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Abstract 

Engineering students entering the workforce often struggle to meet the competency 

expectations of their employers. Guided by constructivist theory, the purpose of this case 

study was to understand engineers’ experiences of engineering education, deficiencies in 

practical skills, and the self-learning methods they employed to advance their technical 

and professional competencies. Working engineers were asked about their experiences 

overcoming practical skill deficiencies and bridging the gap between education and 

practice. Interviews with 15 chemical, civil, mechanical, and electrical engineers were 

analyzed by coding for common statements and identifying themes. Firsthand 

experiences of the participants captured 3 themes: overall perceptions of engineering 

education, deficiencies in skills, and self-learning experiences. According to study 

findings, engineering education did not supply sufficient practical skills for working 

engineers. The study also provided descriptions of training and self-learning methods 

employed by practicing engineers to advance their technical and professional 

competencies. The study found that although universities might provide some practical 

skills through industry collaboration, engineering graduates still required professional 

development to ensure a smooth transition from academic learner to acclimated working 

engineer. The project is a practical training, developed for recent graduates, that could 

achieve positive social change by making strides toward bridging the gap between theory 

and practice for the participants. This study may also incite positive social change as it 

contributes to the evidence that there is a lack of practical experience in colleges of 

engineering, which may therefore improve their curriculum. 
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Section 1: The Problem 

Introduction 

Stakeholders in engineering education include universities, students, government, 

professional and trade associations, and the employers of engineering graduates. These 

stakeholders have suggested that graduate engineers fall short of industry expectations 

regarding practical knowledge, skills, and adaptability (Duderstadt, 2010; National 

Academy of Engineering [NAE], 2004, 2005; Sheppard, Macatangay, Colby, & Sullivan, 

2009). Other researchers (e.g., Besterfield-Sacre, Cox, Borrego, Beddoes, & Zhu, 2014; 

Borrego, Froyd, & Hall, 2010; Crawley, Malmqvist, Ostund, & Brodeur, 2007; 

Duderstadt, 2010; Felder, Brent, & Prince, 2011; Litzinger, Lattuca, Hadgraft, & 

Newstetter, 2011) suggested that engineering education has failed to prepare engineering 

students adequately for engineering practice.  

Several reasons have been cited for the inadequate preparation of engineering 

students. First, the problem-solving and teaching approaches offered by universities have 

been misaligned with industrial practice (Duderstadt, 2010; Sheppard et al., 2009) . 

Second, undergraduate engineering education has emphasized the acquisition of 

fundamental knowledge rather than professional practice (Trevelyan, 2016). Third, most 

engineering faculties have been, and continue to be, engaged in theoretical research rather 

than engineering practice and have had limited industrial experience (Duderstadt, 2010). 

In response to concerns from the industry and other stakeholders, university engineering 

programs have strived to balance coverage of the basic curriculum by keeping up with 

modern technologies, adding new subjects of study, and ensuring some content for 
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practice (Ambrose, 2013). However, adding more courses to 4-year degree programs to 

meet these demands has overburdened students and has taken away opportunities for 

practical engineering.  

The burden of learning to engage in professional practice has shifted to graduated 

engineers (i.e., alumni), who have been left to develop their skills through self-learning as 

they enter the job market and continue to learn independently by employing 

metacognition in a process of reflecting on and directing their own learning and thinking 

(Ambrose, 2013; Bransford, Brown, & Cocking, 2004). This on-the-job autodidactic 

approach has required graduates to assess the goals and constraints of each task, develop 

the skills needed to complete the tasks, learn to apply the knowledge and strategies 

required to perform the task, and reflect on the chosen approaches (Ambrose, 2013).  

The initial self-learning process needed for usable knowledge and skills could 

lead to lifelong learning, which might be accomplished through continuing engineering 

education (CEE), filling the knowledge and skills gap caused by technological advances, 

social and environmental changes, and globalization (Baukal, 2012). Although many 

employers offer CEE internally, external providers of engineering professional 

development (PD; see Appendix A) also provide a selection of topics for each 

engineering discipline. Providers include universities, professional societies, industry 

trade organizations, commercial education venues, government agencies, and equipment 

manufacturers (Baukal, 2012).  

In addition, engineering jobs offer opportunities to combine theory and practice 

leading to accelerated experiential learning, which is learning by doing (Eyler, 2009). 
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Engineering researchers have stressed the importance of experiential learning and have 

proposed that universities engage students in practical projects to invoke experiential 

learning (Bass, 2012; Korte, Sheppard, & Jordan, 2008; Litzinger et al., 2011). Crawley, 

Brodeur, and Soderholm (2008) stated, “Experiential learning engages students in critical 

thinking, problem solving and decision making in contexts that are personally relevant 

and connected to academic learning objectives by incorporating active learning” (p. 141). 

The current study was designed to explore the experiences of working graduate engineers 

by asking them to reflect on the competencies that they developed for professional 

practice and how they overcame their educational deficiencies, engaged in self-learning, 

and managed their PD in the early years of employment.  

I followed an instrumental case study approach concentrating on graduate 

engineers who had been employed in the industry for at least 1 year at the time of the 

study. I purposefully selected the participants from the chemical, mechanical, civil, and 

electrical engineering disciplines, as well as across several industrial institutions. These 

four engineering disciplines cover about 75% of graduate engineers in the United States 

(Finamore et al., 2013; National Association of Colleges and Employers [NACE], 2014). 

An underlying assumption was that these newly hired graduates would remember the 

significant challenges that they faced as they developed competencies for their jobs. 

Definition of the Problem 

There is a lack of graduate engineers’ preparedness for practice resulting from the 

disparity between theoretical and practical education. I explored the experiences of new 

engineers as they reflected on their educational preparation for engineering practice and 
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the self-training methods that they used to fill the gap between their engineering 

education and professional practice. The gap includes deficiencies in technical 

competency, communication, teamwork, and professional skills. I designed this study to 

capture the experiences of working engineers to show how they overcame these 

deficiencies. 

Rationale 

Evidence of the Problem at the Local Level  

The demand for engineering practitioners continues to rise in the United States, 

especially in the metropolitan areas where engineering industries are concentrated. 

Consequently, salaries for graduate engineers remain higher across the nation than for 

other college graduates. Engineers earned the highest average annual starting salaries of 

all bachelor’s degree majors in 2013, averaging about $62,000 (Finamore et al., 2013). 

Engineering disciplines such as aerospace, chemical, mechanical, petroleum, computer, 

and electrical had starting salaries as high as $80,000 (Finamore et al., 2013).   In 

comparison, the average starting salaries for business majors were $55,000 and $58,000 

for majors in computer science (Finamore et al., 2013).   

Moreover, job prospects for 2014 remained sound: The NACE (2014) predicted 

that the hiring rate for U.S. college graduates for 2014 would increase by 7.8% from the 

previous year. The NACE also suggested that business and engineering degrees would 

remain at the top of the list for undergraduate degrees in demand, followed by computer 

information, sciences, and communication. The top engineering degrees in demand were 

mechanical, electrical, computer, chemical, and civil engineering (NACE, 2014). The 
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NACE also identified the top attributes that employers sought from incoming candidates: 

an agglomeration of written communication skills, analytical skills, work ethic, 

teamwork, and problem solving.  

The Houston metropolitan area has been ranked as the eighth largest metropolitan 

area employing science, technology, engineering, and mathematics (STEM) majors 

throughout the United States (Landivar, 2013). This high level of employment has been 

attributed to the concentration of companies engaged in mining, oil, and gas exploration 

in the Southwestern United States. The oil and gas sector normally has employed about 

80% of all STEM graduates (Landivar, 2013). However, despite this high demand for 

engineers and high starting salaries, only one third of the engineering graduates in the 

United States have sought engineering work, with more than 60% seeking employment in 

other fields (Lichtenstein et al., 2009; Ohland et al., 2008). The reason might have been 

that employers were less than keen to hire graduates who required lengthy training. 

Consequently, employers resorted to recruiting top candidates with high grade point 

averages whom they deemed quick learners and contributors requiring minimum training. 

Similar trends have been reported for STEM workers. The American Community 

Survey (2011) showed that STEM workers accounted for about 6% (7.2 million) of the 

total U.S. workforce of 120 million workers, whereas engineers accounted for 

approximately 32% of the 2.3 million STEM workers, or 2.3% of all workers ages 25 to 

64 years. Overall, many STEM graduates have not been working in STEM occupations; 

The American Community Survey showed that only 26% of STEM graduates were 
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employed in STEM occupations, with the other 74% working in non-STEM occupations 

such as management, law, education, health care, and business.  

The U.S. Department of Education (USDoE, 2014) has been trying to upgrade 

STEM education and obtain financial support to improve STEM programs to attract and 

retain students. In 2014, the USDoE received the needed support and budget request from 

President Obama, who designated considerable funds ($2.9 billion for 2015) for various 

programs in STEM education (White House Office of Science and Technology Policy, 

2014). The president’s 2015 budget allocation for STEM education included funds for 

recruiting and training STEM teachers, improving STEM education, and conducting 

research on teaching and education. The key objective behind efforts to improve STEM 

education was to retain a U.S. presence as a global leader in engineering and technology 

and reduce the shortage of highly skilled workers (White House Office of Science and 

Technology Policy, 2014).  

The United States allows the immigration of skilled professionals under 

nonimmigrant H-1B and L-1 visas. The H-1B is a nonimmigrant visa that allows U.S. 

companies to hire foreign workers in some special occupations, and the L1 is a temporary 

nonimmigrant visa that allows foreign workers to relocate to the U.S. offices of their 

overseas employers (Vaz, 2012). In 2013, the visa quota was limited to 65,000 skilled 

workers per year, a number that U.S. employers had exhausted in the past before the end 

of the year, thus indicating the demand for skilled workers (Vaz, 2012).  

With large numbers of skilled workers coming from abroad every year, the ratio 

of U.S. to foreign-born STEM workers continued to shrink, for example, from 6.2 in 
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1994 to 3.1 in 2006 (Sana, 2010). The science and engineering degrees earned by 

foreign-born students have displayed a similar trend, and U.S. colleges remain a 

widening conduit to foreign-born science and engineering students, who continue to 

populate U.S. engineering schools. Among undergraduates, foreign-born science and 

engineering-earned degrees jumped from 11% in 1990 to 21% in 2010 (Sana, 2010). In 

the engineering field, foreign-born students comprised 33% of all bachelor’s degree 

holders (Gambino & Gryn, 2011). The percentages of foreign-earned graduate degrees 

have risen even higher than their undergraduate counterparts: Foreign engineers and 

scientists in master’s and doctoral programs have outnumbered U.S.-born graduates, 

increasing from 40% in 2003 to more than 67% in 2011 (Landivar, 2013).  

In addition to competition for jobs, U.S. engineers have faced the outsourcing and 

offshoring of engineering jobs to India, China, and Russia, which are regions that have 

continued to graduate more engineers than U.S. colleges have (Duderstadt, 2010). The 

offshoring engineering jobs in the United States has led to a dereliction of technological 

resources and workers with little experience in the engineering field (Hira, 2005). 

Another effect of outsourcing engineering work to other countries has been wage 

suppression. As STEM wages have dropped to a level parallel with other fields, U.S. 

workers have moved into nontechnology fields such as business, health, and 

administration, all requiring less challenge in math and science (Hira, 2005). However, 

there have been arguments that outsourcing has affected labor-intensive manufacturing 

jobs only and that outsourced engineering work still requires the verification and 

supervision of internal U.S. resources (Duderstadt, 2010).  
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Engineering universities are expected to graduate engineers who can fill the U.S. 

market demand and compete with skilled workers from other countries. However, U.S. 

engineering college graduates are not prepared for engineering practice and require 

several years of skill building, mentoring, and engagement in long PD. This kind of 

development requires structured PD in the workplace and persistence from engineering 

graduates; yet, most employers do not provide structured PD and offer only a limited 

selection of training courses. Graduate engineers must decide how to acquire the skills 

and competencies that they need to complete work assignments.  

Evidence of the Problem from the Professional Literature 

Engineering education has been the subject of continuous reform since the last 

century (Vaz, 2012). The NAE (2005), the National Science Foundation (NSF, 2008), the 

Accreditation Board of Engineering and Technology (ABET, 2014), the American 

Society of Engineering Education (ASEE, 2012), and other scholars have voiced 

concerns about how well undergraduate education curricula prepares students for 

practice. Academia have called for overall engineering education reform since the 1980s 

(NAE, 2005), including calls for changes to the curricula (Ambrose, 2013; Crawley et al., 

2008; Sheppard et al. 2009), methods of teaching (Bransford, 2007), active learning 

(Adams, Turns, & Atman, 2003; Litzinger et al., 2011), and education innovation 

(Besterfield-Sacre et al., 2014; Borrego et al., 2010). Other recommendations have 

included adding a master’s degree as a professional degree tailored to engineering 

practice (Duderstadt, 2010; NAE, 2005; Sheppard et al., 2009) and expanding the content 

on global perspectives (Vaz, 2012) in existing engineering programs. Although improved 
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programs have been developed (Crawley et al., 2007; Vaz, 2012), deficiencies in the 

skills required for engineering practice persist (Stephens, 2013).  

In response to these calls, ABET (as cited in Lattuca, Terezeni, & Volkwein, 

2006) initiated changes in the accreditation requirements of teaching and assessment, and 

they adopted the new standards, known as Engineering Criteria 2000 (EC2000). The 

impact of EC2000 was assessed by Lattuca et al. (2006), who found that the new 

accreditation criteria had a positive impact on engineering programs and student learning. 

ABET (2014) requirements forced many engineering programs to broaden their curricula 

and emphasize engineering design, teamwork, and communication.  

Other institutions, such as the NAE (2005), conducted their own studies calling 

for engineering reform. The NAE recommended expanding engineering curricula by 

adding more topics, considering the bachelor’s degree as preengineering, and adding a 

master’s degree as the engineering professional standard. Duderstadt (2010) suggested 

that graduate schools offer practice-based graduate degrees. Duderstadt proposed an 

additional 2-year practical training program taught by faculty and supported by an 

engineering internship program to the standard 4-year degree route. Duderstadt also 

recommended a supplemental structured approach to lifelong educational opportunities 

for practicing engineers. These programs would require a commitment of resources and 

leadership by the industry, professional societies, and engineering educators (Duderstadt, 

2010). 

Other recommendations included broadening the interdisciplinary content to keep 

pace with technological innovation and global competition driven by engineering 
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(Litzinger et al., 2011), offering advanced technical training, and ensuring that faculty 

members with practical experience from the industry teach practical courses (ASEE, 

2012; NAE, 2005). Researchers have explored the progress made toward balanced 

engineering education and have stressed that the goal of engineering education should be 

to prepare students for professional practice and graduate research (Adams et al., 2003; 

Palmer, Harper, Terenzini, McKenna, & Merson, 2011).  

Palmer et al. (2011) studied the engineering practices of six U.S. universities with 

professional practices. Each of the six universities had programs intended to graduate 

engineers ready for engineering practice. Palmer et al. found a common theme across all 

six schools, namely, the presence of strong industry links. Faculty members maintained 

involvement in industrial partnerships that provided applied research projects, and the 

experiences gained were incorporated into the curriculum. Palmer et al. found that 

universities could improve contextual competence by incorporating core engineering 

skills into the curriculum, inviting industry participation, providing facilities that 

supported curricular activities, and supporting student organizations that provided 

experiences for community services.  

Researchers (Crawley, 2001; Crawley, Malmqvist, Lucas, & Brodeur, 2011) 

described the Massachusetts Institute of Technology’s Conceive, Design, Implement, 

Operate (CDIO MIT) program, which was developed to provide knowledge and skills 

desired by the industry for graduating engineers. The goal of the program was to further 

prepare students who had significant practical knowledge of the technical fundamentals 

and who could “conceive, design, implement and operate processes and systems” 
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(Crawley et al., 2007, p. 1). The program implemented 12 standards of effective practice 

and used project-based learning as an effective means of practical learning. In project-

based learning, engineering colleges use learning laboratories as an active learning 

approach to attract and maintain enrollment in engineering disciplines.  

The CDIO initiative grew from the four original developers (MIT, Chalmers, 

KTH Royal Institute of Technology, and Linköping University) to more than 100 global 

institutions in 2014 that adopted the CDIO syllabus and standards (Edsröm & Kolmos, 

2014). Through the adoption of this project-oriented initiative, many engineering colleges 

had begun to acknowledge the need for practical engineering education.  

Korte et al. (2008) conducted a qualitative case study with newly hired 

engineering graduates in a manufacturing facility. These engineers each had less than 2 

years of experience, a period during which graduates are likely to construct a clear visual 

of the sort of engineering education needed for practice. In these early years, the new 

engineers also acquired work practices and job requirements, and in the process, they 

became socially acclimated to the practices of the organization. Korte et al. sought to 

determine how these newly employed graduates learned job requirements, engineering 

practice, and the factors that affected them. Although the newly hired engineers described 

the difference in the complexity of the problem-solving process between school and the 

workplace, equally important was the influence of the social context. Korte et al. found 

that the transition from school to the workplace required effective integration into the 

work groups and that the newly hired engineers had to develop interpersonal relationships 

with coworkers and managers. The interviewees reported that the success of their 
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performance and progress on the job depended on their relationships with their 

coworkers. 

Despite the findings and recommendations from research and the efforts of 

educational institutions, employers have expressed concern that graduates have been 

inadequately prepared in the areas of engineering practice, research, and design 

(Stephens, 2013). Although practice-oriented programs have been developed in such 

universities as Worcester Polytechnic Institute (Vaz, 2012); Virginia Tech (Palmer et al., 

2011); and MIT (Crawley, 2001), most universities have been restricted by congested 

curricula that abrogate room for additional material in undergraduate programs. Only one 

third of the engineering graduates in the United States have actively sought engineering 

work; more than 60% have looked for employment in other fields of work (Lichtenstein 

et al., 2009; Ohland et al., 2008). Scholars have confirmed the gap between engineering 

education and the skills required for engineering practice. Therefore, engineering 

graduates who are entering the workforce must engage in self-learning to fill the gap. The 

aim of this study was to provide insight into the learning methods that a sample of new 

engineers used to gain the practical skills that they needed to do their jobs. The results of 

the study will provide feedback to institutions that offer engineering education. These 

institutions will have the opportunity to provide undergraduate students with the same 

skills that graduate engineers are forced to obtain through other sources.  

Theoretical Framework 

I explored the experiences of graduate engineers in their initial years of practice to 

understand the strategies that they used to overcome deficiencies in their college 
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education. I selected a qualitative case methodology to obtain the personal stories of 15 

engineers as they worked and learned from their experience. Because the engineers were 

learning from interactions with their coworkers, literature, software, and engineering 

tools, the theory of social constructivism that coordinates learning from people and tools 

was the theoretical framework that was appropriate for this study.  

The theoretical roots of constructivism date back to 1916, with Dewey’s 

assumptions about the social construction of knowledge and experience, although he had 

not used the term constructivism (as cited in Merriam, Caffarella, & Baumgartner, 2012). 

Dewey advocated that students should be the focus in the learning process and that 

teachers should play a central role in the development of the curriculum, instruction 

strategies, and assessment of student progress (as cited in Phillips, 1995).  

Dewey’s ideas planted the seeds for the growth of constructivist thought; 

however, Piaget is considered to have laid the foundation for constructivism (as cited in 

Phillips, 1995). Piaget proposed that the development of cognitive structures is partly the 

result of the growth of the nervous system and partly the result of interactions with the 

environment and exposure to various experiences (as cited in Merriam et al., 2012). In 

Piaget’s view, learners continually add knowledge to previous experiences and develop 

new schemas (i.e., cognitive structures) that are more advanced than previous ones; these 

new structures facilitate the processing of more complex knowledge (as cited in Merriam 

et al., 2012). 

Vygotsky claimed that a key role in the development of the constructivist thought 

includes the context in which learning takes place (as cited in Phillips, 1995). The context 
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accounts for the cultural and social experiences of the people involved in the learning 

process. Dewey, Piaget, and Vygotsky laid the foundation for the development of 

constructivist learning (as cited in Phillips, 1995).  

Constructivists assume that learning is a process of making meaning, or how 

people make sense of their experiences (Merriam, 2014). Unlike the postpositivist view, 

which retains the belief that a fixed reality exists that can be measured and known, 

constructivists propose that knowledge exists within the learners themselves. Quantitative 

researchers take a postpositivist point of view, with the assumption of an absolute truth 

that can only be disconfirmed (Borrego, Douglas, & Amelink, 2009). To constructivists, 

reality is socially constructed, and realities exist in the minds of individuals and through 

their interactions with the wider society (Glisne, 2011). Through a social constructivist 

lens, knowledge is an active undertaking; hence, learning manifests through collaboration 

and dialogue.  

The advantage of using the social constructivist approach in this study was the 

interaction between myself as the researcher and the participants, who shared detailed 

accounts of their experiences. Engineering project activities involve groups of people 

engaged in active discussions and collaborative tasks, which corresponds to the concept 

of social constructivism that claims that making meaning is a dialogic process (Merriam 

et al., 2012). Based upon this theoretical perspective, I conducted in-depth interviews and 

discussions with a sample of practicing engineers. According to social constructivism, the 

transfer of knowledge takes place through such discussions, collaboration, and 
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cooperative learning. Engineering education uses cooperative education, internships, and 

project teams as learning methods to apply theoretical knowledge to practical skills. 

Definitions 

 Engineering: The profession in which mathematics and scientific knowledge are 

applied to utilize materials and forces of nature for the benefit of people (Duderstadt, 

2010, p. 24).  

Engineering education stakeholders: The main engineering stakeholders are 

students, university faculty, industry, and society (Crawley et al., 2007).  

Engineering practice: The process of integrating engineering knowledge and 

skills for providing services and products (Duderstadt, 2010).  

 Real engineer: “One who has attained and continuously enhances technical, 

communication, and human relations knowledge, skills, and attitudes, and who 

contributes effectively to society by theorizing, conceiving, developing, and producing 

reliable structures and machines for practical and economic value” (Crawley et al., 2007, 

p. 11).  

Self-learning: Taking personal responsibility for an individual’s own continuing 

education. 

Significance 

The significance of this study was its provision of firsthand information about the 

ways that a sample of graduate engineers engaged in self-teaching and acquired the skills 

that they needed to address deficiencies in their engineering education. This qualitative 

case study provided in-depth knowledge of how these working engineers chose their own 
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training, developed the skills needed for their jobs, and became competent engineers. The 

results included evidence of the types of knowledge and skills that universities and 

industry should consider providing to undergraduate engineering students.  

The results of the study also might provide new graduates with reference 

information to help them to develop their careers. Recommendations could be useful to 

the individuals in the training departments of companies that employ graduate engineers, 

as well as those who provide PD. The results may contribute to the overall goals of 

engineering education and help colleges to equip engineering graduates with educational 

knowledge and skills usable in designing, innovating, constructing, and operating safe 

facilities. Industries and society depend on engineers to build reliable facilities and safely 

operate these facilities to produce goods that satisfy the needs of humankind (Stephens, 

2013).  

Guiding Research Question 

Research questions (RQs) and theoretical frameworks normally drive researchers’ 

choice of methodology (Creswell, 2009). This study was guided by one RQ: What are the 

experiences of graduate engineers currently working in the industry regarding 

overcoming practical skill deficiencies and bridging the gap between education and 

practice? I focused on how the individual engineers filled their knowledge and skills gaps 

during their early years of employment.  

Review of the Literature 

In the literature review section, I explore the deficiencies in the knowledge, skills, 

and abilities of graduating engineers, along with the efforts of stakeholders to improve 
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their competencies. The review was organized under several topics: engineering 

education and calls for reform; resistance to change; engineering education, instruction, 

and learning practices; and the role of industry to prepare graduating students for 

practice. The chapter ends with conclusions from the literature review; the identification 

of gaps in engineering education; and recommendations for bridging the gaps, including 

further research on the subject.  

 I prepared this literature review not only to identify and build upon prior research 

on the topic of engineering education programs but also to highlight innovations that 

have altered or corrected earlier deficiencies in education programs. The review covers 

findings and recommendations from studies and reports generated over the last 10 years. 

Several of these scholars (e.g., Besterfield-Sacre et al., 2014; Duderstadt, 2010; NAE, 

2005; Sheppard et al., 2009) called for restructuring engineering education and moving 

away from the traditional deductive method of instruction to the inductive, or active, 

method of instruction.  

I conducted a search of the literature on the gap between engineering education 

and industry practice by searching for peer-reviewed journals in the Walden University 

Library, engineering journals, websites, and books. Databases included Educational 

Resource Information Center (ERIC), Educational Research Complete, Academic Search 

Premier, SAGE Full-Text Collection, and the EBSCO collection. I also searched for 

publications prepared by engineering associations such as the ASEE, the NAE, and the 

NACE. The following key words and expressions were used in the search: Gap between 

education and practice, engineering education, engineering practice, engineering reform, 
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skills deficiency, competency, industry practice, learning styles, project-based learning, 

and professional development. I examined all articles for relevancy and timeliness, and I 

reviewed key resources to offer a foundation to the research.  

Engineering Education and Calls for Reform 

Engineering education has remained almost unchanged for the past several 

decades, despite recommendations for improved curriculum content, more effective 

teaching and learning methods, and the inclusion of engineering practice. Advances in 

education, technology, and engineering practices, as well as societal and global changes, 

have warranted continual reforms in the curriculum and the overall engineering education 

(Duderstadt, 2010). The content of engineering curriculum is generally structured to 

begin with fundamental courses such as science, mathematics, and the humanities, 

followed by discipline-specific fundamentals and culminating with a capstone design 

project. Engineering courses are taught deductively, mainly in lecture format, and are 

reinforced frequently with laboratory work. This method of passive teaching helps only a 

fraction of engineering students to learn (ASEE, 2012; Felder, Woods, Stice, & Rugarcia, 

2000; Sheppard et al., 2009).  

A desired engineering curriculum would follow the format of engineering practice 

that is collaborative, multidisciplinary, and global (ABET, 2014; ASEE, 2012). It would 

expand engineering education from the traditional STEM fundamentals and disciplinary 

base to include interdisciplinary studies on environmental issues, globalization, 

leadership, and societal concerns (ABET, 2014; ASEE, 2012; Lattuca, Knight, Ro, & 

Novoselich, 2017). However, engineering colleges and universities in the United States 
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already provide a base of science and engineering fundamentals at the undergraduate 

level, and there has been consensus among researchers that they have been consistent in 

delivering engineering fundamentals and providing a base for technical education (ASEE, 

2012; Crawley et al., 2007; Johri & Olds, 2011; Sheppard et al., 2009; Trevelyan, 2010).  

Engineering educators have agreed on the benefit of experiential learning, but 

they have struggled to maintain a balance between fundamental content and hands-on 

projects. Bass (2012) argued that the optimal way to teach is to move reciprocally 

between practice and content and to emphasize practice in the curriculum early. 

However, engineering stakeholders have insisted that students should be prepared for 

practice and learn how to communicate effectively, maintain professional ethics, 

understand the impact of globalization, embrace lifelong learning, understand current 

issues, and become proficient in the use of modern tools and engineering techniques 

(ABET, 2014).  

These concerns have been the focus of debate among the various stakeholders of 

engineering education since the 1980s, and they have inspired calls for engineering 

education reform (ABET, 2014; ASEE, 2009, 2012; Crawley, 2001; Crawley et al., 2007; 

NSF, 2008). By the 1990s, the industry’s calls for overall engineering education reform 

and the inclusion of practice into engineering programs were being acknowledged. In 

response, the industry, academia, and professional organizations began to persuade 

professional societies and universities to change the course of engineering education 

(Crawley, 2001; NAE, 2005; Sheppard et al., 2009). In response, ABET took a step in 
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reforming its requirements and established goals (as cited in Lattuca et al., 2006) for 

engineering education.  

ABET (2014) provided guidelines and minimum requirements to engineering 

institutions in each area of engineering study. The new ABET criteria changed the basis 

for accreditation from teaching inputs to learning outcomes, requiring engineering 

programs to assess student achievements and place an emphasis on problem-solving, 

communication, teamwork, and ethical skills for students. According to ABET, graduates 

entering the engineering profession should be equipped with theoretical knowledge 

accompanied by an introduction to professional practice. The criteria for program 

outcomes require students to apply their knowledge to the design of experiments and 

systems and the solution of engineering problems. In addition, engineering programs 

accredited by ABET demand that engineering faculty meet competencies, that is, have 

engineering experience, have knowledge of industrial practice, and have interactions with 

industrial and professional practitioners. 

 Engineering schools have followed ABET (2014) guidelines with a variety of 

curriculum and teaching methods. Each university has been given the flexibility to 

establish its own curriculum and allow instructors to teach courses based upon their 

knowledge and experience (Sheppard et al., 2009). Although many universities have 

adjusted their programs to meet ABET requirements, others have developed progressive 

programs with significant elements of change that have met the desired engineering 

education goals (King, 2012).  

The Worcester Polytechnic Institute (WPI) implemented project-based learning 
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programs that challenged students with complex learning experiences (Vaz, 2012). Per 

the WPI program, the project-based learning programs expanded from first-year 

introductory projects to final-year capstone projects, and in the process, students gained 

skills in knowledge application, communication, teamwork, use of technological tools, 

and understanding of social and global issues. WPI introduced four types of projects: (a) 

the great problems seminar, a first-year project organizing student teams to explore and 

solve a challenging world problem; (b) the humanities and arts requirement, wherein 

students focus on a humanities and arts topic that engages them in lifelong learning with 

the intent of embarking on self-knowledge and independent thinking; (c) the interactive 

qualifying project, which involves the application of research to solve social and human 

issues; and (d) the major qualifying project, which engages students either in design or 

engineering research work, usually sponsored by industry stakeholders (Vaz, 2012). 

These cooperative, open-ended projects satisfy all requirements of professional practice.  

Although engineering colleges have made efforts to meet ABET (2014) 

requirements, they also have been challenged to keep up with technological advances and 

changes in the work processes of an industry that employs engineering graduates and 

supports university research projects. The industry, and other stakeholders, have 

continued their call for engineering education reform that aligns with industry practices 

and ensures improvements in engineering curricula, teaching methods, and inclusion of 

practice (ASEE, 2012; Besterfield-Sacre et al., 2014). Researchers have provided a 

picture of the status of engineering education and have offered recommendations toward 

solutions. 
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 In 2005, the NAE presented a report of the status of undergraduate engineering 

education in the United States and recommended enriching traditional curriculum content 

with teachings that would support innovation, communication, professional practice, and 

globalization. The NAE concluded that an undergraduate degree is not adequate to 

prepare students for engineering practice. The NAE recommended assigning 

undergraduate education as a preengineering degree and adopting a master’s degree as 

the professional degree. This recommendation meant developing a practice-based 

master’s degree program staffed with faculty members who have practical engineering 

experience. In that regard, Duderstadt (2010) argued that faculty members should have 

experience in such areas as design, innovation, systems integration, and technology 

management.  

Other recommendations from the NAE (2005) included introducing engineering 

work early in undergraduate programs to show first-year students what engineers do in 

practice and improve the retention of the brightest students, who might otherwise be 

discouraged by the intense math and science at the center of such a program. The NAE 

also stressed the need to prepare students for lifelong learning because of the addition of 

new areas of knowledge and continual changes in technology, economy, work 

complexities, and employment (ASEE, 2012; Baukal, 2010). Other recommendations 

from the NAE included introducing interdisciplinary learning in the curriculum content, 

setting new standards for faculty qualifications, and educating the public about 

engineering. 
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Additional recommendations for engineering education have come from various 

studies and reports. Duderstadt (2010) favored earlier recommendations from the NAE 

that supported maintaining the bachelor’s status as a general engineering degree, 

embracing the master’s degree as the professional standard, and suggesting doctoral 

programs for engineering scientists at the research level. Duderstadt stressed the need to 

shift the professional practice elements from the bachelor’s degree program and eliminate 

the existing problem of overburdening undergraduate programs. Duderstadt suggested 

that undergraduate engineering education should include exposure to the humanities, 

liberal arts, and social sciences to build a base for cultural awareness and globalization. 

Some researchers also have argued in favor of elevating engineering to the same 

professional status as law and medicine. Duderstadt (2010) contended that engineers 

should be able to claim their engineer title instead of identifying with their place of work 

and suggested that engineering professional societies should develop a professional 

engineering culture. Although proposals to elevate the status of engineering to a 

professional level might be the desire of engineering academics, the cost and the 

additional years of study are expected to create resistance in the industry that employs the 

engineers and the parents who pay for their education (Duderstadt, 2010). Other priorities 

for engineering education include the challenge of building a diverse engineering 

workforce that places importance on encouraging women and underprivileged minorities 

into the field. The overall absence of women and underrepresented minority students 

from engineering relative to their presence in the U.S. population has been a problem 

(ASEE, 2012) and must be considered in any reforms of engineering education. 
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Sheppard et al. (2009) provided an analysis of the deficiencies in engineering 

education. Sheppard et al. faulted the ways that problem solving, knowledge acquisition, 

and theory are taught in terms of preparing students for practice. Moreover, Sheppard et 

al. found that using deductive methods of teaching, structured problems, and student 

assessment methods failed to reflect the learning methods suggested by researchers 

regarding how people learn and how expertise is developed. Ethics and professionalism 

have been covered inadequately. The laboratory is supposed to be the place for open-

ended experiments, where undergraduate students learn to use equipment and 

instrumentation, deal with uncertainties, and solve problems like those encountered in the 

real world. Instead, laboratories have been used mainly to supplement and validate 

classroom lectures and use structured problems that illustrate, reinforce, or test theories or 

principles explained in the lectures. Sheppard et al. suggested improvements to the 

existing engineering model and offered recommendations geared toward improving 

engineering education pedagogies, aiming to strengthen the principles and concepts and 

learning how to use them, building better problem-solving skills, engaging in 

professional practice in the classroom, and teaching inductively.  

Other scholars have described similar scenarios, leading to initiatives to overhaul 

engineering education. The question of what needs to change, who is responsible for 

implementing the change, and how this change will be accomplished was addressed by 

the ASEE (as cited in ASEE, 2009), when it put forward an initiative to promote 

engineering educational innovation. The Phase 1 report provided a baseline for the status 

of U.S. engineering education and recommended sustainable and systematic innovation in 
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engineering education (ASEE, 2009, 2012). The Phase 1 report (ASEE, 2009) identified 

what needs to change, who is responsible for implementing the change, and how the 

change is to be achieved and sustained. The ASEE identified curriculum content, 

instruction, and assessment as the main elements of change. Per ASEE, the best learning 

concepts and teaching practices are available but dispersed throughout the literature and 

should be replaced with a shared knowledge base driven by research and scientifically 

proven practice.  

The ASEE (2009) also affirmed that engineering faculty and administration are 

responsible for developing, improving, and delivering engineering education. Because 

college faculty and administration develop the content, deliver the lectures, and structure 

the teaching environments, they also should be responsible for the quality of engineering 

education. However, university faculty and administrators need to be equipped with the 

knowledge and tools to assume that responsibility. The ASEE recommended PD for 

faculty and administrators in teaching, learning, and education improvement throughout 

their careers.  

Researchers have presented their visions for engineering education but have failed 

to explain how these visions might be accomplished and sustained (ASEE, 2012; Felder 

et al., 2011). In Phase 1, the ASEE (2009) proposed a model for scholarly and systematic 

educational innovation that answered this question: “How do we create an environment in 

which engaging and empowering engineering educational innovations can flourish and 

make significant difference in educating future engineers?” (p. 1). The model was based 

upon the collaborative link of educational practice and research, wherein educational 
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practice would provide enquiries and educational research would continually provide 

answers and insights. The success of this model depended on the collaboration of 

practitioners and researchers in education who were committed to advance the boundaries 

of knowledge and practice (ASEE, 2009).  

In Phase 2, the ASEE (2012), also based upon a large sample of U.S. university 

faculty, chairs, and deans, was carried out to evaluate the Phase 1 report (ASEE, 2009) 

recommendations and to gather data to establish the current state of U.S. engineering 

education. The ASEE (2012) confirmed the recommendations of the Phase 1 report and 

proposed others, such as raising “awareness of the proven principles and effective 

practices of teaching, learning, and educational innovation, and raise awareness of the 

scholarship of engineering education” (p. 8). The engineering community should raise 

“awareness of the considerable educational infrastructure that already exists, both within 

and outside engineering, and the substantive body of knowledge of proven principles and 

effective practices in teaching, learning, and educational innovation” (ASEE, 2012, p. 

50).  

For the most part, engineering education continues to be delivered in the 

deductive method, meaning that theory and abstractions are taught in the initial years and 

progress toward application in the later years (ASEE, 2012; Sheppard et al., 2009). The 

ASEE (2012) recommended using pedagogies of engagement, such as project-based 

learning and inquiry-based learning, both of which combine inductive and deductive 

learning. In addition, engineering education needs to be relevant to the needs of its 

graduates. Engineering programs should align their curricula, instruction, and assessment 
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with the professional needs of graduate engineers. 

Organizations such as ABET have highlighted the need for a stronger bridge 

between theoretical learning and professional practice. This slight augmentation can 

initiate points of interest in the profession and help with program retention. By beginning 

at the first-year level, leading engineering academic bodies might introduce a new 

hierarchy resembling those of legal and medical programs.  

Resistance to Engineering Education Reform 

Despite calls from professional societies and the industry, engineering education 

reform has been slow. Although universities aim to provide graduates with a base in 

engineering fundamentals, the industry wants engineers who are ready for practice. The 

appropriate method to achieve this balance is addressed by engineering research, with the 

aim of adding new knowledge into the education curriculum and identifying areas of 

practice that can be adopted by engineering education (King, 2012). However, the 

teaching and learning practices promoted by engineering researchers have yet to be 

implemented in the classroom (Matusovich, Paretti, McNair, & Hixson, 2014), and 

recommendations from researchers have not resulted in changes in universities’ curricula. 

For example, although student-active pedagogies have been proven to be effective 

methods of teaching, the adoption rates of active learning methods have been reported as 

low (Borrega et al., 2010).  

The   reason for universities’ low adoption of recommended practices is that the 

objectives of universities and the engineering industry have not necessarily been 

congruent. The aim of engineering research has been to suggest ways to improve 



28 

 

engineering education, address deficiencies, add new knowledge, and suggest methods 

that incorporate engineering practice; the overall goal of universities’ engineering 

programs is to teach science and engineering fundamentals and meet students’ need to 

develop some skills for engineering practice. However, when the tested methods have 

clear and immediate benefits, universities’ low awareness and adoption rates have limited 

implementation of these methods (Borrego et al., 2010).  

In the absence of specific requirements, each school must decide whether to 

enhance its own programs, develop new ones, or just adopt existing successful programs. 

However, engineering schools might not be aware of existing programs. When they are, 

adoption of such programs still might not be pursued. Low awareness and adoption rates 

limit the widespread use of tested programs (Borrego et al., 2010). Schools that are 

awarenes  and desire to change may adopt programs developed by others, whereas others 

try   to improve their existing programs or seek innovations for effective learning 

programs (Borrego et al., 2010).  

Borrego et al. (2010) studied the awareness and adoption rates of engineering 

education innovation programs that introduced students to practice. Using survey 

responses from the engineering department chairs of several U.S. universities, Borrego et 

al. studied the awareness and adoption rates of seven innovation programs: student-active 

pedagogies, first-year design projects, interdisciplinary capstone design projects, summer 

bridge programs, learning communities, curriculum-based learning projects, and artifact 

dissection. Borrego et al. indicated an overall awareness of innovation programs of 82% 

and a low adoption rate of only 47% of the innovation programs. Use of such student-
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active pedagogies as group work, classroom activities, and instructor questions scored an 

82% adoption rate. The “interdisciplinary capstone design projects in the first-year course 

had the highest levels of awareness, while artifact dissection had the lowest” (Borrego et 

al., 2010, p. 194). 

There also has been a mismatch between what university faculty and 

administration value and what they practice in the classroom. Besterfield-Sacre et al. 

(2014) analyzed the ASEE (2012) Phase 2 data to investigate how engineering 

departments valued each of collaborations with stakeholders, in-class pedagogies, 

learning environments, faculty PD, and policies and practices and the extent to which 

these items were routinely practiced. Besterfield-Sacre et al. indicated that the 

engineering departments significantly valued collaboration with engineering stakeholders 

but practiced collaboration only within the industry among employers, excluding 

interdisciplinary university departments. The faculty valued, but did not practice, such   

elements as active learning approaches (experiential, collaborative, and inquiry-based 

learning); learning environments (engineering competitions and extracurricular activities 

such as mentoring); continuous teaching and learning development programs; and 

policies and practices that supported the use of research-based teaching pedagogies and 

resources to improve teaching and the learning infrastructure. Furthermore, the 

engineering faculty did not value international programs, entrepreneurship programs, and 

service learning programs, although these programs have been highlighted in national and 

international reports such ASEE (2012). Besterfield-Sacre et al. concluded that 

engineering faculty and administration supported, but did not practice, most elements of 
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change advocated by engineering stakeholders.  

Learning Styles Versus Teaching Methods 

Another criticism of engineering education has been the mismatch between 

established methods of teaching and learning. The dominant teaching method in 

engineering is deductive: Professors give lectures on the principles in well-organized and 

logical manners, followed by blackboard demonstrations and, possibly, experimental 

explanations (Felder et al., 2000; Sheppard et al., 2009). Students take notes, work 

through problems, and learn by preparing for quizzes and exams. Engineering researchers 

have argued that this method of teaching should be replaced by inductive teaching 

(Besterfield-Sacre et al., 2014; Duderstadt, 2010). 

 In the inductive method of teaching, teachers provide cases for students to reflect 

on before introducing the principle topics. The practical cases in context allow students to 

experience or observe the concepts in real terms and learn interactively. In this way, 

students reflect on the learning experience to connect theory and practice. Brodeur, 

Young, and Blair (2002) advocated the integration of project-based learning across 

undergraduate engineering courses to ensure a natural progression from structured to 

more complex problems that emulate real-world situations. Dym, Little, Orwin, and Spjut 

(2004) reported that the early introduction of project-based learning to engineering 

students leads to improved retention rates and increased student satisfaction. Dym et al. 

supported project-based learning as the preferred method for teaching engineering design. 

Litzinger et al. (2011) noted that project-based learning is an effective learning method 

for supporting the development of expertise in engineering practice. Khalaf, Balawi, Hitt, 
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and Radaideh (2013) used project-based learning in a first-year course and reported 

improved student design thinking, problem solving, and motivation.  

Felder et al. (2000) reported inconsistencies between students’ learning styles and the 

teaching methods. Felder et al. asserted that teaching methods must match the learning 

needs of sensory and intuitive learners, visual and verbal learners, and active and 

reflective learners. 

The sensory learning style, which favors experimentation, factual data, and less 

detail in the presented material, matches the concrete teaching style. The intuitive 

learning style favors theories and concepts, and requires an abstract method of teaching. 

Although most students are sensory learners, engineering courses are offered in a 

conceptual format, which results in a teaching-learning conflict. This intuitive learning 

method conflicts with engineering practice, where attention to detail, practicality, and 

experimentation are required. Therefore, engineering material should be offered by 

blending concrete and abstract concepts for effective learning. 

Another point of conflict between teaching and learning styles in engineering is in 

perception. Information is received in the form of visual, verbal, or kinesthetic cues. 

Visual learners do well if the material is presented in the form of charts, pictures, and 

diagrams (Katsioloudis & Fantz, 2012). Verbal learners are better at retaining what they 

hear and prefer verbal explanations; kinesthetic learners learn best through experience 

and physical activities. Although many college students are visual learners, engineering 

courses are presented verbally as lectures. Katsioloudis and Fantz (2012) noted that 

because engineering and technology students prefer the kinesthetic learning style, faculty 
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should teach in this manner. However, they also noted that faculty who were taught using 

the verbal style continued to teach in the same way.  

Yet another area of learning mismatch pertains to active, reflective, and passive 

states of learning. Engineering students expectedly do well in experimentation and active 

participation in discussions, debating, and brainstorming sessions. In addition to active 

learners, engineering students  include reflective observers, who do equally well by just 

listening and reflecting on the material. Felder et al. (2000) explained that engineering 

classes are taught with students sitting in a passive mode, an instructional strategy that 

benefits neither active nor reflective learners. Felder recommended that instructors 

balance active discussions and problem-solving activities with intervals of reflection. 

Other recommendations emphasized incorporating drills and open-ended problems for 

practice, as well as striking a balance between practical problem solving and a 

fundamental understanding, thus providing opportunities for active participation and 

experimentation. 

The goal of education should be to include teaching and learning practices that 

lead to the development of expertise (Litzinger et al., 2011). Although some traditional 

teaching methods such as project-based learning, internships, design projects, and 

laboratory exercises lead to student gains of expert knowledge, new nontraditional 

methods are needed for effective practice. Litzinger et al. (2011) expanded on areas 

which student learning can be improved that include improving students’ conceptual 

understanding of their disciplines, improving analytical skills, solving multifaceted 
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problems in context, solving complex problems, enhancing experimentation skills, and 

adding liberal arts to engineering curricula.  

Project-based learning is another method of student-centered learning. Unlike 

problem-based learning, where problems are solved, project-based learning is concerned 

with making products as solutions to problems. Hall, Palmer, and Bennett (2012) studied 

students’ perceptions of project-based learning in a two-part, first-year design course. 

They reported that students enjoyed the practical project and learned the concepts very 

well. The CDIO program is another project-based learning program developed by MIT 

and the Swedish Royal Institute of Technology. Through a complete project life cycle 

from conception to operation, students experience problem solving, teamwork, 

communication, and professional ethics, and then apply their engineering knowledge 

(Yang et al., 2014). 

Resistance and lethargic responses to academic reforms in engineering have been 

spawned by incongruences at the university level. Although several universities have 

acknowledged the need for more inclusive programs that better prepare students for 

practical application, few have followed through. Failing to more closely adopt 

engineering awareness among students has been a primary example. In addition, the 

exclusion of vital experiences such as international and entrepreneurship programs within 

academic programs have been detractors and have reinforced archaic status quos within 

programs.  

One-dimensional teaching styles such as lecture-based learning has generally 

been retained, despite the call for more innovative instruction. Focusing on project, 
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analytical, and experimentation-based learning is strongly encouraged to propel 

engineering academics and serve as a true vessel of change. 

Gap Between Engineering Education and Industry Practice 

  Historical perspective. The gap between engineering education and engineering 

practice has been widening since the last century and has been acknowledged by many 

researchers (Borrega et al., 2010; Crawley et al., 2007; Felder et al., 2011; Johri & Olds, 

2011; Litzinger et al., 2011; Rugarcia, Felder, Woods, & Stice, 2000; Sheppard et al., 

2009; Trevelyan, 2010). Historically, engineering education was based upon practice 

(Crawley et al., 2007; Duderstadt, 2010; NAE, 2013). However, as college research 

gained prominence in the 1950s, engineering education deviated from practice, and 

engineering science became the norm for engineering colleges (Crawley, 2001). The 

difference between education and industrial practice continued to widen, as 

acknowledged by academia and the industry. Engineering research was driven by 

partnerships among government, industry, and universities, which eventually shifted their 

focus from practice to research. Although the efforts of engineering research have 

undeniably produced technological innovation, products, and processes critical for high 

economic growth (Duderstadt, 2010), its effect on engineering practice within 

engineering colleges has not been positive. Subsequently, engineering graduates have 

continued to struggle as they enter the manufacturing, design, and operations fields, 

where practice is the dominant activity.  

  Competency deficiencies. Most engineering practitioners work in the industry, 

where specific competencies are needed to ensure satisfactory performance. Entering 
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graduates are expected to have the proper attributes that identify them as competent 

engineers. Crawley et al. (2007) defined a real engineer as “one who has attained and 

continuously enhances technical, communication, and human relations knowledge, skills, 

attitudes, and who contribute to society by theorizing, conceiving, developing and 

producing reliable structures of practical and economic value” (p. 11). 

  Once engineering colleges began to recognize competency gaps among 

graduating engineers in comparison to the work of established engineers in industrial 

organizations, they began to investigate ways to reduce the gap in education and initiate 

changes in the curriculum content. Crawley et al. (2007) compared the knowledge, skills, 

and attitudes required of graduate engineers to the competencies needed by the industry 

employing them. Crawley identified inadequacies in engineering skills, testing and 

measurement skills, communication skills, and teamwork skills.  

 Engineering students should be trained to engage in engineering practice in the 

field. In the absence of this training, engineering graduates will be required to self-train 

and develop the required competencies on their own. This self-training could be 

successful for engineers who have experienced mentors working with them, but it also 

could be a painful and lengthy experience for others who lack opportunities for 

mentoring and coaching in the early years of practice. Students gain valuable knowledge 

and skills if mentored during college, and it has been reported that undergraduate students 

who participate in undergraduate research or projects benefit from mentoring by graduate 

researchers (Ahn & Cox, 2016). Overall, researchers have identified the main 

deficiencies in technical competency, practical application of engineering fundamentals, 
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engineering design, interpersonal skills, teamwork, communication, and engineering 

profession and ethics (Crawley et al., 2009; Paul & Cowe Falls, 2015; Sheppard et al., 

2009). Each deficiency is discussed next.  

  Technical competency. The employers of engineering graduates expect that the 

engineers developed technical competency while completing their degree programs. The 

skills developed in college must align with current practices in the industry, a goal that is 

difficult to achieve, even with great efforts by the colleges. The need for technologically 

competent engineers grew exponentially as the opportunities for employment expanded 

through new fields including biotechnology, computer science, health, safety, and 

environmental engineering (Johri & Olds, 2011; Rugarcia et al., 2000). In the United 

States, ABET (2014) was expected to keep pace with changes in technology and provide 

guidelines to engineering colleges, but ABET set only the basic requirements that must 

be satisfied for accredited programs. Students are taught to use this knowledge to 

formulate, analyze, and solve theoretical problems. 

  Practical application. Critics of engineering education have faulted universities 

for the low application of technical knowledge and the lack of opportunities for practice. 

Sheppard et al. (2009) reported that the intense theoretical knowledge covered in 

undergraduate curriculum content left little room for student exposure to professional 

practice and remains the main reason for deficiencies in students’ technical competency. 

The application of engineering knowledge at the undergraduate level has been 

incorporated in the form of laboratory classes, design problems, and problem-solving 

assignments. Laboratory practice has been offered to ensure that students capture the 
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fundamental concepts, and as students have moved toward their senior year, colleges 

have begun to introduce engineering practice in the form of design projects.  

  Sheppard et al. (2009) reported that design problems meant to be an introduction 

to the real world are introduced in the last year of college, leaving no base to build on 

additional experience. One area where engineering colleges have provided opportunities 

for practice is problem solving. Graduating engineers have barely been exposed to 

solving practical problem parameters that are unstructured, ill defined, and unconstrained. 

Instead, they learn to solve constrained and abstract problems for learning and easy 

solution (McNeil, Douglas, Koro-Ljungberg, Therriault, & Krause, 2016). 

Findings from several studies have shown that these topics have not been covered 

in   depth because of the late introduction of these topics and the limited amount of time 

for practice (Duderstadt, 2010). Engineering colleges provide limited opportunities for 

practice in the form of laboratory assignments and design projects, but this limited 

practice does not develop sufficient skills. Litzinger et al. (2011) suggested that “only 

practice performed with the intention of developing a skill will lead to the development 

of expertise” (p. 125). For students to develop the skills necessary for professional 

practice, engineering programs should provide them with multiple opportunities to apply 

their knowledge in practical situations (Litzinger et al., 2011).  

  Design knowledge. Engineering design is a major area of engineering practice, a 

rigorous process based upon the application of science and technology to generate 

products that benefit society (Duderstadt, 2011). In a study of the impact of ABET’s 

engineering criteria of 2000, Lattuca et al. (2006) found that the employers of 
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engineering graduates rated design as one of the most important attributes of new hires. 

Design is what most engineers do in the industry, so engineering curricula should make 

design the main goal of educating engineers (Dym, Agogino, Eris, Frey, & Leifer, 2005). 

   Dym et al. (2005) asserted that design education is challenging because of the 

need for faculty with industrial experience and allocation of funds for design projects, 

laboratories, and other facilities; however, in the face of these challenges, the outcome of 

effective design education will be fruitful. Most universities teach a first-year engineering 

design course, known as a cornerstone, and a capstone course in the last year of a degree 

program. The intent of the cornerstone course is to introduce engineering solely to attract 

students and improve retention. The capstone design project offered in the last year of a 

degree program is supposed to equip graduates with design knowledge, but one design 

project is not enough to prepare graduates for engineering practice (Ambrose, 2013).  

   Interpersonal skills. Interpersonal skills are essential for successful teamwork in 

engineering because of the constant interactions with coworkers, operators, clients, 

management, contractors, and craftspeople. Honken and Ralston (2013) discussed the 

importance of interpersonal skills and the ability to work with others. In a study about 

first-year engineering retention, Honken and Ralston found that students who study with 

others in high school are likely to continue to study engineering. Martin, Maytham, Case, 

and Fraser (2005) stressed that engineers should develop such interpersonal skills as 

listening, sharing information, cooperating with other disciplines, and learning how to 

deal with difficult personnel. Interpersonal skills can be developed through teamwork and 
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group assignments, but sometimes, these skills must develop by graduate engineers 

themselves as they enter the workforce.  

Teamwork. Teamwork is encountered in all engineering disciplines because 

engineering projects require the collaboration of members from diverse groups, including 

engineering, craft, business, and support disciplines (Paul & Cowe Falls, 2015). Graduate 

engineers who lack these team skills face difficult adjustment periods in their early 

careers. For example, the design, construction, and operation of a power generation plant 

for a community involve the work of civil, mechanical, electrical, structural, and 

chemical engineers, as well as many craft skills, business majors, and other support 

personnel. These multidisciplinary teams comprise individuals with different levels of 

education, background experience, and cultural beliefs and behaviors who absolutely 

must support each other to reap benefit from the strengths and experiences of other 

members (Oladiran, Uziak, Eisenberg, & Scheffer, 2011). For these reasons, 

organizations create interdependent teams to execute challenging projects and train their 

engineers to work collaboratively with diverse groups and teams so that they learn how to 

contribute to common objectives (Johri & Olds, 2011). ABET (2014) requirements did 

and still do include instructions for teamwork so that engineering students   develop their 

interpersonal skills during their undergraduate education.  

Passow (2012) studied the relative importance of ABET competencies for 

professional practice. The study was based upon the opinions of graduate alumni with 

two, six, and 10 years of experience, respectively, who represented 11 engineering 

disciplines. The 4,225 survey respondents ranked teamwork, communication, problem 
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solving, and data analysis the top four of 12 competencies. These four top competencies 

were significantly higher than the bottom cluster of contemporary issues, experiments, 

and impact of work.  

Many researchers (e.g., Dunsmore, Turns, & Yellin 2011; Korte et al., 2008; 

Martin et al., 2005; McSpadden & Kelly, 2012; Oladiran et al., 2011) reported the 

significance of teamwork in engineering. Martin et al. (2005) reported that the working 

engineers in their study commented that 60% to 80% of their working day was spent in 

teamwork. Oladiran et al. (2011) reported on the successes of the global engineering 

teams (GET) program used to promote teamwork in engineering design and 

manufacturing.  

  Communication. Communication is amongst the paramount professional 

competencies. Engineers spend over 60% of their time communicating with others at 

work (Paul & Cowe Falls, 2015). Therefore, clear and persuasive oral and written 

communication is required for engineering work. Engineers should gain broader exposure 

to written and verbal communication while attending university to develop a wide range 

of skills, including grammar and pronunciation, technical writing, corporate 

communications, interpersonal skills, and leadership (Lappalainen, 2010). Hall et al. 

(2012) studied students’ perceptions of project-based learning in their first-year design 

course and reported that although the students enjoyed the practical aspects of the course, 

report writing and oral presentations scored the lowest satisfaction ratings. 

  Trevelyan (2007) related communication for engineering students to technical 

coordination, the work that most engineers are engaged in during their daily work. 
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Trevelyan studied the work of engineers in the field and learned through interviews that 

engineers engage in technical coordination more than problem-solving activities. 

Technical coordination activities included supervising the work of others; persuading 

others such as construction workers, operators, maintenance personnel, and managers to 

perform duties; gaining cooperation; mentoring; and reviewing and even organizing 

social activities (Trevelyan, 2007). These technical coordination activities were 

accomplished   through clear verbal and written communication. In the absence of 

adequate communication skills after graduation, engineers develop effective skills 

themselves through self-learning, selective professional development, and on-the-job 

learning during early employment. 

  Professionalism and ethics. Engineering graduates are not prepared for 

professional practice because most engineers are not required to obtain professional 

engineering licenses and pass professional licensure examinations that require them to 

study and answer questions about codes of conduct (Sheppard et al., 2009). Professional 

practice includes ethics, social responsibility, integrity, and lifelong learning. Engineering 

codes of conduct stress professional competence and a commitment to protect the public 

and the environment; they require engineers to act with honesty and accountability 

(Sheppard et al., 2009). In some engineering disciplines, licensure is recommended, and 

professional practice material might be covered in undergraduate degree programs. 

ABET (2014) stipulated that the curriculum content for civil engineering must include 

professional licensure and faculty incorporate it in the design course. These requirements 
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vary with the engineering discipline, but each university is responsible for developing 

programs that meet the criteria.  

  Interdisciplinary skills. Research has addressed the need to expand the 

curriculum to include interdisciplinary studies and multiple perspectives in engineering 

education. The NAE (2005) stressed interdisciplinary education, reasoning that 

engineering work requires consideration of the constraints (environmental, financial, 

societal, and global) and consequences that require the collaboration of multiple 

disciplines. The NAE also recommended curricular and instructional changes to 

strengthen interdisciplinary competence, in addition to the design and contextual 

competence. 

Litzinger et al. (2011) conducted a case study to explore the ways that 

undergraduate engineering programs prepare students to think and work in 

interdisciplinary ways. Litzinger et al. conducted personal and group interviews that they 

triangulated with archival records, class observations, and other artifacts. The results 

showed that interdisciplinary learning was assumed to happen in the co-curriculum, 

particularly in activities such as design competitions and humanitarian projects. Other 

instructors introduced interdisciplinary activities into courses and programs to bring 

engineering, business, and other majors to work together on a project.  

Adams et al. (2011) explored the topic of multiple perspectives in engineering 

education that can provide a map of new innovations for engaging engineering students. 

Among other perspectives, Adams et al. stressed the need to make connections between 

understanding and applying in an active learning process. Recommendations from these 
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researchers pointed to deficiencies in interdisciplinary skills in engineering education and 

the importance of these skills for practice.  

Incorporating Engineering Practice into Engineering Education  

The objective of engineering education is to prepare engineering graduates for 

professional practice in their areas of specialization. From the perspectives of 

practitioners, engineering practice is the work that engineers do routinely as they 

conceive and design systems, build facilities, and operate production facilities to provide 

useful products (Crawley, Brodeur, et al., 2008) as well as solve problems that arise 

during each stage of these activities. The path to engineering practice for working 

engineers is   laid in the four stages of facility development: conception, design, 

construction, and operation. Although some engineers might spend their entire careers at 

any one of these stages, others may conduct feasibility studies, carry out preliminary and 

detailed design work, develop and execute projects, and operate these facilities. 

Engineers engaging in these work stages are expected to use their fundamental 

knowledge, interpersonal skills, and abilities to complete the tasks required during each 

step of the work (Crawley, Brodeur, et al., 2008).  

Engineers continue to solve the problems that arise in conception, design, 

construction, and operation. Conversely, engineering education focuses on theoretical 

problem solving and looks at practice from the perspectives of practice-like activities that 

approximate engineering tasks, such as laboratory work or design projects. However, 

engineering education stakeholders want to narrow the difference between engineering 
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knowledge and the skills needed for practice. Great efforts have been made to narrow this 

gap. 

Crawley (2001) constructed a comprehensive catalogue of skills that 

encompassed the contributions of stakeholders (i.e., alumni, industry, academia, and 

students); searched new ways of teaching and learning; and used assessment data to 

develop a project-based program. The skills that Crawley developed approximated the 

functions of working engineers. The outcome of these efforts was the CDIO syllabus, 

developed by MIT in 2001 to summarize formally “a set of knowledge, skills and 

attitudes that alumni, industry and academia desire in a future generation of young 

engineers” (Crawley, 2001, p. 1). The Crawley called for reforms in engineering as well 

as demands to incorporate practice in the same manner as expected in the real world.  

Other universities have continued their efforts to include practical engineering in 

their courses. McSpadden and Kelly (2012), researchers at Purdue University, described 

their approach of teaching preservice engineering and technology teachers to solve real-

world problems experienced in society and require the use of engineering knowledge and 

skills. McSpadden and Kelly reported that diverse student teams were formed to select, 

develop, and build a prototype for an ill-defined engineering problem. The teams were set 

up to mimic engineering teams and work the problem from the conception stage to the 

completion stage using a budget and project constraints mirroring the real world. 

Valuable learning experiences for students included practical experience, teamwork, 

communication, and appreciation of their technical knowledge, and the recommendation 

to use this approach as an enhancement toward the learning experiences of engineering 
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students (McSpadden & Kelly, 2012).  

Swart (2010) compared the merits of teaching theory before practice or teaching 

practice before theory in a course that offered theoretical instruction followed by 

laboratory practice. They compared the scores of two classes. In one class, theory was 

taught before practice; in the other class, practice preceded theory. Students in the class 

that taught practice before the theoretical method scored 20% higher. Student responses 

also showed that the practical experiments helped them to understand the theoretical 

instruction more clearly.  

Industry Role and Feedback 

The role of industry in preparing students for practice could manifest in several 

ways. Industry might provide funding to projects initiated by universities that are 

designed to provide problems that include practice. Industry can provide projects or 

problems needed to solicit solutions as student projects and provide funding. In addition, 

global programs may be designed to solve real problems while giving students 

opportunities to work on projects that prepare them for practice. The significance of 

developing professional skills is illustrated in the GET program, where hard engineering 

skills and soft professional skills are used to complete engineering projects (Oladiran et 

al., 2011).  

In the GET program, university and industry partners collaborate to form 

multifunctional student teams to complete engineering projects. The GET program uses 

project-oriented, problem-based methods to give students the opportunity to engage in 

challenging engineering team projects. The GET program gives students field training in 
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the areas of teamwork, cooperation, interaction with the industry, and global experience. 

The industrial partners gain qualitative solutions to problems. Partner universities include 

MIT, Pennsylvania State University, and Rennselaer Polytechnic Institute in the United 

States, as well as such international university partners as Hasso-Platner Institute, 

Germany; Technische Universität, Germany; Stellenbosch Universiteit, South Africa; 

University of Botswana, Botswana; Universidade de São Paulo, Brasil; and Pontificia 

Universidad Católica de Chile, Chile. 

Engineering students in operations, design, and manufacturing programs have 

expressed dismay because of their need for high levels of practical familiarity. The 

dismissals of such requirements have created a dereliction of industrial intangibles, such 

as familiarity with industry technology and practical application. It also has created a gap 

in areas such as design knowledge, teamwork, interpersonal skills, and workplace ethics. 

Though these are not science-based skills, they remain high on the list of industrial 

expectations and should be included in engineering curricula. 

Conclusions from the Literature Review 

The researchers confirmed the existence of a widening gap between engineering 

education and industrial practice. A significant portion of this gap has been attributed to 

engineering faculty’s lack of industrial experience, and the heavy focus of universities on 

research. The National Effectiveness Teaching Institute (as cited in Felder & Brent, 2010) 

recommended setting effective instructional development programs tailored for 

engineering faculty to cover specific disciplines such designing for active and project-

based learning experiences.  
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The adoption of ABET’s engineering criteria in 2000 has taken U.S. engineering 

schools closer to practice (Dym et al., 2005). Although universities continue to equip 

graduates with solid scientific knowledge and engineering fundamentals, their ability to 

include practice in engineering programs has been limited by time and resource 

constraints. Engineering schools alone cannot realistically produce graduates who are 

equipped with all the knowledge and skills required by the industry. Engineering colleges 

must develop close collaboration with industry; employ faculty with industrial 

experience; and solicit input from relevant stakeholders in engineering education, that is, 

educational institutions, professional societies, students, and the industry (Litzinger et al., 

2011). Including practice in engineering education requires willingness from academia to 

change and more contributions and commitment from industry, an effort that has already 

been initiated.  

The ASEE (2012), with support from the NSF, started a multiyear sequence of 

workshops, “Transforming Undergraduate Education,” between academics and industry 

in 2013 with the objective of promoting changes in curricula, pedagogy, and academic 

culture to produce required qualities for graduating engineers. The final workshop, 

scheduled for 2018, is expected to produce the ultimate framework for transforming 

undergraduate engineering education. The findings derived from my study will produce 

some feedback from working engineers and present data that might be useful in 

transforming engineering education. 
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Summary of Literature Review 

Deficiencies in engineering education have been documented in the literature. 

Industry, professional societies, and engineering research have called for strengthening 

fundamentals and technical competencies, adding practical engineering design and 

operation instruction, as well as soft skills such as communication, teamwork, and 

interpersonal skills, and professional ethics. Feedback from industries that employ 

engineers has suggested the need for reform and the inclusion of practice in engineering 

teaching and learning. The viewpoint of industry is that the most desirable employment 

attribute of graduate engineers is their ability to apply theoretical knowledge to industrial 

problems (Lamb et al., 2010). 

From the 1980s and 1990s, concerted efforts from industry, academia, and 

professional societies started to change the course of engineering education (Crawley, 

Brodeur, et al., 2008). ABET revamped its accreditation program, and leading 

engineering universities developed curricula that added practice to the content. The most 

notable program, the CDIO, was developed at MIT in 2006. The CDIO syllabus was 

based upon supplementing the fundamentals with skills that allowed students to conceive, 

design, implement, and operate facilities. The syllabus was adopted not only at MIT but 

also by other universities in the United States, Canada, and Europe (Crawley, Jianzhong, 

Malmqvist, & Brodeur, 2008). Other schools either reinforced their internal programs or 

adopted successful programs from other universities (Borrego et al., 2010). 

Sheppard et al. (2009) reported inefficient practices of theory before practice and 

the poor use of laboratories and   practical facilities. Hence, the practical application of 
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engineering knowledge remains a challenge for graduate engineers. Technical 

competency, practical application of engineering knowledge, teamwork, and professional 

skills remain areas of high deficiency for graduating engineers (Crawley et al., 2007; 

Felder et al., 2000; Johri & Olds, 2011; Litzinger et al., 2011; Sheppard et al., 2009).  

The current gaps in competency cannot be fulfilled using outdated teaching 

(Felder et al., 2000). The content of engineering curricula is saturated, so Felder et al. 

(2000) recommended (a) adopting innovative and effective instructional strategies  

from general and technical education programs, and (b) having professors develop 

instructional objectives that cover knowledge content and higher level problem-solving 

skills, along with the soft skills. In this way, student learning would strike a balance 

between practical and abstract information presented in lectures. Active and cooperative 

learning in a team environment promotes interpersonal skills and teamwork (Felder et al., 

2000).  

The efforts of researchers, engineering educators, and industry have narrowed the 

gap between education and practice. However, these efforts have not resulted in 

widespread engagement in engineering practice. In addition, feedback from practicing 

engineers has not been abundant in the literature. I conducted this study to investigate the 

experiences of engineering graduates at work and provide feedback to engineering 

education stakeholders.  
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Section 2: Research Method 

Introduction 

 

The objective of this study was to capture the experiences of engineers who were 

at least 1 year removed from receiving their degrees regarding their preparation for 

professional practice. In the data collection and analysis, I focused on their experiences, 

perceptions of gaps in their engineering skills, ways in which they confronted 

deficiencies in their engineering education, and the strategies that they used to build 

practical skills. In addition, I investigated each participant’s route toward self-

development and the building of engineering experience. Although the gap between 

college education and practice narrows with PD and years of experience, overcoming 

deficiencies in the core education requires personal effort by individual engineers. 

I selected a case study approach to conduct this study. To gain personal, in-depth 

knowledge of the participants, I interacted with graduate engineers in a social setting 

through interviews. The case study design and the reasons for its selection are described 

further in the following section.  

The Case Study Design 

A case study is an in-depth examination of a bounded unit over time. Scholars use 

case studies to focus on specific, unique, and bounded systems to gain information about 

the experiences of individuals or groups in particular settings (Stake, 2005). Researchers 

conduct case studies to examine current issues in real-life situations involving 

individuals, groups, entities, or institutions in certain contextual settings (Glisne, 2011). 
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Stake (2005) pointed out the importance of describing the realities of each case, noting 

that the activities of the case are determined by the perceptions of reality as seen by those 

involved in the case, be it contextual, situational, social, or other. The data collection and 

analysis protocols cover both the phenomenon under study and the context under which 

the phenomenon exists (Hatch, 2002; Stake, 2005; Yin, 2013).  

Case study research is suitable to answer RQs of the “how” and “why” type, and 

it allows researchers to explore complex situations where multiple perspectives can be 

considered through the data collected from various sources (Stake, 2005; Yin, 2013). The 

case of interest is generally a real-life phenomenon that a researcher wants to develop. 

The researcher conveys a deep understanding of its unique features from sources of 

evidence where there are several variables that cannot be captured as data points (Yin, 

2013).  

I selected the case study method to understand the experiences of working 

engineering graduates and how they coped with deficiencies in their engineering 

education. Given the opportunity to elaborate their challenges, failures, and successes, the 

sample of working engineers provided their perspectives and in-depth knowledge of the 

problem. The case study method was appropriate to extract the stories of the participants 

in individual interviews and detailed discussions. 

Reasons for Selecting the Case Study Method 

In this study, the phenomenon of interest was the acquisition of knowledge and 

skills required for engineering practice. I focused on the experiences of graduate 

engineers and the ways in which they went about learning the application of engineering 
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knowledge and developing the skills required for their jobs. These objectives aligned 

with the case study method, in which the experiences gained during the research through 

the activities, narrations, and interactions with the participants are reported. Stake (2005) 

suggested that case study researchers help readers to construct new knowledge from the 

experiences gained from the cases. Given these assumptions, the knowledge acquired 

from this qualitative case study will add to the body of knowledge required to improve 

engineering education. 

Use of the Qualitative Method in Engineering Education Research 

Although past engineering research has been largely quantitative, engineering 

researchers over the last 10 years have taken an interest in qualitative methods, and an 

increasing number of investigators have recommended the use of qualitative 

methodologies. Koro-Ljungberg and Douglas (2008) found that the authors of only a few 

published articles in engineering had used qualitative methods. Koro-Ljungberg and 

Douglas urged engineering researchers to take advantage of the alternative views and 

ways of knowledge acquisition afforded by qualitative research, reasoning that qualitative 

methods capture the complexity of people differently than quantitative methods do. 

Borrego et al. (2009) also reviewed the use of quantitative, qualitative, and 

mixed-methods approaches in engineering research and reported on the low use of 

qualitative studies in the engineering education literature. Borrego et al. noted that even 

though the quantitative approach has been used in engineering studies, the increased use 

of qualitative methods would expand the range of RQs addressed in engineering research. 

Borrego et al. noted that most engineering education researchers have been, and continue 
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to be, engineering faculty who have trained in the quantitative method, and the audience 

has tended to comprise engineering college faculty. Case and Light (2011) described 

several qualitative methods that are promising for use in engineering research including 

case study, grounded theory, and action research. Case and Light noted that although case 

study research has lacked generalizability, it has been compensated by the precise and 

context-dependent nature of the knowledge gained through the study.  

In addition to more recent interest in the method, case studies have been used 

successfully in past engineering research. Magin and Churches (1995) used a case study 

approach to investigate the success of peer tutoring for a course in which computer 

graphics replaced traditional pencil-and-paper engineering designs. The purpose of the 

study was to understand the level of learning improvement afforded by peer tutoring over 

traditional teacher-led methods. In the case study, Magin and Churches incorporated 

various data collection methods, including individual interviews, group interviews, 

informal observations, and open-ended surveys. Magin and Churches found that tutored 

students and peer tutors gained value from the peer tutoring method and that more than 

50% of the students preferred this method.  

The purpose of the critical case study method is to gather data that facilitate 

logical deductions rather than generalizations. Daly, Mosyjowski, and Seifert (2014) used 

the critical case study method to examine engineering pedagogical practices and to 

document how these practices enhanced students’ creative growth. In the analysis of data 

from student and instructor interviews, student surveys, and course material, Daly et al. 

showed growth in convergent thinking, but not in divergent thinking. 
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Mosalam, Hube, Takhirov, and Günay (2012) also conducted a case study to 

investigate teaching innovation through hands-on experience. The case study was 

designed to evaluate the merits of the active learning approach, in which students solve 

open-ended and ill-structured, real-world problems that might have multiple solutions. 

These scholars, along with many others, have confirmed the applicability of case studies 

in engineering research, where having in-depth understanding of an issue is requisite.  

Research Question 

The RQ and the theoretical framework typically drive the choice of methodology 

(Creswell, 2009). One RQ guided the current study: What are the experiences of graduate 

engineers currently working in the industry regarding overcoming practical skill 

deficiencies and bridging the gap between education and practice? The case included two 

issues: identify gaps between education and practice experienced by each engineer and 

identify the methods that the engineers used during the early years of employment to 

build practical skills that led to professional practice. Although most engineering 

researchers have used quantitative methods, the research method used in a study should 

be driven by the RQs, not by traditional quantitative methods (Borrego et al., 2009). That 

perspective aligned with this study in that the RQ required an in-depth knowledge of the 

problem under study from the perspectives of individual graduates. 

Research Design 

The research design of a case study requires the selection of the case type, the 

context, and the phenomenon under study. Stake (2005) identified three types of case 

studies: intrinsic, instrumental, and collective. The intrinsic case study is used to gain a 
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deep understanding of a particular case. The instrumental case study is used to examine 

an issue where an in-depth understanding is required or when it is necessary to draw a 

generalization about the case (Stake, 2005). The collective case study or multiple cases 

use two or more cases to study the same phenomenon. 

I chose to use the instrumental method for this case study because I wished to 

examine the competency problems experienced by newly hired engineers in the field, 

with the intention of generalizing the results to the wider graduate engineering population 

in the United States. I used the instrumental case study based on the need to gain a close 

understanding of what the graduates experienced in their early careers and how they 

educated themselves to become competent engineers. The knowledge gained from these 

experiences was expected to expose the gap in engineering education and contribute to 

improvements in learning and teaching at engineering colleges. However, case study 

researchers have stressed the need to select the case appropriately and describe the 

context (i.e., the natural setting) and the phenomenon being studied adequately (Stake, 

2008). 

Yin’s (2013) detailed case study provides a roadmap for researchers. According to 

Yin, the researcher should describe the case, the RQs, the theoretical propositions, the 

unit of analysis, the phenomenon under study, and the data collection and data analysis 

processes. In the following text, I describe the case, the context, and the phenomenon that 

were under study.  
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The Case  

Based on the literature that engineering graduates are not equipped with the 

relevant practical knowledge and skills needed for successful engineering practice, I 

chose to study how a sample of engineering graduates filled the gap in their education 

and covered the deficiencies stated in the literature. The use of a qualitative case study 

approach allowed me to derive knowledge about the participants’ lived experiences based 

on my interactions with them. The strategy then was to analyze the experiences of the 

graduate engineers concerning the programs and tools that they used individually to keep 

up with the competencies required for their work practices to be successful.  

In case study research, a theoretical proposition guides the type of data to collect 

and the strategy to analyze the data (Yin, 2013). Following this logic, I assumed that 

engineers entering the workforce usually fill the education gap through public courses, 

workshops, employer training, on-the-job training, as well as mentoring and coaching 

from senior engineers and supervisors. The assumptions in this proposition were that (a) 

the gap between education and practice needs to be bridged; (b) graduate engineers need 

to fill the gap by themselves with self-education; and (c) graduate engineers must pursue 

the resources available to gain the knowledge, skills, and abilities required to make them 

competent on the job.  

Another requirement of the case study design is to select the unit of analysis. The 

unit in this study comprised the individual participants, that is, engineering graduates who 

were employed in their respective disciplines and who had at least 1 year of experience at 

the time of the study. The context included the physical environment of the work setting, 
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the nature of the work, and the participants’ educational backgrounds. In this study, the 

phenomenon of interest was the acquisition of the knowledge and skills required for 

engineering practice. I explored how the graduate engineers acquired the knowledge and 

skills that were missing from their college education.  

Generalizability of Case Study Data 

 The generalizability of case study data was addressed in the literature (Curtis, 

Gesler, Smith, & Washburn, 2000; Stake, 2005; Yin, 2013). Case study findings are 

specific to the phenomenon under study, and grand generalizations to the wider 

population are not recommended. However, Yin (2013) pointed out that the significance 

of a study depends not only on the findings but also on the general implications of these 

findings. To generalize case study results, Yin recommended using analytical 

generalizations, meaning that researchers should construct arguments or hypotheses at the 

start of their studies based on a higher conceptual level than any particular case. The 

findings should support the hypotheses, which then can be generalized to similar studies 

(Yin, 2013).  

In addition to the analytical, a case-to-case transfer (Curtis et al., 2000) also is 

applicable to case study generalizations. A case-to-case transfer involves making 

generalization from one case to a similar case. Stake (2005) called the process naturalistic 

generalizations, referring to the making of generalizations based on similarities in 

participants, contexts, settings, and times.  
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Participants 

Criteria for Selecting Participants 

This case study involved interviewing engineers who had graduated from U.S. 

universities at least 1 year at the time of the study. The objective was to select the sample 

from work locations in Texas. This selection was based on two factors: (a) I live and 

work in Houston, so it was convenient for me to meet and interview individual 

participants within a day’s travel distance and (b) there is a high concentration of 

engineering companies, oil companies, refineries, and chemical plants in the area where 

many representative engineers live and work. In addition, Texas has several highly 

ranked universities, including the University of Texas, the University of Houston, Texas 

A&M, and Rice University, all of which have graduated engineering who are now 

working in the selected region. Sampling engineers from these locations best represented 

typical engineering graduates who are employed in the primary disciplines of engineering 

practice. 

Preferred participants were graduate engineers who were engaged in such areas as 

design, operation, project development, or similar fields where engineering practice is 

evident. The objective was to examine a specific situation in great depth, not to seek a 

generalizable outcome that would represent all situations (Borrego et al., 2009). The 

sample comprised individuals employed in the industry and practicing in their fields of 

engineering. Purposeful sampling was used to choose the participants.  
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Justification for the Number of Participants 

Even though case studies tend to concentrate on a small number of participants, I 

recognized that the target population represented by the study was vast. For this reason, I 

selected a broad sample of 15 participants who were chemical, civil, mechanical, and 

electrical engineering graduates with work experience of at least 1 year at the time of the 

study. This representative sample comprised engineers who were fully engaged in 

engineering practice in the areas of design, operation, project development, or similar 

fields. There are many engineering disciplines, but the chemical, civil, mechanical, and 

electrical disciplines represent more than 70% of graduate engineers in the United States. 

Gaining Access to Participants 

The initial plan for participant recruitment was to identify several companies that 

employed large numbers of engineers in the Houston area and contact the participants’ 

engineering managers to request that they forward letters of invitation to engineers who 

fit the criteria for participation. Several managers indicated that they had only a few 

engineers in their departments who fit the criteria; in addition, the number of replies from 

those who received the request for participation also was low. I then contacted more 

companies to increase the likelihood of recruiting more people who fit the criteria. I also 

contacted several university professors to request the names and contact information of 

their alumni. In addition, participants whom I interviewed referred other engineers who 

were willing to participate in the study. These combined strategies provided me with 

enough participants who met the criteria for participation. I developed an interview 

protocol to guide the data collection process. A consent letter, an invitation letter to 
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participants, and a letter to facility managers were sent as part of the participant 

recruitment process. 

The participants were engineers working in various industrial institutions in Texas 

and Louisiana and in various departments that included operations, engineering design, 

project engineering, engineering software sales, and research. Only three participants 

worked for the same company as I did at the time of the interviews. None of the 

participants was working with me or was supervised by me.  

Ethical Protection of Participants 

 Following Walden University’s ethical requirement process, I took the Human 

Research Protection training and obtained the certificate of completion from the National 

Institute of Health. The training provided me with an understanding of the ethical limits 

on data collection from research subjects. Next, I applied to Walden’s Institutional 

Review Board (IRB) for approval to conduct the study (IRB approval #04-05-16-0149 

213).  

Participant Profiles 

I contacted four company representatives to recruit working engineers and two 

universities to recruit alumni. As mentioned previously, I asked the participants to 

provide me with the names of other engineers who might have been interested in joining 

the study. I sent invitation letters to 21 engineers, 15 of whom accepted the invitation; six 

declined. I interviewed three engineers from each of chemical, civil, electrical, and 

mechanical disciplines who had at least 1year of experience. The participant’s levels of 

education were as follows: bachelor’s degree (n = 8), master’s degree (n = 2), MBA (n = 
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4), and PhD (n = 1). They represented nine different universities; they were ethnically 

diverse: European American (n = 7), African American (n = 3), Asian American (n = 3), 

and Other (n = 2); and they were nearly gender balanced with eight male and seven 

female participants in the study (see Table 1).  

Table 1  

Summary of Participants  

Pseudonym Engineering major Degree Gender Ethnicity Data collection time 

Kai Chemical BS F European American 10 minutes 

Mel Chemical  PhD F European American 8 minutes 

Suchi Chemical  BS F Asian American 20 minutes 

Shali Chemistry MS F Other 11 minutes 

Viji Chemical  MBA M Asian American 16 minutes 

Atta Chemical  MS M African American 9 minutes 

Dany Civil BS M European American 16 minutes 

Jona Civil  MS M European American 20 minutes 

Rebe Civil  BS F European American 12 minutes 

Abd Electrical BS M African American 13 minutes 

Gani Electrical BS M African American 20 minutes 

Sultan Electrical BS M Other 15 minutes 

Broos Mechanical BS M European American 21 minutes 

Crista Mechanical  BS F European American 10 minutes 

Nisha Mechanical BS F Asian American 22 minutes 

 

 

Data Collection 

After the IRB approval, I began to collect the data. The objective of the study was 

to capture the experiences of engineers related to their preparation for professional 

practice in their areas of specialization. I used interviews only to obtain my data. 

Although interviews can be used in conjunction with other data collection methods, 

interviews represent the only data source or the primary data source for qualitative 

research (Hatch, 2002; Roulston, 2010; Stake, 2008; Yin, 2013). I audiotaped the 
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interviews and asked targeted questions to allow the participants to reflect on their 

postgraduate preparedness for engineering practice and share their experiences in the   

training venues taken toward professional practice.  

Conducting the Interviews 

I asked formal, open-ended interview questions. I used unstructured and structured 

interview questions to capture the views of working engineers. I also asked informal 

questions to build rapport and gain an understanding of the setting and the environment. 

The interview data recording times are shown in Table 1. The time for room set up, meet 

& greet and wrap up of the session was not included in Table 1. The interview times 

varied based on the participant personality as well as their passion to share their 

experience on a subject. Three of the participants had significant internship experiences 

they wanted to elaborate. Two participants described their perceived thoughts about 

deficiencies of their skills at graduation. Overall, the less experienced participants 

provided short answers to questions. The interviews were conducted in various locations. 

I interviewed some participants in private offices at their places of work to minimize lost 

time; sometimes, it was the only time and place I could interview them. Other interviews 

took place in private rooms in a public library, and a few were conducted in an 

unoccupied hotel conference room.  

Recording and Transcribing the Interviews 

I audio-recorded the responses to the interview questions. I then transcribed the 

data and maintained accurate records to leave an audit trail for future researchers to verify 

the data collection methods (Creswell, 2009; Stake, 2008; Yin, 2013). Transcribing the 
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data was time-consuming and required 2 to 4 hours of listening and typing depending on 

the length of the interview. The transcription duration was close to the transcription times 

cited in the literature (Hatch, 2002). I kept logs of each interview location, timing, and 

duration. I stored the interview data and transcriptions on a password-protected personal 

computer.  

Role of the Researcher 

I am an experienced engineer with more than 20 years of applied engineering, and 

I have had responsibilities teaching, mentoring, and supervising new engineers during my 

working years. I have traveled the road of professional progression that other graduate 

engineers likely take. These experiences gave me   profound understanding of the topic 

under study and helped me extract pertinent information from the participants. However, 

I was aware of the possibility of injecting my thoughts during the interviews. To guide 

against the urge of leading the participants to my point of view, I decided to ask the 

questions and let the interviewee provide the answers. The follow up questions gave me 

some concerns and, at times, I had to limit the questions to avoid leading the participant. 

But there were some natural limits for interjection. Each participant had a distinct 

experience because of the specificity of their experience or the nature of their work that 

was different than mine. Additionally, since my main experience was on chemical 

engineering, I was not well-versed with the civil electrical, and mechanical engineering 

disciplines.     
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Data Analysis 

In qualitative research, data analysis and interpretation start with the initial data 

collection and continue to completion of the findings (Hatch 2002; Yin, 2013). 

Researchers must read and interpret the data in the process of coding, recording, and 

creating themes. Additional data might be required to confirm patterns developed during 

the analysis. Creswell (2009) compared data analysis to the peeling of onion layers, in 

that the process involves repeated steps of analysis and data collection.  

  I processed the data obtained from the interviews through the inductive method of 

analysis, that is, from the specific to the general. I analyzed the evidence for patterns that 

led to general statements that supported the phenomenon under study. Unlike the 

deductive method of analysis, in which theory guides the development of the hypotheses, 

the inductive method derives the theory from the phenomenon (Hatch, 2002). 

  The analysis of the transcribed data involved coding and categorizing the data, 

and developing themes. Coding involved marking statements that described the 

participants’ views related to the RQ. I then sorted the coded data into categories and 

studied them for theme development. The themes and corresponding categories that 

emerged from the data are summarized in Table 2.  
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Table 2 

Data Analysis: Themes and Categories 

Theme Categories 

1. Perspectives on engineering education   

  Engineering fundamentals 

  Application of knowledge  

  Exposure to industrial facilities  

  University’s focus on research  

  Faculty members’ industrial experience  

  Internship 

Lifelong learning 

 

2. Deficiencies in engineering skills   

  Practical application of knowledge 

  Laboratory experimentation  

  Problem solving 

  Engineering design 

  Use of engineering tools 

  Teamwork 

  Communication 

Interdisciplinary subjects 

 

3. Training & learning for engineering competency   

  Employer training 

  On-the-job training 

  Learning from peers and coworkers 

  Learning from mentors and coaches  

Self-learning 

 

Theme 1: Participants’ Perspectives of Overall Engineering Education  

Quotations from the participants supporting these themes appear later in the 

section. Theme 1 showed the strengths of engineering education as well as areas of 

weakness. Most participants confirmed that the university covered math, science, and 

engineering fundamentals generously and that engineering education provided them with 

broad knowledge that equipped them for wide career choices. Participants stated that 

having a college education prepared them for lifelong learning. 
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 On the negative side, the participants stated that engineering education fell short 

in preparing them for engineering practice for two reasons: (a) Universities are focused 

on research, which provides funding for the university, rather than on engineering 

practice (Sheppard et al., 2009), and (b) engineering faculty have limited industrial 

experience and cannot provide students with the skills needed in the industry. The 

participants related their experiences in internship programs that gave them valuable 

exposure to industrial skills. Internships served as an important introduction to practice 

their classroom learning and gave them a glimpse into what engineers do in the field. 

Successful internships provided valuable experiences, but internships that were not useful 

also were identified. Furthermore, the participants noted that not everyone gets internship 

opportunities (Sheppard et al., 2009). 

Theme 2: Deficiencies in Engineering Skills  

 The practicing engineers in this study identified deficiencies in the   practical 

application of knowledge, problem solving, laboratory practice, engineering design, and 

use of engineering tools. The cause of these deficiencies was attributed mostly to 

faculty’s lack of practical knowledge and the university’s focus on engineering research 

rather than practical engineering. Furthermore, the engineers spoke about deficiencies in 

the soft skills of the profession as communication, teamwork, and engineering economics 

and business. 

Theme 3: Training and Learning for Engineering Competency  

As new engineers are employed in the industry, it becomes evident to them that 

industrial practice is different from academic life. Employers make new engineers take 
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the responsibility to develop the skills required for their work. The participant engineers 

recommended that a combination of training methods be used so that they could gain 

practical knowledge. Training methods were employer training, on-the-job training, self-

training, learning from peers and coworkers, and proper mentoring. The participants saw 

continuing education as important.  

Before presenting the feedback from the participants is a reiteration of ABET’s 

(2014) guidelines for engineering skills. ABET-accredited engineering colleges must 

teach the skills listed here and report the outcomes. However, it is up to each university to 

develop a curriculum that ensures compliance with ABET’s requirements. Graduate 

engineers must perform five core (technical) skills, and six soft (professional) skills. 

Engineers must be able to do the following core skills: 

1. Apply engineering knowledge (application of knowledge). 

2. Design and conduct experiments (laboratory experience). 

3. Design systems (engineering design). 

4. Solve engineering problems (problem solving). 

5. Learn to use engineering tools (engineering tools). 

Engineers must be able to do the following professional skills: 

1. Function in multidisciplinary teams (teamwork). 

2. Understand ethics and professional responsibilities (ethics). 

3. Communicate effectively (communication). 

4. Understand the impact of engineering on global, economic, environmental, 

and societal context (globalization). 
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5. Engage in lifelong learning.  

6. Have knowledge of contemporary issues (current issues). 

  Engineering graduates are expected to have developed these technical and 

professional skills before graduation. Although many engineers have acquired aspects of 

these abilities, not all of them mastered all skills in their junior and senior years of 

college (Shuman, Besterfield-Sacre, & McGourty, 2005).  

  Despite ABET’s (2014) requirements, the competencies have different weights 

for practicing engineers, the reason why feedback from engineers working in the industry 

serves as reference for engineering colleges. The analysis and interpretation of the data 

collected in this study identified the competencies that are important for working 

engineers and provided useful feedback to engineering education stakeholders. The 

findings are presented next.  

Data Analysis Results  

The data analysis identified a mix of experiences and perceptions related to the 

RQ. Participants expressed their views about the strength of universities in teaching math, 

science, and engineering fundamentals, as well as universities’ lack of focus on practical 

engineering. Reasons for the poor practical engineering experience were given as 

ineffective application of knowledge, low exposure to industrial facilities and industrial 

jobs, focus on research, and faculty members’ lack of industrial experience. The 

participants spoke about their positive experiences during internships as well as their poor 

experiences or lack of opportunities for internship experiences.  

The participants shared their views about the deficiencies in core and professional 
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skills that they considered important to do their jobs. Core skill deficiencies were in the   

practical application of knowledge, laboratory experimentation, problem solving, 

engineering design, and use of engineering tools. Deficiencies in the professional skills 

were in teamwork, communication, and interdisciplinary topics. In addition, the 

participants shared their experiences with the methods employed toward PD. Some of the 

training and self-learning methods that the participants used to advance their skills 

included company training, on-the-job training, self-learning, learning from peers, and 

PD.  

  I also explored the generalizability of the findings to the target population of 

working engineers and concluded that the results might not be generalizable for the 

following reasons: (a) The sample size was small compared to the general population of 

engineers employed in the industry, (b) the sample was limited to four engineering 

disciplines only, and (c) the participants represented a few industrial institutions. 

Therefore, making grand generalizations about the outcomes to the overall engineering 

population was not possible. However, it might be useful to test the insights developed in 

this study in future studies using larger samples of working engineers from wider 

disciplines and larger industrial outfits.  

 The participants provided valuable responses to the interview questions that I 

immediately transcribed and analyzed. Data analysis involved coding and categorizing 

the data and then developing themes. The main themes and corresponding categories that 

emerged from the data are described next.  
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Theme 1: Participants’ Perspectives of Overall Engineering Education  

  Math, science, and engineering fundamentals. The theoretical knowledge 

provided by U.S. engineering colleges exceeds what is needed to carry out engineering 

work in any single industry because universities provide a wide technical base for diverse 

industrial activities. Although college education offers instruction in engineering 

fundamentals and scientific knowledge, it does not teach or ensure the real-world 

application of this knowledge sufficiently. It was evident from the interview responses 

that the participants understood the gap between theory and practice, and recognized that 

only a fraction of this knowledge is applied in practice.  

Kai explained: 

School is very technical and not very applied, and so when I got to my internship, 

it was about applying the concepts I had learned in school. You learn 100 things 

in university and then you try to apply may be 20 of them. The other 80 maybe 

you don’t touch on directly. 

  Universities also teach theoretical solutions that form the base for engineers to 

build on. As Donh explained, “That’s what engineering school taught you well how to do 

is at least know the textbook solution and show good judgment, gather information, and 

modify it based on the facts you do know.”  

 Lifelong learning (continuing education). The interviewees indicated that a 

college education had prepared them to be lifelong learners. Lifelong learning prevents 

technical obsolescence and provides opportunities for the ongoing development of 

professional skills critical to the success of engineering careers (Duderstadt, 2010).  
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Several participants in the study expressed their engagement in lifelong learning 

to keep pace with societal and technological changes. Gani explained, “Advancement of 

the technology dictates that we stay on our toes and improve and learn new skills on a 

yearly basis.”  

Shali explained the lifelong learning strategies that she used:  

  So that came from a lot of self-training, self-education or a lot of talking to my 

other co-workers who have been here, sitting one on one, reading books, going 

online, searching through our internet, our website, doing a lot of hands on 

learning. 

  Application of knowledge. Engineering graduates echoed what has been stated in 

the literature (Male, 2010; Sheppard et al., 2009) that graduates are deficient in the 

application of engineering knowledge. The participants felt that universities can play a 

role in filling this gap, but it is unlikely under established curricula and accepted norms 

for them to provide sufficient practical projects and hands-on activities for students. As 

Gani explained, “I think that there’s a lack of incentive at a university level to teach 

practical applications to young graduates that are exiting the program.”  

In some instances, participants felt that   training will bridge the gap for some 

individuals, but it is not possible to provide explicit training for each engineering 

discipline (Sattler, Weatherton, Chen, Mattingly, & Rogers, 2011), especially in the early 

years of career development.  

Data gleaned from the interviews aligned with several important deficiencies cited 

in the literature (Besterfield-Sacre et al., 2014; Borrego et al., 2010; Duderstadt, 2010; 
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Felder et al., 2011; Litzinger et al., 2011) that included the low practical application of 

knowledge. The participants in my study confirmed their satisfaction with the 

university’s teaching of engineering fundamentals but voiced their opinions that practical 

aspects of teaching engineering fell short of preparing students for practice. Several 

reasons were expressed in this regard, and two factors stood out: (a) Universities are not 

focused on engineering practice, and (b) engineering faculty lack industry experience. 

They noted that universities are tasked to raising funds through research while trying to 

meet ABET’s (2014) accreditation requirements.  

Jona, a civil engineer, explained: 

  That goes into tenures, tenured professors, right? What is their incentive to really 

understand what’s going on out the real world? If professors at a university are 

just doing research and they spent all their life in academia, there could be an 

absolute ... you know. What their world is, is trying to figure out how to get more 

budget to fund their research or to get tenured. There’s really no incentive to teach 

or align with what the real-world practical aspects will be of a work environment 

once you get out school. I think that there’s a lack of incentive at a university 

level to teach practical applications to young graduates that are exiting the 

program. 

Sheppard et al. (2009) asserted that most college professors have not worked in 

the industries where their graduates might spend their entire professional lives. 

Participants in the current study stressed their dismay at professors who had no practical 

experience and engaged solely in academic research. When asked how well the university 
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prepared them for practice, Suchi commented, “I don’t think it prepared me very well. I 

think if I were to scale it, 1 being super-prepared and 10 being unprepared, it was 

probably like a 4, like I was there, but not really there at all.” Regarding their professors’ 

lack of industrial experience, the participants were very vocal. Suchi stated, “I think the 

biggest thing that became clear is that [the] university tends to be people who always 

worked in academia and never worked in industry.”  

  Several interviewees expressed that they did not know much about the types of 

jobs that engineers do or even the types of industries that employ engineers.  

Kai, chemical engineer, commented:  

Honestly, I didn’t even know when I was graduating that most chemical engineers 

go to work for refineries and chemical plants, so we didn’t really get a good 

understanding of what people do on daily basis or what kind of jobs are even out 

there for us to consider.  

In the industry, engineers might seek work or specialize in   broad types of work 

within an engineering discipline. Mechanical engineers can take positions in such 

specialized career paths as piping engineer, rotating equipment engineer, manufacturing 

engineer, maintenance engineer, or project engineer. Engineering professors or a 

university’s career development department can help students to understand these   

options within each discipline. Some of the mechanical engineers whom I interviewed 

reported that they had no idea what areas of the industry engineers work in or specialize 

in before being employed. 
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Some of the participants spoke about the learning curve that they had to undergo 

as they transitioned from college to industry. Understandably, every job requires learning 

and familiarization, but training is important for all jobs. As Kai explained, “I’m having a 

huge learning curve, and it’s kind of just starting from Square 1 because I didn’t learn 

any of this before. And learning about refineries! I didn’t study that in class as well.” 

  Internships. Internships play a key role in the development of young engineers. 

Interns are exposed to practical engineering applications, and they have opportunities to 

work in teams and on diverse projects (Sattler et al., 2011). Interns who are selected by 

major engineering, production, or manufacturing companies gain valuable experience. 

Gani stated, “Well, my very first exposure to electrical engineering work in the industry 

was my internship work with IBM Semiconductors Division when I was taking my 

second year of electrical engineering coursework.”  

Another participant, Nisha, had internships with two major facilities because of 

her high grade-point average. She explained, “My first internship was at a nuclear facility 

in Massachusetts, so it’s a nuclear power plant. My second one was at GE, working for 

their bids department.” Internships give students an understanding of what engineers do 

and which specialties in their majors are more suited to their career preferences. Gani 

explained that “and really, it was the internship programs that I’ve been doing since my 

second year of college that actually prepared me to which discipline of electrical 

engineering that I should go.”  

Another participant, Kai, placed great value in her internship, noting, “Well, I feel 

like all of the engineering that I draw on for my current position comes from what I 
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learned in that 3-month internship.” Some of the participants expressed their pride in their 

internship assignments. Abd stated, “When I was a student, I actually did internships. 

One I did in a company called Delphi Automotive, in which I was able to design the 

airbag sensor.” He went on to explain the work that he did during his internship and the 

great value it had for society by stating, “I was actually designing the material that you 

put in front of the bumper in which if an impact happens, you sense the temperature. The 

temperature indicates the signal to go, let the airbag come on.”  

Most of the participating engineers indicated that their internship programs served 

as a gateway to the industry and engineering practice. The knowledge that they gained 

during the internships, especially internships taken early in their engineering programs, 

helped them to gain a firm understanding of other engineering subjects. Nisha said, “I can 

tell you that I was not effective at my first internship, but I was much more effective at 

my second.”  

 Many engineering students do not get internship opportunities, as noted by Gani, 

who stated, “So that is too specific to my own situation, but in general, there are my 

colleagues who did not have the opportunity to go to internship.” Several participants 

noted that not everyone can be involved in relevant internships with useful outcomes. 

Two participants mentioned that some internships end up being summer jobs with little 

relevance to engineering. As Suchi explained, “I had two internships. One was just as a 

research assistant. Nothing really related to what we do here.”  
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Theme 2: Deficiencies in Engineering Skills 

  The engineers expressed their concerns about deficiencies in core and 

professional skills. In the core engineering subjects, deficiencies were reported in the 

practical application of knowledge, laboratory experience, problem solving, design, and 

use of engineering tools. Regarding deficiencies in soft skills, participants mentioned 

communication, teamwork, and such interdisciplinary subjects as engineering economics 

and business, and codes and regulations. They did not express any opinions about ethics, 

globalization, and other current issues included in ABET’s (2014) soft skills. The 

participants addressed deficiencies in ABET competencies that were important to their 

jobs. Because I did not rank the competencies in this study, findings are discussed next in 

the order in which they are listed in the ABET guidelines. The technical competencies as 

practical application of knowledge, laboratory experimentation, problem solving, 

engineering design, and the use of engineering tools are discussed first. The professional 

competencies such as teamwork, communication, engineering economics & business, and 

codes & regulations are discussed second. 

Core Skills: Practical application of knowledge. Practical application of 

knowledge has been a subject of great concern not only to graduating engineers but also 

to industry. Several participants voiced their discontent with the university’s low 

application of engineering knowledge and low exposure to industrial facilities. Four 

participants indicated that they did not see industrial equipment, visit industrial facilities, 

or be exposed to real-world industrial applications before graduation. Although the 

participants learned about equipment such as pumps, compressors, and heat exchangers, 
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most of them knew equipment only as symbols in books. They were shocked about the 

physical size of equipment when they visited a refinery or an industrial plant. Suchi 

explained the deficiency in the practical application gap by stating, “I think that was a 

huge gap that we had. Then I think even just practical knowledge. We didn’t visit any 

refineries. We didn’t go to any plants.” 

  Another engineer, Rebe, expressed her frustration in her first job. She stated, “I 

was awful at my job for the first year. I’m positive of it.” Kai overcame her frustrations. 

As she explained, “So you know, just, you get familiar with the requirements of your job. 

You do it, repetition over and over again. Ask a lot of questions, and that’s the only real 

training that I had.”  

  Several other participants reported learning through repetitive practice and relying 

heavily on peers.  Three graduates who had joined engineering companies were shocked 

about the extent of the design calculations as well as the industry tools, rules of thumb, 

software used for sizing, and the industry standards that governed the specifications for 

the design of equipment.  

Jona discussed the problem of alignment between education and industry:  

 I think programs need to really align their incentives to what industry is looking 

for. I know this has been talked about quite a bit in the engineering profession, but 

I really think program…educational programs should go back and look at where 

their incentives are aligned and do those incentives for the professors aligned with 

the goals that corporate America is trying to achieve what they need out of young 

engineers better exiting a program today. 
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 Core Skill: Laboratory experience. Engineering is a profession based on 

practice, and the instructional laboratory plays an important role in preparing engineering 

graduates for practice. In the laboratory engineers can design, build, and run experiments 

as well as analyze and interpret data. However, modern engineering education has tended 

to emphasize theory and limit practice (Feisel & Rosa, 2005). A properly run laboratory 

can provide engineering students with valuable practical experience. The participants in 

the   study confirmed the lack of opportunity in their laboratory experience. Two 

interviewees reported that the laboratory experience was a waste of time; while others did 

not have anything positive to say about it. The university laboratory equipment was either 

too simple or did not work at all, and the laboratory tests were conducted by 

oversimplifying assumptions with the provision of input data.  

Suchi, who had graduated from a highly ranked university, stated that the 

laboratory experience was just a waste of time because the equipment in the laboratory 

did not work and so there was not much to learn. She explained, “And the labs that we 

had didn’t work. It is really funny for a privately endowed, really expensive college. Not 

a lot of things worked in the lab, which is interesting.”  

Abd explained that college laboratories use outdated methods, noting, “The gaps 

that I see in the real world versus the schools are, there are not a lot of labs in which 

students do experiments that mimic real life experience. They have textbook-based labs.”  

  Core Skill: Problem solving. The participants had various opinions about 

problem solving. Although most participants acknowledged having sufficient exposure to 

problem solving while at university, most agreed that theoretical solutions did not match 
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the competency required to solve real-world problems. Participants claimed that the 

university taught problem solving using oversimplified examples that were far removed 

from problems encountered in the real world.  

Participants felt that engineering problems solved in the university setting are well 

defined, with unknowns given or assumed. As Broos stated, “Certainly, you solve a 

problem in your thermo book or your fluids book, but I feel like it was so divorced from 

the reality of solving problems.” However, real-world problems are ill-defined, have 

many unknowns, and require input from many disciplines and resources. 

Three participants commented that universities do not teach students some of the 

tools used by the industry to solve everyday problems. One participant stated even though 

excel spreadsheet calculations can be a powerful tool in helping to solve engineering 

problems, he was not taught the depth of the software while solving engineering 

problems in college. Broos commented, “Something I wish I would have learned more in 

school is how powerful Microsoft Excel really is for engineering calculations or even just 

as a sketch pad.” None of the other participants commented negatively on using excel 

spreadsheet in college. 

  Core Skill: Engineering design. Engineering design, as defined by Dym et al. 

(2005), is “a systematic, intelligent process in which designers generate, evaluate, and 

specify concepts for devices, systems, or processes whose form and function achieve 

clients’ objectives or user’s needs while satisfying a specified set of constraints” (p. 104). 

Design engineering is one of ABET’s (2014) required skills for graduating engineers. 

However, most of the engineers whom I interviewed indicated that they did not have a 
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solid background in the subject other than participating in their senior-year design 

projects.    

   Jona described the magnitude of the gap between education and industry on the 

subject as, “Definitely there’s a gap between when you’re in school getting prepared for 

design, [then] coming out of school and engineering design.”  

Broos, a system engineer in a major company, explained the problem of not 

seeing the big picture in design by commenting, “How do you engineer a system? 

Because very fairly, are you engineering just one little part of something, and even if you 

are, you need to understand how it fits into that bigger system.” 

  Core Skill: Use of engineering tools. Feedback from the participants about 

technology use provided some insight into the gap between the software used at the 

university and contemporary industrial software. Crista explained that even though 

universities have expensive software, it often does not match the software used in the 

industry. She said, “I also think they use different software in industry than they do in 

school, and so I think if they could bridge that gap and both of them could use the same 

software, it would make the transition easier.”  

Nisha, a mechanical engineer who worked for a major company in the United 

States, also discussed the mismatch between software used at the university and the one 

that she encountered on the job by noting that “our design software was ProE, but the 

work that I went to was using CAD, or we used ProE stress analysis, but the work was 

using ANSYS.”  
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Universities might not be able to keep pace with technological advancements, so 

they must continually update new versions of software programs. Naturally, the cost of 

the professional software continues to rise annually, requiring ever-increasing licensing 

and maintenance fees. Yet universities can expose students to standard government 

software programs that are used throughout the industry for design. 

Jona, a civil engineer, commented on the basic programs used in engineering 

design that were not used in the university that he attended: 

  What are accepted software programs for completing design? There’s a total gap 

in that, that type of stuff. When I say software programs, these are not private 

software programs. They’re designed by the US Army Corps of Engineers. We’re 

talking about standard governmental programs that are industry prevalent 

throughout the civil engineering industry for, say, floodplain modeling.  

Turning now from the Core Skills to the Professional Skills, the participants strongly 

expressed the need for such professional skills as teamwork, communication, and 

interdisciplinary subjects. The responses aligned with recent studies addressing the 

ranking of ABET (2014) competencies for working engineers. Passow (2012) reported 

that when graduate alumni were asked which ABET competencies were important in 

their professional practice, they placed teamwork, communication, data analysis, and 

problem solving in the top cluster. The experiences and perceptions of the participants 

about each of these professional skills are discussed next.   

  Professional Skill: Teamwork. Engineers work routinely with multidiscipline 

teams that can comprise non-degreed skilled workers, degreed professionals in non-
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engineering fields, and engineering teams. Although university teaching of 

interdisciplinary activities has been and continues to be limited to senior projects with 

classmates assigned in the last year of college, industrial team members are diverse in 

their levels of education, types of work, ages, ranks, and experiences (Sheppard et al., 

2009). Interaction with such diverse teams is essential for completing work assignments 

or projects.  

Broos expressed the importance of seeking answers from others by noting, 

“Where do you go? Who do you go talk to? Who would know? What do those other 

disciplines do? Who would have the information that I need?” To get answers to urgent 

questions, solve problems, or complete projects, real-world team members support each 

other. Jona explained this interdependence of team members by stating, “Getting out to 

real-world practice and working in an environment where you have to lean on others to 

get the job accomplished, lean on, and support others.” 

Two participants mentioned that young engineers   run into problems when 

working with highly experienced, non-degreed workers who see them as young, 

inexperienced, and disillusioned by their engineering degrees. On the other hand, young 

engineers see operators or maintenance personnel as people doing menial jobs. These 

attitudes can cause problems for young engineers, particularly those who might need to 

learn the benefit of humility.  

Gani explained this point:  

  I think coming out of school a lot of people, certainly myself, came out with a 

very heightened sense of our own skills and abilities, and I had to learn to be 
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humble and modest and [realize that] I don’t know everything. In fact, I don’t 

know anything. This person who doesn’t have a college degree, but has been 

doing this for 30 years, probably understands the system far better than I ever 

could.  

  Two participants explained that proper coaching and mentoring helps young 

graduates to learn proper attitudes and work ethics, as well as align with team spirit. As 

Gani explained, “I put a lot of effort in spending a lot of hours with mentors.” Mentored 

engineers are coached during assignments so that they can learn from workers in the 

field, learn their language, chat with them during lunch breaks, and respect their views 

and their experiences.  

Vija explained how a young engineer ends up supervising more experienced 

multidiscipline teams:  

  I have a chemical engineering degree, I go in, do my training, and then I get 

appointed as shift field engineer, but then there are plant operators who don’t have 

engineering degrees, but they have been working in process unit for 15 to 20 

years. Now, you go in with couple of months of training, you supervise these 

people with 20 years of experience. 

  Four participants commented that the professional experience that they gained by 

interacting with experienced personnel was invaluable. They indicated that universities 

can help graduating students by giving them assignments relevant to multidisciplinary 

projects that mimic industrial environments and involve them in real-work team projects.  
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In summary, multidisciplinary teamwork is more complicated than a senior class 

team working on one project. It involves working with teams that are diverse in terms of 

age, experience, academic major, status, level of education, and type of work, as well as 

rank ranging from labor to managerial levels. Universities can provide some experience 

by assigning engineers to work with local contractors or in petrochemical plants or 

factories for a summer, a semester, or some other reasonable time during the school year.  

  Professional Skill: Communication. Practicing engineers are required to have 

strong communication and persuasion skills to complement their   technical abilities 

(Trevelyan, 2016). Most of the participants shared the notion that engineers need to 

communicate effectively not only with team members but with managers, contractors, 

operators, construction workers, and the public.  

Abd, an electrical engineer, explained the importance of written communication 

by noting, “You have to be able to communicate effectively. You have to be able to 

actually write in a manner such that a fifth grader can read what you wrote.” Abd 

elaborated on the reason for using nontechnical language by sharing that “when you are 

trying to explain a complex idea to upper management, you can’t talk about transistors 

and process-related stuff. You should be able to transfer that into a common language.” 

 Verbal communication was another skill expressed by the participating 

engineers. Broos, a mechanical engineer, stressed the need to develop verbal skills and 

the ability to explain to management or other engineers verbally in a clear and concise 

manner, given busy managers’ limited time. He noted, “Okay, I don’t have a whole report 
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written, but I just need to talk to you and get this across quickly and succinctly or even, I 

have a question.”  

 Kai gave a different viewpoint, addressing e-mail communication and the need to 

know how to write proper e-mails. He said, “What I was wondering is how do you write 

the best, appropriate professional e-mail? I would type up my e-mails and send them to 

my manager, and he would read them and comment.”  

One interviewee stated that although technical writing is an important skill for 

engineers to have, some companies hire English majors to do the technical writing, a 

decision that frees engineers for their engineering work. As Gani explained, “We don’t 

worry about technical writings, to be honest with you. We have teams that are focused on 

technical writing, and they are from English major, and some other discipline, that 

actually do the technical writings for us.”  

I discovered an interesting outlier during the interviews. Engineers who had 

obtained an MBA degree reported engaging in high level of communication covering 

team discussions, presentations, and business communication. Suchi explained, “I think 

my business classes did a better job of that. There was one class which is devoted entirely 

to just presenting like we had eight or something presentations within a semester where 

they would record us.” She also stated that her engineering classes did not cover 

communication, noting that “but in our engineering classes, there was nothing, literally 

nothing, that taught you how to make a presentation, how to effectively communicate 

your idea, how to talk in front people.” At work, she stressed the need to communicate in 

chronological order, like storytelling, instead of giving bits and pieces of information 
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when talking to upper management, telling them what they needed to know succinctly. 

She explained that she learned communication from her coworkers. 

  Professional Skill: Engineering economics and business. Having a solid 

understanding of economics and business finance is a valuable skill for working 

engineers. Several participants stated that engineers are expected to prepare budgetary 

cost estimates, develop business cases for small and/or large projects, and prepare 

decision support packages. Nisha, a mechanical engineer, explained, “When I was asked 

to build cost models for my design, that was a bit of an alien concept. Or when the 

company was talking about why a project would be viable or not viable, I couldn’t 

understand that.” 

Although a course in engineering economics is taught in university, it is normally 

in the form of theoretical equations, not the bottom-line calculations done in industry. 

Abd said, “We’ve taken engineering economy, what did we learn? Equations, but we did 

not take that to correlate into the real-world experience.”  

Two participants explained that universities teach engineering economics, but the 

practice problems are oversimplified, and cost figures are either given or read from 

reference tables and charts. In the workplace environment, engineers compile cost figures 

by contacting suppliers, manufacturers, contractors, and licensors. That information is 

then fed into spreadsheets or cost estimate software to complete the economic analysis. In 

the university setting, engineering economics is discussed briefly, but it is not given the 

importance that it has in the real world. Broos explained, “Engineering economic analysis 
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was something that I think we touched on very, very, very briefly, but becomes very 

important in the real world.”  

  Professional Skill: Codes and regulations. Two participants expressed the need 

for a university course on codes and regulations. Most engineers are required to comply 

with local, state, and federal regulations in the design, construction, and operation of 

industrial facilities.  

Jona, a civil engineer, explained: 

  There are industry standards, but then there’s also codified rules that need to be 

followed, so from a civil engineer’s standpoint by, say, TCQ or the Texas 

Administrative Code for designing public infrastructure, and then there’s a total 

gap in understanding what the code or regulation for the development is in 

prepping a young civil engineer for understanding how they are to design and 

meet codes and specifications. 

  The regulations are written in legal language that engineers are not versed in. 

Rebe pointed out that “in the environmental profession and in civil engineering in 

general, a lot of what you do is reading codes and regulations and rules, it is very legal 

based profession.” She also noted that “interpreting the legal language is not always 

something intuitive” and suggested that a course at the university would benefit many 

practicing engineers.  

In the absence of structured training at the university level in codes and 

regulations, young engineers become frustrated not knowing where to start. Jona 

explained, “Now, I have to meet design standards from the City of Austin for the Lower 
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Colorado River Authority from Texas Commission on Environmental Quality,” and he 

asks how he would know where to find the rules without prior knowledge of the Texas 

Department of Transportation. He mentioned, “It took me years to really understand and 

become proficient in the code of regulations for just the state of Texas.” Universities need 

to provide instruction on code and regulations relevant to graduating engineers. 

The interview responses revealed gaps in the overall preparedness of engineers 

regarding the practical application of knowledge, problem solving, engineering design 

skills, use of technology, interdisciplinary teamwork, communication, and working 

knowledge of such essential subjects as engineering economics and business. Exposure to 

the legal language used in engineering codes, standards, and regulations would benefit all 

engineers.  

Theme 3: Training and Learning for Engineering Competency 

Theme 3 captured the training and learning methods that the engineers used to 

gain practical skills in their early years of practice. The participants identified and 

discussed the following postgraduate training and learning methods   during the 

interviews. Some engineers received structured training from their employers, whereas 

others learned on the job. All the engineers engaged in self-training that involved learning 

from peers, coworkers, and mentors, as well as taking professional courses.  

  Employer training. Some employers have extensive training programs, and 

others offer no training. Some employers send their engineers to public courses offered 

by professional training companies. Other companies offer training geared to the type of 

work that the engineers are engaged in; they also might offer safety and general training 
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programs. Some employers leave training to the employees themselves. As Rebe stated, 

“We never had a formal training at all; basically, the only way to really succeed in your 

career at that point is to be self-motivated and to fail a lot.”  

For the engineers in the study, 25% of them (n = 4) mentioned that they had 

received company training. Some companies had very structured and intense training, as 

was the case with Nisha:  

  The training went for 1 full year with about 4 weeks of break total, so 1 week for 

summer, 1 for fall break, and then 2 weeks for Christmas and New Year’s. We 

did everything from your basic understanding of the turbines that we were 

manufacturing on our facility or across aviation so you would learn your basic 

thermodynamics, performance calculation, and that type of stuff, and then you 

would move on to different segments of what the engineering teams did, 

including control work, design work, performance evaluation testing. Part of the 

instruction also included assembly and disassembly of the equipment that we 

manufactured because none of us had ever actually seen any machinery at all. 

Abd explained that there was a less structured training for fresh graduates joining 

the company. He stated, “Then also our company has opportunities like fresh out of 

school kids come in. We pair them with a practicing engineer, give them a little bit of 

flavor, send them to professional training classes.”  

  On-the-job training. Three of the participating engineers stated that they went 

through an on-the-job training program with their employers. This type of training 

program involves work rotations and classroom training designed for working engineers. 
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On-the-job learning is performed by the engineers as they learn how to do their jobs, that 

is, while they are developing skills to do the assigned work. On-the-job training is usually 

designed to provide broad knowledge and skills about disciplines connected to specific 

jobs.  

  Vija gave an example of typical on-the-job training:  

  During the initial 3-month period, I got to spend 15 to 20 days each with [the] 

mechanical department, learning about the various pieces of equipment, 

exchangers, compressors, trays, columns, all those things. Then I moved on to 

[the] electrical department, trying to understand what kind of buses and step-down 

transformers, step up, all those things. Then I went to [the] instrumentation 

department, learned about various types of control valves, fail open, fail close, 

safety valves, PSVs emergency shutdown systems, SIL, SIS, all those things.  

  In this case, Vija was given an induction course and was then rotated to various 

departments to gain practical knowledge in equipment, electrical, instrumentation, 

mechanical, safety and control systems related to his work. The 2- to 3-week assignment 

in each area was sufficient time to help him to understand the connectivity of the work. 

  Learning from peers and coworkers. Several interviewees stated that learning 

from peers and coworkers is the most common learning method for new engineers. They 

said that when new engineers are hired, supervisors put them in touch with experienced 

personnel who are ready to help, often without reservation. Broos explained that seasoned 

engineers feel obligated to mentor young engineers and teach them what they know about 

the job. Two factors enhance the learning process: New engineers’ eagerness to ask 
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questions and listen, and the willingness of senior engineers to share their technical 

knowledge and experience.  

The participants stated that experienced workers are ready to help young 

engineers, but the successful transfer of knowledge depends on the ability of new 

engineers to approach and learn from experienced engineers. Shali explained the open 

invitation given to her by other workers by commenting, “Pretty much everyone at Aspen 

helps each other, but you go to them, and I remember when I first started this job, 

everyone after they greeted me. They’re like, ‘I'm here to help[with] anything you want.”  

  Learning from mentors and coaches. Some companies assign mentors and peer 

coaches to direct new engineers through the developmental process. Mentors are senior 

engineers who can pass their knowledge and experience on to mentees. Mentors foster 

supportive relationships that promote learning, social interactions, and development 

within the work environment (Fletcher & Mullen, 2012). Most engineers work with 

supervisors and managers, and supervisors might assign mentors to new engineers. They 

ensure that the new engineers have the resources to do their work; they also assign, 

direct, and monitor their progress on the job; and they ensure that the new engineers 

complete their assignments. Supervisors assess the skills of new engineers and assign 

timely training to develop competencies progressively.  

Several interviewees expressed their experience with mentoring. Gani, an 

electrical engineer, explained his experience as mentor and mentee:  
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Yes, I put a lot of effort in spending a lot of hours with mentors. I put a lot of 

effort and time even before I graduated I was doing a lot of internships with IBM 

that helped me quite well.  

As an experienced engineer who benefited from the mentoring program, Gani was 

a proud mentor, stating that “and now, I am one of the mentors who mentors newly 

graduated engineers who come into the workforce.” 

 Mentors may assess the education gaps of new engineers and direct them to 

appropriate training activities that reinforces their skills. However, the greatest value of 

mentoring is lifelong learning and self-reflection upon learning by the engaged mentees 

(Fletcher & Mullen, 2012). 

  Self-learning. Perhaps self-learning is the most important quality of  new 

engineers, and it is one of ABET’s (2014) required professional skills, described as “the 

recognition of the need for, and an ability to engage in lifelong learning” (p. 2). Several 

of the participants explained their abilities to self-learn and commented that it was the 

best education that they received from college. Through assignments, homework, and 

self-study, universities prepared the students for self-learning.  

Suchi remarked, “I think what they do pretty well is help us teach ourselves, 

which sounds really weird to say. But like I think part of university, in college and 

education in general, is just being able to teach yourself things.” 

  Participants expressed their commitment to self-learning as a lifelong goal and 

recognized that technological and societal changes dictate new paradigms and new ways 

of applying technical knowledge. Kai expressed that her desire for self-learning was to 
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catch up and communicate with more skilled engineers. She said, “I need to back fill my 

technical, my engineering experience to be able to communicate with others, that's 

something that I need to develop.”  

Jona expressed the need for self-learning to teach himself the skills not normally 

taught in university, but used frequently in the industry. He commented, “There are 

software programs like HEC-HMS, HEC-RAS, these were flood plain modeling 

programs that I had to learn by just getting manuals and learning.” 

Writing proper e-mails, making PowerPoint presentations, and scheduling 

projects are skills required in business communication, but are not necessarily taught in 

college. Two interviewees spoke about e-mail etiquette and presentation skills. Kai 

stated, “The e-mail writing etiquette, presenting PowerPoint presentations, those things 

are also self-taught, at least from my point of view.”  

Data Evaluation (Evidence of Quality) 

Trustworthiness of the data should be established in qualitative studies. Various 

ways of establishing the trustworthiness of the findings have been cited in the literature 

(e.g., Borrego et al., 2009; Creswell, 2009; Stake, 2005). These methods include the use 

of sound theoretical perspectives, triangulation of the data, provision of thick descriptions 

of the data, member checking, peer debriefing, and a statement of researcher subjectivity.  

Creswell (2009) suggested that qualitative researchers employ reliability and 

validity procedures to check for the consistency (i.e., reliability) and accuracy (i.e., 

validity) of their findings. Procedures for checking consistency in this study included 

reading and checking of the transcriptions for mistakes to ensure that I had typed the 
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participants’ statements correctly. I used the constant comparison method to check the 

codes against the data to ensure that the codes represented the data accurately.  

I employed validity strategies to ensure that the findings were accurate from the 

perspectives of myself and the participants. I used member checking by sending the 

transcriptions to the participants to check the accuracy of their statements. I used peer 

debriefing by asking an experienced researcher to review and question my analysis and 

interpretations of the data. I prepared thick, detailed descriptions of the findings to ensure 

the internal validity of the data. Finally, I addressed my role as the researcher whose bias 

might have influenced the interpretation of the findings. 

 

Summary of outcomes from the study 

 

The study addressed the problem that engineering education falls short of 

preparing graduating engineers for successful entry into the workforce. Many researchers 

have documented the problem in engineering reports and studies cited in the literature 

section of this study. The study sought to answer the research question: What are the 

experiences of graduated engineers currently working in the industry regarding 

overcoming practical skill deficiencies and bridging the gap between education and 

practice?  It is evident from the results that the problem was sufficiently addressed and 

the research question was answered. Three major themes emerged from the 

data:Participant’s perspective on engineering education, participant’s perceptions and 

experiences on deficiencies in engineering skills, and the training and learning methods 

employed by participants to gain competency in the workplace. 
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In theme 1, perspectives on engineering education, the study confirmed that 

engineering colleges cover math, science, and engineering fundamentals generously. 

Additionally, universities provide broad knowledge for wider career choices, and prepare 

students for self-learning. However, engineering education is focused on research in lieu 

of practical application of knowledge, and most engineering faculty has limited industrial 

experience.   

In theme 2, deficiencies in engineering skills, the study found shortcomings on 

both core and professional skills. In the core skills, participants reported deficiencies in 

the practical application of knowledge, laboratory experimentation, problem solving, 

engineering design, and the use of engineering tools. On the professional skills, the study 

identified teamwork, communication, engineering economics & business, and codes & 

regulations as areas that are not adequately covered in engineering education. 

In theme 3, the study identified various methods that participants employed to 

gain practical skills and develop their competencies. Study participants reported 

employer training, on-the-job training, learning from peers and co-workers, and self-

learning as the   means of acquiring the skills needed to do their jobs.  

As an outcome of the findings of the study, the next section provides project 

details that sufficiently address the deficiencies identified in themes 1 & 2 of the study. 

The program selected for the project is professional development  using project-based 

learning (PBL). The project selected for the PBL is based on student teams engaged in 

the design of realworld project with the help of instructors that are experienced in 
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industrial work. The learning outcomes for the professional development are designed to 

cover the core technical skills as well as the professional skills.  

Conclusions 

For this case study, data collection was based on personal interviews with 15 

chemical, civil, mechanical, and electrical engineers. I analyzed the data to explore the 

gap between engineering education and engineering practice and how the participants 

managed to bridge the gap with training and self-learning. Thick, detailed descriptions of 

the interview data were prepared, interpreted, and reported. Three major themes emerged 

from the study, namely, participants’ perspectives of the overall engineering education, 

deficiencies in technical and professional skills, and training and learning programs that 

working engineers can pursue to develop competency for their jobs. 

Results confirmed the gap between engineering education and industrial practice 

in the skills critical to engineers entering the workforce. Included in this section were   

descriptions of the training and self-learning methods used by the participating engineers 

to advance their technical and professional competencies. Findings suggest that 

engineering education at the university level might fill some of the gaps with suitable 

internships, exposure to industrial tools and equipment, and adding practical coursework 

to current curricula.  

  This study includes a PD project that will ensure the smooth transition from 

academia to engineering practice. The project selected to fill the gap is practical PD given 

at the end of engineering students’ last academic year or post-graduation. The objective 

of the PD is to introduce new engineers to engineering practice and give them an 
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opportunity to apply their knowledge, gain hands-on experience, and participate in a real-

world engineering project.  
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Section 3: The Project 

Introduction 

According to the study findings, there is a need to fill the gap between 

engineering education and industry practice for graduate engineers entering the job 

market. The project that I selected to fill the gap entails offering practical PD at the end 

of the engineering students’ last academic year or postgraduation. Included in this section 

is information about the description, rationale, literature review, and details of project 

implementation and evaluation. In Section 3, I also present a discussion of the 

implications for social change.  

Description and Goals 

The project comprises 5 days of PD designed for graduating or postgraduate 

engineers. The sessions cover areas common to most engineering disciplines: chemical, 

civil, mechanical, and electrical engineering disciplines. This project-based PD combines 

hands-on work with lectures on topics. In project-based learning, the instructor’s task 

changes from transferring knowledge to facilitating learning (Kolmos, 1996). Each 5-day 

PD session is equivalent to a 3-hour/week semester course at a public university covering 

40 hours of practical training.  

The PD will be implemented as a combination of lectures and project work taught 

by practicing engineers instead of university faculty. The PD will include visits to live 

production facilities that will be arranged early in the 5-day session. In addition to 

knowledge and skills development, the PD is intended to change the attitudes and work 

paradigms of graduating/postgraduate engineers from theoretical to practical application 
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of knowledge. As an introduction to practice for new engineers entering the workforce, 

the PD will cover the areas of competency deficiencies identified in the study, including 

engineering design problem solving, communication, teamwork, and economic 

evaluations, as well as elements of construction and unit operation. After completing the 

PD, the participants will enter the workforce equipped with knowledge and practice of 

the main tasks that they will encounter on the job. Participants also will be able to 

communicate more readily with workers from other disciplines.  

The goal of the PD is to introduce graduating students to engineering practice and 

to give them an opportunity to apply their knowledge and gain hands-on experience in 

real-world engineering projects. The PD has three objectives: (a) introduce subjects that 

are important to the industry but hardly touched upon in college; (b) facilitate practical 

application of theoretical knowledge; and (c) develop professional skills such as 

teamwork, communication, and interdisciplinary skills.  

Rationale 

I selected the project based on the analysis of the research data. I found that most 

of the problems that engineers encounter early in their careers can be addressed in PD 

conducted before they graduate or immediately postgraduation. In the data analysis, I 

generated a list of deficiencies in engineering knowledge and skills that can be remedied 

over time. For example, several participants expressed their lack of awareness of industry 

codes and standards, simulation tools, shortcut methods, and systems design procedures. 

They had faint ideas about detail design, engineering economics, and project 

development. Other engineers stated that they were unaware of what jobs engineers do or 
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which industries employ them. These topics can be covered in sufficient detail during the 

PD, equipping the participants with an understanding of engineering tools, shortcuts, 

design methods, and industry jargon. The PD instructors will be engineers with many 

years of industrial experience who can guide the graduates in project-based activities 

similar to those encountered in the industry. The PD will cover each area in project 

application. For example, the participants will work in teams to design process 

equipment, specify materials, and conduct economic evaluations. They will use 

engineering drawings, design tools, simulations, and cost-estimating software, and they 

will engage in group communication and discussion. 

Among the project types (evaluation study, curriculum plan, white paper, PD, and 

position paper) in the project study outline, PD offers the best solution for the problems 

identified in the findings. I chose project-based learning for the PD to create a team 

environment for graduate engineers to engage in reflective practice. The project will 

consist of a conceptual design of an industrial facility requiring completion of 

engineering tasks such as detailed engineering, selection of construction materials, 

development of engineering drawings, preparation of equipment lists, development of 

cost estimates, and assessments of the constructability of a portion of the facility in a 

team environment. The project teams will be multidisciplinary, comprising chemical, 

civil, electrical, and mechanical engineers.  

The PD will be delivered by practitioner instructors who will be invited to explain 

the work of engineers and address the participants’ questions. Moreover, the same PD 
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will be available to graduates of the local university, and with a proven success rate, the 

PD could be offered to other engineers graduating from national universities.  

Review of the Literature  

The genre selected to address the problem was PD. I based this selection on the 

results of the study on the deficiencies identified in the literature. I found that graduate 

engineers lack the practical skills to apply their knowledge, leading to a misalignment 

between engineering education and industry practice. PD taught by seasoned engineers 

and practitioners could fill some of the knowledge and skills gaps that I identified in the 

study. This project-based PD not only is applicable to the problem but reinforces the 

skills gained in the capstone project that engineering students complete in the last 

semester before graduation. The capstone programs of the top universities reportedly 

employ project-based learning and active industry involvement (Ward, 2013).   

A recent search of relevant education sites for PD returned a plethora of literature, 

but most of it addressed teacher education (Blair, 2016; Garet, Porter, Desimone, Birman, 

& Yoon, 2001; Penuel, Fishman, Yamaguchi, & Gallagher, 2007; Yoo, 2016). PD has 

been in use for many years as a necessary element of educational change. Garet et al. 

(2001) identified three core features of PD for teachers that contributed to the outcomes: 

(a) content that enhanced knowledge and skills, (b) content that included active learning, 

and (c) coherence regarding how experiences aligned with the goals and encouraged 

communication among the participants. Further, Attenbury (2017) offered suggestions on 

what to include in the PD: choose PD to address issues identified by the participants; 

keep a balance between the participant’s desire and other matters that affect the program 
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such as cost, and method of delivery; and envision long-term interactions such as forming 

virtual communities for sharing knowledge in future (Attebury, 2017). These features of 

PD will have similar effects for graduating engineers entering the workforce.  

In the engineering field, PD has been used in the form of continuing education for 

working engineers. Continuing education is required for engineers to maintain 

technological competence, learn new skills, and stay current in their respective 

disciplines (Kerr, 2010). Various institutions, ranging from professional organizations, 

private companies, as well as some universities, offer continuing education courses. 

Continuing education catalogs are available on the sites of such professional associations 

as the American Institute of Chemical Engineers, American Society of Civil Engineers, 

ASME, ASEE, and others.  

Some organizations offer PD in an array of disciplines. PetroSkills (2016) offered 

a list of more than 100 types of PD in 16 areas of engineering. These public PD sessions 

are taught throughout the year in cities in the United States, Canada, and overseas 

countries. Although the PD sessions are accessible, high tuition and travel costs make 

them affordable to the few individuals whom employers select for training. The project-

based PD will be informed by adult learning theories, engineering education research, as 

well as teaching and learning methods.  

Adult Learning Theories 

As adults, graduating engineers bring to the training many years of learning and 

life experiences (Brookfield, 1986; Knowles, 1984; Merriam et al., 2012; Trotter, 2006). 

The subject of adult learning has been addressed in the literature. Although many adult 
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education models have been developed, in this section, I address the four main theories 

relevant to my project that have played roles in adult education: Knowles’s (1980) 

andragogy, self-directed learning (SDL), experiential learning, and transformational 

learning. Knowles provided the basic assumptions about adult learners in the andragogy 

theory, in which adult learners are self-directing, bring a reservoir of experience, are 

ready to learn, are problem-centered and highly motivated, and inquire why they need to 

learn. Although Knowles’s andragogy was criticized for ignoring the context for learning, 

it formed the conceptual framework for the development of adult education and remains a 

common adult learning model, along with self-directed, experiential, and 

transformational theories (Merriam et al., 2007). Based on these assumptions, 

engineering graduates are adult learners who can engage in this project-based PD.  

Adult learners are self-directed, according to Knowles’s (1984) assumptions. 

SDL, using Knowles’s description, is “a process in which individuals take the initiative, 

without the help of others, in diagnosing their learning needs, formulating their learning 

goals, identifying human and material resources for learning, choosing and implementing 

appropriate learning strategies, and evaluating learning outcomes” (p. 301). SDL plays a 

role in the personal development of adult learners. Adults engage in self-learning to seek 

knowledge or develop skills based on their own time options and preferences. Moreover, 

they manage all aspects of the process, including setting goals, engaging in the learning 

process, and evaluating the learning outcomes. However, SDL depends on motivation 

and persistence as well as context and extant support systems (Garrison, 1997). Because 

of its importance in adult education, the subject of SDL has been researched. Garrison 
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(1997) expanded the earlier conceptual foundations of SDL and proposed a theoretical 

model that combines self-directed approaches into three dimensions: self-management, 

self-monitoring, and motivational issues. Garrison stressed the need for a comprehensive 

SDL model extending from the multidimensional model.  

SDL applies to lifelong learning, job-related learning, and online learning. In 

professional practice, SDL is important for practitioners who need to develop their skills 

to stay current in their respective fields. For example, licensed engineers are mandated to 

continue learning to maintain their practices. Although engineering schools must develop 

the foundation and motivation of self-learning during college, as stipulated in ABET 

guidelines, the engineering profession expects practitioners to be lifelong learners 

(Merriam et al., 2007). Engineering graduates depend on SDL to develop their 

professional skills and competency. 

Experiential Learning and Project-Based Instruction 

The PD in this study will be informed by experiential learning, in addition to the 

other learning methods mentioned earlier. Experiential learning pedagogy, with its 

characteristics of learner-centered, active, and engaging instruction, has been 

recommended for PD (Blair, 2016). Experiential learning is based on the constructivist 

framework and its assumption that knowledge is constructed and developed through 

reflection on experience (Merriam et al., 2012). In the learning cycle, Kolb (1984) 

proposed that learning is the process of creating knowledge through the transformation of 

experience and indicated that the experiential model links work, education, and personal 

development. Experiential learning connects job competencies (i.e., real-world work) and 
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educational objectives (Kolb, 1984). Implementation of experiential learning is 

exemplified by project-based learning, which has been used to enhance active learning 

and prepare students for practice. The question of whether active learning methods are 

superior to the traditional lecture format has been answered in the literature (Freeman et 

al., 2014; Streveler & Menekse, 2017). The biggest learning gains are achieved when two 

or more learners work together collaboratively (Chi & Menekse, 2015).   

Project-based learning encompasses individual learning and collaborative learning 

(Tilchin & Kittany, 2016) and has been used in all fields of education. Project-based 

learning is appropriate for engineering education as a method of transferring skills to 

students in senior engineering classes (Ward, 2013). For example, the capstone project 

offered to the senior class in engineering colleges is meant to emulate real-world projects 

that are completed through the efforts of multidisciplinary teams focusing on real projects 

to prepare students for engineering practice (Dym et al., 2005). The project-based PD 

used in the current study might be construed as a continuation of the capstone project.  

Project-based service learning programs that some students participate in during 

the college years have been reported to serve as a bridge between practice and education 

(Huff, Zoltowski, & Oakes, 2016). Huff et al. (2016) reported that the alumni of the 

Engineering Projects in Community Service (EPICS) gained workplace experiences and 

developed professional skills during their participation of the program. In a study on 

project-based service learning, Litchfield, Javernick-Will, and Mau (2016) reported gains 

in professional skills for engineers involved in service learning.  
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Project-based learning is suitable when students are working in teams to create 

products or services within limited amounts of time. In the project-based learning 

process, instructors might select problems and become facilitators to guide the teams as 

needed. Team members on the projects collect information through self-directed efforts 

and work toward solutions (Bagheri, Ali, Abdullah, & Daud, 2013; Kean & Kwe, 2014). 

Teaching is active and learner-centered, and learning takes place in the group. 

Project-based learning is a flexible alternative to the traditional lecture format and 

has been credited as facilitating the transfer of knowledge gained in one context to new 

situations (Dym et al., 2005). Efstratia (2014) reported that the success of project-based 

learning depends on the facilitator’s ability to engage the team, ask meaningful questions, 

structure the tasks, and assess learning outcomes. Moreover, project-based learning 

requires effective communication and collaboration efforts among the project team. 

Several universities have adopted project-based learning as their base strategy to 

ensure the inclusion of practice (Edström & Kolmos, 2014). The University of Aalborg in 

Denmark and Worcester Polytechnic and Olin College in the United States are examples 

of colleges that strive for inclusion of practice in the curriculum. Aalborg University in 

Denmark was the first institution of higher education to offer fully integrated project-

based learning (Edström & Kolmos, 2014). The Aalborg premise is that project-

organized education is multidisciplinary by nature, addressing the design-oriented 

education that deals with the “know-how” and the problem-oriented education that deals 

with the “know-why” of a subject.  
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Other universities have developed full programs based on project-based learning. 

Crawley et al. (2011) developed a program based on CDIO. In this program, students use 

equipment and systems to cover the full cycle of work encountered in engineering 

practice: where engineers conceive, design, implement, and operate facilities to develop 

products. CDIO uses 12 standards of effective practice using project-based learning, and 

it has been implemented at MIT for its aerospace programs and has been adopted by 

other national and international engineering colleges (Crawley et al., 2011). The program 

is conducted in collaboration with industry, uses integrated project teams, employs 

hands-on projects, and assesses the outcomes.  

Experiential learning pedagogy is best implemented through project-based 

learning. The PD training developed for this project will use best learning and teaching 

practices recommended in the literature. The PD will include a visit to an industrial 

facility where learners can spend a day seeing, hearing, feeling, and touching equipment 

and carrying on discussions with engineers and operators who work in the field. 

Transformational Learning 

Transformative learning changes the ways that individuals view themselves and 

their world. Mezirow (2003) stated, “Transformative learning is learning that transforms 

problematic frames of reference, sets of fixed assumptions and expectations (habits of 

mind, meaning perspectives, mindsets), to make them more inclusive, discriminating, 

open, reflective, and emotionally able to change” (p. 58). When individuals reflect on 

their assumptions about the world, they might experience shifts in their frames of 

reference. Mezirow explained that transformative learning requires the critical reflection 
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of assumptions. With prompting, adult learners self-reflect and exercise thoughtful 

judgments; the goal of adult education is to help them to develop “the skills, insights, and 

disposition essential for their practice” (Mezirow, 2003, p. 62) 

For engineering students entering the workforce, the change from gaining 

theoretical knowledge to applying this knowledge on the job will require a transformation 

of their familiar learning process. I designed the 5-day PD to promote active engagement 

in the learning process by focusing on the application of knowledge. Graduate engineers 

must question, discuss, and understand how to apply engineering principles in the design, 

construction, and operation of facilities. Participants need to engage in reflective 

discourse and have accurate information about the subject of discussion (Mezirow, 2003). 

Engineers need accurate information and data to ensure the proper design and operation 

of equipment and facilities. The PD instructors will promote these concepts and ensure 

that the participants gain an understanding of applied engineering practices.  

Engineering Education Research 

A wide range of studies and reports dating back to the 1980s informed this 

project. Many researchers recommended the promotion of practical experience in 

engineering pedagogy to narrow the gap between education and practice (ASEE, 2012; 

Carberry, Lee, and Swan, 2013; Duderstadt, 2010; Litzinger et al., 2011; NAE, 2004; 

Sheppard et al., 2009). Although there has been consensus that engineering education 

should shift the focus away from theory and toward professional practice, the process to 

find a solution and agree on its implementation has not been easy (Sheppard et al., 2009). 

Researchers on the subject have addressed topics such as adopting active teaching and 
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learning methods, transforming the curriculum toward practice, adding professional 

subjects, and improving assessment methods.  

Research efforts toward the addition of engineering practice related to my PD 

project can be categorized as (a) research on education reform and the inclusion of 

engineering practice, (b) research on teaching and learning methods to bridge the gap, 

and (c) work on project-based learning to prepare students to undertake professional 

work. Research on engineering reform established the justification for this study. 

Moreover, studies on teaching and learning methods, along with the work on project-

based learning, formed the basis of the PD.  

Many researchers have addressed the gap between engineering education and 

practice and have recommended improvements in curriculum content, teaching and 

learning methods, and the inclusion of engineering practice (ASEE, 2012; Duderstadt, 

2010; Felder et al., 2000; NAE, 2005; Sheppard et al., 2009). Sheppard et al.  suggested 

improvements to the current engineering model and offered recommendations to improve 

engineering education pedagogies, including strengthening the principles and concepts 

and learning how to use them, building better problem-solving skills, engaging in 

professional practice in the classroom, and teaching inductively. Sheppard et al. affirmed 

that the undergraduate curriculum is overcrowded, making it difficult to add any new 

courses. The ASEE (2012) recommended curricular changes that reflect the practical, 

multidisciplinary, and collaborative nature of engineering practice. Lattuca, Knight, Ro, 

& Novoselich (2017) recommended promoting interdisciplinary skills for engineering 
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students and pointed to make use of the curriculum to promote interdisciplinary 

competence. 

In 2005, the NAE presented a comprehensive report on the status of 

undergraduate engineering education in the United States and recommended enriching 

traditional curriculum content with teachings that would support innovation, 

communication, professional practice, and globalization. The NAE suggested an 

undergraduate degree is not adequate to prepare students for engineering practice and 

recommended adopting a master’s degree as the professional degree. Duderstadt (2010) 

urged adopting a practice-based master’s program staffed with faculty members who 

have extensive practical experience, arguing that doing so would eliminate the problem 

of overburdening undergraduate programs. This strategy, however, will require 

educational policies that are not on the horizon. A change of educational public policy 

calling for the addition of a professional degree must be justified in terms of added value 

and cost to students and families (Duderstadt, 2009).  

Other researchers described similar scenarios, leading to initiatives to overhaul 

engineering education. The ASEE (2009, 2012) identified curriculum content, 

instruction, and assessment as the main elements of change. The ASEE has suggested 

indicated that the best learning concepts and teaching practices are currently available but 

are dispersed throughout the literature and should be replaced with a shared knowledge 

base driven by research and scientifically proven practice. In response to calls for change 

from industry professional societies and educators, ABET established a new criterion that 
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changed the basis for accreditation from teaching inputs to learning outcomes (as cited in 

Passow, 2012).  

Engineering scholars have agreed on the benefit of practical learning, but keeping 

a balance between content and hands-on projects has been difficult. Most educators have 

suggested moving reciprocally between practice and content and emphasizing practice in 

the curriculum as early as the possible (Bass, 2012). Offering PD in the last semester of 

college or post-graduation might solve some of these conflicting issues and ensure a 

smooth transition to successful employment. The PD that I developed for this study will 

use research-recommended teaching strategies to convey the material. 

Effective Teaching Methods  

Felder et al. (2000) addressed the teaching methods that are effective for 

engineering education. Suggested methods included formulating and publishing clear 

instructions, establishing the relevance of course material and teaching inductively, 

balancing concrete and abstract information, promoting active learning, using cooperative 

learning, giving challenging tests, and conveying concern about students’ learning. Felder 

et al. provided a description, recommendation, and justification for each of these 

methods.  

Most of the research on adding practice to engineering education has focused on 

project-based learning methods using group efforts. Finelli, Daly, and Richardson (2014) 

stressed the adoption of effective teaching practices in engineering education. They used 

student teams and real problems to develop institutional teaching plans to improve 

teaching practices. Gonczi (2013) reviewed the competency-based approach to 
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professional education and assessment. He addressed issues relevant to teaching and 

learning and recommended the integration of theoretical knowledge and practical 

application. This integration would mean the “growth of cross-disciplinary teaching, 

problem-based approaches, the use of case study approaches and simulations, project 

work and the use of portfolios to gather evidence” (Gonczi, 2013, p. 1302).  

In addition to these teaching methods, the PD may be structured to use some 

currently effective teaching practices. The current trend in engineering and science 

education is to use the flipped, or inverted, classroom method. In this strategy, traditional 

work in the classroom and home settings is inverted so that the lecture is delivered in the 

form of a video lecture that students watch before they come to the classroom. In class, 

students engage in such learner-centered activities as problem solving, concept 

understanding, and other interactive activities that require the instructor to act as a guide 

(Velegol, Zappe, & Mahoney, 2015). Researchers have indicated that the inverted 

classroom approach improves concept understanding, problem solving, and student 

interaction because of the active engagement of students in the classroom (Schrlau, 

Stevens, & Schley, 2016). Recommendations for effective flipped classroom instruction 

include a 10-minute video lecture, which is short enough to ensure sufficient time for 

class activities, and the addition of real-life applications (e.g., trips, guest speakers, 

discussions, or projects) of the course content (Velegol et al., 2015). Several researchers 

have shown that the flipped class method have achieved higher scores than the traditional 

style (Cotta, et al., 2016). However, the flipped classroom method was reported to give 

similar efficiency as the team-based learning methods (Nishigawa, et al., 2016).   
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Learning and Teaching Skills Developed Through Project-Based Learning 

Project-based learning is intended to align with professional practice (Edström & 

Kolmos, 2014), and it has been used in teaching design engineering, which has been the 

central goal of engineering education (Dym et al., 2005). In undergraduate education, 

design knowledge is transferred to students during the cornerstone and capstone design 

projects. The skills and experience gained through these projects can be used by graduate 

engineers during the PD to build more expertise in engineering design.  

Improvements in the teaching methods pertinent to engineering education also 

have been addressed in the literature. For example, engineering researchers have 

suggested that inductive methods should be adapted to teach engineering (Besterfield-

Sacre et al., 2014; Duderstadt, 2010). These inductive methods could include project-

based learning, internships, and laboratory exercises (Litzinger et al., 2011). The project-

based method of teaching and learning engineering will inform this PD training and will 

be adapted to build the knowledge and expertise of engineers entering the job market. 

 In summary, I tailored the project-based PD in this study to facilitate the rapid 

transfer of practical knowledge to new graduates to ensure their smooth entry into the job 

market and to equip them with readily usable skills. Participants in the PD will have 

practice in reading engineering drawings, designing equipment, learning and applying 

industrial codes and standards, learning about engineering economics, and developing 

their skills in communication and teamwork.   
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Project Description 

Implementing education and training programs such as PD requires planning and 

coordinating them with participants, stakeholders, and support groups (Caffarella & 

Vella, 2010). The PD will require prior arrangements and coordination with the 

sponsoring university, industrial partners, instructors, and other engineering practitioners 

that will support students during the PD. Planning   includes identifying program 

objectives, designing instructional plans, specifying evaluation methods, and choosing a 

suitable facility. Selecting and sourcing instructional materials, computer equipment, and 

software should be arranged ahead of time.  

The PD, titled “Preparing Engineering Graduates for Practice,” employs project-

based learning; participants will engage in the conceptual design of a facility. PD 

activities will involve the design of an industrial facility requiring the completion of such 

engineering tasks as sizing major equipment; selecting construction materials; developing 

engineering drawings; preparing equipment lists; developing cost estimates; and 

constructing a portion of the facility in a teamwork environment. Experienced 

practitioners will guide the participants through the PD and help them complete the 

project. The PD instructors   will provide prerecorded lectures on topics that are 

important in the workplace but are not covered sufficiently in college courses.  

The project requires the approval of the sponsoring university, engineering 

faculty, and industrial partners. I will prepare a PowerPoint presentation of the project, 

and send a copy of the project document to the engineering faculty and industry 

representatives for their review and comment. Approval and agreement from the 
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stakeholders will signal implementation of the PD. The next step is to invite training 

instructors, organize the learning resources, schedule the course venue, and arrange for 

facility visits for the participants.   

Potential Resources and Existing Supports 

The PD can be completed before graduation using existing resources and with the 

help of engineering practitioners and industry collaboration. The PD will be offered at the 

university for graduating engineers and open invitations will be e-mailed to newly 

employed engineers in the local industry. In this case, the engineering faculty will 

arrange the venue for the PD, training supplies, faculty advisors, administrative support, 

and library resources. Because the relationship between industry and university exists, the 

faculty can easily arrange industrial visits and request that experienced engineers guide 

student tours. Engineering faculty will collaborate with industry partners to arrange 

practitioners to teach portions of the PD and organize visits to their industrial facilities. 

Trainees should converse with practicing engineers, examine industrial equipment, and 

use industry tools during the PD. 

Candidates for the PD will be graduating engineers and newly hired engineers 

working in the local industry. Over the long term, after gaining positive feedback, the PD 

might be offered as an independent public course, as part of other college seminars, or as 

professional societies’ continuing education efforts. Potential sources of support are 

engineering professors at the university, engineers from the industry, and the industry 

itself. The outcomes and practical benefits of the PD will be clearly communicated for 

attendees to envision their value. Marketing efforts will be required to convince 
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university administrators to accommodate the project, but as the value of the PD becomes 

more evident, other local institutions are expected to adopt the training voluntarily. 

Potential Barriers 

The ideal venue for the course is a large university that is willing to have the PD 

delivered to senior engineering students before graduation. The first barrier facing the 

project is whether faculty and students agree on PD that will take 5 days. The timing of 

the PD becomes crucial for graduating students, given other school or work 

commitments.  

Another potential barrier is finding a willing industrial partner. One requirement 

of the PD is that participants must visit a production facility such as a refinery, a 

chemical plant, or industrial complex where they can see, feel, and touch equipment and 

talk to working engineers, operators, and designers. Although there are many of these 

facilities in the local area, facility managers likely will be concerned about the safety of 

the visitors and the potential for litigation in case of injury during visits. Plant visits   

might inconvenience personnel and management.  

A third barrier might be resistance from administrators of the local university 

because of the potential cost of the PD. Attendees from outside the university can 

participate for a fee to cover all expenses, including advertisements, instructor payments, 

and accommodations. The PD could be offered as a workshop at one or more of the 

annual conferences of professional organizations such as ASEE, American Institute of 

Chemical Engineers, or ASME.  
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Proposal for Implementation and Timetable 

The PD might start as a pilot training seminar offered free of charge to graduating 

engineers. Feedback from attendees will be used to restructure the PD to fulfill the 

research objectives and provide value to the participants. In a subsequent step, a full 

version of the PD will be conducted at a local university for its graduating engineers, with 

feedback from the first group of engineers being incorporated into the PD to improve it. 

The PD sessions over the 5 days will start at 7:00 a.m. and finish at 5:00 p.m., with coffee 

and lunch breaks being scheduled each day. The PD will have two parts, namely, a 

lecture portion delivered by the instructors and a project version for student 

implementation. The overall schedule of the PD is shown in Table 3. A detailed time line 

for the lecture portion and the project activities portion appear in Tables A1 and A2. 

Roles and Responsibilities of Students and Others  

The project stakeholders will include participating students, training instructors, 

supporting engineering practitioners, PD organizer, and university faculty. The roles and 

responsibilities of each stakeholder follow: 

• Role of students: watch daily lectures video, attend morning instructions, 

work in teams and complete scheduled project work, prepare end-of-day 

reports, give team presentations at the end of the PD, and complete evaluation 

survey.  

• Role of instructors: prepare course content; present training schedule; 

organize daily course instruction; facilitate project activity; be a resource to 

the teams; arrange outside resources as needed; ensure that engineering tools, 
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simulation software, and reference materials are available to students; and 

announce lunch and coffee breaks. 

• Role of engineering practitioners: act as subject matter experts for the group, 

direct teams to use appropriate tools, advise students during project execution, 

and support instructors to lead the teams to complete the project. 

• Role of program organizer: arrange training equipment; supplies for coffee 

and lunch; select the proper venue for the course; arrange transportation for 

stakeholders attending the PD; and send invitations to chemical, mechanical, 

civil, and electrical engineering practitioners as well as safety and 

environmental specialists.  

• Role of university faculty: arrange industry support and sponsorship of the 

PD, arrange group facility visit, and solicit engineering practitioners to 

participate in the project as support or as instructors. 
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Table 3  

Overall Project Schedule 

  Monday Tuesday Wednesday Thursday Friday 

7:00 Introduction; 

daily plans; 

resources; 

engineering 

principles 

and ethics; 

health, 

environment, 

and safety 

topics 

Engineering 

codes & 

standards, 

regulations, 

conceptual 

design 

(feasibility 

studies, front-

end engineering 

design (FEED), 

economic 

evaluations. 

Detailed 

engineering 

design, systems 

engineering, 

design criteria;  

rules of thumb 

Material selection, 

control & 

instrumentation 

systems, special 

topics for 

engineering 

disciplines 

Project 

management: 

project schedule 

& budget; 

project 

implementation: 

constructability 

study and 

construction 

activities; 

facility 

operation: 

operation, 

maintenance, 

and inspection  

  

9:00 Project activities (see Table A1) 

10:00 

11:00 

12:00 Lunch  

1:00 Project execution activities  

2:00 

3:00 

4:00 Teams: Daily reports and next-day plans Team 

presentations 

5:00 End End End End End 

 

Project Evaluation  

The overall goal of the assessment is to determine whether the PD will add 

significant value to the practical application of knowledge and provide the quick transfer 

of knowledge on topics that are important to the industry but are barely touched upon in 

education. The evaluation should show significant shift from student view to practitioner 

outlook. Feedback from the participants should confirm that the PD achieved the learning 

objectives, met content expectations, and suited the participants’ schedules, and that the 

instructors were qualified and efficient in their delivery of the material.  
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The evaluation process will determine whether the predetermined PD outcomes 

were met. Program evaluations can involve the collection of formative or summative 

data. Formative evaluations are used to improve or alter programs while they are in 

progress, whereas summative evaluations are used when the focus is on program 

outcomes (Lodico, Spaulding, & Voegtle, 2010). In this project, summative data will be 

collected to measure the outcomes and their relationship to the overall objectives of the 

PD (see Appendix C).  

A summative evaluation will identify the perceptions of the participants indicating 

whether the PD met their expectations. In this assessment, the participants will complete 

a 5-point Likert-type summative evaluation at the end of the PD based on their opinions 

about the course content, instructors, and the length and the timing of the PD. Participants 

also will be asked to suggest any additions or deletions to the 5-day PD.  

The target audience for the evaluation will comprise sponsoring university 

faculty, local employers in the industry, PD instructors, and the participating engineering 

students. The evaluation will be distributed to the key stakeholders, including the 

university faculty who support the PD, local industry partners, and the instructors who 

are teaching the PD. The PD is expected to meet the following learning outcomes: 

• Apply engineering knowledge to facility design.  

• Design industrial equipment. 

• Follow the design criteria, rules of thumb, and shortcuts used in industry.  

• Apply engineering codes and standards.  

• Use engineering tools and software. 
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• Prepare engineering drawings. 

• Understand how to select piping and construction materials. 

• Understand control systems. 

• Apply engineering economics. 

• Communicate with teams effectively. 

• Understand health, environment, and safety issues. 

• Communicate constructability issues. 

• Understand facility operation. 

• Apply data collection, analysis, and reporting techniques. 

Performance measures for the PD include completing the project promptly; using 

engineering tools to design the facility and perform calculations; and using shortcuts, 

practical skills, teamwork, and communication skills to complete the work. The last step 

in the PD is to use suggestions in the student evaluations to improve future offerings of 

the PD. Evaluation results will be discussed with the instructors and faculty to improve 

the PD. I am also planning to ask the PD participants to share their contact information 

with the intention of following up with those who provide the contact details.  

Implications for Social Change 

Local Community  

This PD project might be implemented at one of the local engineering universities 

in Texas that has an engineering program. Several universities with established 

engineering programs are within an hour’s drive of my home. I plan to implement the 

project in one of the two historically Black universities in the nearby Houston vicinity. 
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The university has had proven success in educating students from the underserved 

community and claims to be one of the schools graduating minority professionals in 

Texas (Quddus, Quazi, Williams, & Langley, 2006). The engineering college at this 

university has six undergraduate engineering programs, including chemical, civil, 

electrical, and mechanical engineering. The PD will provide graduating engineers with a   

understanding of industry practices, along with skills that they can   use in their first jobs. 

The university will have a proven practice-oriented program for the next generation of 

graduates. The PD project will help students express their new skills to prospective 

employers, subsequently elevating their chances of employment in the Houston 

metropolitan area. Employment in the engineering field will bring income to the area and 

will further boost the local economy. 

Far-Reaching Effects  

In the larger context, results of the study confirmed the need for PD that bridges 

the gap between engineering education and industry practice for the benefit of 

engineering graduates and the industry that employs them. The PD will be presented to 

other universities so that they can consider offering it to their own graduating classes. 

The PD will save money and time for local employers and graduates. It will contribute to 

safe engineering designs and minimize engineering accidents. Graduate engineers who 

participate in the PD will gain knowledge to seek the information that they need to 

perform engineering tasks safely and efficiently.  

This case study contained the views of 15 working engineers regarding the gaps 

in engineering education and identified what engineers need to know when they graduate 
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from university. The study offers a solution to the problem in the form of a PD project. 

Once implemented, tested, and evaluated, the project could be adopted nationwide. 

Conclusion 

Section 3 provided information relevant to the description of the PD, the rationale 

for implementation, the literature review, implementation procedures, and the evaluation 

protocol. The section on project implementation contained details about potential 

resources, barriers, timetable, and the roles and responsibilities of the stakeholders. The 

project fills a gap in engineering education and gives graduates a smooth transition to 

engineering practice. With the readily usable knowledge and skills gained in the PD, 

graduating engineers are likely to experience more successful interviews, quicker 

employment, and easier assimilation with working engineers than graduate engineers 

who did not take the PD.  
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Section 4: Reflections and Conclusions 

Introduction 

The early PD of engineers entering the workforce provides timely preparation for 

practice and increases their opportunities for employment and the potential to make 

immediate contributions to their new employers. In addition, project-based learning such 

as PD can be an extension of the capstone projects that they completed in their senior 

year and reinforce experience already gained. Project-based learning ensures active 

involvement in activities relevant to projects that require the use of industry design tools, 

vendor data, and calculation methods, all of which are routine in engineering jobs. 

Participants in the PD will be involved in process design, problem solving, equipment 

specifications, material selections, cost estimations, and implementation of the project. 

Participants will work in teams, communicate with each other and with members of the 

industry, and present final reports.   

Project Strengths 

A key strength of the project is that the PD addresses the study’s findings by 

implementing proven teaching and learning methods facilitated by experienced 

instructors. Because I found that integral workplace topics such as codes and standards 

were not covered in college, the project includes a component in which participants are 

required to look up the Texas Code and similar regulations. Because I also identified gaps 

in the practical application of the theoretical knowledge, PD will be implemented in a 

project-based format ensuring hands-on practice for the participants. The project includes 

a field trip to a refinery where participants can see live industrial equipment. I also found 
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that engineering design is not adequately covered in college; therefore, project 

participants will engage in the designing of a real facility during the PD. Additionally, the 

PD will cover other deficiencies I found by including teamwork, problem solving, and 

communication.    

The project covers topics largely ignored by university curricula such as health, 

environment, and safety, all of which are of importance in the workplace. Engineers are 

expected to apply safety in design and material selection, carry out hazard and operability 

analyses, and use safety systems to protect the workers’ health and workplace 

environment. The PD also will include instructions on constructability and facility 

operations, as well as data collection, analysis, and interpretation.  

The PD will use relevant research-based teaching methods such as project-based 

learning (Chua, Yang, & Leo, 2014; Velegol et al., 2015; Ward, 2013), flipped classroom 

(Schrlau et al., 2016), and active participation to prepare graduates for the workplace. 

Although professional practice will be emphasized in the PD, the PD will move 

reciprocally between hands-on activities and content, as suggested in the literature (Bass, 

2012; Trevelyan, 2016). Participants will use engineering tools and industry data to 

execute the project in a team environment. Instructors with significant industrial 

experience will conduct the PD. Engineering practitioners also will help the participants 

complete the project within the 5-day PD period. With the help of these experienced 

engineers, the PD is expected to satisfy some of the knowledge and skills gaps identified 

in the study. 
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Recommendations for Remediation of Limitations 

The first limitation of the project is that a 5-day PD might not be long enough for 

some of the participants. To cover the full content of the PD and complete the project, 

participants must work at a fast pace, which will be adequate for some but too cramped 

for others. The second limitation is that the PD will be implemented in one local 

university, even though many engineering colleges graduate engineers every year. My 

long-term objective for the PD is to expand it to other colleges based on its initial 

success. The third limitation stems from the diversity of engineering disciplines 

(Trevelyan, 2016) and the realization that the PD might not cater to the 17 major 

engineering disciplines stated in the engineering education research taxonomy (Finelli, 

Borrego, & Rasoulifar, 2016). The limitation regarding the duration of the PD could be 

minimized by establishing networking between the instructors and the participants and 

providing them with sufficient reference material.  

Ameliorative actions for the second and third limitations would depend on the 

extent of adoption of this PD. Based on a survey of awareness and adoption rates of 

engineering innovations, Borrego et al. (2010) reported high awareness of 82% and low 

adoption rates of only 47% for active learning methods. However, these adoption rates 

might be realistic for this PD only for the local university. In this case, the PD will be 

expanded to the local engineering colleges. At the same time, each engineering college 

will modify the PD based on the engineering disciplines in its own program. 

The problem also might be addressed in several other ways. For example, PD 

topics might be incorporated into the senior-year curriculum, with engineering 
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practitioners invited to teach industry-related topics. Alternatively, the university might 

arrange with a partner to allow the PD to take place at an industrial facility. The 

participants can work on real projects while interacting with experienced engineers as 

they work. Another option is to convert the PD into a semester-long seminar for the 

senior class, where subject experts from the industry are invited to teach portions of the 

PD. It is also possible to collaborate with the industry to teach the PD either as one of the 

public training courses or as an in-house training to new engineers. However, the PD is 

intended to benefit all graduates and help them find jobs or succeed in their jobs. The 

industry serves their workers only. 

On Qualitative Scholarship 

Qualitative research data on engineering practice have been scarce (Trevelyan, 

2016) because quantitative methods of data collection and analysis dominated 

engineering research in the past. However, many researchers have called for the use of 

qualitative methods to expand engineering enquiry and provide in-depth answers (e.g., 

Borrego et al., 2009; Case & Light, 2011; Koro-Ljunberg & Douglas, 2008). Although 

engineers who are accustomed to using the quantitative method believe that qualitative 

data collection, coding, and analysis are difficult, engaging in qualitative research has 

been a learning experience for me. My objective in conducting this study was to identify, 

study, and resolve the local problem with honesty and integrity. The qualitative method 

proved to be suitable to meet these objectives.  

I developed an appreciation for the qualitative case method as I interviewed the 

participants and found the process of data recording, transcribing, coding, and analyzing 
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to be a time-consuming and sometimes difficult task. Throughout the journey, I reflected 

not only on the change in my scholarly thoughts but also on the learning progression 

from the literature search to the development of the methods, data collection, and final 

PD project. Regarding my personal scholarly development, I believe that the 

transformation from my starting position to the present has been remarkable. The skills 

that I gained throughout the process have been and will continue to be invaluable to me.  

Project Development and Evaluation 

The project development has been a learning experience for me. Given that the 

criterion for selecting the project was to provide a solution to the problem, the PD project 

should be implemented with existing resources. In the process of developing the project, I 

learned to identify resources, obstacles, and possible objections during implementation. I 

gained an appreciation of the importance of reviewing the literature to confirm the 

selection of a suitable project as a solution to the research problem. I learned to prepare 

the curriculum, the schedule, and the resources. However, the long-term success of the 

PD will depend on the arrangements made for its execution and the level of involvement 

of the stakeholders. This part of the process was a learning exercise and will prepare me 

for educational practice. Despite the thoroughness of the plan, the success of the PD is 

not guaranteed, nor will all tasks run smoothly (Caffarella & Vella, 2010). The success of 

the PD should be assessed at the end of the 5 days of training. I included a summative 

evaluation survey to compare the objectives and outcomes of the initial offering of the 

PD.  
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Leadership and Change 

Leadership requires the inclusion of all stakeholders who have an interest in the 

project. No single leader can carry the burden of change alone (Hallinger, 2003). I have 

learned that leadership requires not only the support of institutions and individuals but 

also collaboration with other professionals. The PD project will require the support of 

educators, employers, and professional societies. The project calls for 5 days of PD, 

which represents change from the university’s regular class schedule. The request to 

change the university work process, as well as the provision of resources, will cause 

resistance. This is where leadership becomes important because persistence is required to 

gain support from others. 

Analysis of Self as Scholar 

 Before enrolling at Walden University to pursue my doctoral degree, my scholarly 

research experience had been limited to an experimental thesis study completed during 

my master’s degree in chemical engineering. Following graduation, I entered the 

workforce and had some opportunities to perform work-related research that did not 

require scholarly writing. Completion of this study expanded my research and writing 

abilities. 

In regard to the literature review, the search for relevant scholarly and peer-

reviewed articles was initially challenging but eventually rewarding. Even more 

demanding was the exercise of selecting, summarizing, and citing peer-reviewed articles. 

In the process, I gained respect for the work of others and learned how to give credit 

when borrowing the ideas or words of other researchers. I gained writing skills to avoid 
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plagiarism. I also developed an appreciation for the qualitative case study methodology, 

which taught me how to conduct individual interviews and collect, analyze, and interpret 

interview data for the first time in my professional life. Writing the study was the most 

time-consuming and sometimes most frustrating experience in this journey, particularly 

because English is neither my native language nor my first foreign language.  

Personal strengths gained as a scholar included becoming a persistent, goal-

oriented, and critical thinker. The doctoral program also confirmed that adults can learn 

throughout the lifespan. I have been engaged in lifelong learning for more than 30 years. 

Equipped with the fundamentals in education and skills in educational research, I am now 

prepared to take a leadership role in adult education or engineering education and 

contribute to experiential learning opportunities that can prepare engineering students for 

professional practice. 

In the future, as an educator, I plan to educate adults in my area of expertise, 

mainly in the engineering field and specifically in chemical engineering. Chemical 

engineers participate in the design, construction, and operation of petrochemical 

facilities, and without proper training, engineers can expose field workers and members 

of the community to the dangers of fire, explosion, toxins, and environmental pollution. 

Therefore, it is imperative that engineers develop sound practices and not be rushed from 

university to the industry without having the requisite skills of engineering practice. Long 

before enrolling in this program, I mentored, trained, and supervised recent engineering 

graduates, and I spent time improving their abilities to learn and assimilate into the 

workforce. Engagement in this project gave me the time, the background, and the tools to 
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develop a structured PD that meets the requirements of new engineers entering the 

workforce. 

Analysis of Self as Practitioner 

As an adult, I joined the doctoral program at Walden University after having 

practiced successfully in engineering for more than 2 decades. As a result, I brought with 

me the basic scientific and engineering knowledge, professional skills, and attitudes 

necessary for problem solving. I am pleased to add educational research practitioner title 

to my experience.  

As a research practitioner, I became aware of the opportunity to effect social 

change and solve some of the problems in the areas of teaching and learning. Schön 

(1984) described professional practice as the process of problem solving. As a research 

practitioner, I also have taken the first steps in this project to propose a solution to a local 

problem and hope to solve more problems that face my communities. Practitioners 

confront problems arising from the situations in front of them and reflect on actions to 

work toward solutions (Schön, 1984). Thus, I became a reflective practitioner who used 

critical thinking and reflection to solve a problem.  

The engineering profession lent me the ability to execute work, solve real-world 

problems, and lead multidisciplinary teams in several large companies. As a member of 

teams implementing large projects that benefit communities, my job was professionally 

and financially satisfying. However, my dream was to earn a doctoral degree so that I 

could teach later in life; thus, it made sense to me to pursue a doctorate in education 
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instead of engineering research. I wanted to continue earning while learning, a desire met 

by Walden University’s online programs. 

Even though I practiced engineering successfully in various capacities in the past, 

receiving a degree in education has taught me what I need to be an effective educator. I 

learned about teaching and learning methods and theories, along with educational 

research methods, and I engaged in research that produced a project ready for 

implementation. I am still a novice in this field, but I have developed an appreciation for 

my ability to design learning programs, write curriculum content, specify learning 

objectives and outcomes, and conduct evaluation research. I am prepared to use best 

practices in research and use proven learning and teaching methods after graduation. My 

plan is to put this knowledge into practice to engage in research and teach at the 

university, community college, public school, or industry level.  

Analysis of Self as Project Developer 

 I developed a 5-day PD for the project. I learned to conceive a project, develop a 

detailed plan for execution, prepare PD objectives and outcomes, and prepare 

implementation and evaluation plans. The PD will require resources, support, and the 

sponsorship of individuals and organizations. As the developer of the PD, I understood 

the challenges and obstacles to overcome for the project to succeed. It is important to 

seek project support from the stakeholders as well as understand the needs of the 

audience and the willingness of the supporters to sponsor the PD. Above all, the project 

should add value to the local community and advance education.   
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Project’s Potential Impact on Social Change 

I confirmed the gap identified in the literature between engineering education and 

practice. The 15 working engineers identified deficiencies in their skills after graduation. 

Based on the findings, I developed this PD project to increase the skills that new 

engineering graduates need as they enter the workforce. The results will contribute to the 

current educational literature, and the efforts put into completing this study will be reaped 

upon implementation of the project.  

The graduating class will be prepared to add value to the success of their 

employers and the community in their first jobs. Knowledge and skills gained will 

improve the local economy for two reasons: the high salaries of employed engineers will 

boost the local economy, and skilled engineers will increase the production of 

economically and safely manufactured goods and services. In addition, the university will 

have a convenient PD available to implement for its graduates every year.  

Implications, Applications, and Directions for Future Research 

The gap between engineering education and practice has been widening for 

decades, and efforts to narrow the gap have been unsuccessful (ASEE, 2012; Duderstadt, 

2010). However, progress has been made, and such efforts should continue to add 

practical skills to engineering education. This PD project makes a contribution toward the 

inclusion of practice in engineering education.  

Future studies should include participation of more discipline-specific engineers 

in the study. The engineering taxonomy comprises 17 major disciplines (Finelli et al., 

2016), and not all groups could be included in the study. Only four disciplines were 
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represented; other disciplines such as bioengineering, aerospace, and marine engineering 

were not represented. Future scholars should expand the list of represented disciplines. 

Moreover, interviews with university faculty, graduating engineers, and local engineering 

managers will strengthen the findings and streamline or amend the content of the PD.  

Future work also might mean other improvements or extensions of the PD to 

other institutions. Initially, the PD will be adopted by the local engineering college as a 

bridge between education and practice, but the PD could be offered to all engineers, 

including university graduates, newly hired engineers, and engineers who are either 

unemployed or are working for nonengineering positions and wish to refresh for new 

employment. The PD also could be added to the curriculum of any engineering college 

and could be offered before graduation. Training duration and content could be modified 

to suit university calendars and available resources. The training topics also could be 

assimilated into engineering programs. Finally, the PD could be adopted as it is or 

modified to fit the needs of other professional programs that might be interested in 

joining in the future.  

Conclusion  

The project fills a gap in engineering education because it provides educators and 

industry partners with a vehicle for helping graduate engineers to transition from 

theoretical education to the practical application of knowledge in the field. Engineers 

who participate in the PD project will have more opportunities for successful 

employment and early contributions to the industry and society. Implementation of the 

PD project at the local university is expected to demonstrate early successes that can be 
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shared with other colleges in the United States. The development of the project has 

fulfilled my dream to contribute to the solution of a problem that has persisted for 

decades.  
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Appendix A: The Project 

Training Title: Preparing Engineering Graduates for Practice 

Objective: The proposed training is project-based professional development course 

designed to bridge the gap between engineering education and engineering practice. The 

purpose of the project is to develop a program that prepares graduating engineers for 

work. The program contents may be modified in collaboration with university faculty, 

industrial partners, engineering practitioners, and graduating engineers.  

Course Duration: 1 week (5 days of instruction). The course is equivalent to a 3-

hr/week semester course at a regular university, covering 40 hours of practical training.  

Learning Outcomes: Attendees will apply their knowledge and skills to engineer a real-

world engineering project and be able to: 

• Apply engineering principles on the design, implementation, and operation of 

facilities. 

• Develop conceptual and detail engineering skills. 

• Apply communication skills.  

• Develop teamwork skills. 

• Prepare project specification, schedule, and cost estimate. 

• Use industry codes and standards. 
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• Understand the importance of ethical principles, safety, and environmental 

issues 

• Use engineering tools such as simulation programs, spreadsheets, and other 

engineering software to solve complex problems. 

Audience: Engineering graduates entering the workforce 

Teaching & learning methods: The course is project-based learning using active 

learning methods, interactive team discussions, and flipped classroom.  

Instructors: The training instructor is a practicing engineer with many years of practical 

experience in the design, implementation, and operation of industrial facilities. The 

instructor will invite discipline practitioners from chemical, civil, electrical, and 

mechanical engineering disciplines to lecture or guide students during the course. 

Course delivery method: Project-based learning covering major areas of engineering. 

The project is described in this document. The instructor will arrange a visit to a local 

refinery or chemical plant to familiarize participants to live industrial equipment. The 

practitioners will be sourced from the local industry. 

Course Venue: The program will be conducted at a suitable location such as conference 

room; a training room; lecture hall, or similar. The course will be taught on face-to-face 

basis. 

Course Evaluation: Instructor will use summative evaluation based on the survey 

method after completing the course  

Resources: Engineering reference books, short-cut references, Rules of thumb 

references, industry codes & standards, and software tools  
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Powerpoint presentations: First day powerpoint presentation slides are given in 

Appendix D. 

General training instruction:  

• The project will be fully explained on the first day of the course.  

• The class format may follow the traditional method and start with 30-minute 

video presentation delivered before the project activities begin each day. 

Alternatively, a flipped classroom format may be adopted where the videos 

will be given as homework and the class time dedicated to PBL. 

• Approximately 80% of the time will be spent on project 

• Training instructors are facilitators but will present the topics listed in Table 

A1 

• Additional project instructions will be delivered as needed basis 

• Engineering software and other tools will be provided by instructor 

• Lunch and coffee breaks will be announced by instructor 

Table A1 

 Schedule of Lectures  

Schedule Section title Topics covered 

Day 1 

 

 

Introduction Course content, goals, and outcomes 

Daily activities plan 

Education versus engineering practice 

Engineering principles & 

ethics 

Fundamentals in practice & ethical considerations 

Health, environment & 

process safety  

Safety in design, construction & operation 

Material selection  Construction materials /corrosion considerations. Piping 

specifications, equipment specs, instrument & electrical specs 

Day 2 

 

Engineering standards 

Codes & regulatory standards 

Codes & standards, piping specs, electrical specs, 

mechanical, etc. (Codes: NFA, API, NACE); Regulations: 

EPA, PSM, DOT, etc. 



155 

 

Conceptual design Feasibility studies & front end engineering design (FEED) 

Economic evaluation Engineering economics overview/cost estimates 

Day 3 

 

Detail engineering design Systems engineering 

Design criteria  Systems engineering 

Day 4 

 

Control Systems Control & Instrumentation 

Engineering drawings  (PFDS/P&IDs/elect line diagrams / blue prints / mechanical 

details/3-D model 

Specific topics to each 

engineering discipline  

Chemical: Process 

Mechanical: Piping & Rotating equipment 

Civil: surveying, site development 

Electrical: Power / distribution 

Day 5 Project management Project schedule & budget management 

Project implementation Constructability studies / construction activities 

Facility operation  Operation, Maintenance, & Inspection 
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Project Vignette  

A local company decided to build a 10,000-barrel/day refinery to supply sufficient 

quantities of gasoline, diesel and liquid petroleum gas (LPG) - propane and butane. A 

project manager was appointed to estimate project cost & schedule, and upon quick 

approval from authorities, build the refinery. The project manager selected a team of 

chemical, civil, mechanical, and electric engineers to design the facility. Preliminary 

drawings and cost estimates have to be completed within a week to ensure that the project 

is included in next year’s budget. The team must organize themselves into several small 

groups, each working in certain area, to complete the preliminary design within a week. 

A final report and presentations from each group are scheduled at the end of the 

week. The project manager and his team will present the project report in the last week. A 

simplified flow-sheet will be provided before the start date. The project execution plan is 

given in Table A2. The main project steps are shown below: 

• Develop detailed drawings of the facility showing the crude storage tank, 

crude pumps, crude heater, crude distillation unit, product lines, product 

pumps, and product storage tanks. The refinery products are light fuel gas 

from crude unit overhead, LPG products at the top, and gasoline, kerosene, 

diesel, gas oil side-draws, and heavy products from the bottom of the crude 

oil. The fuel gas will be compressed to 750 pounds per square inch. Each 

liquid product will be pumped to its respective storage tank. 

• Develop the plot plan and locate equipment on the plot 
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• Develop preliminary designs, and size major equipment such as the crude 

storage tanks, crude pumps, crude heater, the crude unit, product pumps, 

overhead compressor, and product storage tanks. 

• Size main piping runs and pipe racks 

• Develop electrical loads, and size electrical equipment 

• Develop site paving, and equipment foundations 

• Show, and size the main control valves  

• Use the appropriate engineering tools such AutoCAD or Visio for drawing, 

Hysys for process simulation, hydraulic or hand calculation program for pipe 

sizing, and xx for electrical loads, etc. 

• Develop cost estimate for the facility. Call equipment vendors for major 

equipment to get current cost estimates. 

• Discuss any problems or challenges among yourselves and come to a 

consensus on disagreements. 

• Prepare progress reports each day 

• Submit final preliminary engineering package.  

• Make final presentations (by group) on the last day of the training  
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Table A2 

Project Execution Plan 

 

  

 
Plan of the day Planned activities Work completed 

Day 1 Present detailed course program -Introduction to course Thorough 

understanding of 

course, project work, 

basic engineering & 

documentation 

-Overall course plan 

-Form project groups 

-Explain and discuss project 

parts 

Project definition, equipment, and 

engineering tools & documents 

Plant layout, site preparation, list 

of documents to be prepared 

Layout drawings, 

engineering 

documents catalog 

Develop process flow diagrams 

and material balances 

Development of initial Project 

drawings; Major equipment 

identification 

Process Flow 

Diagrams, and 

equipment layout 

Day 2 Major process equipment design Start the design of major 

equipment 

Start major process, 

and electrical 

equipment sizing as 

well as site civil and 

pipe rack work 

Electrical design and electrical 

loads 

Civil & structural development 

Day 3 Finish up equipment design Finish up remaining 

equipment sizing 

 

Material selection; Control 

systems 

Select materials of construction 

and size control valves 

Select materials of 

construction and 

control systems 

Preliminary drawings; pipe sizing Prepare detailed P&ID drawings 

showing pipe diameters & 

lengths 

Complete detailed 

drawings and size all 

major piping systems 

Day 4 Final plot plan & equipment 

location 

Final drawings and final cost 

estimates 

Prepare cost estimate 

tables 

Material take off; cost data 

Cost estimates 

Day 5 Develop preliminary engineering 

& construction schedule 

Project implementation schedule Complete project 

schedule 
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 PowerPoint Presentation Slides for Day 1 of the PD 
 

 

Slide 1 

Professional Development

Preparing Engineering graduates for Practice

PowerPoint Presentation Slides

1  

Slide 2 
Introduction

This session covers:

▪ Instructor(s) & attendee introductions
▪ PD objectives
▪ PD Format 
▪ Project Learning Outcomes
▪ Daily Training schedules
▪ Course Evaluation

2  
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Slide 3 
Instructor(s) & Attendee Introductions

Instructor introductions:
• Name, position & organization
• Degree in engineering discipline

• Industrial experience

Attendee introductions:

• Name and date of graduation
• University attended, degree and discipline

• Work or internship experience
• What you want to want get out from the PD
• About yourself (interest, hobbies, etc.)

3  

 

Slide 4 
PD Objectives

Main PD objectives: 

• Expand on subjects that are important for the industry but 
not sufficiently covered in college (Safety, environmental, 
industry codes and standards, Materials selection, etc.)

• Facilitate the practical application of theoretical knowledge in 
project-based learning

• Develop professional skills such as teamwork, 
communication, and interdisciplinary skills. 

The project is a 5-day professional development (PD) training 
designed for graduating engineers. 

4  

 

Slide 5 
PD Format

• The professional development is Project-based learning

• The PD is 20% lecture, 80% project work done by the teams

• Industry practitioners are invited to guide the teams
• Uses active learning methods including interactive team 

discussions

5  
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Slide 6 
PD Format 

• Instructors: 
• Practicing engineer experienced in the design, implementation, and 

operation of facilities. 
• Supported by discipline practitioners from chemical, civil, electrical, 

and mechanical engineering disciplines 

• Course delivery method:
• Project-based learning covering major areas of engineering. 
• The course will be taught on head-on basis.
• Field visit to local refinery to familiarize participants to live industrial 

equipment. 

• Course Venue: A conference room; a training room; lecture hall, 
or similar. 

• Course Evaluation: Summative evaluation based on the survey 
method at end of training

• Resources: Industry reference books; short-cuts and rules of 
thumb; industry codes & standards 

6  

 

Slide 7 
PD Format

• The project-based training combines hands-on work 
with lectures on specific topics. 

• The PD is implemented in a combination of lectures and 
project work 

• PD is taught by practicing engineers instead of university 
faculty.

• PD includes visits to live production facilities that will be 
arranged early in training. 

• The training covers engineering design problem solving, 
communication, teamwork, and economic evaluations, 
as well as elements of construction and unit operation.

7  

 

Slide 8 
Learning Outcomes

Participants will be able to:

• Apply engineering principles to design industrial equipment

• Develop skills to conduct detail engineering
• Prepare project specifications, schedule, and cost estimates

• Use industry codes and standards
• Understand the importance of ethical principles, and 

environmental and safety issues.
• Use engineering tools such as simulation programs 

After completing the training, participants will enter the 
workforce equipped with practical skills needed at the 
workplace.

8  
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Slide 9 General PD instruction

General PD instruction: 
• The project will be fully explained on the first day of the 

course. 

• Class format is starts with 30-minute video presentation 
delivered before the project activities begin each day

• Approximately 80% of the time will be spent on project

• Training instructors are facilitators but will present the topics 

• Additional project instructions will be delivered as needed 
basis

• Engineering software and other tools will be provided by 
instructor

9  

 

Slide 10 
Daily PD Schedule

Day 1: Monday  

7:00 – 9:00  -Introduction, daily activity plans, and resources

-Engineering principles & ethics

-Health, Environmental, and Safety (HES)

-Material Selection

9:00 – 9:15: - Break

9:15 – 11:30 -Explain the Project; Form Project Teams

-Provide stationery, tools, and simulation programs

-Explain project deliverables

11:30–12:15 -Lunch break

12:15-14:15 -Develop Process Flow Diagrams, equipment List, & layout 
drawings

14:15-15:00 -Wrap up Material balances, equipment layout, and preliminary 
drawings

10  

 

Slide 11 

Daily PD Schedule
Day 2: Tuesday  

7:00 – 9:00  -Discuss plan of the day and project team activities

-Explain engineering design basis and design criteria

-Detail equipment specifications 

-Discuss Front-end Engineering Design (FEED) and deliverables

9:00 – 9:15: - Break

9:15 – 11:30 -Explain industry codes & standards

-Start preliminary design of major electrical, mechanical, and 
process equipment

11:30–12:15 -Lunch break

12:15-14:15 -Teams continue on the design of electrical, mechanical, and 
process equipment

14:15-15:00 -Start civil and structural design for equipment and pipe rack 
foundations

11  
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Slide 12 

Daily PD Schedule

Day 4: Thursday

7:00 – 9:00  - Discuss plan of the day and project team activities

- Control systems overview

- Engineering cost estimates 

- Material take-off based on engineering drawings

9:00 – 9:15: - Break

9:15 – 11:30 - Materials count and take-off

Design the major control systems

11:30–12:15 -Lunch break

12:15-14:15 - Complete material take-off dossier

- Prepare equipment and instrument cost estimates

14:15-15:00 - Finalize plot plan, equipment locations, and utility requirements

12  

 

Slide 13 

Daily PD Schedule

Day 4: Thursday

7:00 – 9:00  - Discuss plan of the day and project team activities

- Control systems overview

- Engineering cost estimates 

- Material take-off based on engineering drawings

9:00 – 9:15: - Break

9:15 – 11:30 - Materials count and take-off

- Design the major control systems

11:30–12:15 - Lunch break

12:15-14:15 - Complete material take-off dossier

- Prepare equipment and instrument cost estimates

14:15-15:00 - Finalize plot plan, equipment locations, and utility requirements

13  

 

Slide 14 
Daily PD Schedule

Day 3: Wednesday

7:00 – 9:00  - Discuss plan of the day and project team activities

- Project specification document

- Systems engineering

- Detailed engineering design

9:00 – 9:15: - Break

9:15 – 11:30 - Material Selection

- - Identify major Control systems

11:30–12:15 - Lunch break

12:15-14:15 - Finish up equipment design and sizing

- Prepare Piping and Instrumentation Drawings (P&IDs)

14:15-15:00 - Finish up material of construction document and control systems 
overview

14  
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Slide 15 

Daily PD Schedule

Day 4: Thursday

7:00 – 9:00  - Discuss plan of the day and project team activities

- Control systems overview

- Engineering cost estimates 

- Material take-off based on engineering drawings

9:00 – 9:15: - Break

9:15 – 11:30 - Materials count and take-off

- Design the major control systems

11:30–12:15 - Lunch break

12:15-14:15 - Complete material take-off dossier

- Prepare equipment and instrument cost estimates

14:15-15:00 - Finalize plot plan, equipment locations, and utility requirements

15  

 

Slide 16 

Daily PD Schedule

Day 5: Friday

7:00 – 9:00  - Discuss plan of the day and project team activities

- Project documentation and project management

- Project implementation; constructability study, and construction 
- Safety issues during design, construction, and operation 

9:00 – 9:15: - Break

9:15 – 11:30 - Facility Operation

- Facility maintenance and inspection

11:30–12:15 - Lunch break

12:15-14:15 - Team Presentations

14:15-15:00 - Wrap up team presentations

- Summative evaluation of PD

16  

 

Slide 17 
PD Evaluation

Summative evaluation at the end of the PD

Use a Likert type survey to evaluate the level of:

• Meeting learning objective

• Clarity of program instruction

• Instructor competence
• Program content, location, and timing

Leave blank space for attendee comments and suggestions.

17  
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Slide 18 
Summative Evaluation

Evaluation Form

Program Title ___________ Instructor ____________ Date: ____________

Please complete this form to evaluate the program in terms of 
objectives, content, timing and duration. Also, please rate the 
instructors, video presentations, and the facility. Comment on 
the overall training experience. Please indicate your level of 
agreement or disagreement of each statement using a rating 
scale from 1 to 5. 

18  

 

Slide 19 

19  

 

Slide 20 
The End 

Questions?

20  
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Appendix B: Interview Protocol  

Opening Statements: 

 

Thank you for accepting to participate in the study and spending the time for the 

interview. I will try to complete the interview within the time limit but ensure that we 

cover the questions and collect as much data as possible. 

My name is Abdulla Warsame. I am an Ed.D candidate at Walden University, College of 

education. I have a Master of Science degree in Chemical engineering and have been 

practicing engineering since 1987. I am currently employed as a Principal Process 

Engineer. 

To start, I like to know the name & location of the university you have attended, your 

engineering degree & discipline, and the year of graduation. 

Also, can you briefly describe your employment history since graduation, your main 

engineering activities, and some of the engineering practices undertaken during 

employment? 

Interview Background 

 

The topic of discussion and purpose and significance of the Study: 

 

The topic of this study is: “The Gap between Engineering Education and 

Postgraduate Preparedness”.  The aim of the study is to explore the experiences of 

graduated engineers with respect to bridging the gap between education and engineering 

practice, overcoming educational deficiencies, through engagement in self-learning, 

mentoring, and professional development. Using the qualitative case study methodology, 

this research will answer the question: “What are the experiences of graduate engineers 
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working in the industry regarding overcoming the deficiencies in their practical skills and 

bridging the gap between education and practice?” Interview data from participating 

chemical, civil, mechanical, and electrical engineers will be analyze, and interpreted.  

The significance of the study is that it provides firsthand information of how a 

sample of graduate engineers engaged in self-learning and acquired the skills that they 

needed to become engineering practitioners. The outcome of the study will provide 

valuable feedback to engineering education stakeholders. 

Purpose of the interview 

The purpose of this interview is to capture your experiences as you reflect on your 

preparedness for engineering practice after graduation, and how you trained to bridge the 

gap between theoretical education and engineering practice.   

Terms of Confidentiality 

All information will remain confidential and will not be disclosed or discussed with 

others. 

Interview Process 

Format of interview:  Structured & unstructured questions 

Interview duration:   5 to 45 minutes 

Interview date and time: February 10, 2016  

Documents:    None 

Follow up contact information: (Insert participant contact information) 
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Interview Guide: 

 

1. How effectively did engineering education prepare you for engineering practice? 

Describe areas where college education did not fully prepare you to apply your 

knowledge in the field.  

a. (Probing question: How well were you prepared to apply your technical, 

problem solving, and communication skills as graduated?) 

2. What are some of the practical skills that you needed to perform engineering 

tasks? How did you develop these skills?  

3. How did you train yourself to become a practicing engineer? Briefly explain any 

professional training, company training or personal training through public 

courses, workshops, seminars, or self-learning efforts that you have done to 

advance your professional competency. 

4. What are the skills that you feel you need more development and how would you 

develop these skills? 

5. What are some of the competency-related training efforts that you have taken 

since graduation? Which competencies should be part of the engineering 

education and which can be developed after graduation? 

Thank you for taking the time to answer the interview questions. I will transcribe your 

response and send it to you by mail for your review and comment. I may also call you to 

clarify some of the points. 
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Appendix C: Summative Evaluation  

Evaluation Form 

Program Title _______________ Instructor _______________ Date: ____________ 

Please complete this form to evaluate the program in terms of objectives, content, timing 

and duration. Also, please rate the instructors, video presentations, and the facility. 

Comment on the overall training experience. Please indicate your level of agreement or 

disagreement of each statement using a rating scale from 1 to 5. 



170 

 

 

 


	Walden University
	ScholarWorks
	2017

	The Gap Between Engineering Education and Postgraduate Preparedness
	Abdulla Farah Warsame

	tmp.1505270526.pdf._c6Tu

