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Abstract

There is an increased interest in the need for a noninvasive and nonintrusive biometric

identification and recognition system such as Automatic Gait Identification (AGI) due to

the rise in crime rates in the US, physical assaults, and global terrorism in public places.

AGI, a biometric system based on human gait, can recognize people from a distance and

current literature shows that AGI has a 95.75% success rate in a closely controlled

laboratory environment. Also, this success rate does not take into consideration the effect

of covariate factors such as affective state (mood state); and literature shows that there is

a lack of understanding of the effect of affective state on gait biometrics. The purpose of

this study was to determine the percent success rate of AGI in an uncontrolled outdoor

environment with affective state as the main variable. Affective state was measured using

the Profile of Mood State (POMS) scales. Other covariate factors such as footwear or

clothes were not considered in this study. The theoretical framework that grounded this

study was Murray’s theory of total walking cycle. This study included the gait signature

of 24 participants from a population of 62 individuals, sampled based on simple random

sampling. This quantitative research used empirical methods and a Fourier Series

Analysis. Results showed that AGI has a 75% percent success rate in an uncontrolled

outdoor environment with affective state. This study contributes to social change by

enhancing an understanding of the effect of affective state on gait biometrics for positive

identification during and after a crime such as bank robbery when the use of facial

identification from a surveillance camera is either not clear or not possible. This may also

be used in other countries to detect suicide bombers from a distance.
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Chapter 1: Introduction to the Study

A new field of research has emerged because of its uniqueness for human

identification. Automatic gait identification (AGI) is promising because it is evidence-

based, behavioral, and less intrusive than fingerprint or iris identification. AGI uses

human gait for human identification. According to Veres, Nixon, & Carter, (2005a), gait

identification has a high recognition rate of 95.75% in a controlled environment.

Sarkar and Liu (2008) explained the concept of gait as a biometric and the

challenge of recognizing someone from 300m, or 328.0 yards, away. In such scenarios,

which arise often in wide-area monitoring and asset protection, the use of fingerprint or

iris scans is impracticable. Sakar and Liu recognized that face recognition data can be

captured, but resolution and outdoor sources of variations, such as sunlight and shadows,

are difficult to overcome. They argued against the use of physical biometrics that are

direct signatures of the physiology of the person, and recommend use of behavioral

biometrics. Sakar and Liu recommended gait as one such behavioral biometric among

others, and in a more precise context, the pattern of shape and motion in a video of a

walking person. They suggested that because the gait of a person is determined by his or

her underlying musculoskeletal structure, it is plausible to discriminate between persons

using their gait.

Background of the Study

Several previous studies identify the relationship of emotion with gait (see De

Meijer, 1989; Montepare, Goldstein, & Clausen, 1987; Montepare & Zebrowitz, 1987;

Wallbott, 1998), but not many studies exist on the relationship between gait and affective
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state in biometric research (Veres, Nixon, & Carter, 2005b). While affective state and

walk patterns have been studied to diagnose mental patients (Gross, Fredrickson,

Koditschek, & Gerstner, 2004), available biometric gait research was often conducted in

a controlled environment. Such research was conducted in a lab setting and used data that

did not simulate real world scenarios. Often, use of affective state in such research is

avoided due to the complexity in measuring affective state from a distance.

Existing research on covariate factors and gait recognition did not include the

affective state. There is a lack of formal studies on the effect of affective state on human

gait identification. It is also implausible for laboratory tests of human gait to simulate real

world conditions of human walk patterns under a controlled environment. Such studies

cannot simulate all walk patterns possible in a controlled condition to ascertain a natural

response to factors that outdoor conditions impose on human walk patterns.

A gap exists in the literature on the effect of affective state on human gait as a

biometric (in the recognition and identification process) in a natural, uncontrolled setting

(Nixon, Tan, & Chellappa, 2006). Affective state forms the situational characteristics of a

given scenario (Nixon, Tan, & Chellappa, 2006), and it affects data collection and data

integrity for reliable gait identification. There was also a gap in the understanding of

which regions of a gait cycle were most susceptible to affective state in biometric

identification. In this study, mathematical expressions and algorithms were used to

represent biological and behavioral characteristics for human recognition. Such

characteristics became biometric signatures, which were stored in a template library for

future matches with the same individuals. They were only useful when a match involving
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expressions of the identities could be achieved in subsequent data samplings. Gait as an

identification tool should intrinsically match a subject by his or her gait signature under

different psychological and inherent physiological states. Therefore, its validity and

reliability should provide the knowledge to estimate error variance. This can be achieved

through understanding the way affective state impacts gait signature.

Cutting and Kozlowski’s (1977) human perception experiments, based on light

point displays, showed that it is possible to identify a person from his or her manner of

walking. Stevenage, Nixon, & Vince, (1999) showed that humans can identify

individuals based on their gait signature, without reliance on the shape, in the presence of

lighting variations and under brief exposure.

There are advantages and challenges to gait as a biometric over other biometric

techniques. Because gait identification is unobtrusive, the gait signature of a person in a

public place can be extracted without the subject’s knowledge, and without intrusion into

the person’s environment. No permission is required.

The gait of a person can be captured from a distance, unlike other biometrics such

as iris or fingerprint recognition techniques, which require direct contact with the person.

It is easy for a person to disguise or shield the face from view, or even the iris. It is

difficult, however, for a person to conceal or disguise his or her gait.

There are of course challenges that affect using gait as a biometric. These

challenges could cause the gait of a person to change in cadence. Some known challenges

are: Physical changes such as weight gain or weight loss, pregnancy, accidents, or

diseases that could affect the muscle or leg tissues. Stimulants like drugs or alcohol
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would also affect the way a person walks. Tight, long, or large clothing and style of

footwear affect a person’s gait as well. Despite these challenges, gait identification

complements other biometric techniques that are obtrusive and intrusive.

Problem Statement

Current literature shows that AGI has a success rate of 95.75%. These studies did

not include covariate factors, leaving a gap in the understanding of the effect of affective

state on gait biometrics. The problem was the lack of understanding of the effect of

affective state on gait biometrics. Affective state as a covariate factor is a predicting

factor that can cause one’s gait to change temporarily or permanently, distorting a match

with a known gait signature (a derivation from gait dataset) that is stored in a database.

This could lead to a false positive or false negative identification match. I determined the

effect of affective state on gait biometrics by determining the percent success rate of AGI

when the covariate factor of affective state or mood state is included in the research.

This study on gait identification concerned the effect of affective state in the gait

biometric identification process. The probability of a false match or a missed match due

to changes in the psychological state of the individual during the identification process

may render AGI as useless identification too. If Type I and Type II error rates were too

large due to mood state, then the method had little value (Wilson, Wilson, & Olwell,

2006). Nixon, Tan, and Chellappa, (2006) considered affective state as a covariate factor

that imposes a future challenge to automatic gait identification research. Nixon, Tan, and

Chellappa asserted that understanding the effect of covariate factors such as change in

affective state, the terrain, viewpoint, walking surface, or clothes would help reduce false
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alarm rates in the identification of gait biometrics. By addressing the limitation of

understanding on the effect of affective state on gait biometrics, AGI can become a

reliable biometric identification tool for law enforcement and security personnel.

Purpose of the Study

The purpose of this quantitative experimental study was to obtain some additional

understanding about the effect of affective state on gait biometrics by measuring the

percent success rate of AGI with affective state as an additional discriminate factor. I

used a quantitative method analysis to understand the effect of affective state on gait

biometrics datasets. I also sought to provide understanding of which regions of a gait

cycle are most salient in identifying changes in the biometric template due to affective

state. The results provide a quantifiable understanding of the covariate factors in gait

identification and demonstrate how to mitigate the effects of affective state on gait

identification in the recognition process.

Research Questions and Hypotheses

I examined the following two research questions:

1. What is the success rate of automatic gait identification with affective state as

a covariate factor?

2. Which regions of the gait signature are susceptible to change under an

affective state?

Current studies were conducted in a controlled environment without the

discriminate factor affective state, and did not mimic real world scenarios where factors

such as footwear, clothing, weight gain, a terminal illness, a loss of an arm or a leg,
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pregnancy, mood change, or the terrain or walking surface affects one’s gait. The

responses to these research questions were important because among the confounding

factors affecting validity and validation of gait datasets to match a gait biometric template

for identification is the challenge of isolating any covariate factor that influences the

dataset. The usefulness of a biometric is its ability to match people to biological or

behavioral markers (a known biometric template) and to exclude nonmatching datasets.

Responses to these research questions could be used as a framework to predict the

influence of change regarding affective state on the dataset through interpolation and for

evidence of the gait signature from a template library or data set.

I analyzed the research questions by isolating the participants’ affective states,

such as anger or hostility from gait data as discriminate factors and by comparing the

results with data from their control variables, which represent the participants’ normal

affective state. Data with a gait template of the same individual was normalized to

identify trends in changes in gait cycles relative to different affective states. The purpose

of this study was to determine the percent success rate of AGI under the covariate factor

of affective state and identify regions in gait affected by changes in affective state on

human gait signature.

Gait signature is time-invariant as a periodic signal. The hypothesis for this

study was that change in gait cycle due to affective state is unique to an individual,

showing consistency in repeated trials. The change in gait due to affective state was

considered as a covariant and analyzed using Fourier’s signal analysis and evaluated by

statistical methods.
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To make AGI reliable, biometric feature variations in human gait systems should

be deterministic (returning the same results under similar circumstances in the

identification process, using specific set of input values from the gait signature, and given

the same affective state) and not stochastic. In this study, the gait signal approached the

domain of deterministic; that is, the validity of the gait signatures can be generalized to

other settings. Biometric data matches should not be unpredictable in principle, although

human gait can become intrinsically unpredictable. Finding detectable changes in initial

condition guarantees a deterministic match in principle. The discovery of such changes

provides understanding into predictable variations in the dependent variables when it is

interpolated with its initial template from a template library.

Theoretical Foundation

The theoretical framework for this study was based on Murray’s theory of total

walking cycle. Murray’s evaluation of the durations of time supportive phases of the

walking cycle during walking at a free cadence established the baseline for normal

cadence. The durations of stance, swing, and double-limb support in relation to different

speeds and external circumstances as studied by many investigators, as well as Murray’s

findings that the durations of time-supportive phases of the walking cycle decrease with

increased walking speeds, were the basis for determining variance in normal gait relative

to affective state (Murray, Drought, & Kory, 1964).

With a simplified photographic technique, Murray developed an inexpensive and

reproducible method of recording the displacements associated with locomotion. The

results of her research established the ranges of normal values for many components of
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the walking act for men spanning wide ranges of age and height. Murray’s walking cycle

components consist of cycle duration, duration of stance, duration of swing, duration of

double-limb support, stride dimension, step and stride length, stride width, and foot angle.

Employing interrupted-light photography, Murray used photographs made with a Speed

Graphic camera as the subjects, appropriately marked with reflective targets, walked in a

hallway in semidarkness 16 feet from the camera. With ASCOR Speedlight as the source

of interrupted light, modified to flash 20 times per second, only the serial positions of

each target at the instants of illumination registered on a film, presenting a white stick

diagram on a black background. These data provided baseline values for normal

locomotion with which covariate gaits may be compared (Nixon et al., 2003). Murray’s

baseline gave an epistemological framework for the understanding and analysis of gait

covariates, a critical aspect in the implementation of gait biometrics. Murray’s targeting

and measuring procedure was used to gather the following information:

1. The duration of the walking cycle and its phases (stance, swing, and double-

limb support).

2. The length and width of the steps and strides and the foot angles.

3. The sagittal rotation of the pelvis, hip, knee, and ankle.

4. The vertical, forward, and lateral excursions of the head and neck.

5. The transverse rotation of the pelvis and thorax.

6. The sagittal excursions of the upper extremities.
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The phase’s cycle duration of a walking cycle, as measured in Murray’s study, is

the time interval between successive heel strikes of the left foot. The mean values for the

60 subjects in Murray’s test group were as follows:

 Mean age = 42.5,

 Mean height = 69.1 (range: 61.5 to 74.3), and

 Mean weight = 158 (range: 121 to 195).

The mean cycle durations for the stance, swing and double limb support were:

 Total number of observations: 240,

 Duration of stance (both limbs) in seconds = 0.63 (0.07),

 Duration of stance (both limbs) per cent of walking cycle = 61,

 Duration of swing (both limbs) in seconds = 0.40 (0.04),

 Duration of swing (both limbs) percent of walking cycle = 39,

 Durations for double limb support (first and second periods) in

seconds = 0.11 (0.03), and

 Durations for double limb support (first and second periods) percent of

walking cycle = 11.

These numbers represented two trials for each subject and included were two

measurements for each trial. The numbers in parentheses represented one standard

deviation and the cadence was expressed in steps per minute.

Murray (1967) found no significant differences between right and left stance

duration during the same trial or during repeated trials of the same subject. Murray

postulated that stance duration is related closely to the duration of the cycle and showed
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no systematic differences related to age or height. With the duration of swing

measurements, Murray found no differences between either successive or corresponding

periods of the swing on repeated trials. The duration of a swing also related closely to the

time cycle duration and showed no systematic differences related to age or height.

With the duration of double-limb support within each walking cycle, there are two

periods of double-limb support. Murray (1967) found no significant differences between

corresponding periods of double-limb support in repeated trials or between the successive

periods of double-limb support in the same cycle. The durations of double-limb support

in the different age and height groups showed no systematic differences among any age

and height groups (Murray, 1967).

Murray (1967) measured stride length as a time linear distance in the plane of

progression between successive points of foot-to-floor contact of the same foot (right-to-

right or left-to-left), while step length is time distance between successive points of foot-

to-floor contact of alternate feet (right-to-left or left-to-right). Murray measured step and

stride lengths from a central point on the long axis of the foot, as she saw from images in

an overhead mirror. Murray found no significant differences between the corresponding

step and stride lengths in a repeated trial, or between successive steps and stride lengths

in the same trial. She argued, however that although the step and stride lengths did not

show systematic differences related to age, the mean stride and step lengths of the group

of subjects 60 to 65 years old were shorter than those of the younger groups in her

research. These differences were statistically significant (p < .05) but only between the

groups 20 to 25 and 60 to 65 years old. As she expected, the step and stride lengths were
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related systematically and significantly (p < .01) with height. The short subjects took the

shortest steps and strides while the tall subjects took the longest.

Murray (1967) measured the stride width as the transverse distance between

points on the central long axes of the feet (located by a line from the lateral malleolus

drawn perpendicularly to the line of progression) during foot-to-floor contact. She made

these measurements during two successive walking cycles. The mean stride width in the

60 male subjects was 8.0 centimeters ±3.5 centimeters and ranged from - 1.5 centimeters

(when the mid-point of one foot was crossed over in front of the other) to 19.2

centimeters. She found no significant differences in stride width or successive cycles in

one walking trial or in repeated trials of the same subject. The stride widths of age and

height groups showed no systematic differences.

Murray’s (1967) measurement of the foot angle indicated the amount of in-toeing

or out-toeing which were measured as the angle formed by the long axis of the foot with

the plane of progression. Four successive foot angles (two right and two left) were

measured for each walking trial. The mean right foot angle was 6.7 degrees and the mean

left foot angle was 6.8 degrees. Although not statistically significant, Murray considered

that the differences between opposite or successive foot angles of individual subjects in

the same trial and in repeated walking trials as comparatively large. The average

difference between the right and left foot angles during the same trial was 4.8 degrees;

the average difference between successive foot angles of the same foot was 2.4 degrees.

Despite this large variation in foot angles, Murray found significant (p < 0.01) differences

between the age groups, with the subjects 60 to 65 years old showing a decidedly greater
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degree of out-toeing than the younger subjects. She found no significant differences in

the foot angles in the different height groups.

Murray, Drought, and Kory, (1964) argued that of the several measurements of

walking, only the lengths of the step and stride related systematically with height. This

study’s results supported the suggestion that men 60 to 65 years old walk with

significantly shorter step and stride lengths and wider foot angles than younger men.

Findings in this study showed a consistency of performance for each of the subjects with

respect to successive elements of gait in one walking trial and in repeated trials. Murray

conjectured that the similarity of these elements was far greater than that seen for most

human functions in which voluntary control plays a part in walking at a free cadence.

Murray concluded, in her preliminary experiments, that the free cadences selected by

several subjects varied widely. To assure meaningful comparison of the gait patterns of

the different subjects, Murray used a pretrial pacing at a fixed cadence to reduce the

cadence variability, allay self-consciousness, and familiarize the subject with the walking

area. The pretrial pacing cadence was 112 steps per minute, the same as the mean

cadence of 936 pedestrians on a New York City street as observed by Drillis (1961).

Fischer (1900) measured the cadence of 103 soldiers and eight civilians during a

two-kilometer walk; Murray, Kory, and Sepic’s (1970) analysis of Fischer’s raw data

based on height, found the cycle durations of his tallest subjects to be 1.00 seconds; his

medium subjects, 0.98 seconds; and his shortest subjects, 0.93 seconds. The difference

between Fischer’s results and Murray, Kory, and Sepic’s relates to the difference between

a short walk in a corridor as compared with a two-kilometer walk in a field. Drillis (1958)
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observed that pedestrians in New York City walked at a maximum cadence when they

were 30 to 40 years old and that those 45 years old or older walked with progressively

decreasing cadence, which was slowest at the age of 60 years or beyond. Subjects 40 to

45 years old also walked at the fastest cadence and, although those 60 to 65 years old did

not walk the slowest, Murray found a progressive decrease in cadence in subjects

between the ages of 40 and 65.

In contrast to the timing factors, Murray (1967) argued that stride length showed a

systematic relationship with height, the short subjects having the shortest strides, and the

tall subjects, the longest. The correlation coefficients between height and steps length in

Murray’s study (r = .46) were identical to those found in the analysis of Fischer’s (1990)

height-step-length data. Age does not appear to be related to step and stride length until

the subjects approach the age of 60. Murray’s studies suggest that beyond this age, there

is a definite reduction in the length of both steps and strides. This is consistent with

Bernstein and Spielberg’s (1940) findings, who described shortened strides as a part of

the gait pattern of the aged. Bernstein and Spielberg speculated that these shortened

strides reflected the same restraint one experiences when walking in dark or on slippery

surfaces.

Repeated trials showed no significant difference in time cycle durations of the

same subjects. The differences in cycle durations were not related systematically with age

and height. Saunders, Inman, and Eberhart (1953) suggested that these determinants are

necessary for minimizing the displacement of the center of gravity during forward

progression, thus maximizing the efficiency of gait. Milner, Basmajian, and Quanbury
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(1971) argued that the normal cadence chosen by a free-walking adult requires a

minimum of muscular activity. Normalcy in gait, therefore, seems to be closely related to

efficiency (Milner, Basmajian, & Quanbury, 1971). Studies by Murray (1967), Tucker

(1979), and Dubo, Peat, and Winter (1976) implied a similarity of mean cycle duration

among healthy, free-walking adults (Murray, 1.06 sec; Tucker, 1.0-1.1 sec; Dubo, Peat, &

Winter 1.13 sec). Slaton (1985) argued that if Milner, Basmajian, and Quanbury’s theory

was valid, then the results of these three studies, when averaged, suggested that a cycle

duration of approximately 1.1 sec or a cadence of 109 steps/min represented the most

efficient gait speed for most adults. Slaton suggested that gait cycle duration during free

walking was shorter in the preschool child than in the adult and that cycle duration tended

to lengthen as age increased (range: 0.68 sec at 1 year of age to 0.96 sec at 5 years of age).

Other characteristics of adult gait are well-established by the age of 3 years with

refinement continuing into later childhood. In the current literature, there are few

qualitative studies about the variability of gait characteristics within individual children

or changes in the amount of variability due to growth and maturation.

Slaton (1985) argued that the mean cycle duration of 0.74 sec was consistent with

the mean cycle duration of 3.5-year-olds as reported by Sutherland, Olshen, and Cooper

(1980). According to Slaton (1985), the reason for the shorter cycle duration or increased

cadence of children in comparison with that of adults was unclear. Statham and Murray

(1971) suggested that increased cadence may be an attempt to decrease the lateral

displacement of a high center of gravity. They stipulated in their studies that in the adult,

the center of gravity was just anterior to the second sacral vertebra. In the young child, it



15

was above the umbilicus. Murray’s research showed that in adults, faster walking speeds

decreased the lateral displacement of the trunk. Slaton (1985) concluded that if increased

cadence is an attempt to decrease the lateral displacement of a high center of gravity, then

as the child grew older and the center of gravity gradually descended, the cycle duration

should also gradually lengthen.

The results from Slaton’s research and those of Sutherland et al. seemed to

support this hypothesis. An alternate explanation is related to the acquisition of the six

determinants of normal gait as defined by Saunders et al. For the alternate hypothesis,

Slaton (1985) conjectured that, if a shorter cycle duration was observed in a child who

had been walking for a short period of time, then the cycle duration should be lengthened

to approximately that of an adult by the time the child achieved a mature gait. Sutherland

et al. (1980) suggested that cycle duration rapidly lengthened during the initial period of

independent walking until 3 years of age. From 3 to 7 years of age, this lengthening

continued but at a slower rate. Sutherland et al. suggested that cycle duration lengthened

in direct relation to the acquisition and refinement of mature gait characteristics. Longer

cycle duration would then indicate greater refinement of gait. Slaton (1985) thought that

if this conclusion was true, then the relationship between mature gait characteristics and

cycle duration could not be determined. The gradually decreasing variability of cycle

duration across subjects with increasing age reported by Sutherland et al. may have been

related to the variability of motor development rates across children who then gradually

converged in their later preschool years (Slaton, 1985).
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Nature of the Study

This study used a quantitative research design to test the characteristics of human

locomotion and affective state in a natural environment by collecting data from

participants’ gait systems and creating a gait signature for analysis. I examined the

implications of changes in the gait signature, looking for trends and to give

interpretations to patterns in changes to the gait signature. I examined the structure and

essence of the impact of changes to the gait signature of test participants to measure the

success rate of gait with covariate factors.

The deployment of AGI has legal implications that need to be addressed or tested

in the courts. While recording a person’s gait in public places is accepted as a normal

surveillance process, whether the video images can be stored by the government in a

biometrics data library without that person’s consent, is a legal question that needs an

answer. In democratic societies, governments are accountable to their citizens.

Democratic governments are guided by laws that recognize the rights of the citizenry.

Simon (1990) stated that the rule of law is the instrument that can shape the way the

government interacts fairly with its citizens. Governments must value citizens’ privacy

(Simon, 1957). Chinchilla (2012) argued that there are two fundamental legal principles

that are related with biometric technologies and they are due process and the right to

privacy. The US government is confronted with the challenge of individual rights and

societal interest. According to Wayman, Jain, Maltoni, and Maio (2005), the concept of

due process requires the government to acknowledge the possibility of errors, and should

allow means for their mitigation. They postulated that there are limits set by the courts on
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the power of government to meddle in the lives of individuals. Wayman, Jain, Maltoni,

and Maio (2005) argued that court protected guarantees required the government to

respect the rights of individuals by limiting intrusions. They asserted that balance

between individual rights and societal interest was placed under a new strain by the

advent of biometric technologies.

The U.S. constitution makes provisions for the protection of individual rights. The

fourth, fifth, and 14th U.S. constitutional amendments deal with privacy, due process, and

security. The Fourth Amendment protects against unreasonable searches and seizures; the

Fifth and the 14th amendments ensure that due process is accorded to each citizen.

Kadish (1957) defended the basis for due process as the notion that personal freedom can

only be preserved when there is some consistent way to check arbitrary and capricious

actions by the government.

The massive deployment of x-ray scan machines at airports and other biometric

machines in sports facilities puts the privacy protected by the fourth amendment in

jeopardy. Chinchilla (2012) cited surveillance as a perfect example in which the “balance

between public security and the right to individual privacy” (p.9) may be compromised

by sharing biometric information with different purposes. The reasonable search part of

the Fourth Amendment has been the subject of profound legal battles before biometric

technologies. I examined the data objectively and identified trends and interpreted

patterns in changes to the gait signature.

I examined the structure and essence of the changes to the gait signature of test

participants to measure the success rate of gait with covariate factors. There were several
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methods used in creating a gait signature (Veres, Nixon, & Carter 2005a). The most

popular one was created from silhouette images. They were represented as an associated

sequence of complex vector configurations and analyzed using the Procrustes shape

analysis method to obtain a compact appearance representation. The appearance

representation is called static information of body (Veres, Nixon, & Carter 2005a).

A model-based approach was considered, which under a condensation framework

is used to track the walker, and further recover joint-angle trajectories of lower limbs.

Both static and dynamic cues obtained from a walking video could be used independently

for recognition using the nearest exemplar classifier (Veres, Nixon, & Carter, 2005a).

This method uses different combinations of rules to improve both identification and

verification. This study used evidence-based methods by extracting data from dynamic

gait video images, using a motion model approach. The data were used to generate a

lower dimensional observation vector sequence for analysis.

Control variables used in this study were the participants’ normal affective state

and tests conducted in an uncontrolled environment. Together with the induced affective

state of Anger-Hostility, the data for the study were obtained. Randomization was not

possible or relevant in this research. The study measured and compared validity in

predicting the impact on a gait signature and to match reliably. This study contributes to

the reliability of AGI analysis and recognition systems and could serve as a foundation

for unobtrusive technologies for initial detection of individuals who represent a security

threat or behave suspiciously while other biometric systems complement it.
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Definitions

Affective state, mood, or emotion: A temporary state of mind or temper or a sullen

or gloomy state of mind, especially when temporary, as well as a prevailing atmosphere

or feeling (Frijda, 1986).

Covariate: A statistical term for a variable that is possibly predictive of the

outcome under study (Dennis, et al., 2009). In this study, the covariate was the variable of

direct interest but also a confounding or interacting variable of error that can render a

false positive or negative conclusion in the study.

Gait: An individual’s walk pattern. It is a spatiotemporal phenomenon that

typifies the motion characteristics of an individual (Nixon, Tan, & Chellappa, 2006).

Gait cycle (GC): A two-step forward movement of one foot from a stance and

back to a stance by the same foot. This cycle is measured by time per movement (Veres,

Nixon, & Carter, 2006a).

Gait signature: The derived dataset unique to an individual from the way

movement is achieved using human limbs (Veres Nixon, & Carter, 2005a).

Kinematics: The term used to describe movements of joints and limbs such as

angular displacement of joints and angular velocities and accelerations of limb segments

(Watkins, 1999).

Procrustes shape analysis method: A form of statistical shape analysis used to

analyze the distribution of a silhouette (Wang, Ning, Hu, & Tan, 2002).

Valence: A word used in psychology to categorize emotions. It shows the intrinsic

attractiveness (positive valence) or aversiveness (negative valence) of an event, object, or
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situation. Negative emotions such as anger and fear have negative valence while joy has

positive valence. Positive valenced events, objects, or situations evoke positive valenced

emotions (Dennis, et al., 2009).

Assumptions

There are factors inherent to the reliability and consistency of gait signature. To

gain accurate results from this test, I set two conditions to be followed by the participants:

 The participants would not and did not use any stimulants or chemical agents

such as drugs and alcohol. Stimulants and drugs could affect how a person

walks and could have affected the outcome of the test.

 The participants would maintain their normal annual physical weight which

they willingly did. Physical changes such as weight gain or weight loss could

have influenced the outcome of the study if a person’s walk pattern changed

under these conditions. The study encompassed quantifiable factors such as

the introduction and analysis of measurable parameters of gaits, as well as the

interpretation and drawing of various conclusions about the human from his or

her gait.

An assumption was made about the statistical importance of the mean and

covariance in that the Principal Component Analysis (PCA) using the eigenvectors of the

covariance matrix. It put the independent axes of the data under the Gaussian assumption

(Nixon, Tan, & Chellappa, 2006). For non-Gaussian or multimodal Gaussian data, PCA

was used to decorrelate the axes. The study did not guarantee that the directions of

maximum variance would contain good features for discrimination as in other literature
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(Nixon et al., 2006). These assumptions helped to simplify the algebraic computation on

the data sets.

Scope and Delimitations

Calculation of joint moments and reaction forces between segments is dependent

on knowledge of the inertial components of the respective segments, body segment

parameters, and external forces that affect the body. While it may be possible to measure

both kinematics and kinetics in a controlled environment, it is impractical to obtain these

measurements from people through video images in public places.

Moments and power integration of external force, center of pressure, unique body

segment parameters, and motion data yield information on joint moments, joint power,

and reaction forces between segments using standard inverse dynamics techniques. The

role of muscle groups is inferred from the magnitude and sign of the moments and power

at the respective lower extremity joints.

Limitations

According to Nixon, Tan and Chellappa (2006), gait research is still in an

exploratory phase. Several elements of gait biometrics continue to evolve through

research because it is a new field of study. Due to the unique nature of individual walk

patterns and complexity in gait analysis, there are several covariate factors such as

footwear, terrain, clothing, and the carrying of an object while walking that affect each

signature. In this research, human affective state was the only covariate factor that was

studied; however, there are several covariate factors that affect AGI.
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Significance of the Study

I explored the underlying principles and the influence of affective state on gait in

an uncontrolled environment, which could affect the reliability of AGI match as an

acceptable technique for personal identification. The significance of this study was to

understand the problem of reliability and validity in identifying gait signature. The

expectation was that this study would make AGI a viable distance identification solution

for security personnel in their identification, recognition, and verification of criminals in

public areas where invasive biometric techniques are less feasible.

As the world becomes more insecure due to terrorist attacks, and criminals are

becoming more technical and sophisticated with their attacks and can elude detection, it

is imperative that forensic tools for recognition, identification, and verification of

criminals can recognize them from a distance with reliability. In this research, the

concept of reliability referred to a positive identification that is free from errors (Crocker

& Algina, 1986). AGI adds to available biometric tools that law enforcement and

security personnel relies on for accurate determination of criminals and terrorists in the

fight for their apprehension

Significance to Theory

Existing research on covariate factors and gait recognition do not include

affective state. Lack of a formal study on the effect of affective state on human gait

identification makes existing studies incomplete. This study fills the gap in the literature

in the understanding of gait as biometrics in an uncontrolled, natural setting by studying

the variance of data from subjects in a controlled setting and data from the same subjects
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in an uncontrolled environment with affective state. The significance of this study is that

it provides an understanding of the impact affective state has on gait identification. It

provides an understanding of the mathematical expressions and algorithms that can be

used to represent biological and behavioral characteristics for human gait recognition. It

reduces the problem of false match in identification. A mismatch due to a change in

psychological state of the individual during the identification process, which can create

type I and type II error rates, can render the method of AGI of little value (Wilson et al.,

2005).

Significance to Practice

It is improbable for laboratory tests of human gait to simulate all real-world

conditions of human walk patterns. Lab tests that are designed to simulate typical real-

world walking conditions but are done under a controlled environment cannot simulate

all possible walk patterns that a natural response to the demographical factors the outdoor

imposes on human walk patterns. This study used a practical test setting for real world

walk patterns that significantly enhanced the data collection for AGI.

Significance to Social Change

The terrorist attacks of 9/11 caused the United States Congress to approve the

integration of all US security agencies under a newly created agency called the

Department of Homeland Security (DHS). The DHS has a congressional mandate to

protect the American people from terrorist threats. In its efforts to battle terrorist attacks,

the DHS uses all available counterterrorist technologies to battle terrorism: The detection

of explosives in public spaces, the protection of transportation networks, the protection of
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critical infrastructure, electrical power grids, air travel and airports, and cyber networks

from attack, and the detection of agents of biological warfare. Gait biometrics technology

is among the emerging technologies being pursued by this governmental agency. While it

is a new field of research, it has the possibility of filling the gap in areas where

nonintrusive distance identification is required. A broader and deeper understanding of

the impact of affective state on gait identification could have a great social benefit.

Researchers could develop tools to aid law enforcement and counter terrorist agencies by

pursuing and identifying of terrorists. Such social change could have positive

consequences in the battle against criminals and terrorists.

Summary and Transition

Current biometric technology requires close contact or near proximity of the

subject for verification, identification, and recognition, making it infeasible to identify

criminals in public places like airports, parking lots, and stadiums. There is a need for a

complementary security architecture that can recognize and identify people

nonintrusively. Automatic gait identification relies on features recognizable from a

distance. It is nonintrusive and difficult to evade since people generally must walk from

one point to another. It has potential benefits for deployment in public areas such as

airports and parking lots. The issue of error variance due to a psychological state requires

detailed analysis and evaluation to mitigate the variance in a reliable biometrics

application.

Chapter 2 includes the history of gait identification, the different processes in

constructing a gait identification system, the two principal gait recognition techniques,
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and a literature review of different assessments of automatic gait biometrics. It further

highlights the different factors that can cause an affective state and the subsequent impact

on human walk patterns.

Chapter 3 includes a justification for the methodology for normalization of human

gait recognition with affective state as a covariate factor including justification of the

intended sample and the sample size, method of data collection and procedures, and data

management and analysis techniques. It also includes ethical considerations.

Chapter 4 includes the findings of the study, analysis, and interpretation of the research

study, while Chapter 5 includes the summary, conclusion, recommendations, and the

implications for social change.
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Chapter 2: Literature Review

This chapter includes a review of the current understanding of human gait system,

its formation and development, the use of gait as a biometric, justification of its use over

other biometric markers, and methods of data collection. It also includes a review of

current research in gait identification, including the psychological and medical

understanding of gait research, and different methodologies in gait identification.

Different affective states such as anger, depression, and joy are also discussed in this

chapter. The discussion of affective states lays the foundation for understanding the effect

of psychological state on gait. This chapter includes a review of causes of affective state,

the impact of affective state on the human gait system, and how to analyze gait and affect

biometrics. The chapter concludes with a summary of the different techniques in creating

a gait signature for biometrics.

Literature Search Strategy

The goal of this literature review was to offer a comprehensive review of the

theoretical and conceptual bases of gait identification and affective state as a covariate for

gait. It also provides an analysis of the tools used for gait identification and determines

the security implications that affect AGI as a biometric tool. Assumptions that underpin

the research of AGI and current issues confronting practitioners and researchers in the

field are examined and analyzed. It also offers a review of the conceptual framework and

methods. Finally, gaps in the literature are identified for further research.

The chapter is organized on aspects of AGI as follows: Use of gait as a biometric,

gait development, features and characteristics of the gait cycle, GC sequencing, research
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view of the human gait system, psychology of gait, current studies on gait, justification

and benefits, methodologies of gait identification, criticisms of AGI, a review of the

conceptual framework and methodology of past studies, and evaluation of public security

system and conclusions.

In developing the conceptual framework for this study, literature relevant to gait

identification was utilized. Libraries of local universities, EBSCOHost, Academic Search

Premier, Business Search Premier, ProQuest Dissertations, Theses-Full Text databases,

Google, and Bing were used to research the relevant literature on the subject. A subject-

based approach was used for the search. Search terms included mood, affect, emotion,

gait, identification, covariate and covariance, and moment.

Theoretical Foundation

The theoretical foundation for this study was based on Murray’s (1967) theory of

total walking cycle. Total walking cycle established the baseline for normal cadence; the

durations of stance, swing, and double-limb support in relation to different walking

speeds. External circumstances to walking as studied by many investigators including

Murray, indicate that the durations of time-supportive phases of the walking cycle

decreases with increased walking speeds. This served as the basis for determining the

variance in normal gait relative to affective state.

Murray was one of the first researchers to measure the kinematics of body

segments in multiple planes during walking (see Figure 1. Murray’s assessment of gait

analysis.). Kirtley (2006) explained that Murray’s research around normal gait served as a

foundation for many subsequent studies in other laboratories around the world. Kirtley
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emphasized Murray’s strong understanding of the normal gait pattern and her study of

gait disturbances in persons with neuromuscular and musculoskeletal pathology. Her

pioneering work in this area included longitudinal studies to assess therapeutic

interventions, such as joint arthroplasty and the design of prostheses. Her background as

a practicing physical therapist aided her in the measurement of many aspects of gait and

related activities, including muscle strength, center of pressure, posture, range of motion,

and forces applied to canes and crutches.

Figure 1. Murray’s assessment of gait analysis. (Kirtley, 2006).

Figure 1.Murray’s assessment of gait analysis., a gait cycle can be partitioned into four

periods:

1. Right stance period: When the right foot is in contact with the floor, beginning

from right heel strike (Photo A) and ending at right toe-off (Photo D).

2. Left swing period: When the left foot is not in contact with the floor,

beginning at left toe-off (Photo B) and ending at left heel strike (Photo C).
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3. Left stance period: When the left foot is in contact with the floor, beginning at

left heel strike (Photo C) and ending at left toe-off (Photo E).

4. Right swing period: When the right foot is not in contact with the floor,

beginning at right toe-off (Photo D) and ending at right heel strike (Photo F).

Moreover, the time between these periods (i.e., when both feet are in contact with the

floor) as noted in Photo G, is called double limb support. Free joint mobility and

appropriate muscle force increase walking efficiency (Bogey, 2007). Walking is a

complex human locomotive activity that involves coordination of lower and upper limbs.

Bogey (2007) described the movement of the lower limbs in human locomotion:

As the lower limbs move, (the torso) the arms and torso swing in the opposite

direction in coordination. As the body moves forward, one limb typically provides

support while the other limb is advanced in preparation for its role as the support

limb. At this stage, the opposite hand relative to the leg moves also in the same

direction. (p. 2)

Bogey described the gait cycle as comprising stance and swing phases, with the stance

phase further subdivided into three segments: (a) Initial double stance, (b) single limb

stance, and (c) terminal double limb stance. shows the different subphases of the gait

cycle as described by Bogey.
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Figure 2. Sub phases of the gait cycle (Nixon, Tan, & Chellappa, 2006).

Each double stance period accounts for 10% of the GC (Error! Reference

source not found.), while single stance typically represents 40% (60% total). The two

limbs typically do not share the load equally during double stance periods. Bogey (2007)

placed the swing phase for this limb at the remaining 40% of the GC. Ipsilateral swing

temporarily corresponds to single stance by the contralateral limb. He saw a slight

variation occurring in the percentage of stance and swing related to gait velocity. The

duration of each aspect of stance decreases as walking velocity increases. The transition

from walking to running is marked by the elimination of double support period(s).
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Figure 3. Relationship between temporal components of the walking cycle. (Source:

Human identification based on gait by Nixon et al. (2006).

A stride is the equivalent of a GC (see Figure 3). The duration of a stride is the

interval between sequential initial floor contacts by the same limb. A step is the interval

between sequential floor contacts by ipsilateral and contralateral limbs (Figure 3). Two

steps make up each GC, which is roughly symmetric in normal individuals.

According to Sutherland, Olshen, and Biden (1988), children at age one have

much higher step frequency (180 steps/minute) than adults. They do not have reciprocal

arm swing; arms are held in high guard. The hip joints remain externally rotated

throughout the gait cycle, and the knees remain flexed. The ankle is in plantarflexion at

heel strike, and dorsiflexion during swing phase is diminished. Sutherland et al. explained

that hip flexion, pelvic tilt, and hip abduction are all increased during swing phase.

Single-limb stance is reduced, and the base of support is wide.

At 18 months of age, nearly all children walk with heel strike and more than 70%

have reciprocal arm swing (Sutherland et al., 1988). The base of support narrows
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significantly but remains wider than a mature gait pattern. Two-year-old children have

less pelvic tilt, abduction, and external rotation of the hip. Nearly 80% have reciprocal

arm swing, and knee flexion during stance is more pronounced than in older walkers.

Sutherland et al. (1988) stipulated the duration of single-limb stance to be less than 34%,

and that the base support remains wide although it has narrowed somewhat.

Sutherland et al. (1988) asserted that in 3-year-old children, duration of single-

limb stance was about 3%; 90% have reciprocal arm swing; and the base of support was

proportionately like adults. Differences from a mature adult gait included a greater knee

flexion wave during stance and slightly increased pelvic rotation, hip joint rotation, and

hip abduction. However, Sutherland et al. argued that children have achieved an adult

pattern of joint angles throughout the gait cycle by this stage. Sutherland et al. added that

the gait of a 7-year-old child had the same differences from an adult's gait as a 3-year-old

does, but to a lesser degree. Adult cadence, step length, and velocity could not be

achieved until adequate growth occurs. The duration of single-limb stance in a 7-year-old

was about 38%. Sutherland et al. concluded that in adults, duration was about 39%.

Features and Characteristics of Gait Cycle

Murray (1967) described gait as a total walking cycle. This means that the action

of walking can be thought of as a periodic signal and not discrete and therefore satisfies

the conditions and characteristics of Fourier series. A GC is the time interval between

successive instances of initial foot-to-floor contact or heel strike for the same foot (Nixon,

Tan, & Chellappa, 2006). Each leg has two distinct periods: a stance phase, when the foot

is in contact with the floor; and a swing phase, when the foot is off the floor, moving
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forward to the next step (Figure 3). The cycle begins with the heel strike of one foot,

which marks the start of the stance phase. The ankle flexes to bring the foot flat on the

floor and the body weight is transferred onto it. The other leg swings through in front as

the heel lifts off the ground. As the body weight moves onto the other foot, the supporting

knee flexes. The remainder of the foot, which is now behind, lifts off the ground ending

the stance phase (Falco & Jiang, 2016).

Keen (1993) of Loyola University Medical Center argued that human locomotion,

with its idiosyncratic characteristics, has unique aspects that are apparent in every

individual. She asserted that family and friends could identify each other by their gaits

and an individual's gait varied according to affect and fatigue. These assertions support

the theoretical basis for this research: that the usefulness of gait as a biometric identifier

demands understanding in the effect of affective state on the identifiers.

Normal gait is cyclic (Keen, 1993) in that it involves movements in space that are

repeated over and over. For descriptive and analytic purposes, gait has been divided into

two phases: the stance phase and swing phase, and the phases have been further divided

into specific points as shown in Error! Reference source not found.. These phases

and points are uniformly present in normal gait (Keen, 1993).

The attainment of normal gait involves a period of physical maturation, learning

period, inborn reflexes, which contribute to balance and efficiency and an intact

musculoskeletal system as well as an intact neuromotor system coming together (Keen,

1993). Per Keen, gait maturation is attained very early in life. Most medical practitioners

believed that a mature gait is present in normal children by age five, while Sutherland et
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al. (1988), after analyzing 186 normal children, placed the maturation timeline much

earlier, when a mature gait pattern is well established in most children by age three. The

criteria Sutherland et al. used were: duration of single-limb stance, walking velocity,

cadence, step length, and ratio of pelvic span to ankle spread.

GC Sequencing

During locomotion, the lower extremity joints perform a consistent sequence of

motions. Each stride contains eight relevant phases. Stance is comprised of five gait

phases: initial contact, loading response, mid-stance, terminal stance, and pre-swing. The

remaining three phases occur during swing. The first two gait phases (0-10% GC) occur

during initial double support. These phases include initial contact and the loading

response. Initial contact is often referred to as heel strike. There are exceptions to

achievements of a heel strike. While this term is appropriate in normal gait, many people

with disabilities may achieve heel contact later in the GC. The joint motion during this

phase allows the transfer of weight onto the new stance phase leg while attenuating shock,

preserving gait velocity, and maintaining stability.

Swing phase by the contralateral limb corresponds with single support by the

ipsilateral limb to support body weight in the sagittal and coronal planes. The first half of

single support is termed mid-stance (10-30% GC) and is involved with progression of the

body center of mass over the support foot. This trend continues through terminal stance

(30-50% GC). This phase includes heel rise of the support foot and terminates with

contralateral foot contact. The final stance element, pre-swing (50-60% GC), is related

functionally more to the swing phase that follows than to the preceding stance phase
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events. Pre-swing begins with terminal double support and ends with toe-off of the

ipsilateral limb.

Conceptual Framework

Gait analysis, or motion analysis, is the quantitative laboratory assessment of

coordinated muscle function, typically requiring a dedicated facility and staff. At its core

is videotaped observation of a patient walking. Videos can be observed from several

visual planes at slow speed, revealing movements not detectable at normal speed. Joint

angles and various time-distance variables are measured, including step length, stride

length, cadence, and cycle time (Smith, 2007).

From early research in gait recognition came several different mathematical

models to fit body contour to rectangular shapes of known vectors and to interpolate a

derivation of the variance. Among such methods as described by Niyogi and Adelson

(1994) is the derivation of the gait signature from the spatio-temporal pattern of a

walking person. In taking out space XT dimensions’ translation and time, the motions of

the head and of the legs have different patterns. The patterns are processed to determine

the body motion’s bounding contours and then a five-stick model fitting is made. A

signature is derived by normalizing the fitted model for velocity and then by using linear

interpolation to derive normalized gait vectors (Nixon, Carter, Cunado, Huang, &

Stevenage, 1999). The vectors are applied to a database of different sequences of

different subjects, taken at various times during the day. Depending on the values used

for the weighting factors in a Euclidean distance metric, the classification rate varies from
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nearly 60% to just over 80%, equivalent to human performance. This rate of success

serves as an encouraging and promising start (Nixon, Tan, Chellappa, 2006).

Literature Review

This section includes an examination of the strategic framework of literature

review, highlighting the potential areas of focus for this study. In addition, it provided the

theoretical conceptualization and logical framework that anchored the research methods

used in the study as well as the assumptions that framed the methods.

According to Keen (1993), gait maturation is attained very early in life. The

attainment of normal gait involves physical maturation, learning, and inborn reflexes that

contribute to balance and efficiency in an intact musculoskeletal system and in an intact

neuromotor system (Keen, 1993). Most medical practitioners believed that a mature gait

is present in normal children by age five while Sutherland et al. (1980), after analyzing

186 normal children, placed the maturation timeline much earlier. Sutherland et al.

argued that a mature gait pattern was well established in most children by age three. The

criteria that they used were duration of single-limb stance, walking velocity, cadence,

step length, and ratio of pelvic span to ankle spread.

Keen (1993) asserted that family members and friends could easily identify each

other by their gaits and an individual's gait varied per affect and fatigue. These assertions

served as a guide in the selection of the literature. Normal gait is cyclic as argued by

Keen, in that it involves movements in space that are repeated over and over. For

descriptive and analytic purposes, Murray’s (1964) description of gait as a total walking

cycle served as the theoretical basis for this research. This meant that the action of
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walking could be thought of as a periodic signal which satisfied the conditions and

characteristics of Fourier series. A gait cycle (GC) is the time interval between successive

instances of initial foot-to-floor contact or heel strike for the same foot (Nixon et al.,

2006).

Psychology of Gait

Troscianko, Holmes, Stillman, Mirmehdi, and Wright (2001) asserted that the

recognition and interpretation of human body motion is a complex endeavor and poses a

challenging problem. They indicated that there are many variants of human body

movement, namely motions associated with the way people walk, communicate, and

perform tasks. Troscianko et al. argued that hidden in human body movement is

information about intent, affect, ideas, and even personality.

It is possible to predict criminal activity just by observing human-to-human

interaction through their body language (Nixon, Carter, Gordon, & Hayfron-Acquah,

2003). According to Yam, Nixon, and Carter (2002), it is even possible to identify a

person’s gender by his or her gait or general body posture as he or she walks. Nixon, Tan,

and Chellappa (2006) categorized human body movements into gait or posture, action,

gesture, and, at its most specific, sign language. They asserted that gait or posture is

usually an unconscious form of body movement, which can be observed when a person is

walking. They argued that actions are usually body movements that consciously interact

with objects, and that gesture is a subconscious communicative form, which aids the

ability of a person to communicate. Sign language is a conscious form of communicative

language between people. Therefore, all these forms of body movement can be
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interpreted as facets of human behavior, indicating that behavior can be conscious,

subconscious, communicative, or active. Amid these challenges, gait identification

research endeavors to isolate the unique characteristics attributable to the individual for

consistent identification.

Current Studies on Gait

This section includes current research on human gait identification and provides

an overview of the methods that are currently being tested as viable solutions on the

study of gait identification including background information on the development of

techniques that were precursors to gait research. As a young field of study, research

continues to add new ideas and understanding in the field of biometrics.

Static Image Study and Dynamic Image Study

According to Wang et al. (2002), static image study and dynamic image study are

the two principal gait recognition techniques that serve as the foundation for all other

research and the building blocks for mathematical and statistical methods. These two

techniques are derivations of gait biometric data source: shape and dynamics. Wang et al.

refer to shape as the configuration or shape of a person during the different walk phases,

and the dynamics as the rate of transition between the different walk phases

as the person moves from one point to another. Dynamics also refers to the bio-

mechanics of human locomotion.

The human gait identification research of gait is the synthesis of the two phases:

shape and dynamics, and this synthesis is a derivation of human modeling-based

approach. Model-based approaches (Wang, Ning, Tan, & Hu, 2003) usually demonstrate
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the static human body structure or motion and extract image feature characteristics to

map them into model components. For instance, Johnson and Bobick (2001) used

activity-specific static body parameters for gait recognition without directly analyzing

gait dynamics. Figure 4 shows both the dynamic feature extraction and static feature

extraction, which produces a dynamic template or a static template respectively. The

dynamic feature extraction takes either the model of the image or its motion or the

motion constraints to create joint angle trajectories. Static image study uses silhouette

extraction of the outer contours of the image to derive a Procrustes shape for analysis.

The data from either process goes through a pattern classification that results in a

numerical data called gait signature unique to the individual. The gait signature serves

either as a dynamic template or static template, which is used for future identification.

Figure 4. Overview of the approach.

Justification and Benefits

Biometric technology is becoming the foundation of an extensive array of highly

secure identification and personal verification solutions (Wang et al., 2003). As the level

of security breaches and transaction fraud increases, the need for highly secure

identification and personal verification technologies is becoming apparent. According to
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the hearing before the Subcommittee on Technology, Terrorism and Government

Information of the Senate Committee on the Judiciary, 107th Congress 1st Session (2001),

current biometric techniques have failed to resolve current threats. Current biometric

methods, though matured in their usage and applicability, do have shortcomings. They

require close contact with the subject for verification or recognition.

Surveillance camera images for face recognition are often too coarse to provide

any useful information. One area that seems to circumvent these challenges is gait

identification. Gait as a biometric also uses surveillance cameras to take images of the

suspect from a distance, analyze the gait signature derived from the images and then

compares the data with an existing template library for a match. The quality of the image

or lack of it does not pose a challenge for the image analysis (Nixon et al., 2006).

The usability and validity of gait recognition as a surveillance system emerges

from the fact that gait overcomes most of the limitations that other biometrics suffer from

(Nixon et al., 2006). Face, fingerprint and iris recognition can be obscured in most

situations where serious crimes are involved. Except in rare physiological circumstances,

everyone must walk to get from place to place. Criminals may cover up their faces to

avoid apprehension, but they will still have to walk from one point to another. The next

section examines the different methods used in gait identification.

Methodologies of Gait Identification

This section includes a discussion of the methodologies of gait identification,

including the methods used in both medical and biometric gait research. It also includes

an evaluation of the kinetics principles of physics and biomechanics and the kinematics
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patterns in gait analysis or motion analysis study. Gait analysis, or motion analysis study,

uses assessment (quantitative) and qualitative methods to measure and interpret a

coordinated muscle function (Nixon et al., 1999). For medical research, it is typically

done in a dedicated facility. At its core is videotaped observation of patients walking.

Videos can be observed from several visual planes at slow speed, revealing movements

not detectable at normal speed. Joint angles and various time-distance variables can be

measured, including step length, stride length, cadence, and cycle time.

Electromyography (EMG), assessed during walking, measures the timing and

intensity of muscle contractions. This allows determination of whether a certain muscle's

activity is normal, out of phase, continuous, or chronic. Such a controlled environment

with EMG for muscle contraction measurements cannot be practically used for a

surveillance purpose.

Evaluating Kinetics and Kinematics

For practical purposes, data collection must be nonintrusive. Gait identification

uses observations of video data to analyze kinematics and the kinetics of a subject (Nixon

et al., 2006). The data are used to generate a low level dimensional observation vector

sequence, which is then used to design a continuous density of Hidden Markov Models

(HMM) for everyone. Kinematics is the term used to describe movements of joints and

limbs such as angular displacement of joints and angular velocities and accelerations of

limb segments (Wang, Ning, Tan, & Hu, 2003). Evaluating kinetics involves the use of

principles of physics and biomechanics to explain the kinematics patterns observed and to

generate analyses that describe the forces generated during normal and abnormal gait



42

analysis.

The central element of kinematics assessment is a marker system that is used to

represent anatomic landmarks, which are then visualized and quantitatively assessed

during analysis of videotaped observations. Computer cameras oriented in several planes

compile movement data and the movement data are processed so that the motion of

joints and limbs can be assessed in three dimensions (Boyce & DiPrima, 2012; Nixon,

Tan, & Chellappa, 2006). The range and direction of motion of a joint can be isolated

from all the other simultaneous motions that are occurring during walking. Graphic plots

of individual joint and limb motion as a function of gait phase can be generated through

its kinetics (Nixon, Tan, & Chellappa, 2006).

Hough Transform Method

Using dynamic method, Nixon et al. (2003) demonstrated a technique using a new

velocity Hough Transform (HT) that can find moving objects by evidence gathering. This

adds to the HT’s known advantages of reliable performance in noise and/or occlusion.

Nixon, Carter, Grant, Gordon, and Hayfron-Acquah (2003) extended the velocity HT to

locate moving articulated objects, and demonstrated the modeling strategy as illustrated

in



43

Figure 5(a). They considered the position of the hip (Ix, Iy) as having a

negligible vertical motion and a constant horizontal velocity vIx with oscillatory

influence due to the rotation of the hip about the vertical axis. They then derived a model

of the horizontal velocity of the hip as:

Figure 5. (a) Model. (b) Extraction from single hip rotation.

Vx=VIx+ BIx Cos ( Ix t+ Ø Ix) (see fig. 5) Eqn. 2.1

A=BA Sin ( A t + Ø A) Eqn. 2.2

The horizontal motion of the pelvis is modeled to the equation 2.1. Here the

convergence of x-axis is the intercept, y-axis is slope, and B = coefficient for the

intercept Bx and the slop By. The two legs are modeled as a pair of articulated lines whose

internal angle A varies as in equation 2.2.
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The result of extracting the human from an image sequence is illustrated in

Figure 5(b). This can be used to good effect to find a moving pair of articulated

lines in an image sequence. It has the HT’s inbuilt advantages in terms of performance in

noise and in occlusion (i.e., when walking behind a lamppost). In fact, it affords an

appropriate initialization for statistical approaches, since it can isolate precisely the

region of interest.

Principal Component Analysis

Principal component analysis (PCA), also known as the discrete Karhunen-Loève

transform (KLT), the Hotelling transform or proper orthogonal decomposition (POD),

depending on the field of application, is a vector space transform often used to reduce

multidimensional data sets to lower dimensions for analysis. Per Shaw (2003), it is a way

of identifying patterns in data, and expressing the data in such a way as to highlight their

similarities and differences. Since patterns in data can be hard to find in data of high

dimension, where graphical representation is not available, PCA is a powerful tool for

analyzing the data.

The other main advantage of PCA is that once the patterns are found in the data,

the data can be compressed that is, by reducing the number of dimensions, without much
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loss of information. This technique is used in image compression as in gait modeling.

PCA was invented in 1901 by Pearson (Shaw, 2003) as a technique in exploratory data

analysis and for making predictive models. PCA method involves the calculation of the

eigenvalue decomposition of a data covariance matrix or singular value decomposition of

a data matrix, after mean centering the data for each attribute. The results of a PCA are

usually discussed in terms of component scores and loadings (Shaw, 2003).

Reducing multidimensional data sets is vital to the recognition purposes because

the size of recognition matrices can be vast and computationally expensive or infeasible.

An example was seen in Huang, Harris, and Nixon’s (1999) research. They created a

feature vector by concatenating the columns of each image into one feature vector, which

had a large dimension (> 1000), which would have been infeasible to use for recognition

purposes. PCA extracted the main variation in the feature vector and allowed an accurate

reconstruction of the data to be produced from only a few of the extracted feature values,

the technique reduced the amount of computation needed. The aim of using PCA was to

be able to represent most of the variation of the original variables using only a few

principal components.

Properties and Limitations of PCA

PCA is theoretically the optimal linear scheme, in terms of least mean square

error, for compressing a set of high dimensional vectors into a set of lower dimensional

vectors and then reconstructing the original set (Nixon et al., 2003). It is a non-parametric

analysis and the answer is unique for independent set of any hypothesis about data

probability distribution (Nixon et al. 2003). The two properties are regarded as weakness
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as well as strength, in that being non-parametric, no prior knowledge can be incorporated

and that PCA compressions often incur loss of information. The applicability of PCA is

limited by the assumptions (Shlens, 2005).

PCA based on the global covariance matrix of a full set of image data is not

sensitive to class structure in the data (Nixon et al. 2003). Linear Discriminant Analysis

(LDA), also called Canonical Analysis (CA), can be used to optimize the class

reparability of different face classes and improve the classification performance. Features

are obtained by maximizing between-class variation while minimizing within-class

variation. Despite its universal appeal, it has a high computational cost. A new approach

proposed by Huang, Harris and Nixon (1999) combined canonical space transformation

based on CA with eigenspace transformation (EST) for gait analysis. Combining EST

with canonical space transformation (CST), they demonstrate reduction in the data

dimensionality and optimize the class separability of different gait sequences

simultaneously. Hence, a statistical approach is born, to calculate automatic gait

recognition where the image sequence is described not by a model-based or by a motion-

based approach but by one that describes the motion content.

Face image representations based on PCA have been used successfully for

various face recognition applications. However, per Huang et al. (1999) PCA based on

the global covariance matrix of the full set of image data is not sensitive to class structure

in the data. To increase the discriminatory power of various facial features, they argued in

favor of using LDA to optimize the class separability of different face classes and

improve the classification performance. They explained the unfortunate high
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computational cost associated with LDA. Further, Huang et al. argued that the within-

class covariance matrix obtained via CA alone may be singular. Combining EST with

canonical space transformation (CST), they asserted that it reduced data dimensionality

and optimized class separability of different gait sequences simultaneously.

Given c training classes to be learned, where each class represents a walking

sequence of a single subject, x'i,j is the j-th image (of n pixels) in class i and Ni is the

number of images in i-th class. The total number of training images is:

NT= N1+ N 2+ . . .+ N C Eqn. 2.3

The training set is represented by

X’ 1,1…X’ 1.N, X’ 2, 1,…,X’c,Nc

First, the brightness of each sample image is normalized by

X i,j = X’ i,j / ||x’ i,j|| Eqn. 2.4

After normalization, the mean pixel value for the full image set is:

Eqn. 2.5

Then is to form an n NT XMatrix X, where each column is formed from each of

xi,j less the mean as:

EST uses the eigenvalues and eigenvectors, generated by the data covariance

matrix derived from the product XXT, to rotate the original data coordinates along the

direction of maximum variance. Calculating the eigenvalues and eigenvectors of the n X n

X = [ X1,1 – mx, …, X 1,N 1 – m x, …, X c,Nc – m x] Eqn. 2.6
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matrix XXT is computationally intractable for typical image sizes. Based on singular

value decomposition, it is possible to compute the eigenvalues of XTX, where the matrix

size is NTXN T which is much smaller than n X n .

Figure 6. Hip, knee, ankle angle.

The eigenvectors of XTX are become the orthogonal basis to span a new vector

space where each image can be projected to a single point in its space. According to the

theory of PCA, the image data can be approximated by taking only the largest

eigenvalues and their associated eigenvectors. This partial set of k eigenvectors spans an

eigenspace in which the points yi, j are the projections of the original images xi,j by the

eigenspace transformation matrix, [e1,...,ek], as k eigenvectors spans an eigenspace in

which the points yi,j are the projections of the original images xi,j by the eigenspace

transformation matrix, [e1,...,ek], as

y i,j = [e1,...,ek]T x i,j Eqn. 2.7

After this transformation, each original image can be approximated by the linear

combination of these eigenvectors.

Automatic Gait Recognition by Motion Feature-Based Measurement
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Using both qualitative and quantitative methods, motion information in an image

sequence can be collected to find features that describe the motion (Nixon et al., 1999).

Gait signature is derived from frequency components of the variation in the inclination of

the thigh, as extracted by computer vision techniques as shown in Figure 6 (Cunado,

Nash, Nixon, & Carter, 1999). A bi-pendular model is used as the leg motion is periodic

and each part of the leg (upper and lower) appears to have pendulum-like motion. Fourier

theory allows periodic signals to be represented by spectra. The gait motion of the lower

limbs can be described in such a way. The model of legs for gait motion allows these

rotation patterns to be treated as periodic signals, therefore Fourier transform techniques

can be used to obtain a spectrum. The spectra of different subjects can then be compared

for distinctive or unique characteristics.

Feature Extraction

This section explains the extraction of images for silhouette methods. It

demonstrates how silhouette boundaries can be obtained using a border-following

algorithm. It gives understanding to approaches in collecting the motion information in

an image sequence. It uses background subtraction technique in extracting foreground

objects or moving objects from video sequences. The most common background

subtraction methods are the silhouette extraction.

Silhouette Extraction and Representation

To segment the walking figure from the background image, a change detection

procedure is adopted to extract a single connectivity-moving region in each frame. An

important cue in determining underlying motion of a walking figure is his or her temporal
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changes of silhouette shape to analyze spatial contours. The extraction and representation

process of the silhouette is illustrated in Figure 7. The silhouette’s boundary can be

obtained using a border-following algorithm based on connectivity, and then compute its

shape centroid (XC, YC).

Figure 7. Silhouette creation.

Let the centroid be the origin of a two-dimensional (2-D) shape space. We can

unwrap the boundary as a set of pixel points (Xi, Yi) along the outer contour

counterclockwise in a complex coordinate. That is, each shape can be described as a

vector consisting of complex numbers with Nb boundary elements

Z= [Z1, Z2…,Zi,…ZNb]T , where Zi=Xi+j*yi. Eqn. 2.8

Each gait sequence will be accordingly transformed into a sequence of such 2-D

shape configurations.
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(a) Moving silhouette. (b) Boundary unwrapping.

Figure 8. Illustration of silhouette shape representation.

An alternative approach to collecting the motion information in an image sequence is to

find features and describe their motion.

Dynamic Motion Constraint Method

This section deals with the dynamic motion constrain method which is the

principal method used in this research for gait data collection and analysis. It shows how

signature construction is derived from edge-detected versions of the image sequence.

This method is selected in contrast to the silhouette method for its ease in the analysis and

evaluation of the hip, ankle, and knee angular variations and rotation of the image.

Gait signatures have been derived from frequency components of the variation in

inclination of the thigh, as extracted by computer vision techniques (Nixon et al). A bi-

pendular model is used as the leg motion is periodic and each part of the leg (upper and

lower) appears to have pendulum-like motion. Fourier theory allows periodic signals to
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be represented by spectra – the gait motion of the lower limbs can be described in such a

way (Vera et al., 1989).

Figure 9a. Figure 9b.

Figure 9. Upper leg (Figure 9a) angle signals and lower leg (Figure 9b)

angle signals for both legs recovered for one walker. (Left leg - solid, Right leg - dashed).

Analyzing and Recognizing Walking Figures in XYT.

(a) (b)

Figure 10. Hip frame in phase.
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Figure 11. Knee frame in phase.

The model of legs for gait motion allows these rotation patterns to be treated as

periodic signals and so Fourier transform techniques can be used to obtain a spectrum

(Hung, 2003). The spectra of different subjects can then be compared for distinctive, or

unique, characteristics. In earlier research, the spectrum of the variation of the thigh was

derived by edge detection, followed by line extraction, both derived from separate frames

(Nixon et al., 2006). Later, missing data are interpolated prior to derivation of the

biometric signature (Nixon et al., 2006).

(a) (b)
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Figure 12. (a) Frame of sequence with extracted result. (b) Spectral signatures for two

subjects.

This approach has been superseded by a method, which generates the signature

direct from edge-detected versions of the image sequence (Nixon et al., 2010). This again

uses the Velocity HT to collect data over the entire sequence of images, but extracts the

signature rather than just locating an articulated subject. The horizontal motion of the

pelvis is modeled like the equation 2.1 above. The inclination of the thighs is expressed

by a Fourier series as:

(t) = a0 + 2 N k=1 [bk cos(k 0t) – ck sin (k 0t)] Eqn. 2.9

This equation describes the variation in the angle shown in b.

Figure 9. To avoid the high dimensional accumulator space consistent with the

large number of parameters in equations 2.3 and 2.4, the velocity HT is applied by way of

a genetic algorithm. A single frame of a sequence with the result superimposed (i.e., the

line calculated for that frame by the extracted parameters) is shown in

Figure 12 (a). The resulting descriptors are used to calculate the transform data.

The magnitude spectrum drops to near zero above the fifth harmonic, again agreeing with

earlier medical work. The phase spectra are significantly different than the magnitude

spectra but some phase components carry little information since their respective

magnitude component is very small (Nixon et al., 2010). As such, the phase data is

weighted by the magnitude data to reduce contributions where the magnitude is small.

This gives the signature, as shown in



55

Figure 12 (b) for two subjects. The k-nearest neighbor rule was then used to

classify the transform data using the ‘leave one out’ rule, for k = 3 and for k = 1 (Nixon et

al., 2010). Four video sequences are acquired for each of ten subjects. The correct

classification rates (CCR) are summarized as shown in Table 1, which gives analysis for

classification by magnitude spectra alone, and for multiplying the magnitude spectra by

the phase, both for two values of k. Note that the magnitude component of the FT is time-

shift invariant; it will retain its spectral envelope regardless of where in time the FT is

performed. The phase component does not share this characteristic, and a time shift in the

signal will change the shape of the phase envelope. Accordingly, the rotation patterns

were aligned to start at the same point, to allow phase comparison. Magnitude plots do

not confer discriminatory ability whereas the phase plots do. The multiplication appears

reasonable, since gait is not characterized by extent of flexion alone but is controlled by

musculature that, in turn, controls the way the limbs move. Accordingly, there is physical

constraint on the way people move their limbs. They cannot use phase alone, however,

since some of the phase components occur at frequencies for which the magnitude

component is too low to be of consequence. By multiplication of the spectra, the phase

for significant magnitude components is retained. Clearly, in this analysis, using phase-

weighted magnitude spectra provides a much better classification rate (100%) than use of

magnitude spectra alone (80%), for both values of k (Nixon et al., 2006).
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Table 1

Model-Based Classification Performance

No. of Nearest Neighbors Magnitude CCR Phase X Magnitude CCR

k = 1 80% 100%

K = 3 80% 100%

The advantages of model-based approaches are that they offer the ability to derive

gait signatures directly from model parameters. The disadvantage is that the

computational cost is high due to the complex matching and searching.

Synthesis of Cases Related to the Research Study

This section includes the review of other biometric technologies that have

acceptance in the field of forensic science. They include iris identification, fingerprint,

voice, and facial identification systems. These are competing technologies that are

established both in usage and in acceptance in the field of biometrics and forensic science.

The fingerprint recognition technology identifies a person by comparing the code

created from the fingerprint image captured at access attempt as livescan template to one

or more pre-registered codes referred to as reference templates. This comparison is based

on several minutiae characteristic points of the fingerprint. The reference templates can

be stored in a central authentication database, or on a personal smart card for increased

privacy and security.

Fingerprint identification has been used as a science in investigative forensics for

more than a century. Within the past 20 years, the advancement and proliferation in the
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use of personal computers and understanding of the fingerprint has made it possible to

use fingerprint identification in civil applications, such as logical and physical access

control. Of the various biometric technologies introduced for identification, none has as

strong acceptance and well-documented background as fingerprint recognition.

While some technologies have had less visibility and acceptance, such as the

retinal scanning and iris identification, others are slowly finding their place on the

biometric scene. Among them is a maturing technology, voice recognition, which may

have an advantage in telephone banking. Yet these competing technologies lag

fingerprint recognition in the field of physical access control.

Fingerprint-based authentication is by far the most often selected biometric

security measure, dominating most of the market. There is an abundance of applications

that require the use of a password, PIN, ID card, key, another form of identification, or a

combination thereof. Biometrics is far superior to other common means of confirming

identity, such as tokens (something one possesses) or passwords (something one knows).

Tokens (drivers' licenses, for example) and passwords (Social Security numbers, for

example) cannot ensure positive identification of a person. Tokens are routinely

counterfeited and stolen. Passwords are routinely forgotten, left in plain sight, and stolen.

Unlike tokens or passwords, biometric identifiers are inextricably linked to persons

themselves and therefore cannot be forgotten, counterfeited, or stolen. In his review of

the above technologies for this study, the author found several shortcomings to

effectively meet the challenges of the 21st century law enforcement in the recognition and

identification of people and in resolving crimes.
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The reviewed technologies lack the ability to identify people from a distance non-

intrusively. These applications of potential biometric use fail to solve the problem of

public security identification of known criminals non-intrusively. In addition, in the wake

of 9/11 terrorist attack of New York and other parts of the United States, new methods of

identification that significantly enhance law enforcements’ ability to recognize attackers

as they approach are becoming essential. Consider the potential applications of gait

biometrics by the military to recognize suicide bombers through cross-check surveillance

images against a database of known suicide bombers. The author found gait as alternative

or a complementary identification technology that fills this gap. The attraction of using

gait as a biometric is that it typifies the motion characteristics that are uniquely specific to

the individual. It does not require any direct contact with the individual and is hence

nonintrusive.

Gait and Affective State

This section addressed the issue of human affective state and locomotion. The

convergence of affective state and locomotion was central to this study. This study

theorized the idea that understanding of gait and affective state will help in the research

and study of AGI. Such a system has great implications in public place security.

Human Affective State and Locomotion

With the increasing use of CCTV cameras for video surveillance at airports,

subways, and other public places, there is a need for security personnel monitoring scenes

from these cameras to be able to interpret the different body gestures. A system that could

automatically interpret gestures would be extremely useful for this (Hung, 2003).Most
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studies on gesture and non-articulated body language focused on the face. In nonintrusive

distance gait recognition, the purpose is to use the study of gait patterns as a method of

feature extraction using temporal frames to recognize the subject. Use of facial

expressions undermines the usefulness of gait identification as it has been established that

facial imagery could be disguised or elusive. In this study, I attempted to use changes in

walk patterns caused by psychological factors such as affective state to interpolate

existing frames of data for a match. Extrapolation of model gait pattern involves the use

of mathematical analysis of changes in ankle flexion and cadence (Nixon et al., 2006) to

make determinations of normal walk pattern and qualitative analysis of affective state on

subsequent walk patterns.

The concept that people can possibly predict criminal activity just by observing

human-to-human interaction through body language (Troscianko et al., 2001) is not new.

It is also possible to identify a person’s gender by his or her gait or general posture of his

or her body when he or she walks. Prediction of intent based on observable human-to-

human interaction through body language for biometrics will be subjective and unreliable.

Troscianko et al. (2001) identified human body movement in three categories: gait or

posture, action, gesture, and, at its most specific, sign language. Troscianko et al. (2001)

considered gait or posture as an unconscious form of body movement, which could be

observed when a person is walking.

The recognition and interpretation of human body motion must be studied under a

contextual framework of psycho-physiological activity. There are many forms of human

body movements, namely motions associated with the way we walk, communicate, and
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perform tasks that are expressed through human emotions. Huang et al.’s (1999)

argument that hidden in human body movement is information about the intent, affect,

ideas, and even personality shows that expression of affect as a communication medium

is difficult to decipher through automatic recognition system. Although current research

in Human Computer Interface (HCI) indicate that it is possible to build an emotionally

intelligent system capable of expressing and responding to human emotions (Picard,

1997), there is a challenge to such a system’s ability to automatically recognize affective

state, which is emotional activity controlled by neuromuscular and physiological activity.

Added to this challenge is the need to distinguish between causal information context and

individual traits and behaviors, as well as information on the person’s recognizable

bodily reaction to different environmental and situational factors. The terms affect,

emotion, and mood are often used interchangeably without clear definition (Forgas, 1995).

In this study, I used the term affect as the most generalized of the three terms. It was used

to refer to both emotions and moods.

Affect, which is a result of neurological/chemical change in human brain cell

receptors, diminishes the coordination of the muscles and temporarily changes the gait.

There are several neurological and pathophysiological conditions that can change a

person’s mood. Among them is seasonal affective disorder (SAD), a condition in which

depression in fall and winter alternates with non-depressed periods in spring and summer.

Various hypotheses related to the pathophysiology of SAD have been proposed.

One of these hypotheses suggests that abnormalities of hypothalamic-pituitary-adrenal

(HPA)-axis function may contribute to the pathogenesis of SAD (Hauger & Datzenberg,
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2000). The HPA axis controls the secretion of corticotropin-releasing hormone (CRH),

corticotropin (adrenocorticotropic hormone), and cortisol (Hauger & Datzenberg, 2000;

Tsigos & Chrousos, 2002). CRH is secreted from the paraventricular nucleus of the

hypothalamus as well as from extrahypothalamic sites. It acts on the anterior pituitary

gland to cause the release of corticotropin into the bloodstream, where it acts on the

adrenal cortex to cause the production and release of cortisol into the bloodstream

(Hauger & Datzenberg, 2000). The degree to which season causes changes in affective

state, energy, sleep, appetite, food preference, or desire to socialize with others has been

well studied (Hung, 2003).

Identified from these studies was the notion that affective state behavior can be

conscious, subconscious, communicative, or active. Developments in computer vision

systems has not been perfected enough to solve the problem of interpreting human body

movements visually as contextual factors continue to pose a challenge. Another layer of

complexity lies in human movement, namely spatial and temporal variations (Hung,

2003). Human movements are communicative and convey information behavioral signals.

But the same gesture can vary greatly from person to person, from culture to culture, and

sometimes even in the same individual. This view of human movement and affective

state interpretation does not lend itself easily to universal consensus for biometric study.

A study of the dimension of spatial and time, as related to the temporal dynamics of body

movement, can provide a quantitative interpretation that will be useful to biometrics

study (Wang et al., 2003). To do so, complex communicated messages of behavioral
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signals that are affective and attitudinal must be viewed in relation to a normal affective

state if the study of AGI and its covariate factor is to be deterministic.

According to Huang et al. (1999), temporal information about a gesture is

important because it indicates where a gesture begins and ends. Without this information,

it would be difficult to distinguish one gesture from another, particularly because many

gestures are constructed from a sequence of common trajectories (Huang et al., 1999),

which are conscious or subconscious reactions to neurological control. Huang et al.’s

example is that, pointing to the right and waving with the right hand begins with the same

motion (i.e., lifting the hand above the waist and then moving the hand and arm back to

its original position). The distinguishing features of these two gestures per Huang et al.

are only seen halfway through the gesture-making process. A method of segmenting

gestures per where they begin and end and their component parts, might aid the

recognition process. However, it does not provide any cue to determining context of

affective state.

Defining Affective State

Affective state is distinguishable from emotion and mood regulation from coping

(Larsen, 2000). A model of affective state regulation draws on principles of control

theory, which distinguishes between maximizing pleasure and minimizing psychic pain,

and emphasizes individual differences in component sub-processes. Affective state

differs from simple emotions in that they are less specific, often less intense, less likely to

be triggered by a stimulus or event, and longer lasting (Hayer, 1989). Affective state

generally has either a positive or negative valence. In other words, people often speak of
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being in a good affective state or a bad state. Unlike acute emotions, such as fear and

surprise, the affective state generally lasts for hours or days. Affective state also differs

from temperament or personality traits that are even more general and longer lasting.

However, personality traits (e.g. Optimism, Neuroticism) tend to predispose certain types

of affects.

Affect is an internal, subjective state, but it often can be inferred from posture and

other behaviors. Thayer (1996) argued that affect is a product of two dimensions, energy

and tension. A person can be energetic or tired while also being tense or calm. Per Thayer,

people feel best when they are in a calm-energy state. They feel worse when in a tense-

tired state. People often use food to regulate affect. Thayer identified a fundamental food-

affect connection (Thayer, 2001) and advised against the reliance on food as an affect

regulator. The low energy arousal coupled with tension, as experienced in a bad affect,

can be counteracted by walking. Thayer suggested walking enhanced happiness.

Etymologically, affect derives from the Old English mōd, which denoted military courage,

but could also refer to a person's humor, temper, or disposition at a time. The cognate

Gothic mōds translates to both θυμος "mood, spiritedness" and οργη "anger" (Merriam-

Webster online dictionary). Frijda (1986) indicated that affective state, mood, or emotion

are interchangeable and have the same meaning: a temporary state of mind or temper, a

sullen or gloomy state of mind, especially when temporary, a prevailing atmosphere or

feeling. I adopted Frijda’s definition of affective state and uses affect, mood, or emotion

interchangeably.
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Affect Disorder

According to Shipko (2001), anxiety and panic disorders are prevalent in our

society due to genetic and environmental factors. Anxiety and panic disorders belong to a

spectrum of conditions that have also been associated with disturbances in a region of the

nervous system called the vestibular system and cerebellum. These areas are important

for posture, balance, spatial orientation and controlling movement of the head, spine and

eyes and are often neglected in the typical assessment and management of these disorders.

Shipko suggested that the vestibular system and the cerebellum are also important for

regulating cardiac activity and breathing and project to areas of the nervous system that

control affect and behavior. He explained that this is one mechanism to explain why

patients with balance problems often complain of anxiety and breathing difficulties, and

vice versa – patients with anxiety disorders often complain of balance problems (Shipko

et al., 2003).

In a detailed review of the literature concerning the effect of rehabilitation

exercises on vestibular adaptation, Black and Pesznecker (2003) found that vestibular

rehabilitation outcome is negatively affected by anxiety, depression and cognitive

dysfunction, suggesting a role for affect and cognition in modulating balance and/or

spatial processing. Therefore, one can conclude that affect change can have a direct effect

on the walk pattern of an individual.

Normal gait is cyclic; that is, it involves movements in space that are repeated

over and over. For descriptive and analytic purposes, gait has been divided into two

phases: the stance phase and swing phase, and the phases have been further divided into
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specific points. These phases and points are uniformly present in normal gait. Human

locomotion also has idiosyncratic characteristics with unique aspects apparent in every

individual (Keen, 1993).

Keen (1993) argued that an individual's gait varied according to speed, affect,

footwear and fatigue. The attainment of locomotor skills is a complicated process

dependent upon an intact neuromotor and musculoskeletal system. A growing body of

data suggests that affect disorders arise from abnormalities in synaptic and neuronal

plasticity cascades, leading to aberrant information processing in critical synapses and

circuits (Carlos, Zarate, Husseini, & Manji, 2008).

Protein Kinase C

Protein Kinase C (PKC) is a family of 12 closely and structurally related isozyme

subspecies with a heterogeneous distribution throughout the body that depends on

isoforms (Casabona, 1997; Tanaka & Nishizuka, 1994). PKC acts as a transducer of

cellular signals that promote lipid hydrolysis. This enzyme is recruited to the plasma

membrane by diacylglycerol and often by calcium. The enzyme is activated by

diacylglycerol and phospholipid (usually PS). It undergoes a conformational change upon

binding to the membrane. PKC has a varied distribution and plays a significant role in

regulating synaptic facets of neurotransmission. Several functions for PKC have been

identified to include regulation of neuronal excitability, neurotransmitter release, long-

term alterations in gene expression and plasticity, and mediation of intracellular signaling

pathways (Manji & Chen, 2002; Zhou, Zarate, & Manji, 2006).
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PKC research is beyond the scope of this review. It is noted here, however,

because it may provide another perspective of impact in the research of degree of affect

disorder on gait identification. Some balance problems and dizziness can be caused by

problems in a part of the nervous system called the vestibular system. The vestibular

system includes a group of nerve cells that receive information from the eyes and eye

muscles, the balance organ of the inner ear, and from joints and muscles especially in the

spine. It is important for proper balance and spatial awareness that the vestibular system

receives adequate information from these areas.

The vestibular system and another part of the nervous system called the

cerebellum are intimately related to one another. Information from both areas is fed to the

opposite side of the brain, especially in an area that is important for spatial and sensory

awareness. They also help to control posture, balance, coordination and eye movements

(such as visual tracking) and can heavily influence the autonomic nervous system,

demonstrating the impact of the nervous system on gait.

Emotion Detection

This section includes methods of detecting emotion and given scenarios that

impacts human affect state. Research on body language and facial expressions, variance

in the expression of human behavior, and environmental impact on affect state is also

considered in this section. These are visual interpretations of external expressions that

dynamically affect emotions.
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Research View of Emotion

Researchers explored many of the channels that people use to form impressions of

each other’s emotions—facial expression, paralinguistics, gesture, choice of words, and

actions. Physiological correlates of affect also exert a special fascination. High

recognition rates can be obtained with acted or carefully elicited data, but the field has

moved on to deal with naturalistic material. There it is difficult to exceed 80% success in

a binary distinction (Izard, 1994). According to Izard multimodal integration is the best

key to real improvement in the study and understanding in the expression of human

emotion.

Variance of Expressive Behavior

The existence of multiple channels is critical in affect studies. A review of early

Embodied Conversational Agents (ECAs) shows a conveyance of emotion using analyses

of static faces to depict full blown emotions (Cowie & Cornelius, 2003; Ekaman, 1999;

Izard, 1994). The results are recognizable but disconcerting. Instead of explanations of

human behavioral signals in terms of internal states, ethologists focus on consequences of

behavioral displays for interpersonal interaction. An extreme within the ethological line

of thought is the social constructivists’ argument that emotions are socially constructed

ways of interpreting and responding to classes of situations. According to Fridlund

(1997), facial expressions should not be labeled in terms of emotions but in terms of

behavioral ecology interpretations, which explains the influence a certain expression has

in a context. Thus, an angry face should not be interpreted as anger but as back-off-or-I-
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will-attack. However, as proposed by Izard (1994), one may feel angry without the

slightest intention of attacking anyone.

Researchers moved on to study the rich range of signals that transmit emotion-

related information in interactions. Specifically, researchers studied the ways emotions

are coordinated and dependent on another party’s actions (Ekaman et al., 1983;

Zimmermann, Guttormsen, Danuser, & Gomez, 2005) and that physiological signals

exhibit characteristic patterns for specific affective states. This led to the study of topics

such as eye movements, back channeling, gesture, and idle movements (Ambady &

Rosenthal, 1992). Coordinating such behavior is a precondition for believable

interactions. Evidence in literature showed a correlation between physiological variables

and affective context of valence and arousal (Gomez & Danuser, 2002; Lang et al., 1993).

Zimmerman et al. (2005) suggested that emotion was fundamentally organized by

physiological variables and affective dimensions of valence and arousal such that

physiological signals such as skin conductance, heart rate, blood pressure, respiration,

papillary dilation, electroencephalography (EEG), or muscle action potentials can provide

information regarding the intensity and quality of an individual’s internal affect

experience. External factors such as color also influence an individual’s psychological

state.

Color of the Environment

According to Eiseman (2006), color influences a person’s affective state. Color

can soothe, flirt, excite, or even threaten. Eiseman, a color consultant and author of More

Alive with Color, explained the impact of color on affect. Below are few examples:
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Red, the most emotionally intense color, stimulates a faster heartbeat and

breathing.

Black is the color of authority and power. It is popular in fashion because it makes

people appear thinner. Black absorbs other colors. Black also implies submission.

White reflects light and is considered a summer color.

Blue causes the opposite reaction as red. Peaceful, tranquil blue causes the body

to calm down, so it is often used in bedrooms. It can have unintended effect also as blue

can be cold and depressing. Fashion consultants recommend wearing blue to job

interviews because it symbolizes loyalty. People are more productive in blue rooms.

Studies show weightlifters can handle heavier weights in blue gyms.

Another factor that influences one’s affect is music. Music has been used as a

diversion to distract one’s focus, thought process, and affect.

Music and Affect

Good music has a direct influence on a person's emotions. The research findings

of Saarikallio and Erkkila (2007) suggested that music is a simple tool for tweaking our

affective states. Their research on ways people use music to control and improve their

affects highlights seven important points as they interviewed eight adolescents from

Finland:

Entertainment - At the most fundamental level, music provides stimulation. It lifts

the affect before going out for social events; it helps pass the time while doing chores;

and it accompanies the listener while he or she is traveling, reading, or surfing the web.

Revival - Music revitalizes listeners in the morning and calms them in the evening.
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Strong sensation - Music can provide deep, thrilling emotional experiences,

particularly while performing on the stage or romanticizing.

Diversion - Music distracts the mind from unpleasant thoughts, which can easily

fill the silence. Modern literature makes brief reference to the use of music as a

diversionary tool in pain control, such as in its therapeutic use in the care of the elderly in

nursing homes (Nurs, 1997).

Discharge - Music matching deep affects can release emotions: purging and

cleansing.

Mental work - Music encourages daydreaming, during which the listener may

slide into old memories, and explore his or her past.

Solace - Shared emotion, shared experience, a connection to someone lost.

These seven strategies facilitated two goals: controlling and improving affect.

Music is versatile; it can accomplish more than one goal at a time. Uplifting music can

divert, entertain, and revive. Sad, soulful music can provide solace, encourage mental

work, and discharge emotions. The examples are endless. Many of Saarikallio and

Erkkila’s (2007) findings confirmed previous research. For example, distraction was

considered one of the most effective strategies for regulating affect. Music has also been

strongly connected to reflective states. People listen to music to influence or enforce their

affective states. In this research, music was used as a variable to regulate the test

participants’ affects, either to enforce affective state or divert attention from their

environment.
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One of the few negative connections Saarikallio and Erkkila (2007) considered

was that sad music could promote rumination, the constant examination of emotional

state. This can lead to less clarity. On the contrary, however, Saarikallio and Erkila found

that music increased the understanding of feelings, an affect not associated with

rumination.

Use of Covariate to Reduce Noise

One important objective of social research is to make a statistical adjustment,

which refers to adjusting one variable based on its covariance with another variable

(Nixon et al., 2010). The challenge in gait identification is the complexity and dynamics

of human behavior coupled with affective change. These were covariate factors that

could alter a normal gait system. Such factors in this study were considered as noise. The

goal of this study was to isolate such noise factors through signal analysis and

interpolation methods. Chapter 3 includes a discussion of the research methods.

Discussion of Fourier Series

In mathematics, a Fourier series can generate a periodic function or periodic

signal into a sum of simple oscillating functions, namely sines and cosines (or complex

exponentials). Fourier series is a branch of Fourier analysis. Joseph Fourier (1768–1830)

first introduced this analysis in his attempt to solve heat equation in a metal plate. Its

discovery in mathematics led to many modern mathematical and scientific theories such

as Lebesgue integration.

The heat equation is a partial differential equation. Prior to Fourier's (1822) work,

there was no known solution to the heat equation in a general situation, although
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solutions were known if the heat source behaved in a simple way; in particular, if the heat

source was a sine or cosine wave. Those simple solutions were sometimes called eigen

solutions.

The Fourier series is based on the theory that most signals, and all engineering

signals, can be represented as a sum of sine waves including square waves and triangle

waves. This has great implications for engineering. The Fourier series gives a pictorial

representation of the content of a given signal as is easily noted in a transition in or

change of data which has a resultant change of high frequency of the sine wave (only

high-frequency sine waves have the fast-changing edge required). In image processing by

cutting out the low frequencies, it is easy to pick out the edges of the image. Another

usage of a given sine wave with noise at a given frequency (e.g., 50 or 60Hz) was to pick

apart the data to its constituent parts, remove the noise frequency, then put the rest of the

signals back together to get a signal without the noise, as commonly used in audio.

In this research study, the Fourier series was used to analyze the motional sine

wave signals generated from the data collected from human gait. This was possible

because human gait has a motion that continued with a phase and time frequency. This

allowed the creation of a function from the resultant frequency domain with amplitude.

Criticisms of Automatic Gait Identification

Automatic Gait Identification (AGI) has many challenges. Research in AGI

continues to be done in a dedicated facility and in a controlled environment where

covariate factors are invariably negligible or deliberately excluded. At the core of AGI

research are videotaped observations of test participants walking. These videos can be
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observed from different visual planes at slow speed, which reveal movements not

detectable at normal speed. Joint angles and various time-distance variables can be

measured, including step length, stride length, cadence, and cycle time. Human gait has

both elastic deformation and plastic deformation. Covariate factors such as footwear,

clothes, terrain, and medical condition create elastic deformations to a person’s gait. This

type of reversible deformation produces a variant GC once the forces are no longer

applied. Fingerprints as identification signature system are static for a longer period if not

permanent in the life of the fingerprints for most people, and are less affected by the cited

covariate conditions. Elastic deformations to an individual’s gait pose a grave challenge

to data collection for AGI data library. Since future gait signatures, just like fingerprints,

are collated with prior data in a library for a match, any variation in gait signature at the

onset of data collection or a future time poses grave challenge to the reliability of AGI

and produces a false positive or false negative identification. Added to the challenge of

unpredictable variations in GC is a plastic deformation, a not reversible deformation,

which affects human gait with age. It renders prior GC in a data library useless.

Muscle contractions have an impact on gait. Electromyography (EMG), used to

assess muscle contractions during walking to measure the timing and intensity of muscle

contractions, is infeasible for practical application in AGI. EMG, though it is effective in

a controlled environment to determine whether a certain muscle's activity is normal, out

of phase, continuous, or chronic, cannot be used to identify a criminal in a crowd from

surveillance camera or video. Such a controlled environment with EMG for muscle

contraction measurements cannot be practically used for AGI purposes.
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Need for Public Identification System

As the level of security breaches increases at nuclear facilities and threat of

terrorism, the need for highly secure identification and personal verification technologies

is becoming apparent. Modern security crimes require solutions that are comprehensive,

nonintruding, and that can’t be evaded (Wang et al., 2003). Classical biometric

techniques such as fingerprint and iris identification are not enough. This paper uses a

view-based approach to recognize humans through their gait. The dynamic angular

features of a walking person are chosen as the image extract and variables of analysis.

Such analyses draw from the knowledge of many different sciences. It requires the

knowledge of kinetics, kinematics, and understanding of the musculoskeletal system as

well as neuromotor system.

Events of 9/11 heightened awareness of vulnerabilities in the security systems of

public places such as airports, stadiums, and parking lots. A terrorist or a criminal cannot

be identified easily in public places by the current invasive biometrics systems. Current

biometric architecture has limitations in recognizing or identifying people from a distance.

AGI can provide a complementary security architecture that is not invasive and less

susceptible to evasion. Several studies suggest that human gait has biometric

characteristics that can be used in identifying people from a distance (Wang et al., 2003).

As criminals and terrorists have become more sophisticated in their ability to disguise

their identity at airports and other public places, AGI offers a viable solution for

identification and recognition management from a distance. According to Wang et al.

(2003), the identification and recognition process is done with surveillance cameras,
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which take photographs of people’s movements. These were studied with greater scrutiny

for features characterized as markers unique to the individuals for identification and

recognition.

Summary and Conclusion

The first thing to assess when considering a type of biometric is its accuracy. This

pertains both to its false positive rate as well as its false negative rate. Human gait has

unique features ideal for distance identification as a biometric. However, affective state

can temporarily alter the features unique to gait identification resulting in inaccuracies. In

a controlled environment, human walk patterns as biometric markers could be analyzed

for identification (Troscianko et al., 2001). Huang et al. (1999) argued that human walk

patterns contained information about personality and that this information could be

deciphered. Current research in human computer interface has shown it is possible to

build an emotionally intelligent system capable of expressing and responding to human

emotions (Picard, 1997). This study carried the assertion further using quantitative

methods to analyze the impact of affective change upon gait identification. It sought to

understand and analyze the effect of affective state on the recognition and identification

process of AGI. It also sought to provide an understanding of the covariate factor for gait

identification.

The next chapter includes the research methods and how this study created a gait

signature using a dynamic feature model based approach to extract data. It includes the

research methodology in which temporal and spatial metrics created from data extracted

from the model, such as variation in angles of the limb or the amplitude of a person’s
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walking pattern, are used to create a gait signature for the study. The experiment

participants were tested for affective change before the experiment using the Profile of

Mood States (POMS) questionnaire (see Appendix A). The different datasets were

evaluated against a baseline dataset for variations in gait signal. The study helped to

identify regions in GC that were susceptible to change due to change in affective state.

The analysis enhances understanding of the inaccuracies in data gathering in gait

biometrics and how to compensate for the inaccuracies.
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Chapter 3: Research Method

This study looked at differences in the success rate of AGI due to affective state

in an uncontrolled environment. Current literature on gait identification showed that

studies were conducted in a controlled environment. Such studies did not account for

convariate factors that impacted the success rate of AGI. A controlled study of gait

identification did not consider the existence of various sources of variations due to

covariance such as viewpoint, walking surface, affective state, or clothing. The purpose

of this study was to fill the gap in the literature regarding the understanding of the impact

of affective state on gait biometrics in an uncontrolled environment. This study provided

a quantitative analysis and an understanding of the impact of affective state on gait

biometrics datasets.

Chapter 3 includes the research design method, theoretical method of inquiry,

justification of the research method, the justification of the intended sample and the

sample size, method of data collection and procedures, data management, data analysis

technique and research method, issues of ethical considerations, reliability and validity,

and instrumentation. As stated in Chapter 1, the research questions that grounded this

study are: What is the success rate of gait identification with affective state as a covariate

factor in an uncontrolled environment? Which areas of gait are susceptible to change due

to affective state? Responses to these questions from this research are important in

providing the knowledge and understanding of AGI in biometric identification.

As research in AGI grows, understanding of factors causing variations in walk

patterns becomes critical. The ability to mitigate changes in identification markers
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resulting from externalities provided researchers and users of AGI with an understanding

of the science of gait identification and the viability of gait as an identification system for

mainstream use. The results from this study would provide biometric identification

researchers the understanding to compensate for changes in gait signature due to the

covariate factor affective state and to identify those who try to fool the identification

process. The goal of this study was to examine an AGI percent success rate in the use of

identification, verification, and recognition of people with covariate factors of affective

state.

Research Design and Rationale

This section includes the research design of the study. It addresses the theoretical

method of inquiry that grounded the study, justification of the research method, the

sample and sample size, the justification of the sample size, methods of data collection,

data analysis, the nature of the narrative report, issues of ethics and bias, instrumentation,

as well as participants’ protection. The research does not reveal to the participants the

real intention of the study until the end so as not to influence their behavior.

Chae (2016) used quantitative gait analysis, including dynamic EMG, to provide

insight into the cause of gait deviation and then made determinations on the causes of gait

variations. He indicated that, to successfully make determinations on the causes of gait

variations, the clinician must be able to identify how the gait pattern differs from normal

walking through quantitative gait analysis. Azar, Canale, ‎ and Beaty (2017) addressed

the use of modern quantitative gait analysis to identify change variations in gaits. In this

context, two time-domain correlation based gait identification schemes were presented.
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Methodology

This study used the quantitative method of inquiry. The study used mathematical

techniques to analyze video images of the gait cycles of 24 subjects in an uncontrolled

real-world scenario setting. This created a basis for mathematical analysis. Assumptions

were made from the video images to explain the walk patterns and affective change,

while the mathematical analysis used transfer functions to produce the final image

analysis. The dataset from the 24 participants involved an affective state of Anger-

Hostility. Each participant was recorded from a distance not less than 20 feet and from

the right sagittal walking view, measured in one affective scenario, and another

measurement under normal affect state acted as a control variable. Each participant was

measured for the same affective state and normal state. Three video sequences were taken

for the affective state, and an average of the three was taken to represent the affective

state. The same process applied to the normal state of the control variable. The affective

state was measured at the start of the test using the 65-point questionnaire POMS. To

achieve the desired affective state, the participants were asked to listen to or read an

article that was intended to influence their affective state. The 65-point questionnaire was

again administered to measure their affective state. The walk process began after

achieving the desired affective state. Readings from the results of the POMS indicated

that there was a change in affective state; therefore, no remedial methods, such as

watching a DVD, were required. None of the participants were excluded from the study.

Population
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Current studies on gait identification have been conducted with small numbers of

participants, averaging 16 walkers per group. These studies usually had a 95.75% success

rate in matching the participants with their biometrics templates (Nixon et al., 2006).

Research participants for this study were 24 healthy people between the ages of 18 and

65. These participants were selected arbitrarily without preconceived intent or reasoning.

The test was conducted on different days and at different times of day up to 2 weeks apart.

The goal was to have a desired affective state such as anger or hostility. Reading a

specific published article was used before and during the test to create the environment

for the desired state. The participants were given a 65-item POMS test before and after

each test to determine their present affective state.

Sampling and Sampling Procedures

The measurement of change in gait system was focused on the change in knee

angular measurement and hip rotation. The measurement also included uniformity of gait

changes in nonuniform passing between the two legs. The walk sessions were recorded in

a public place without any instruction of walk speed and without paying attention to the

video recording device or any controls on the footwear. The measured variable was the

affective state as mentioned earlier.

Table 2

t tests - Correlation: Point biserial model

Analysis: α Criterion: Compute required

Input: Tail(s) = One
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Effect size |r| = 0.5

Power (1-β err prob) = 0.95

Total sample size = 24

Output: Noncentrality parameter δ= 2.828427

Critical t = 1.171415

Df = 22

α err prob = 0.126982

Study subjects were unaware of the hypothesis addressed in this study during the

data collection process for two reasons: To avoid any self-consciousness about their gait

during walk time and to reduce the possibility of influencing their walk patterns.

Previously described dynamic data extraction methods were used to collect and evaluate

the motion information from video images. The video sequences were analyzed to find

features and describe their motion and analyze the stride-to-stride fluctuations of gait

timing.

With this information, the stride time or duration of the gait cycle (time from

initial contact of one foot to subsequent contact of the same foot) and the percentage of

swing time were determined for each stride during the walk. The stride time was a

measure of the gait cycle duration and the inverse of the cadence. The time spent with

one foot in the air, relative to the gait cycle duration, defined the percentage of swing

time. The expected result due to the hypothesis was that the percentage of swing time
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would be smaller in sad and depressed subjects while angry subjects will demonstrate a

higher percentage of swing time.

To focus on the assessment of the intrinsic dynamics of gait change due to

affective state and ensure that outlier data points did not influence the analysis, the first

30 seconds of each subject's walking time series were excluded to minimize any start-up

effects, and the last 10 seconds were excluded as well. Graphic plots of individual joint

and limb motion as a function of gait phase were generated.

The ontological and epistemological view of this research was grounded in the

hypothesis that affective state affects gait in a predictable manner. The question asked in

this research was: What rate of success can one expect in the identification process or

what is the predictable rate of success? Knowledge of the success rate of gait

identification under affective state was fundamental to the credibility and the grounded

belief that gait identification is a valid and reliable biometric tool. This research,

therefore, analyzed the external validity of gait identification using quantitative methods.

A Fourier series analysis was used to create metrics from the data. This research was

designed to investigate the influence of temporarily induced nonclinical effects on

locomotive behavior parameters while walking. Experiments were undertaken to identify

participants’ emotional states before walking to measure changes in gait while walking

and analyze effects on gait patterns.

Procedures for Recruitment, Participation, and Data Collection

Voluntary participants both male and female were sent a mail (or email) of the

study outlining the procedure for the study (see Appendix D) The real goal of the study
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was not mentioned, instead they were told that they would be taking part of a series of

studies on human consciousness. That it was a test of memory processes only and was not

a test of their intelligence or personality. The study employed standard laboratory tasks

that had no potential harm to participants, and has been approved by the Institutional

Review Board for ethical standards.

Should they agree to be in the study, they would be asked to participate in a

variety of audio, video and locomotive tasks such as: watching different movies, listening

to soothing songs and then taking a short walk. They would then demonstrate by way of

discussion how many scenes of the movie or stanzas of the songs they could remember

after a short walk outside. They would be recorded with a video recorder in the outdoor

for normal observation.

All data collected from them would be coded to protect their identity. Following

the study there would be no way to connect their name with their data. Any additional

information about the study results would be provided to them at its conclusion, upon

request. Participants were free to withdraw from the study at any time. Should they agree

to participate, they were to sign their name on the consent form, indicating that they have

read and understood the nature of the study, and that all their inquiries concerning the

activities have been answered to their satisfaction.

As stated earlier, this study was based on a quantitative research approach. It

provided the advantages and the benefits of quantitative research methods. Quantitative

research methods have the advantage of using empirical data in the research design.

Another benefit was that numbers helped in the interpretation and the making of
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assumptions, which underlined the study. The main value in quantitative research is that

quantitative research is useful in summarizing large amounts of data and reaching

generalizations based on statistical projections (Trochim, 2006).

Qualitative research investigates complex and/or sensitive scientific inquiry

(Trochim, 2006). Trochim drew the contrast of qualitative studies with quantitative

approach of research as involving generating detail numerical data for generalization of

trends and to use the numerical data to compute aggregate statistics like a mean or a

standard deviation. Quantitative method helps to establish the relationship between one

variable (independent) and another variable (dependent or outcome) in a population.

Quantitative research can be either descriptive or experimental. A descriptive quantitative

design usually measures the subjects once. Experimental quantitative research design

takes measurements from the subjects before and after a treatment. Descriptive research

only states the association between variables while experimental establishes causality and

the quantification of relationship between variables. This study used the experimental

research method. It measured the study variable to help understand the effect of affective

state on AGI and the degree of accuracy of gait as identification tool.

This research used a 65-item questionnaire of six themes that each test participant

expressed in their open-ended response. From 24 participants, a coding table was set up

to represent the coding of the 24 participants into the six themes. This was named the

qualitative thematic coding analysis.

Video images from test participants served as the primary basis for data collection

and gait analysis. The visualization techniques used quantitative approach to synthesize
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indirect mappings, such as transfer functions, to produce the final image analysis, and in

some cases, to express these mappings as mathematical expressions, or queries that were

then directly applied to the data to create gait signatures, the unique characteristic serving

as the identity marker in the study. The mathematical analysis formed the empirical part

of the study in creating a gait signature. The collected signature from the different

affective states provided statistical data that were interpreted and analyzed using the

methods of interpolation. Data from the gait cycles were used to create gait signatures

that signified the unique characteristics and defined the identity marker for the study. It

provided the basis to infer any framework for the theoretical narrative of the study.

Data Analysis Plan

In the experiment, gait was analyzed as participants simulated three distinct

emotional states (normal, anger, and hostility). Derived data were analyzed using the

different techniques discussed earlier. The goal was to determine whether there was any

clear distinction between an individual’s gait system at different affective state and how

to mitigate such distinct difference.

This study used the model-based method to extract the gait features of test

participants. The data collection of the trajectory process was manual. Fourier

Descriptors were used to create spatial motion models using the following equation:

Eqn. 3.1
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Here, was the rotation angle, sx and sy were the scaling factors across the

horizontal and vertical axes. a0 and b0 were for the position of the shape’s center. Fx (t)

and Fy (t) were derived from the following equation:

To identify a subject by his or her gait, this study derived the angular

measurements, as well as the trunk spatial displacements, as a factor of the gait

kinematics. The angles of the joints, the hip rotation, and the knee, were from the key

values of kinematics of the lower limbs. Feature selections were employed to derive as

many discriminative cues as possible while removing the redundant and irrelevant gait

features, which could degrade the recognition rate. According to Nixon et al. (2005), it

was practically infeasible to run an exhaustive search for all the possible combinations of

features to obtain the optimal subset for recognition due to the high dimensionality of the

feature space.

In contrast to the voting scheme used in the K-nearest neighbors (k-NN), Nixon et

al. suggest the evaluation function used different weights w to signify the importance of

the nearest neighbors. The probability score for a sample sc to belong to class c was

expressed in the following equation (equat.3.3):

Eqn. 3.2
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Eqn. 3.3

Here, Nc was the number of instances in class c, and the weight wi for the ith

nearest instance was inversely related to proximity as:

Eqn. 3.4

The value of zi was defined as:

Eqn. 3.5

Zi = 1 if nearest (sc; i) c, 0 otherwise such that the nearest (sc; i) function

would return the ith nearest instance to the sample sc.

This study included the following variables for quantitative analysis:

Participants: 24, Age; hip to ground length; stride distance; cadence. The statistical

analysis of these data provided grounds for answering the research questions.

Control variable was the normal affective state which also served as the baseline.

Other measurable respective variances were; SD; confidence interval. The variables of

measurement were the angular measurements of hip, knee, ankle, and angular

displacement.

Analyses were performed on the affective state Anger-Hostility, to evaluate the

effects of subject characteristics on gait. This study used t-variable multiple regression

with Y dependent variable and k independent variables with a coefficient for the analysis
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of covariance design in regression analysis notation. The model was to show a covariate

group and a control group.

The data matrix that was entered this analysis consisted of two columns of

affective states of normal and Anger-Hostility and 24 rows representing the participants.

The data included a column representing pretest data of normal affective state and a

column for posttest data of the measured affective state. The two sets were interpolated

for variance.

Here,

yi = outcome score for the ith unit,

o = coefficient for the intercept,

1 = coefficient for the slope,

Zi = 1 if ith unit in the treatment group,

0 if ith unit was in the control group, and

ei = residual for the ith unit.

The affective state was measured for a stance phase and swing phase. The stance

phase, which was subdivided into three segments, included initial double stance, single

limb stance and terminal double limb stance. The swing phase measured the following

four segments: (a) mid-stance, (b) terminal stance, (c) pre-swing, and (d) terminal double

limb support with toe-off of the ground. A p-value less than or equal to .01 is used to

consider statistical significance.

yi = o + 1Zi + ei Eqn. 3.6
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Instrumentation and Operationalization of Constructs

Instruments are key components to research and the development of new and

improved technologies. Modern research depends on the use of interdisciplinary

instruments; some multipurpose and others specialized. Instruments enhance research by

providing accurate and reproducible functional methodology to research.

Per the Committee on Science, Engineering, and Public Policy (COSEPUP, 2006),

instrumentation is a critical component of the research enterprise and thus is in part

responsible for the benefits that research brings to society. I used a video recorder to

record the walk patterns of test participants. For a suitable, accurate evaluation and

reading of movements, I used a Panasonic 25 VHS video recorder, which has a hard drive

that could easily be connected to a desktop or laptop computer to download the recorded

images to the computer for analysis.

Threats to Validity

External Validity

I employed standard laboratory tasks that had no potential harm to participants

and was approved by the Institutional Review Board for ethical standards. Validity in this

study was achieved by first creating a biometric gait signature that served as a base

template. Then a repeated gait signature was created under different affective states such

as anger, depression, or excitement. They were extrapolated against the base gait

signature. The relationships in the affective states were measured by the Profile of Mood

States (POMS) inventory for different gait signatures (see the Appendix). Analysis was
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drawn from the datasets using statistical and signal collation methods to derive patterns

and tendencies in the data.

Internal Validity

I played an active role in this research using the techniques of critical thinking in

data collection, data analysis, interpretation and triangulation against the research

question and hypothesis. Data collection was through a series of experiments conducted

outdoors. I did not instruct the test participants on the way data would be collected, which

was via a video camera to record the participants as they walked in a public place for a

given period. Triangulation, a process of comparing and evaluating the data obtained

from two or more contrasting methods, using a multimethod approach to conduct the

research was used against the collected data and the hypothesis of the study. My goal was

to validate the conclusion of whether the outcome of the research approach would

produce consistent results (Cohen & Manion, 1994). At the onset, I assumed that

affective state affects gait at a predictable manner and that it could be evaluated to

compensate for changes in gait signature during the identification process.

I made all efforts to be nonbiased to this subject. The motivational factor for

conducting this research was his interest in furthering AGI as a biometric instrument in

forensic science. I refrained from any bias in both data collection and data analysis. To

avoid subjective bias, which can creep into situations in which a match between two gait

signatures could be ambiguous, a validation study of varying factors likely to cause

ambiguity was necessary. Such validation system must have consistent results. I sought to

mitigate that.



91

Construct Validity

The importance of nonintrusive, and noninvasive identification of people in a public

place denotes a need for valid, reliable, and acceptable identification system. This study

broadens the evidence supporting the usage of gait as biometric to identify people from a

distance reliably. Furthermore, the study narrowed the error rate in identification due to

affective state. The purpose was to identify patterns in changes of affective state on

human gait signature in a real-world scenario. Gait signature is time-invariant as a

periodic signal. The hypothesis for this study was that change in gait cycle due to

affective state would affect individual’s gait signature. I achieved identifying a variance

in gait dataset due to affective state. It succeeded in fulfilling the goal of this study, which

was to determine how successfully AGI methods could be used to identify a person under

different affective states and the statistical significance of changes in gait signature. Such

study was deemed important because human affective state influences the accuracy of

AGI gait signature.

I recorded the walk patterns of 24 people in an uncontrolled environment with the

affective state Anger-Hostility and another test of the same participants as a control

variable under normal affective state. Confidence in any form of biometric identification

system depends on consistency and reliability of the identity recognition process.

Ethical Procedures

I used a limited amount of deception to obscure its intent in order to protect the

validity of the experiment and to keep the participants from knowing the hypothesis. The

research has social and personality psychology involvement where knowledge of the
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research intent could draw excessive attention to self-awareness and thereby influence the

results. Any conscious change in participants’ behavior in response to the research

requirements being investigated could taint the outcome. In order, not to prejudice the

participants and taint the data, I did not disclose the research intent to the participants at

the beginning of the study. According to Rosenhan (1973), it is sometimes necessary to

use deception for the benefit of data gathering in research.

I followed the APA’s Ethical Principles and Code of Conduct, which states the

following:

1. Deception is not allowed unless it is justified by the study’s scientific,

educational, or applied value, and when alternative means that do not employ

deception are not feasible.

2. Deception is never allowed if full disclosure of the nature of the study

(potential harm, risk, discomfort, or unpleasant emotional experience) would

alter the participants’ willingness to take part in the study.

3. Deception and its purpose must be fully explained to the participants

following the conclusion of the experimental session or, at the latest, at the

conclusion of the research project.

At the end of the research process, the participants were debriefed. During

debriefing, the true nature and intent of the study was made known to them, and the

purpose of the deception was explained. The de-identified data are stored in a safe to

ensure the anonymity and privacy of the participants.
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Summary

AGI is a promising biometric technique for recognizing and identifying people

from a distance. It is feature-rich with an array of data collection techniques using

behavioral features that are extracted from the human gait system. The gait markers used

in biometrics are easily identifiable in people but unique in characteristics. As the level

and complexity of terrorism increases worldwide, current security identification methods

must be capable of recognizing, identifying, and verifying people nonintrusively in public

areas where conventional methods are infeasible. Human walk patterns can complement

other security methods for effectiveness.

The next chapter includes a description of collecting data from 24 voluntary

participants, using video cameras from the right sagittal walking view during a walk

session. The results of this study help to illustrate the role of affective states on gait

signature. The results are evaluated in the process of interpolating the covariate factor to

isolate and to match the resultant signal to match the known biometric template for a

positive or a negative identification.
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Chapter 4: Results

The purpose of this study was to determine how affective state as a covariate

factor affects the success rate of AIG biometrics and determine which regions of the gait

cycle are most recognizable in identifying changes to the biometric template with

affective state as an additional differentiation variable. I recorded the walk patterns of 24

people (12 men and 12 women, 18 to 65 years old). The research was conducted in an

uncontrolled environment meaning that the participants were free to wear any clothes or

shoes and to carry hand bags (or not) as they normally would do. My goal was to

determine the rate of success in recognizing the participants from their gait when under

the affective state Anger-Hostility compared to their normal mood state (the control

variable). This previous research was conducted in a controlled environment and did not

mimic a real world scenario nor did previous research include affective state as a

covariate factor. The following questions guided the study:

1. What is the success rate of gait identification with affective state as a covariate

factor in uncontrolled environment?

2. Which regions of the gait signature are susceptible to change in affective state?

The chapter includes descriptions of how data were generated, gathered, and

recorded. It Includes a summary of the process by which meaning emerged in the study.

Finally, the findings to the research questions are presented.

Study Results

Twenty-four people in the age group ranging from 18 years to 65 years

volunteered to participate in the research. Participants considered themselves to have a
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normal gait with no apparent physical disability. The data for this study were obtained by

videotaping the participants using a Panasonic video recorder. Each participant signed a

consent form and answered a 65-item POMS questionnaire before the pretest and posttest

of the video recordings (phases one and two). The first phase served as the baseline for

the research while the second phase served as the research data. The POMS questionnaire

was used to evaluate their mood state before each video recording. The anger-hostility

rate of test participants ranged from 12-30 with a mean of 18.56 and a standard deviation

of 5.49 for the baseline and for the research data a range of 16-34 with a mean of 26.25

and a standard deviation of 5.25 (see Appendix A).

The recorded video was converted into frames using the Freeze Frame feature

with AVS video editor software. The Freeze Frame option allowed for the making of still

shots from video clips making it possible to measure the different angles, cadence, and

foot length. Each successive gait cycle from the video images produced 384 frames. The

Freeze Frame function created images in a PNG file format.

Data Collection

I measured the gait of 24 subjects whose ages ranged from 18-65 years using a

quantitative methodology. I used the dynamic motion constraints method of gait analysis

as described in Chapter 2. It consisted of a system approach to examining walk patterns

by taking video images and using mathematical methods to analyze them. Affective state

was measured by the POMS questionnaire, which included questions such as: How have

you been feeling today?. The POMS measures six identifiable affective states:

 Tension-Anxiety (T)
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 Depression-Dejection (D)

 Anger-Hostility (A)

 Vigor-Activity (V)

 Fatigue-Inertia (F)

 Confusion-Bewilderment (C)

The study used only the Anger-Hostility (A) state. The other states were not

evaluated in this research study. To generate the Anger-Hostility (A) state for phase two

of the research before videotaping, participants read two different articles: “The Tragic

Story of a Russian Cosmonaut Who Was Sent into Space Knowing He Would Die” by

Casey Chan based on the book Starman by Jamie Doran and Piers Bizony’s examination

of the story of Yuri Gagarin and Vladimir Komarov and how they could not stop the

USSR from going forward with the April 23, 1967 launch of the Soyuz 1. Komarov the

cosmonaut knew he was going to die when he left Earth for space. His friend Gagarin, the

first human to reach outer space, knew Komarov would die too. But Brezhnev, leader of

the Soviet Union, wanted to commemorate the 50th anniversary of the Communist

Revolution with a spectacle. Komarov boarded the Soyuz 1 and, just like he predicted,

died.

The second article was “Fed-up Mom Ships Adopted Kid Back to Russia” by Rita

Delfiner. It is the story of a mother from Tennessee who decided she did not want to be a

mom any more. To the astonishment of many, the woman sent her 7-year-old adopted son

on a flight back to Russia alone with a note saying she did not wish any longer to parent
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this child. Both articles could have the desired results on the participants in the posttest

research (tables 3-4).

Figure 13 The Power Analysis and Sample size of 24 participants

Study Results and Analysis of POMS

A comparison between the POMS pretest and posttest results revealed a

significant difference. There was a variation in change between the eight data groups.

The mean of pretest data points was 18.58 while the posttest mean was 26.25 (see Table

3).
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Table 2

Data Points Yield

POMS1 Before POMS2 After

14 30

14 22

12 20

12 16

14 27

14 19

12 25

12 28

18 27

22 31

26 34

31 39

18 23

19 23

18 24

30 37

24 29

16 23

20 24

20 29

17 22

25 30

23 29

15 19
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Table 3

Basic Statistical Data from POMS: Phase one Before

POMS Data

Measures of Central tendency

Mean 18.583333 Median 18 Mode

Measures of Dispersion
If the data is of a

Sample Population
Variance 31.557971 30.2430556 Range
St. Dev. 5.61764817 5.49936865 IQR

Skewing and Kurtosis
If the data is of a

Sample Population
Skewing 0.7413751 0.69421043
(Relative)
Kurtosis -0.2396222 -0.4325312

Percentile and Percentile Rank Calculations
x-th
Percentilex Y

50 18 18.0
80 23.4 23.4
90 25.7 25.7
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Table 4

Chebyshev’s Theorem Observation

Chebyshev's Theorem observation
Data points
within 1.5

Std. Devns
from mean
out of which is
Minimum
predicted by
Chebyshev's
Theorem

22
24

91.67%

55.56%

Minimum

predicted by

Empirical Rule 86.64%

Tables 4 and 5 include a statistical view of the POMS data output for the sample

and the population of pretest data. This includes the measures of central tendency and

measures of dispersion. They validate effects of variance of change in sample and

population mood state. The measure of central tendency evaluates the data for both

sample and population. The variance is not significant although it is relevant because it

indicates a change in the measurement of the profiles of mode state when a sample is

taken and when the population is considered. This leads to the inference that the sample

is representative of the population. It is important for the research, as the study uses mood

state as covariate factor. The dispersion had a normal distribution.
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Table 5

Statistical Data of POMS from Phase Two After

Measures of Central tendency

Mean: 26.25 Median: 26 Mode: 23

Measures of Dispersion

If the data is of a

Sample Population

Variance 32.3695652 31.0208333 Range 23

St. Dev. 5.68942574 5.56963494 IQR 6.5

Skewing and Kurtosis

If the data is of a

Sample Population

Skewing 0.43712057 0.40931191

Relative Kurtosis -0.00737 -0.2459216

3rd Quartile 29.25

Table 6 includes a statistical computation of the measure of centrality and

dispersion of the posttest data sets of the POMS. The mean was a measure of centrality of

a set of observations and the standard deviation which is a measure of their spread for the

posttest POMS. Two rules established a relationship between the measured values and

the set of observations. The first was Chebyshev's theorem and the second, an empirical

rule (Aczel & Sounderpandia, 2006) to test the POMS output. The purpose was to
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determine whether the output data were significantly non-normal. For the distribution that

shows skewing, Chebyshev's theorem (Pafnuty Chebyshev, 1821-1894) was applied,

which states that for any population or sample, the proportion of observations, whose z

score has an absolute value less than or equal to k, is no less than (1 - (1 / k2)). The

amount of skewing in the measure of dispersion is insignificant and could be considered

to have a normal distribution.

Kurtosis measuring the peak or flatness relative to the normal distribution

revealed that the peak is flat near the mean declining slowly. Chebyshev's percentage of

observations of the data set that should fall within five standard deviations of their mean

is 1.5 at least 96%. The empirical rule placed lower limits on the percentages of

observations within the given number of standard deviation from the mean. The empirical

rule represented a roughly mound-shaped and symmetric distribution. It specifies

approximated percentages of observations within the given number of standard deviation

from the mean. Again, it can be inferred that the sample was representative of the

population considering the variance between the population and sample with a normal

distribution.

Table 6

Comparing two POMS date sets using Box plots

Lower Whisker

12

16
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Lower Hinge Median Upper Hinge Upper Whisker
14 18 22.25 31

22.75 26 29.25 39

Name1
Name2

Posttest results were dispersed to the right but closely symmetric. The

interquartile range was eight for the POMS1 and the range or spread for the POMS2 is 26

while the range for POMS1 is 18. There were no outliers that were significant. The

boxplot gave a comparative view of the pretest and posttest data sets as two outputs.

The measures of central tendency in phase one and phase two revealed a change

in POMS from pretest to posttest which was significant. It identified the effect of the

scripts on the mood state of the participants. It allowed me a reliable basis with which to

POMS 1

POMS 2

Figure 14. Comparing two POMS data sets using Box plots
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measure the gait of the participants as under affective state. The values from the measure

of dispersion gave an indication of the range of variance in the POMS data among the 24

participants.

Table 8

Confidence Interval

Unknown

Population

Normal? Yes

Sample Size 24 n

Sample

Mean 26.25 x-bar

Sample

Stdev. 5.689426 s

Confidence Interval

99% 26.25 ± 3.2603 = [ 22.9897 , 29.5103 ]

95% 26.25 ± 2.40243 = [ 23.84757 , 28.65243 ]

90% 26.25 ± 1.9904 = [ 24.2596 , 28.2404 ]

80% 26.25 ± 1.53235 = [ 24.71765 , 27.78235 ]
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Table 8 includes the measure of confidence interval for the reliability of the

POMS using mood state as a covariate factor in the study. The study's confidence

intervals were within the study’s population parameters.

Data Analysis Technique and Covariate Factor Analysis

This section includes both visual and mathematical measurements to derive

angular measurements. It measured change in gait system focusing on the change in hip,

knee, and ankle angular measurements, and the number of foot cycles within a given

distance. I also measured the stride-to-stride variability. Magnitude in fluctuations of

angles in strides in each gait cycle was also calculated (see Table 22 of Appendix G). I

used the angular variation of each subject's stride in the calculation. The evaluated values

were measured from the right leg. Two measures of stride-to-stride variability were taken,

which were a reflected gait difference in stride, swing, and cadence and indicated a

change related to the effect of affective state changes.

Covariate Factor Analysis

Image feature analysis showed that the affective state effect on the different

dynamic gait components was statistically significant. I identified collations out of the

datasets to identify patterns and graphed the data on an equal scale and established visible

collations through the process of interpolation. The study grouped the data for common

traits. There were 12 males and 12 female participants. I did not find any statistically

significant differences in gait between the male and female participants.

Pretest Analysis
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Walking.

Before the video recordings the participants walked for 5 minutes on the street as

a warm up. The warm up familiarized the participants with the walking area and the

terrain. After a 5-minute walking trial, the recording camera was turned on. Only data

captured 5 minutes after the warm up walking trial were included in this study. The

camera was positioned to maximize the capture of the duration of the walking cycle and

its phase (i.e., stance, swing, and double-limb support, the length and width of the steps

and strides and foot angles, hip, knee and ankle). The vertical, forward, and lateral

excursions of the head and neck were not considered. The focus was on the sagittal

excursions of the lower extremities.

Stance.

There is a left stance period and a right stance period. The left stance period is

when the left foot is in contact with the floor, beginning from left heel strike and ending

at left toe-off and the right stance period is when the right foot is in contact with the floor,

beginning from right heel strike and ending at right toe-off (Kirtley, 2005). At the

beginning of the measure of gait cycle during walking, the left foot is in contact with the

floor for a period of the cycle (stance). From there, the foot lifts off the ground and

swings forward to make the next step in the gait cycle. In repeated tests, there was no

statistically significant difference between left and right stance duration of the same

person.
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Swing period.

Swing period is the period when one foot was not in contact with the floor,

beginning from toe-off and ending at heel strike of the same foot moving forward while

the other foot is still on the ground (single-limb support). Repeated trials did not show

any statistically significant difference during swing periods from the same person.

Double-limb support period.

A stance phase has one period of a single-limb support while the contralateral

limb is in the swing state and two periods of double-limb support. At this period both

limbs were in contact with the ground at the same time. There were two periods of

double-limb support in each gait cycle. There was no statistically significant difference

between similar periods of double-limb support in repeated trials or between successive

periods in double-limb in the same cycle from the same person.

Stride Measurements

Step and stride length.

Murray (1964) defined stride length as the linear distance in the plane of

progression between successive points of foot-to-floor contact of the same point (right-to-

right or left-to-left); step length was the distance between successive points of foot-to-

floor contact of alternate feet (right-to-left or left-to-right). Step and stride lengths were

measured from a central point on the long axis of foot. There were no statistically

significant differences between the corresponding step and stride lengths in repeated test

or between successive step and stride values.
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Stride width.

Stride width was a measure of the transverse distance between points on the

central long axis of the feet, which is located by a line from the lateral malleolus drawn

perpendicular to the line of progression during foot-to-floor contact. I measured and

averaged two gait cycles. There was no statistically significant difference of different

measurements of the same person.

Foot Angle

The foot angle is a measure of in-toeing or out-toeing taken from an angle formed

by the long axis of the foot with the plane of progression. The mean right foot angle was

used in this study as the camera was focused on the right lateral view of the test

participants. There was no statistically significant difference between successive trials of

measurements from the same individual.

Posttest Analysis

Walking.

Before the video recordings for the posttest, the participants walked for 5 minutes

on the street as a warm up. The warm up familiarized the participants with the walking

area and the terrain. After a 5-minute walking trial, the recording camera was turned on.

Only data captured 5 minutes after the warm up walking trial were included in this study.

The camera was positioned to maximize the capture the duration of the walking cycle and

its phase (i.e., stance, swing, and double-limb support, the length and width of the steps

and strides and foot angles, hip, knee and ankle). The vertical, forward, and lateral

excursions of the head and neck were not considered. The focus was on the sagittal
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excursions of the lower extremities. The posttest records were taken at different times and

on different days following the pretest, from the same day of the pretest to 7 days after.

The days and times of the test did not have any impact on the results.

Stance

A repeated test in the stance showed no statistically significant difference between

left and right stance in the posttest from the same person. There was a significant

difference between the pretest and posttest stance. The posttest data points had a higher

value than the pretest data, a distribution that was statistically significant and approached

normal distribution (see Table 22 of Appendix G).

Swing Period

Repeated trials did not show any statistically significant difference during swing

periods from the same person during the posttest period. There was; however, a

statistically significant difference comparing the pretest data with the posttest swing

period. The statistical difference was consistent across the participants with higher values.

Double-Limb Support Period

There was no statistically significant difference between similar periods of

double-limb support in repeated trials or between successive periods in double-limb in

the same cycle from the same person in posttest. There was a difference between pretest

and posttest double-limb support test.
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Table 9

Pretest and Posttest Result

Hip-Knee Angle change

during

Gains No Change Loss

Initial Contact 8 5 11

Leading Response 9 0 15

Mid-Stance 6 1 17

Terminal Stance 10 3 11

Pre-Swing 10 2 12

Initial Swing 12 0 12

Mid-Swing 14 1 9

Terminal Swing 13 3 8

Total 82 15 95

Mean 10.25 1.875 11.875

Data included hip-knee angle change of participants with gains, loss, or no gain in gait

data as compared to pretest and posttest data. Tables 9 and 10 shows the gains or loss in

pretest and posttest angular measurements of the sub-phases of the participants’ gait cycle

as compared to pretest values. Of the eight subphases of hip-knee angle change the gains,

losses, and no gains added up to 24, which is the total number of participants. Total gains

= 82 compared to a total loss of 95. The change in hip-knee angle was centered on the

terminal stance, pre-swing, and initial swing.
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Table 70

Areas of Change

Knee-Ankle change Gains No Change Loss

Initial Contact 7 1 16

Leading Response 8 3 13

Mid-Stance 11 4 9

Terminal Stance 13 2 9

Pre-Swing 12 0 12

Initial Swing 10 0 14

Mid-Swing 11 1 12

Terminal Swing 8 1 15

Total 80 12 100

Mean 10 1.5 12.5

Table 10 showed the number of participants with gains, loss, or no gain in gait

data of pretest and posttest. Data included knee-ankle angular change of participants with

gains, loss, or no gain in gait data as compared to pretest and posttest data. Of the eight

sub-phases of knee-ankle angle change, the gains, losses, and no gains add up to 24,

which is the total number of participants. Total gains equal 80 compared to total loss of

100. The change in knee-ankle angle was centered on the pre-swing, initial swing, and

mid-swing.

Predictive Modeling
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Figure 15. Pretest and posttest gait signature.

Predictive modeling was used to understand future changes in the gait signature

due to covariate factors. As a statistical tool (Sarma, 2013), predictive modeling is used

in research as a process in predictive analysis to create a model of future behavior. With

predictive analysis, a forecast of probabilities and trends of change in gait signature can

be obtained. Using predictors, covariate variables or factors that are likely to influence

behavior or results, a change in gait signature could be obtained as a likely match to a

known gait signature. Using rankings based on minimum distance of k - NN, the

predictors of covariate factors were ranked for each of the eight gait cadences. In gait

predictive modeling, covariate data as predictors are collected from the participants, a

statistical model is created, then predictions are made and the model is validated or

revised when additional data become available. The predictive modeling could be linear

or nonlinear.
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Table 11

Predictive Analysis of Gait Identification

AFTER VALUE IC LR MSt TS PS IS MSw TS
HIP < Start Value 3 4 8 7 7 4 4 3

> Start Value 3 5 1 2 2 5 5 6
Unchanged 3 0 0 0 0 0 0 0

KNEE < Start Value 6 6 4 3 5 6 5 4
> Start Value 3 2 5 6 4 3 3 4
Unchanged 0 1 0 0 0 0 1 1

Ankle < Start Value 8 0 0 1 7 7 1 2
> Start Value 1 0 0 4 1 2 6 4
Unchanged 0 9 9 4 1 0 2 3

Note.

IC = Initial Contact
LR = Leading Response
MSt = Mid-Stance
TS = Terminal Stance
PS = Pre-Swing
IS = initial Swing
MSw = Mid-Swing
TS = Terminal Swing
< Less Than
> Greater Than

Review of Change in Values of Cadence

A review of change in values of cadence before and after the test provides an

analytical view of predicting the accuracy of a match from the test participants’ cadence

from the set of data in the library. These were ranked for nearest distance using k - NN.

The margin of change of data between pretest and posttest, measured across eight
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cadences, showed a pattern of change or no change to the cadence. This gave an

acceptable level of reliability for a match.

This study used quantitative methods to test the characteristics of human

locomotion and affective state in a natural environment by collecting data from

participants’ gait systems and creating a gait signature for analysis. I examined and

analyzed the data objectively for trends to give interpretations to patterns in changes to

the data. I examined the structure and essence of the impact of changes to the gait

signature of test participants to measure the success rate of gait identification with

covariate factors.

The findings consisted of the analysis of gait signatures derived from frequency

components of the variation in inclination of the hip-knee and knee-ankle angles. The

movement of legs’ rotation patterns and gait motion allowed me to treat the data as

periodic signals and use Fourier transform techniques to obtain a spectrum (Huang et al.,

1999). The spectra of different points were measured and used to create the gait signature,

which was then compared for distinctive or unique characteristics.

Figure 15 shows the magnitude spectra of the upper leg (Hip to Knee) of a test

participant showing both before (in blue) and after (in red). The covariate factor revealed

a statistically significant rise in the value of hip to knee with covariate factor. It revealed

the impact of affective state on participants’ gait and showed a statistically significant

increase in value at mid-stance during posttest.

Figure 16 shows several peaks as a multimodal in distribution. Other than a single

outlier at mid-stance, the frequency distribution seemed uniform. The distribution had
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peaks near the mean and then declined rapidly but with a little tail; there was a double

exponential distribution that was symmetric.

Figure 16. Magnitude spectra of the upper leg (Hip to knee).

A comparison of the before and the after hip to knee magnitude spectra revealed a

peak value of 56 during a swing moment. The value lay outside the range of values.

Figure 17 shows the magnitude spectra of Knee to Ankle angle of the same test

participant and reveals two outliers during the mid-stance and terminal swing.
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Figure 17. Magnitude spectra of knee to ankle angle of the same test participant with

covariate factor.

It has a negative Kurtosis distribution with multiple peaks and two distributions with

heavy tails.

The knee to ankle angle at posttest showed two peak values with the sharp rise of

the two values at mid-stance and terminal swing. The k-nearest neighbor rule was used to

classify the transform data for k = 3 and for k = 1 (Nixon et al., 2006). The correct

classification rates (CCR) were summarized as shown in Table 10, which shows the

analysis for classification by magnitude spectra alone, and for multiplying the magnitude

spectra by the phase, both for two values of k. In this study, there was a physical

constraint on the measurement of gait as there was a component of musculature on

flexion that subsequently controlled limb movement. However, because the phase

component was at insignificant frequency it was ignored in the analysis. Per Nixon et al
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(2006), using phase-weighted magnitude spectra gave a much better classification rate

(100%) than the use of magnitude spectra alone (80%), for the values of k. The use of k-

NN was statistically significant in the determination of correct classification in

determining a given data point of a gait signature in the finding of k the data point closest

to the query from the database.

Nearest Neighbor Classification

The nearest neighbor classification worked as follows. First, a database of

example objects was created, for which the correct classification was already known.

Then, when a query was made to the system (i.e., a new object to classify), the system

simply found the nearest neighbor of the query in the database that was the database

object that was the most similar to the query. The objective was for the system to classify

the query as belonging to the same class as its nearest neighbor. As an illustration, if the

query was to find a digit according to a given query, and the nearest neighbor of the

query in the database was "18," then the system classified the query as the object

represented by the digit "18" (Alon, Athitsos, Kollios, & Sclaroff, 2004).

The nearest neighbor of the query gives a measurement of distances between the

query and database objects. The system accuracy was greatly dependent on the

measurement of the distance. (Athitsos, Hadjieleftheriou, Kollios, & Sclaroff, 2005).

Research Question 1

What was the success rate of gait identification under affective state as a covariate

factor in uncontrolled environment? The first research question addressed whether the

results from existing studies, which were conducted in controlled environment and which
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revealed that AGI had 95.75% success rate, would collate with a study conducted under

uncontrolled environment and using an affective state as a covariate factor. The answer to

this question was important because among the confounding factors affecting validity and

validation of gait datasets and to match a gait biometric template for identification was

the challenge of isolating any affective state that influenced the dataset.

The usefulness of biometric scanning depends on its ability to match people to

biological or behavioral markers (a known biometric template) and to exclude

nonmatching datasets. Where the dataset changed due to covariate factors, there was a

likelihood of a false negative match with its template. Answers to this research question

would help to better understand predicting the influence of change in affective state on

the gait identification’s dataset. A review of the POMS, a measure of mood state, and

their gait cycle in the two instances indicated there was a change in the gait signature.

The amount of change varied from hip to knee angle, and angle of the knee to ankle by

analysis and by comparing data from the control variable of their normal affective state

and the experimental data.

To answer the above question, the pretest data were collected and compared with

the posttest data using the k-nearest neighbor algorithm. The k-nearest neighbor algorithm

is based on the concept that close objects were more likely to be in the same category.

Thus, in using k - NN, predictions or classifications in gait identification, given data

points were classified from a library of known gait signatures and used as a set of

prototype examples to predict a most likely match data based on the majority vote (for
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classification tasks) and averaging (for regression) over a set of k-nearest prototypes

(hence the name k-nearest neighbors).

Answer to Research Question 1

To determine the number of matches made by query of the data library the k-

nearest neighbor (k - NN) algorithm was used to determine and compute the quantitative

data as follows:

First, parameter k = number of nearest neighbors was determined by a data point

classification by a majority vote of its neighbors, with the data point being

assigned to the class most common among its k nearest neighbors. K assignment

was arbitrary.

Second a calculation of the distance between the query-instance and all the

training samples were made.

Third, the distance was used to determine nearest neighbors based on the k-th

minimum distance.

Fourth, the values of the nearest neighbors were assembled.

Finally, the average of nearest neighbors was used as the prediction value of the

query instance.

The percentage of success rate was determined as the success rate of gait

identification under affective state as a covariate factor in uncontrolled environment. To

consider the task of classifying a new object (query point) among several known data

points in the library, I used a gait data from 24 participants collected before and after the

intervention, with 16 data points per participant for the baseline and 16 for the posttest
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per each participant. In all there were 768 data points each for the baseline (pretest) and

for the posttest library, for a total of 1536 total data points in the library. This is shown in

Tables 22 and 23 in the Appendix. A match based on data points from the baseline or

experiment for the hip is shown in Table 12, which depicts the examples (instances) with

the plus and minus signs and the query point. The goal was to estimate (classify) the

outcome of the query point based on a selected number of its nearest neighbors. The

determination was made from the query point with a classification of a plus or a minus

sign.

To determine the success rate of gait identification under affective state as a

covariate factor in an uncontrolled environment, a random gait signature of a participant

was taken. Using a k value of the data points, a classification is determined from the data

library of the data points of the research data for the closest match. A 75% rate of

successful match was determined for the 16 data points forming the gait signature.
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Prediction

Figure 18. Nearest neighbor sign.

In Figure 18, blue denotes positive values while pink denotes negative values. In

this chart the predicted value, the yellow triangle, lies outside and to the left of value 10

positive and 9 negative. The nearest neighbor value is 8 before and 6 after (see Figure 18

above). At a 24-confidence interval based on 24 random samples, on average, 22.8 of

them would contain the true value of the mean µ. Using alpha = .05 to construct a 95%

confidence interval, the 95% confidence for the mean is 11.1951 to 14.13824. The

interval estimate consisted of the three components known as the estimator, the reliability

coefficient, and the standard error.
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Estimator: The interval estimate of µ is centered on the point estimate of µ. X bar

is the unbiased point estimator for µ.

Reliability coefficient: Approximately 95% of the values of the standard normal

curve lie within two standard deviations of the mean. The z score in this case is the

reliability coefficient. A value of z gives the correct interval

size.

Figure 19. Confidence interval.

Research Question 2

Which regions of the gait signature are susceptible to change in the affective state?

This question can be answered by visual inspection of the different data points using

graphical charts to evaluate peaks and variations in the 32 data points for each participant

to compare the eight hip-knee baseline pretest data points with the eight posttest data

points of the hip- knee data, and the eight knee-ankle pretest angular measurements for

the baseline data points against the eight posttest data points of the knee-ankle.

Findings for Research Question 2
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Evaluation of the data through graphical presentation demonstrated that there was

a significant change in angular measurement of gait comparing the pretest data with the

posttest data. While the value of change for each participant was different, there was a

pattern that revealed a likely probability of prediction. The change in value at the hip was

different from the change in value at the knee as shown in a sample data points in tables

13 and 14. The changes in knee-ankle angle were centered on the pre-swing, initial swing,

and mid-swing while the changes in hip-knee angle were centered on the terminal stance,

pre-swing, and initial swing. To predict change in gait, a focus on the terminal stance,

pre-swing, and initial swing for the hip-knee angular measurements would give a higher

probability match. Similarly, a focus on the changes on the pre-swing, initial swing, and

mid-swing of the knee-ankle angular data values would give a higher probability match.

Figure 20. Raina before in blue and after in pink. X = 7 is mid-swing showing a

high peak of 52, a 35 points above the pretest score of mid-swing.
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Figure 21. Hip-knee total changes in gain, loss. 1= Gain, 2 = No change, 3=Loss.

Figure 21 shows a statistically significant change in the Hip-Knee posttest angular

value as compared to the pretest data. The statistically significant change in the loss of

angular gait measurement was a result of the effect of affective state. It demonstrates that

affective state as a covariate factor impacted AGI.

Figure 22. Agregate gains in hip change.
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Figure 22 shows the posttest values with the change in hip angular values. There was a

statistically significant increase in Hip4-Hip8 angular values as a careful review of Figure

23 shows in comparison to Hip1-Hip3.

Summary

In this study, I sought to find the success rate of gait identification with a

covariate factor of affective state. The result demonstrated that successful identification

from 24 test participants was 75%: less than the 95.75% identification success rate

without any covariate factor reported in the literature. The research results indicated that

covariate factors decreased the successful identification rates and demonstrated the

challenges that AGI faces in producing a consistent unified outcome as a predictive

identification tool.

Further research is needed to refine the identification process. Despite the

challenges, the results from this research indicate that AGI is viable as a complement to

the existing identification tools and as a solution to automatic identification, as AGI

provides distance identification data gathering without intrusion. I have demonstrated that

affective state as a covariate factor impacts human gait.

K- NN was used for classification of gait in identifying for a match of a gait

signature and to determine the success rate of identification. Data points for training were

taken randomly as new unlabeled data points for testing. The process worked by finding

the class label for the new point. The behavior of the classification algorithm was based

on k, which uses a majority vote.
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The gait signatures of participants were taken from the pretest library. To find a

match in the data library of the posttest, the pretest data points of X1 = 2 and X2 = 17

were used where X1 and X2 were pretest and posttest data points from the hip angle and

knee angle respectively. The objective was to predict the classification of this gait

signature in the data library. A k nearest neighbor (k - NN) algorithm was best suited for

predicting the classification.

To do that, the minimum distance from the query instance to the training samples

were calculated to determine the k - NN. After gathering k nearest neighbors, a simple

majority of these k-nearest neighbors were used as the predictors of the query instance.

The k - NN algorithm was versatile and considered several multivariate attribute names in

the classification. Using the hip and knee data from the participants the X1 data

comprised the pretest data points and the X2 was the posttest data points. Y was the

predicted k classification.

The last row was the value being tested on the k - NN algorithm. The purpose was

to classify the new object in the last row based on attributes and known data. The

Distance was the computed distance from the k - NN with the sign + -. Using arbitrary

values of 6 for pretest and 7 for posttest with k = 8 the k - NN neighbor’s results are

shown in table 15 with their distances.
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Table 13

Determination of X2 Given X1
Data Computation

Distance
Nearest
Neighbor
sign

X1 X2 Y
10 15 + 80
4 9 + 8 +
9 15 + 73
5 4 + 10 +
14 0 + 113
24 16 + 405
19 18 + 290
26 11 + 416
16 6 + 101
35 36 + 1682
6 20 - 169
55 35 - 3185
11 19 - 169
30 1 - 612
14 16 - 145
2 11 - 32
4 4 - Training 13 -
10 4 - Data 25
8 10 - 13 -
7 4 - 10 -
8 7 - 4 -
6 10 - 9 -
8 10 - 13 -
7 10 - 10 -
6 7 ?

The majority vote was 6 “- “, with k equal to 8. Of the six nearest neighbors, 8, 7 is the

nearest neighbor with a distance of 4 (see Figure 23). Using this process, there was 75%

success rate in the identification process.
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Table 84

Determining the Nearest Distance

X1 X2 Y Distance

4 9 + 8

5 4 + 10

8 10 - 13

7 4 - 10

8 7 - 4

6 10 - 9

8 10 - 13

7 10 - 10
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Figure 23. Positive and negative computations.

Prediction of the Query Instance

In this scenario, the goal was to use the K nearest neighbor algorithm

neighborhood classification as the means of predicting the value of a new query instance.

By using data from the pretest library, the classification of new data points with

covariants could be used to determine the K parameter as the number of nearest neighbors.

Predictive analytics was used in AGI to predict probabilities of changes in the gait. By

means of predictive models, forecasts for probabilities in changes to gait signature could

be made with a level of acceptable reliability. In predictive modeling, data are collected,

a statistical model is formulated, predictions are made, and the model is validated or

revised when additional data become available. Further research is needed in the

application of predictive modeling in AGI.

The next task was to calculate the distance between the query instance in all the

pretest data points.

Table 15

Square Distance Method for k-NN

X1 = Hip-

Knee

X2 = Knee-

Ankle

Square Distance to Query

Instance of (12, 15)

Ranking Based on

Minimum Distance

Is Included in the 3

Nearest Neighbors?

23 18 (23-12)2+ (18-15)2=130 6 No

11 17 (11-12)2 + (17-15)2 = 5 1 Yes

10 17 (10-12)2 + (17-15)2 = 8 2 Yes
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15 19 (15-12)2 + (19-15)2=25 3 No

17 14 (17-12)2 + (14-15)2=26 4 No

15 36 (15-12)2 +(3615)2=450 8 No

17 5 (17-12)2 + (5-15)2=125 5 No

20 4 (20-12)2 + (4-15)2=185 7 No

To find the query instance for the determination, the square distance method was

used to determine the nearest distance of neighbors as demonstrated above. Again a

ranking was made based on the minimum distance, K = 3. The predicted value was X1 =

11, X2 = 17 (see Table). In other test scenarios k - NN was used to determine an unknown

posttest value. As demonstrated below for a known pretest knee angular value of 30 k -

NN was used to predict the posttest value of 23.5 as shown in Table 18. An average of the

nearest neighbors of 11 and 36 was taken. The result was 23.5.

Table 16

K-Nearest Neighbor for Unknown Value of Y

K 2 Nearest Neighbor

X Y Distance Value

10 15 20

9 15 21

14 0 16
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24 16 6

26 11 4 11

35 36 5 36

55 35 25

30 ?

Result: k-NN prediction of Y 23.5

Table 97

Determining the Nearest Distance

X1 X2 Y Distance

4 9 + 8

5 4 + 10

8 10 - 13

7 4 - 10

8 7 - 4

6 10 - 9

8 10 - 13

7 10 - 10

To estimate the value of Y based on K-Nearest Neighbor (k - NN) where K = 2 and

with X value of 30, the predicted Y value would be 23.5. This scenario could be used to

predict an unknown value of post cadence when there is existing data in a library.
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The determination of Research Question 2 included a visual and empirical

analysis of graphical presentations to demonstrate significant changes in angular

measurements of the pretest and posttest gait data. While the value of change for each

participant was different, there was a pattern that revealed a likely probability of

prediction. Tables 9 and 10 discussed earlier in the chapter showed the significant

changes in value at the hip and knee. The changes in knee-ankle angle were centered on

the pre-swing, initial swing and mid-swing, while the changes in hip-knee angle were

centered on the terminal stance, pre-swing, and initial swing.

Understanding of change in cadence due to covariates can help to resolve

differing data match of a gait signature when there are conflicting data points from a data

library. Human gait is subject to covariate factors and there will be instances where new

data of a subject’s gait will not match the data of the same subject stored in a data library.

K - NN nearest neighbor methods and understanding of areas of the gait that are likely to

change could be used to resolve such conflicts.
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Chapter 5: Discussion, Conclusions, and Recommendations

The purpose of this study was to find out the percent success rate of AGI with

affective state as a covariate factor, and determine which regions of human gait are

subject to change. The 24 test participants were under an induced affective state. Existing

research on covariate factors and gait recognition does not include affective state. Lack of

any formal study on the effect of affective state on human gait identification makes

existing studies in AGI incomplete. Understanding the specific nature of mood changes

on the different phases of gait will help identify known individuals in a data library and

reduce false positive or negative matches. To this end, I examined the gait of 24 test

participants in their normal mood state as a control and then under an anger-hostile state

induced by the experimenter. The following research questions guided the study:

1. What is the success rate of gait identification with a covariate factor?

2. How do I determine which sections of the gait change due to a covariate factor?

A quantitative study methodology was chosen as the most appropriate method to

ground the research, based on the purpose of the study, the approach to the data

collection, and the type of data required to analyze the research questions. This

methodology captured experiences in process through mathematical and empirical

analysis. The theoretical framework that grounded this study was based on Murray’s

theory of total walking cycle. I approached the research problem of the impact of

affective state on gait identification by studying gait in an uncontrolled, real world

environment. I also examined gait cycle to determine which regions of the gait signature

are susceptible to change under an induced affective state.
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The data were examined for trends to interpret observed patterns in changes to

gait signature. I examined the structure and essence of the impact of changes to the gait

signature of the 24 test participants to measure the success rate of gait with covariate

factors. The first section of this chapter includes a discussion of the findings of the study.

The second section includes a discussion of the implications for social change with

specific recommendations, and the final section includes recommendations for future

research.

Interpretation of Findings

The challenge in current literature on gait research is to overcome gait motion

variations due to various conditions such as footwear, clothing, walking surface, carrying

objects, walking speed, and indoor versus outdoor conditions. Current literature includes

extensive research on gait identification in a controlled environment, with data collected

mostly in a lab under controlled conditions (Sarkar & Liu, 2009). They do not reflect real

world conditions. In contrast to prior studies reported in the literature, this research used

an induced affective state as a covariate factor and imposed no restrictions on walk

terrain, shoes, clothing, or any of the covariate factors. In the laboratory, walking terrain

was controlled, and the height of shoe heel and sole were determined in advance of the

research.

I used a dynamic motion approach to the data collection, which refers to the

collection of data based on the rate of transition between eight phases of a gait cycle. The

task of recognizing someone from 100m to 300m away using physical biometrics does

not offer the opportunity to determine or control any of the covariate factors. The use of
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biometric identification such as fingerprint or iris scans at such distances is difficult if not

impossible. Facial data can be captured from such distance, but resolution and outdoor

sources of lighting and shadow variations would impose unintended challenges. I

employed behavioral biometrics, which favors distance identification.

Findings for Research Question 1

Using k - NN algorithm, I successfully identified 75% of the participants from the

data library by randomly taking a gait signature from the pretest and using the k - NN to

find the nearest neighbor in the library of gait signatures in the posttest library. The result

is significant, and within the range of other gait studies in current literature (Nixon &

Carter, 2004;, see Table 25 in Appendix H).

This 75% success rate is significantly lower than the 95.75% success rate

reported in Nixon et al.’s (2000) laboratory study. As stated earlier, the laboratory study

controlled factors like surface types, which were mainly indoors. No carried objects were

allowed, the walking speed was regulated, clothing was restricted to tight pants, and the

shoe type was selected for the research.

Video image data were measured from the cadence, stance, and angular

measurements of participants’ gait and using quantitative methodology through

mathematical and empirical analysis and the use of Fourier series analysis. I

demonstrated the feasibility of gait identification in a real world scenario where no

controls were imposed and a covariate factor was measured. The 75% success rate was

based on a random trial of 15 participants out of a population of 24 using k - NN

algorithm. The k – NN algorithm, a non-parametric lazy learning algorithm, did not make



137

any assumptions on the underlying data sets or their distribution. As a lazy algorithm, it

did not use the training data points to generalize. A single number was used for k in the

algorithm. This number was used to decide how many neighbors (where a neighbor was

defined based on the distance metric) were nearest to influence the classifications. Each

training data consisted of a set of vectors and class label associated with each vector. The

class label was either + or – (for positive or negative classes to indicate whether it was a

classification greater than k as neighbor hence a + or a classification less than k with a

symbol -). Any arbitrary number of classes could have equally been used with k - NN.

Findings for Research Question 2

Research Question 2 sought to determine the areas of change in gait signature

because of affective state. Knowledge of areas of change would provide an understanding

of the mechanism and rate of change in the gait cycle and provide a baseline for

development of an algorithm to resolve issues associated with gait signature changes. The

walk pattern, which provides distinct characteristics uniquely associated to a person, is

determined by their musculoskeletal structure, so it is plausible that affective state would

influence the behavior of this structure. In fact, the study demonstrated measured change

in the eight different variables that make a gait cycle. These cycles were partitioned into

four periods:

1. Right stance period: This was when the right foot was in contact with the floor,

beginning with the right heel strike and ending at right toe-off.

2. Left swing period: This was measured beginning from left toe-off and ending

at left heel strike.
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3. Left stance period: When the left foot was in contact with the floor, beginning

from left heel strike and ending at left toe.

4. Right swing period: When the right foot is not in contact with the floor,

beginning from right toe and ending at right heel strike.

As this question sought to determine which sections of the gait signature changed due to

a covariate factor, metrics for patterns were analyzed, collations and observable trends of

changes in comparison to the control variable were taken, and the impact of affective

state on these periods were established.

The interpolation of these data revealed that evaluation of the data through

graphical presentation answered the question above. There was a statistically significant

change in angular measurement of gait comparing the pretest data with the posttest data.

While the value of change for each participant was different, there was a pattern that

revealed a likely probability of prediction. The change in value at the hip was different

from the change in value at the knee as shown in sample data points (see Table 22).

However, analysis of the covariate posttest data revealed a significant rise in the hip to

knee value. It revealed the impact of affective state on participants’ gait, which included a

statistically significant increase in value at mid-stance at posttest. It does not lend itself to

predict the percentage or rate of change, which may require further studies.

Research Question 2 findings established that is feasible to determine, within the

regions of gait cycle, where statistically significant change existed resulting from the

effects of a covariate factor. This was done through observable trends and collations
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between the pretest and posttest data. It did not however, provide a trend of degree of

change that would make it easily predictive of such changes. Further studies are required.

Interpretation of Findings

I succeeded in putting aside any personal bias or preconceived notions both in

data gathering and analysis of the data. But it is noteworthy to highlight the

overwhelming surprise during the posttest phase, the impact of the two scripts on the

participants, and the resulting effect on both affective state and gait cycle. With some

participants, the two phases of the research were conducted on the same day. While they

did not know that their gaits were being measured, there was a notable difference in the

data between the two phases. It is also remarkable that those who were impacted the most

by the scripts showed more significant change in their data.

Future Challenges to Gait Study

Events of 9/11 created a great interested in gait biometric research and spurred the

development of gait recognition algorithms with improving performance. But further

study is required to develop techniques for identifying mood states with gait

identification from a distance. The challenge appears to be a further need to recognize the

different mood change of a person from a distance. This study measured only one mood

state out of six.

There are currently several methods for creating a gait signature (Veres et al.,

2005a), which poses a great challenge to a unified consensus of acceptable methods. As a

result, there are several different approaches yielding different results to AGI. Although
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the study identified significant change at mid-stance in posttest, it did not give a constant

value in change in mid-stance. Further study is needed to fully predict the rate of change

in gait due to covariate factors.

Recommendations

For AGI to become a mainstream law enforcement tool, further studies will be

required. The need for a better understanding of the variation of gait due to surface

conditions and across elapsed time is important to improvements in gait identification

research. Research in AGI should focus on outdoor datasets and with different possible

combination of covariate factors. It should include gait data under different weather

conditions and at differing time intervals of weeks and months that spans over months or

years with the same participants.

The percentage of success rate under covariate factors would need to be within

95% with a 5% margin of error—closer than what was achieved in this research. Other

covariate factors such as footwear, other mood states, and physical health also affect AGI.

To reach that level of acceptability, these areas require extensive research.

Implications

The deployment of AGI has legal implications that need to be addressed or tested

in the courts. While recording a person’s gait in public places is accepted as a normal

surveillance process, can the video images be stored by the government in a biometrics

data library without that person’s consent? In democratic societies governments are

accountable to their citizens. Democratic governments are guided by laws that recognize

the rights of the citizenry. Simon (1990) stated that the rule of law is the instrument that
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can shape the way the government interacts fairly with its citizens. Governments must

value citizens’ privacy (Simon, 1957). Chinchilla (2012) argued that there are two

fundamental legal principles that are related with biometric technologies and they are due

process and the right of privacy. The U.S. government is confronted with the challenge of

individual rights and societal interest. According to Wayman, Jain, Maltoni, and Maio,

(2005), the concept of due process requires the government to acknowledge the

possibility of errors, and should allow means for their mitigation. They postulated that

there are limits set by the courts on the power of government to meddle in the lives of

individuals. Wayman et al. argued that court protected guarantees required the

government to respect the right of individuals by limiting intrusions. They asserted that

balance between individual rights and societal interest was placed under a new strain by

the advent of biometric technologies.

The U.S. constitution makes provisions for the protection of individual rights. The

fourth, fifth, and 14th U.S. constitutional amendments (Find Law, accessed August 21,

2012) address privacy, due process, and security. The fourth amendment protects against

unreasonable searches and seizures; the fifth and the 14th amendments ensure that due

process is accorded to each citizen. In a constitutional democracy Kadish, (1957)

defended the basis for due process as being the notion that personal freedom can only be

preserved when there is some consistent way to check arbitrary and capricious actions by

the government.

The massive deployment of X-ray scan machines at the airports and other

biometric machines in sports facilities puts the privacy protected by the fourth
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amendment in jeopardy. Chinchilla (2011) cited surveillance as a perfect example in

which the “balance between public security and the right to individual privacy” may be

compromised by sharing biometric information with different purposes. The “reasonable

search” part of the fourth amendment has been the subject of profound legal battles

before biometric technologies (The 'Lectric Law Library's Legal Lexicon, accessed

August 21, 2012).

Improved Classification Method and Algorithms

There are challenges in designing well performing gait recognition algorithms.

Several algorithms have been developed, which do not apply well with the different

covariate factors and the different recognition methods. The different gait motion

variations are difficult to overcome by a single method due to different conditions such as

footwear, clothing, carrying objects, walking speed, walking surface, conditions

associated with time indoors versus the outdoors. The k - NN classifier was used in this

research, which has its limitations.

Classifications read from nonlinear datasets are not reliable. More advanced non-

linear classifiers will improve the classification success margin as a nonlinear classifier

would provide a feature space in a nonlinear manner in a better segmented group. It will

improve the manner of data classification, leading to improved successful pattern

matches. A test data library built with data obtained in everyday scenarios without

restrictions to covariate factors will increase knowledge in the field of automatic gait

identification.



143

Implications for Social Change

Since the 9/11 terrorist attack on the United States, there has been a need for a

nonintrusive and noninvasive identification system to recognize and identify criminals or

would-be terrorists. Current X-ray scan systems used at airport are invasive and the body

searches are intrusive. AGI has the potential to change socially the methods of human

recognition. It is noninvasive and nonintrusive. It recognizes people based on their walk

pattern and from a distance. It could reduce the mass profiling of innocent people and

narrow the search for known criminals. A tool such as AGI would have massive positive

social benefits.

In addition to increased security, gait identification is also convenient. Data

cannot be guessed or stolen in the same fashion as a password or token. Although it is

known that some biometric systems can be broken under certain conditions, gait

biometric systems would be highly unlikely to be fooled by a change in walk pattern.

According to Chinchilla (2012), the level of security provided by most biometric systems

far exceeds the level of security provided by passwords, PINs, or tokens.

AGI can use strong auditing and reporting capabilities to prevent abuse of the

technology. Once gait signature is entered in a data bank for future identification, gait

biometrics technologies can reduce fraud. Chinchilla (2012) argued that fraud deterrence

is one of the major benefits of biometrics; the very presence of surveillance cameras

dissuades many people who might otherwise be prone to commit a crime.

AGI has advantages over existing biometric technology when it comes to trying to

fool the system. Chinchilla (2012) asserted that the weakest link in a biometric system is
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the enrollment process. He argued that a subject can create a new identity by presenting

fake documents, like a driver’s license and or a passport, during the enrollment process in

a biometric facility. It becomes hard to detect an imposter once a new fake identity has

been accepted and processed by a biometric system. The new identity can be used to

board a plane, enter a facility, or buy restricted materials, according to Chinchilla. It is

difficult to impersonate someone else’s gait in front of a surveillance system.

FBI director Mueller acknowledged after the attack of September 11, 2001 that

some of those behind the attack possessed up to a dozen valid US driver’s licenses with

different identities (CNN.com. accessed August 21, 2012). Any biometric system is only

as good as the information fed into the database. If gait is used as a biometric

identification system, it will be impractical for an individual to present different

identification systems for a license or passport to board a plane.

Conclusions

The study demonstrated that use of gait for biometric identification is feasible. I

used the data to answer the two research questions, establishing a rate of success of AGI

under an affective state and by demonstrating that it is possible to know from the regions

of gait cycle where change of gait is noteworthy. The findings corroborate with baseline

performance in current literature. Research in AGI since 9/11 has made remarkable

progress. Interest in AGI spurred the advance from silhouette methods to static and

dynamic gait methodology. This study adds to the fundamental understanding and

knowledge of AGI. Although more research is needed, a literature review showed a

positive view of the interest and amount of research being conducted to keep AGI on
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track to realize mainstream acceptability as a biometric tool. Novel approaches are listed

in the literature, including the temporal alignment-based approach, which is based on the

alignment process of simple temporal correlation (Sarkar et al., 2005), dynamic time

warping (Veeraraghavan et al., 2004), the role of shape and kinematics in human

movement analysis, hidden Markov models, and phase locked-loops (Boyd, 2004).
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Appendix A:

Allocation of Items on the Profile of Mood State (POMS) Scales

Table 18

Allocation of items on the POMS scales

How do you

feel today?
VIGOR IRRITABILITY FATIGUE NUMBNESS

SF-36 (MENTAL

HEALTH)
Lively X

Vigorous X

Energetic X

Cheerful X

Alert X

Full of pep X

Active X

Nervous X

Angry X

Annoyed X

Peeved X

Spiteful X

Bad

Tempered X

Furious X
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Listless X

Weary X

Exhausted X

Sluggish X

Worn out X

Fatigued X

Slowed X

Chippy X

Dazed X

Happy X

Demoralize

and sad X

Calm and

Relaxed X

Half

Hearted X

Very

nervous X

So broken-

hearted

that … X
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Appendix B:

Total Mood Disturbance/POMS Self-Report

A total mood disturbance (TMD) score will be obtained from the POMS Self-report

Profile of Mood States

Subject’s Initials _______

Birth date _______

Date _______

Subject Code No. _______

Directions:

Describe HOW YOU FEEL RIGHT NOW by checking one space after each of the words

listed below:
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Table 19

POMS Results

FEELING Not at all A Bit Mod
Quite a

bit
Extremely

Friendly 1 2 3 4 5

Tense 1 2 3 4 5

Angry 1 2 3 4 5

Worn Out 1 2 3 4 5

Unhappy 1 2 3 4 5

Clear-

headed 1 2 3 4 5

Lively 1 2 3 4 5

Confused 1 2 3 4 5

Sorry for

things done 1 2 3 4 5

Shaky 1 2 3 4 5

Listless 1 2 3 4 5

Peeved 1 2 3 4 5

Considerate 1 2 3 4 5

Sad 1 2 3 4 5

Active 1 2 3 4 5
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FEELING Not at all A Bit Mod
Quite a

bit
Extremely

On edge 1 2 3 4 5

Grouchy 1 2 3 4 5

Blue 1 2 3 4 5

Energetic 1 2 3 4 5

Panicky 1 2 3 4 5

Hopeless 1 2 3 4 5

Relaxed 1 2 3 4 5

Unworthy 1 2 3 4 5

Spiteful 1 2 3 4 5

Sympathetic 1 2 3 4 5

Uneasy 1 2 3 4 5

Restless 1 2 3 4 5

Unable to

concentrate 1 2 3 4 5

Fatigued 1 2 3 4 5

Helpful 1 2 3 4 5

Annoyed 1 2 3 4 5

Discouraged 1 2 3 4 5

Resentful 1 2 3 4 5
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FEELING Not at all A Bit Mod
Quite a

bit
Extremely

Nervous 1 2 3 4 5

Lonely 1 2 3 4 5

Miserable 1 2 3 4 5

Muddled 1 2 3 4 5

Cheerful 1 2 3 4 5

Bitter 1 2 3 4 5

Exhausted 1 2 3 4 5

Anxious 1 2 3 4 5

Ready to

fight 1 2 3 4 5

Good-

natured 1 2 3 4 5

Gloomy 1 2 3 4 5

Desperate 1 2 3 4 5

Sluggish 1 2 3 4 5

Rebellious 1 2 3 4 5

Helpless 1 2 3 4 5

Weary 1 2 3 4 5

Bewildered 1 2 3 4 5
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FEELING Not at all A Bit Mod
Quite a

bit
Extremely

Alert 1 2 3 4 5

Deceived 1 2 3 4 5

Furious 1 2 3 4 5

Effacious 1 2 3 4 5

Trusting 1 2 3 4 5

Full of pep 1 2 3 4 5

Bad-

tempered 1 2 3 4 5

Worthless 1 2 3 4 5

Forgetful 1 2 3 4 5

Carefree 1 2 3 4 5

Terrified 1 2 3 4 5

Guilty 1 2 3 4 5

Vigorous 1 2 3 4 5

Uncertain

about things 1 2 3 4 5

Bushed 1 2 3 4 5
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Appendix C: Characteristics of Participants

Table 100

Pretest Measurable

Characteristic N %

Sex Female

Male

Age 18-27

28-37

38-47

48-57

58-67

Weight

Height

Hip to ground length

Stride distance

Cadence
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Table 111

Sex and Age Measurable

Characteristic N %

Sex Female 12 50

Male 12 50

Age 18-27 3 4

28-37 3 4

38-47 2 3

48-57 3 1

58-67 1 0
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Appendix D: Consent Forms

The study you are about to participate in is part of a series of studies on human

consciousness. It is a test of memory processes only and is not a test of your intelligence

or personality. The study employs standard laboratory tasks that have no potential harm

to participants, and has been approved by the Institutional Review Board for ethical

standards.

Should you agree to being in the study, you will be asked to participate in a

variety of audio, video and locomotive tasks such as: watching different movies, listening

to soothing songs and then taking a short walk. You will then demonstrate by way of

discussion how many scenes of the movie or stanzas of the songs you can remember after

a short walk outside. You will be recorded with a video recorder in the outdoor for

normal observation.

All data collected from you will be coded in order to protect your identity.

Following the study there will be no way to connect your name with your data.

Any additional information about the study results will be provided to you at its

conclusion, upon your request.

You are free to withdraw from the study at any time. Should you agree to

participate, please sign your name below, indicating that you have read and understood

the nature of the study, and that all your inquiries concerning the activities have been

answered to your satisfaction.

Complete the following if you wish to receive a copy of the results of this study.
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____________________________________________

Signature of participant and date

____________________________________________

My Signature and date

Name of participant: ____________________________

Address: ______________________________________

(Street)

_____________________________________________

(City, State, and Zip)

(Source: http://wareseeker.com/free-informed-consent-form-template/)
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Appendix E: Panasonic 25 Video Recorder

Features

SDR-H80K

60GB Standard Definition Camcorder

•HDD & SD Card Slot

•70x Optical Zoom with Advanced O.I.S.

Close-up shots w/ reduced hand shake.

•iA Mode w/ Face Detection

Captures faces in dim or backlit scenes.

MEDIA.

Records Onto 60 GB HDD, SD/SDHC Memory Card

Recording Format MPEG2 (Motion Image); JPEG (Still Image)

LENS

Image Sensor (Total) 1/8" CCD

Image Sensor (Effective) 0.38 megapixels [16:9], 0.29 megapixels [4:3] [Motion

Image]

0.38 megapixels [16:9], 0.29 megapixels [4:3] [Still Image]

F Value F1.9 (WIDE)/5.7(TELE)

Optical Zoom 70x

Focal Length 1.5-105mm
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Filter Diameter 37mm

35mm Film Camera Equivalent 45.6-3194mm [4:3], 37.3-2610mm [16:9]

[Motion Image]

45.4-3180mm[4:3], 37.0-2592mm [16:9] [Still Image]

Lens Type Panasonic

CAMERA

Image Stabilizer Advanced O.I.S. (Optical Image Stabilization)

Still Picture Recording Yes; 0.2 M [640 x 360] [16:9], 0.3 M [640 x 480] [4:3]

Minimum Illumination 6 Lux (1/30 Low Light Mode), 2 Lux (Magic Pix)

Focus Auto/Manual

White Balance Auto/Indoor/Outdoor/White Set

High Speed Shutter 1/30-1/8000 (Motion Image)

1/30-1/500 (Still Picture)

Iris Auto/Manual

LCD Monitor 2.7" Wide (123,200 Dots)

Manual Focus Ring No

MagicPix Images Yes

Microphone Stereo mic., Zoom mic.

On-Screen Display Language English, French, Spanish

Digital Zoom 1 Digital Zoom: 70x-100x

Super Digital Zoom: 70x-3500x

RECORDING & PLAYBACK
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Video Recording Format MPEG2 [Motion Image]

Recording Mode XP [10Mbps/VBR], [704 x 480]

SP [5Mbps/VBR], [704 x 480]

LP [2.5Mbps/VBR], [704 x 480]

Playback Mode XP [10Mbps/VBR], [704 x 480]

SP [5Mbps/VBR], [704 x 480]

LP [2.5Mbps/VBR], [704 x 480]

Audio Recording Format HDD: Dolby Digital [2ch]

SD Card: Dolby Digital [2ch], MPEG1 Audio Layer 2

Still Picture JPEG; 0.2 M [640 x 360] [16:9], 0.3 M [640 x 480] [4:3]

SD CARD FEATURES.

Built-in SD Slot Yes

DPOF Max. 999 stills

PictBridge Compatible Yes

JACKS.

Audio Output Yes

USB 2.0 Hi-Speed

Accessory Shoe No

AV Out

INCLUDED ACCESSORIES.

AC Adaptor Yes

Battery Pack min. 725 mAh/Lithium-Ion
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AV Cable Yes

USB Cable Yes

IR Remote No

SD Memory Card No

Software VideoCam Suite 2.0

Other Cables AC/DC Cables

GENERAL.

Power Supply DC 7.2/9.3 V

Power Consumption 3.8W

Speaker Dynamic type

Total Pixels 0.8 megapixels

Dimensions (H x W x D) 2.64'' x 2.09'' x 4.21''

Weight Approx. 0.66 lbs
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Appendix F: Covariate Factor Analysis

1. Image feature analysis will be performed to describe the affective state effect on the

different dynamic gait components from the data collection.

2. The study will identify collations out of the datasets to identify patterns.

3. It will graph the data on an equal scale, and by the process of interpolation establish

any visible collations.

4. The study will group the data for common traits.

5. Seek divergent data references. I will also analyze divergent data references from the

collected data.

6. Construct a composite of the datasets to draw established patterns.
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Appendix G: Subphases of Gait, Initial Contact

Table 122

Subphases of Gait, Initial Contact

Subphases
of Gait

Initial
Contact

Leading
Response Mid Stance Terminal

Stance

N
am
e

1H
ip

1K
ne
e

2H
ip

2K
ne
e

3H
ip

3K
ne
e

4H
ip

4K
ne
e

O
S3

Before 14 7 10 8 10 8 15 12
After 17 3 14 6 5 13 7 24
Mean 15.5 5 12 7 7.5 10.5 11 18
SD 1.5 2 2 1 2.5 2.5 4 6

FD
S

Before 21 17 17 4 3 2 6 16
After 21 12 16 4 1 16 11 20
Mean 21 14.5 16.5 4 2 9 8.5 18
SD 0 2.5 0.5 0 1 7 2.5 2

R'
sF
rie
nd Before 23 18 11 17 10 17 15 19

After 20 7 10 8 6 16 12 21
Mean 22.5 12.5 10.5 12.5 8 16.5 13.5 20
SD 2.5 5.5 0.5 4.5 2 0.5 1.5 1

G
ai
l

Before 14 5 7 13 7 15 23 24
After 12 8 12 9 4 12 7 32
Mean 13 6.5 9.5 11 5.5 23.5 15 28
SD 1 1.5 2.5 2 1.5

L1

Before 21 30 11 45 21 26 32 2
After 21 11 21 5 7 10 14 18
Mean 21 20.5 16 25 14 18 23 10
SD 0 9.5 5 20

N
ic
he
lle

Before 16 17 16 4 17 14 8 19
After 16 21 13 5 4 18 16 12
Mean 16 19 14.5 4.5 10.5 16 12 15.5
SD 0 2 1.5 0.5 6.5 2 4 3.5

Ro
se
m

ar
y

Before 20 15 13 11 11 17 19 31
After 17 3 12 19 12 18 11 28
Mean 18.5 9 12.5 15 11.5 17.5 15 29.5
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Subphases
of Gait

Initial
Contact

Leading
Response Mid Stance Terminal

Stance
SD 1.5 6 0.5 4 0.5 0.5 4 1.5

Re
gi
na

Before 10 32 8 47 25 14 24 7
After 12 22 11 40 18 23 19 12
Mean 11 27 9.5 43.5 21.5 17.5 21.5 9.5
SD 1 5 1.5 3.5 3.5 3.5 2.5 2.5

T3

Before 10 4 9 5 14 24 19 26
After 15 9 15 4 0 16 18 11
Mean 12.5 6.5 12 4.5 7 20 18.5 18.5
SD 2.5 2.5 3 0.5 7 4 0.5 7.5

SK
2

Before 12 8 10 12 14 10 12 9
After 10 5 9 9 12 9 12 8
Mean 11 6.5 9.5 10.5 13 9.5 12 8.5
SD 1 1.5 0.5 1.5 1 0.5 0

A
A
A

Before 16 17 14 17 18 14 16 12
After 18 12 15 16 19 12 15 13
Mean 17 14.5 14.5 16.5 18.5 13 15.5 12.5
SD 1 2.5 1 0.5

TS
21

Before 14 9 13 10 15 9 11 10
After 15 10 12 13 18 10 13 12
Mean 14.5 9.5 12.5 11.5 16.5 9.5 12 11
SD 0.5 0.5 0.5 1.5 1.5 0.5 1

B2
C1

Before 14 13 14 12 15 14 10 13
After 13 11 12 14 14 12 12 12
Mean 13.5 12 13 13 14.5 13 11 12.5
SD 0.5 1 1 1 0.5 1 1

CC
2B

Before 10 12 9 10 10 12 14 13
After 9 8 7 12 7 12 16 13
Mean 9.5 10 8 11 8.5 12 15 13
SD 0.5 2 1 1 1.5 0 1

K
K
A
D

Before 16 15 15 16 15 9 14 10
After 14 14 14 12 14 14 12 14
Mean 15 14.5 14.5 14 14.5 11.5 13 12
SD 1 0.5 0.5 2 0.5 2.5 1 2

TT
T5

Before 17 15 16 12 15 13 10 13
After 17 15 15 15 14 13 14 14
Mean 17 15 15.5 13.5 14.5 13 12 13.5
SD 0 0 0.5 1.5 0.5 0 2 0.5

P K 9 Before 20 14 19 14 16 13 13 11



191

Subphases
of Gait

Initial
Contact

Leading
Response Mid Stance Terminal

Stance
After 19 12 17 15 16 15 13 12
Mean 19.5 13 18 14.5 16 14 13 11.5
SD 1 1 0.5 0 1 0 0.5

A
BC
D

Before 9 11 9 10 9 9 9 13
After 12 14 10 14 13 9 15 10
Mean 10.5 12.5 9.5 12 11 9 12 11.5
SD 1.5 0.5 2 2 0 3 1.5

G
H
K

Before 13 18 12 17 16 15 16 14

After 10 12 9 11 14 16 14 15
Mean 11.5 15 10.5 14 15 15.5 15 14.5
SD 1.5 3 1.5 3 1 0.5 1 0.5

TD
K
X

Before 18 16 16 15 16 16 14 13
After 18 15 15 14 14 14 16 12
Mean 18 15.5 15.5 14.5 15 15 15 12.5
SD 0 0.5 0.5 0.5 1 1 1 0.5

SA
M

Before 19 14 18 16 16 15 15 14
After 15 16 17 15 17 15 17 13
Mean 17 15 17.5 15.5 16.5 15 16 13.5
SD 2 1 0.5 0.5 0.5 0 1 0.5

Y
A
A

Before 17 13 17 9 12 10 13 11
After 16 10 19 9 16 11 15 9
Mean 16.5 11.5 18 9 14 10.5 14 10
SD 0.5 1.5 1 0 2 0.5 1 1

Y
A
A
2

Before 10 8 9 9 12 10 9 10
After 11 10 12 8 10 9 9 12
Mean 10.5 9 10.5 8.5 11 9.5 9 11
SD 0.5 1 1.5 0.5 1 0.5 0 1

M
M
2

Before 12 10 11 10 12 9 12 10
After 10 6 10 10 9 11 10 10
Mean 11 8 10.5 10 10.5 10 11 10
SD 1 2 0.5 0 1.5 1 1 0
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Table 213

Subphases of Gait: Pre-Swing

Subphases
of Gait Pre-Swing Initial Swing Mid Swing Terminal Swing

N
am
e

5H
ip

5K
ne
e

6H
ip

6K
ne
e

7H
ip

7K
ne
e

8H
ip

8K
ne
e

O
S3

Before 15 36 14 14 14 8 14 8
After 6 33 10 12 13 7 17 4
Mean 10.5 34.5 12 13 13.5 7.5 15.5 6
SD 4.5 1.5 2 1 0.5 0.5 1.5 2

FD
S

Before 10 26 4 42 21 15 22 7
After 12 37 3 45 23 8 22 20
Mean 11 31.5 3.5 43.5 22 11.5 22 13.5
SD 1 5.5 0.5 1.5 1 3.5 0 6.5

R'
sF
rie
nd

Before 17 14 15 36 17 5 20 4
After 4 60 17 30 25 4 25 15
Mean 10.5 37 16 33 21 4.5 22.5 9.5
SD 6.5 23 1 3 4 0.5 2.5 5.5

G
ai
l

Before 17 24 5 57 21 25 14 8
After 4 23 18 21 15 2 18 8
Mean 10.5 23.5 11.5 39 18 13.5 16 8
SD 0.5 6.5 18 3 11.5 2 0

L1

Before 21 5 23 6 7 11 15 15
After 19 21 11 48 23 31 27 9
Mean 20 13 17 27 15 21 21 12
SD 8 6 21 8 10 6 3

N
ic
he
lle

Before 13 27 7 50 13 12 11 29
After 18 16 13 4 3 12 5 17
Mean 15.5 21.5 10 27 8 12 8 23
SD 5.5 3 23 5 0 3 6

Ro
se
m
ar
y Before 30 54 3 63 16 26 21 4

After 18 32 24 55 10 62 16 5
Mean 24 43 13.5 59 13 44 18.5 4.5
SD 11 10.5 4 3 18 2.5 0.5

Re
gi
na Before 23 11 17 4 2 16 11 26
After 21 1 5 11 12 18 13 24
Mean 22 6 11 7.5 7 17 12 25
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Subphases
of Gait Pre-Swing Initial Swing Mid Swing Terminal Swing

SD 5 6 3.5 5 1 1 1

T3

Before 16 35 6 55 11 30 14 2
After 6 36 20 35 19 21 16 11
Mean 11 35.5 13 45 15 25.5 15 6.5
SD 7 10 4 4.5 1 4.5

SK
2

Before 13 20 17 32 20 24 13 6
After 14 22 19 30 24 23 20 9
Mean 13.5 21 18 31 22 23.5 16.5 7.5
SD 1 1 1 2 0.5 3.5 1.5

A
A
A

Before 13 19 22 20 19 19 17 12
After 15 20 21 17 21 14 19 10
Mean 14 19.5 21.5 18.5 20 16.5 18 11
SD 0.5 0.5 1.5 1 2.5 1 1

TS
21

Before 11 16 18 31 27 27 25 21
After 10 19 17 29 28 28 23 23
Mean 10.5 17.5 17.5 30 27.5 27.5 24 22
SD 1.5 0.5 1 0.5 0.5 1 1

B2
C1

Before 8 22 23 20 17 22 18 19
After 10 19 21 14 16 15 14 18
Mean 9 20.5 22 17 16.5 18.5 16 18.5
SD 1.5 1 3 0.5 3.5 2 0.5

CC
2B

Before 9 18 17 19 18 20 19 18
After 8 16 18 23 17 21 20 17
Mean 8.5 17 17.5 21 17.5 20.5 19.5 17.5
SD 1 0.5 2 0.5 0.5 0.5 0.5

K
K
A
D

Before 11 24 20 22 21 19 20 16
After 10 23 21 23 20 21 20 19
Mean 10.5 23.5 20.5 22.5 20.5 20 20 17.5
SD 0.5 0.5 0.5 0.5 0.5 1 0 1.5

TT
T5

Before 10 18 19 28 23 23 19 18
After 13 17 18 25 21 20 18 16
Mean 11.5 17.5 18.5 26.5 22 21.5 18.5 17
SD 1.5 0.5 0.5 1.5 1 1.5 0.5 1

PP
K
9

Before 14 16 14 22 19 20 18 15
After 18 18 19 25 23 22 24 12
Mean 16 17 15.5 23.5 21 21 21 13.5
SD 2 1 1.5 1.5 2 1 3 1.5

A
B

CD

Before 14 25 20 32 23 22 19 16
After 15 28 22 36 28 26 21 9
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Subphases
of Gait Pre-Swing Initial Swing Mid Swing Terminal Swing

Mean 14.5 26.5 21 34 25.5 24 20 12.5
SD 0.5 1.5 1 2 2.5 2 1 3.5

G
H
K

Before 16 18 21 19 17 18 16 18
After 13 16 20 22 20 12 21 14
Mean 14.5 17 20.5 20.5 18.5 15 18.5 16
SD 1.5 1 0.5 1.5 1.5 3 2.5 2

TD
K
X Before 13 19 21 20 23 16 21 12

After 13 21 22 22 25 20 23 8
Mean 13 20 21.5 21 24 18 22 10
SD 0 1 0.5 1 1 2 1 2

SA
M

Before 16 17 19 24 20 21 20 21
After 18 15 18 21 22 23 19 23
Mean 17 16 18.5 22.5 21 22 19.5 22
SD 1 1 0.5 1.5 1 1 0.5 1

Y
A
A

Before 9 15 18 17 22 19 20 18
After 11 16 17 21 22 17 19 15
Mean 10 15.5 17.5 19 22 18 19.5 16.5
SD 1 0.5 0.5 2 0 1 0.5 1.5

Y
A
A
2

Before 12 14 18 16 21 17 18 13
After 10 18 21 12 22 15 18 12
Mean 11 16 19.5 14 21.5 16 18 12.5
SD 1 2 1.5 2 0.5 1 0 0.5

M
M
2

Before 9 16 19 20 17 19 18 17
After 9 13 17 18 19 20 17 15
Mean 9 14.5 18 19 18 19.5 17.5 16
SD 0 1.5 1 1 1 0.5 0.5 1
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Appendix H: POMS Test Data

Table 24

Pretest and Post Test Data: Profile of Mood State

Name POMS Pretest Posttest

OS3

Before 14 14

After 30 30

Mean 22

SD 8

FDS

Before 14 14

After 22 22

Mean 18

SD 4

R's Friend

Before 12 12

After 20 20

Mean 16

SD 4

Gail

Before 12 12

After 16 16

Mean 14

SD 2

L1 Before 14 14
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Name POMS Pretest Posttest

After 27 27

Mean 20.5

SD 6.5

Nichelle

Before 14 14

After 19 19

Mean 16.5

SD 2.5

Rosemary

Before 12 12

After 25 25

Mean 18.5

SD 6.5

Regina

Before 12 12

After 28 28

Mean 20

SD 8

T3

Before 18 18

After 27 27

Mean 22.5

SD 4.5

SK2

Before 22 22

After 31 31

Mean 26.5
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Name POMS Pretest Posttest

SD 4.5

AAA

Before 26 26

After 34 34

Mean 30

SD 4

TS21

Before 31 31

After 39 39

Mean 35

SD 4

B2C1

Before 18 18

After 23 23

Mean 20.5

SD 2.5

CC2B

Before 19 19

After 23 23

Mean 21

SD 2

KKAD

Before 18 18

After 24 24

Mean 21

SD 3

TTT5 Before 30 30
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Name POMS Pretest Posttest

After 37 37

Mean 33.5

SD 3.5

PPK9

Before 24 24

After 29 29

Mean 26.5

SD 2.5

ABCD

Before 16 16

After 23 23

Mean 19.5

SD 3.5

GHK

Before 21 21

After 24 24

Mean 22.5

SD 1.5

TDKX

Before 20 20

After 29 29

Mean 24.5

SD 4.5

SAM

Before 17 17

After 22 22

Mean 19.5
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Name POMS Pretest Posttest

SD 2.5

YAA

Before 25 25

After 30 30

Mean 27.5

SD 2.5

YAA2

Before 23 23

After 29 29

Mean 26

SD 3

MM2

Before 15 15

After 19 19

Mean 17

SD 2

Total 630 447

Mean 26.25 18.625

Table 25

Data analysis of gait identification rates as reported in the literature.

Different Condition: Average Success Rate Comparing Across Covariate Rate
Indoor data 95.75 Shoe types 77
Outdoor data 59 Surface types 37
No. of Subjects < 50 72 Carrying condition 71
No. of Subjects > 50 60 Different speeds 69

Clothing Type 73
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