 Days of Life and Beyond” study is a genomic 

longitudinal cohort based in the Inova Health System in Washington, DC, metropolitan 

area. About 700 2-year-old children had parentally completed surveys, and about 35% of 

them were reported as “Hispanic or Latino.” The parents’ country of birth included 20 

South or Central American countries as well as the United States.  

Sampling and Sampling Procedures 

The archival data was used to identify all 2-year-old Hispanic American children 

whose mothers are recruited to the “First 1,000 Days of Life and Beyond” study in the 

prenatal phase of life, and who have available anthropometrics and genomic data as well 

as demographic, dietary, and clinical data. Children who have medical conditions such as 



50 

 

Hypothyroidism were excluded. Furthermore, children with a physiologically impossible 

reported height and weight, they were excluded.  

Sample Size and Power Analysis 

A larger sample size increases the power of statistical tests by collecting more 

information. Sufficient sample size is essential to test the hypotheses effectively (Kim & 

Seo, 2013). It is crucial to understand how different research designs require different 

methods for sample size calculation. In general, sample size depends on three factors: 

alpha level, effect size, and power level (McCrum-Gardner, 2010). The standard alpha 

level in the sciences is 0.5; this level is required for the researcher to claim that their 

discovery is real. By comparing calculated p-value against the set alpha level, we 

determine whether the observed data are statistically, significantly different from the null 

hypothesis and ensure that the researcher does not accidentally reject the null hypothesis 

when it is in fact true (type I error). However, when a difference is statistically 

significant, it does not necessarily mean that is it important for a conclusion. Therefore, 

researchers need to calculate the effect size; effect size is usually calculated by taking the 

difference between the 2 groups (e.g., the mean of case minus the mean of the control 

group) and dividing it by the standard deviation of one of the groups. Effect size can be 

calculated after data collection; the common practice is to use a value of 0.5, as it 

indicates a moderate to large difference (Cohen, 1988). Another important factor for 

sample size analysis is power level; this helps to avoid a type II error, which refers to a 

failure to find a statistically significant difference when it actually exists. Power refers to 

the probability that a test is able to find a statistically significant difference when there is 
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a real difference. It is generally accepted that power should be .8 or greater; that is, 

researchers should have an 80% or greater chance of finding a statistically significant 

difference when there is one (Zint, 2018).  

A-priori power analysis was conducted using G*power for linear regression and a 

post-hoc power analysis was conducted to assess if the statistical test was able to reject an 

incorrect null hypothesis (Faul, Erdfelder, Lang, & Buchner, 2007). In G*power and 

under test family, I selected F tests, and under Statistical test I selected “Linear multiple 

regression: Fixed model, R2 increase.” Under “Type of Power Analysis,” I chose “A 

priori: Compute required sample size-given α, power and effect size.” The minimum 

required sample size for seven predictors including one admixture proportion and six 

confounding variables was 103 (see Figure 5). About 150 children were included in this 

study due to availability of genomic, anthropometrics, social, and clinical data; I 

calculated effect size given hypothetical sample size using G*power. The calculated 

effect size was 0.1 or smaller (Cohen, 1988; see Figure 6).  
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Figure 5. Minimum required sample size. 
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Figure 6. Calculated effect size. 
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Using Archival Data & Access Procedure 

“The First 1,000 Days of Life and Beyond” is an ongoing, family trio, 

longitudinal cohort study, based in the Inova Health System in Falls Church, Virginia. 

From 2012 to the present, women have been recruited during pregnancy to participate in 

the study. Inclusion criteria include being >18 years of age, fluent in English or Spanish, 

willing to have a biological specimen used for whole genome sequencing (WGS), and 

have their partner (biological father of fetus) participate in the study. The family then 

receives surveys every 6 months after delivery until the child is 4-year-old, and then 

every year until the child is 18. This study was designed to identify genomic, clinical, and 

environmental risk factors that may enhance our understanding of adverse health 

outcomes such as premature birth, asthma, obesity, and developmental disorders. IRB 

approval was obtained for “The First 1,000 Days of Life and Beyond” (WIRB#20120204, 

Inova IRB#15-1804; Hazrati et al., 2016). To date, about 3,500 families have been 

recruited to the study; however, only 1400 have WGS. Of those who had WGS 

performed, about 700 had parentally completed 2-year surveys, and about 35% of them 

were of Hispanic origin (from South and Central America).  

I explained my research question and hypothesis to the principle investigator of 

“The First 1,000 Days of Life and Beyond” study, and then I reviewed background 

knowledge and identified the literature gap that helped to formulate my research 

question. Then, I presented my prospectus and he agreed with my research question and 

methodology and approved my data use request. I worked with the organization’s clinical 

research manager to get data use permission from institutional IRB. I have been granted 
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access to the data upon approval of my proposal. I also have access to data collection 

forms, and data dictionaries. 

Instrumentation and Operationalization of Constructs 

Admixture Proportion 

The 1,000 Genomes Project has described common human genetic variation 

using WGS of 2,504 individuals from 26 populations in AFR, EAS, EUR, SAS, and 

AMR using a combination of low-coverage whole-genome sequencing, deep exome 

sequencing, and dense microarray genotyping (see Figure 7 and Figure 8). They 

characterized a broad spectrum of genetic variation, over 88 million variants in total.  

 

Figure 7. Polymorphic variants within sampled populations. 

 

 The area of each pie is proportional to the number of polymorphisms within a 

population. Pies are divided into four slices, representing variants private to a population 

(darker color unique to population), private to a continental area (lighter color shared 

across continental group), shared across continental areas (light grey), and shared across 
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all continents (dark grey). Dashed lines indicate populations sampled outside of their 

ancestral continental region (The 1,000 Genomes Project Consortium, 2015). 

 

Figure 8. Ancestry and kinship toolkit (AKT). 

 

 This is a statistical genetics tool for analyzing large cohorts of whole-genome 

sequenced samples. It can rapidly detect related samples, characterize sample ancestry, 

calculate correlation between variants, check Mendel consistency and perform data 

clustering. AKT brings together the functionality of many state-of-the-art methods, with a 

focus on speed and a unified interface. They believe it will be an invaluable tool for the 

curation of large WGS datasets (Arthur et al., 2016).  
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Food Frequency Questions  

“The First 1,000 Days of Life and Beyond” food frequency questions were 

adopted and modified from Behavioral Risk Factor Surveillance System (BRFSS) 2012 

Questionnaire (CDC, 2012).  

Reported Weights and Heights  

Questions were designed and developed by the Inova Translational Medicine 

Institute Research Team in collaboration with Inova Children’s Hospital.  

Maternal Education Household Income 

Questions were adopted and modified from BRFSS 2012.  

Birth Weight and Sex 

Birth weight, sex and other birth data were abstracted from the hospital’s 

electronic health records. 

Parental Country of Birth 

Questions were designed and developed by the Inova Translational Medicine 

Institute Research Team. 

Operationalization of the Variables 

Dependent Variable  

BMI: BMI is a continuous variable, calculated by dividing parentally reported 

weight in pounds (lb.) by parentally reported height in inches (in) squared and 

multiplying by a conversion factor of 703. For instance, if child’s weight is 27 lbs. and 

height is 36 in, then we calculate the BMI as = (27/ (36*36))*703 = 14.64 (CDC, 2014).  
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Other Terms Used in This Study 

Obese: For 2–19-year-old children and adolescents, obesity is defined as having a 

BMI at or above the 95th percentile of the sex-specific BMI-for CDC Age growth chart 

(CDC, 2016b) 

Overweight: For 2–19-year-old children and adolescents “overweight” is defined 

as BMI at or above the 85th percentile of the sex-specific BMI-for CDC Age growth 

chart (CDC, 2016b). 

Independent Variables 

Admixture: “Admixture occurs when isolated populations begin interbreeding and 

their offspring represent a mixture of alleles from different ancestral populations.” The 

genetic variation of children in the study were estimated by AKT (Arthur et al., 2016) 

using 17,535 reliable and common SNPs by projecting the samples into the 1,000 

genomes’ (Auton et al., 2015) PCs, followed by assigning the PCs to admixture 

proportions. The 1,000 Genomes Project has described common human genetic 

variation using WGS of 2,504 individuals from 26 populations in AFR, EAS, EUR, 

SAS, and the AMR.  

Admixture proportions including AFR, AMR, EUR, EAS, and SAS are 

continuous variables. The sum of the child’s admixture proportions should be equal to 

one; for example: AFR = 0.05, AMR = 0.44, EUR = 0.46, EAS = 0.04 and SAS = 0.01. 
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Confounding Variables  

Juice consumption frequency: a continuous variable collected using a dietary 

recall form at the 24-month survey. If the reported value was per day, the value is 

multiplied by seven. 

Maternal education: a categorical variable collected through a maternal 

questionnaire in the prenatal phase or at delivery.  

Maternal BMI: a continuous variable calculated from mother’s prepregnancy 

weight and height 

Birth weight: a continuous variable and its unit is in grams. Birth weight is 

abstracted from the electronic health system.  

Sex: a categorical variable collected as “Male,” “Female,” or “Unknown,” and it 

is abstracted from electronic health system. 

Mothers’ country of birth/region of birth: a categorical variable collected through 

a maternal and paternal questionnaire in the prenatal phase or at delivery. Country of 

birth was classified to three regions of birth including South America, Central America, 

and the United States. 

Data Analysis Plan 

All statistical analyses and visualization of data was performed using SAS 9.4 

(SAS Institute Inc., Cary, NC), R 3.1.2 (R Project for Statistical Computing, Vienna, 

Austria) and Tableau 10.3.  
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Data Quality Control, Cleaning, and Preparation  

By referring to the data collection forms and data dictionary, data was screened 

for completeness, correctness, and consistency. Duplicate observations were removed; 

data was in agreement with data collection tools and the data dictionary. Univariate 

analysis was performed to describe all independent and dependent variables. 

Assumptions of linear regression were tested. Distribution of continuous variables was 

tested using Histogram or Box-and-Whiskers Plots to detect outliers and determine the 

shape of distribution as well as central tendency and dispersion values. Bivariate analysis 

was conducted to identify whether collinearity or multicollinearity exist between 

confounding variables. Frequency of categorical variables was generated to assess the 

accuracy and completeness of collected data. Using the CDC’s sex-specific 

anthropometric charts, extreme and physiologically impossible heights and weights were 

excluded from analysis. The sum of the five admixture proportion variables should be 

equal to one; if the sum of EUR, AME, AFR, EAS, and SAS is not equal to one then the 

observations would have been excluded. Missing dietary values, were imputed using 

mean substitution.  

Research Questions and Hypotheses 

RQ1: Is there an association between children’s EUR genetic background and 

BMI among 2-year-old Hispanic American children?  

 H01: There is no statistically significant association between children’s EUR 

genetic background and BMI among Hispanic American children.  
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 HA1: There is a statistically significant association between children’s EUR 

genetic background and BMI among Hispanic American children.  

 To examine RQ1, simple linear regression analysis was conducted to assess if 

EUR genetic background of children influences BMI. If an association is found, then 

multiple linear regression would have been conducted to determine whether this 

association remains significant even after controlling for confounding variables.  

 RQ2- Is there an association between AMR genetic background and BMI among 

2-year-old Hispanic American children ?  

 H02: There is no statistically significant association between children’s AMR 

genetic background and BMI among Hispanic American children.  

 HA2: There is a statistically significant association between children’s AMR 

genetic background and BMI among Hispanic American children.  

 To examine RQ2, simple linear regression analysis was conducted to assess 

whether AMR genetic background of children is associated with BMI. If an association is 

found, then multiple linear regression would have been conducted to determine whether 

this association remains even after controlling for confounding variables  

 RQ3: Is there an association between children’s AFR genetic background and 

BMI among 2-year-old Hispanic American children.  

H03: There is no statistically significant association between children’s AFR 

genetic background and BMI among Hispanic American children.  

HA3: There is a statistically significant association between children’s AFR 

genetic background and BMI among Hispanic American children.  
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To examine RQ3, simple linear regression analysis was conducted to determine 

whether AFR genetic background of children is associated with BMI. If an association is 

found, then multiple linear regressions would have been conducted to determine whether 

this association remains significant even after controlling for confounding variables.  

Assumptions of Statistical Tests 

Linear regression can assess whether predictive variables explain BMI (criterion); 

however, the test should satisfy the assumptions of linear regression including normality, 

linearity, homoscedasticity (Ernst & Albers, 2017). Therefore, prior to analysis, the 

assumptions of the linear regression model were assessed.  

Interpretation of Statistical Tests 

Linear regression analysis can estimate the association between a continuous 

predictive variable and the outcome; multiple linear regression provides a way of 

adjusting for confounding variables that are included in the model. Multiple linear 

regression models would have been used to assess whether variations in proportion of 

genetic background predict children’s BMI, while controlling for confounding variables. 

Statistical significance is set at P < 0.05 to determine whether a null hypothesis can be 

accepted or rejected. Beta coefficients will be used to determine the magnitude of 

prediction for each independent variable. For everyone unit increase in the significant 

predictor, the dependent variable will increase or decrease by the number of 

unstandardized beta coefficients (Statistics Solutions, 2013).  
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Threats to Validity 

The study subjects are 2-year-old Hispanic American children who live in 

Northern Virginia and the Washington, DC, metropolitan area. All the children were born 

in the Inova Health System, one of the largest obstetrics and gynecology hospitals in 

Northern Virginia. The children’s parents are originally from 20 South or Central 

American countries, and therefore, the children are a good representation of the 2-year-

old Hispanic American population in the area. However, external validity maybe 

jeopardized since these study participants may not represent all Hispanic American 

children in the United States due to differences in acculturation from state to state; 

therefore, we should not generalize these findings. One threat to internal validity would 

be using parentally reported survey data, which is not always accurate because parents 

may give subjective answers. In this study, anthropometrics and dietary values have been 

reported by parents. The prevalence of childhood obesity is underestimated when using 

parentally reported weight and height measurements (Scholtens et al., 2006).  

Ethical Procedures 

Secondary data using archived data from “The First 1,000 Days of Life and 

Beyond” was used in this study. The main study was designed to identify genomic, 

clinical, and environmental risk factors that may enhance our understanding of adverse 

health outcomes (such as obesity). IRB approval was obtained from Walden University 

(Approval No. 07-03-18-042050) and Inova Health System IRB (WIRB#20120204, 

Inova IRB#15-1804). A data use agreement was received from Inova Translational 

Medicine Institute. Access was granted to the data, data collection forms, and data 
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dictionaries after approval of my proposal and completion of IRB requirements. All the 

requested data were de-identified and did not include any protected health information 

such as name, address, or date of birth. Data is stored in a Health Insurance Portability 

and Accountability Act (HIPAA) compliant encrypted flash drive, and it will be 

destroyed after completion of my PhD. 

Summary 

Chapter 3 briefly explained the research question, gap in the literature, and study 

variables, and the measurement level of the variables. This is a retrospective cross-

sectional study to investigate the contribution of children’s genetic admixture proportions 

(of EUR, AMR and AFR) to childhood obesity (measured through children’s BMI) 

among 2-year-old Hispanic American children. I discussed the methodology for 

evaluating research questions and testing the hypotheses. Required sample size was 

calculated for seven independent variables (including one admixture variable at a time 

and six confounding variables). Three separate models tested the association of BMI to 

EUR, AMR and AFR individually. The confounding variables were: (a) frequency of 

juice consumption at age 2; (b) sex; (c) maternal education; (d) mother’s BMI; (e) 

mother’s age; (f) mother’s region of birth; and (g) birth weight (Brophy, 2009; Sahoo et 

al., 2015). The outcome variable is children’s calculated BMI. Threats to validity and 

ethical considerations were explained in this chapter. Descriptive and inferential analyses 

were conducted using R 3.1.2 and SAS 9.4.  

The details of the statistical analysis for this study are explained in Chapter 4, and 

research questions were evaluated using descriptive and inferential analyses.  



65 

 

Chapter 4: Results  

Purpose of the Study 

The purpose of this quantitative, cross-sectional, research study was to investigate 

the contribution of children’s genetic admixture proportion—including EUR, AMR and 

AFR—to childhood obesity through the use of BMI among 2-year-old Hispanic 

American children. The association between genetic admixture data (as independent 

variables) and children’s BMI (as the dependent variable) were investigated using “The 

First 1,000 Days of Life and Beyond” study’s secondary data.  

Research Questions and Hypotheses 

RQ1: Is there an association between children’s EUR genetic background and 

BMI among 2-year-old Hispanic American children?  

 H01: There is no statistically significant association between children’s EUR 

genetic background and BMI among Hispanic American children.  

 HA1: There is a statistically significant association between children’s EUR 

genetic background and BMI among Hispanic American children.  

RQ2: Is there an association between AMR genetic background and BMI among 

2-year-old Hispanic American children?  

 H02: There is no statistically significant association between children’s AMR 

genetic background and BMI among Hispanic American children.  

 HA2: There is a statistically significant association between children’s AMR 

genetic background and BMI among Hispanic American children.  
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 RQ3: Is there an association between children’s AFR genetic background and 

BMI among 2-year-old Hispanic American children.  

 H03: There is no statistically significant association between children’s AFR 

genetic background and BMI among Hispanic American children.  

 HA3: There is a statistically significant association between children’s AFR 

genetic background and BMI among Hispanic American children.  

Organization of Chapter 4 

This chapter delineates the statistical analysis and study findings in regard to the 

research questions and the study hypotheses. The chapter also explains data management 

procedures and describes the study cohort in detail. I present the rationale for statistical 

analysis as well as a detailed description of calculated and derived variables. 

Data Collection, Management, and Quality Control 

Archival data for all 2-year-old Hispanic American children whose mothers were 

recruited into “The First 1,000 Days of Life and Beyond” study in April 2012–January 

2016 was used. The de-identified data file included 208 subjects and was provided to me 

in a CSV format through Inova Outlook e-mail. I excluded four duplicate records, 32 

subjects who had missing reported height or weight, and 16 extreme outliers with 

physiologically impossible height or weight values (see Data Management, below). Two 

children were excluded due to hypothyroidism. The total final sample size for this study 

was 154 Hispanic American children.  

Prior to the data analyses, I screened data for inconsistency, missing values, and 

outliers using the data collection forms and data dictionary as data quality metrics. I 
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screened the data for completeness, correctness, and consistency. Duplicate observations 

were removed, and univariate analysis was performed for all independent and dependent 

variables. Distribution of continuous variables was tested using histogram and box-and-

whiskers plots to detect outliers and determine the shape of distribution as well as central 

tendency and dispersion values. Frequency of categorical variables was generated to 

assess the accuracy and completeness of collected data. The sum of the five admixture 

proportion variables was calculated for each entry to assure that it added up to 1. 

Maternal countries of birth were categorized into three regions: South America, Central 

America, and the United States. BMI was calculated as weight in pounds divided by the 

square of height in inches multiplied by 703 (rounded to one decimal place). Using the 

CDC’s sex-specific anthropometric BMI-for-age growth charts, extreme and 

physiologically impossible heights and weights were excluded from analysis, and I 

categorized BMI to underweight, normal weight, overweight, and obese (Table 4). The 

average BMI of the children was 17.4 (SD ± 2.6). 

 

Table 4 

BMI Percentile Categories by Frequency and Percent 

BMI Percentile Categories Number of Children  Percent 

Under Weight 
Normal 
Overweight 
Obese 

13  
85  
25  
31 

8.5 
55.2 
16.2 
20.1 
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Results: Descriptive Statistics and Analyses 

Descriptive statistics were used to report the main characteristics of the study 

cohort and obesity risk factors (Table 5). Exact distribution of children’s BMI is shown in 

Figures 9 and 10.  

 

Table 5 

Demographic Characteristics 

Characteristics Frequency 
or Mean 

Percentage or 
±Standard 
Deviation 

Sex  
     Male 
     Female 

 
72 
82 

 
47.1% 
52.9% 

Birth weight (gram )  3346.6 ±504.8 
Juice consumption frequency at 24M (per week) 2.0 ±2.3 

Maternal age (years) 30.5 ±5.1 
Maternal BMI 26.2 ±4.7 
Maternal ethnicity (Hispanic or Latino) 155 100% 
Maternal education level 
     Less than associate 
     Associate degree and above 

 
114 

40 

 
74.2% 
25.8% 

Maternal country of birth (region) 
     U.S.A. 
     South America 
     Central America 

 
22 
37 
95 

 
14.3% 
24.0% 
61.7% 
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Figure 9. Distribution of children’s BMI. 
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Figure 10. Distribution of children’s BMI (log transformed). 

 
The mean ( ± SD) five super group genetic admixture composition of the study 

cohort was EUR 0.43(SD ± 0.23), AMR 0.44(SD ± 0.22), AFR 0.08(SD ± 0.07), EAS 

0.03 (SD ± 0.04) and SAS 0.02(SD ± 0.03). Distribution of genetic admixture of children 

is presented in Figure 11 and distribution of each admixture including AMR, EUR, AFR, 

EAS, and SAS is shown in Figures 12–16.  
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Figure 11. Distribution of five super population genetic admixture. 
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Figure 12. Distribution of American (AMR) ancestry. 

 

 

Figure 13. Distribution of African (AFR) ancestry. 
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Figure 14. Distribution of European (EUR) ancestry. 
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Figure 15. Distribution of South Asian (SAS) ancestry. 
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Figure 16. Distribution of East Asian (EAS) ancestry. 

 

Distribution of maternal age (30.5( ± 5.1)), maternal BMI (26.2( ± 4.7)), child 

birth weight (3346.6( ± 504.8)) and juice consumption frequency at 24 months 

(2.0( ± 2.3)) are displayed in Figures 17–21 respectively.  
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Figure 17. Distribution of maternal age at delivery. 

 

 
Figure 18. Distribution of maternal prepregnancy body mass index (BMI). 
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Figure 19. Distribution of maternal child birth weight. 
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Figure 20. Distribution of juice consumption frequency per week at 24 months. 

 

Inferential Statistical Analyses  

Potential Covariates: Evaluating Environmental, Clinical, and Social Risk Factors 

Associated with BMI 

In order to identify significant risk factors associated with BMI, a backward 

stepwise multiple linear regression was conducted to test the contribution of sex, birth 

weight, juice consumption, mother’s age, mother’s BMI, mother’s education, and 

mother’s region of birth on variability of BMI among Hispanic American children. 

Assumptions of multiple linear regression were tested. BMI was normally distributed; 

however, for regression analysis the normality test should be applied to the residuals 

rather than the raw values. Due to small sample size, I used the Shapiro-Wilk test to test 

the assumption of normality. The Shapiro-Wilk test rejected the null hypothesis for 
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normality (P = 0.03); therefore, BMI was log transformed for normality. After log 

transformation, the Shapiro-Wilk test failed to reject the null hypothesis for normality 

(P = 0.2; see Figures 21 and 22). BMI, birth weight, juice consumption, mother’s age, 

and mother’s BMI were measured at the continuous level. Sex, mother’s education, and 

mother’s region of birth were dummy coded to numeric values. No collinearity or 

multicollinearity was detected (Variance inflation factor < 1.2). Significant outliers of 

BMI were removed in the data cleaning phase. Results from backward stepwise multiple 

linear regression revealed that only birth weight and maternal education were left in the 

model due to significance levels of 0.15. Birth weight was positively associated to BMI 

(p = 0.02) and higher maternal education was negatively associated to BMI (p = 0.03); 

the model was significant for the association of BMI and the selected variables (F (2, 

151) = 3.6, p = 0.01).  
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Figure 21. Distribution of BMI residuals. 
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Figure 22. Distribution of log transformed BMI residuals. 

 

Association of Genetic Admixture Proportion to BMI 

To examine RQ1, simple linear regression analysis was conducted to assess if 

EUR genetic background of children is associated to BMI. Assumptions of simple linear 

regression were tested. BMI and admixture proportion data are measured at the 

continuous level. There was a linear relationship between BMI and admixture proportion. 

Significant outliers were removed. BMI was log transformed for normality. A plot of 

residuals versus predicted values was generated, the residuals variance was around zero 

indicating that the assumption of homoscedasticity is not violated (Figure 23). 
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Figure 23. Residual by predicted for children’s BMI. 

 

A simple linear regression was calculated to evaluate the relationship between 

BMI and EUR. No significant association was found between BMI and EUR 

(F (1, 152) = 0.02, p = .87; see Table 6). To examine RQ2, a simple linear regression was 

calculated to predict BMI based on AMR. No significant association was found 

(F (1, 152) = 0.00, p = .97; Table 6). To examine RQ3, a simple linear regression was 

calculated to predict BMI based on AFR. No significant association was found (F (1, 

152) = 0.02, p = .88; Table 6).  
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Table 6 

Linear Regression for BMI Based on Genetic Background 

Genetic Background B SE B ß t p 

EUR 0.004 0.02 0.01 0.15 0.87 

AMR 0.001 0.02 0.003 0.04 0.97 

AFR 0.01 0.08 0.01 0.13 0.88 

 

 Furthermore, genetic admixture proportion was plotted and compared among 

underweight, normal weight, obese and severely obese children (Figure 24). 

 

 

Figure 24. Comparison of genetic admixture proportion among underweight, normal 
weight, overweight, and obese children. 
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Summary 

In this cross-sectional quantitative study, analyses were conducted to assess 

whether there was an association between genetic ancestry background and BMI among 

2-year-old Hispanic children living in the DC metropolitan area. The association between 

genetic admixture composition and BMI were investigated using “The First 1,000 Days 

of Life and Beyond” study’s secondary data. The average BMI of the children was 17.4 

(SD ± 2.6), and of 154 children 8.5% were under weight, 55.2% were normal weight, 

16.2% were overweight and 20.1% were obese. The distribution and proportion of five 

super group genetic admixture composition of children were assessed and visualized. 

Potential clinical, environmental, and social risk factors of childhood obesity were 

examined using backward stepwise multiple linear regression, only birth weight and 

maternal education were associated to BMI.  

The results for the first research question based on simple linear regression 

revealed that there is not an association between children’s EUR genetic background and 

BMI among 2-year-old Hispanic American children. The results for the second research 

question based on simple linear regression revealed that there is not an association 

between children’s AMR genetic background and BMI among 2-year-old Hispanic 

American children. The results for the third research question based on simple linear 

regression revealed that there is not an association between children’s AFR genetic 

background and BMI among 2-year-old Hispanic American children. 

In the Chapter 5, I summarize the key findings and compare the results with what 

I reviewed in the peer-reviewed literature described in Chapter 2. I also assimilated the 
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findings in the context of theory of evolutionary developmental biology. Furthermore, I 

explained the limitations of the study, implications for social change, and 

recommendations for future research. The chapter concluded with applicable remarks to 

finalize this study.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

Estimating genetic admixture has allowed scientists to investigate the relationship 

between genetic ancestry and diseases in admixed populations (Samet, 1988). Although it 

is known that the prevalence of childhood obesity is higher among Hispanics, there is no 

population stratification referring to the proportions of their mixed ancestry. In order to 

investigate the association between ancestry and disease risk, genetic admixture has been 

used as a surrogate for biological aspects of race and ethnicity (Yudell et al., 2016). 

Hispanic American children are the largest ethnic minority in the United States. The 

Hispanic population is genetically diverse, representing a heterogeneous mix of EUR, 

AFR, and AMR ancestry (Gonzalez et al., 2005); however, parental self-reported race 

and ethnicity is not sufficient to capture all the ancestral heterogeneity in Hispanic 

American children. The complicated genetic structure of Hispanic populations has 

several important implications for epidemiological studies.  

The purpose of this quantitative, cross-sectional research study was to investigate 

the contribution of children’s genetic admixture proportion—including EUR, AMR and 

AFR—to childhood obesity through the use of BMI among 2-year-old Hispanic 

American children. I also evaluated clinical, environmental, and social risk factors for 

childhood obesity. The data for my study was obtained from the Inova Translational 

Medicine Institute. To my knowledge, this is the first study to examine the influence of 

ancestry on BMI among admixed Hispanic American children at age 2. Results of the 

analysis showed that EUR, AMR, and AFR were not associated with BMI at this age. 

Nevertheless, evaluating clinical and social risk factors showed that birth weight was 
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positively associated with BMI, and that higher maternal education levels represented a 

protective factor against higher BMI.  

Interpretation of the Findings, Comparison, and Synthesis of Other Research 

Studies 

The goal of this chapter is to discuss and synthesize the answers to the research 

questions and evaluate whether results confirm, disconfirm, or extend knowledge about 

the relationships between genetic admixture proportion, obesity, and BMI. The research 

questions asked whether associations existed between genetic certain backgrounds (EUR, 

AMR, or AFR) and BMI for 2-year-old Hispanic American children. Linear regression 

models were calculated to evaluate the relationship between BMI and genetic admixture 

proportions. No associations were found for BMI and EUR, BMI and AMR, or BMI and 

AFR. These results demonstrated that ancestral genetic background was not related to 

BMI for Hispanic American children at age 2. However, evaluating clinical, social, and 

environmental factors showed that birth weight was positively associated with BMI, and 

that a higher level of maternal education was a protective factor against higher BMI.  

Many features of human anatomy and physiology are related to evolution; 

therefore, the principles of evolutionary biology may provide new insights into childhood 

obesity. Common polygenic obesity observed in adults originated during childhood or 

even in utero (Barker, 2012; Gluckman, Hanson, Cooper, & Thornburg, 2008). As such, 

it is important to understand how the association of genetic admixture and BMI that was 

discovered for adult populations operates in early childhood.  
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Obesity among children and adults has notably increased over recent decades and 

represents a major global health problem. Both genetic and environmental factors 

contribute to the complex etiology of polygenic obesity. Genome-wide association 

studies have identified about 100 loci associated with BMI; however, these variants only 

explain 2.7% of the variation in BMI. Therefore, many other variants remain unidentified 

due to small sample sizes; genetic heterogeneity; or epigenetic, gene-gene, or gene-

environment interactions (Locke et al., 2015).  

Previous studies reported that ancestral genetic background contributes to racial 

or ethnic differences in body composition (Cardel et al., 2011). In my analysis, EUR, 

AMR, and AFR admixture proportions were not associated with BMI among Hispanic 

American children at age 2. Individuals of mixed ancestral background have been found 

to have an above-average BMI, suggesting that differences in ancestral background may 

partially explain ethnic differences in the prevalence of obesity (Fernandez et al., 2013). 

Evaluating early childhood obesity among admixed Hispanic children provides an 

opportunity to understand the influence of ancestry genetic background on obesity while 

there has been less exposure to environmental factors. Herrera et al. (2011) argued that 

common obesity is heritable, but that it is very challenging to detect genetic variants that 

contribute to one’s susceptibility to obesity. Furthermore, environmental exposures may 

affect epigenetic markers and result in obesity. Norden-Krichmar et al. (2014) explored 

the influence of the degree of AMR admixture on BMI in Native Americans. According 

to this study, genetic factors may explain some of the variations in obesity among Native 

Americans. Comuzzie et al. (2012) investigated the genetics of obesity among Hispanic 
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children and found novel genes with unknown function in obesity pathogenesis. 

However, their study has reported the variants identified are likely not the actual causal 

variants.  

Contrary to my findings in 2-year-old children, in several studies conducted in the 

adult population, a positive association was observed between BMI and AFR, and similar 

to my study results, no association was observed between AMR and obesity (Cheng et 

al., 2010; Klimentidis et al., 2009). While previous studies have shown an association 

between AFR and obesity, my study finding can be somewhat limited by the small 

average proportion of AFR (0.08(SD ± 0.07)) in my study population. Furthermore, 

unlike to my study finding, in examining the relationship between EUR ancestries on 

obesity-related traits, EUR was found to have a protective effect (Cheng et al., 2010); this 

protective effect of EUR admixture was also demonstrated among Native-American 

college students (Klimentidis et al., 2009), suggesting the protective influence of EUR 

genetic background on low energy expenditure or more food consumption may vary with 

age, with less or no influence in very early childhood.  

 The development of obesity due to genes associated with hormones and 

neurotransmitters that regulate appetite and energy expenditure may happen later in life. 

The findings of this study emphasize the contribution of social and clinical factors to 

childhood BMI; specifically, maternal education levels and birth weight. This result is 

encouraging, as many of the social and environmental factors are modifiable, unlike an 

individual’s ancestry background and genetic makeup.  
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Limitations of the Study 

Data initially was collected for the “The First 1,000 Days of Life Study”; my 

study was a retrospective study using secondary/archival data from “The First 1,000 Days 

of Life Study.” Some of the variables—including dietary values and anthropometrics—

were parentally reported, therefore, differential misclassification likely biasing the results 

towards the null and information bias may have occurred during data collection, and 

internal validity may be jeopardized. Another threat to validity for this study was 

selection bias: firstly, parents who agreed to participate in the genomic study may have 

had different demographics than the ones who did not agree to participate in a 

longitudinal genomic study; secondly, parents who did not complete longitudinal surveys 

may have had a particular problem affecting this cross-sectional study. This is a particular 

problem when the characteristics of nonresponders differ from responders (Shepherd, 

1998).  

This study was limited to 2-year-old Hispanic American children residing in the 

Washington, DC, metropolitan area who have been recruited into “The First 1,000 Days 

of Life Study,” and whose parents had completed longitudinal surveys. Although the 

children in this study were likely representative of Hispanic American ancestry admixture 

in the Washington DC metropolitan area, the result may not be generalizable to different 

acculturation and assimilation processes in other regions of the United States.  

Recommendations 

Childhood obesity is a serious problem in the United States, putting kids at risk 

for poor health. Despite recent declines in the prevalence of obesity in children aged 2-5 
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years, obesity amongst all children—particularly Hispanics and African Americans—is 

still too high. The prevalence of childhood obesity is higher than the Healthy People 2020 

goal of 14.5%, and it is disproportionately higher for Hispanic children (Ogden, 2015). 

Hispanics are expected to represent 24% of U.S. population by 2050 (Lee, 2010). The 

Hispanic population is genetically diverse, representing a heterogeneous mix of EUR, 

AFR, and AMR ancestry (Gonzalez Burchard et al., 2005). The use of a single Hispanic 

or Latino ethnic category is insufficient for characterizing genetic background and 

disease prevalence (Lara et al., 2006). Additional longitudinal research with a larger 

study population should further explore the influence of genetic admixture on childhood 

obesity. Also, the development of educational policies and programs for Hispanic parents 

may help to decrease childhood obesity among Hispanic American children and eliminate 

disparity. Larger sample sizes and targeted primary data collection studies will allow for 

a more comprehensive investigation of disparities in childhood obesity rates, giving the 

opportunity for targeted and personalized anticipatory guidance to reduce obesity rates in 

teenage and adult populations.  

Social Change Implication 

Hispanic children have a higher prevalence of obesity compared to non-Hispanic 

White children in the United States (Ogden et al., 2014). However, knowledge about the 

association of obesity and children’s ancestry is lacking, and this issue has not been well 

studied among Hispanic American children from different ancestry backgrounds. A 

deeper understanding of the associations between obesity and genetic admixture 

proportions of Hispanic American children—along with other social and clinical 
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factors—may help to better explain the prevalence and etiology of childhood obesity 

among admixed Hispanic American children.  

There was not any association between children’s BMI and admixture proportion 

of any ancestry background; however, this knowledge is beneficial because it differs 

from studies of adult populations that suggested a stronger relationship between genetics 

and obesity. The information gained from this study has the potential to create positive 

social change by developing preventions that targets modifiable childhood risk factors. 

Targeted and precise preventions can help to decrease childhood obesity, lower 

disparities in obesity rates for different groups, and lower the consequences of obesity 

over time among Hispanic American children as well as other so called “high risk” 

populations.  

Conclusion 

The association of genetic admixture and BMI may vary by age. Development of 

polygenic obesity involves genetic and nongenetic factors. Thus, the influence of 

hormones and neurotransmitters that regulate appetite and energy expenditure may 

change over time, and further studies are needed to investigate the role of ancestry 

genetic background on BMI by age to determine when and how this relationship 

develops. Understanding the genetic architecture can help prevention and treatment of 

obesity and will have fundamental implications for other diseases later in life. However, 

knowing that ancestry is not the main cause of disparities in rates of early childhood 

obesity is encouraging, as many of the social and environmental factors are modifiable. I 

cannot conclude that 2-year-old Hispanic American children’s genetic admixture 
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proportion is associated with BMI; future research may begin to examine more detailed 

genetic markers in larger populations and understand the influence of hormones and 

neurotransmitters that regulate appetite and energy expenditure as children age. However, 

these results suggest an opportunity for targeted and personalized anticipatory guidance 

to reduce rates of childhood obesity for the Hispanic American population.  
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