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Abstract 

Sport-related injuries (SRI) can be foreseen and averted when mechanisms and risk 

factors are completely understood.  An appreciation of the relationship between sport-

related concussion (SRC) and lower extremity musculoskeletal injuries (LEMI) is 

emerging amid professional and collegiate athletes.  However, findings of such a 

relationship in adults may not be generalizable to younger populations, and the literature 

has not addressed this relationship in adolescents.  The purpose of this cross-sectional 

quantitative study was to examine the relationship between SRC and LEMI in high 

school athletes.  The dynamic model of etiology in sport injury provided the study’s 

conceptual framework.  A de-identified secondary dataset of high school athletic injuries 

was obtained from the Athletic Training Practice Based Rehab Network and analyzed 

with descriptive and inferential statistics.  Concussions, knee sprains, and ankle sprains 

represented about 12%, 17%, and 70%, respectively, of the 1,613 cases in the dataset. 

Chi-square tests revealed that SRCs, and the number of SRCs, were associated with knee 

sprains [(p < .001), Cramer’s V = .148] and ankle sprains [(p < .001), Cramer’s V = .545]. 

This study may promote positive social change by prompting further retrospective and 

prospective studies to clarify whether a relationship exists between SRC and LEMI in 

high school athletes, and if so, whether this relationship is causal in nature.  New 

knowledge may be used to guide practices and policies to reduce sports injuries in high 

school athletes, which may lead to fewer SRIs among adolescents, fewer school 

absences, more physical activity, and better health and well-being throughout the 

lifespan, thereby promoting a more active, productive, and healthy society.   



Sport-Related Concussion and Lower Extremity Musculoskeletal Injuries in High School 

Athletes 

by 

Lisa Koperna 

 

 

Dissertation Submitted in Partial Fulfillment  

of the Requirements for the Degree of 

Doctor of Philosophy 

Public Health 

 

 

Walden University 

January 2018 

 

 

 

 

 

 

 

 

 



 

Acknowledgements 

The process of writing this dissertation has been a long, but amazing, journey of 

personal and professional growth.  I would like to express my sincere gratitude to my 

committee and several people whose support made it possible for me to complete this 

journey.  First, I would like to thank my committee chair, Dr. Michael Dunn, for the 

valuable advice, steadfast support, and ongoing encouragement he rendered.  I would also 

like to thank my committee member, Dr. James Rohrer, for the candid, germane, and 

constructive advice he offered.  Additionally, I would like to thank my University 

Research Reviewer, Dr. Stephen Nkansah-Amankra, for the helpful feedback and 

recommendations he provided.  

I would like to acknowledge Dr. Tammy Root for helping me appreciate the value 

that secondary data analyses can add to the body of knowledge, and thank Dr. Tamara 

Valovich McLeod and Dr. Kenneth Lam for providing data from the Athletic Training 

Practice-Based Research Network for this study.  Moreover, I want to thank my 

colleagues for inspiring me to embark on this journey, and for sharing many of the tips 

they learned during their own dissertation journeys.  I am especially grateful for my 

students and patients who inspired me to generate new knowledge.   

Finally, I would like to express my heartfelt gratitude to my family, and friends 

for their prayers, encouragement, flexibility, and patience.  I owe my profoundest 

gratitude to my husband for always being there, and reminding me that challenges create 

opportunities. 



i 

Table of Contents 

List of Tables…………………………………………………………………………….vi 

List of Figures ................................................................................................................... vii 

Chapter 1: Introduction to the Study ................................................................................... 1 

Introduction ................................................................................................................... 1 

Background of the Study .............................................................................................. 2 

Long-Term Consequences of SRC and LEMI ........................................................ 4 

Mechanisms of Injury ............................................................................................. 6 

SRC and LEMI Risk Factors .................................................................................. 7 

Problem Statement ...................................................................................................... 12 

Purpose of the Study ................................................................................................... 14 

Research Questions and Hypotheses .......................................................................... 15 

Conceptual Framework ............................................................................................... 17 

Nature of the Study ..................................................................................................... 19 

Variable Definitions .................................................................................................... 22 

Assumptions ................................................................................................................ 23 

Scope and Delimitations ............................................................................................. 23 

Limitations .................................................................................................................. 24 

Significance of the Study ............................................................................................ 25 

Summary ..................................................................................................................... 26 

Chapter 2: Literature Review ............................................................................................ 28 

Introduction ................................................................................................................. 28 

Literature Search Strategy........................................................................................... 29 



ii 

Conceptual Model ....................................................................................................... 30 

Pathophysiology of Concussions ................................................................................ 32 

Return to Play ............................................................................................................. 34 

Neurocognition and Motor Dysfunction ..................................................................... 35 

Neurocognition and Musculoskeletal Injury ............................................................... 38 

Motor Control and Postural Stability .......................................................................... 39 

Concussion and Lower Extremity Injury .................................................................... 40 

Strengths and Limitations of Existing Studies ............................................................ 44 

Summary and Transition ............................................................................................. 46 

Chapter 3: Methods ........................................................................................................... 48 

Introduction ................................................................................................................. 48 

Research Design and Rationale .................................................................................. 48 

Methodology ............................................................................................................... 49 

Study Population ................................................................................................... 49 

Sampling and Sampling Procedures ..................................................................... 49 

Sample Size ........................................................................................................... 51 

Data Extraction ..................................................................................................... 52 

Data Analysis Plan ...................................................................................................... 52 

Dependent Variable .............................................................................................. 53 

Independent Variable ............................................................................................ 54 

Covariates ............................................................................................................. 54 

Statistical Analysis Approach ............................................................................... 55 

Threats to Validity ...................................................................................................... 59 



iii 

Construct Validity ................................................................................................. 59 

Internal Validity .................................................................................................... 60 

Statistical Conclusion Validity ............................................................................. 60 

External Validity ................................................................................................... 61 

Ethical Procedures ...................................................................................................... 61 

Summary ..................................................................................................................... 62 

Chapter 4: Results ............................................................................................................. 63 

Introduction ................................................................................................................. 63 

Data Collection ........................................................................................................... 64 

Data Collection Process ........................................................................................ 64 

Data Reduction Process ........................................................................................ 64 

Data Transformation ............................................................................................. 69 

Data Aggregation .................................................................................................. 72 

Modifications in Data Collection .......................................................................... 74 

Descriptive and Demographic Characteristics of the Sample ..................................... 77 

Sample......................................................................................................................... 81 

Results ......................................................................................................................... 81 

Assumptions ................................................................................................................ 82 

Data Analysis Approach ............................................................................................. 83 

Research Question 1 ................................................................................................... 83 

Research Questions 1a and 1b .............................................................................. 88 

Research Question 2 ................................................................................................. 103 

Research Question 3 ................................................................................................. 105 



iv 

Research Question 4 ................................................................................................. 107 

Summary and Transition ........................................................................................... 112 

Chapter 5: Discussion, Conclusions, and Recommendations ......................................... 122 

Introduction ............................................................................................................... 122 

Interpretation of the Findings.................................................................................... 123 

Consequences of Incomplete Information .......................................................... 124 

Interpretation of the Goodness-of-Fit Test ......................................................... 126 

Justification for Additional Research.................................................................. 127 

Findings in the Context of the Theoretical Model .................................................... 129 

Limitations of the Study............................................................................................ 131 

Recommendations ..................................................................................................... 133 

Implications............................................................................................................... 133 

Conclusion ................................................................................................................ 134 

References ....................................................................................................................... 135 

Appendix A:  Permissions……………………………………………………………...158 

 

 

 

 

 

 

 

 



v 

 

List of Tables 

Table 1. Data Inclusion and Exclusion ............................................................................. 66 

Table 2. Variations in Data Collection ............................................................................. 75 

Table 3. Characteristics of the Sample ............................................................................. 78 

Table 4. Chi-Square Analysis With Concussion Ever and Lower Extremity 

Musculoskeletal Injury Ever Variables ................................................................. 84 

Table 5. Chi-Square Analysis With Age and Lower Extremity Musculoskeletal Injury 

Ever Variables ....................................................................................................... 85 

Table 6. Chi-Square Analysis With Age Group and Lower Extremity Musculoskeletal 

Injury Ever Variables ............................................................................................ 86 

Table 7. Chi-Square Analysis With Gender and Lower Extremity Musculoskeletal Injury 

Ever Variables ....................................................................................................... 86 

Table 8. Chi-Square Analysis With Sport Type and Lower Extremity Musculoskeletal 

Injury Ever Variables ............................................................................................ 87 

Table 9. Chi-Square Analysis With Concussion Ever and Knee Sprain Ever Variables . 90 

Table 10. Chi-Square Analysis With Age and Knee Sprain Ever Variables .................... 91 

Table 11. Chi-Square Analysis With Age Group and Knee Sprain Ever Variables ......... 92 

Table 12. Chi-Square Analysis With Gender and Knee Sprain Ever Variables ............... 92 

Table 13. Chi-Square Analysis With Sport Type and Knee Sprain Ever Variables ......... 93 

Table 14. Binomial Logistic Regression Analysis of the Concussion Ever and Knee 

Variables ............................................................................................................... 96 

Table 15. Cross Tabulation With Concussion Ever and Ankle Sprain Ever Variables .... 97 



vi 

Table 16. Cross Tabulation With the Age and Ankle Sprain Ever Variables ................... 98 

Table 17. Cross Tabulation With Age Group and Ankle Sprain Ever Variables ............. 99 

Table 18. Cross Tabulation With Gender and Ankle Sprain Ever Variables ................... 99 

Table 19. Cross Tabulation With the Sport Type and Ankle Sprain Ever Variables ..... 100 

Table 20. Binomial Logistic Regression Analysis of Concussion Ever and Ankle Sprain 

Variables ............................................................................................................. 103 

Table 21. Cross Tabulation With Number of Concussions and Lower Extremity 

Musculoskeletal Injury Ever Variables ............................................................... 104 

Table 22. Cross Tabulation With Number of Concussions and Knee Sprain Ever 

Variables ............................................................................................................. 106 

Table 23. Cross Tabulation With Number of Concussions and Ankle Sprain Ever 

Variables ............................................................................................................. 109 

Table 24. Binomial Logistic Regression Analysis of the Number of Sport-Related 

Concussions and Ankle Sprain Ever Variables .................................................. 112 

 

 

  



vii 

List of Figures 

Figure 1. A dynamic, recursive model of etiology in sport injury.………….…..……….18 

Figure 2. Athletic training practice-based clinical practice sites.……..…………………81 

 

 



1 

 

Chapter 1: Introduction to the Study 

Introduction 

Physical activity promotes health, but sport-related injuries can limit mobility and 

encumber biopsychosocial health immediately after injury and throughout the lifespan 

(Bruhmann & Schneider, 2011; Emery, Hagel, & Morrongiello, 2006).  Injury 

prevention, especially among youth, is a pressing public health issue due to the afflictions 

that result from the initial injury, sequelae, subsequent inactivity, and associated health 

care costs (Caine, 2010; Ozturk & Kilik, 2013).  Therefore, it is important to determine 

the factors that may contribute to sport-related injuries to inform injury prevention 

approaches, safeguard young athletes from the negative effects of sports injuries, and 

allow the benefits of athletic activities to transcend the risks (Bahr & Holme, 2003; 

Bruhmann & Schneider, 2011; Meeuwisse, Tyreman, Hagel, & Emery, 2007; Ozturk & 

Kilik, 2013).  

Exploration of the literature revealed that the association between sport-related 

concussion (SRC) and lower extremity musculoskeletal injuries (LEMI) has not been 

established among high school athletes.  This study may facilitate positive social change 

by increasing awareness of the gap in the literature regarding the relationship between 

SRC and LEMI in this population.  This may inspire researchers to conduct retrospective 

studies to clarify if a relationship exists and prospective studies to determine if the 

relationship is causal.  This could contribute practical knowledge to guide practices and 

policies to reduce sports-related injuries (SRI) among high school athletes.  Fewer SRIs 

among adolescent athletes could lead to fewer school absences, and this could lead to 

higher levels of physical activity, improved fitness, health, well-being, and quality of life 
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throughout these individuals’ lifespans.  This may translate into more active, productive, 

and healthy societies locally and nationally. 

The background of the study, problem statement, and purpose of the study are 

introduced in this chapter.  The research questions, hypotheses, conceptual model, and 

nature of the study are also presented. The definitions, assumptions, limitations, scope of 

the study, delimitations, and significance of the study are discussed as well. This chapter 

concludes with a summary and transition to the next chapter.  

Background of the Study 

In the United States, over 7.8 million athletes participate in high school sports, in 

which athletes endure between 1.4 and 2 million injuries each year (Comstock et al., n.d.; 

Gottschalk & Andrish, 2011; National Federation of State High School Associations 

[NFSHA], 2016; Powell & Barber-Foss, 1999; Yard, Collins, & Comstock, 2009).  High 

school athletic injuries account for about 500,000 physician encounters and 30,000 

hospitalizations annually (U.S. Bone & Joint Initiative [USBJI], 2015).  About 6% of 

high school athletic injuries require surgery (Comstock, Curry, & Pierpoint, n.d.).  The 

economic burden of youth sports injuries in the United States is about 2 billion per year, 

and in North Carolina, the economic burden of high school sport-related injuries amounts 

to approximately $10 million, $45 million, and $145 million in healthcare, human capital, 

and comprehensive expenses, respectively (Adirim & Cheng, 2008; Knowles et al., 

2007).  MacAuley (2003) found that 58.6% of SRIs in secondary school students resulted 

in missed school days, and 88% of SRIs resulted in lost playing time.  Additionally, 

almost 33% of parents lost work time while taking injured students to medical 

appointments (MacAuley, 2003). 
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Fifteen- to 17-year-olds account for the highest rate of sport-related emergency 

department visits among children (Youth Sports Safety Alliance [YSSA], 2014).  Nearly 

8,000 emergency department visits per day are due to sports injuries, and almost 70% of 

the team sport injuries evaluated in U.S. emergency rooms are musculoskeletal injuries 

(USBJI, 2015; YSSA, 2014).  Lamentably, between 2008 and 2013, there were 273 

youth-sport-related deaths in the United States (YSSA, 2014).   

The National Sports-Related Injury Surveillance Study revealed that during the 

2015-2016 school year, 47% of high school athletic injuries involved the lower 

extremities, 27% involved the head/face, 18% involved the upper extremities, 4% 

involved the trunk, 2% involved the neck, and 2% involved other body parts (Comstock 

et al., n.d.).  This study also found that the most common diagnoses in high school 

athletes included head/face concussions (24.6%), ankle sprains (15.7%), and knee sprains 

(8.1%; Comstock et al., n.d.).  Sprains account for the majority of team and individual 

SRIs in adolescents, and the two most common lower extremity injuries (LEI) in high 

school sports are ankle and knee sprains (Comstock et al., n.d.; Fernandez, Yard, & 

Comstock, 2007; Ingram, Fields, Yard, & Comstock, 2008; Nelson, Collins, Yard, Fields, 

& Comstock, 2007; USBJI, 2015).  Collectively, head/face/concussion and lower 

extremity injuries account for nearly 75% of new and recurrent injuries in high school 

sports (Comstock et al., n.d.).   

A concussion is a brain injury caused by a biomechanical force (Ellis, Leddy, & 

Willer, 2015; McCrory et al., 2013).  Sprains occur when ligaments are stretched, 

separated, or torn (Prentice, 2014; Swenson, Yard, Fields, & Comstock, 2009).  

Ligaments, bands of collagenous connective tissue that connect adjacent bones and 
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provide feedback regarding joint position, are the most commonly injured joint structures 

(Burns & Lowery, 2010; Hauser et al., 2013).  In high school athletes, 36.0% of knee 

injuries affect the medial collateral ligament (MCL), 19.9% affect the anterior cruciate 

ligament (ACL), 4.8% affect the lateral collateral ligament (LCL), and 1.8% affect the 

posterior cruciate ligament (PCL; Comstock et al., n.d.).  Nearly 80% of ankle sprains 

among high school athletes affect the anterior talofibular ligament (Comstock et al., n.d.).   

The ligaments and joint capsules provide static joint stability, while muscles 

provide dynamic joint stability as they respond to information from peripheral and central 

sources (Konradsen, Voight, & Hojsgaard, 1997).  Injuries to ligaments may lead to 

mechanical instability (joint motion beyond structural constraints) due to disruption of 

the ligaments and capsule, as well as functional (dynamic) instability (joint motion that 

exceeds volitional control but does not exceed normal structural limits; Caulfield, 2000; 

Risberg, Lewek, & Snyder-Mackler, 2004; Tropp, Odenrick, & Gillquist, 1985).  

Functional joint instability may vary due to changes in motor programs controlled by the 

central nervous system (CNS; Caulfield, 2000; Tropp, et al., 1985).  I discuss the 

connections between the CNS (brain and spinal cord), the neuromuscular system (nerves, 

muscles, and joints), SRC, and LEMI in more detail throughout this study. 

Long-Term Consequences of SRC and LEMI 

Athletes who experience one or more sport-related injuries during youth have 

more occasions throughout their lives to play, sustain additional injuries, and experience 

accruing effects from prior injuries than adult athletes do (Guskiewicz & Valovich-

McLeod, 2011).  Long-term repercussions of concussions include chronic traumatic 

encephalopathy (CTE), depression, and lingering cognitive, motor, neurologic, vestibulo-
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ocular, sensory, autoregulatory, emotional, speech, and gait dysfunction (Ellis et al., 

2015; Guskiewicz et al., 2007; Konrad et al., 2010; Leddy, Kozlowski, Fung, Pendergast, 

& Willer, 2007; Schatz & Moser, 2011; Stern et al., 2011).  Long-term repercussions of 

musculoskeletal injuries include impaired growth, lingering pain, chronic joint instability, 

osteoarthritis, decreased levels of physical activity, comorbidities associated with 

inactivity, and prolonged disability (Maffulli, Longo, Gougoulias, Loppini, & Denaro, 

2010; USBJI, 2015).  More than one quarter of U.S. adults are expected to be diagnosed 

with arthritis by 2030, and this condition often limits mobility and leads to costly joint 

replacements (USBJI, 2016). 

Ultimately, the long-term consequences of concussions and musculoskeletal 

injuries may lead to reduced quality of life, decreased independence, decreased mobility, 

progressive deterioration of health, lost wages, increased health care costs, and economic 

burdens for individuals and society (USBJI, 2016; Valovich-McLeod et al., 2009).  

Therefore, it is important to (a) determine the magnitude of SRIs; (b) identify 

associations, risk factors, and causes of injuries; and (c) enhance efforts to decrease the 

incidence and severity of initial and recurrent sport-related injuries (Guskiewicz & 

Valovich-McLeod, 2011; Joseph et al., 2013; Meeuwisse et al., 2007; Shrey, Griesbach, 

& Giza, 2011; Zernickle et al., 2009).  Although SRC and LEMI are common in high 

school sports, the association between these injuries has not been examined in high 

school athletes, so there is a need to understand this relationship between concussions and 

musculoskeletal injuries in this population. 
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Mechanisms of Injury 

Awareness of sports injury mechanisms and risk factors is essential for injury 

prevention (Meeuwisse et al., 2007).  The mechanisms for concussion include direct 

impact to the head or an indirect transfer of force to the head (McCrory et al., 2013). 

Mechanisms for ankle sprains include inversion, eversion, combined inversion-plantar 

flexion, or combined eversion-dorsiflexion (Prentice, 2014).  The most common type of 

ankle injury occurs when the foot is inverted and plantar flexed and one or more of the 

lateral ankle ligamentous structures are partially or completely torn (Adirim & Cheng, 

2003; Burns & Lowery, 2010; Gottschalk & Andrish, 2011, Nelson et al., 2007).  Sport-

related ankle sprains occur most often due to contact with another individual, but they 

may also occur by contact with a playing surface or by noncontact mechanisms such as 

running and jumping, rapidly changing directions, and jumping near other athletes 

(Nelson et al., 2007; Swenson et al., 2013b).  

The collateral and cruciate ligaments contribute to knee stability when they are 

intact.  MCL injuries in knees result from valgus forces, with or without external tibial 

rotation, while LCL injuries in knees result from varus forces, with or without internal 

tibial rotation (Prentice, 2014).  ACL injuries frequently result from noncontact 

mechanisms including deceleration, pivoting, jumping, unplanned sidestepping, and 

landing (Anderson, Browning, Urband, Kluczynski, & Bisson, 2016; Boden, Dean, 

Feagin, & Garrett, 2000; Michaelidis & Koumantakis, 2014).  Although numerous 

articles have been published pertaining to ACL injuries, the mechanism of ACL sprains is 

not completely understood (Zernickle et al., 2009).  It is unclear if healthy ACLs fail 

when they are overloaded, or if a normal load causes a weakened ligament to fail 
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(Zernickle et al., 2009).  The mechanism for a posterior cruciate ligament (PCL) injury 

involves posterior translation of the tibia while the knee is flexed 90 degrees (Prentice, 

2014).  Ingram et al. (2008) found that 52% of knee injuries among high school athletes 

involved contact with another individual, 15.4% involved contact with the playing 

surface, 2.9% involved contact with equipment, and 25.4% did not involve contact.  

SRC and LEMI Risk Factors 

Risk factors are influences that may increase the possibility of injury (Meeuwisse, 

1991).  Possible risk factors for sports-related injuries include age, gender, prior injury, 

body structure and composition, level of health, fitness, and skill (Bahr & Holme, 2003; 

Meeuwisse et al., 2007).  The best prognosticator of a future sports injury is a history of 

the same type of injury (Guskiewicz & Valovich-McLeod, 2011).   

Gessel, Fields, Collins, Dick, & Comstock (2007) found that more SRCs occur 

during competitive events than during practice; they posited that this may be due to play 

that is more intensive during competition versus practice.  Abrahams, McFie, Patricios, 

Posthumus, and September (2014) conducted a systematic review to examine risk factors 

for SRC and determined, with a “high level of certainty,” that competition and previous 

concussion(s) are associated with increased risk of future concussion (p. 91).  A history 

of one concussion increases the risk of incurring another concussion (Guskiewicz et al., 

2003).  Furthermore, a history of three or more concussions increases the risk of 

developing postconcussion syndrome (PCS; disrupted sleep, emotional dysfunction, 

physical symptoms, and/or cognitive symptoms), and the effects of repeated concussions 

may be summative (Collins et al., 2002; Guskiewicz et al., 2003; Guskiewicz, Weaver, 

Padua, & Garrett, 2000; Iverson, Brooks, Lovell, & Collins, 2006; Iverson, Gaetz, Lovell, 
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& Collins, 2004).  In high school athletes, most concussions occur in full and partial 

contact sports (Gessel et al., 2007).  The risk factor that accounts for the greatest number 

of concussions in high school athletes is contact with another player (Gessel et al., 2007).  

Female gender and youth are associated with increased risk of concussion (Gessel et al., 

2007; Guskiewicz & Valovich-McLeod, 2011).  

Gessel et al. (2007) determined that female high school and college athletes have 

higher concussion rates than male high school and college athletes who play the same 

sports (Gessel et al., 2007).  This may be due to lower rates of concussion reporting by 

boys, as well as differences in playing techniques, anatomy, and biomechanics (Gessel et 

al., 2007; Mansell, Tierney, Sitler, Swanik, & Stearne, 2005; McCrea, Hammeke, Olsen, 

Leo, & Guskiewicz, 2004; Miyashita, Diakogeorgiou, & VanderVegt, 2016; Tierney et 

al., 2005).  Tierney et al. (2005) found differences in head-neck segment acceleration 

between physically active males and females, and they posited that this may be due to 

females having less cervical strength, circumference, and head mass than males.  Mansell 

et al. (2005) also found that female collegiate soccer players had less isometric neck 

strength, neck circumference, head-neck mass, and length of head-neck segments than 

males.  Following an 8-week neck strength training program, female athletes 

demonstrated increased cervical strength and circumference, but these gains did not 

translate into significant improvements in dynamic stabilization of their head-neck 

segments (Mansell et al., 2005). 

Concussion pathophysiology and recovery processes differ between youth, who 

have immature brains, and adults, who have mature brains (Choe, Babikian, Difion, 

Hovada, & Giza, 2012; Giza & Hovda, 2001; Shrey et al., 2011; Williams, Puetz, Giza, 
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& Broglio, 2015).  I explain the reasons for these differences in the next chapter.  

Guskiewicz et al. (2000) determined that the incidence of SRC was greater in high school 

football players than in college football players and suggested that this may be due to 

differences in skill levels.  Gessel et al. (2007) found that concussions accounted for a 

higher proportion of SRIs in high school versus college athletes, but college athletes had 

higher concussion rates than high school athletes during athletic events and practice 

sessions.  They posited that this might be due to high school athletes playing with less 

skill and intensity than college athletes (Gessel et al., 2007).   

Concussed adolescents experience more symptoms and take more time to recover 

than concussed adults do, but the reasons for these differences are not clearly understood 

(Field, Collins, Lovell, & Maroon, 2003; Moser, Schatz, & Jordan, 2005).  The World 

Health Organization (WHO; 2017) identified adolescents as those aged 10–19 years who 

are going through the rapid stage of development that occurs between childhood and 

adulthood.  Williams et al. (2015) conducted a systematic review with meta-analysis and 

found that concussion symptoms resolved more slowly in high school athletes than 

collegiate athletes, but neurocognitive recovery times were similar.  This may be due to 

differences in neuroplasticity between immature and mature brains (Shrey et al., 2011).  

Williams et al. (2015) posited that, in addition to physiologic differences between mature 

and immature brains, high school athletes might be more likely than collegiate athletes to 

report, and connect their symptoms with, concussions.  Preconcussion risk factors such as 

prior concussion, young age, female gender, and neuropsychiatric disorders may also 

contribute to differences in recovery times following concussive injury (Collins, Kontos, 

Reynolds, Murawski, & Fu, 2013; Elbin et al., 2013; Schatz, Moser, Covassin, & Karpf, 
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2011).  Most individuals who sustain concussions recover within 1-2 weeks, but nearly 

20% experience PCS, which may persist for several weeks, months, or years postinjury 

(Cobb & Battin, 2004; Collins, Lovell, Iverson, Ide, & Maroon, 2006; Ellis et al., 2015; 

Reddy, Collins, & Gioia, 2008; Vidal, Goodman, Colin, Leddy, & Grady, 2012).  

Athletes who sustain another concussion while they are recuperating from a prior 

concussion are at increased risk for second-impact syndrome, which may cause sudden 

death (Bey & Ostick, 2009; Cobb & Battin, 2004; Schatz & Moser, 2011).   

Sport-related LEIs occur more often during competition than during practice in 

high school and collegiate athletes (Comstock et al., n.d.; Hootman, Dick, & Agel, 2007; 

Murphy, Connolly, & Beynnon, 2003).  In high school athletes, knee injury rates, severe 

knee injury rates, and ankle injury rates are also higher during competition than during 

practice (Ingram et al., 2008; Nelson et al., 2007; Swenson et al., 2013a; Swenson et al., 

2013b). Ingram et al. (2008) determined that illegal play is also a risk factor for LEI in 

high school athletes.  High school girls have higher rates of knee and ankle injuries than 

boys do in same-sport comparisons (Swenson et al., 2013a; Swenson et al. 2013b).   

Female gender, genetic risk factors (family tendency), neurocognitive deficits, 

prior ACL injury, and prior ankle injury have been shown to increase the risk of ACL 

injuries (Kramer, Denegar, Buckley, & Hertel, 2007; Smith et al., 2012).  Combinations 

of these risk factors may also increase the risk of ACL injuries (Smith et al., 2012).  

Ingram et al. (2008) determined that high school girls are twice as likely to endure major 

knee injuries as their male counterparts, while Zernickle et al. (2009) found that ACL 

injury rates for adolescent females are 2 to 5 times higher than those for males.  ACL 

injury rates for collegiate females are also higher than for collegiate males when the same 
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sports are compared (Arendt, Agel, & Dick, 1999).  Excessive knee valgus motions and 

moments during the impact phase of jump landings have been associated with an 

increased risk for ACL injuries in female athletes (Hewett et al., 2005).  Girls may be 

more susceptible to ACL injuries than boys due to (a) anatomic risk factors such as 

smaller ligament size, increased tibial plateau slope, smaller femoral intercondylar notch 

size, and lower extremity malalignment; (b) hormonal risk factors; (c) neuromuscular risk 

factors, including altered movement and muscle activation patterns; and (d) 

environmental risk factors such as lack of strength and conditioning, sport position, 

playing surface conditions, interface between footwear and playing surfaces, and illegal 

play (Adirim & Cheng, 2003; Anderson et al., 2016; Ingram et al., 2008; Kramer et al., 

2007; Smith et al., 2012; White, Lee, Cutuk, Hargens, & Pedowitz, 2003; Zernickle et al., 

2009).   

Swenson et al. (2013b) found that among high school athletes, girls had higher 

rates of ankle sprains than boys did.  Burns and Lowery (2011) reported that 

malalignment of foot, ankle, and leg structures can increase momentum through the 

lateral ankle and increase susceptibility to inversion ankle sprains (Burns & Lowery, 

2011).  Wang, Chen, Shiang, Jan, and Lin (2006), in a study controlling for prior ankle 

injury, lower extremity malalignment, gender, shoes, ankle supports, and playing 

surfaces, determined that abnormal postural sway was associated with increased risk for 

lateral ankle sprains.  

The risk of knee injuries may be reduced by improving lower extremity 

neuromuscular control and avoiding excessive knee valgus while decelerating, pivoting, 

and landing from jumps (Hewett et al., 2005; Paszkewicz, Webb, Walters, McCarty, & 
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Van Lunen, 2012).  Murphy et al. (2003) conducted a broad review of the literature to 

clarify risk factors for lower extremity injuries and found that ankle bracing or taping 

reduces ankle injury incidence.  Engstrom and Renstrom (1998) posited that this might be 

due to improving kinesthetic awareness and reducing rear-foot inversion motion.  The 

risk of ankle injuries many also be reduced by re-establishing normal neuromuscular 

control through balance training (Wilkstrom, Naik, Lodha, & Cauraugh, 2009). 

Concussions and musculoskeletal injuries are common among high school 

athletes, and the long-term consequences of these SRIs can be devastating.  Although the 

associations between concussion and many biopsychosocial conditions have been 

established, little is known about the relationship between concussion and 

musculoskeletal injury in adolescents (Ellis et al., 2015; Guskiewicz et al., 2007).  

Because SRIs may be foreseen and averted when the problem is thoroughly understood, 

there is a need to more thoroughly understand the relationship between SRC and LEMI in 

high school athletes (Emery, 2003; Meeuwisse, 1991).   

Problem Statement 

Concussions have been shown to alter metabolic, physiologic, and cognitive 

functions (Broglio, Ferrara, Macciocchi, Baumgartner, & Elliott, 2007; Guskiewicz & 

Valovich-McLeod, 2011; Leddy et al., 2010; Leddy et al., 2007; Maugans, Farley, 

Altaye, Leach, & Cecil, 2012).  Hutchinson, Comper, Mainwaring, and Richards (2011) 

discovered that athletes who sustained concussions or musculoskeletal injuries exhibited 

impaired cognition, whereas noninjured controls did not.  This unexpected finding shed 

light on the possible connections between musculoskeletal injury and concussion.   
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Nordstrom, Nordstrom, and Ekstrand (2014) were among the first to reveal a 

progressively higher risk of consequent injuries one year postconcussion in a large cohort 

of professional European soccer players.  They also found that the concussed players 

were at higher risk of acute injuries, but they acknowledged that they could not verify 

concussion diagnoses and that there may have been variations in concussion diagnostic 

criteria among venues (Nordstrom et al., 2014).  Pietrosimone, Golightly, Mihalik & 

Guskiewicz (2015a) found an association between self-reported concussion and 

musculoskeletal injury histories throughout the professional football careers of retired 

National Football League (NFL) players.  They also found that as the frequency of self-

reported concussions increased, the odds of players reporting an LEI increased 

(Pietrosimone et al., 2015a).  However, they relied on self-reported data and could not 

validate the responses with medical records, so recall bias may have influenced their 

results (Pietrosimone et al., 2015a).  Gilbert, Burdett, Joyner, Llewellyn, & Buckley 

(2016) surveyed 355 intercollegiate athletes who played 13 sports at 17 colleges or junior 

colleges and found reported concussions and unreported concussions, were associated 

with knee injuries while unrecognized concussions were associated with ankle sprains 

and muscle strains.  They also found that concussions were associated with ankle sprains, 

knee sprains, and muscle strains.  Although they studied a more diverse population of 

adult athletes, they depended on self-reported data and did not account for the influence 

of other conditions.  Lynall, Mauntel, Padua, and Mihalik (2015) found that concussed 

athletes at one university were more likely than nonconcussed athletes to have sustained a 

musculoskeletal injury of a lower limb 1 year postconcussion.  They addressed the 

limitation of recall bias by accessing and analyzing data from the athletes’ electronic 
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medical records, but their small sample size limited the generalizability of their findings 

(Lynall et al., 2015).  

These studies revealed that an association exists between SRC and LEMI in 

specific populations of adult professional male athletes and in collegiate athletes, but the 

problem is that the findings from these studies may not be generalizable to younger male 

and female high school athletes, who have less mature brains as well as neuromuscular 

and musculoskeletal systems.  Furthermore, little is known about the association between 

concussion and musculoskeletal injuries among adolescent athletes.  Therefore, a study to 

elucidate the relationship between SRC and LEMI among a large sample of male and 

female high school athletes was warranted to fill this gap in the literature.  

Purpose of the Study 

The purpose of this cross-sectional quantitative study was to examine the 

association between SRC and LEMI among high school athletes.  By increasing 

awareness of the relationship between SRC and LEMI in this population, this study could 

inspire researchers to conduct prospective studies to determine if the relationship is 

causal.  Findings from these studies could lead to a greater appreciation of the physical 

and functional transformations in the brain and the lower extremities that might mutually 

pertain to SRCs and LEMIs, and this could generate new knowledge that could guide 

practices and policies to reduce sports injuries among high school athletes.  This could 

lead to fewer SRIs among adolescent athletes, which could lead to fewer school absences, 

higher levels of physical activity and fitness, and better health, well-being, and quality of 

life throughout individuals’ lifespans. This could translate into more active, productive, 

and healthy societies locally and nationally. 
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In this study, the dependent (outcome) variable was LEMI; the independent 

(predictive) variable was SRC, and the covariates were age, gender, and sport.  Because I 

defined the dependent variable (LEMI) as a knee sprain or an ankle sprain, I also 

examined the association between SRCs and knee sprains, as well as the association 

between SRCs and ankle sprains, to more thoroughly understand the relationships 

between these common sports injuries.  Additionally, I examined the association between 

the number of SRCs and LEMIs more completely by independently investigating the 

association between the number of SRCs and knee sprains, as well as the association 

between the number of SRCs and ankle sprains. 

Research Questions and Hypotheses 

The research questions for this study follow. 

1. Is there an association between SRC and LEMI among high school athletes? 

H01:  There is not an association between SRC and LEMI among high 

school athletes while controlling for gender, age, and sport.   

HA1:  There is an association between SRC and LEMI among high 

school athletes while controlling for gender, age, and sport.   

1a. Is there an association between SRC and knee sprains among high school 

athletes? 

H01a:  There is not an association between SRC and knee sprains among 

high school athletes while controlling for gender, age, and sport.  

HA1a:   There is an association between SRC and knee sprains among high 

school athletes while controlling for gender, age, and sport. 
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1b. Is there an association between SRC and ankle sprains among high school 

athletes? 

H01b:  There is not an association between SRC and ankle sprains among 

high school athletes while controlling for gender, age, and sport. 

HA1b:  There is an association between SRC and ankle sprains among 

high school athletes while controlling for gender, age, and sport. 

2. Is the number of SRCs associated with LEMI among high school athletes? 

H02:  The number of SRCs is not associated with LEMI among high 

school athletes while controlling for gender, age, and sport. 

HA2:  The number of SRCs is associated with LEMI among high school 

athletes while controlling for gender, age, and sport.  

3. Is the number of SRCs associated with knee injuries among high school 

athletes? 

H03:  The number of SRCs is not associated with knee injuries among 

high school athletes while controlling for gender, age, and sport. 

HA3:  The number of SRCs is associated with knee injuries among high 

school athletes while controlling for gender, age, and sport.  

4. Is the number of SRCs associated with ankle injuries among high school 

athletes? 

H04:  The number of SRCs is not associated with ankle injuries among 

high school athletes while controlling for gender, age, and sport. 

HA4:  The number of SRCs is associated with ankle injuries among high 

school athletes while controlling for gender, age, and sport.  
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Conceptual Framework 

The dynamic model of etiology in sport injury (Figure 1) provided the conceptual 

framework to test the hypotheses in this study (Meeuwisse et al., 2007).  Meeuwisse et al. 

(2007) posited that intrinsic (biopsychosocial) risk factors may increase or decrease an 

athlete’s predisposition to injury when that individual is exposed to extrinsic risk factors 

(forces outside the body) such as playing time, equipment, and so forth, which in turn 

may increase or decrease an athlete’s susceptibility to injury.  When an event occurs that 

can produce an injury, the athlete may or may not be injured (Meeuwisse et al., 2007).  If 

an athlete is injured and does not completely recover, the athlete will not return to play.  

However, if an athlete sustains an injury, recovers from the injury, and returns to play, 

that individual’s intrinsic and extrinsic risk factors may change (Meeuwisse et al., 2007).  

The risk factors may also change when an injury does not occur (Meeuwisse et. al., 

2007).  This dynamic model allows athletes to enter and re-enter the cycle at any of the 

following phases—the predisposed athlete phase, the susceptible athlete phase, the injury 

phase, or the no-injury phase—and participate with modified injury risk factors 

(Meeuwisse et al., 2007).   
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Figure 1. A dynamic, recursive model of etiology in sport injury. From “A Dynamic Model of 
Etiology in Sport Injury: The Recursive Nature of Risk and Causation,” by W. H. Meeuwisse, H. 
Tyreman, B. Hagel, and C. Emery, 2007, Clinical Journal of Sport Medicine, 17(3), p. 217 
Copyright 2007 by Wolters Kluwer Health, Inc. Reprinted with permission.  

 

The key elements of this conceptual framework are connected to the key elements 

of this study, as the model considers the dynamic nature of intrinsic and extrinsic risk 

factors for sports injuries, as well as corollaries of recurrent sport participation regardless 

of the presence or absence of injuries.  The framework also relates to the study approach 

and key research questions by accounting for the fluctuating nature of the determinants of 

sports injuries.  For example, if an athlete sustains a concussion, the interactions between 

the CNS (brain and spinal cord) and the neuromuscular system (nerves, muscles, and 

joints) may be altered, and the athlete’s predisposition for a sport-related injury may 

increase (Herman, Zaremski, Vincent, & Vincent, 2015; Hewett, Paterno, & Myer, 2002; 

Meeuwisse et al., 2007).  When the athlete recovers from the injury and returns to play 

with a modified internal risk factor (prior history of concussion), the interactions between 
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the athlete’s current intrinsic and extrinsic risk factors may be altered.  For example, if 

the athlete pivots on a wet playing surface with a planted foot, the athlete may be more 

susceptible to a knee or ankle sprain due to changes in the playing conditions or changes 

in lower extremity neuromuscular control following the concussion.  When an event 

occurs that could produce an injury, such as player-to-player contact as the athlete is 

landing from a jump, the athlete may or may not endure a sport-related injury.  If the 

athlete sustains an injury, recovers, and is able to return to play, the intrinsic and extrinsic 

risk factors may change again, such that the athlete’s predisposition and susceptibility to 

injury could also change.  A more detailed explanation of how SRCs relate to LEMIs 

within this conceptual framework is presented in Chapter 2. 

Nature of the Study 

I analyzed an existing numeric data set to test my hypotheses in order to 

determine the association between an independent variable (SRC) and a dependent 

variable (LEMI) in high school athletes in a defined period in time while controlling for 

gender, age, and sport. Therefore, a retrospective, quantitative, cross sectional design was 

appropriate for answering the research questions (Carlson & Morrison, 2009; Creswell, 

2014).  A de-identified secondary data set from A. T. Still University’s (ATSU) Athletic 

Training Practice-Based Research Network (AT-PBRN) was analyzed with descriptive 

statistics, Pearson’s chi-square analyses, and binomial logistic regression analyses while 

controlling for gender, age, and sport.   

The AT-PBRN uses the web-based Clinical Outcomes Research Education for 

Athletic Trainers (CORE-AT) System to capture high school athletic injury surveillance 

data and electronic medical record (EMR) data from more than 25 high schools 
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throughout the United States (ATSU, n.d.).  The EMR includes a concussion-specific 

evaluation form and region-specific injury evaluation forms (ATSU, n.d.).  The CORE-

AT system captures injuries that “1) result from participation in interscholastic practices 

or competitions and 2) require medical attention by a certified athletic trainer or 

physician and 3) result in restricted participation or performance for 1 or more days 

beyond the day of injury” (ATSU, n.d., p. 44).  AT-PBRN athletic trainers participate in a 

two hour training session before becoming members of the AT-PBRN to uphold data 

quality (Valovich-McLeod, Lam, Bay, & Sauers, 2012).  Although athlete exposures can 

be captured in the surveillance portion of the CORE-AT system, the athletic trainers are 

not required to document exposures, so a common denominator was not available to 

determine risk or rates of injury in this study. 

The key constructs from the data have been described, analyzed, validated, and 

disseminated in peer-reviewed journals.  Sauers, Valovich-McLeod, and Bay (2012) 

showed how PBRNs can produce data in multiple locations to generate large, diverse 

samples; surmount the limitations of single-venue studies; connect scholars with 

practitioners; and transform research results into practice.  They also explained the 

process for establishing PBRN frameworks, safeguarding participants, and complying 

with government regulations (Sauers et al., 2012).  Valovich McLeod et al. (2012) 

collected and analyzed de-identified data from 22 certified athletic trainers at 22 high 

school athletic training sites in 7 states within the AT-PBRN to ascertain the value of 

PBRN data. They found that (a) lower extremity sprains/strains and concussions 

accounted for most SRIs, and (b) relevant patient care data and athletic training practice 

pattern data can be obtained from EMRs in PBRNs (Valovich McLeod et al., 2012).  In 
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another AT-PBRN study, Lam, Snyder Valier, and Valovich McLeod (2015) analyzed 

de-identified injury and treatment data obtained by athletic trainers between October 1, 

2009, and October 31, 2013, from 62 high schools in 14 states to examine injury and 

treatment characteristics.  They determined that athletic trainers identified and managed 

similar injuries (mostly lower extremity sprains/strains and concussions) and provided 

similar services irrespective of sport (Lam et al., 2015).  The injury patterns and athletic 

training practice patterns in this study were also comparable to those reported in earlier 

studies (Ingram et al., 2008, Marar, Mcllvain, Fields, & Comstock, 2012, Nelson et al., 

2007; Swenson et al., 2013; Valovich McLeod, 2012; Yard, Schroeder, Fields, Collins, & 

Comstock, 2008).  Lam, Snyder Valier, Anderson, and Valovich McLeod (2016) 

analyzed AT-PBRN high school athlete encounter data from EMRs from December 1, 

2009, through July 1, 2015, to examine the characteristics of athletic training practice 

among high school athletic trainers.  This study clarified the role that high school athletic 

trainers play in evaluation, prevention, and management of injuries in high school 

settings (Lam et al., 2016).  These AT-PBRN studies demonstrated that athletic trainers 

can provide services and capture injury and care data in EMRs in multiple sites 

throughout the country to provide a valid source of data for large national studies (Lam et 

al., 2016; Lam et al., 2015; Sauers et al., 2012; Valovich McLeod et al., 2012).  These 

studies also built upon earlier research by Yard, Collins, and Comstock (2009) that 

demonstrated the utility of athletic trainers being the principal data recorders in large-

scale studies.   
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Variable Definitions 

The dependent (outcome) variable (LEMI) and the independent (predictor) 

variable (SRC) were the sport-related injuries analyzed in this study.  Covariates included 

gender, age, and sport.  The definitions of these variables and covariates follow: 

 Lower extremity musculoskeletal injury (LEMI): (a) A knee sprain delineated by 

one of the following International Classification of Diseases, ninth revision (ICD-9) 

codes: 844.0, 844.1, 844.2, or 844.9, or (b) an ankle sprain delineated by one of the 

following ICD-9 codes: 845.00, 845.01, or 845.03 (ATSU, n.d.; Centers for Medicare and 

Medicaid Services (CMS; n.d.; Merrick, 2002; Williams, 1971). 

Sport-related concussion (SRC): A brain injury caused by a sport-related 

biomechanical force, delineated by one of the following ICD-9 codes in the EMR: 850.0, 

850.5 or 850.9 (CMS, n.d.; Ellis et al., 2015, McCrory et al., 2013).  

Gender: The high school athlete’s sex. 

Age: The high school athlete’s age at the time of injury. 

Age group: The high school athlete’s age range (11-13 years, 14-17 years, and 18-

19 years) at the time of injury. 

Sport: May refer to team sports (e.g., baseball, basketball, cheerleading, field 

hockey, football, hockey, lacrosse, soccer, softball, or volleyball), which require team 

members to work together at the same time to achieve the team’s goal or outcome (e.g., 

defeating an opponent), or individual sports (e.g., badminton, cross country, gymnastics, 

swimming, tennis, track, or wrestling), which require all athletes to be responsible for 

achieving their own goals or outcomes (e.g., such as setting a personal record, qualifying 

for an event, or winning an event). 
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Assumptions 

The secondary dataset for this study was obtained from a nationally representative 

sample of high school athletic injury data that was extracted from electronic medical 

records within the AT-PBRN.  Several assumptions for this study pertained to the quality 

of these data.  I assumed that (a) the original data were collected in an ethical manner, (b) 

the data were correctly entered into the CORE-AT system, (c) the data from each EMR 

were independent (i.e., did not influence another athlete’s EMR), and (d) the original 

dataset was reliable and valid (ATSU, n.d.).  I assumed that the athletic trainers who 

contributed data to the AT-PBRN diagnosed concussions and musculoskeletal injuries 

correctly and coded the injuries accurately.  Additionally, I assumed that the secondary 

dataset was de-identified to prevent direct or indirect disclosure of the athletes’ identities.  

These assumptions were essential in my study because my findings relied upon the 

integrity of the secondary dataset that I examined, and flaws in the initial data collection 

process could not be overcome during secondary analysis.  

The AT-PBRN athletic trainers received structured EMR training to facilitate 

consistency in coding and data entry across clinical sites (Lam et al., 2015).  

Additionally, all clinical sites used the same EMR system and ICD-9 codes so that injury 

definitions and coding options were clearly and consistently defined throughout the data 

collection sites (ATSU, n.d.).   

Scope and Delimitations 

This quantitative cross-sectional study focused on LEMI outcomes, particularly 

knee and ankle sprains in high school athletes.  I selected ankle sprains and knee sprains 

as the outcomes because they are the two most common LEIs in high school sports, and 
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evidence suggests that impaired neurocognitive function may cause changes in motor 

responses that increase LEI risk (Herman et al., 2015).  Although the AT-PBRN database 

captures musculoskeletal injury management data and other sports injury data, those 

outcomes were beyond the scope of this study.  This study was delimited to U.S. high 

school athletes.  The results of this study may be generalizable to U.S. high school 

athletes in the states and regions where the data were generated but not to other 

populations or geographic areas. 

Limitations 

The main limitation of this study was my inability to attain meaningful measures 

of association between the independent and dependent variables, as incomplete 

information led to lack of convergence and small sample sizes reduced the power of the 

Hosmer-Lemeshow tests to determine how well the models fit the data during the logistic 

regression analyses.  I explain the reasons I could not attain results for meaningful 

inference in more detail throughout the fourth and fifth chapters. Moreover, the dataset 

did not reflect athlete exposures to training, practices, and competitions, so I was not able 

to determine risk or rates of injury in this study.  Additionally, the dataset did not include 

prior concussion and LEMI histories, so I was not able to determine the directions of the 

associations.   

This cross-sectional study could not establish a causal effect, so the relationships 

identified in this study could have been influenced by untested variables such as the 

playing surfaces or athletes’ levels of skill (Abrahams et al., 2014).  In that quantitative 

cross-sectional studies examine exposure and outcome concurrently, temporal 

relationships were not discovered.  There was also potential for bias toward including 
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more athletes without concussion or without musculoskeletal injuries if athletes who 

sustained either one of these injuries were unable to return to play.   

Because this study examined the relationship between SRC and LEMI among 

U.S. high school athletes, generalization of the findings to other athletic or nonathletic 

populations may not be possible.  Therefore, external validity (generalizability of the 

study’s results) could be threatened.  I addressed this limitation by not generalizing the 

results of this study beyond the population represented by this sample.  Although the 

design of this study was aligned with the research questions and methods and my 

interpretations did not exceed the data, findings, or scope of this study, the threats to 

internal validity (strength of inferences) and limitations described above could not be 

overcome in this study.  However, many of the limitations in this study could be 

addressed if this study serves as a springboard for future large-scale prospective studies.   

Significance of the Study 

The literature is sparse regarding the relationship between SRC and LEMI among 

adult athletes, and to my knowledge, this relationship has not been examined in 

adolescent high school athletes.  This study may facilitate positive social change by 

increasing awareness of the gap in the literature regarding the relationship between SCR 

and LEMI in high school athletes, which may prompt others to contribute to this area of 

literature.  For example, this study could inspire researchers to conduct retrospective 

studies to determine if a relationship exists, as well as prospective studies to determine if 

the relationship is causal in young athletes.  These findings could lead to a greater 

appreciation of the pathophysiologic regions in the brain and the lower extremities, which 

might mutually pertain to SRCs and LEMIs.  This could lead to new practical knowledge 
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to guide practices and policies to reduce sports injuries among high school athletes.  New 

knowledge could lead to fewer SRCs and LEMIs among adolescent athletes, which could 

lead to fewer school absences and higher levels of physical activity and fitness as well as 

better health, well-being, and quality of life throughout individuals’ lifespans.  This could 

translate into more active, productive, and healthy societies locally and nationally.  

Summary 

Concussions and LEMIs may lead to reduced quality of life, decreased 

independence, decreased mobility, progressive deterioration of health, lost wages, 

increased health care costs, and economic burdens for individuals and society (USBJI, 

2016; Valovich McLeod et al, 2009).  Understanding the factors that contribute to these 

injuries may inform injury prevention and treatment strategies, reduce initial and 

recurrent injuries, and ultimately reduce the physical and economic burden of sport-

related injuries (Guskiewicz & Valovich McLeod, 2011; Meeuwisse, et al., 2007; USBJI, 

2016).  The associations between SRC and LEMI among collegiate athletes and male 

professional athletes have been reported, but the findings from these studies may not be 

generalizable to younger high school athletes, who have less mature brains and 

musculoskeletal systems. Therefore, a study to uncover the relationship between SRC 

and LEMI among a large national sample of male and female high school athletes is 

warranted to fill a void in the literature.  

 The background of the study, problem statement, and purpose of the study were 

delineated in this chapter.  The research questions, hypotheses, conceptual model, and 

nature of the study were also presented. The definitions, assumptions, limitations, 

delimitations, and significance of the study were clarified, and a summary was provided 
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at the end of this chapter.  The next chapter focuses on a review of the literature to 

support this research. 
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Chapter 2: Literature Review 

Introduction  

Sport-related injuries can be foreseen and averted when the problem is thoroughly 

understood, but evidence pertaining to the relationship between SRC and LEMI is limited 

(Emery, 2003; Meeuwisse, 1991).  Nordstrom et al. (2014) determined that SRC was 

linked with a progressively higher risk of ensuing injuries 1 year postconcussion.  In the 

same large cohort study, they found that concussed male European soccer players were 

also at higher risk of acute injuries than nonconcussed players (Nordstrom et al., 2014).  

In a large cross-sectional study by Pietrosimone et al. (2015a), a positive association 

between self-reported concussion history and self-reported musculoskeletal injury history 

was found throughout the NFL careers of retired players.  Pietrosimone et al. (2015a) also 

determined that the odds of players reporting a lower extremity injury increased as the 

frequency of self-reported concussions increased.  Lynall et al. (2015) reported that 

concussed collegiate athletes at one university were more likely than nonconcussed 

athletes to have sustained a lower limb musculoskeletal injury 1 year postconcussion.  

Gilbert et al. (2016) found that histories of reported concussions, unreported concussions, 

and any concussions were associated with knee injuries, while possibly unrecognized 

concussions were associated with ankle sprains and muscle strains in college and junior 

college athletes. They also found that any concussions were associated with ankle 

sprains, knee sprains, and muscle strains. The problem is that the findings from these 

studies of adult professional and collegiate athletes may not be generalizable to younger 

male and female high school athletes, who have less mature brains and musculoskeletal 

systems.  Little is known about the association between concussion and musculoskeletal 
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injuries among adolescent athletes.  Therefore, a study to elucidate the relationship 

between SRC and LEMI among a large national sample of male and female high school 

athletes is warranted to fill this gap in the literature.  The purpose of this cross-sectional 

quantitative study was to examine the association between SRC and LEMI among high 

school athletes.  This study provides early information to facilitate a more complete 

understanding of SRCs and LEIs in young athletes to begin to fill a void in the literature.   

This chapter includes the literature search strategy, the conceptual model that 

grounded this study, and the evidence that pertains to adolescent SRCs and LEMIs. This 

chapter concludes with a summary and transition to the third chapter. 

Literature Search Strategy 

I conducted an electronic search of health sciences and psychology databases to 

obtain articles for this literature review.  The databases included: Academic Search 

Complete, Cumulative Index to Nursing and Allied Health Literature (CINAL), Cochrane 

Database of Systematic Reviews, Google Scholar, Health Source: Nursing/Academic 

Edition, Medline, Ovid, PsycInfo, PubMed, Sage, Science Direct, and Sport Discus.  

The search was limited to full-text articles and abstracts written in the English 

language.  Each database was searched from its beginning date through July 31, 2017.  

Key search terms included concussion, adolescent and concussion, secondary school 

athletes and concussion, concussion and musculoskeletal injury, and concussion and 

sports injury.  Reference lists of pertinent articles and websites provided information on 

additional sources.  Peer-reviewed articles that provided seminal information or the most 

current evidence pertaining to concussion, sport-related concussion, LEMI, 

epidemiology, pathophysiology, long-term consequences of these injuries, risk factors,  
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burden of SRC or LEMIs, return to play progression, neurocognition, motor dysfunction, 

motor control, and postural stability were included in this literature review.  Articles that 

did not meet these criteria for inclusion and did not provide relevant information to 

contribute to the understanding of SRC and LEMI in high school athletes were excluded 

from this literature review.  An extensive review of the literature was completed to 

establish the framework for this study.  

Conceptual Model 

Effective prevention and management of SRIs requires a clear understanding of 

the causes and pathologies of the injuries (Williams, 1971).  Williams (1971) broadly 

classified all sports related injuries as either (a) consequential (caused by sport 

participation or training) or (b) nonconsequential (non-sport-related injuries that 

adversely affect sport participation or training).  Williams (1971) also subclassified 

consequential injuries into primary consequential injuries, which are unequivocally due 

to sports, and secondary consequential injuries, which are caused by untreated or 

inadequately treated injuries.  Subcategories of primary consequential injuries include 

intrinsic and extrinsic injuries (Williams, 1971).  Extrinsic injuries may be caused by a 

direct force from factors outside the athlete’s body, whereas intrinsic injuries are often 

caused by a traumatic event (sprain, strain), acute overuse (tenosynovitis), or chronic 

overuse (tendinosis) due to factors within the athlete’s body (Williams, 1971).   

The dynamic model of etiology in sports injury provides the conceptual 

framework for examining the relationship between SRC and LEMI in this study 

(Meeuwisse et. al., 2007).  The model describes how preinjury risk factors change during 

each sports encounter in the presence or absence of an injury and accounts for how 



31 

 

repeated injury exposures may lead to adjustments, maladjustments, injury, full recovery, 

or partial recovery from injury (Meeuwisse et al., 2007).  The dynamic model of etiology 

in sports injury has been applied in other research to examine sports-related injury risk 

factors and inform injury prevention strategies. Benson et al. (2013) recognized the 

dynamic nature of concussion risk factors and referred to this model in their review of 

SRC risk factors in order to explain how susceptibility to injury varies as interactions 

among risk factors vary.  Hupperets, Verhagen, and van Mechelen (2009) also applied 

this model to explain how changes in intrinsic risk factors following ankle injuries 

increase susceptibility to recurrent ankle injuries after an initial injury. 

An example of how the dynamic model of etiology in sports injury may be 

applied to SRC and LEMI follows. With respect to intrinsic risk factors, a young female 

athlete with a history of one or more concussive injuries, weak neck muscles, small neck 

circumference, poor health, low level of fitness, and low level of skill who engages in 

illegal play may increase her predisposition to LEMI due to maladaptive interactions 

between the CNS (brain and spinal cord) and neuromuscular system (nerves, muscles, 

and joints); Collins, et al., 2002; Gessel et al., 2007; Guskiewicz et al., 2003; Guskiewicz 

et al., 2000; Herman et al., 2015; Hewett et al., 2002; Iverson et al., 2006; Iverson ,et al., 

2004; Tierney et al., 2005).  Conversely, a more mature male athlete without a prior 

concussion history who has strong neck muscles, a large neck circumference, excellent 

health, a high level of fitness, and a high level of skill and who engages in legal play may 

decrease his predisposition to LEMI by developing adaptive (protective) interactions 

between the nervous system and neuromuscular system.  When these athletes are exposed 

to extrinsic risk factors such as more or less playing time, inadequate or adequate 
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equipment, contact versus noncontact, full contact versus partial contact versus no 

contact, and so on, the female athlete’s susceptibility to injury may be increased while the 

male athlete’s susceptibility may be decreased, or vice versa, depending upon the 

interactions of the internal and external risk factors.  One or both of these athletes may be 

injured when an inciting event occurs, but many events may occur during the course of 

training, practice, and competition that will not result in injuries.  An injury may be 

serious enough to preclude a return to sports.  However, an athlete may sustain an injury, 

recover from the injury, and resume play, with different intrinsic risk factors (cognition, 

reaction time, postural stability, neuromuscular control, etc.), and different extrinsic risk 

factors (playing time, equipment, etc.).  These risk factors may change and continue to 

change in the presence or absence of new injuries.  

In summary, the dynamic model of etiology in sports injury accounts for fluidity 

of sports injury risk factors, the impact of repeated exposures, and the ways in which 

each exposure may lead to (a) adaptation (decreased risk) or maladaptation (increased 

risk), (b) injury or no injury, and (3) full recovery or no recovery.  The following sections 

of this study build upon this foundation. 

Pathophysiology of Concussions 

Concussions account for most traumatic brain injuries (Cubon, Putukian, Boyer, 

& Deltwiler, 2010; Ellis et al., 2013).  Concussions have been shown to alter cerebral 

metabolism, ionic equilibrium, mitochondrial function, and cerebral blood flow (Giza & 

Hovda, 2001; Maugans et al., 2011).  Giza and Hovda (2001) reviewed more than 100 

studies and surmised that after a concussive injury, a “cascade of ionic, metabolic, and 
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physiologic events” leads to changes in neuronal function that may present clinically as 

“impaired coordination, attention, memory, and cognition” (p. 233). 

Shrey et al. (2011) conducted an extensive review of experimental and human 

studies that supported Giza and Hovda’s (2001) findings and shed light on the 

pathophysiology of concussions in children, adolescents, and young adults with 

developing brains.  Beginning immediately after a concussion, normal neurometabolic 

processes can be disrupted for 4 weeks after the injury in humans (Shrey et al. 2011).  

Even temporary interference with normal neurochemical processes in the developing 

brain may adversely affect brain plasticity and negatively affect cognitive potential (Choe 

et al., 2012; Giza & Hovada, 2001; Shrey et al., 2011).  These changes increase 

susceptibility to a second concussion and second impact syndrome (Shrey et al., 2011; 

Signoretti, Lazzarino, Tavazzi, & Vagnozzi, 2011).  A second impact injury before 

complete recovery from a previous concussive injury can trigger changes in 

autoregulation of blood vessel constriction and dilation and lead to cerebral 

autoregulatory failure (Wetjen, Pichelmann, & Atkinson, 2010).  Inability to autoregulate 

cerebral blood flow in conjunction with a catecholamine surge and rapid elevation of 

blood pressure may lead to rapid, diffuse brain swelling and death (Wetjen et al., 2010).  

During the subacute phase of recovery, changes in brain activation patterns and 

neuroplasticity occur that may delay neurodevelopment and contribute to neurocognitive 

deficits that may not be recognized for some time (Shrey et al., 2011).  Recurrent 

concussions, or excessive activity, following a concussion contribute to prolonged and 

more severe postconcussion symptoms and neurocognitive dysfunction (Covassin, 
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Moran, & Wilhelm, 2013; Shrey et al., 2011).  Aggregate effects of concussive injuries 

include aberrant protein deposits and progressive neurodegeneration (Shrey et al., 2011).   

Return to Play 

Determining when it is safe for high school athletes to return to play (RTP) 

following concussions and musculoskeletal injuries can be arduous (Echemendia, Giza, 

& Kutcher, 2015; Guskiewicz & Valovich-McLeod, 2011).  Current evidence-based 

concussion management guidelines include cognitive and physical rest immediately after 

the injury, followed by gradual return to academic activities, social activities, and 

physical exertion (Echmendia et al., 2015; Master, Gioia, Leddy, & Crawley, 2012; May, 

Marshall, Burns, Popoli, & Polikandriotis, 2014; McCrory et al., 2013).  

Neuropsychological tests are commonly used to assess cognitive function, while balance 

and postural stability tests are used to assess motor function and guide RTP progression 

following concussions (Guskiewicz & Teel, 2015; McCrory et al., 2013; Wilkstrom et al., 

2009).  However, Nelson et al. (2016) found that computerized neurocognitive tests may 

assist in the recognition of clinical cognitive impairment within the first 24 hours 

following a concussion or for a brief period after postconcussion symptoms resolve.  

However, during the later phases of recovery, computerized assessments do not offer 

more value than concussion symptom scores, so pre- and postconcussion 

neuropsychological test scores may not be as helpful as initially believed for guiding RTP 

decisions.  McCrea et al. (2012) determined that 10% of high school and college athletes 

demonstrated postconcussion symptoms that lingered more than 7 days postinjury, and 

almost 25% of those athletes reported persistent symptoms 6-12 weeks postconcussion.  

When symptoms lasted 45-90 days postconcussion, significant deficits were not evident 
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in cognitive and postural stability assessments (McCrea et al., 2012).  Because 

postconcussion symptoms and functional impairments vary among athletes, Collins et al. 

(2013) proposed a model that includes specific clinical trajectories (vestibular, ocular-

motor, cognitive/fatigue, posttraumatic migraine, cervical, and anxiety/mood) to inform 

examinations, treatments, and RTP progressions in order to address each athlete’s unique 

needs.  RTP decisions following musculoskeletal injuries are based upon assessments of 

range of motion, strength, neuromuscular control, proprioception, sport-specific function, 

and psychological preparedness (Clanton, Matheny, Jarvis, & Jaronimus, 2012).   

Neurocognition and Motor Dysfunction 

Herman et al. (2015) explained the relationships among neurocognitive 

performance, motor learning, and neuromuscular control.  Neurocognitive performance 

involves “visual attention, self-monitoring, agility/fine motor performance, processing, 

and speed/reaction time” (Herman et al., 2015, p. 195).  Motor learning entails utilization 

of tasks and feedback to incorporate sensory information into movements (Boyd & 

Winstein, 2003).  Neuromuscular control involves proprioception (awareness of joint 

position) and interaction between sensory and motor pathways (Hewett et al., 2002; 

Swanik, Lephart, Giannantonio, & Fu, 1997).  Proprioceptive information is provided to 

the visual and vestibular systems as well as the peripheral mechanorecptors (Hewett et. 

al., 2002).  The mechanoreceptors “provide position sense and conscious awareness by 

initiating reflexes to stabilize joints and avoid injury” (Hewett et al., 2002, p. 78).  After 

the mechanoreceptors receive information from the external environment, the information 

is sent to the CNS, where it is processed, initially at the spinal level (a rapid reflexive 

response), then by the lower brain (an intermediate speed response), and finally by the 
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cerebrum (the slowest response; Hewett, et al., 2002).  The reflex response at the spine 

(the first level of motor control) stabilizes joints and modulates movements from higher 

levels (Hewett et al., 2002).  The lower brain (the next level) is responsible for timing 

movements, learning movements, and controlling complex, continuous, repetitive 

movements (Hewett et al., 2002).  The cerebrum (the third level) is responsible for 

controlling voluntary movements (Hewett et al. 2002).  Accurate sensory processing and 

attentiveness allow athletes to assess situations, while rapid reaction time and dual-

tasking proficiency allow athletes to perform motor tasks in an efficient manner (Herman 

et al., 2015).  Correct interpretation of proprioceptive feedback (awareness of joint 

position) and kinesthetic feedback (awareness of joint motion) allows athletes to make 

appropriate adjustments in motor activity to optimize task performance (Herman et al., 

2015; Swanik et al., 1997).  Impaired neurocognitive function may cause changes in 

motor responses that increase injury risk (Herman et al., 2015).  

Broglio, Sosnoff, and Ferrara (2009) explored the relationships among self-

reported concussion symptoms, objective measurements of neurocognitive performance, 

and postural control in collegiate athletes and found strong correlations between reported 

cognitive and balance issues and objective measures of cognitive and postural 

impairments.  Dorman et al. (2013) evaluated postural stability and postconcussion 

symptoms in adolescents and found that postural stability improved as postconcussion 

symptoms diminished.  They also incorporated a visual challenge (closing eyes) to reduce 

sensory feedback, and a cognitive challenge (reciting the months backward) during static 

balance testing to measure postural deficits and found that dual task interference provided 

additional value in assessing postural stability and recovery when compared to balance 
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testing only (Dorman et al., 2013).  Howell, Osternig, and Chou (2015) found that 

concussed high school athletes demonstrated impaired dynamic motor function while 

walking and performing a cognitive task immediately after concussion and during the 

course of their 2-month study, but controls and concussed adults did not.  In another 

study, Howell, Osternig, and Chou (2014) found that concussed high school athletes 

demonstrated worsening of gait balance control during dual task walking upon their 

return to activity.  This decline in neuromuscular performance during controlled 

conditions raises concerns that neuromuscular dysfunction may be more detrimental 

during complex athletic tasks (Lynall et al., 2015).  DeBeaumont et al. (2011) examined 

the impact of concussion on motor function in collegiate football players 9 months post 

concussive injury and found differences between concussed athletes and controls in 

anterior-posterior postural sway and intracortical inhibition of the primary motor cortex, 

but no differences in rapid alternating pronation-supination movements of the hands.  

They also found that the amount of intracortical inhibition of the primary motor cortex 

was directly related to the number of concussions sustained (DeBeaumont et al., 2011).  

These findings suggest that subclinical changes in lower extremity motor performance 

persist after concussive injury (DeBeaumont et al., 2011).  Barr, Prichep, Shabot, and 

McCrea (2012) found that abnormalities in brain electrical activity lingered among high 

school and college football players when standardized neuropsychological tests and 

postural stability tests indicated clinical recovery. This demonstrates that clinical tests 

may not be sensitive enough to reveal neurological deficits following concussive injuries 

(Barr et al., 2012; Howell et al., 2015). 
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Neurocognition and Musculoskeletal Injury 

 Hutchison et al. (2011) found cognitive deficits were evident in collegiate 

athletes who sustained concussions and those who sustained musculoskeletal injuries, 3 

days post injury, but not in-uninjured collegiate athletes.  Their findings demonstrate that 

thinking and reasoning can be disrupted without a direct injury to the brain, so other 

factors may be contributing to cognitive impairments during the early phases of recovery 

from concussion and musculoskeletal injuries (Hutchison et al., 2011).  Swanik, 

Covassin, Stearne, and Schatz (2007) found collegiate athletes who sustained non-contact 

ACL injuries during the season, had lower baseline neurocognitive scores in the areas of 

verbal memory, visual memory, visual motor speed, and reaction time, than matched 

controls.  Swanik et al. (2007) suggested, slower reaction times and processing speed 

may disrupt judgment and coordination and increase susceptibility to non-contact ACL 

injuries.  They also suggested that impaired visual memory might make it more difficult 

for athletes to recognize, and respond to, conflicting visual information during 

unexpected events; and this could interfere with neuromuscular control mechanisms, and 

the ability to dynamically stabilize joints (Swanik et al., 2007). 

Wilkerson (2012) posited the amount of time required for an athlete to visually 

perceive a stimulus, process that information, and respond to the stimulus might be linked 

to awareness and ability to produce the proper motor response.  Wilkerson (2012) 

explored the association of reaction time, and forthcoming lower extremity injuries 

among college football players, and found slower reaction time predicted lower limb 

sprains and strains.  Herman and Barth (2014) analyzed kinetics, (forces generating or 

changing motions) and kinematics (motions) as young adult female athletes performed 
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jump landings onto varied targets in order to compare neuromuscular function between 

athletes with high and low baseline neurocognitive scores.  The athletes, with low 

neurocognitive baseline scores, demonstrated kinetics, and kinematics which have been 

associated with higher risk for ACL sprains (Herman & Barth, 2014).  This study shed 

light on the relationship between neurocognitive performance and neuromuscular 

performance (Herman & Barth, 2014). 

Motor Control and Postural Stability 

 Information from somatosensory, visual and vestibular systems, influences 

control mechanisms to maintain joint stability during body movements (Dorman et al., 

2013; Riemann & Lephart (2002a, 2002b).  Postural stability involves controlling the 

position of one’s center of gravity (Murphy et al., 2003).  Ankle plantar flexors, and 

dorsiflexors primarily control anterior-posterior postural stability, while the hip 

abductors, and adductors primarily control medical-lateral postural stability when the feet 

are positioned side-by-side (Termoz et al., 2008).  When the feet are placed at 45 degrees, 

the hip and ankle muscles work in concert in the medial-lateral direction, but they work 

against each other in the anterior-posterior direction (Termoz et al., 2008).  Greater 

postural sway (less postural stability) has been shown to: (a) change neuromuscular 

control strategies, (b) increase forces between joint segments, and (c) increase forces 

generated around the joints’ articular and soft tissue structures (Murphy et al., 2003).   

Impaired postural control and balance have been associated with ankle, and knee 

sprains (Samaan et al., 2015; Wilkstrom et al., 2009).  Wilkstrom et al. (2009) conducted 

a meta-analysis and determined: (a) postural stability decreases in individuals with a 

history of lateral ankle injury, (b) acute and chronic ankle injuries adversely influence 
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balance, and (c) balance training enhances postural control after acute and chronic 

injuries.  Hoch et al. (2012) also found, individuals with chronic ankle instability 

demonstrate limitations in dynamic postural control.  McKeon and Hertel (2008) 

conducted a meta-analysis and noted postural dysfunction in the involved, and 

uninvolved lower extremities following ankle sprains which Wang et al., 2009 posited 

might be related to variations in motor control patterns.   

Samaan et al. (2015) utilized the STAR Excursion Balance Test, (SEBT) and 

single leg hop test to assess dynamic postural control in a collegiate soccer athlete before 

and after ACL reconstruction (ACLR), then compared the results to baseline 

measurements utilizing the minimal detectable change method, and limb symmetry index 

calculations.  Results revealed: (a) ACL injury affected lower extremity dynamic postural 

control, (b) although ACLR restored joint stability, dynamic postural control was still 

affected; and (c) at 27 months post ACLR, single leg hop performance returned to 

baseline levels but SEBT performance did not (Samaan et al., 2015).  The authors noted 

the sensorimotor system must adjust after injury and surgery to restore postural control, 

and they suggested inhibition of the quadriceps muscle, and decreased lower extremity 

strength might have contributed to reduced dynamic postural control in this case (Samaan 

et al., 2015).  They also suggested that compensatory processes at the hip, and ankle 

joints might have contributed to improvements in single leg hop performance following 

ACLR (Samaan et al., 2015). 

Concussion and Lower Extremity Injury 

Evidence is emerging regarding the relationship between concussion, and 

musculoskeletal injury.  Intercollegiate athletes with musculoskeletal injuries have 
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demonstrated impaired cognition, and individuals with histories of chronic ankle 

instability and ACL injuries have demonstrated changes in cortical function, which raises 

the possibility there may be a relationship between musculoskeletal injuries and impaired 

cortical function (Hutchison et al., 2011; Pietrosimone & Gribble, 2012; Pietrosimone et 

al., 2015b).  

As part of a large, ongoing, prospective cohort study of European male 

professional soccer players, Nordstrom et al., (2014) analyzed data from a sample of 

1665 players, over a period of 11 seasons, between 2001/2002 and 2011/2012, to 

determine if concussion increases the risk of another injury.  Only injuries that kept 

players from training or competing were entered into the database (Nordstrom et al, 

2014).  Overall, the players who sustained concussions (n=66) were more susceptible to 

injury than players who did not sustain concussions (n =1599) (Nordstrom et al., 2014).  

Concussed athletes were about twice as likely to incur a musculoskeletal injury the year 

before and the year after the concussive injury (Nordstrom et al., 2014).  After 

accommodating for the higher rate of musculoskeletal injury prior to the concussion, the 

concussed athletes were still at greater risk of sudden onset musculoskeletal injury one 

year post-concussion (Nordstrom et al., 2014).  The majority of musculoskeletal injuries 

sustained by concussed and nonconcussed players involved the lower extremities 

(Nordstrom et al., 2014).  Concussion was also associated with an incrementally 

increased risk of sudden and gradual onset musculoskeletal injuries, when compared with 

the risk following nonconcussive injuries (Nordstrom et al., 2014).  The risk increased 

from 1.56 times within the first 3 months, to 2.78 times within the third to sixth months, 

to 4.07 times within the sixth to twelfth month period post-concussion, but the reason for 
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this incremental increase was not evident (Nordstrom et al., 2014).  The incrementally 

increasing risk of sustaining a musculoskeletal injury after athletes have returned to play 

raises concerns and highlights the need additional research to determine the cause of the 

increased risk of consequent injuries (Nordstrom et al., 2014).   

Pietrosimone, et al. (2015a) analyzed data from a large cross sectional study of 

retired NFL players, in order to explore the association between concussion frequency 

and LEMI during the players’ NFL careers.  A 13-page survey was sent to 3647 former 

players who retired between 1930 and 2001 (Pietrosimone et al., 2015a).  The players 

were asked to indicate if they sustained any concussions during their NFL careers by 

responding yes or no, and if they replied yes, they were instructed to indicate how many 

concussions they had incurred (Pietrosimone et al, 2015a).  The players were also asked 

to specify how many times they had incurred 9 types of musculoskeletal injuries 

(Pietrosimone et al., 2015a).  About 69% (n = 2552) of the surveys were returned, and 

statistical analysis revealed an association exists between self-reported concussions and 

musculoskeletal injuries in this population (Pietrosimone et al., 2015a).  As the frequency 

of reported concussions increased, the odds of reporting a lower extremity 

musculoskeletal injury increased, but they were not able to determine the directional or 

temporal characteristics of the relationship (Pietrosimone et al., 2015a).  Overall, the odds 

of reporting an ankle or knee injury increased irrespective of the number of concussions 

reported (Pietrosimone et al., 2015a).    

Lynall et al. (2015) reviewed the EMRs of 44 concussed and 58 matched non-

concussed collegiate athletes, who participated in a variety of sports at one University, 

over a two year period of time in order to determine the risk of lower limb 
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musculoskeletal injuries post-concussion.  Injury rate comparisons were calculated at 90 

days, 180 days, and 365 days before and after the concussion occurred (Lynall et al., 

2015).  Injury rates were not significantly different between the concussed group and the 

non-concussed controls at the 90 day, 180 day, or 365 day pre-concussion comparisons, 

but at the 365 day post-concussion comparison the concussed athletes had significantly 

higher musculoskeletal injury rates than the non-concussed controls (Lynall et al., 2015).  

The concussed collegiate athletes were 1.97 times more likely (at 365 days post-

concussion) and 2.02 times more likely (at 180 days post-concussion) to have sustained a 

musculoskeletal injury of a lower limb than they were before the concussive injury 

(Lynall, et al., 2015).  At the 365-day post-concussion comparison, concussed collegiate 

athletes were also 1.64 times more likely than nonconcussed athletes were to have 

sustained a musculoskeletal injury of a lower limb (Lynall et al., 2015).  Lynall et al. 

(2015) posited that alterations in cortical pathways after a concussive injury alter 

movement patterns, and result in neuromuscular control impairments that may increase 

the risk of musculoskeletal injuries. 

Gilbert et al. (2016) investigated the association between a history of concussion 

(self-reported concussion, known but not reported concussion, possibly unrecognized 

concussion, and any concussion) and LEI (ankle sprain, knee injury, and muscle strain) 

rates by surveying 355 intercollegiate athletes, who played 13 sports, at 17 colleges or 

junior colleges. Athletes completed an electronic or paper survey, at the end of their final 

intercollegiate season (Gilbert et al., 2016).  The investigators determined histories of 

reported concussions, unreported concussions and any concussions were associated with 

2.08, 2.87, and 2.13 times greater risk of knee injuries respectively (Gilbert et al., 2016).  
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They also found reports of possibly unrecognized concussions were associated with 2.29 

times greater risk of ankle sprains, and 1.9 times greater risk of muscle strains (Gilbert et 

al., 2016).  Furthermore, reports of any concussions were associated with 1.79 times 

greater risk of ankle sprains, 2.13 times greater risk of knee sprains, and 1.61 greater risk 

of muscle strain (Gilbert et al., 2016).  These findings were comparable to those reported 

by Lynall et al., 2015; Nordstrom et al., 2014; and Pietrosimone et al., 2015a).  Gilbert et 

al. (2016) suggested undetected neurocognitive dysfunction and underreporting of 

concussions might be factors in the association between concussion and LEMI. 

Strengths and Limitations of Existing Studies 

Nordstrom et al. (2014), Pietrosimone et al. (2015a), Lynall et al. (2015), and 

Gilbert et al. (2016) studied samples of convenience (preexisting groups of professional 

and collegiate athletes, and found SRCs and LEMIs were associated.  Crosby, 

DiClemente, and Salazar (2006) explained, when numerous studies reach the same 

conclusions about the same research topic, generalizability of results improves.  

However, the results of the studies by Nordstrom et al. (2014) and Pietrosimone et al. 

(2015a) may not apply to other groups of athletes because each study focused on a 

narrowly defined group of professional athletes.  Gilbert et al. (2016) addressed this 

limitation by examining the relationship between concussion and LEMI in intercollegiate 

athletes who participated in 13 sports at17 institutions but they did not account for other 

factors that could have influenced their results.  Lynall, et al (2015), addressed this 

limitation matching college athletes without SRCs and those with SRCs to examine acute 

LEMI rates pre and post-concussion. Their study also included collegiate athletes who 
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participated in different sports, but the small sample (n = 44) only included athletes at one 

university (Lynall et al., 2015).   

Nordstrom et al. (2014) provided early information regarding temporal 

relationships between SRCs and other SRIs, in professional soccer players, but 

acknowledged the concussive injuries entered into the “Union of European Football 

Association’s” database could not be confirmed, and the diagnostic criteria for 

concussive injuries might have varied widely among teams and countries (p. 1447).  

Therefore, it is possible some concussions might not have been included in the database.  

Pietrosimone et al. (2015a), and Gilbert et al. (2016) relied on self-reported data, and 

medical records could not validate the responses, so recall bias might have influenced the 

results in those studies.  Lynall et al. (2015) accessed, and analyzed data from EMRs that 

were completed by a certified athletic trainer at one University. This reduced the potential 

for recall bias, but some of the data in the EMRs could have been entered incorrectly 

(Aschengrau & Seage 2014; Lynall et al., 2015).  The concussion management processes 

may have varied in the NFL, professional European soccer player, and multi-institution 

intercollegiate studies.  However, Lynall et al. (2015) reduced the potential for this 

problem, in their study because the concussion management policy was the same for all 

athletes. 

This study addressed the limitations of unconfirmed injuries, variations in 

diagnostic criteria, and recall bias described in the previous studies as the athletic injury 

data examined in this study were obtained from EMRs, that were completed by certified 

athletic trainers who received structured EMR training to facilitate consistency in coding 

and data entry across clinical sites (Lam et al., 2015).  Additionally, the injury 
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definitions, and coding options, were consistently delineated throughout the data 

collection sites.  Furthermore, each site used the same EMR system and ICD-9 codes 

(ATSU, n.d.; Lam et al., 2015).  This study also provided new information about the 

relationship between SRC and LEMI in high school athletes, so it could partially fill the 

gap in the literature, and serve a springboard for future prospective studies that could 

provide a more complete understanding of these common sports injuries in young 

athletes.  

Summary and Transition 

This literature review explored research pertaining to adolescent SRC and 

musculoskeletal injuries.  Awareness of sports injury mechanisms and risk factors is 

essential for injury prevention (Meeuwisse et al., 2007).  Athletes must continuously 

receive information, process information, direct their attention to appropriate situations, 

sort out extraneous information, and respond to rapidly changing environments while 

performing complex motor tasks (Swanik et al., 2007).  During the acute and subacute 

phases of concussion recovery, alterations in the areas of the brain that control these tasks 

may make it more challenging for athletes to perform this tasks efficiently, and this may 

increase their risk of musculoskeletal injury (Herman et al., 2015; Lynall et al., 2015; 

Nordstrom et al., 2014; Pietrosimone et al., 2015a).  The emerging evidence regarding the 

association between SRC, and LEMI among neurologically and skeletally mature, 

professional, and collegiate athletes may not be generalizable to high school athletes. To 

my knowledge the relationship between SRC and LEMI has not been examined in 

adolescent athletes (Gilbert et al., 2016; Lynall et al., 2015; Nordstrom et al., 2014; 

Pietrosimone et al., 2015a).  Examining the association between SRC and LEMI among 
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high school athletes could provide a better understanding of these sport related injuries in 

this population and address a gap in knowledge. 

The third chapter includes research design and rationale, methodology, data 

analysis strategies for this study. The threats to validity and ethical procedures are also 

discussed.  This chapter concludes with summary of this study’s design, methodology, 

and transition to the fourth chapter. 
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Chapter 3: Methods 

Introduction 

Because SRC and LEIs account for most new and recurrent injuries reported in 

high school sports and the consequences of these injuries are pressing public health 

concerns, determining the relationship between SRC and LEMI could provide 

preliminary information to more completely understand the link between these sport-

related injuries (SRI) in this population.  The purpose of this retrospective quantitative 

study was to determine the association between SRC and LEMI among high school 

athletes.  A quantitative cross-sectional retrospective study allowed a large, diverse 

sample of U.S. high school athletic injury data to be analyzed in a resource-sparing, cost-

effective manner to provide a broad (national) snapshot of this public health situation. 

This chapter includes justification of the study’s design and rationale, 

methodology, and data analysis strategies. Threats to validity and ethical considerations 

are also presented.  This chapter concludes with a summary and transition to the fourth 

chapter. 

Research Design and Rationale 

In this study, I examined the relationship between SRC and LEMI in high school 

athletes, so the dependent (outcome) variable was LEMI, and the independent 

(predictive) variable was SRC.  The covariates included age, gender, and sport.  

I accessed and analyzed an existing numeric data set, which consisted of a 

nationally representative sample of high school injury data, to test my hypotheses and 

answer my research questions.  Because I examined the association between an 

independent variable (SRC) and a dependent variable (LEMI) in high school athletes in a 
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defined period in time, a retrospective, quantitative, cross-sectional design was 

appropriate.  The design of this study was consistent with research designs that advance 

public health knowledge, in that quantitative, retrospective, cross-sectional studies allow 

researchers to access large amounts of pre-existing numeric data from large, diverse 

samples to efficiently provide a snapshot of a public health problem without expending 

extensive human, time, or financial resources.  The generalizability of the results from 

large, quantitative, retrospective, cross-sectional studies can be broader than results from 

small-scale studies, because larger samples are more likely to represent the populations 

from which they are obtained.   

Methodology 

Study Population 

 According to the U.S. Department of Education (n.d.), there are more than 24,000 

public and 10,000 private high schools in the United States.  Over 7.8 million athletes 

participate in high school sports and endure between 1.4 and 2 million injuries each year 

(Gottschalk & Andrish, 2011; National Federation of State High School Associations, 

n.d.; Powell & Barber-Foss, 1999; Yard et al., 2009).  The population for this study 

consisted of U.S. high school athletes.   

Sampling and Sampling Procedures 

 Information about population characteristics can be deduced from sample data, 

with inferential statistics, when the sample accurately represents the population (Ary, 

Jacobs, Sorensen, & Walker, 2014, Field, 2009).  For this study, I obtained a convenience 

sample of high school athletic injury data from the AT-PBRN database (ATSU, n.d.).  

This database includes male and female athletic injury data imported from CORE-AT 
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EMRs that are completed by athletic trainers at universities, high schools, clinics, and 

other settings throughout the United States and Singapore (ATSU, n.d.).  The sample for 

this study consisted of all available U.S. high school concussion, knee sprain, and ankle 

sprain data captured by the CORE-AT EMR and transmitted to the AT-PBRN database 

from the database’s inception in September 2009 through December 2016 (ATSU, 2016).  

All cases in the data set that had one or more concussions, one or more musculoskeletal 

injuries, or one or more of each injury were analyzed.  

 The utility and validity of the AT-PBRN were addressed in the first chapter.  The 

AT-PBRN utilizes the web-based CORE-AT system to capture high school athletic injury 

surveillance data and EMR data from more than 25 high schools throughout the United 

States., including schools in Alaska, Arizona, Kansas, Massachusetts, Minnesota, 

Missouri, North Carolina, New Hampshire, New Jersey, New York, and Wisconsin 

(ATSU, n.d., 2016).  A concussion-specific evaluation form and a region-specific injury 

evaluation forms, which capture previous injury history, are included in the EMR, but 

prior concussion history is not captured (ATSU, n.d.).  The CORE-AT system captures 

injuries that “1) result from participation in interscholastic practices or competitions, and 

2) require medical attention by a certified athletic trainer or physician, and 3) result in 

restricted participation or performance for 1 or more days beyond the day of injury” 

(ATSU, n.d., p. 44).  Each injury was coded by athletic trainers in accordance with the 

ICD-9 definitions and recorded in the EMR (ATSU, n.d..; CMS, n.d.).  Because athletic 

trainers are not required to document exposures, a common denominator was not 

available to determine risk or rates of injury.   
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Sample Size 

Sample size and sampling methods influence the precision of estimates derived 

from a sample (Ary et al., 2014).  When other determinants are equal, larger samples are 

more likely to truly reflect the population of interest and detect significance (Ary et al., 

2014; Crosby et al., 2006.  I determined the appropriate sample size for this study by 

reviewing the literature and using a G power 3.1 calculator (Faul, Erdfelder, Buchner, & 

Lang, 2009; Field, 2009; Gilbert et al., 2016; Lipsey & Wilson, 1993; Lynall et al., 2015; 

Nordstrom et al., 2014; Pietrosimone et al., 2015a; Schoenfeld & Borenstein, 2005).  

Schoenfeld and Borenstein (2005) explained that the literature lacks recommendations for 

obtaining sample size when the covariates are discrete and continuous.  The effect size 

(strength of the relationship between variables) and r values were not reported in the 

correlational concussion studies that were reviewed, so R2 value (amount of variability in 

the main predictor explained by the covariates) was estimated by predicting that the 

covariates would have moderate association with concussion (0.5) 2 = 0.25.  I selected a 

one-tailed test because the literature revealed that concussion is associated with 

musculoskeletal injuries in professional soccer players, retired NFL football players, and 

collegiate athletes (Gilbert et al., 2016; Lynall et al., 2015; Nordstrom et al., 2014; 

Pietrosimone et al., 2015a).  I set the odds ratio (odds that the outcome will occur with 

exposure / odds the outcome will occur in the absence of exposure) at 1.59, the HO 

(probability of musculoskeletal injury when the athlete is not concussed) at 0.2, the alpha 

level (probability of rejecting a true null hypothesis or a type 1 error) at 0.05, and the 

power (probability of rejecting the null hypothesis when the alternate hypothesis is true 

or 1 - beta) at 80%.  The x distribution was set to binomial, and the X parm π (proportion 



52 

 

of concussed cases) was set at 0.12 based on the anticipated proportion of concussed 

cases in this data set and studies conducted by Valovich McLeod et al (2012), Nordstrom 

et al. (2014), Pietrosimone et al. (2015a), and Swenson et al., (2009).  With these 

parameters, the appropriate sample size was determined to be 1,939 athletes with a 

critical z value of 1.6448536, and the actual power was 0.80000605 (Faul et al., 2009). 

Data Extraction 

I received de-identified data from the AT-PBRN database, following institutional 

review board (IRB) approval.  I requested the full dataset, but only received the 

concussion, knee sprain, and ankle sprain data.  All cases in the data set that met the 

definitions for one or more high-school-sport-related concussions or musculoskeletal 

injuries were analyzed. 

Data Analysis Plan 

The first step in my data analysis plan was to preserve the original data.  All 

original data were stored on a portable hard drive and secured in a locked file cabinet, 

where they will remain for a minimum of 5 years.  I had the only key and was the only 

person able to access the file cabinet.  The analysis was conducted on a computer, which 

was located in a locked office at Old Dominion University (ODU).  Security features 

included password access and automatic log offs.  I examined, organized, and plotted the 

data to gain an appreciation of the information the dataset contained.  This step included 

(a) sorting the data, (b) looking for missing data, and (c) identifying and managing 

outliers.  The number of valid and missing observations was counted to determine if 

enough data existed to answer the research questions.  All study data were stored and 
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backed up on a portable hard drive and secured in the locked file cabinet with the original 

data. 

The data were cleaned and coded for analysis.  Descriptive and statistical analyses 

were conducted with SPSS software, version 23 (IBM Corp., 2015).  In this study, the 

dependent variable was musculoskeletal injury, the independent variable was concussion, 

and the covariates were gender, age group, and sport type.  

Dependent Variable 

The dependent variable, LEMI, was operationalized as a knee sprain or ankle 

sprain with one of the following ICD-9 codes: Knee sprains were coded as follows: 

• 844.0 (lateral collateral ligament [LCL] sprain of the knee) = 1 

• 844.1(medial collateral ligament [MCL] sprain of the knee) = 2 

• 844.2 (sprain of cruciate ligament; anterior cruciate ligament [ACL] or 

posterior cruciate ligament [PCL] of knee) = 3 

• 844.9 (sprain of unspecified site of knee and leg) = 4 

Ankle sprains were coded as follows:  

• 845.00 (unspecified site of ankle sprain) = 5,  

• 845.01 (deltoid ligament sprain of ankle) = 6,  

• 845.03 tibiofibular ligament sprain of distal ankle = 7 (ATSU, n.d.; CMS, 

n.d.; Merrick, 2002; Williams, 1971)  

The dependent (outcome) variable for this study was measured as absence of 

LEMI = 0, presence of LEMI =1.  Additional strata were created to measure the absence 
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or presence of knee and ankle injuries where the absence of knee injury = 0, the presence 

of knee injury =1, the absence of ankle injury = 0, and the presence of ankle injury = 1. 

Independent Variable 

The independent variable, concussion, was operationalized as an SRC delineated 

by one of one of the following ICD-9 codes: (a) 850.0 (concussion with no loss of 

consciousness), (b) 850.5 (concussion with loss of consciousness of unspecified 

duration), or (c) 850.9 (concussion—unspecified).  All concussions (850.0, 850.5, and 

850.9) were coded as 33 for this study.  The independent variable was measured as 

absence of concussion = 0 or presence of concussion = 1. The frequency of concussion 

for each case was measured as absence of concussion = 0, one concussion = 1, or two 

concussions = 2.   

Covariates 

The athlete characteristics gender and age were analyzed because there is 

evidence that risk of concussion is influenced by these covariates (Gessel et al., 2007).   

Gender is a nominal variable that was defined as the high school athlete’s sex.  Gender 

was categorized as follows: male = 1 or female = 2.  Age is a scale variable, which was 

defined as age at the time of injury.   For regression purposes, the age variable was 

converted to a categorical variable where 11-13 years = 1, 14-17 years = 2, and 18-19 

years = 3.   

Sports characteristics included team sports and individual sports.  This covariate 

was analyzed to provide a broader perspective on sport-related injuries among high 

school athletes in light of the finding by Comstock et al. (n.d.) that one high school 

individual sport (wresting) had a higher injury rate per 1.000 athlete exposures (2.23) 
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than the following team sports: boys soccer (1.87), girls volleyball (1.19), boys basketball 

(1.48), and girls basketball.2.14).  Team sport was a nominal variable that was defined as 

sports that require team members to work together at the same time to achieve a common 

goal or outcome.  Team sports were categorized as follows: baseball = 1, basketball = 2, 

cheerleading = 3, field hockey = 4, football = 5, hockey = 6, lacrosse = 7, soccer = 8, 

softball = 9, and volleyball = 10.  Individual sports were defined as sports in which each 

athlete is responsible for achieving his or her own goals or outcomes.  Individual sport 

was a nominal variable, which was categorized as follows: badminton = 11, cross country 

= 12, gymnastics = 13, swimming = 14, tennis = 15, track = 16, and wrestling = 17.  

Other sports that could not be identified as team or individual sports were coded as 18. 

Sports were categorized as follows: team sports = 1, individual sports = 2, and other 

sports = 3.  All codes were recorded and safeguarded in a locked file cabinet. 

Statistical Analysis Approach 

The research questions guided the statistical analysis process (Creswell, 2014).  

The following research questions were explored in this study: 

1. Is there an association between SRC and LEMI among high school athletes? 

H01:  There is not an association between SRC and LEMI among high 

school athletes while controlling for gender, age, and sport.   

HA1:  There is an association between SRC and LEMI among high 

school athletes while controlling for gender, age, and sport. 

1a. Is there an association between SRC and knee sprains among high school 

athletes? 
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H01a:  There is not an association between SRC and knee sprains among 

high school athletes while controlling for gender, age, and sport.  

HA1a:  There is an association between SRC and knee sprains among high 

school athletes while controlling for gender, age, and sport. 

1b. Is there an association between SRC and ankle sprains among high school 

athletes? 

H01b:  There is not an association between SRC and ankle sprains among 

high school athletes while controlling for gender, age, and sport. 

HA1b:  There is an association between SRC and ankle sprains among 

high school athletes while controlling for gender, age, and sport. 

2. Is the number of SRCs associated with LEMI among high school athletes? 

H02:  The number of SRCs is not associated with LEMI among high 

school athletes controlling for gender, age, and sport. 

HA2:  The number of SRCs is associated with LEMI among high school 

athletes while controlling for gender, age, and sport.  

3. Is the number of SRCs associated with knee injuries among high school 

athletes? 

H03:  The number of SRCs is not associated with knee injuries among 

high school athletes while controlling for gender, age, and sport. 

HA3:  The number of SRCs is associated with knee injuries among high 

school athletes while controlling for gender, age, and sport.  

4. Is the number of SRCs associated with ankle injuries among high school 

athletes? 
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H04:  The number of SRCs is not associated with ankle injuries among 

high school athletes while controlling for gender, age, and sport. 

HA4:  The number of SRCs is associated with ankle injuries among high 

school athletes while controlling for gender, age, and sport.  

The frequencies and distributions were determined and reported for the following 

variables: 

• age 

• age group (11-13 years, 14-17 years, and 18-19 years)  

• gender 

• sport type (team sports, individual sports, and other sports)  

• concussion absence/presence (0, 1)  

• LEMI absence/presence (0, 1) 

• knee sprain absence/presence (0, 1) 

• ankle sprain absence/presence  (0, 1) 

• absence/presence of each type of knee sprain (MCL, LCL, ACL, PCL, 

unspecified [0, 1]) 

• absence/presence of each type of ankle sprain (unspecified, deltoid, 

tibiofibular [0, 1]) 

• concussion frequency (0, 1, 2, 3) 

• LEMI frequency (0, 1, 2, 3)  

• knee sprain frequency (0, 1, 2, 3) 

• ankle sprain frequency (0, 1, 2, 3) 
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• frequency of each type of knee sprain (0, 1, 2) 

• frequency of each type of ankle sprain (0, 1, 2+) 

The mean, standard deviation, and range were presented for the scale characteristic (age). 

Logistic regression models allow researchers to analyze categorical and 

continuous data to predict discrete outcomes (Faul et al., 2009; Field, 2009; Hsieh, 1989; 

Schoenfeld & Borenstein, 2005).  Binomial logistic regression analysis provides 

information regarding the fit of the model, significance of the predictors in the model, 

and corroboration of predicted probabilities (Peng, Lee, & Ingersoll, 2002). 

To answer each of the research questions identified above, I conducted chi square 

analyses to ascertain if each independent variable was related to the dependent variable to 

determine which independent variables should be included in the logistic regression 

model to reduce the chance of over specification (Bursac, Gauss, Williams, & Hosmer, 

2008; Hosmer & Lemeshow, 2000).  I also conducted Cramer’s V post hoc tests to assess 

the strength of the relationship between those variables (Field, 2009).  Since confounding 

factors that might influence the relationships could not be accounted for with these tests, I 

conducted binomial logistic regression analyses to provide a more complete picture of 

associations between the independent and dependent variables of interest in this study 

(Field, 2009).  Only the covariates that were found to be associated with the dependent 

variables during the chi-square analyses were included in the respective logistic 

regression models.   

Binomial logistic regression was an appropriate statistical test to answer each 

research question because this test allows dichotomous categorical outcomes to be 

predicted from a set of categorical and/or continuous independent variables (Field, 2009).  
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Wald statistics were calculated to determine if each predictor variable significantly 

contributed to predicting the outcome (Faul et al., 2009; Field, 2009).  The odds ratio 

(estimate for the odds of the outcome based on the predictive variable) and 95% 

confidence interval (95% chance the true statistic is within the calculated interval) were 

also calculated (Field, 2009).   

Threats to Validity 

 Validity refers to how well the research design supports the interpretation of the 

data (Aschengrau & Seage, 2014; Carlson & Morrison, 2009).  Construct validity deals 

with a test’s ability to measure what it is meant to measure while internal validity is 

concerned with the strength of inferences (Gerstman, 2008).  Statistical conclusion 

validity is concerned with correct analysis, and external validity addresses 

generalizability of the study’s results.  Threats to construct validity, internal validity, 

statistical conclusion validity, and external validity should be addressed in cross sectional 

studies (Carlson & Morrison, 2009). 

Construct Validity 

 In correlational studies, construct validity can be threatened if the independent, and 

dependent, variables are defined differently in a study’s methodology, and the secondary 

data set.  Construct validity may also be decreased when secondary data are analyzed, if 

pertinent variables are missing, or if it is unclear how and why the primary data were 

collected (Carlson & Morrison, 2009).  The threats to construct validity were  addressed 

in this study by: (a) aligning the definitions of the independent and dependent variables in 

this study with the definitions of pertinent variables in the data set, and (b) by reviewing 
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the CORE-AT EMR user manual to clarify how, and why, the primary data were 

collected (ATSU, n.d.).  There were no missing data in this data set.  

Internal Validity 

 Internal validity pertains to the strength of inferences that are made from the study’s 

results (Carlson & Morrison, 2009).  Although cross sectional studies allow researchers 

to examine associations between an exposure and an outcome, I was not able to 

determine meaningful relationships between the independent and dependent variables in 

this study due to incomplete information and small sample sizes (Carlson, & Morrison, 

2009; Mann, 2003).  Therefore, internal validity was threatened.  Additionally, temporal 

relationships could not be ascertained in this study because the exposure and outcome are 

examined at the same time (Aschengrau & Seage, 2014; Carlson & Morrison, 2009).  

Furthermore, there was potential for selective departure of injured participants, and 

continued participation of non-injured participants, so a negative impact of an exposure 

(concussion) could be reduced (Aschengrau & Seage, 2014).  To overcome the 

limitations of internal validity in this study, future cohort studies should be conducted to 

determine if the relationship between SRCs and LEMIs in high school athletes is causal, 

as Cohort studies allow for evaluation of many effects of an exposure, and direct 

measurements of outcome incidence or risk (Aschengrau & Seage, 2014).   

Statistical Conclusion Validity 

 Statistical conclusion validity is concerned with validity of the conclusions 

derived from statistical tests. I addressed this threat to validity by selecting the 

appropriate (chi-square and binomial logistic regression) statistical tests to answer the 

research questions. 
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External Validity 

External validity addresses the generalizability of the study’s results (Aschengrau 

& Seage, 2014).  Generalizability of a study’s results is determined by how well the 

sample represents the intended population (Ary, 2014; Field, 2009).  Small, non-

representative samples, from single locations, increase the threat of external validity 

(Carlson & Morrison, 2009).  I addressed these threats to external validity by: (a) 

determining the appropriate sample size for this study, and (b) confirming the secondary 

dataset included data from U.S. high schools from multiple regions throughout the United 

States  

Ethical Procedures 

 Prior to beginning the data collection and analysis aspects of this study, I obtained 

approval to proceed with this study from the institutional review boards (IRBs) at: (a) 

Walden University, (b) ATSU (in order to comply with the University’s policies and 

procedures pertaining to human subjects research, and to gain access the secondary data 

for this study), and (c) ODU (in order to comply with my employer’s policies and 

procedures related to human subjects research).  I also ensured my Collaborative 

Institutional Training Initiative (CITI) Biomedical Research Basic Refresher training 

course remained current throughout the duration of this study (University of Miami, n.d.). 

 The secondary data set for this study was obtained from the AT-PBRN, which 

incorporates a Health Insurance Portability and Accountability Act (HIPAA) compliant 

electronic medical record and injury surveillance instrument.  The de-identified raw data 

was secured and will be retained for a minimum of 5 years to comply with Walden 

University’s (2015) IRB requirements.  
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The athletic trainers, in the AT-PBRN high schools, enter injury data into the 

EMR in accordance with routine patient care practice standards.  Additionally, the AT-

PBRN has a safe harbor agreement with the EMR vendor, which allows AT-PBRN 

researchers to access de-identified information while protecting patient confidentiality.   

Summary 

The process for conducting this retrospective, quantitative cross sectional study 

was described in this chapter.  The research questions, hypotheses, and justification of the 

study’s design and rationale were presented.  The methodology and data analysis sections 

revealed how a secondary data set from the AT-PBRN was examined to determine if an 

association exists between SRC and LEMIs among high school athletes (ATSU, n.d.).  

Threats to validity, and ethical considerations were also explained.  Descriptive statistics, 

quantitative analyses and results of this study are presented in chapter 4. 
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Chapter 4: Results 

Introduction 

SRCs and LEMIs are common in high school sports, and the consequences of 

these injuries can be debilitating.  Therefore, understanding the factors that contribute to 

these SRIs is of paramount importance for preventing these injuries and their 

repercussions.  Evidence is emerging regarding the relationship between SRC and LEMI 

in professional and collegiate athletes, but findings in adults may not be generalizable to 

adolescents.  Therefore, the purpose of this study was to examine the association between 

SRC and LEMI in high school athletes to shed more light on the mounting public health 

problem of SRCs and address this gap in the literature.  This study was conducted to seek 

answers to the following research questions by testing their hypotheses: 

1.  Is there an association between SRC and LEMI among high school athletes? 

H01:  There is not an association between SRC and LEMI among high 

school athletes while controlling for gender, age, and sport.   

HA1:  There is an association between SRC and LEMI among high 

school athletes while controlling for gender, age, and sport. 

2. Is the number of SRCs associated with LEMI among high school athletes? 

H02:  The number of SRCs is not associated with LEMI among high 

school athletes while controlling for gender, age, and sport. 

HA2:  The number of SRCs is associated with LEMI among high school 

athletes while controlling for gender, age, and sport.  

3.  Is the number of SRCs associated with knee injuries among high school 

athletes? 
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H03:  The number of SRCs is not associated with knee injuries among 

high school athletes while controlling for gender, age, and sport. 

HA3:  The number of SRCs is associated with knee injuries among high 

school athletes while controlling for gender, age, and sport.  

4. Is the number of SRCs associated with ankle injuries among high school 

athletes? 

H04:  The number of SRCs is not associated with ankle injuries among 

high school athletes while controlling for gender, age, and sport. 

HA4:  The number of SRCs is associated with ankle injuries among high 

school athletes while controlling for gender, age, and sport.  

In this chapter, I explain the data collection, reduction, transformation, 

aggregation, and analysis processes.  In addition, I present the descriptions and 

demographic characteristics of the sample.  The results are also reported. This chapter 

concludes with a summary and transition to the final chapter.  

Data Collection 

Data Collection Process 

The IRB at Walden University granted permission for this study to be conducted 

(approval number 11-10-16-0168884) after my requests for exemption from IRB reviews 

were approved by ATSU (IRB # 2016-235) and ODU (project number 1015419-1).  With 

verification of IRB approval for this study, I requested all available high school injury 

data captured by the AT-PBRN EMR from 2009 through 2016, to answer my research 

questions.  I received a de-identified dataset, which consisted of data for the independent 

variable (concussion) and the dependent variables (ankle sprain, and knee sprain).  The 
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data were generated between 2009 and January 2017, in high school, college, and other 

settings.  

As previously described, the AT-PBRN includes a nationally representative 

sample of high school, college, and other athletic injury data.  The sample that I received 

contained 2,590 cases, reflecting the following variables: (a) injury ID (unique identifier), 

(b) patient ID (the same patient ID in different rows indicated the athlete had multiple 

injuries), (c) setting (high school, college, other, or unidentified), (d) gender (male or 

female), (e) injury year (year the injury occurred), (f) age (at time of injury), (g) injury 

days since injury demographic (number of days since injury), (h) injury height (athlete’s 

height), (i) injury weight (athlete’s weight), (j) sport name, (k) injured during name (in 

season, off season, conditioning, practice, game, etc.), (l) mechanism ID (mechanism of 

injury code), (m) mechanism name (mechanism of injury name), (n) body part name 

(ankle, knee, head), (o) diagnosis ID (diagnosis code), (p) diagnosis description (ICD-9 

code with description), (q) severity name, (r) injury participation status (no participation, 

noncontact, light contact, other restrictions, no restrictions), and (s) number of cases 

(number of cases in the data set).  

Data Reduction Process 

I sorted and reduced the 2,590 cases in the original dataset to construct a working 

dataset.  A summary of data inclusion and exclusion is presented in Table 1.  
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Table 1 

Data Inclusion and Exclusion 

 Included    Excluded 
Setting High school College  

Null  
Other  
Unidentified 
 

Injury year 2009-2016 2017 
 

Age (years) 11-19  <11 and > 19 
 

Body part 
code 

Head 
Neck—with concussion ICD-9 code 
Ankle 
Knee 
 

  

ICD-9 code 844—Sprain LCL 
844.1—Sprain MCL 
844.2—Sprain cruciate ligament 
844.9—Sprain/strain unspecified thigh distal end 
845—Sprain/strain ankle unspecified 
845.01—Sprain deltoid ligament 
845.03—Sprain tibiofibular ligament 
850.0—Concussion, mental confusion w/out loss 

of consciousness 
850.5—Concussion w/ loss of consciousness 
850.9—Concussion 
 

 

Gender Males  
Females  
 

 

Sports Badminton Recreational 
 Baseball                              
 Basketball  
 Cheerleading  
 Cross country  
 Field hockey  
 Football  
 Gymnastics  
 Hockey 

Lacrosse 
Soccer 

 
 

(table continues) 
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 Included    Excluded 
Softball 
Swimming 
Tennis 
Track 
Volleyball 
Wrestling 
Other 
 

 
 
 
 
 
 
 
 

 
 

Injured 
during 

In-season game 
In-season practice 
Preseason conditioning 
Preseason scrimmage  
Off-season practice 
Off-season conditioning. 

Non-sport-related  

n Cases 
 

  

Patient ID# 
 

  

Injury ID#   
  Height 

 
  Weight 

 
  Injury days since 

injury 
  

  Injured during name 
 

  Mechanism ID 
 
Mechanism name 
 

 
 

 
 

Severity name 
 
Injury participation 
status 
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First, I sorted the data by the setting variable to ensure that only the high school 

setting (n = 2,000) was included in the working dataset.  Therefore, I excluded the college 

(n = 474), null (n = 22), other (n = 91), and unidentified (n = 3) settings.  Then I sorted 

the data by the injury year variable.  I excluded the 2017 cases and retained 2009-2016 

cases, as approved by the IRB.  Next, I sorted the data by the age variable.  I retained 11- 

to 19-year-old high school athletes but excluded the cases outside that age range to ensure 

that the working dataset only contained adolescents.  I also sorted the data by the body 

part variable and diagnosis description variable, which included the ICD-9 codes, to 

ensure that the data set contained concussions, ankle sprains, and knee sprains (CMS, 

n.d.).  During this process, I found that the injured body parts, in all but one of the cases, 

were classified as head, knee, or ankle. Further exploration revealed that the body part in 

the case that was the single exception to this pattern was labeled as a neck injury but was 

described as an unspecified concussion with ICD-9 code 850.9.  Because head and neck 

injuries can occur simultaneously and the injury was coded as a concussion in the original 

data set, I retained this case.  I also sorted the data by the sport name variable and 

retained badminton, baseball, basketball, cheerleading, cross-country, field hockey, 

football, gymnastics, hockey, lacrosse, soccer, softball, swimming, tennis, track, 

volleyball, wrestling, and other sports.  I excluded recreational athlete cases.  Next, I 

sorted the data by the injured during name variable.  I retained in-season game, in-season 

practice, preseason conditioning, preseason scrimmage, off-season practice, and off-

season conditioning.  All non-sports-related cases were excluded.  I sorted the n cases and 

patient ID variables to determine which athletes had multiple injuries.  Next, I sorted the 

data by the injury ID and patient ID variables to ascertain whether the dataset contained 
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any duplicate cases.  No duplicate cases were found.  I also sorted the data by the height 

and weight variables to look for obvious errors and found 352 cases with recorded 

heights of 0-6 inches, as well as 267 cases of recorded weights of 0-6 pounds; these 

variables were excluded from the working data set.  The injury days since injury 

demographic, injured during name, mechanism ID, mechanism name, severity name, and 

injury participation status variables were excluded because they were not variables of 

interest in this study.   

Data Transformation 

The working data set contained 1,726 cases, including athletes with multiple 

injuries; therefore, further data reduction was conducted to ensure independence of 

observations.  The details of this process are presented below.  

After sorting and cleaning the data to establish this working dataset, I retained the 

original numeric form for the scale variables age and injury year.  In order to analyze the 

predictor variable, age, more completely, I stratified the age variable and created the age 

group code variable, classifying age as follows: (11-13 years = 1; (14-17 years = 2; and 

(18-19 years = 3. I transformed the gender variable to the gender code variable such that 

male = 1 and female = 2.  To determine if the continuous independent variable (age) was 

linearly related to the logit of the dependent variables (LEMI ever), I transformed this 

variable into its natural log and completed the assessment with the Box-Tidwell (1962) 

procedure.  I stratified the dependent variable (LEMI ever) into the knee sprain ever and 

ankle sprain ever variables, to understand the relationship between SRC and LEMI more 

clearly.  I also transformed the knee sprain ever and ankle sprain ever variables into their 

natural logs and used the Box-Tidwell procedure to determine if the continuous 
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independent variable (age) was linearly related to the logits of the knee sprain and ankle 

sprain variables. 

For descriptive purposes, I transformed the diagnosis description variable (which 

included abbreviated ICD-9 codes) into the ICD-9 description variable (which included 

full ICD-9 codes as defined by CMS [n.d.]).  Therefore, I made the following 

transformations:  

• 844—Sprain LCL was transformed to 844.0—Knee sprain LCL. 

• 844.1—Sprain MCL was transformed to 844.1—Knee sprain MCL. 

• 844.2—Sprain cruciate ligament was transformed to 844.2—Knee sprain 

cruciate ligament. 

• 844.9—Sprain/strain, unspecified thigh, distal end was transformed to 

844.9—Knee sprain unspecified. 

• 845—Sprain/strain was transformed to 845—Ankle sprain unspecified. 

• 845.01—Sprain, deltoid ligament was transformed to 845.01—Ankle sprain 

deltoid ligament. 

• 845.03—Sprain, tibiofibular ligament was transformed to 845.03—Ankle 

sprain tibiofibular ligament. 

• 850.0—Concussion, mental confusion without loss of consciousness was 

transformed to 850.0—Concussion without loss of consciousness. 

• 850.5—Concussion with loss of consciousness was transformed to 850.5—

Concussion with loss of consciousness. 

• 850.9—Concussion was transformed to 850.9—Concussion unspecified. 
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Next, I transformed the ICD-9 code description variable to the ICD-9 code 

variable for descriptive analysis as follows:  

• 844.0—Knee sprain LCL = 1 

• 844.1—Knee sprain MCL = 2 

• 844.2—Knee sprain cruciate ligament = 3 

• 844.9—Knee sprain unspecified = 4 

• 845.00—Ankle sprain unspecified = 5 

• 845.01—Ankle sprain deltoid ligament = 6 

• 845.03—Ankle sprain tibiofibular ligament = 7 

• 850.0—Concussion without loss of consciousness = 33 

• 850.5—Concussion with loss of consciousness = 33 

• 850.9—Concussion unspecified = 33 

To prepare for chi-square and logistic regression analyses, I created a new 

variable by transforming the ICD-9 code variable to the body part variable so that 1-4 = 

knee, 5-7 = ankle, 33 = head.  Then I transformed the body part variable to the body part 

code variable so that head = 1, ankle = 2, and knee =3.  Next, I transformed the head code 

variable as follows: absence of head injury = 0 and presence of head injury = 1.  I also 

transformed the ankle and knee code variables into a new variable labeled lower 

extremity code, where absence of a lower extremity (ankle or knee) injury = 0 and 

presence of lower extremity injury (ankle or knee) injury = 1.  A knee code variable was 

created where absence of a knee injury = 0 and presence of a knee injury =1.  An ankle 
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code variable was also created where absence of an ankle injury = 0 and presence of an 

ankle injury = 1. 

Because the unique identifier for this data set was the injury ID variable, each 

injury was captured in a single row, and I sorted the data by the patient ID variable to 

determine how many injuries each athlete had.  Then I created a new variable labeled 

injury order to identify which injury occurred first, second, and third.  First, or only, 

injuries were coded 1, second injuries were coded 2, and third injuries were coded 3. 

To prepare for logistic regression analysis, I transformed the sport name variable 

into a new variable that was labeled sport code, where baseball = 1, basketball = 2, 

cheerleading = 3, field hockey = 4, football = 5, hockey = 6, lacrosse = 7, soccer = 8, 

softball = 9, volleyball = 10, badminton = 11, cross country = 12, gymnastics = 13, 

swimming = 14, tennis = 15, track = 16, wrestling = 17, and other = 18.  Next, I created a 

new variable labeled sport type.  I then transformed the sports coded 1-10 into a new 

variable labeled team sports, the sports coded 11-17 into a new variable labeled 

individual sports, and the sports coded 18 into a new variable labeled other sports.  Then 

I transformed the sports type variable into the sports type code variable, where team 

sports = 1, individual sports = 2, and other sports = 3. 

Data Aggregation 

The injury ID variable indicated which injury occurred first, so new variables 

were created and coded, including the (a) concussion first variable, where concussion not 

first = 0 and concussion first =1; (b) LEMI first variable, where LEMI not first = 0 and 

LEMI first = 1; (c) knee injury first variable, where knee injury not first = 0 and knee 

injury first = 1; and (d) ankle injury first variable, where ankle injury not first = 0 and 
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ankle injury first = 1.   Additionally, I created the concussion ever variable, where 

absence of a concussion = 0 and presence of at least one concussion = 1, and the LEMI 

ever variable, where absence of a LEMI = 0 and presence of at least one LEMI = 1.  

Next, I created a variable labeled n cases clean to clarify how many cases each athlete 

had in the clean working data set, such that one case = 1, two cases = 2, and three cases = 

3. 

I aggregated the cases to ensure each athlete was only represented once in the data 

set.  Next, I sorted the data by patient ID and injury order to clearly identify which 

athletes had more than one injury.  For each patient ID with two or three injuries, I 

retained all data for the first injury (age, sport name, sport type, injury year), then I 

manually transferred the data from the second and third rows into the first row that 

contained the same patient ID in order to aggregate the data for the following variables: 

(a) concussion ever, so absence of concussion = 0 and presence of concussion = 1; (b) 

LEMI ever, so absence of LEMI = 0 and  presence of LEMI = 1; (c) number of 

concussions so absence of concussion = 0;  one concussion = 1; and two concussions = 2.  

To more thoroughly analyze the association between SRC and knee sprains, I 

transformed the number of knee sprains variable into a new variable labeled knee sprain 

ever, where absence of knee injury = 0, and presence of knee injury = 1.  To more 

thoroughly analyze the association between SRC and ankle sprains I also transformed the 

number of ankle sprains variable into a new variable labeled ankle sprain ever, where 

absence of ankle injury = 0 and presence of ankle injury = 1.  Finally, I stratified the knee 

sprain ever and ankle sprain ever variables by transforming the ICD-9 codes for each 

type of ankle and knee injury to create new variables to identify the presence or absence 
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of specific type of knee and ankle injuries as follows: (a) knee sprain LCL ever where 

absence of an LCL injury = 0 and presence of an LCL injury = 1; (b) knee sprain MCL 

ever where absence of an MCL knee injury = 0 and presence of an MCL injury = 1; (c) 

knee sprain cruciate ligament ever where absence of a cruciate ligament injury = 0 and 

presence of a cruciate ligament injury = 1; (d) knee sprain unspecified ever where 

absence of a knee sprain unspecified ever = 0 and presence of a knee sprain unspecified = 

1; (e) ankle sprain unspecified ever where absence of an ankle sprain unspecified ever = 

0 and presence of an ankle sprain unspecified ever = 1; (f) ankle sprain deltoid ligament 

ever where absence of a deltoid ligament sprain = 0 and presence of a deltoid ligament 

sprain = 1; and (g) ankle sprain tibiofibular ligament where absence of a tibiofibular 

ligament sprain = 0 and presence of a tibiofibular ligament sprain = 1. 

The sample (aggregated) dataset for this study consisted of concussion, ankle 

sprain, and knee sprain data from1613 high school athletes in the AT-PBRN.  There were 

1508 athletes with 1 injury, 95 athletes with 2 injuries and 10 athletes with 3 injuries.  

Modifications in Data Collection 

Valovich McLeod et al. (2012) reported ankle sprains, concussions, knee MCL 

sprains, and cruciate ligament sprains accounted for 17.9%, 12.0%, 2.1%, and 1.7% of 

the injuries, respectively, in the AT-PBRN database, which also captured other lower 

extremity, upper extremity, head, neck and back injuries. This description of the AT-

PBRN database informed my selection of predictor and outcome variables, while the 

concussion, knee sprain and ankle sprain data I received from the AT-PBRN informed 

the modifications described below.  Variations in my data collection plan are also 

summarized in Table 2.  
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Table 2 

Variations in Data Collection 

Preliminary data variables and 
codes 

Final data variables and 
codes 

Variable type 

Data requested 
     All available data 
 

 

Data received 
Concussion, knee, and 

ankle injury data 
 

 

Injury year 
      2009-2017 
 

Injury year 
     2009-2016 

 

Predictor variables Predictor variables  
     Age (years) 
          14-19 

     Age (years) 
          11-19 

Continuous 

     Age categories 
          14 = 1 
          15 = 2 
          16 = 3 
          17 = 4 
          18+= 5 

     Age categories 
          11-13 = 1 
          14-17 = 2 
          18-19 = 3 

Nominal 

     Gender 
          Male = 0 
          Female = 1 

     Gender 
          Male = 1 
          Female = 2 
 

Nominal 

     Grade level  
          Ninth = 0 
          Tenth = 1 
          Eleventh = 2 
          Twelfth = 3 

     Not available Ordinal 

 

Comstock et al. (n.d.) revealed, among high school male athletes, 22.5%, 25.5%, 

22.3% and 29.7% of interscholastic injuries occurred in ninth, tenth, eleventh, and twelfth 

graders respectively while among high school female athletes, 27.5%, 27.9%, 24.1%, and 

20.6% of the injuries occurred in ninth, tenth, eleventh and twelfth graders respectively.  

The AT-PBRN database did not capture grade level data every year because this 

characteristic did not apply to every setting.  Therefore, this variable was not available for 
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analysis in this study.  Golf data were not included in this dataset, but badminton 

cheerleading and ice hockey data were included.  Therefore, I modified sport type coding 

that I had specified in chapter 3, as follows.  I classified cheerleading and ice hockey as 

team sports and assigned codes 3 and 6 respectively.  I did not retain golf as an individual 

sport since it was not included in this dataset, but I included badminton and assigned code 

11 to that sport.  The clean working data set also included “other” high school sports.  I 

could not determine if this variable included team sports, individual sports, or a 

combination of both, so I assigned code 18 to the “other” sports category.  As discussed 

previously, I retained 11-19 year old athletes, stratified the age variable, and created the 

age group code variable where (a) 11-13 years = 1; (b) 14-17 years = 2; and (c) 18-19 

years = 3 in order to analyze the predictor variable, age, more completely. 

 For descriptive purposes, I stratified the knee sprain ever variable into types of 

knee injuries (LCL, MCL, cruciate ligament, and unspecified knee sprains) by 

transforming the respective ICD-9 code variable into the following variables: (a) LCL 

ever where  no = 0 and b) yes = 1; (b) MCL ever where no = 0 and yes = 1; (c) cruciate 

ligament ever where no = 0 and yes = 1;  and (d) unspecified knee sprain where a) no = 0 

and b) yes = 1.  I also transformed the ankle sprain ever variable into types of ankle 

injuries (unspecified, deltoid, and tibiofibular ligament sprains) by transforming the 

corresponding ICD-9 codes into: (a) ankle sprain unspecified ever where a) no = 0 and 

yes = 1; (b) ankle sprain deltoid ligament ever where a) no = 0 and b) yes = 1; and (c) 

ankle sprain tibiofibular ligament ever where no = 0 and b) yes = 1. 
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Descriptive and Demographic Characteristics of the Sample 

There were 1613 valid observations and no missing data.  The data set 

encompassed information from 1613 (100%) high school athletes.  Analysis of the 

gender variable revealed 805 (49.9%) of the cases were males, and 808 (51%) of the 

cases were females.  The measures of central tendency revealed the average (mean) age 

was 15.48 years, the central point (median) was 15 years and the most frequent age 

(mode) was 15 years.  The measures of dispersion indicated the range was 11-19 years 

and the standard deviation (SD) was ±1.343 years for the scale characteristic (age).  

Analysis of the age-group code variable revealed 6.5% of the cases were between the 

ages of 11 and 13 years; the majority of the cases (88%) were between the ages of 14 and 

17 years, and 5.3% of the cases were between 18 and 19 years of age. 

Team sports (baseball, basketball, cheerleading, field hockey, football, lacrosse, 

soccer, softball, and volleyball) represented 84.3% of the sample.  There were zero 

hockey injuries in this analysis.  Individual sports (badminton, cross-country, gymnastics, 

swimming, tennis, track, and wrestling) represented 14.6% of this sample.  Other sports 

represented 1.1% of this sample.  The frequencies and distributions were also calculated 

for the following variables in this study.  The concussion ever and LEMI variables 

represented 11.9% and 88.1% of the cases in the sample respectively.  Descriptive 

analysis of the number of concussions and number of LEMI variables revealed 88% of 

the cases had no concussions, 11.7% had one concussion and 0.3% had 2 concussions, 

while 11% of the cases had no LEMIs, 83.3% of the cases had 1 LEMI, 5.1% of the cases 

had 2 LEMIs and 0.5% of the cases had 3 LEMIs.  Further stratification of the LEMI 

variable revealed 82.7% of the cases had no knee sprains, 16.9% had 1 knee sprain and 
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0.4% had 2 knee sprains.  The percentages of cases with 0, 1, 2, and 3 ankle sprains were 

26.9%, 68.8%, 4.1%, and 0.2% respectively.  The descriptive characteristics of the 

sample are summarized in Table 3. 

Table 3 

Characteristics of the Sample 

Characteristics Outcomes 
 
Age at injury (yr.) 

Mean (SD; range) 
15.48 (1.343; 11-19) 

Age group (yr.) % (n/N) 
     11-13 6.5 (105/1,613) 
     14-17  88.2 (1,423/1,613) 
     18-19 
 

5.3 (85/1,613) 

Gender  
     Male  49.9 (805/1,613) 
     Female 50.1 (808/1,613) 

 
Sport type 
     Team sports  
        Baseball 
        Basketball 
        Cheerleading  
        Field hockey 
        Football 
        Hockey 
        Lacrosse 
        Soccer 
        Softball 
        Volleyball 
     Individual sport 
        Badminton 
        Cross country 
        Gymnastics 
        Swimming 
        Tennis 
        Track 
        Wrestling 
     Other    

 
84.3 (1,360/1,613) 
  1.8 (29/1,613) 
24.9 (410/1,613) 
  3.3 (54/1,613) 
  0.3 (5/1,613) 
23.3 (375/1,613) 
0 (0/1,613) 
  1.7 (27/1,613) 
13.8 (222/1,613) 
  3.2  (52/1,513) 
14.6(194/1,613) 
14.6 (235/1,613)  
   1.0 (16/1,613) 
   3.2  (52/1,613) 
   0.2  (4/1,613) 
   0.3 (5/1,613) 
   0.8 (13/1,613) 
   5.8 (93/1,613) 
   3.2 (52/1,613) 
   1.1 (18/1,613) 

 
 

 
(table continues) 
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Characteristics Outcomes 
Concussion 
     Absent 
     Present 

 
88.1 (1421/1,613) 
11.9 (192/1,613) 

 
LEMI 
     Absent 
     Present 
 
Knee sprain 
     Absent 
     Present   
 

 
 
11.0 (178/1,613) 
89.0 (1435/1,613) 
 
 
82.7 (1,333/1,613) 
17.3 (280/1,613) 

Ankle sprain 
     Absent 
     Present 
 

 
26.9 (434/1,613) 
73.1 (1,179/1,613) 

Knee sprain type 
      LCL knee sprain 
        Absent 
        Present 
 

 
 
98.3 (1,585/1,613) 
  1.7 (28/1,613) 

MCL knee sprain 
        Absent 
        Present 

 
95.7 (1,544/1,613) 
   4.3 (69/1,613) 

  
Concussion frequency 
     Zero 
     One 
     Two 
     Three  

                                            
88 (1,420/1,613) 
11.7 (189/1,613) 
  0.3 (4/1,613) 
  0 (0/1,613)                                 

 
LEMI frequency 
     Zero 
     One 
     Two 
     Three 

 
 
11 (178/1,613) 
83.3 (1,344/1,613) 
  5.1 (83/1,613) 
  0.5 (8/1,613) 

 
Knee sprain frequency 
     Zero 
     One 
     Two 
     Three 
 
 

 
 
82.7 (1,334/1,613) 
16.9 (273/1,613) 
  0.4 (6/1,613) 
  0.0 (0/1,613) 

(table continues) 
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Characteristics Outcomes 
Ankle sprain frequency 
     Zero 
     One 
     Two 
     Three 
 

 
26.9 (434/1,613) 
68.7 (1,109/1,613) 
  4.1 (66/613) 
  0.2% (4/1,613) 

LCL sprain frequency 
     Zero 
     One 
     Two 
 

 
98.2 (1,585/1,613) 
  1.8 (28/1,613) 
  0 

MCL sprain frequency 
     Zero 
     One 
     Two 
 

 
95.7 (1,544/1,613) 
  4.3 (69/1,613) 
  0 

Cruciate ligament sprain 
     Zero 
     One 
     Two 

 
92.7(1,495/1,613) 
 7.2 (116/1,613) 
 0.1 (2/1,613) 
 

Knee sprain unspecified 
     Zero 
     One 
     Two 
 

 
96.8 (1,561/1,613) 
  3.0 (49/1,613) 
  0.2 (3/1,613) 

Ankle sprain unspecified 
     Zero 
     One 
     Two or more 
 

 
45.4 (733/1,613) 
51.4 (829/1,613) 
  3.2 (51/1,613) 

Deltoid ligament sprain 
     Zero 
     One 
     Two or more 
 

 
97.6 (1,575/1,613) 
  2.2 (35/1,613) 
 .0.2 (3/1,613) 

Distal tibiofibular ligament sprain 
     Zero 
     One 
     Two or more 

 
84.9 (1,369/1,613) 
14.3 (230/1,613) 
 0..8 (14/1,613) 
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Sample 

About 7.8 million high school athletes participated in interscholastic sports in 

2014-2015 (Comstock et al., n.d.).  The sample in this study included (n = 1613) high 

school athletes (805 boys, and 808 girls) from several regions in the United States 

(Figure 1). Therefore, this sample represented about .0002% of U.S. high school athletes. 

Since the sample for this study was a small sample of convenience the results may only 

be may be generalizable to high school athletes in the regions of the U.S. that are 

included in this sample.  When samples cannot be randomly selected, researchers should 

include participants from the group they intend to generalize to, and acknowledge their 

results may not be generalizable to other populations or environments (Ary et al., 2014).    

 

Figure 2. Athletic training practice-based clinical practice sites. From “AT-PBRN 
Clinical Practice Sites,” by Athletic Training Practice Based Research Network, 2017 
(http://www.coreat.org/clinical-practice-sites.html). Copyright 2017 by A. T. Still University 
Athletic Training. Reprinted with permission. 
 
 

Results 

As previously explained, the secondary dataset examined in this study was 

obtained from adolescent male and female athletes who participated in interscholastic 
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sports at AT-PBRN high schools in the U.S.  This sample for this study contained 

concussion, knee sprain and ankle sprain data that were extracted from the larger AT-

PBRN database, which included, head, neck, back, upper and lower extremity injuries.  

The statistics that describe this sample are reported above and summarized in Table 3.  

Assumptions 

Binomial logistic regression assumes the dependent variable is dichotomous 

(Field, 2009).  Logistic regression also assumes: (a) linearity between each continuous 

independent variable and the logit of the dependent variable, and (b) independence of 

errors (Bewick, Cheek, & Ball, 2005; Field et al., 2009).  Additionally, the independent 

variables should not be highly related to each other because this could lead to problems 

with estimation (Bewick, Cheek, & Ball, 2005; Field et al., 2009).  To confirm the 

continuous independent variable, age, was linearly related to the logit (LEMI) I 

transformed the age variable into its natural log, completed the assessment with the Box-

Tidwell procedure, and confirmed this assumption  p = .295, ( p  >  .05).  The assumption 

of independence of errors requires each observation (case) to be independent.  To ensure 

this assumption was met, I aggregated the data so each athlete was only represented once, 

as one data point, in the dataset.  I also checked for multicollinearity (highly correlated 

independent variables) by reviewing the regression coefficients in the correlation 

matrices.  I did not find any highly correlated predictor variables, so multicollinearity was 

not a problem in this dataset.  Therefore, the assumptions of logistic regression were 

satisfied in this study. 
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Data Analysis Approach 

The data were analyzed with SPSS software, version 23 (IBM Corp., 2015).  For 

each research question, cross tabulation analyses were performed to determine if the 

dataset included all combinations of the variables.  Binomial logistic regression analyses 

were also conducted to determine if the models, which included the independent 

variables afforded a better fit to the data than the null model for each research question.  

Wald statistics, odds ratios (OR), 95% confidence intervals (CI), and Cochran-Mandel-

Haenszel tests were conducted. 

Research Question 1  

To answer my first research question, (Is there an association between SRC and 

LEMI among high school athletes?) I conducted a cross tabulation analysis with the 

concussion-ever and LEMI ever variables to determine if all possible combinations of 

concussion ever and LEMI ever existed.  No cases were missing.  However, the cell that 

contained the absence of concussion and absence of LEMI variables did not contain any 

cases because this data set only included SRCs, knee sprains, and ankle sprains.  

Therefore, every case in this data set had at least one of these injuries.  The actual and 

expected case counts in this cell were zero and 156.8 respectively.  The remaining cells in 

this cross tabulation contained more than ten actual and expected cases.  Of all 1613 

cases, the remaining cells revealed: (a) 178 cases had presence of concussion and zero 

LEMIs, 178/1613 = 11%; (b) 1421 cases had presence of LEMI and zero concussions, 

1421/1613 = 88.1%; and (c) 14 had presence of SRC and LEMI 14/1613 = 0.9%.  The 

chi square analysis revealed the concussion ever and LEMI ever variables were 

associated [Χ2 = 1480.796, (1), p = .000 (p < .05)].  The post hoc Cramer’s V (φc) 



84 

 

analysis revealed there was a strong association between the concussion ever and LEMI 

ever variables (φc = .958).  However, ORs and 95% CIs could not be determined to 

demonstrate the odds or certainty of these findings.  The results are depicted in Table 4.  

Table 4 
 
Chi-Square Analysis With Concussion Ever and Lower Extremity Musculoskeletal Injury 
Ever Variables 
 
 LEMI ever 
 Absence of LEMI Presence of LEMI 
Concussion ever   
      Absence of concussion   
          Count 0 1,421 
          Expected count 156.8 1,264.2 
          % within concussion ever 0.0% 100% 
 
     Presence of concussion 

  

          Count 178 14 
          Expected count 21.2 170.8 
          % within concussion ever 92.7% 7.3% 
Note. Pearson chi-square = 1,480.796, degrees of freedom = 1, p-value = .000 (p < .05), 
Cramer’s V = .958. 
 

This cross tabulation analysis revealed one cell contained zero cases and clarified 

all combinations of data could not be examined.  Therefore, incomplete information 

could cause the results from the statistical analyses to be misleading (Field, 2009; De 

Irala et al., 1997).  Furthermore, I understood the standard errors (SE), coefficients, and 

other statistics calculated during the logistic regression analysis, to answer my first 

research question, might not be accurate. 

In an effort to construct an accurate model, I conducted additional bivariate 

analyses to estimate the associations between each of the possible covariates, and the 

dependent variable (LEMI).  Categorizing a continuous variable, such as age, may reduce 
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statistical power, so I analyzed the relationship between the covariate (age) and 

dependent variable (LEMI).  This analysis showed there were zero cases of 11 year olds 

with absence of LEMI.  Therefore, I converted the continuous variable (age) to a 

categorical variable (age group), and found no cells contained zeros when the relationship 

between the covariate (age group) and the dependent variable (LEMI) was tested. The chi 

square analyses, shown in Tables 5-8,  indicated the possible covariates age (p > .05), 

age group (p > .05), gender (p > .05), and sport type (p > .05) were not associated with 

LEMIs, so these covariates were not included in the logistic regression analysis.   

Table 5 
 
Chi-Square Analysis With Age and Lower Extremity Musculoskeletal Injury Ever 
Variables 
 
 LEMI ever 
 Absence of LEMI Presence of LEMI 
Age (years)   
     11 0 6 
     % within age 0% 100% 
     12    3 6 
     % within age 33.3% 66.7% 
     13 8 82 
     % within age 9.9% 80.1% 
     14 38 248 
     % within age 13.3% 86.7% 
     15 54 369 
     %  within age 12.8% 87.2% 
     16 41 355 
     %  within age 10.4% 89.6% 
     17 29 289 
     %  within age 9.1% 90.9% 
     18 5 77 
     % within age 6.1% 93.9% 
     19 0 3 
     % within age 0% 100% 
Note. Pearson chi-square = 12.277, degrees of freedom = 8, p-value = .139 (p >.05), 
Cramer’s V = .087. 
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Table 6 
 
Chi-Square Analysis With Age Group and Lower Extremity Musculoskeletal Injury Ever 
Variables 
 
 LEMI ever 

 Absence of LEMI Presence of LEMI 
Age group (years)   
     11-13  11 94 
     % within age group 10.5% 89.5% 
     14-17  162 1,261 
     % within age group 11.4% 88.6% 
     18-19  5 80 
     % within age group 5.9% 94.1% 
Note. Pearson chi-square = 2.509, degrees of freedom (DF) = 2, p-value = .285 (p > .05), 
Cramer’s V = .039. 
 

Table 7 
 
Chi-Square Analysis With Gender and Lower Extremity Musculoskeletal Injury Ever 
Variables 
 

 LEMI ever 
 Absence of LEMI Presence of LEMI 
Gender   
     Male 78 727 
     % within gender 9.7% 90.3% 
     Female 100 708 
     % within gender 12.4% 87.6% 
Note. Pearson chi-square = 2.965, degrees of freedom (DF) = 1, p-value = .085 (p > .05), 
Cramer’s V= .043. 
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Table 8 
 
Chi-Square Analysis With Sport Type and Lower Extremity Musculoskeletal Injury Ever 
Variables 
 
 LEMI ever 
 Absence of LEMI Presence of LEMI 
Sport type   
     Team sports 157 1,203 
     % within sport type 
 

11.5% 88.5% 

     Individual sports 20 215 
     % within sport type 8.5% 91.5% 
        
     Other sports 178 1,435 
     % within sport type 11.0% 89.0% 
Note. Pearson chi-square = 2.435, degrees of freedom = 2, p-value = .296 (p > .05), 
Cramer’s V = .039. 
 

After determining the covariates were not associated with the dependent variable 

(LEMI), I conducted a binomial logistic regression analysis to examine the relationship 

between SRC and LEMI with only one independent variable (concussion ever).  I 

intended to examine this relationship between these variables more completely than I 

could with the chi square statistic alone.  However, the logistic regression model did not 

converge due to incomplete information in the dataset (zero cases in one cell).  Therefore, 

the results were not valid, and were not reported in this study.  I explain the reasons the 

model did not converge, in more detail, in the next chapter. 

Chi square analysis revealed the relationship between SRC and LEMIs was 

significant, [Χ2 = 1480.796, (1), p = .000 (p < .05), φc = .958] but this binomial logistic 

regression model did not converge so invalid results were generated.  Therefore, I also 

conducted Cochran- Mandel-Haenszel (CMH) tests in another effort to understand the 

association between SRC and LEMI.  The CMH test builds upon the chi square test by 
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stratifying the data to control for other factors, which could produce misleading 

associations; and thus reduces the chance of deriving inaccurate conclusions in 

retrospective research (Mantel & Haenszel, 1959).  The primary assumption for the CMH 

test is that the data represent the population specified for the study (Mantel & Haenszel, 

1959).  Although this assumption was met, CMH analysis of the association between the 

concussion ever and the LEMI variables did not yield any results for the tests of 

homogeneity of the odds ratio, or for the Mantel-Haenszel common odds ratio estimate 

due to incomplete information in the dataset (zero cases in one cell).  Therefore the OR 

and 95% CI could not be calculated, so this test also failed.  The reasons are explained, in 

more detail, in the next chapter.  

Research Questions 1a and 1b 

Because the dependent variable in this study, LEMI, was defined as a knee sprain 

(delineated by one of the following ICD-9 codes: 844.0, 844.1, 844.2, or 844.9), or as an 

ankle sprain (delineated by one of the following ICD-9 codes: 845.00, 845.01, or 845.03), 

I examined each variable (knee sprain ever, and ankle sprain ever) independently, in an 

effort to reduce the presence of zeros in cells, and understand the relationship between 

SRC and LEMI more clearly.  Therefore, I sought answers to the following questions: 

1a: Is there an association between SRC and knee sprains among high school 

athletes? 

H01a:  There is not an association between SRC and knee sprains among high 

school athletes controlling for gender, age, and sport.  

HA1a:   There is an association between SRC and knee sprains among high 

school athletes controlling for gender, age, and sport. 
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1b: Is there an association between SRC and ankle sprains among high school 

athletes? 

H01b:  There is not an association between SRC and ankle sprains among 

high school athletes controlling for gender, age, and sport. 

HA1b:   There is an association between SRC and ankle sprains among high 

school athletes controlling for gender, age, and sport. 

Prior to conducting logistic regression analysis to determine if there was an 

association between SRC and knee sprains while controlling for gender, age, and sport,  I 

examined the cross tabulations for the concussion-ever and knee sprain-ever variables 

and found the concussion-ever and knee sprain ever cells contained a least one case and 

five expected cases.  Of all 1613 cases: (a) 71% had zero concussions and zero knee 

sprains; 1145/1613 =71%; (b) 17.1% had zero concussions and presence of a knee sprain, 

276/1613 = 17.1%; (c) 11.7% had presence of concussion and zero knee sprains 

188/1613 = 11.7%; and (d) 0.2% had presence of concussion and presence of knee sprain 

4/1613 = 0.24%.  The chi square analysis revealed the concussion ever and knee sprain 

variables were associated, and the post hoc Cramer’s V analysis showed the strength of 

the association between these variables was very weak [Χ2 = 35.450, (1) p = .000, (p < 

.05) φc = .148]; but  ORs and 95% CIs could not be determined to demonstrate the odds, 

or certainty, of these findings.  Therefore, a definitive relationship could not be 

established. The results of the analysis are presented in Table 9.   

  



90 

 

Table 9 

Chi-Square Analysis With Concussion Ever and Knee Sprain Ever Variables 

 Knee sprain ever 
 Absence of knee 

sprain 
Presence of knee 

sprain 
Concussion ever   
     Absence of concussion   
            Count 1145 276 
            Expected count 1174.3 246.7 
            % within concussion ever 80.6% 19.4% 
 
    Presence of concussion 

  

            Count 188 4 
            Expected count 158.7 33.3 
           % within concussion ever 97.9% 2.1% 
Note. Pearson chi-square = 35.450, degrees of freedom (DF) = 1, p-value = .000, 
Cramer’s V = .148. 
 

In an effort to construct an accurate model, I conducted additional bivariate 

analyses to estimate the associations between each of the possible covariates age, age 

group, gender and sport type and the dependent variable knee sprains.  The chi square 

analyses, as shown in Tables 10-13, revealed only the age group [p = .021 (p < .05)] and 

gender variables [p = .045 (p < .05)] were significant. Therefore, only the age group and 

gender covariates were included with the independent variable concussion ever in this 

model. 
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Table 10 

Chi-Square Analysis With Age and Knee Sprain Ever Variables 

 Knee sprain ever 
 Absence of knee 

sprain 
Presence of knee 

sprain 
    Age (years)   
          11 6 0 
          % within age 100% 0% 
          12 9 0 
          % within age 100% 0% 
          13 79 11 
          % within age 87.8% 12.2% 
          14 237 49 
          % within age 82.9% 17.1% 
          15 355 68 
          % within age 83.9% 16.1% 
          16 321 75 
          % within age 81.1% 18.9% 
          17 263 55 
          % within Age 82.7% 17.3% 
          18 60 22 
          % within age 73.2% 26.8% 
          19 3 0 
          % within age 100% 0% 
Note. Pearson chi-square = 11.749, degrees of freedom = 8, p-value = .163 (p > .05), 
Cramer’s V = .085. 
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Table 11 

Chi-Square Analysis With Age Group and Knee Sprain Ever Variables 

 Knee sprain ever 
 Absence of knee 

sprain 
Presence of knee sprain 

Age group (years)   
     11-13  94 11 
      % within age group 89.5% 10.5% 
      14-17 1176 247 
     % within age group 82.6% 17.4% 
     18-19  63 22 
     % within age group 74.1% 25.9% 
Note. Pearson chi-square = 7.772, degrees of freedom (DF) = 2, p-value = .021, (p < .05), 
Cramer’s V= .069. 
 

Table 12 

Chi-Square Analysis With Gender and Knee Sprain Ever Variables 

 Knee sprain ever 
 Absence of knee 

sprain 
Presence of knee 

sprain 
Gender   
     Male 650 155 
      % within gender 80.7% 19.3% 
     Female 683 125 
     % within gender 84.5% 15.5% 
Note. Pearson chi-square = 4.026, degrees of freedom (DF) = 1, p-value = .045 (p < .05), 
Cramer’s V = .050. 
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Table 13 

Chi-Square Analysis With Sport Type and Knee Sprain Ever Variables 

 Knee sprain ever 
 Absence of knee sprain Presence of knee sprain 
Sport type   
      Team sports 1,119 241 
      % within sport type 
 

82.3% 17.7% 

       Individual sports 198 37 
      % within sport type 84.3% 15.7%% 
        
      Other sports 16 2 
      % within sport type 88.9% 11.1% 
Note. Pearson chi-square = 1.041, degrees of freedom = 2, p-value = .594 (p > .05), 
Cramer’s V = .148. 
 

Next, I conducted a binomial logistic regression analysis to examine the 

relationship between SRC and knee sprains while controlling for age group and gender.  

The outcome variable was knee sprains.  The potential predictor variables were age 

group, gender, and concussion ever.  For each categorical predictor variable, I coded the 

first predictor (age group 11-13 years, male, and absence of concussion) as the 

comparison groups.  The case processing summary showed no cases were missing.  The 

classification table in block 0 of this model revealed 82.6% of the cases were classified 

correctly.  The test of the null hypothesis revealed the unstandardized Beta weight for the 

constant B = -1.560, SE = .066, Wald = 563.410, (p< .05), Exp (B) = .210.  The age- 

group (14-17 yr.) p = .997 (p > .05) variable was not predicted to contribute to the block 

1 model.  The age group (11 – 13 yr.) p = .021 (p < .05), age group (18 – 19 yr.) p = 

.033, (p< .05), gender, p = .045 (p < .05), and concussion- ever p = .000 (p < .05) 

variables were predicted to contribute to the block 1 model.  Of the variables not in the 
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equation, if only the age group (11-13 yr.) p = .021 (p < .05), age group (18 – 19 yr.) p = 

.033, gender, p = .045 (p < .05), or concussion ever p = .000 (p < .05) variable was added 

in the next step, this block predicted each of these variables, alone, would contribute to 

the new model.  

The block 1 analysis included the age group, gender and concussion-ever 

variables.  To clarify the findings, the full report follows. The iteration history stabilized 

at iteration 7.  The Omnibus tests of model coefficients indicated addition of the 

independent variables significantly improved the accuracy of this  model compared to the 

baseline model as there was a significant difference p = .000 (p <.05)  between the -2 log 

likelihood ratios in block 0 (1488.904) and block 1 (1428.543).  The Nagelkerke R 

Square (.061) indicated 61% of the variance in the model was explained by the 

independent variables. The Hosmer and Lemeshow goodness of fit test showed the model 

fit the data, as this test was not significant p = .893 (p > .05).  The classification table 

revealed the overall percentage of correct predictions was the same as the block 0 

predictions for knee sprain (82.6%).  The variables in the equation age group (14-17 yr.) 

p = .081 (p > .05), and gender (female) p = .152 (p > .05) did not contribute to the model.  

However, the age group (11-13 yr.) p = .044 (p < .05) (reference group), age group (18-

19 yr.) p = .013 (p > .05), and concussion ever p = .000 (p < .05) variables did contribute 

to this model.  The unstandardized Beta weight for the predictor variable age group (18-

19) B = -1.016, SE = .409, Wald = 6.163, p < .05 [Exp (B) 2.761, 95% CI (1.238- 

6.156)].  The unstandardized Beta weight for the predictor variable concussion ever; B = 

(-2.409), SE =.510, Wald = 22.318, p < .05, [Exp (B) = .090, 95% CI (.033, .244)].   
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In summary, a binomial logistic regression analysis was performed to determine if 

SRC and knee sprain were related in high school athletes while controlling for the effects 

of age group, and gender.  The iteration history revealed the model stabilized at the 

seventh iteration, and the logistic regression model was significant [Χ2 = 60.361 (4) p = 

.000].  The Hosmer and Lemeshow goodness of fit test was not significant p = .893 (p > 

.05) which indicated the model appeared to fit the data. The model revealed the 

independent variables age group (14-17 years), and gender did not contribute to the 

model.  However, the age group (11-13 years) (reference group), age group (18-19 years) 

and concussion ever variables, did contribute to the new model (p < .05).  Therefore, in 

this logistic regression analysis, while controlling for age group, and gender, the predictor 

variables age group (11-13 years) (reference group), age group (18-19 years) and 

concussion ever were determined to contribute to the model.  The unstandardized Beta 

weight for the predictor variable age group (18-19) B = 1.016, SE = .409, Wald = 6.163, 

p < .05. The estimated OR favored an increase of nearly 176% [Exp (B) 2.761, 95% CI 

(1.238, 6.156)] for knee sprain every one unit increase of the age group (18-19 years).  

The unstandardized Beta weight for the predictor variable concussion ever; B = (-2.409), 

SE =.510, Wald = 22.318, p < .05, favored a decrease of 10% [Exp (B) = .090, 95% CI 

(.033, .244)] for a knee sprain every one unit increase of concussion ever. 

This binomial logistic regression model revealed concussion ever and knee injury 

variables were related.  However, these results may be misleading and inaccurate.  

Although the Hosmer Lemeshow goodness of fit test suggested the model appeared to fit 

the data well (p > .05), the sample size was small (four cases in one cell).  Therefore, 

instead of the high p-value (.893) actually demonstrating the model fit the data well; it is 
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feasible the high p-value could have resulted from the small sample size reducing the 

power of Hosmer-Lemeshow test to, correctly, identify the model’s poor fit to the data 

(Chao-Ying et al., 2002; de Irala et al., 1997; Hosmer et al., 1991). Therefore, the null 

hypothesis (HO1a) was not rejected.  The results of the block 1 analysis of concussion ever 

and knee sprain ever variables are summarized in Table 14. 

Table 14 

Binomial Logistic Regression Analysis of the Concussion Ever and Knee Variables 

  95% CI 
Variable 
category 

B SE Wald df Sig Exp 
(B) 

Lower Upper 

Age group  
(11-13 yr.) 
 

  6.230 2 .044               

Age group 
(14-17 yr.) 
 

.574 .329 3.047 1 .081 1.776 .932 3.385 

Age group 
(18-19 yr.) 
 

1.016 .409 6.163 1 .013 2.761 1.238 6.156 

Gender 
(female) 
 

.193 .135 2.049 1 .152 .825 .634 1.074 

Concussion 
ever 
 

-2.409 .510 22.318 1 .000 .090 .033 .243 

Constant -1.903 .331 33.021 1 .000 .149   
Note. B = coefficient, SE = standard error, Exp (B) = odds ratio, CI = confidence interval. 
 

Next, I examined the relationship between concussion ever and ankle sprain ever 

with chi square analyses.  Cross tabulation calculations of the concussion-ever and ankle 

sprain ever variables revealed all cells contained at least ten actual and expected cases.  

Of all 1613 cases: (a) 15.8% had no concussion and no ankle sprain 256/1613 =15.8%; 

(b) 72.2% had no concussion but had an ankle sprain 1165/1613 = 72.2%; (c) 11% had a 
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concussion but no ankle sprain 178/1613 = 11%; and (d) 14 had a concussion and ankle 

sprain 14/1613 = 0.86%.  The chi square analysis for the concussion ever and ankle 

sprain ever variables revealed these variables were associated, and the post hoc Cramer’s 

V analysis showed a moderate association between these variables [Χ2 = 479.826, (1) p = 

.000, (p < .05), φc = .545, but the ORs and 95% CIs could not be determined to 

demonstrate the odds or certainty of these findings.  The reasons are discussed in the next 

chapter.  The results are presented in Table 15. 

Table 15 

Cross Tabulation With Concussion Ever and Ankle Sprain Ever Variables 

 Ankle sprain ever 
 Absence of ankle 

sprain 
Presence of ankle 

sprain 
Concussion ever   
          Absence of concussion   
                Count 256 1165 
                Expected count 382.3 1038.7 
                % within concussion 18.0% 82.0% 
   
           Presence of concussion   
                Count 178 14 
                Expected count 51.7 140.3 
                % within concussion 92.7% 7.3% 
Note. Pearson chi-square = 479.826, degrees of freedom = 1, p-value = .000 (p < .05), 
Cramer’s V = -545. 
 

I attempted to create an accurate model, by conducting additional bivariate 

analyses to estimate the associations between each of the possible covariates (age, age 

group, gender, and sport type) and the dependent variable (ankle sprains).  The chi square 

analyses, shown in Tables 16- 19, revealed the covariates age (p > .05) age group (p > 
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.05), gender (p > .05), and sport type (p > .05) were not associated with ankle sprains so 

none of these covariates were included in the binomial logistic regression analysis.   

Table 16 

Cross Tabulation With the Age and Ankle Sprain Ever Variables 

 Ankle sprain ever 
 Absence of ankle sprain Presence of ankle sprain 
    Age (years)   
       11 0 6 
       % within age 0% 100% 
       12 3 6 
       % within age 33.3% 66.7% 
       13 18 72 
       % within age 20.0% 80.0% 
       14 82 204 
       % within age 28.3% 71.7% 
       15 111 312 
       % within age 26.2% 73.8% 
       16 112 284 
       % within age 28.3% 71.7% 
       17 81 237 
       % within age 25.5% 74.5% 
       18 27 55 
       % within age 32.9% 67.1% 
       19 0 3 
       % within age 0% 100% 
Note. Pearson chi-square = 8.459, degrees of freedom = 8, p-value = .390 (p >.05), 
Cramer’s V = .390. 
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Table 17 

Cross Tabulation With Age Group and Ankle Sprain Ever Variables 

 Ankle sprain ever 
 Absence of ankle sprain Presence of ankle 

sprain 
Age group (years)   
     11-13  21 84 
      % within age group 20.0% 80.0% 
     14-17  386 1,037 
     % within age group 27.1% 72.9% 
     18-19  27 58 
     % within age group 31.8% 68.2% 
Note. Pearson chi-square = 3.602, degrees of freedom (DF) = 2, p-value = .165 (p > .05), 
Cramer’s V = .047. 
 

Table 18 

Cross Tabulation With Gender and Ankle Sprain Ever Variables 

 Ankle sprain ever 
 Absence of ankle 

sprain 
Presence of ankle 

sprain 
Gender   
     Male 222 583 
      % within gender 27.6% 72.4% 
     Female 212 596 
     % within gender 26.2% 73.8% 
Note. Pearson chi-square = .368, degrees of freedom (DF) = 1, p-value = .544 (p >.05), 
Cramer’s V = .015. 
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Table 19 

Cross Tabulation With the Sport Type and Ankle Sprain Ever Variables 

 Ankle sprain ever 
 Absence of ankle sprain Presence of ankle sprain 
Sport type   
      Team sports 380 980 
      % within sport type 
 

27.9% 72.1% 

       Individual sports 51 184 
      % within sport type 21.7% 78.3%% 
        
      Other sports 3 15 
      % within sport type 16.7% 83.3% 
Note. Pearson chi-square = 4.936, degrees of freedom = 2, p-value = .085 (p > .05), 
Cramer’s V = .055. 
 

The chi square analyses of the covariates age, age group, gender, and sport type 

indicated these independent variables (p > .05) were not associated with the outcome 

variable (ankle sprains); so this binomial logistic regression analysis which examined the 

relationship between SRC and ankle sprains only included one independent variable 

(concussion ever).  Since the chi square analysis shown in Table 15 revealed the 

concussion ever and ankle sprain variables were associated [Χ2 = 4.936, (1), p = .000 (p < 

.05), φc = .545], it would be reasonable to expect this binomial logistic regression 

analysis, to yield the same results if the model was stable.  The case processing summary 

showed no cases were missing.  The classification table in block 0 of this model revealed 

73.1% of the cases were classified correctly.  The test of the null hypothesis revealed the 

unstandardized Beta weight for the constant; B = .999, SE = .056, Wald = 316.831, p < 

.05, Exp (B) = 2.717.  If the variable not in the equation (concussion ever) was added in 
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the next step, the concussion ever variable p = .000 (p < .05) was predicted to contribute 

to the new model. 

The block 1 analysis tested the contribution of the concussion ever variable.  The 

iteration history stabilized at the fifth iteration.  The omnibus tests of model coefficients 

indicated addition of the independent variable changed the accuracy of the model from 

73.1% in the baseline model to 34.6% in the block 1 model.  There was a significant 

difference p = .000 (p <.05) between the -2 log likelihood ratios in block 0 (1878.582) 

and block 1 (1440.637).  The Nagelkerke R Square (.346) indicated about 35% of the 

variance in the model was explained by the independent variable.  The Hosmer and 

Lemeshow goodness of fit test revealed chi square = .000, with 0 degrees of freedom so 

the p-value could not be calculated.  Therefore, it was not clear if the data fit the model.  

The classification table revealed the overall percentage of correct predictions increased 

from 73.1% in block 0 predictions for ankle sprain to 83.3% in block 1.  The variables in 

the equation revealed the independent variable concussion ever p = .000 (p < .05), did 

contribute to the model.  The unstandardized Beta weight for the predictor variable 

concussion ever; B = (-4.058), SE =.286, Wald = 201.288, p < .05.  The estimated odds 

ratio favored a decrease of nearly 100% [Exp (B) .017, 95% CI (.010, .030)] for ankle 

sprains for every one-unit increase of concussion ever. 

In summary, a binomial logistic regression analysis was performed to determine if 

SRC and ankle sprains were related in high school athletes.  The iteration history 

revealed the model stabilized at the fifth iteration, and the logistic regression model was 

significant [Χ2 = 437.945 (1) p = .000].  Since the p-vale in the Hosmer and Lemeshow 

goodness of fit test could not be determined, it was not obvious if the model fit the data 
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well.  The -2 log likelihood (1440.637) differed significantly from the baseline -2 log 

likelihood (1878.582) and the Nagelkerke R Square (346) showed only 34.6% of the 

variance in the model was explained by the independent variable.  The model revealed 

the concussion ever variable was significant (p < .05).  The unstandardized Beta weight 

for the predictor variable concussion ever: B = (-4.058), SE =.286, Wald = 201.288, p < 

.05.  The estimated OR favored a decrease of nearly 100% [Exp (B) = 017 95% CI (.010, 

.030)], for ankle sprains every one unit increase of concussion-ever.  

This binomial logistic regression analysis revealed concussion ever and ankle 

sprain were related [p = .000 (p < .05)].  The unstandardized Beta weight for the predictor 

variable concussion ever: B = (-4.058), SE =.286, Wald = 201.288, p < .05.  The 

estimated OR favored a decrease of nearly 100% [Exp (B) = 017 95% CI (.010, .030)], 

for ankle sprains every one unit increase of concussion-ever.  

Although the results of the logistic regression analysis were consistent with the 

chi square analysis shown in Table 15 [Χ2 = 479.826 (1), p < .05, φc = .545], the validity 

of the model was questionable because the Hosmer and Lemeshow goodness of fit test in 

block one revealed chi square = .000, with 0 degrees of freedom so the p-value could not 

be calculated.  Therefore, this analysis did not clarify if the model fit the data well (Chao-

Ying, 2002; de Irala et al., 1997; Hosmer et al., 1991).  Consequently, these results could 

be inaccurate and misleading, so the null hypothesis was not rejected. The results of the 

logistic regression analysis of concussion ever and ankle sprain ever variables are 

summarized in Table 20. 
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Table 20 

Binomial Logistic Regression Analysis of Concussion Ever and Ankle Sprain Variables  

  95% CI 
Variable 
category 

B SE Wald df Sig Exp 
(B) 

Lower Upper 

Concussion 
ever 
 

-4.058 .286 201.288 1 .000 .017 .010 .030 

Constant 1.515 .069 481.913 1 .000 4.511   
Note. B = coefficient, SE = standard error, Exp (B) = odds ratio, CI = confidence interval. 
 

Research Question 2 

To answer my second research question, (Is the number of SRCs associated with 

LEMI among high school athletes?)  I conducted cross tabulation analysis followed by 

logistic regression analysis to examine the association between the number of 

concussions and lower extremity sprains. Cross tabulation of  all 1613 cases with the 

number of concussions and LEMI ever variables showed: (a) 0% had zero concussions 

and absence of LEMI; (b) 88%  had zero concussions and presence of  LEMI 1420/1613 

= 88%; (c) 10.8% had one concussion and absence of LEMI 175/1613 = 10.8%, (d) 0.9% 

had one concussion and presence of LEMI 14/1613 = 0.9%; (e) 0.2% had two 

concussions and absence of  LEMI 3/1316 = 0.2%; and (f) 0.1% had two concussions and 

presence of LEMI.  This cross tabulation analysis between the number of concussions and 

LEMI variables revealed these variables were associated [Χ2 = 1473.222 (1) p = .000, (p 

< .05)].  The post hoc Cramer’s V analysis revealed there was a very strong association 

between the concussion ever and LEMI variables (φc = .956).  However, the ORs and 

95% CIs could not be determined to demonstrate the odds or certainty of these findings.  

The results of this cross tabulation analysis are presented in Table 21.  These results were 
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problematic because one cell (zero concussions, absence of LEMI) contained zero cases 

and two other cells (two concussions with absence of LEMI, and two concussions with 

presence of LEMI) contained less than the expected count of five cases.  Since 50% of 

the cells in this cross tabulation had incomplete information, (zero actual cases or less 

than five expected cases) statistical calculations with this data could be inaccurate, and 

misleading.  Therefore, I anticipated problems might arise with the binomial logistic 

regression analysis of these variables.  

Table 21 
 
Cross Tabulation With Number of Concussions and Lower Extremity Musculoskeletal 
Injury Ever Variables 
 
 LEMI ever 
 Absence of LEMI Presence of LEMI 
Number of concussions   
  Zero concussions   
      Count 0 1,420 
       Expected count  1,263.3 
       % within number of concussions 0.0% 100% 
  One concussion   
       Count 175 14 
       Expected count 20.9 168.1 
       % within number of concussions 92.6% 7.4% 
  Two concussions   
       Count 3 1 
       Expected count 0.4 3.6 
       % within number of concussions 75.0% 25.0% 
Note. Pearson chi-square = 1473.222, degrees of freedom = 1, p-value = .000, Cramer’s V 
= .956. 
 

With this understanding, I conducted a binomial logistic regression analysis to 

examine the relationship between the number of concussions and the LEMI variables.  

Since the potential predictor variables age, gender and sport type were previously found 

not to be related to the outcome variable (LEMI), these covariates were not included in 
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this model.   As shown in Table 21, the logistic regression model did not converge due to 

incomplete information (zero cases in one cell).  Therefore, the results were not valid, 

and were not reported in this study.  The reasons the model did not converge are 

explained in more detail in Chapter 5. 

Chi square analysis revealed significant relationships between the number of 

concussions (zero, one, or two) and LEMIs, [Χ2 =1473.222, (1), p = .000 (p < .05), φc = 

.956] but this binomial logistic regression model did not converge so it generated invalid 

results.   Therefore, I also conducted CMH tests in another effort to determine the 

association between the number of concussions (one or two) and LEMI ever.  However, 

CMH analysis of the association between these variables did not yield any results for the 

tests of homogeneity of the odds ratio, or for the Mantel-Haenszel common odds ratio 

estimate due to incomplete information (low cell counts, and absence of covariates since 

no covariates were found to be associated with the dependent variable). Therefore, the 

OR and 95% CI could not be calculated. This test also failed, so the results were not 

reported. 

Research Question 3 

Prior to conducting logistic regression analysis to determine if there was an 

association between the number of concussions and knee sprains among high school 

athletes, I examined the cross tabulations for the number of concussions and knee sprain 

ever variables and found one cell (two concussions, absence of knee injuries) contained 

only four cases and one cell (two concussions and presence of knee injury) contained 

zero cases.  Of all 1613 cases: (a) 71% had no concussions and no knee sprains, 

11454/1613 =71%; (b) 17.1% had no concussion and presence of knee sprain, 276/1613 
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= 17.1%; (c) 11.5% had one concussion and zero knee sprains 185/1613 = 11.5%; and (d) 

four had one concussion and presence of a knee sprain 4/1613 = 0.02%; (e) 0.2% had two 

concussions and zero knee injuries 4/1613 = 0.2%; and (f) 0% had two concussions and 

presence of a knee injury.  This cross tabulation with number of concussions and LEMI 

ever variables revealed these variables were associated as [Χ2 = 35.723(2) p = .000, p < 

.05).  The Cramer’s V analysis revealed the association between these variables was very 

weak (φc = .149).  Odds ratios and 95% Cis could not be calculated due to zero cases in 

some cells. The cross tabulation results are summarized in Table 22.  Because 50% of the 

cells in the cross tabulation had less than five cases, I anticipated problems with the 

logistic regression analysis too.   

Table 22 

Cross Tabulation With Number of Concussions and Knee Sprain Ever Variables 

 Knee sprain ever 
 Absence of knee 

sprain 
Presence of knee 

sprain 
Number of concussions   
        Zero concussions   
            Count 1,144 276 
            Expected count 1,173.5 246.5 
            % within number of concussions 
 

80.6% 19.4% 

        One concussion   
             Count 185 4 
             Expected count 156.2 32.8 
             % within number of concussions 
 

97.9% 2.1% 

        Two concussions   
              Count 4 0 
              Expected count 3.3 0.7 
              % within number of concussions 100% 0% 
Note. Pearson chi-square = 35.723, degrees of freedom = 2, p-value = .000, Cramer’s V = 
.149. 
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Previous bivariate analyses to estimate the associations between each of the 

possible covariates age, age group, gender and sport type and the dependent variable 

knee sprains, revealed only the age group p = .021 (p < .05) and gender variables p = 

.045 (p < .05) were significant (Tables 12-15); thus, only the age group and gender 

covariates were included with the independent variable number of concussions in logistic 

regression analysis that follows.  Therefore, I conducted a binomial logistic regression 

analysis to examine the relationship between the number of SRCs and knee sprains while 

controlling for age group and gender.  The outcome variable in this analysis was knee 

sprains.  The potential predictor variables included age group, gender and number of 

concussions.  For each categorical predictor variable, I coded the first category (age 

group (11-13) years, male, and zero concussions) as the control category.   

Chi square testing revealed significant relationships between the number of concussions 

and LEMIs [Χ2 = 35.723(2) p = .000, p < .05, φc = .149), but ORs and 95% CIs could not 

be calculated. Additionally, this binomial logistic regression model did not converge so it 

generated invalid results, which were not reported.  Therefore, I also conducted CMH 

tests with the covariates age group and gender an effort to determine the association 

between the number of concussions (one or two) and knee sprains.  Because there were 

zero cases in the cell with two concussions and zero knee sprains, CMH analysis of this 

relationship did not yield any results for the tests of homogeneity of the odds ratio, or for 

the Mantel-Haenszel common odds ratio estimate, so these results were not reported.  

Research Question 4 

Before I conducted the binomial logistic regression analysis to answer my final 

research question: (Is the number of SRCs, associated with ankle injury?), I constructed 



108 

 

and examined the cross tabulations for the number of concussion cases and ankle sprain-

ever variables and found all cells contained at least one case, but two cells (two 

concussions and absence of ankle sprain, as well as the cell with two concussions and 

presence of ankle sprain) contained less than five expected cases.  Of all 1613 cases: (a) 

15.9 % had  absence of concussions and absence of  ankle sprains, 256/1613 = 15.9%; (b) 

72.2% had absence of concussion and presence of an ankle sprain, 1164/1613 = 17.1%; 

(c) 10.8% had one concussion and absence of  ankle sprain/1613 = 11.5%; and (d) 0.9% 

had presence of a concussion and presence of a knee sprain 14/1613 = 0.9%; (e) 0.2% 

had two concussions and absence of  ankle injuries 3/1613 = 0.2%; and (f) 0.1%  had two 

concussions and presence of an ankle injury.  This cross tabulation analysis with number 

of concussions and ankle sprains revealed these variables were associated, and the post 

hoc Cramer’s V analysis revealed there was a moderate association between these 

variables [Χ2 = 476.260 (2),  p = .000 (p = < .05), φc. = .543.  ORs and 95% CIs could not 

be calculated due to low cell counts.  The results are depicted in Table 23.  Since more 

than 20% of the cells did not contain at least five actual and five expected cases, I 

anticipated the results of the logistic regression analyses could be misleading. 
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Table 23 

Cross Tabulation With Number of Concussions and Ankle Sprain Ever Variables 

 Ankle sprain ever 
 Absence of ankle 

sprain 
Presence of ankle 

sprain 
Number of concussions   
        Zero concussions   
             Count 256 1,164 
              Expected count 382.1 1037.9 
              % within number of concussions 18.0% 82.0% 
        One concussion   
             Count 175 14 
              Expected count 50.9 138.1 
              % within number of concussions 92.6% 7.4% 
      Two concussions   
              Count 3 1 
              Expected count 1.1 2.9 
              % within number of concussions 75% 25% 
Note. Pearson chi-square = 476.260, degrees of freedom = 2, p-value = .000, Kramer’s V 
= .543. 
 
 

Tables 16-19 show the results of the bivariate analyses to estimate the 

associations between each of the possible covariates age, age group, gender and sport 

type and the dependent variable ankle sprains. The findings revealed none of the 

covariates were related to the ankle sprain variable (p > .05).  Therefore, these covariates 

were not included in the logistic regression analysis that follows. 

I conducted a binomial logistic regression analysis to examine the relationship 

between the number of concussions and ankle sprains without any covariates, as they 

were not significant.  The outcome variable was ankle sprain.  The case processing 

summary showed no data were missing.  The classification table in Block 0 of this model 

revealed 73.1% of the cases were classified correctly. The test of the null hypothesis 

revealed the unstandardized Beta weight for the constant; B = .999, SE = .056, Wald = 
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316.831, p < .05, Exp (B) = 2.717.  Of the variables not in the equation, if any one of the 

variables [number of concussions (zero) p = .000 (p < .05), number of concussions (one) 

p = .000 (p < .05), or number of concussions (two) p = .030 (p < .05) were added alone in 

the next step, this block predicted each of the number of concussion variables would 

contribute to the next model.    

Block 1 included all of the variables identified above.  This logistic regression 

analysis revealed the iteration history was stabilized at the fifth iteration. The omnibus 

tests of model coefficients indicated addition of the covariates significantly changed the 

accuracy of the model when compared to the baseline model as there was a significant 

difference p = .000 (p <. 05) between the -2 log likelihood ratios in block 0, (1878.582) 

and block 1 (1444.280).  The Nagelkerke R Square (.343) revealed this model could 

explain about 34% of the variance in outcome.  The Hosmer and Lemeshow test p = .343 

(p, >.05) showed the model was a good fit to the data, as the results of this test were not 

significant.  The classification table revealed an improvement over the previous model as 

83.2% of the cases were identified correctly in this model versus 73.1% in the previous 

model.  The variables in the equation [number of concussions (one) p = .000 (p < .05) and 

number of concussions (two) p = .024 (p < .05)] contributed to this model.  The 

unstandardized Beta weight for the predictor variable number of concussions (one) B = -

4.040, SE =.286, Wald = 199.284, p < .05.  The estimated odds ratio favored a decrease 

of nearly 100% [Exp (B) = .018, 95% CI (.010, .031)] for ankle sprains every one unit of 

increase in number of concussions (one).  Additionally, the number of concussions (two) 

variable contributed to this model. The unstandardized Beta weight for the predictor 

variable number of concussions (two) B = -2.613, SE = 1.157, Wald = 5.103, p < .05.  
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The estimated odds ratio favored a decrease of nearly 100% [Exp (B) = .073, 95% CI 

(.008, .708)] for ankle sprains every one unit increase of number of concussions (two).  

In summary, a binomial logistic regression analysis was performed to determine if 

the number of SRCs and ankle sprains are related among high school athletes.  The 

iteration history revealed the model stabilized at the fifth iteration, and the logistic 

regression model was significant [Χ2 = 434.302 (2) p = .000].  The Hosmer and 

Lemeshow goodness of fit test was not significant p = 1.000 (p >.05) which indicated the 

model appeared to fit the data.  However this test requires a sufficient sample size, and 

two of the cells in the 2 x 2 contingency table had less than five actual and expected 

counts.  The -2 log likelihood, 1444.280, differed significantly from the baseline -2 log 

likelihood and the Nagelkerke R Square (.343) showed about 34% of the variance in the 

model was explained by the independent variables.  The model revealed the number of 

concussions (one) p = .000 (p < .05) and number of concussions (two) contributed to this 

model.  The unstandardized Beta weight for the predictor variable number of concussions 

(one) B = -4.040, SE =.286, Wald = 199.284, p < .05.  The estimated odds ratio favored a 

decrease of nearly 100% [Exp (B) = .018, 95% CI (.010 – .031)] every one unit of 

increase in number of concussions (one) for ankle sprains. Additionally, the number of 

concussions (two) variable contributed to this model. The unstandardized Beta weight for 

the predictor variable concussion ever: B = -2.613, SE = 1.157, Wald = 5.103, p < .05. 

The estimated odds ratio favored a decrease of nearly 100% [Exp (B) = .073, 95% CI 

(.008, .708)] for ankle sprains every one unit increase of number of concussions (two).  

These results may be misleading and inaccurate because the 2 x 3 contingency 

that contained the number of concussions (two) and ankle sprain variables revealed 2 
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cells contained less than 5 actual and expected cases. These conditions could reduce the 

accuracy of the statistical calculations, because the Hosmer-Lemeshow test requires the 

expected frequency to be greater than 5 in 95% of cells, and this model only had more 

than 5 expected cases in 66% of the cells (Chao-Ying, et al., 2002; Hosmer & Lemeshow, 

2000; Hosmer, Taber, & Lemeshow, 1991).  Although the Hosmer Lemeshow goodness 

of fit test revealed the model appeared to fit the data well (p > .05), it is feasible the non-

significant p-value could be the result of the Hosmer-Lemeshow test having less power to 

correctly identify a poor fit instead of truly demonstrating  a good fit (Chao-Ying, et al., 

2002).  Therefore, the null hypothesis was not rejected. The results of this logistic 

regression analysis are summarized in Table 24. 

Table 24 
 
Binomial Logistic Regression Analysis of the Number of Sport-Related Concussions and 
Ankle Sprain Ever Variables 
 

Variable 
category 

B SE Wald df Sig Exp 
(B) 

Lower Upper 

0 concussion 
cases 
 

  203.511 2 .000    

1 concussion 
case 
 

-4.040 .286 199.284 1 .000 .018 .010 .031 

2 concussion 
cases 
 

-2.613 1.15
7 

5.103 1 .024 .073 .008 .708 

Constant 1.514 .069 481.292 1 .000 4.547   
Note. B = coefficient, SE = standard error, Exp (B) = odds ratio, CI = confidence interval. 
 

Summary and Transition 

The research questions and hypotheses were presented at the beginning of this 

chapter. Then the processes for data collection, reduction, transformation, aggregation, 



113 

 

and logistic regression analysis were explained.  The assumptions of logistic regression 

were tested and logistic regression analyses were conducted to test the hypotheses for 

each research question.  Descriptive statistics of the sample and the results of the logistic 

regression, and CMH analyses were reported.  The problems with the analyses were also 

identified. 

A secondary set of de-identified high school athletic injury data, from the AT-

PBRN, was analyzed to examine the association between SRC and LEMI (knee sprains 

and ankle sprains).  The initial dataset contained 2, 590 cases from high school, college 

and other settings, and athletes with multiple injuries had multiple cases.  Therefore, the 

data were reduced, cleaned and aggregated to ensure the sample only contained high 

school athletes, and that each athlete was only represented once in the data set.  The 

sample for this study included 1613 cases of 11-19 year old (mean age = 15.48) male (n = 

805) and female (n = 808) high school athletes with interscholastic sports injuries 

(concussions, knee sprains, and ankle sprains).  The answers to the research questions are 

summarized below. 

Question 1: Is there an association between SRC and LEMI among high school 

athletes? 

H01:  There is not an association between SRC and LEMI among high school 

athletes controlling for gender, age, and sport type.   

HA1:  There is an association between SRC and LEMI among high school 

athletes controlling for gender, age and sport type. 

The chi square analysis revealed the concussion ever and LEMI variables were 

associated as [Χ2 = 1480.796, (1), p = .000 (p < .05)], and the post hoc Cramer’s V 
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analysis revealed there was a very strong association between these variables (φc = .958); 

but ORs and 95% CIs could not be calculated because one cell contained zero values.  

The covariates (gender, age, or sport type) were not associated with the dependent 

variable (LEMI), so the covariates were not included in the logistic regression analysis.  

The cross tabulations are depicted in Tables 4 – 8.   

A binomial logistic regression analysis was performed in an effort to shed more 

light on the relationship between SRC and LEMI in high school athletes.  Since the 

logistic regression model contained incomplete information (zero cases of the concussion 

ever variable and zero cases of lower extremity sprain variable), the maximum likelihood 

estimate (MLE) of the logistic regression slope of the coefficient did not occur, so the 

model did not converge.  Lack of convergence led to inaccurate estimates in the block 1 

model, Therefore the results were not valid, and were not reported in this study.  CMH 

analysis was also performed in an effort to explain the association that was found 

between SRC and LEMI with chi square analysis.  However, the CMH analysis did not 

yield results for the tests of homogeneity of the odds ratio, or the Mantel-Haenszel 

common odds ratio estimate, (due to zero cases with absence of concussion and zero 

cases with absence of lower extremity sprain) so the OR and 95% CI could not be 

determined. 

Although the chi square analysis revealed SRC and LEMI were associated, the 

OR and 95% CI could not be calculated with chi square, binomial logistic regression or 

CMH analyses, because one cell in each analysis contained zero cases. Without the 

ability to calculate an OR to understand if the OR favors an increase or decrease for the 

dependent variable, and without having 95% confidence the range of values around the 
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calculated chi square statistic contain the true statistic (population value), the significant 

chi square statistic alone does not provide enough information to answer this research 

question. 

Question 1a: Is SRC associated with knee sprains among high school athletes? 

H01a:  SRC is not associated with knee sprains among high school athletes 

controlling for gender, age, and sport type. 

HA1a:   SRC is associated with knee sprains among high school athletes 

controlling for gender, age, and sport type. 

The chi square analysis revealed the concussion ever and knee sprain ever 

variables were associated, and the post hoc Cramer’s V analysis revealed a very weak 

association between these variables [Χ2 = 35.450, (1) p = .000, (p < .05) φc = .148], but 

the ORs and 95% CIs could not be calculated.  The results of the cross tabulation analysis 

are presented in Table 9.  The binomial logistic regression analysis showed the 

unstandardized Beta weight for the predictor variable concussion ever; B = (-2.409), SE 

=.510, Wald = 22.318, p < .05, favored a decrease of 10% [Exp (B) = .090, 95% CI (.033, 

.244)] for a knee sprain every one unit increase of concussion ever.   Although this 

binomial logistic regression model showed concussion ever and knee sprain ever 

variables were related, the results could be misleading and inaccurate due to the small 

sample size (four cases) in one cell. The Hosmer-Lemeshow goodness of fit test, 

suggested the model fit the data, but the small sample size could have decreased the 

power of the test to detect the model’s poor fit to the data (Chao-Ying et al., 2002; 

Hosmer & Lemeshow, 2000; Hosmer et al., 1991).  Because the fit of the model was 
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questionable, and the ORs and 95% CIs could not be determined for the chi-square 

analyses; the null hypothesis (HO1a) was not rejected.  

Question 1b: Is SRC associated with ankle sprains among high school athletes?  

H01b:  SRC is not associated with ankle sprains among high school athletes 

controlling for gender, age, and sport type. 

HA1b:   SRC is associated with ankle sprains among high school athletes 

controlling for gender, age, and sport type. 

The chi square analysis for the concussion ever and ankle sprain ever variables 

revealed these variables were associated, and the post hoc Cramer’s V analysis showed a 

moderate association between these variables [Χ2 = 479.826, (1) p = .000, (p < .05), φc = 

.545], but the OR and 95% CI could not be determined.  The results are presented in 

Table 15.  This binomial logistic regression analysis revealed the unstandardized Beta 

weight for the predictor variable concussion ever: B = (-4.058), SE =.286, Wald = 

201.288, p < .05.  The estimated OR favored a decrease of nearly 100% [Exp (B) = .017 

95% CI (.010, .030)], for ankle sprains every one unit increase of concussion-ever.  

Although this binomial logistic regression model showed concussion ever and ankle 

sprain variables were related, the results could be misleading and inaccurate because the 

validity of the model is uncertain.  The Hosmer and Lemeshow goodness of fit test in 

block one revealed chi square = .000, with 0 degrees of freedom so the p-value could not 

be calculated, so this analysis did not clarify if the model fit the data well (Chao-Ying, 

2002; de Irala et al., 1997; Hosmer et al., 1991).  Therefore, these results are 

questionable.  Additionally, the OR and 95% CI could not be calculated for the 

significant chi square statistic.  Therefore, the null hypothesis was not rejected. 
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Question 2: Is the number of concussions associated with LEMI among high 

school athletes? 

H02:  The number of SRCs is not associated with LEMI among high school 

athletes controlling for gender, age and sport type. 

HA2:  The number of SRCs is associated with LEMI among high school athletes 

controlling for gender, age, and sport type. 

The chi square analysis of the number of concussions and lower extremity sprains 

variables revealed these variables were associated [Χ2 = 1473.222 (1) p = .000, (p < .05)], 

and the post hoc Cramer’s V analysis revealed there was a very strong association 

between the number of concussions and lower extremity sprain variables (φc = .956).  

The results are depicted in Table 21.  No covariates were associated with the dependent 

variable (LEMI), so no covariates were included in the logistic regression analysis. The 

logistic regression model contained incomplete information, (zero cases in one cell).  

Therefore, the MLE of the logistic regression slope of the coefficient did not occur, so the 

model did not converge.  Lack of convergence led to inaccurate estimates in the block 1 

model.  Therefore the results were not valid, and were not reported in this study.  CMH 

analysis did not yield any results for the tests of homogeneity of the odds ratio, or for the 

Mantel-Haenszel common odds ratio estimate due to incomplete information (zero cases 

in one cell).  Therefore, the OR and 95% CI could not be computed.     

Although the chi square analysis revealed the number of concussions, and LEMI 

were associated, the OR and 95% CI could not be calculated with chi square, binomial 

logistic regression or CMH analyses, because one cell in each analysis contained zero 

cases. Without the ability to calculate an OR to understand if the OR favors an increase 
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or decrease for the dependent variable, and without having 95% confidence the range of 

values around the calculated chi square statistic contain the true statistic (population 

value), the chi square statistic alone does not provide enough information to answer this 

research question. 

Question 3: Is the number of SRCs associated with knee injuries among high 

school athletes? 

H03:  The number of SRCs is not associated with knee injuries among high 

school athletes controlling for gender, age, and sport type. 

HA3:  The number of SRCs is associated with knee injuries among high school 

athletes controlling for gender, age, and sport type.  

The chi square analysis of the relationship between the number of concussions 

and knee sprains revealed these variables were associated as [Χ2 = 35.723(2) p = .000, p 

< .05), but the Cramer’s V analysis revealed the association between these variables was 

very weak (φc = .149).  The results are summarized in Table 22.   A binomial logistic 

regression analysis was conducted to examine the relationship between the number of 

SRCs and knee sprains while controlling for age group and gender.  The logistic 

regression analysis contained incomplete information, (low cell counts) so the MLE of 

the logistic regression slope of the coefficient did not occur.  Therefore, the model did not 

converge.  Lack of convergence led to inaccurate estimates in the block 1 model, 

Therefore the results were not valid, and were not reported in this study.  CMH analysis 

did not yield any results for the tests of homogeneity of the odds ratio, or for the Mantel-

Haenszel common odds ratio estimate due to incomplete information (zero cases in one 

cell).  Therefore, the OR and 95% CI could not be calculated.     
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Although the chi square analysis revealed the number of concussions and knee 

sprains were associated the OR and 95% CI could not be calculated with chi square, 

binomial logistic regression or CMH analyses, because one cell in each of these analyses 

contained zero cases. Without the ability to calculate an OR to understand if the OR 

favors an increase or decrease for the dependent variable, and without having 95% 

confidence the range of values around the calculated chi square statistic contain the true 

statistic (population value), the chi square statistic alone did not provide enough 

information to answer this research question. 

Question 4: Is the number of SRCs associated with ankle injuries among high 

school athletes?  

H04:  The number of SRCs is not associated with ankle injuries among high 

school athletes controlling for gender, age, and sport type. 

HA4:  The number of SRCs is associated with ankle injuries among high school 

controlling for gender, age, and sport type. 

The chi square analyses of the relationship between the number of concussions 

and ankle sprains revealed these variables were associated, and the post hoc Cramer’s V 

analysis revealed there was a moderate association between these variables [Χ2 = 476.260 

(2),  p = .000 (p = < .05), φc. = .543.  The results are depicted in Table 23.   

A binomial logistic regression analysis was conducted to examine the relationship 

between the number of concussions and ankle sprains more thoroughly.  The analysis 

showed the unstandardized Beta weight for the predictor variable number of concussions 

(one) was B = -4.040, SE =.286, Wald = 199.284, p < .05.  The estimated odds ratio 

favored a decrease of nearly 100% [Exp (B) = .018, 95% CI (.010, .031)] for ankle 
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sprains every one unit of increase in number of concussions (one).  Additionally, the 

number of concussions (two) variable contributed to this model.  The unstandardized 

Beta weight for the predictor variable number of concussions (two) showed: B = -2.613, 

SE = 1.157, Wald = 5.103, p < .05.  The estimated odds ratio favored a decrease of nearly 

100% [Exp (B) = 073, 95% CI (.008, .708)] for ankle sprains every one unit increase of 

number of concussions (two).  

These results could be misleading and inaccurate.  Although the Hosmer 

Lemeshow goodness of fit test revealed the model appeared to fit the data well (p > .05), 

it is feasible the non-significant p-value (p = 1) could be the result of the Hosmer-

Lemeshow test having less power to correctly identify a poor fit instead of truly 

demonstrating  a good fit (Chao-Ying et al., 2002).  Additionally, the OR and 95% CI 

could not be calculated for the significant chi square statistic.  Therefore, the null 

hypothesis was not rejected. The results of this logistic regression analysis are 

summarized in Table 24. 

The results for each research question did not produce meaningful measures of 

association between the independent and dependent variables.  Fifty percent of the 

binomial logistic regression models contained zero values in one of their cells, so the 

models did not converge.  To reduce the number of zeros in some cells, I analyzed the 

relationship between SRC and knee sprains as well as the relationship between SRC and 

ankle sprains.  Although, the Hosmer-Lemeshow goodness of fit tests, suggested the 

models fit the data well, the small sample size could have decreased the power of these 

tests to detect the model’s poor fit to the data instead of truly demonstrating a good fit 

(Chao-Ying, et al., 2002). 
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The results are explained in more detail in the fifth chapter. The limitations of this 

study and recommendations are also discussed.  Finally, the implications for positive 

social change are explained. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

Introduction 

The purpose of this cross-sectional retrospective study was to examine the 

relationship between SRC and LEMI among high school athletes to provide early 

information about the relationship between these common injuries in high school athletes, 

fill a gap in the literature, and shed more light on these public health concerns.  LEMIs 

were defined as knee sprains and ankle sprains in this study, so the relationships between 

SRC and knee sprains and the relationship between SRC and ankle sprains were 

examined independently in an effort to gain a better understanding of the relationship 

between SRC and LEMIs in this population. 

Chi-square analyses revealed that SRC is associated with LEMIs, knee sprains, 

and ankle sprains; and Cramer’s V analyses showed that the strengths of these 

associations were very strong, very weak, and moderate, respectively.  Chi-square 

analyses also revealed that the number of concussions is associated with LEMIs, knee 

sprains, and ankle sprains; and Cramer’s V analyses showed the strengths of these 

associations were also very strong, very weak, and moderate, respectively.  However, the 

ORs and 95 CIs could not be ascertained for the chi-square statistics due to incomplete 

information in the dataset. 

Three of six binomial logistic regression models could not converge in this study 

because “the maximum likelihood estimators of the slopes of the coefficients” did not 

occur due to incomplete information (zero cases in at least one cell; Allison, 2008, p. 4).  

Therefore, I was not able to answer the following questions:  

1. Is SRC associated with LEMI in high school athletes? 
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2. Is the number of concussions associated with LEMI in high school athletes?  

3. Is the number of concussions associated with knee sprains in high school 

athletes?   

Additionally, three binomial logistic regression analyses generated results, but the 

findings indicated that the models might not have fit the data.  Therefore, the following 

null hypotheses were not rejected: 

H01a:  SRC is not associated with knee sprains among high school athletes 

controlling for gender, age, and sport type. 

 H01b:  SRC is not associated with ankle sprains among high school athletes 

controlling for gender, age, and sport type. 

H04:  The number of SRCs is not associated with ankle injuries among high 

school athletes controlling for gender, age, and sport type. 

The results of this study are explained and compared to the literature in terms of 

the lessons I learned as I attempted to answer each research question. The lessons are also 

explained in the context of the theoretical model that grounded this study.  The 

limitations of this study are discussed, and recommendations are presented.  Finally, the 

implications for positive social change are explained. 

Interpretation of the Findings 

Prior studies that examined the relationship between concussions and LEIs 

(sprains, strains, fractures, contusions) in professional and collegiate athletes 

demonstrated that SRCs were associated with increased odds of LEIs (Gibson et al., 

2016; Lynall et al., 2015; Nordstrom et al., 2014; Pietrosimone et al., 2015a).  I 

conducted chi-square analyses to prepare for the logistic regression analyses and 
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determined that relationships existed between SRC and LEMIs (knee sprains and ankle 

sprains) and between the number of SRCs and LEMIs (knee sprains and ankle sprains) in 

high school athletes.  Because there were not any cases in the dataset without a 

concussion, knee sprain, or ankle sprain, the ORs and 95% CIs could not be calculated.  

Additionally, three of the binomial logistic regression models in this study did not 

converge due to incomplete information. The remaining three models generated results 

that were not accepted because the analyses indicated that those models might not have 

fit the data well.  I discuss the reasons for these outcomes in the following sections. 

Consequences of Incomplete Information 

Because LEMIs were defined as knee sprains and ankle sprains in this study and 

the secondary dataset only contained concussion, knee sprain, and ankle sprain data, all 

possible combinations of the variables could not be tested, in that there were not any 

cases without at least one of these injuries.  De Irala et al. (1997) explained that when a 

cell in a contingency table does not contain any cases, statistical software programs are 

tasked with performing computations in situations where there are no specifiable 

outcomes, so it is not possible to approximate the coefficients or estimate the standard 

errors.  Furthermore, de Irala et al., (2016) explained that it is not rational to estimate an 

OR (constant effect of each predictor on the odds of the outcome occurring) for a 

category of a variable with zero cases, but many statistical programs generate outcomes 

based upon the instant the program reaches the maximum number of iterations that are 

predetermined for the program.  These authors also demonstrated how various statistical 

programs generate warnings that researchers should recognize as indications that there 

are problems with the data, such as failed convergence and inaccurate results including 
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high coefficients (10+), high standard error values (10+), unusually high or missing ORs, 

and 95% CIs (de Irala et al., 2016).  Even in studies with large samples, sparse data bias 

(“away from the null value”) may occur if small quantities of cases in categorical strata 

do not all allow all possible combinations of predictor and outcome variables to be 

examined completely, so researchers should be aware that regression coefficients and 

odds ratios may be misleading in these situations (Greenland, Mansournia, &Altman, 

2016; Greenland, Schwartzbaum, & Finkle, 2000, p. 531).  Greenland et al. (2016) 

emphasized that if coefficient estimates move away from the null value as more variables 

are introduced into the regression model, this finding is indicative of small data bias.   

There were several indications of problems with the binomial logistic regression 

analyses that were conducted to answer the following research questions:  

1. Is there an association between SRC and LEMI among high school athletes?  

2. Is there an association between the number of concussions and LEMI among 

high school athletes?  

3. Is there an association between the number of concussions and knee sprains 

among high school athletes? 

First, each of the three models failed to converge, so the results were invalid.  

Additionally, combinations of abnormally high standard error vales, unusually high ORs, 

unusually wide 95% CIs, and absence of upper boundaries in some 95% CIs also 

indicated that these logistic regression models were problematic. 

De Irala et al. (2016) and Hosmer et al. (1991) underscored the importance of not 

accepting or publishing invalid results.  Therefore, the results of the logistic regression 
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analyses for the first, second, and third questions were not accepted or reported in this 

study.   

Interpretation of the Goodness-of-Fit Test 

I examined the relationship between SRC and knee sprains as well as the 

relationship between SRC and ankle sprains individually in an effort to gain a better 

understanding of the relationships between these common sports injuries.  Research 

Questions 1a and 1b articulated each component of Research Question 1:  

1a. Is there an association between SRC and knee sprains among high school 

athletes?   

1b. Is there an association between SRC and ankle sprains among high school 

athletes?   

Research Question 4 was as follows: Is the number of SRCs associated with ankle 

injuries among high school athletes?  Although the Hosmer-Lemeshow goodness-of-fit 

test for Research Questions 1a and 4 suggested that the model fit the data, it is possible 

that the small size for each question decreased the power of the test to detect the model’s 

poor fit to the data (Chao-Ying et al., 2002; Hosmer & Lemeshow, 2000; Hosmer et al., 

1991).  The 2x2 matrices contained four cases in one cell for Research Question 1a, 

contained 14 cases in one cell for Research Question 1b, and contained less than fiver 

actual and expected cases for Research Question 4, so these samples sizes were even 

smaller when the 2x2 matrices were stratified further for the Hosmer and Lemeshow 

goodness-of-fit test.   Additionally, the Hosmer and Lemeshow goodness-of-fit test for 

Research Question 1b revealed that chi square = .000, with 0 degrees of freedom so that 
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the p-value could not be calculated, so this analysis did not clarify whether the model fit 

the data well (Chao-Ying et al., 2002; de Irala et al., 1997; Hosmer et al., 1991).   

Because it was not clear if the models fit the data well; I could not determine 

whether the results for Research Questions 1a and 1b (which suggested that SRCs in high 

school athletes are associated with 10% lower odds of knee sprains, and nearly 100% 

lower odds of ankle sprains for every unit increase in SRC) were accurate.  For the same 

reasons, I could not determine if the results for Research Question 4 (which suggested 

that number of SRCs [one concussion or two concussions] in high school athletes were 

associated with nearly 100% lower odds of ankle sprains for every unit increase in the 

number of SRCs) were accurate.  Therefore, the results were not accepted, and the null 

hypotheses for Research Questions 1a, 1b, and 4 were retained. 

Justification for Additional Research 

Because I was not able to determine whether SRCs, or the number of SRCs, were 

associated with LEMIs in high school athletes, it remained unclear whether findings in 

adult professional and collegiate athletes applied to adolescent athletes with less mature 

neurological and musculoskeletal systems.  Nordstrom et al. (2014) revealed that 

professional European soccer players were more susceptible to injuries 1 year before and 

after sustaining an SRC.  They also found that concussed players had 2.2 times greater 

risk of ensuing musculoskeletal injuries throughout the year following the SRC than 

players without concussions (Nordstrom, et al., 2014).  Similarly, Lynall et al. (2015) 

found that concussed collegiate athletes were 1.97 [95% CI (1.19, 3.28)] times more 

likely to have sustained an acute injury of a lower limb one year postconcussion than they 

were preconcussion; and collegiate athletes with a history of an SRC were 1.64 [95% CI 
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(1.07, 2.51)] times more likely to have sustained an acute injury of the lower limbs 1 year 

postinjury than matched controls during the same time frame. Brooks, et al. (2016) built 

upon those studies and found that 90 days after resuming play, intercollegiate athletes 

with SRC had 2.48 higher odds of LEMIs than nonconcussed matched controls [OR = 

2.48, 95% CI = (1.04, 5.91)].  Gilbert et al. (2016) also found that (a) reported 

concussions, (p = .003, OR = 2.08); (b) unreported concussions, (p = .002, OR = 2.87); 

and (c) any concussions (p = .002, OR = 2.13) were associated with knee injuries, while 

unrecognized concussions (p = .001, OR = 2.29) and any concussions (p = .012, OR = 

1.79) were associated with lateral ankle sprains in college and junior college athletes 

when their college sports careers were finished.  They also found that any concussions (p 

= .031, OR = 1.61) and unrecognized concussions (p = .006, OR = 1.90) were associated 

with ankle sprains, knee sprains, and muscle strains.  Most recently, Herman et al. (2017) 

found that concussed collegiate athletes had 3.39 times [95% CI (1.90, 6.05)] greater risk 

of sustaining a LEMI than nonconcussed athletes.  Ongoing literature searches did not 

reveal any studies in high school, collegiate, or professional athletes with findings 

contrasting with the results of the studies reported above.   

Pietrosimone et al. (2015a) revealed that the odds of players reporting a LEI 

increase as the frequency of self-reported concussions increases.  They found that retired 

NFL players with a history of one SRC had 18%-63% greater odds, while players with a 

history of two SRCs had 15%-126% greater odds, and players with a history of three, or 

more, SRCs had 73%-165% higher odds of reporting lower limb injuries throughout their 

professional careers (Pietrosimone et al., 2015).  Ongoing literature searches did not 

reveal additional articles that agreed or disagreed with their results. 
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Findings in the Context of the Theoretical Model 

The dynamic model of etiology in sport injury by Meeuwisse et al. (2007) 

accounts for fluidity of sports injury risk factors, including the impact of repeated 

exposures and how each exposure may lead to adaptations (which may reduce injury 

risk), or mal-adaptations (which may elevate injury risk).  These adaptations or mal-

adaptations may lead to no injury or to an injury, and injured athletes may or may not be 

able to resume playing (Meeuwisse et al., 2007).  This model allows athletes to enter and 

re-enter the cycle and participate with modified intrinsic and extrinsic risk factors in any 

of the following phases: predisposed athlete phase, susceptible athlete phase, injury 

phase, or no injury phase (Meeuwisse et al., 2007).  

Emerging evidence suggests that SRCs may increase the risk of LEIs in collegiate 

and professional athletes (Brooks et al., 2016; De Beaumont et al., 2011; Gilbert et al., 

2016; Herman et al., 2017; Lynall et al., (2015) Nordstrom et al., 2014; Pietrosimone et 

al., 2015a).  However, the findings in those studies were not confirmed or disconfirmed 

by this study, as 50% of the logistic regression models failed to converge and the 

remaining 50% of the models might not have fit the data well. 

Although there were indications that the results generated for Research Questions 

1a and 1b were inaccurate, the results raised the possibility that concussions could be 

associated with lower odds of knee sprains and ankle sprains in high school athletes.  

Problems with the dataset indicate one explanation for those results.  Other potential 

explanations follow in terms of the dynamic model of etiology in sport injury by 

Meeuwisse et al. (2007).  One possible explanation for the unexpected logistic regression 

results for Research Questions 1a, 1b, and 4 pertains to the injury phase of this model, in 
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that athletes with known concussions could have been removed from training, practice, 

and competition for longer periods of time than athletes with LEIs, or may not have been 

able to RTP following a concussive injury.  All U.S. states have legislation that requires 

athletes with suspected concussions to immediately be removed from play, but there are 

inconsistencies among states regarding concussion education and training, authority to 

clear athletes to RTP, and RTP protocols (Bretzin, Moffit, Mansell, & Russ, 2017).  

Gradated RTP programs should not be initiated until the athlete’s symptoms have 

resolved, physical exam findings are normal, and baseline motor control and 

neurocognitive test scores are achieved (Broglio et al., 2015).  About 10% of high school 

and college athletes demonstrated postconcussion symptoms that lingered more than 7 

days postinjury, and almost 25% of those athletes reported persistent symptoms 6-12 

weeks postconcussion (McCrea et al., 2012).  Howell et al., 2015) found that concussed 

high school athletes demonstrated impaired dynamic motor function while walking and 

performing a cognitive task immediately after concussion and during the course of their 

2-month study.  In another study, these researchers found that concussed high school 

athletes demonstrated worsening of gait balance control during dual task walking upon 

their return to activity (Howell et al., 2014).  Therefore, if postconcussion symptoms 

lingered and physical deficits persisted concussed athletes in this dataset might not have 

RTP, and this could partially explain reduced odds of LEIs. 

Another explanation pertains to the predisposed athlete phase, in that it is also 

possible all concussions will not have been captured in this dataset, if athletes 

underreported concussions.  Studies by McCrea (2004), Register-Mihalik et al. (2013), 

and Wallace, Covassin, Nogle, Gould, and Kovan (2017), supported this by revealing that 
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51-55% of high school athletes did not report concussions primarily because they did not 

believe their injuries were serious or they did not want to be removed from play.   

Limitations of the Study 

Several limitations of this study pertained to the data.  The main limitation of this 

study was my inability to ascertain meaningful relationships between the independent and 

dependent variables due to incomplete information and small sample sizes.  Because the 

dataset only contained the injuries of interest (SRCs, knee sprains, and ankle sprains), 

50% of the cross tabulations that I constructed in preparation for chi square analyses had 

a cell with zero cases.  Therefore, I could not determine the ORs and 95% confidence 

intervals with the chi square analyses.  In logistic regression analyses, the MLE is used to 

select parameters for the coefficient that maximize probability of the observed values 

occurring (Allison, 2008; Field, 2009).  However, when a cell does not contain any cases, 

it was not possible for the MLE of the logistic regression slope of the coefficient to exist 

(Allison, 2008).  Therefore, the models with zeros could not converge during the iteration 

phases of the logistic regression analyses (Allison, 2008).  Consequently, I could not 

ascertain the relationships between the following variables: (a) SRC and LEMI, (b) the 

number of SRCs and LEMI, or (c) the number of concussions and knee sprains.  

Furthermore, although the dataset for this study contained over 1,600 cases, the 

remaining cross tabulations revealed there were only four cases with an SRC and a knee 

sprain, 14 cases with an SRC and an ankle sprain, and one case with two SRCs and an 

ankle sprain.  Therefore, the power may not have been sufficient for the Hosmer-

Lemeshow tests to accurately ascertain how well those models fit the data during the 

logistic regression analyses (Chao-Ying et al., 2002).  Moreover, the dataset did not 
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include athlete exposures to training, practices, and competitions, so I was not able to 

determine risk or rates of injury in this study.  Additionally, the dataset did not include 

prior concussion and LEMI histories, so I was not able to determine the directions of the 

associations. 

This cross sectional study could not establish a causal effect, so the relationships 

identified in this study could have been influenced by untested variables such as the 

playing surfaces, or athletes’ levels of skill (Abrahams et al., 2014).  Since quantitative 

cross sectional studies examine exposure and outcome concurrently, temporal 

relationships were not determined in this study.  There was also potential for bias toward 

including more athletes without concussion or without musculoskeletal injuries, if 

athletes, who sustained either one of these injuries, were unable return to play.   

Because this study examined the relationship between SRC and LEMI among 

U.S. high school athletes, generalizability of the findings to other athletic, or non-athletic, 

populations may not be possible.  Therefore, external validity (generalizability of the 

study’s results) could be threatened.  I addressed this limitation by not generalizing the 

results of this study beyond population represented by this sample.  While the design of 

this study was aligned with the research questions and methods, and my interpretations 

did not exceed the data, findings, or scope of this study, the threats to internal validity 

(strength of inferences), and limitations described above could not be overcome in this 

study.  However, many of the limitations in this study could be addressed if this study 

serves as a springboard for future large-scale prospective studies.   
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Recommendations 

As de Irala et al. (2016), Hosmer and Lemeshow, (2000), and Hosmer et al., 

(1991) emphasized, it is important not to accept or publish invalid results.  The three 

logistic regression models that were conducted to answer Research Questions 1, 2, and 3, 

failed.  Additionally, the validity of the logistic regression models generated, for the 

remaining three Research Questions (1a, 1b, and 4), was uncertain. Therefore, I was not 

able to determine the association between SRCs and LEMIs in high school athletes.  I 

recommend replication of this study with a dataset that is not limited to the injuries of 

interest in order to overcome the problems associated with analyzing incomplete 

information.  Large-scale prospective studies should also be conducted to determine if 

there is a causal relationship between SRCs and LEIs in U.S. high school athletes.  

Cohort studies should be conducted to follow athletes through their high school, college 

and professional careers to shed light on the relationship between adolescent and adult 

sport-related injuries.  

Implications 

This study facilitates positive social change by reminding researchers, although 

computer programs can generate results that may appear to be significant, it is important 

to evaluate the results thoroughly to ensure that invalid conclusions are not accepted or 

disseminated.  This study also facilitates social change by demonstrating the need for 

future studies to be conducted to determine whether a relationship exists between SCR 

and LEMI in high school athletes.  The problems with this study have inspired me to 

conduct another retrospective study, with an expanded dataset, to address the problems 

related to incomplete information in this study, and provide early information regarding 
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the relationship between SRCs and LEMIs in high school athletes.  Disseminating the 

results of a follow-up study may inspire researchers to conduct additional studies to 

clarify whether a relationship exists between SRC and LEMI in high school athletes, and 

if so, whether it is causal in nature.  New knowledge may be used to guide practices and 

policies, to reduce sports injuries in high school athletes, which may lead to fewer SRIs 

among adolescents, fewer school absences, more physical activity, and better, health, 

well-being, and quality of life throughout the lifespan, thereby promoting a more active, 

productive, and healthy society. 

Conclusion 

Sports injuries can be foreseen and averted when mechanisms and risk factors are 

completely understood.  An appreciation of the relationship between SRC and LEMI is 

emerging among professional and collegiate athletes, but findings of such a relationship 

in adults may not be generalizable to younger populations.  To my knowledge, this was 

the first study to investigate the relationship between SRCs and LEMIs in high school 

athletes.  Although, I was not able to attain meaningful measures of association between 

the independent and dependent variables, as incomplete information led to lack of 

convergence, and small sample sizes reduced the power of the Hosmer-Lemeshow tests 

to determine how well the models fit the data during the logistic regression analyses; this 

study exposed a gap in the literature.  Thereby, this study highlighted the need for future 

cross sectional studies to uncover the relationship between SRCs and LEMIs in high 

school athletes, as well as cohort studies to clarify the causes and effects of these 

common sports injuries in adolescent athletes.  

 



135 

 

References 

Abrahams, S., Mc Fie, S., Patricios, J., Posthumus, M., & September, A. V. (2014). Risk 

factors for sports concussion: An evidence-based systematic review. British 

Journal of Sports Medicine, 48(2), 91-97. 

Adirim, T. A., & Cheng, T. L. (2003). Overview of injuries in the young athlete. Sports 

Medicine, 33(1), 75-81. 

Allison, P. D. (2008, March). Convergence failures in logistic regression. Paper 

presented at the SAS Global Forum, San Antonio, TX. Retrieved from 

http://www2.sas.com/proceedings/forum2008/TOC.html 

Anderson, M. J., Browning, W. M., Urband, C. E., Kluczynski, M. A., & Bisson, L. J. 

(2016). A systematic summary of systematic reviews on the topic of the anterior 

cruciate ligament. Orthopaedic Journal of Sports Medicine, 4(3), 1-23. 

Arendt, E. A., Agel, J., & Dick, R. (1999). Anterior cruciate ligament injury patterns 

among collegiate men and women. Journal of Athletic Training, 34(2), 86-92. 

Ary, D., Jacobs, L. C., Sorensen, C., & Walker, D. A. (2014). Introduction to research in 

education (9th ed.). Belmont, CA: Wadsworth Cengage Learning. 

Aschengrau, A., & Seage, G. R. (2014). Essentials of epidemiology in public health (3rd 

ed.). Burlington, MA: Jones and Bartlett.  

A. T. Still University. (n.d.). Athletic Training Practice Based Research Network. 

Retrieved from https://www.core-at.com/Login/?ReturnUrl=%2f 

A. T. Still University. (2016). AT-PBRN clinical practice sites. Retrieved from 

http://www.coreat.org/clinical-practice-sites.html 



136 

 

Bahr, R., & Holme, I. (2003). Risk factors for sports injuries: A methodological 

approach. British Journal of Sports Medicine, 37(5), 384-392. 

Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M. (2012). Measuring 

brain electrical activity to track recovery of sport-related concussion. Brain 

Injury, 26(1), 58-66. 

Benson, B. W., McIntosh, A. S., Maddocks, D., Herring, S. A., Raftery, M., & Dvorak, J. 

(2013). What are the most effective risk-reduction strategies in sport concussion? 

British Journal of Sports Medicine, 47(5), 321-326. 

Bewick, V., Cheek, L., & Ball, J. (2005). Statistics review 14: Logistic regression. 

Critical Care, 9(1), 112-118. 

Bey, T., & Ostick, B. (2009). Second impact syndrome. Western Journal of Emergency 

Medicine, 10(1), 6-10.    

Boden, B. P., Dean, G. S., Feagin, J. A., & Garrett, W. E. (2000). Mechanisms of anterior 

cruciate ligament injury. Orthopaedics, 23(6), 573-578. 

Boyd, L. A., & Winstein, C. J. (2003). Impact of specific information on implicit motor-

sequence learning following middle cerebral artery stroke. Physical Therapy, 

83(11), 976-989. 

Bretzin, A. C., Moffit, D., Mansell, J., & Russ, A. (2017). Is current legislation up-to-date 

on concussion management? Journal of Athletic Training, 51(6S), S266. Abstract 

retrieved from http://natajournals.org/doi/pdf/10.4085/1062-6050-52.6.s1 

Broglio, S. P., Cantu, R. C., Giola, G. A., Guskiewicz, K. M., Kutcher, J., Palm, M., & 

Valovich-McLeod, T. C. (2014). National Athletic Trainers’ Association position 



137 

 

statement: Management of sport concussion. Journal of Athletic Training, 49(2), 

245-265.  

Broglio, A. P., Ferrara, M. S., Macciocchi, S. N., Baumgartner, T. A., & Elliott, R. 

(2007). Test-retest reliability of computerized concussion assessment programs. 

Journal of Athletic Training, 42(4), 509-514. 

Broglio, S. P., Sosnoff, J. J., Ferrara, M. S. (2009). The relationship of athlete-reported 

concussion symptoms and objective measures of neurocognitive function and 

postural control. Clinical Journal of Sports Medicine, 19(5), 377-382. 

Brooks, M. A., Peterson, K., Biese, K., Sanfilippo, J., Heiderscheit, B. C., & Bell, D. R. 

(2016). Concussion increases odds of sustaining a lower extremity injury after 

return to play among collegiate athletes. American Journal of Medicine, 44(3), 

742-747. 

Bruhmann, B., & Schneider, S. (2011). Risk groups for sports injuries among 

adolescents: Representative German national data. Child Care Health and 

Development, 37(4), 497-605. 

Burns, P. R., & Lowery, N. (2011). Etiology, pathophysiology, and most common 

injuries of the lower extremity in the athlete. Clinics in Podiatric Medicine and 

Surgery, 28(1), 1-18. 

Bursac, Z, Gauss, C. H., Williams, D. K., & Hosmer, D. W. (2008). Purposeful selection 

of variables in logistic regression. Source Code for Biology and Medicine, 3(17), 

1-8. 

Caine, D. J. (2010). Are kids having a rough time of it in sports? British Journal of Sports 

Medicine, 44(1), 1-3. 



138 

 

Carlson, M. D., & Morrison, R. S. (2009). Study design, precision, and validity in 

observational studies. Journal of Palliative Medicine, 12(1), 77-82. 

Caulfield, B. (2000). Functional instability of the ankle joint: Features and underlying 

causes. Physiotherapy, 86(8), 401-411. 

Centers for Medicare and Medicaid Services. (n.d.). ICD-9 code lookup. Retrieved from: 

https://www.cms.gov/medicare-coverage-database/staticpages/icd-9-code-

lookup.aspx?KeyWord=cruciate%20ligament%20sprain&bc=AAAAAAAAAAA

EAA%3d%3d& 

Chao-Ying, J. P., Kuk, L. L., & Ingersoll, G. M. (2002). An introduction to logistic 

regression analysis and reporting. Journal of Educational Research, 96(1), 3-14. 

Choe, M. C., Babikian, T., Difion, J., Hovada, D. A., & Giza, C. C. (2012). A pediatric 

perspective on concussion pathophysiology. Pediatrics, 24(6), 689-695. 

Clanton, T. O., Matheny, L. M., Jarvis, H. C., Jaronimus, A., B. (2012). Return to play in 

athletes following ankle injuries. Sports Health, 4(6), 471-474. 

Cobb, S. & Battin, B. (2004). Second impact syndrome. Journal of School Nursing, 

20(5), 262-267. 

Collins, M. W., Lovell, M. R., Iverson, G. L., Cantu, R. C., Maroon, J. C., & Field, M. 

(2002). Cumulative effects of concussion in high school athletes. Neurosurgery, 

51(5), 1175-1179.  

Collins, M. W., Lovell, M. R., Iverson, G. L., Ide, T., & Maroon, J. (2006). Examining 

concussion rates and return to play in high school football players wearing newer 

helmet technology: A three year prospective cohort study. Neurosurgery, 58(2), 

275-286.   



139 

 

Collins, M. W., Kontos, A. P., Reynolds, E., Murawski, C. D., & Fu, F. H. (2013). A 

comprehensive targeted approach to clinical care of athletes following sport-

related concussion. Knee Surgery Sports Traumatology Arthroscopy, 22(2) 235-

246.  

Comstock, R. D., Currie, D. W., & Pierpoint, L. A. (n. d,).  National high school sports-

related injury surveillance study: 2015- 2016 school year. Retrieved from 

http://www.ucdenver.edu/academics/colleges/PublicHealth/research/ResearchProj

ects/piper/projects/RIO/Documents/Original%20Report_Final%202015%2016%2

009%2003%2016.pdf 

Covassin, T., Moran, R., & Wilhelm, K. (2013). Concussion symptoms and 

neurocognitive performance of high school and college athletes who incur 

multiple concussions. American Journal of Sports Medicine, 41(12), 2885-2889. 

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods 

approaches (4th ed.). Thousand Oaks, CA: Sage. 

Crosby, R. A., DiClemente, R. J., & Salazar, L. (2006). Research methods in health 

promotion. San Francisco, CA: Josey-Bass.  

Cubon, V. A., Putukian, M., Boyer, C., & Deltwiler, A. (2010). A diffusion tensor 

imaging study on the white matter skeleton individuals with sports- related 

concussion. Journal of Neurotrauma, 28(2), 189-201.   

De Beaumont, L., Mongeon, D., Tremblay, S., Messier, J., Prince, F., Leclerc, S., & 

Lassonde, H. (2011). Persistent motor system abnormalities in formerly 

concussed athletes. Journal of Athletic Training, 46(3), 234-240.  



140 

 

de Irala, J., Fernandez-Crehuet Navajas, R., & Serrano del Castillo, A. (1997). 

Abnormally wide confidence intervals in logistic regression: Interpretation of 

statistical program results. Pan American Journal of Public Health. 2(24), 268-

271. 

Dorman, J. C., Valentine, V. D., Munce, T. A., Tjarks, B. J., Thompson, P. A., & 

Bergeron, M. F. (2013). Tracking postural stability of young concussion patients 

using dual- task interference. Journal of Science and Medicine in Sport, 18(1), 2-

7. 

Echemendia, R. J., Giza, C. C., & Kutcher, J., S. (2015). Developing guidelines for return 

to play: Consensus and evidence-based approaches. Brain Injury, 29(2), 185-194. 

Ellis, M. J., Leddy, J. J., & Willer, B. (2015). Physiological, vestibulo-ocular, and 

cervicogenic post-concussion disorders: An evidence-based classification system 

with directions for treatment. Brain Injury, 29(2), 238-248.  

Emery, C. A. (2003). Risk factors for injury in child and adolescent sport: A systematic 

review of the literature. Clinical Journal of Sports Medicine, 13, 256- 268.  

Emery, C. A., Hagel, B., & Morrongiello, B. A., (2006). Injury prevention in child and 

adolescent sport: Whose responsibility is it? Clinical Journal of Sports Medicine, 

16(6), 514-521. 

Engstrom, B. K., & Renstrom, P. A. (1998). How can injuries be prevented in the world 

cup soccer athlete? Clinics in Sports Medicine, 17(4), 755-768. 

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses 

using G*Power 3.1: Tests for correlation and regression analyses. Behavior 

Research Methods, 41, 1149-1160.  



141 

 

Fernandez, W. G., Yard, E. E., & Comstock, R. D. (2007). Epidemiology of lower 

extremity injuries among US high school athletes. Academic Emergency 

Medicine, 14(7), 641- 645. 

Field, A. P. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage. 

 Gessel, L. M., Fields, S. K., Collins, C. L., Dick, R. W., & Comstock, D. (2007). 

Concussions among United States high school and collegiate athletes. Journal of 

Athletic Training, 42(40), 495-503. 

Field, M., Collins, M.W., Lovell, M.R., & Maroon, J. (2003). Does age play a role in 

recovery from sports-related concussion? A comparison of high school and 

collegiate athletes. Journal of Pediatrics, 142(5), 346-553. 

Gerstman, B. B. (2008). Basic biostatistics: Statistics for public health practice. Boston, 

MA: Jones and Bartlett. 

Gessel, L. M., Fields, S. K., Collins, C. L., Dick, R. W., & Comstock, D. (2007). 

Concussions among United States high school and collegiate athletes. Journal of 

Athletic Training, 42(40), 495-503. 

Gilbert, F. C., Burdette, G. T., Joyner, A. B., Llewellyn, T. A., & Buckley, T. A. (2016). 

Association between concussion and lower extremity injuries in collegiate 

athletes. Sports Health, 8(6), 561-567.  

Giza, C. C., & Hovda, D. A. (2001). The neurometabolic cascade of concussion. Journal 

of Athletic Training, 36(3), 228-235. 

Gottschalk, A. W., & Andrish, J. T. (2011). Epidemiology of sports injury in pediatric 

athletes. Sports Medicine and Arthroscopy Review, 19(1), 2-6.  



142 

 

Greenland, S., Mansournia, M. A., & Altman, D. G. (2016). Sparse data bias: A problem 

hiding in plain sight. British Journal of Medicine, 353, 1981-1986. 

Greenland, S., Schwartzbaum, J. A. & Finkle, W.D. (2000). Problems due to small 

samples and sparse data in conditional logistic regression analysis. American 

Journal of Epidemiology, 151(5), 531- 539. 

Guskiewicz, K. M., Marshall, S. W., Bailes, J., McCrea, M., Harding, H. P., Matthews, 

A., … & Cantu, R. C. (2007). Recurrent concussion and risk of depression in 

retired professional football players. Medicine and Science in Sports and 

Exercise, 39(6), 903-909.  

Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., 

… & Kelly, P. (2003). Cumulative effects associated with recurrent concussion in 

collegiate football players: The NCAA concussion study. Journal American 

Medical Association, 290(19), 2549-2555. 

Guskiewicz, K., & Teel, E. (2015). Clinical management of sport related concussion: 

Developing a roadmap to a successful outcome. Kinesiology Review, 4(2), 156-

168.  

Guskiewicz, K. M., & Valovich-McLeod. (2011). Pediatric sports related concussion. 

Physical Medicine and Rehabilitation, 3(4): 353-364. 

Guskiewicz, K. M., Weaver, N. L., Padua, D. A., & Garrett, W. E. (2000). Epidemiology 

of concussion in collegiate and high school football players. American Journal of 

Sports Medicine, 28(5), 643-650. 

Hauser, R. A., Dolan, E. E., Phillips, H. J., Newlin, A. C., Moore, R. E., & Woldin, B. A. 

(2013). Ligament injury and healing: A review of current clinical diagnostics and 



143 

 

therapeutics. Open Rehabilitation Journal, 6, 1-20. doi: 

10.2174/1874943701306010001 

Herman, D., & Barth, J. (2014). Biomechanics differ in female athletes with high vs low 

baseline neurocognitive performance: Implications for anterior cruciate ligament 

risk [Abstract]. American Journal of Physical Medicine & Rehabilitation, 93(3), 

6. 

Herman, D. C., Jones, D., Harrison, A., Moser, M., Tillman, S., Farmer, K., … & 

Chmielewski, T. L. (2017). Concussion may increase the risk of subsequent lower 

extremity musculoskeletal injury in collegiate athletes. Sports Medicine, 47(5), 

1003-1010. 

Herman, D. C., Zaremski, J. L., Vincent, H. K., & Vincent, K. R. (2015). Effect of 

neurocognition and concussion on musculoskeletal injury risk. Current Sports 

Medicine Reports, 14(3), 194 – 199.  

Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Colosimo, A. J., McLean, S. G., … 

& Succop, P. (2005). Biomechanical measures of neuromuscular control and 

valgus loading of the knee predict anterior cruciate ligament injury risk in female 

athletes. American Journal of Sports Medicine, 33(4), 492-501. 

Hewett, T. E., Paterno, M. V., & Myer, G. D. (2002). Strategies for enhancing 

proprioception and neuromuscular control of the knee. Clinical Orthopaedics and 

Related Research, 402, 76-94.  

Hoch, M. C., Staton, G. C., Medina McKeon, J. M., Mattacola, C. G., & McKeon, P. O. 

(2012). Dorsiflexion and dynamic postural control deficits are present in those 

http://dx.doi.org/10.2174/1874943701306010001


144 

 

with chronic ankle instability. Journal of Science and Medicine in Sport, 15(6), 

574-579.  

Hootman, J. M., Dick, R., & Agel, J. (2007). Epidemiology of collegiate injuries for 15 

sports: Summary and recommendations for injury prevention. Journal of Athletic 

Training, 42(2) 311-319.  

Hosmer, D.W., & Lemeshow, S. (2000). Applied Logistic Regression (2nd ed.). New 

York, NY: John Wiley & Sons, Inc. 

Hosmer, D. W., Taber, S., & Lemeshow, S. A. (1991). The importance of assessing the 

fit of logistic regression models: A case study. American Journal of Public 

Health, (81), 1630-1635. 

Howell, D. R., Osternig, L. R., & Chou, L. S. (2014). Adolescents demonstrate greater 

gait balance control deficits after concussion than young adults. American Journal 

of Sports Medicine, 43 (3), 625- 632. 

Howell, D. R., Osternig, L. R., & Chou, L. S. (2015). Return to activity after concussion 

affects dual-task gait balance control recovery. Medicine and Science in Sports & 

Exercise, 47(4), 673-680. 

Hseih, F. Y. (1989). Sample size tables for logistic regression. Statistics in Medicine, 8, 

795-802. 

Hupperets, M. D. W., Verhagen, E., A., L., M., & van Mechelen, W. (2009). Effect of 

unsupervised home based proprioceptive training on recurrences of ankle sprain: 

Randomised controlled trial. British Journal of Medicine, 339, 1-6. 

doi:10.1136/bmj.b2684 



145 

 

Hutchison, M., Comper, P., Mainwaring, L., & Richards, D. (2011). The influence of 

musculoskeletal injury on cognition: Implications for concussion research. 

American Journal of Sports Medicine, 39(11), 2331-2337. 

IBM Corp. (2015). IBM SPSS statistics for windows, version 23. Armonk, NY: IBM 

Corp.  

Ingram, J.G., Fields, S. K., Yard, E. & Comstock, R. D. (2008). Epidemiology of knee 

injuries among boys and girls in U.S. high school athletics. American Journal of Sports 

Medicine, 36(6), 1116-1122. 

Iverson, G. L., Brooks, B. L., Lovell, M. R., & Collins, M. W. (2006). No cumulative 

effects for one or two previous concussions. British Journal of Sports Medicine, 

40, 72-75. 

Iverson, G. L., Gaetz, M. Lovell, M. R., & Collins, M. W. (2004). Cumulative effects of 

concussion in amateur athletes. Brain Injury, 18(5), 433-443. 

Joseph, A. M., Collins, C, Henke, N. M., Yard, E. E., Fields, S. K., & Comstock, R. D. 

(2013). A multisport epidemiologic comparison of anterior cruciate ligament 

injuries in high school athletics. Journal of Athletic Training, 48(6), 810- 817. 

Knowles, S. B., Marshall, S. W., Miller, T., Spider, R., Bowling, J. M., Loomis, D., … & 

Mueller, F. O. (2007). Cost of injury from a prospective cohort study of North 

Carolina High School Athletes. Injury Prevention, 13(6) 416-421.  

Konrad, C., Geburek, A. J., Rist, F., Blumenroth, H., Fisher, B., Husstedt, I., . . . & 

Lohmann, (2010). Long term cognitive and emotional consequences of mild 

traumatic brain injury. Physiological Medicine, 41(6), 1197-1211. 



146 

 

Konradsen, L., Voight, M., & Hojsgaard, C. (1997). Ankle inversion injuries: The role of 

dynamic defense mechanisms. American Journal of Sports Medicine, 25(1), 54-

57. 

Kramer, L. C., Denegar, C. R., Buckley, W. E., & Hertel, J. (2007). Factors associated 

with anterior cruciate ligament injury: History in female athletes. Journal of 

Sports Medicine and Physical Fitness, 47(4), 446-454. 

Lam, K. C., Snyder Valier, A. R., Anderson, B. E., & Valovich McLeod, T. C., (2016). 

Athletic training services during daily patient encounters: A report from the 

athletic training practice-based research network. Journal of Athletic Training, 

51(6), 435-441. 

Lam, K. C., Snyder Valier, & Valovich McLeod, T. C. (2015). Injury and treatment 

characteristics of sport-specific injuries sustained in interscholastic athletics: A 

report from the AT-PBRN. Sports Health, 7(1), 67-74. 

Leddy, J. J., Kozolowki, K., Donnelly, J.P., Pendergast, D. R. Epstein, L. H., & Willer, 

B. (2010). A preliminary study of sub-symptom threshold exercise training for 

refractory post- concussion syndrome. Clinical Journal of Sports Medicine, 20(1), 

21-27. 

Leddy, J. J., Kozlowski, K., Fung, M., Pendergast, D. R., & Willer, B. (2007). Regulatory 

and auditory physiological dysfunction as a primary characteristic of 

postconcussion syndrome: Implications for treatment. Neuro Rehabilitation, 22, 

199-205. 



147 

 

Lipsey, M.W., & Wilson, D. B. (1993). The efficacy of psychological, educational and 

behavioral treatment: Conformation from meta-analysis. American Psychologist, 

48(12), 1181-1209. 

Lynall, R. C., Mauntel, T. C., Padua, D. A., & Mihalik, J. P. (2015). Acute lower 

extremity injury rates increase following concussion in college athletes. Medicine 

and Science in Sports and Exercise, 47(12), 2487-2492. 

MacAuley, L. A. (2003).  Impact of school sports injury. British Journal of Sports 

Medicine, 37, 354-355. 

Maffulli, N., Longo, U. G., Gougoulias, N., Loppini, M., & Denaro, V. (2010).  Long-

term health outcomes of youth sports injuries. British Journal of Sports Medicine, 

44, 21-25.  

Mann, C. J. (2003). Observational research methods. Research design II: Cohort, cross 

sectional and case-control studies. Emergency Medicine, 20(1), 54-60.  

Mansell, J., Tierney, R. T., Sitler, M. R., Swanik, K., A. & Stearne, D. (2005). Resistance 

training and head-neck segment dynamic stabilization in male and female 

collegiate soccer players. Journal of Athletic Training, 40(4), 310-319. 

Mantel, N., & Haenszel, W. (1959). Statistical aspects of the analysis of data from 

retrospective studies of disease. Journal of the National Cancer Institute, 22(4), 

719-747. 

Marar, M., Mcllvain, N. M., Fields, S. K., & Comstock, R. D. (2012). Epidemiology of 

concussions among high school athletes in 20 sports. American Journal of Sports 

Medicine, 40(4), 747-755.   



148 

 

Master, C.L., Gioia, G.A., Leddy, J. J., & Grady, M. F. (2012). Importance of ‘return- to- 

learn’ in pediatric and adolescent concussion. Pediatric Annals, 41(9), 1-6. doi: 

10.3928/00904481-20120827-09 

Maugans, T., A., Farley, C., Altaye, M., Leach, M., & Cecil, K. M. (2012). Pediatric 

sports-related concussion produces cerebral blood flow alterations. Pediatrics, 

129(1), 28-37. 

May, K. H., Marshall, D. L., Burns, T. G., Popoli, D. M., & Polikandriotis, J. A. (2014). 

Pediatric sports specific return to play guidelines following concussion. 

International Journal of Sports Physical Therapy, 9(2), 242-255. 

McCrea, M., Guskiewicz, K., Randolph, C., Barr, W. B., Hammeke, T. A., Marshall, S. 

W., … & Kelly, J. P. (2012). Incidence, clinical course, and predictors of 

prolonged recovery time following sport-related concussion in high school and 

college athletes. Journal of the International Psychological Society, 18(1), 1-12. 

McCrea, M., Hammeke, T., Olsen, G., Leo, P., & Guskiewicz, K. (2004). Unreported 

concussion in high school football players. Clinical Journal of Sports Medicine, 

14(1), 13-17. 

McCrory, P., Meuwisse, W. H., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R. J., … 

& Turner, M. (2013). Consensus statement on concussion in sport: The 4th 

international conference on concussion in sport held in Zurich 2012. British 

Journal of Sports Medicine, 47, 250 – 258.  

McKeon, P. O., & Hertel, J. (2008).  Systematic review of postural control and lateral 

ankle instability. Part 1: Can deficits be determined with instrumental testing? 

Journal of Athletic Training, 43(3), 293-304. 



149 

 

Meeuwisse, W. H. (1991). Predictability of sports injuries: What is the epidemiological 

evidence? Sports Medicine, 12(1), 8-15. 

Meeuwisse, W. H., Tyreman, H., Hagel, B., & Emery, C. (2007). A dynamic model of 

etiology in sport injury: The recursive nature of risk and causation. Clinical 

Journal of Sports Medicine, 17(3), 215-219. 

Merrick, M. A. (2002). Secondary injury after musculoskeletal trauma: A review and 

update. Journal of Athletic Training, 37(2), 209-217. 

Michaelidis, M., & Koumantakis, G. A. (2014). Effects of knee injury primary prevention 

programs on anterior cruciate ligament injury rates in female athletes in different 

sports. Physical Therapy in Sport, 15(3), 200 -210. 

Miyashita, T. L., Diakogeorgiou, E., & Vander Vegt, C. (2016). Gender differences in 

concussion reporting among high school athletes. Athletic Training, 8(4), 359-

363. 

Moser, R. S., Schatz, P., & Jordan, B. D. (2005). Prolonged effects of concussion in high 

school athletes. Neurosurgery, 57(2), 300-306. 

Murphy, D. F., Connolly, D., A., & Beynnon, B. D. (2003). Risk factors for lower 

extremity injury: A review of the literature. British Journal of Sports Medicine, 

37(1), 13-29. 

National Federation of State High School Associations, (2016). 2015 - 2016 high school 

athletics participation survey. Retrieved from 

http://www.nfhs.org/ParticipationStatistics/PDF/2015-

16_Sports_Participation_Survey.pdf 



150 

 

Nelson, A. J., Collins, C. L., Yard, E. E., Fields, S. K., & Comstock, R. D. (2007). Ankle 

injuries among U.S. high school sports athletes 2005 – 2006. Journal of Athletic 

Training, 42(3), 381-387. 

Nelson, L. D.,  LaRoche, A. A., Pfaller, A. Y., Lerner, E. B.,  Hammeke, T. A., 

Randolph, C., … & McCrea, M. A. (2016). Prospective, head-to-head study of 

three computerized neurocognitive assessment tools (CNTs): Reliability and 

validity for the assessment of sport-related concussion. Journal of the 

International Neuropsychological Society, 22(1), 24-37. 

Nordstrom, A., Nordstrom, P., & Ekstrand, J. (2014). Sports- related concussion 

increases the risk of subsequent injury by about 50% in elite male football 

players. British Journal of Sports Medicine, 48(19), 1447-1450.  

Ozturk, S., & Kilik, D. (2013).What is the economic burden of sports injuries? Joint 

Diseases and Related Surgery, 24(2), 108-111. 

Paszkewicz, J., Webb, T., Walters, B., McCarty, C. W., & Van Lunen, B. (2012).  The 

effectiveness of injury prevention programs in reducing the incidence of anterior 

cruciate ligament sprains in adolescent athletes. Journal of Sport Rehabilitation, 

21, 371-377. 

Peng, C. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to reporting logistic 

regression analysis and reporting. Journal of Educational Research, 96(1), 3-14. 

Pietrosimone, B. G., & Gribble, P. A. (2012). Chronic ankle instability and corticomotor 

excitability of the fibularis longus muscle. Journal of Athletic Training, 47(6), 

621-626. 



151 

 

Pietrosimone, B., Golightly, Y. M., Mihalik, J. P., & Guskiewicz, K. M. (2015a). 

Concussion frequency associates with musculoskeletal injury in retired NFL 

players. Medicine and Science in Sports and Exercise, 14(3), 194-199. 

Pietrosimone, B. G., Lepley, A. S., Erickson, H. M., Clements, A., Sohn, D. H., & 

Gribble, P. A. (2015b). Neural excitability alterations after anterior cruciate 

ligament reconstruction. Journal of Athletic Training, 50(6), 665-674.  

Powell, J. W., & Barber-Foss, K. D. (1999). Injury patterns in selected high school 

sports: A review of the 1995-1997 seasons. Journal of Athletic Training, 34(3), 

277-284. 

Prentice, W., E. Principles of athletic training: A competency-based approach (14th ed.). 

(2014). New York, NY: McGraw Hill. 

Reddy, C. C., Collins, M. W., & Gioia, G. A. (2008). Adolescent sports concussion. 

Physical Medicine and Rehabilitation Clinics of North America, 19, 247-269. 

Register-Mihalik, J. K., Guskiewicz, K. M., Valovich McLeod, T. C., Linnan, L. A., 

Mueller, F.O., & Marshall, S. W. (2013). Knowledge, attitude, and concussion 

reporting behaviors among high school athletes: A preliminary study. Journal of 

Athletic Training, 48(5), 645-653. 

Rieman, B. L., & Lephart, S. M. (2002a). The sensorimotor system, part 1: The 

physiologic basis of functional joint stability. Journal of Athletic Training, 37(1), 

71-79. 

Rieman, B. L., & Lephart, S. M. (2002b). The sensorimotor system, part 2: The role of 

proprioception in motor control and functional joint stability. Journal of Athletic 

Training, 37(1), 80-84. 



152 

 

Samaan, M. A., Greska, E. K., Hoch, M. C., J. T., Bawab, S. Y., Weinhandl, J. T., 

Bawab, S. Y., & Ringleb, S. I. (2011). Dynamic postural control two years 

following anterior cruciate ligament reconstruction in a female collegiate soccer 

player. International Journal of Athletic Therapy and Training, 20(2), 24-29. 

Sauers, E. L., Valovich McLeod, T. C., & Bay, R. C. (2012). Practice-based research 

networks, part 1: Clinical laboratories to generate and translate research findings 

into effective patient care. Journal of Athletic Training, 47(5), 549-556. 

Schatz, P., & Moser, R. S. (2011). Current issues in pediatric sports concussion. Clinical 

Neuropsychologist, 25(6), 1042-1057. 

Schatz, P., Moser, R. S., Covassin, T., & Karpf, R. (2011). Early indicators of enduring 

symptoms in high school athletes with multiple previous concussions. 

Neurosurgery, 68(6), 1562-1567.  

Schoenfeld, D. A., & Borenstein, M. (2005) Calculating the power or sample size for the 

logistic and proportional hazards models. Journal of Statistical Computation and 

Simulation. 75(10), 771-785. 

Shrey, D. W., Griesbach, G. S., & Giza, C. C. (2011). The pathophysiology of 

concussions in youth. Physical Medicine and Rehabilitation Clinics of North 

America, 22(4): 577-602.  

Signoretti, S, Lazzarino, G., Tavazzi, B, & Vagnozzi, R. (2011). The pathophysiology of 

concussion. Physical Medicine and Rehabilitation, 3(10S2), S359-S368. 

Smith, H. C., Vacek, P., Johnson, R. J., Slauterbeck, J. R., Hashemi, J., Schultz, S., & 

Beynnon, B. D. (2012). Risk factors for anterior cruciate ligament injury: A 



153 

 

review of the literature –part 2; Hormonal, genetic, cognitive function, previous 

injury, and extrinsic risk factors. Sports Health, 4(2) 155 – 161. 

Stern, R. A., Riley, D. O., Daneshvar, D. H.., Nowinski, C. J., Cantu, R. C., & McKee, A. 

C. (2011). Long-term consequences of repetitive brain trauma: Chronic traumatic 

encephalopathy. Physical Medicine and Rehabilitation, 3(10S2), S460-S467. 

Swanik, C. B., Covassin, T., Stearne, D. J., & Schatz, P. (2007). The relationship between 

neurocognitive function and noncontact anterior cruciate ligament injuries. 

American Journal of Sports Medicine, 35(6), 943-948. 

Swanik, C. B., Lephart, S. M., Giannantonio, F. P., & Fu, F. H. (1997). Re-establishing 

proprioception and neuromuscular control in the ACL-injured athlete. Journal of 

Sport Rehabilitation, 6(2), 182-206. 

Swenson, D. M, Collins, C. L., Best, T. M., Flanigan, D. C., Fields, S. K., & Comstock 

R. D. (2013a). Epidemiology of knee injuries among U.S. high school athletes, 

2005/2006 - 2010/2011. Medicine & Science in Sports & Exercise, 45(3), 462-

469.  

Swenson, D.M., Collins, S. L., Fields, S. K., & Comstock, R. D. (2013b). Epidemiology 

of U.S. high school sports-related ligamentous ankle injuries 2005/2006-

2010/2011. Clinical Journal of Sports Medicine, 23(3), 190-196. 

Swenson, D. M., Yard, E. E., Fields, S. K., & Comstock, R. D. (2009). Patterns of 

recurrent injuries among high school athletes, 2005-2008. American Journal of 

Sports Medicine, 37(8), 1586-1593.  



154 

 

Termoz, N., Halliday, S. E., Winter, D. A., Frank, J. S., Palta, A. E., & Prince, F. (2008). 

The control of upright stance in young, elderly, and persons with Parkinson’s 

disease. Gait Posture, 27(3), 463-470.  

Tierney, R. T., Sitler, M. R., Swanik, C. B., Swanik, K. A., Higgins, M, & Torg, J. 

(2005). Gender differences in head neck segment dynamic stabilization during 

head acceleration. Medicine and Science in Sports and Exercise, 37(2), 272-279. 

Tropp, H., Odenrick, P., & Gillquist, J. (1985). Stabilometry recordings in functional and 

mechanical instability of the ankle joint. International Journal of Sports 

Medicine, 6(3), 180-182. 

University of Miami (n.d.). Collaborative Institutional Training Initiative. Retrieved from 

https://www.citiprogram.org/ 

U.S. Bone & Joint Initiative. (2016). Executive summary of the burden of 

musculoskeletal diseases in the U.S.: Prevalence, societal, and economic 3rd ed. 

Retrieved from 

http://www.boneandjointburden.org/docs/BMUS%20Executive%20Summary%20

2016%20%282%29.pdf 

U.S. Bone & Joint Initiative. (2015). The burden of musculoskeletal diseases in the U.S.: 

Prevalence, societal, and economic costs 3rd ed. Retrieved from 

http://www.boneandjointburden.org/docs/The%20Burden%20of%20Musculoskel

etal%20Diseases%20in%20the%20United%20States%20(BMUS)%203rd%20Edi

tion%20(Dated%204-29-2015).pdf 

U.S. Department of Education. (n.d.). High school facts at a glance. Retrieved from: 

http://www2.ed.gov/about/offices/list/ovae/pi/hs/hsfacts.html 



155 

 

Valovich McLeod, T. C., Bay, R. C., Parsons, J. T., Sauers, E. L., & Snyder, A. R. 

(2009). Recent injury and health related quality of life. Journal of Athletic 

Training, 44(6), 603-610.  

Valovich McLeod, T. C., Lam, K. C., Bay, R. C., & Sauers, E. L. (2012). Practice-based 

research networks, part II: A descriptive analysis of the athletic training practice-

based research network in the secondary school setting. Journal of Athletic 

Training, 47(5), 557-566.  

Vidal, P. G., Goodman, A. M., Colin, A., Leddy, J. J., & Grady, M. F. (2012). 

Rehabilitation strategies for prolonged recovery in pediatric and adolescent 

concussion. Pediatric Annals. 41(9), 1-7. 

Walden University. (2015). Research ethics and compliance: Application and general 

materials. Retrieved from: 

http://academicguides.waldenu.edu/researchcenter/orec/application#s-lg-box-

2713687 

Wallace, J., Covassin, T., Nogle, S., Gould, D., & Kovan, J. (2017). Knowledge of 

concussion and reporting behaviors in high school athletes with or without an 

athletic trainer. Journal of Athletic Training, 52(3), 228-235. 

Wang, H. K., Chen, C. H., Shiang, T.Y., Jan, M. H., & Lin, K. H. (2006). Risk-factor 

analysis of high school basketball-player ankle injuries: A prospective controlled 

cohort study evaluating postural sway, ankle strength, and flexibility. Archives of 

Physical Medicine and Rehabilitation, 87(6), 821 - 825. 



156 

 

Wetjen, N.M., Pichelmann, M. A., & Atkinson, J. L. D. (2010). Second impact 

syndrome: Concussion and second injury brain complications. Journal of the 

American College of Surgeons, 211(4), 553-557. 

White, K. K., Lee, S.S., Cutuk, A., Hargens, A. R., & Pedowitz, R. A. (2003). EMG 

power spectra of intercollegiate athletes and anterior cruciate ligament injury risk 

in females. Medicine and Science in Sports and Exercise, 35(3), 371-376. 

Wilkerson, G. B. (2012). Neurocognitive reaction time predicts lower extremity sprains 

and strains. International Journal of Athletic Therapy and Training, 17(6), 4-9. 

Wilkstrom, E. A., Naik, S., Lodha, N., Cauraugh, J. C. (2009). Balance capabilities after 

lateral ankle trauma and intervention: A meta-analysis. Medicine and Science in 

Sports and Exercise, 41(6), 1287- 1295. 

Williams, J. G. P. (1971). Aetiologic classification of injuries in sportsman. British 

Journal of Sports Medicine. 54(4), 228-230. 

Williams, R. M., Puetz, T. W., Giza, C. C., & Broglio, S. P. (2015). Concussion recovery 

time among high school and collegiate athletes: A systematic review and met- 

analysis. Sports Medicine, 45(6), 893-903. 

World Health Organization. (2017). Adolescent health. Retrieved from 

http://www.who.int/maternal_child_adolescent/topics/adolescence/dev/en/ 

Yard, E. E., Collins, C. L., & Comstock, R. D. (2009). A comparison of high school 

sports injury surveillance data reporting by certified athletic trainers and coaches. 

Journal of Athletic Training, 44(6), 645-652. 



157 

 

Yard, E. E., Schroeder, M. J., Fields, S. K., Collins, C. L., & Comstock, R. D. (2008). 

The epidemiology of United States high school soccer injuries 2005 – 2007. 

American Journal of Sports Medicine, 36(10), 1930-1937. 

Youth Sports Safety Alliance (YSSA). (2014). Youth Sports Safety Statistics. Retrieved 

from http://www.youthsportssafetyalliance.org/sites/default/files/Statistics.pdf 

Zernickle, R. F., Antle, K. A., McLean, S. G., Palmieri-Smith, R. M., Miller, J. A., & 

Wojtys, E. M. (2009). Play at your own risk: Sport and the injury epidemic. 

Journal of Intercollegiate Sports, 2(1), 42-63.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



158 

 

Appendix A:  Permissions 

Permission for Figure 1 

WOLTERS KLUWER HEALTH, INC. LICENSE 
TERMS AND CONDITIONS 
Aug 27, 2017 

 
 

 
This Agreement between Lisa Koperna ("You") and Wolters Kluwer Health, Inc. ("Wolters 
Kluwer Health, Inc.") consists of your license details and the terms and conditions 
provided by Wolters Kluwer Health, Inc. and Copyright Clearance Center. 
License Number 4177121382396 
License date Aug 27, 2017 
Licensed Content Publisher Wolters Kluwer Health, Inc. 
Licensed Content Publication Clinical Journal of Sport Medicine 

Licensed Content Title A Dynamic Model of Etiology in Sport Injury: The 
Recursive Nature of Risk and Causation 

Licensed Content Author Willem Meeuwisse, Hugh Tyreman, Brent Hagel, et 
al 

Licensed Content Date May 1, 2007 
Licensed Content Volume 17 
Licensed Content Issue 3 
Type of Use Dissertation/Thesis 
Requestor type Individual 
Portion Figures/table/illustration 
Number of 
figures/tables/illustrations 1 

Figures/tables/illustrations used FIGURE 2. A dynamic, recursive model of etiology in 
sport injury 

Author of this Wolters Kluwer 
article No 

Title of your thesis / dissertation  
Association between Sport-Related Concussion and 
Lower Extremity Musculoskeletal Injuries in High 
School Athletes 

Expected completion date  Oct 2017 
Estimated size(pages) 180 

Requestor Location Lisa Koperna 
  



159 

 

 
 
 
United States 
Attn: Lisa Koperna 

Publisher Tax ID 13-2932696 
Billing Type Invoice   

Billing Address 

Lisa Koperna 
 
 
 
United States 
Attn: Lisa Koperna 

  

Total 0.00 USD   
Terms and Conditions   
 

Wolters Kluwer Terms and Conditions  

1. Transfer of License: Wolters Kluwer hereby grants you a non-exclusive license to 
reproduce this material for this purpose, and for no other use, subject to the 
conditions herein.  

2. Credit Line: will be prominently placed and include: For books – the author(s), 
title of book, editor, copyright holder, year of publication; For journals – the 
author(s), title of article, title of journal, volume number, issue number, inclusive 
pages and website URL to the journal page. 

3. Warranties: The requestor warrants that the material shall not be used in any 
manner which may be considered derogatory to the title, content, or authors of the 
material, or to Wolters Kluwer.  

4. Indemnity: You hereby indemnify and hold harmless Wolters Kluwer and their 
respective officers, directors, employees and agents, from and against any and all 
claims, costs, proceeding or demands arising out of your unauthorized use of the 
Licensed Material.  

5. Geographical Scope: Permission granted is non-exclusive, and is valid throughout 
the world in the English language and the languages specified in your original 
request.  

6. Wolters Kluwer cannot supply the requestor with the original artwork, electronic 
files or a "clean copy."  

7. Permission is valid if the borrowed material is original to a Wolters Kluwer imprint 
(Lippincott-Raven Publishers, Williams & Wilkins, Lea & Febiger, Harwal, Rapid 
Science, Little Brown & Company, Harper & Row Medical, American Journal of 
Nursing Co, and Urban & Schwarzenberg - English Language, Raven Press, Paul 
Hoeber, Springhouse, Ovid).  

  



160 

 

8. Termination of contract: If you opt not to use the material requested above please 
notify RightsLink or Wolters Kluwer within 90 days of the original invoice date.  

9. This permission does not apply to images that are credited to publications other 
than Wolters Kluwer books/journals or its Societies. For images credited to non-
Wolters Kluwer books or journals, you will need to obtain permission from the 
source referenced in the figure or table legend or credit line before making any use 
of the image(s) or table(s).  

10. Modifications: With the exception of text size or color, no Wolters Kluwer 
material is permitted to be modified or adapted without publisher approval.  

11. Third party material: Adaptations are protected by copyright, so if you would like 
to reuse material that we have adapted from another source, you will need not only 
our permission, but the permission of the rights holder of the original material. 
Similarly, if you want to reuse an adaptation of original LWW content that appears 
in another publishers work, you will need our permission and that of the next 
publisher. The adaptation should be credited as follows: Adapted with permission 
from Wolters Kluwer: Book author, title, year of publication or Journal name, 
article author, title, reference citation, year of publication. Modifications are 
permitted on an occasional basis only and permission must be sought by Wolters 
Kluwer.  

12. Duration of the license: Permission is granted for a one-time use only within 12 
months from the date of this invoice. Rights herein do not apply to future 
reproductions, editors, revisions, or other derivative works. Once the 12 - month 
term has expired, permission to renew must be submitted in writing. 

i. For content reused in another journal or book, in print or electronic format, 
the license is one-time use and lasts for the 1st edition of a book or for the 
life of the edition in case of journals.  

ii. If your Permission Request is for use on a website (which is not a journal or 
a book), internet, intranet, or any publicly accessible site, you agree to 
remove the material from such site after 12 months or else renew your 
permission request.  

13. Contingent on payment: While you may exercise the rights licensed immediately 
upon issuance of the license at the end of the licensing process for the transaction, 
provided that you have disclosed complete and accurate details of your proposed 
use, no license is finally effective unless and until full payment is received from 
you (either by publisher or by CCC) as provided in CCC's Billing and Payment 
terms and conditions. If full payment is not received on a timely basis, then any 
license preliminarily granted shall be deemed automatically revoked and shall be 
void as if never granted. Further, in the event that you breach any of these terms 
and conditions or any of CCC's Billing and Payment terms and conditions, the 
license is automatically revoked and shall be void as if never granted. Use of 
materials as described in a revoked license, as well as any use of the materials 
beyond the scope of an unrevoked license, may constitute copyright infringement 
and publisher reserves the right to take any and all action to protect its copyright in 
the materials. 

14. Waived permission fee: If the permission fee for the requested use of our material 



161 

 

has been waived in this instance, please be advised that your future requests for 
Wolters Kluwer materials may incur a fee. 

15. Service Description for Content Services: Subject to these terms of use, any 
terms set forth on the particular order, and payment of the applicable fee, you may 
make the following uses of the ordered materials:  

i. Content Rental: You may access and view a single electronic copy of the 
materials ordered for the time period designated at the time the order is 
placed. Access to the materials will be provided through a dedicated content 
viewer or other portal, and access will be discontinued upon expiration of 
the designated time period. An order for Content Rental does not include 
any rights to print, download, save, create additional copies, to distribute or 
to reuse in any way the full text or parts of the materials.  

ii. Content Purchase: You may access and download a single electronic copy 
of the materials ordered. Copies will be provided by email or by such other 
means as publisher may make available from time to time. An order for 
Content Purchase does not include any rights to create additional copies or 
to distribute copies of the materials.  

 
For Journals Only:  

1. Please note that articles in the ahead-of-print stage of publication can be cited and 
the content may be re-used by including the date of access and the unique DOI 
number. Any final changes in manuscripts will be made at the time of print 
publication and will be reflected in the final electronic version of the issue. 
Disclaimer: Articles appearing in the Published Ahead-of-Print section have been 
peer-reviewed and accepted for publication in the relevant journal and posted online 
before print publication. Articles appearing as publish ahead-of-print may contain 
statements, opinions, and information that have errors in facts, figures, or 
interpretation. Accordingly, Wolters Kluwer, the editors and authors and their 
respective employees are not responsible or liable for the use of any such inaccurate 
or misleading data, opinion or information contained in the articles in this section.  

2. Where a journal is being published by a learned society, the details of that society 
must be included in the credit line. 

i. For Open Access journals: The following statement needs to be added 
when reprinting the material in Open Access journals only: "promotional 
and commercial use of the material in print, digital or mobile device format 
is prohibited without the permission from the publisher Wolters Kluwer. 
Please contact healthpermissions@wolterskluwer.com for further 
information." 

ii. Exceptions: In case of reuse from Diseases of the Colon & Rectum, 
Plastic Reconstructive Surgery, The Green Journal, Critical Care 
Medicine, Pediatric Critical Care Medicine, the American Heart 
Association Publications and the American Academy of Neurology the 
following guideline applies: no drug/ trade name or logo can be included in 



162 

 

the same page as the material re-used. 
3. Translations: If granted permissions to republish a full text article in another 

language, Wolters Kluwer should be sent a copy of the translated PDF. Please 
include disclaimer below on all translated copies:  

i. Wolters Kluwer and its Societies take no responsibility for the accuracy of 
the translation from the published English original and are not liable for 
any errors which may occur.  

4. Full Text Articles: Reuse of full text articles in English is prohibited.  

 
STM Signatories Only: 

1. Any permission granted for a particular edition will apply also to subsequent 
editions and for editions in other languages, provided such editions are for the work 
as a whole in situ and does not involve the separate exploitation of the permitted 
illustrations or excerpts. Please click here to view the STM guidelines.  

 
Other Terms and Conditions:  
v1.17 
Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or 
+1-978-646-2777.   

 

 

 

 

 

 

 

 

 

 

 

http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/
mailto:customercare@copyright.com


163 

 

Permission for Figure 2 

 

 

 
 December 11, 2017  

To Whom It May Concern:  

I approve Lisa Koperna’s request to use the clinical practice site image posted on our 

website at http://www.coreat.org/clinical-practice-sites.html.  

If you need additional information, please do not hesitate to contact me.  

Sincerely, 

 

 
 Kenneth C. Lam, ScD, ATC  
Associate Professor of Clinical Research  
Director of the Athletic Training Practice-Based Research Network  
A.T. Still University  
(480) 245-6244  
klam@atsu.edu 

 

 

 

 


	Walden University
	ScholarWorks
	2018

	Sport-Related Concussion and Lower Extremity Musculoskeletal Injuries in High School Athletes
	Lisa Koperna

	Introduction
	Background of the Study
	Problem Statement
	Purpose of the Study
	Research Questions and Hypotheses
	Conceptual Framework
	Nature of the Study
	Variable Definitions
	Assumptions
	Scope and Delimitations
	Limitations
	Significance of the Study
	Summary
	Introduction
	Literature Search Strategy
	Conceptual Model
	Pathophysiology of Concussions
	Return to Play
	Neurocognition and Motor Dysfunction
	Neurocognition and Musculoskeletal Injury
	Motor Control and Postural Stability
	Concussion and Lower Extremity Injury
	Strengths and Limitations of Existing Studies
	Summary and Transition
	Introduction
	Research Design and Rationale
	Methodology
	Data Analysis Plan
	Threats to Validity
	Ethical Procedures
	Summary
	Introduction
	Data Collection
	Descriptive and Demographic Characteristics of the Sample
	Sample
	Results
	Assumptions
	Data Analysis Approach
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4
	Summary and Transition
	Introduction
	Interpretation of the Findings
	Findings in the Context of the Theoretical Model
	Limitations of the Study
	Recommendations
	Implications
	Conclusion

