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Abstract 

Educational systems are complex adaptive systems (CAS).  The macroeffects of an 

educational policy emerge from and depend on individual students’ reactions to the 

policy.  However, educational policymakers traditionally rely on equation-based models, 

which are deficient in reflecting the work of microbehaviors.  Using inappropriate tools 

to make policies may be a reason why there were many unintended educational 

consequences in history.  A proper methodology to design and analyze policies for 

complex educational systems is agent-based modeling (ABM).  Grounded in the theories 

of CAS and computational irreducibility, ABM is capable of connecting microbehaviors 

with macropatterns.  The purpose of this study was to contribute to the application of 

ABM in educational policy analysis by constructing an agent-based overlapping 

generations model with hypothesized inputs to qualitatively represent the environment of 

the Taipei School District.  Four research questions explored the effects of Taipei’s 2016 

student-assignment mechanism and its free tuition policy on educational opportunity and 

school quality under different assumptions of students’ school-choice strategies.  The 

simulated outputs were analyzed using descriptive statistics and paired samples t tests.  

The findings, which could hardly be revealed by traditional models, showed that the 

effects were complex and depended on students’ strategies along with the number of 

choices students were allowed to make; the assignment outcomes for elite students were 

robust to the mechanism, and the free tuition policy worsened school quality.  Although 

exploratory, these findings can serve as hypotheses and a guide for Taipei’s policymakers 

to collect empirical data in evaluating their 2016 mechanism and tuition policy.  
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Chapter 1: Introduction to the Study 

Overview 

Education systems are complex adaptive systems (CASs), in which the 

distribution of educational opportunity and school quality emerge from the interactions of 

students with the environments including admission policies.  One of the most salient 

features of CASs is emergence; that is, aggregate properties emerge from the 

decentralized interactions among the rationally bounded and adaptive constituents, which 

follow simple behavioral rules and do not have any properties similar to the aggregate 

properties (Flake, 1998; Holland, 2006; Squazzoni, 2012).   The classical methodology to 

study macrolevel issues of CASs is equation-based modeling (Borrill & Tesfatsion, 2011; 

Gilbert, 2004).  However, equation-based modeling cannot easily reflect the connections 

between the behaviors of microconstituents and the macropatterns (Heckbert, Baynes, & 

Reeson, 2010).  This weakness makes classical equation-based modeling a questionable 

tool to assess an educational policy that involves students’ behaviors in its process of 

influencing macrophenomena.   

To change the aggregate properties of a CAS, “we must understand how the 

aggregate behavior emerges from the interactions of the parts” (Holland, 1992, p. 20).   

Individual behaviors may change to respond to the change of policy, which in turn 

changes macrostructures of interest.  Therefore, it is not possible to deduce or predict the 

future states of a CAS a priori purely from the study of its structural characteristics, as 

the classical equation-based analytical models are designed to do (Laughlin & Pines, 

2000; Wolfram, 2002).  Using the wrong tools to design policies for CASs may be a 
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reason that history shows a myriad of cases where policies produced unexpected and 

undesired consequences (Farmer & Foley, 2009; Groff, 2013; Maroulis et al., 2010).   

The approach to studying CASs advocated by many scholars, including John 

Holland, Duncan Foley, and Leigh Tesfatsion, is agent-based modeling (Farmer & Foley, 

2009; Holland, 2006; Borrill & Tesfatsion, 2011).  Agent-based modeling (ABM) is a 

bottom-up approach to studying the micro-, meso-, and macroevolution of a CAS by 

programming the constituent agents’ behavioral and interaction rules as well as their 

environment and letting the aggregate patterns grow through simulations (Axelrod, 1997; 

Chen, Yang, & Yu, 2011).  ABM’s capability to connect micro- and macrobehaviors 

makes it a better design than classical mathematical equations to study the dynamical 

macroscopic problems in CASs (Chen, Chang, & Du, 2012; Epstein, 1999).  While it has 

been extensively applied to policy analysis in many CASs, particularly in the fields of 

economics, management, and environmental studies, ABM is still new in the field of 

educational research (Chen et al., 2011; Maroulis et al., 2010).  Few agent-based models 

are constructed to simulate distribution patterns in educational systems.  The agent-based 

model built in this study contributes to the development of ABM in educational policy 

analysis.   

The model is an overlapping generations model because there are three 

generations of students (grades 10 -12) in each simulation year, and younger generations 

make their school choices based on school qualities emerging from senior students’ 

performances.  I constructed this model to represent the Taipei Senior High School 

District (the Taipei School District) qualitatively and to simulate the possible effects of 
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Taipei’s 2016 senior high school admission policies on the distributions of educational 

opportunity and school quality.  This agent-based simulation model is capable of running 

experiments under different explicit hypotheses and showing the link between emergent 

aggregate outcomes and individual behaviors.  This study demonstrates to policymakers 

and stakeholders that ABM can facilitate a disciplined and informative public discourse 

on educational policies that have complex effects on the current and future generations.    

In the following section, I discuss the background of Taipei’s senior high school 

admission reform. I argue the lack of proper analysis of its policy implications in the 

section of problem statement, followed by the sections in which I describe the purpose, 

research questions, nature, conceptual framework, delimitations, assumptions, and 

limitations of this study.  This chapter ends with a discussion of the significance of this 

study in agent-based educational research in general and research on school admission 

policies in particular.   

Background  

Since the 1980s, Taiwan’s income inequality has been rising; the ratio of the 

income earned by the top five percent to the income earned by the bottom five percent 

has reached 96:1 (Chu, Chow, & Hu, 2015).  Various educational reforms, in addition to 

new social and economic policies, have been tried to tackle the inequality problem.  One 

of them was the massification of post-secondary education during the 1990s and the 

2000s, which has resulted in more than 90% admission rate at Taiwan’s universities since 

2005 (Chou & Wang, 2012).  However, the massification of higher education does not 

improve income equity; it reproduces the socioeconomic class stratification (Chu et al., 
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2015).  The elite, most of whom are richer, attend elite universities while the poorer 

attend lower ranked universities with much fewer resources.  Moreover, since Taiwan’s 

elite universities are all public and most public universities rank higher than the private 

universities, on average, richer students pay less than poorer students.  What makes the 

situation worse is the shortage of demand for higher-educated labors due to the economic 

downturn in the recent decade, forcing those non-elite university graduates to compete 

for jobs with reduced starting salaries (Chou & Wang, 2012).     

In 2014, Taiwan’s government started another large-scale educational reform, the 

12-Year Basic Education Program (the 12-Year Education Reform), to tackle the 

inequality problem in postsecondary education (Ministry of Education, 2013).  This 

reform aimed at equalizing educational opportunity and school quality in high school 

education. The strategies of the reform were to extend the free-tuition policy to all 

students in both public and private senior high schools and to overhaul the senior high 

school admission mechanisms in all school districts (Ministry of Education, 2013).  In 

Taiwan, many school districts rely on the private senior high schools to provide enough 

seats for all students.  For example, in the Taipei School District, the private schools 

provide about 50% of the places needed to accommodate all children in senior high 

school ages (15 – 18).  Those who attend private schools are generally poorer financially 

and academically than those in public schools; therefore, the government had provided 

full tuition subsidy for those who attended private vocational high schools (Ministry of 

Education, 2013).  This reform extended this free tuition policy to all high school 

students.  The government claimed that the extended free-tuition policy could ease the 
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financial burden on poorer people and thus promote equal educational opportunity.  The 

government also overhauled the student-assignment mechanisms to change the school 

systems from tracking (assigning students to schools according to their performances) to 

mixing in the belief that a mixing system promotes equal educational opportunity in 

comparison to a tracking system.  This belief has been supported by many studies 

(Ferreira & Gignoux, 2014; Van de Werfhorst & Mijs, 2010).  If school quality is 

measured by students’ scores, then mixing also promotes equality of school quality.     

Unfortunately, the 2014 admission mechanisms of all school districts were 

heavily criticized for their complicated student prioritization rules and the creation of 

justified envy (Lin, 2014).  Justified envy occurs when a higher ranked student loses the 

seat in his or her preferred school to a lower ranked student (Abdulkadiroglu & Sonmez, 

2003).  The abundant occurrence of justified envy infuriated many parents of higher 

performing students, who were relatively affluent and politically influential.  Although no 

parents complained about the free tuition policy, some scholars criticized this expensive 

policy for its crowding-out effect on the programs that could directly benefit low-quality 

schools and low-performing students (Sheu & Chang, 2014).  Those scholars also argued 

that this policy is unnecessary because Taiwan had a more than 93% of senior high 

school attendance rate before the implementation of this policy (Sheu & Chang, 2014).  

Compromising to the political influence of the richer parents, almost all school districts in 

Taiwan, including the Taipei School District, revised their admission mechanisms in 

2015 toward the original system of sorting students by academic performance, while 

holding the free-tuition policy unchanged.   
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As the capital of Taiwan, Taipei has the most competitive school district and 

contains the top-ranked senior high schools in Taiwan.  The Taipei School District 

includes students from both Taipei City and its satellite cities (Suburban Taipei).  

Taipei’s policymakers have to face the criticisms from the most politically influential 

parents in Taiwan, who believe that mixing will lower the quality of the top-ranked 

schools.  With a total of 70 thousand senior high school applicants each year, the Taipei 

School District took a more aggressive step to change its admission mechanism than 

many other school districts in 2015, disregarding the central government’s objection (The 

Central News Agency, 2014).  The Taipei School District reported that its device reduced 

a great deal of justified envy in 2015 (Taipei City Government Department of Education, 

2015).  This statement seemed to imply that the Taipei School District has moved more 

back to the original tracking system.   

In 2016, Taipei’s policymakers changed their student-assignment mechanism 

again to solve two problems caused by the prioritization rules in the mechanism: too 

many ties (too many students having the same priorities) and justified envy (New Taipei 

City Government, 2015b).  Justified envy is viewed as a problem only when a society 

believes in a school system of tracking rather than mixing.  This social belief is exactly 

what the 12-Year Education Reform was designed to cope with.  How well the capital 

city reaches the goal of the 12-Year Education Reform serves as an index to the 

performance of this reform.  Regardless, Taipei’s policymakers seem to focus more on 

complaints about justified envy than the goal of the reform.   
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History has provided many examples of well-intended educational policies 

creating adverse outcomes.  One example is the cream-skimming effect observed in some 

school voucher systems, in which better-performing students transfer to private schools, 

leaving lower-performing students in public schools, which further lowers the quality of 

the public schools and fails the purpose of school vouchers (Nechyba, 2003; Tabarrok, 

2013; Walsh, 2009).  Another example is the U.S. No Child Left Behind (NCLB) policy, 

which was intended to improve student performance majorly by holding schools 

accountable for having students achieve the proficient level of state assessment (WGBH 

educational foundation, 2014).  NCLB’s unintended consequences were identified and 

commonly recognized before there was any consensus about its effect on school quality 

and closing student achievement gap.  NCLB’s side effects include: focusing only on 

absolute scores without recognizing student’s achievement growth, evoking states to 

lower their assessment standards, and driving schools and teachers to concentrate only on 

high-stakes subject areas and short-term test-preparation skills (Berliner, 2009; Dee & 

Jacob, 2011; Groff, 2013; Jennings & Sohn, 2014; Ladd & Lauen, 2010; Murnane & 

Papay, 2010; The White House, 2014).  Because of the unintended consequences, one 

reform usually calls for another to fix them, such as the Every Student Succeeds Act 

signed by President Obama to replace NCLB on December 10, 2015 (U.S. Department of 

Education, n.d.).   

South Korea’s High School Equalization Policy (HSEP) is another example.  

Initially implemented in 1974 to reduce school inequality and shadow education, HSEP 

randomly assigned students to high schools, whether public or private, (Byun, Kim, & 
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Park, 2012).  By comparing the socioeconomic statuses of high school students in the 

HSEP and non-HSEP areas, Byun et al. (2012) concluded that HSEP had reached the 

goal of reducing school inequality.  However, the activities of shadow education (cram 

schools) kept increasing in HSEP areas in comparison to non-HSEP areas (Byun et al., 

2012; C. J. Lee, H. Lee, & Jang, 2010).   If the cost parents spent on cram schools is 

considered, whether HSEP reduces educational inequality is still under debate (Lee et al., 

2010).  In addition to its controversial effects, HSEP was criticized for depriving 

students’ right to choose schools, restricting private schools’ autonomy, making teachers 

hard to teach in mixed-ability classrooms, and lowering average student performance 

(Byun et al., 2012).  Therefore, some areas including Seoul have abolished or revised the 

original HSEP, allowing more school choices and private school autonomy (Byun et al., 

2012).  

The 12-Year Education Reform, NCLB, and HSEP are only some examples in the 

large pool of the educational policies that received criticisms for their unintended effects 

much earlier than their goal achievements could be confirmed.  The effects of educational 

policies depend on how students react to the policies.  Inability to foresee and bring into 

consideration of students’ heterogeneous reactions might be a common cause of those 

unanticipated outcomes.  The reductionist models commonly used to analyze the 

educational policies, if the policies were ever analyzed, might also constrain researchers 

and policymakers from exploring students’ heterogeneous behaviors and possible policy 

outcomes emerging from students’ interactive behaviors.  For tractability purpose, 

reductionist models impose strict assumptions on agents, such as homogeneity and profit-
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maximization (Epstein, 1999; Macal & North, 2010).  These restrictions make the 

reductionist models, such as equation-based models, hard to deal with the issues in 

human CASs, where macropatterns emerge from the interaction of the heterogeneous, 

boundedly rational, adaptive agents between themselves and with the environment.   

The policy implications of an admission mechanism design are complex because 

the design involves anticipating how students will react to a new environment, and the 

strategic behaviors of human beings are complicated (Roth, 2002).  These complications 

may prevent analyzing the design analytically, but computational simulations can 

overcome these complications (Axtell, 2000; Roth 2002).  Taipei’s policymakers claimed 

that they had used the method of simulation to test their revised admission mechanism 

based on students’ school-choice lists in the previous year (New Taipei City Government, 

2015b).  However, the result simulated in this way could hardly be used to understand the 

potential macroimpacts of the new mechanism because students probably would submit 

different school-choice lists under the new mechanism.  When people change their 

behaviors, they also change the structural relations in the environment (Lucas, 1976).  

Therefore, as the Lucas critique states, if a new policy may cause a change in people’s 

decision rules, it is inappropriate to predict the policy implications just based on historical 

data (Lucas, 1976).  Not using the proper method to design their new admission policies, 

Taipei’s policymakers were accused by the parents of treating their children as 

experimental subjects for the 12-year Education Reform (Center for Educational 

Research and Evaluation, 2016).   
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Problem Statement  

Educational systems are CASs.  The macroscopic effects of a school admission 

policy, as well as many other educational policies, emerge from the behaviors and 

interactions of the heterogeneous students and the policy.  However, the methods used in 

the mainstream educational policy analysis and Taipei’s new admission policy design 

tend to ignore the impact of individual behaviors.  Using the wrong methodology to make 

educational policies may be one of the reasons why many policies, including Taiwan’s 

12-Year Education Reform, produced unintended effects or failed to accomplish their 

goals.   

Many scholars contend that the better way, or even the only way, to study CASs 

and their related policies is to build and run computer-based models and observe the 

simulated aggregate results (Borrill & Tesfatsion, 2011; Holland, 2006).  The computer-

based modeling that many complex systems scholars advocate is ABM, because of its 

capability to connect microbehaviors and macropatterns and its flexibility to run scenario 

analysis (e.g., Borrill & Tesfatsion, 2011; Chen 2016; Chen et al., 2012; Duffy, 2006; 

Epstein, 1999; Farmer & Foley, 2009).  ABM is a bottom-up approach that generates 

macropatterns by programming the behavioral and interaction rules of individual agents 

and letting aggregate patterns grow through simulations (Axelrod, 1997; Chen et al., 

2011).  Even if how agents will behave in a new environment is unknown or uncertain, 

ABM is flexible to perform what-if analysis and investigate the possible best and worst 

macroeffects of a new admission policy.  Because of ABM’s advantages in studying 



11 
 

 

CASs, Maroulis et al. (2010) urged researchers to apply ABM to educational policy 

analysis to understand “not only what works but also how and why it works” (p. 39).   

ABM has been extensively applied in many fields, particularly in economics, 

management, and environmental studies (Chen et al., 2011).  Unfortunately, up to today, 

only a few agent-based models have been constructed to analyze macroeducational 

policies (e.g., Harland & Heppenstall, 2012; Maroulis et al., 2014; Millington et al., 

2014).  None has been applied to evaluate Taipei’s 2016 admission policies either.  With 

the advancement of the ABM technique and computing speed, it is time to solidify the 

application of ABM to educational policy analysis and to explore the impact of Taipei’s 

new admission policies on educational equality. 

Purpose of the Study  

The purpose of this study was to answer Maroulis et al.’s (2010) call to contribute 

to the complexity methodology for educational policy analysis.  I built an agent-based 

overlapping generations model to reflect the qualitative properties of Taipei’s senior high 

school system.  Although ABM is a quantitative methodology, I built an agent-based 

model to explore and gain qualitative insights into the impacts of Taipei’s 2016 

admission policies (the Taipei mechanism and the free-tuition policy) on the distributions 

of educational opportunity and school quality.  I also compared the results with those 

under the following four prevalent student-assignment mechanisms: serial dictatorship, 

deferred acceptance, the Boston mechanism, and the Chinese parallel mechanism.  I 

simulated the policy effects under different assumptions of students’ school-choice 

strategies and the number of school choices a student is allow to make.  A total of 60 
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scenarios, described in Chapter 3, were simulated under each student-assignment 

mechanism.    

Research Questions  

To have an in-depth understanding of the equality effect of Taipei’s 2016 

admission policies, I collected and analyzed the simulated data to answer the following 

research questions:  

• Does the Taipei mechanism help equalize educational opportunities?  

• Does the Taipei mechanism help school qualities converge upward?  

• Does the Taipei mechanism, combined with the free-tuition policy, help 

equalize educational opportunities? 

• Does the Taipei mechanism, combined with the free-tuition policy, help 

school qualities converge upward? 

Theoretical Framework  

The theories underpinning ABM are complex adaptive systems (or complexity 

theory) and Wolfram’s (2002) theory of computational irreducibility.  Complex adaptive 

system is a term to describe not only a kind of system but also a paradigm to study this 

kind of system, although there is still no universal definition of CAS.  Holland (1992) 

argued that a CAS has three characteristics: (a) evolution through adaptation, (b) 

emergence of aggregate behavior, and (c) agents’ abilities to anticipate.  Epstein (1999) 

posited that the agents in a CAS have the following features: heterogeneity, autonomy, 

explicit space, local interactions, and bounded rationality.  From their descriptions, a 

CAS can be described as a system comprising heterogeneous, autonomous, adaptive, self-
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organizing, boundedly rational agents, through whose interactions with each other and 

their environment the system’s aggregate properties emerge (Epstein, 1999; Holland, 

1992).   

The most salient characteristics of CASs are emergence and adaptation.  

Emergence implies that the aggregate behaviors are different from the components’ 

behaviors, and thus aggregate behaviors are not simply the sum of the parts (Archer & 

Smeins, 1991).  Adaptation means changing to fit the environment; adaptation makes a 

CAS continuously evolve and rarely stay in a constant state (Holland, 1992; Keshavarz, 

Nutbeam, Rowling, & Khavarpour, 2010).  With these two features, CASs are 

categorized as Wolfram’s (2002) Class 4 systems, which are computationally irreducible 

(Borrill & Tesfatsion, 2011; Crockett, 1993; Darley, 1994).  Wolfram (2002) posited that 

a system or program is computationally irreducible when the only way to know its future 

state is to simulate its evolution step by step, and this computational work cannot be 

reduced by using any set of equations.  The conventional reductionist paradigm or 

equation-based models cannot study the features of CASs easily (Heusser, Scheffer, 

Neumann, Tauschel, & Edelhäuser, 2012).  Therefore, Borrill and Tesfatsion (2011) 

argued that computer modeling, particularly ABM, is the only way to understand CASs.   

An educational system consists of subsystems of nested hierarchies, including 

schools, classrooms, educators, administrators, teachers, students, and parents (Keshavarz 

et al., 2010).  Its subsystems are autonomous, heterogeneous, adaptive, and self-

organizing, even though some of their activities are subject to governmental regulations 

(Burns & Knox, 2011; Keshavarz et al., 2010).  Its aggregate properties, such as 
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admission distribution and school quality, emerge from the interactions among its 

subsystems.  Therefore, educational systems are CASs.  Research on educational systems 

requires complexity methodologies.  ABM is the right approach to understanding the 

emergent properties of educational systems (Maroulis et al. 2010).  The aim of this study 

was to join the pioneering work of applying ABM to exploring the mesoscopic and 

macroscopic impacts of Taipei’s new admission policies on Taipei’s senior high school 

system.  

Nature of Study  

The purpose of this exploratory study was to understand qualitatively how school 

admission policies would affect educational opportunity and school quality in the Taipei 

School District from a CAS perspective.  Although agent-based simulation per se is a 

quantitative research, the parameters in this agent-based model were not calibrated to the 

real data.  Therefore, this study was exploratory.  The simulated outcomes provide 

qualitative, rather than quantitative, insights into the properties of Taipei’s 2016 

admission policies.   

Educational opportunity has been measured by the proxies of either educational 

resources or the efficacy of the resources since the Coleman Report (Coleman et al., 

1966).  The proxy for school quality used in most studies is either school resource or 

student performance (Ladd & Loeb, 2013).  Therefore, studies related to educational 

opportunity and school quality largely call for quantitative research designs.  The 

classical quantitative methodology used for this type of macroeducational policy analysis 

is equation-based modeling or statistical regressions, which cannot easily study CASs’ 
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properties of emergence and adaptation (Chen, 2015).  On the other hand, ABM, a 

quantitative computational approach, allows researchers to program the behaviors of 

individual agents and let the macrophenomena emerge through the interaction of the 

agents.  This simulation methodology not only addresses CASs’ properties but also 

shows the linkage between microbehaviors and macrophenomena (Chen, 2015; Epstein, 

1999; Macal & North, 2010).   

Educational opportunity and school quality are aggregate properties emerging 

from the interactions of the hierarchical agents in a complex educational system.  ABM 

can be used to explore the dynamics of the distributions of educational opportunity and 

school quality under different behavioral assumptions.  ABM’s ability to perform 

simulations of behavioral scenarios is essential in analyzing the design of a new 

educational policy that involves anticipating agents’ behaviors in a new environment, 

such as the Taipei mechanism.  The reason is that how students will react to a new policy 

is usually unknown.  Although human-subject experiments can help acquire behavioral 

knowledge, experimentation is often constrained due to factors like cost, time, space, 

human fatigue, and ethical issues (Chen, 2015; Roth, 2002).  New admission policies, 

such as the reformed Taipei admission policies, often fall into this difficult-to-experiment 

category and involve many significant uncertainties.  In this situation, a methodology 

easy to perform behavioral scenario analysis is critical (Hedstrom & Ylikoski, 2010).   

Therefore, ABM is the right methodology to conduct this exploratory research and to 

investigate the possible impacts of Taipei’s 2016 admission policies in the complex 

Taipei School District.   
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In this study, I built an agent-based overlapping generations model to simulate 

and explore the outcomes of Taipei’s 2016 admission policies (the Taipei mechanism and 

the free tuition policy) under different assumptions of student behaviors and admission 

mechanism designs.  There are three types of entities (students, schools, and the 

governmental authority) and two neighborhoods with different average incomes in the 

model.  The submodel of matching process contains five matching mechanisms, 

including the Taipei mechanism.  In each simulation, student agents were assigned to 

schools through the matching process, and the scores of the admitted students were 

updated by a formula reflecting the effect of peer networks.  During the simulations of 

300 combinations of student behavioral rules and policy settings, the program 

automatically collected the simulated data representing educational opportunity and 

school quality.  I then analyzed and compared the collected data by using descriptive 

statistics and paired samples t-tests to answer the research questions.   

Definitions  

Agent-based modeling (ABM): is a bottom-up simulation approach characterized 

by modeling the behavioral and interaction rules of a system’s constituents and letting the 

collective phenomena of interests emerge through simulations (Axelrod, 2005; Gilbert, 

2004; Macal & North; 2010).  

Complex adaptive system (CAS): refers to a system consisting of heterogeneous, 

autonomous, adaptive agents, through whose interactions with each other and their 

environment complex systemic properties that are different from those of the agents 

emerge (Epstain, 1999; Gell-Mann, 1994; Holland, 1992).   
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Computational irreducibility: is a concept claimed by Stephen Wolfram (2002), 

which mainly states that there are computationally irreducible questions in nature and in 

human societies that cannot be answered by any mathematical shortcut but by simulating 

the evolution of the system step by step.   

Deferred acceptance: refers to the student-proposing deferred acceptance 

mechanism first discussed in the literature of school choice by Abdulkadiroglu and 

Sonmez (2003), which is a version of deferred acceptance originally designed by Gale 

and Shapley (1962).  The section of matching mechanism in Chapter 2 describes the 

algorithm of this mechanism in detail. 

Equality of educational opportunity: is defined from the input point of view as 

that all junior high school graduates have the same opportunity to attend each of the 

senior high schools in an educational system, regardless of their family income.  This 

definition is in line with the policy intention of Taiwan’s 12-Year Education Reform 

(Ministry of Education, 2013).   

Equality of school quality: is defined from the output point of view as equal 

seniors’ mean scores across all schools (Ladd & Loeb, 2013).   

Exploratory modeling: is to model a system and perform computational 

experiments on the model under various assumptions and hypotheses to explore the 

implications of research questions (Bankes, 1993).  Exploratory modeling allows 

researchers to conduct research through computational simulations without waiting for 

the collection of all facts. 
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Principle of maximum entropy: is a technique to select a probability density 

distribution that does not imply any assumptions while satisfying all of the limited known 

information (Penfield, 2014).  Given the mean and the standard deviation, the distribution 

selected under the principle of maximum entropy is normal distribution (Garrett & 

Fisher, 1992). 

Risk aversion level: refers to the extent to which a student will make a school-

choice strategy to prevent the worst eventuality (Klijn, Pais, & Vorsatz, 2010).  

Serial dictatorship: is a matching mechanism, in the context of school choice, that 

allows students, in the sequence of their priorities, to choose their schools.  Under this 

mechanism, a student is assigned to his or her top choice of schools that still have seats 

before students who have lower priority than this student are assigned (Pathak, 2011).   

The Boston mechanism: refers to the centralized admission mechanism used by 

the Boston School District to assign students to schools before 2005 (Abdulkadiroglu, 

Pathak, Roth, Sonmez, 2005).  The process of this mechanism is described in the section 

of matching mechanism in Chapter 2.  

The Chinese parallel mechanism: is the admission mechanism used in some 

Chinese provinces and municipalities to assign students to universities.  The section of 

matching mechanism in Chapter 2 describes the algorithm of this mechanism in detail. 

The free-tuition policy: refers to Taiwan’s new education policy that provides free 

tuition to students enrolled in senior high schools, whether the school is public or private 

(Ministry of Education, 2013).   
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The Taipei mechanism: is the centralized admission mechanism used by the 

Taipei Senior High School District in 2016 to match its students and schools (New Taipei 

City Government, 2015b).  See the section of matching mechanism in Chapter 2 for the 

operational details of this mechanism.   

Assumptions  

Analysis for a new policy often involves significant uncertainties simply because 

the society never experiences the policy.  Thus, a model for such analysis unavoidably 

has an exploratory nature and contains various assumptions and hypotheses (Bankes, 

1993).  I made the assumptions in this exploratory agent-based overlapping generations 

model by reference to the literature and my observations in the Taipei School District and 

summarize the significant assumptions underpinning the model below.  The section of 

model description in Chapter 3 provides a more detailed explanation of the model 

assumptions. 

In generating student agents’ school preferences, I assumed that student agents 

had moderately to highly correlated school preferences for higher ranked schools. Chang 

(2011) found that all students in Taiwan prefer higher quality schools to lower quality 

schools; however, when low-quality schools are considered, distance is relatively more 

important than quality.  Most Taiwan students use publicly recognized school ranks as 

the index for school quality (Chang, 2011; Lu, 2012; Shao, 2015; Yan, 2015).  Therefore, 

I assumed that student agents had moderately to highly correlated school preferences for 

higher ranked schools and preferred nearby lower ranked schools to far-away lower 

ranked schools.  As to financial subsidy, only low-income students consider it an 
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influential factor in making their school choice decisions (Chang, 2011).  Therefore, I 

further assumed that without the free-tuition policy, students with bottom 50% family 

income would not choose fee-paying private schools.  

Studies have found that students do not always report their school preferences as 

their school choices; instead, students use strategies in response to the admission 

mechanism to make their choices, aiming at improving their chances of attending more 

preferred schools (Chen, Jiang, & Kesten, 2015; Pathak, 2011).  In Taiwan, a commonly 

advised strategy found on the internet states the following: (a) Students should refer to 

each school’s past admission information, in comparison with their own scores or ranks, 

to form the list of possible schools; (b) students should choose their schools from their 

lists of possible schools; (c) students should arrange the order of the selected schools in a 

way that they are confident to be admitted to a preferred school while gambling for the 

admission to a more preferred school (e.g., Sun, 2015; Zhang & Wang, 2015).  Similar 

advice is also circulated in mainland China (e.g., H. Wang, 2015; R. Wang, 2015; Song, 

2015).  I designed two behavioral strategies founded on the above advice for the student 

agents in the model to generate their school-choice lists.  In this internet era, it is very 

likely that admission candidates all learn about the popular strategy and use it in their 

school-choice decision making. Therefore, when the two school-choice strategies were 

simulated, I assumed that all student agents used the same strategy.  For comparison 

purpose, I also run simulations under the assumption that student agents used 

heterogeneous strategies to make their school choices.  
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By applying the central limit theorem, I assumed that students’ performances 

were normally distributed.  I also assumed that a high-performing student usually 

performed well in all subjects and vice versa.  The literature shows that the students’ 

performances in Taiwan are positively correlated with their incomes, and the income of 

Taiwan follows a lognormal distribution (Chou & Wang, 2012; Hojo & Oshio, 2012; 

Pinkovskiy & Sala-i-Martin, 2009).  Therefore, I assumed that new admission candidates’ 

log family incomes and scores formed a multivariate normal distribution and could be 

randomly generated from this distribution. 

In generating students’ high school scores, I assumed that students’ 

socioeconomic statuses and personal factors remained the same throughout their high 

school years and that the peer effect was the only factor that influences students’ scores 

in high schools.  Since the 1966 Coleman report, numerous studies have shown that once 

students’ socioeconomic statuses are controlled, schools contribute little to the 

explanation of the difference in student performance, although school factors, mainly the 

composition of peers, do have different effects on different groups of students (e.g., 

Coleman et al., 1966; Burke & Sass, 2013; Jennings, Deming, Jencks, Lopuch, & 

Schueler, 2015; Hojo & Oshio, 2012).  However, it is not clear in the literature how 

students are affected by their peers.  Salgado, Marchione, and Gilbert (2014) argued that 

peer effect emerges when students learn from their friends in the network formed by the 

students and their peers.  Salgado et al. (2014) assumed that socioeconomic status, 

gender, and performance were the factors that determine whether a network would be 

formed and found that most students have high tolerance toward performance difference, 
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but different groups might have different levels of tolerance toward gender and 

socioeconomic status.  By reference to Salgado et al.’s study, I assumed that only the 

scores of the high school students whose family incomes were within the tolerance level 

of their peers would be influenced by the performance of their peers.      

Scope and Delimitations  

The purpose of this study was to contribute to the development of ABM in 

educational policy analysis.  The agent-based model constructed in this study focuses on 

the centralized admission processes in school-choice systems and the designs of students’ 

decision rules which includes the consideration of students’ geographical and 

socioeconomic differences.  I used this model to explore the possible distribution results 

emerging from the Taipei mechanism and the free tuition policy under different 

behavioral assumptions.  Since many the real data were not available, this study was 

exploratory in nature.  The input parameters and simulated outcomes were not calibrated 

with real data.   

I followed the prominent KISS (keep it simple, stupid) principle in the social 

simulation field to construct this model.  Under this principle, a model should be kept as 

simple as possible; more complexity is added to the model only if required (Axelrod, 

1997; Barth, Meyer, Spitzner, 2012).  This principle helps researchers to understand 

every element added into the model, which in turn helps researchers to analyze a 

surprising emergence observed in the simulations (Axelrod, 1997).  This principle also 

helps other researchers to extend the model in a new direction (Axelrod, 1997).  As a 

result, this model only has two levels of hierarchy (schools and students).  Therefore, it 
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could not replicate the process of peer effect modeled by Salgado et al. (2014), which 

needs the network structures in the level of classrooms.  Nevertheless, this model design 

was enough to show the qualitative influence of peer effect on high school scores.  

Neither did this model contain other school-level factors that might affect high school 

scores as argued by some scholars, such as teacher quality (e.g., Burke & Sass, 2013).   

I set the values of the parameters in this model to represent qualitatively the 

environment and culture of the Taipei School District, where students compete for highly 

ranked schools.  In CASs, different initial conditions often result in different patterns of 

system evolutions (Borrill & Tesfatsion, 2011).  Therefore, the simulation results of this 

study could not be generalized to other educational systems with different cultures.   

Limitations  

ABM is a bottom-up approach, which starts with the design of individual agents’ 

behavioral rules and let global patterns emerge from agents’ interactions.  This approach 

relaxes the assumptions needed in most top-down approaches, such as fixed 

macrostructures, rationality, optimization, and homogeneity (Epstein, 1999; Macal & 

North, 2010).  However, researchers usually have less microinformation needed for an 

agent-based model than macroinformation needed for a top-down model.  Consequently, 

microspecifications must be hypothesized to construct an agent-based model.  In this 

model, I inferred agents’ school-choice strategies from the literature and my observation 

in the Taipei School District.  Without the support of experimental or empirical evidence, 

the behavioral strategies designed in this model remain as candidate explanations for the 

simulated macropatterns, even if these simulated macropatterns can correspond to real 
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data collected in the future.  The causal relationship between the hypothesized 

microspecification and the emergent macrostructure cannot be established simply 

because the microspecification can generate the macrostructure because other 

microspecifications may also have the same explanatory power (Epstein, 1999).  

Nevertheless, if the simulated macropatterns match the data, then the behavioral rules 

programmed in this model serve as a reasonable causation hypothesis and can guide 

empirical data collection (Bankes, 1993; Epstein, 2008).  If otherwise, then this study 

provides the information that this particular set of behavioral rules may not be a good 

hypothesis for future empirical research.  Therefore, with the flexibility to perform what-

if analysis, an exploratory agent-based model like the one in this study can reveal 

possible outcomes based on what we know and help make an informed policy decision, 

even if it cannot predict the exact quantitative results of a new policy. 

Significance of Study  

Most models for macroeducational policy analysis are equation-based.  Equation-

based models are weak in explaining the relations between microlevel behaviors and 

macrolevel patterns.  However, the global effects of educational policies often depend on 

students’ reactions.  To know the micro-macro relations is essential in educational policy 

analysis because the effects of those policies often depend on how students react to the 

policies.  Educational research needs an alternative tool to provide information about the 

micro-macro relations, and ABM is the right approach for this need (Maroulis et al., 2010; 

McClelland, 2014).  Unfortunately, ABM is still new in the field of educational research.  
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Few agent-based models have been built for educational policy analysis.  The model in 

this study enriches the application of ABM to educational policy analysis.   

This model was the first agent-based model to qualitatively represent the 

environment of the Taipei School District, including the operational details of its 2016 

admission mechanism (the Taipei mechanism) and the free tuition policy.  This model 

was also one of the pioneering agent-based overlapping generations (OLG) school-choice 

models to simultaneously observe students’ school-choice behaviors and 

macroeducational phenomena under various real-world matching mechanisms.  OLG 

design is necessary when older generations’ behaviors affect the overlapping younger 

generations’ decision making.  In many educational systems, like the one in Taipei, older 

students’ performances affect the reputations and rankings of the schools, which in turn 

affects younger generations’ school preferences and school choices (Allen & Burgess, 

2013; Lu, 2012; MacLeod & Urquiola, 2012).  Therefore, to include the OLG design is 

essential to study the effects of admission policies in these educational systems, whether 

the effects of interest are microscopic, mesoscopic, or macroscopic. 

Most simulation models for school choice research have the assumptions that 

students always report their school preferences as their school choices without adapting 

to the change in matching mechanism.  However, literature has shown that students use 

strategies to make their school choices, which may not be the same as their school 

preferences (Chen et al., 2015; Pathak, 2011).  To model students’ strategical behaviors, 

researchers must distinguish students’ school preferences from students’ school choices.  

Chen, Wang, and Chen (2017) were the first to make this attempt.  However, in their 
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model, student agents’ only consideration is score.  I significantly expanded Chen et al.’s 

(2017) design of students’ preferences and school-choice strategies by including the 

consideration of distance and family income, which is in line with the findings in 

literature and observations.  This more realistic design of student preferences and 

strategies helps explore the possible outcomes of the Taipei mechanism, especially when 

there are still no empirical data to know its consequences.  The model description in 

Chapter 3 states in detail all assumptions, uncertainties, and calculations in this model, 

which helps other researchers to replicate the simulation results or run further scenario 

analysis under their perceived reasonable assumptions.  Therefore, this model provides 

not only the right tool for the analysis of Taipei’s admission policies but also a platform 

for rigorous discussions on these policies.  

Summary  

Educational systems are CASs, where aggregate patterns emerge from the 

interactions of individual agents.  When the effect of an educational policy depends on 

how students behave in a new environment, it is essential for policymakers to understand 

the relation between macrophenomena and microbehaviors.  However, the classical tools 

used to analyze macroeducational policies, such as equation-based modeling, cannot 

easily link macropatterns with microbehaviors.  These classical models also were built 

upon the assumption of fixed system structures, violating the Lucas critique (Lucas, 

1976).  Using the wrong tools may be one of the reasons why there are full of cases 

where educational policies produced unexpected and undesired consequences.   
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Education researchers need new tools to analyze policies in complex educational 

systems.  The complexity tool advocated by many CAS scholars is ABM, a bottom-up 

simulation approach that generates global patterns by simulating the interactions of 

individual agents (Farmer & Foley, 2009; Holland, 2006; Borrill & Tesfatsion, 2011).  

ABM allows researchers to understand not only the micro-macro connection but also the 

dynamic evolution of a system.  ABM is also flexible to perform scenario analysis, which 

is of particular importance when how people will react to a new policy is uncertain or 

unknown (Roth, 2002; Schieritz & Milling, 2003).  However, ABM is still new in the 

field of education research.  Only a few models have been built to analyze 

macroeducational policies.  Therefore, the purpose of the agent-based OLG model in this 

study was to contribute to the development of ABM in educational policy analysis.  Since 

I built this model to represent the qualitative aspects of the Taipei School District, this 

study also helps to understand qualitatively how Taipei’s new high school admission 

policies affect the distribution of educational opportunity and school quality, in 

comparison to other prevalent matching mechanisms.   

Having evoked great objections, Taipei’s high school admission mechanism, 

which was a part of Taiwan’s 12-Year Education Reform, has been modified twice since 

its inauguration in 2014.  The policymakers claimed that they had simulated their 2016 

student-assigning mechanism (the Taipei mechanism) in their decision-making process.  

However, they used students’ school-choice lists in the previous year to run the 

simulation, ignoring the Lucas critique.  Furthermore, the government did not analyze the 

possible effects of the new mechanism on students in different performing and income 
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quartiles, unable to know whether the new revision would reach or deviate from the 

Reform’s goal of enhancing the equalities of educational opportunity and school quality.  

The simulation results help Taipei’s policymakers and stakeholder to have a better 

understanding of the possible effects of Taipei’s new admission policies on students in 

different income and performing groups.  Therefore, this study facilitates inclusive and 

informative public dialogues on Taipei’s admission policies. 

 The next chapter contains a comprehensive literature review.  It starts with a 

review of the theoretical framework of ABM, followed by a discussion of the concepts 

and measures of equality of educational opportunity and equality of school quality.  A 

large part of Chapter 2 is devoted to a thorough review of commonly used matching 

mechanisms in school admission processes.  The chapter concludes with a discussion of 

the current development of ABM in the field of educational research.   
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Chapter 2: Literature Review  

Introduction  

ABM is a computational approach to modeling a system composed of 

autonomous agents and to studying the aggregate patterns emerging from agents’ 

interactive behaviors.  This approach is an attempt to respond to traditional 

methodologies’ inadequacy to deal with CASs (Gilbert, 2004; Tesfatsion, 2003).  The 

origin of ABM can be traced to cellular automata of John von Neumann and Stanislaw 

Ulam in the 1950s (Chen, 2012).  A cellular automaton is a theoretical self-reproducing 

machine that consists of “cells” as its building blocks (Chen, 2012; “John von 

Neumann's,” 2010).  The states of the cells will change according to the previous states of 

their neighboring cells under predetermined rules; the dynamics of the cellular automaton 

exhibited by the cells’ state changes are similar to the self-reproduction or evolution 

process of life (“John von Neumann's,” 2010).  The concept of cellular automata is 

fundamental in the fields of artificial intelligence and artificial life (Chen, 2012; “John 

von Neumann's,” 2010).  The expansion of ABM did not take off until the rapid growth 

of computational power in the 1990s (Gilbert, 2004).  A growing number of disciplines 

have now adopted ABM to study complexity problems (Chen et al., 2011).  Nevertheless, 

it is still new to most educational policymakers and researchers and has rarely been 

applied in educational policy research.  Therefore, this chapter begins with a review of 

the concepts underpinning ABM, followed by the general structure of an agent-based 

model and a brief comparison between ABM and equation-based modeling.   
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ABM is used to construct autonomous agents and their environment, followed by 

simulating the interactions of the agents and letting macrolevel phenomena emerge 

(Axelrod, 2005; Gilbert, 2004; Macal & North; 2010).  This bottom-up simulation 

methodology naturally integrates knowledge regarding individual behaviors and 

macrostructures (Maroulis et al., 2010).  Modelers must review the knowledge on both 

micro- and macrolevels to construct a sensible model and draw meaningful insights from 

the simulation results.  In this study, I built an agent-based OLG model to explore the 

systemic impacts of school admission policies on educational opportunity and school 

quality. Therefore, this chapter continues with a review of two strands of the literature in 

education: (a) educational equality and school quality, and (b) school choices and 

admission mechanisms.  A review of the former defines and operationalizes the 

measurement of the macrophenomena that I focused on in this study while a review of 

the latter helps to construct agents’ behaviors and the matching mechanisms that I used in 

the model of this study.   

Many studies have used equation-based models to investigate the impacts of 

school choices on educational equality and school quality.  A review of their mixed 

findings provides a foundation for how to discuss the ways in which ABM can 

complement a study on aggregate effects of education policies.  A handful of attempts 

has been made to apply ABM to explore the linkages between students’ behaviors and the 

admission results in school-choice systems (e.g., Chen et al., 2017; Harland & 

Heppenstall, 2012; Maroulis et al., 2014; Millington et al., 2014; Wang, Chie, & Chen, 

2017).  These agent-based educational models are relatively simple in comparison to the 
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agent-based models in other fields, such as economics and finance.  However, they serve 

as the stepping stones to construct a comprehensive agent-based educational model that is 

general enough for theoretical and exploratory discussions and flexible enough for 

research on a specific educational system.  This study is an additional stepping stone for 

such a model.  Therefore, a review of the extant agent-based educational models is 

necessary to understand what these pioneering models have accomplished. The review 

also concludes this chapter.  

Literature Search Strategy  

With the development of information technology in recent years, a literature 

search is no longer limited to certain databases or libraries.  Google Scholar now 

consolidates almost all library databases in the whole world and provides direct links to 

the articles in the libraries that the users have access to.  Many articles are free through 

Google Scholar.  All the references in this chapter were collected through Google Scholar 

and downloaded either directly from Google Scholar or from the libraries of Walden 

University and National Chengchi University.  Some articles related to Taiwan’s 

education systems cited in this chapter are written in Chinese. 

The original keywords used to search articles were complex adaptive systems, 

computational irreducibility, agent-based, equation-based modeling, system dynamics, 

general equilibrium, educational equality, educational inequality, school quality, school 

choice, matching mechanism, and any combination of the above keywords.  I also used 

the snowball strategy to extend the search by reviewing the references in the articles 

found from the above keyword search.   
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As to the literature related to ABM, I did not limit the search to any specific 

timeframe so that I could have a thorough understanding of ABM’s history and its 

underpinning concepts.  I also conducted an exhaustive search for all extant agent-based 

school-choice models because these models were the ground on which I built this model.  

As to the two strands of the literature on education mentioned in the previous section, I 

focused on articles published in or after 2010, but the review includes some seminal 

works in these fields, such as the initial argument about school choice made by Friedman 

(1955) and the first discussion of school matching mechanism by Abdulkadiroglu and 

Sonmez (2003).     

Complex Adaptive System and Computational Irreducibility 

ABM is grounded in the concept of complex adaptive system (Macal & North, 

2010).  The term complex adaptive system describes not only a kind of system but also a 

new paradigm of thinking versus the conventional reductionist paradigm (Dodder & 

Dare, 2000).  Reductionists reduce a phenomenon into parts and focus on the analysis of 

the parts, holding the view that the whole is equal to the sum of the parts and the whole 

can be understood by understanding the working of its parts (Green, 2001; Holland, 

2006).  Researchers with the view of CASs challenge reductionist thinking by claiming 

that the whole is greater than the sum of the parts because CASs have emergent global 

macroscopic properties that are different from the properties of the components (Archer 

& Smeins, 1991).  Emergent properties can be seen only when the systems are studied as 

a whole (Archer & Smeins, 1991).  The advocates of CASs have provided myriad 

examples of emergent properties in nature and in human societies to support their views, 
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including the immune system’s ability to distinguish self from intruders, the formation of 

a supply network in an economy, swarm intelligence of ant colonies, and school health 

conditions (e.g., Holland, 1992; Keshavarz et al., 2010; Zimmerman, Lindberg, & Plsek, 

1998).    

CASs became a paradigm during the 1980s with the establishment of the Santa Fe 

Institute in New Mexico, in the United States.  The Santa Fe Institute was founded and 

joined by many key figures in this new thinking, including George Cowan, Nobel 

laureate Murray Gell-Mann, Nobel laureate Kenneth Arrow, and John H. Holland 

(Dodder & Dare, 2000).  It has been playing a leading role in developing an 

interdisciplinary platform and modeling methodologies to discuss problems in CASs 

(Dodder & Dare, 2000; Santa Fe Institute, 2014).  This new paradigm has now been 

adopted by many researchers in various disciplines, including economics, epidemiology, 

management, technology, and ecology (Bale, Varga, & Foxon, 2015; Levin et al., 2013).  

However, there still has not been a universal term or definition for CASs (Keshavarz et 

al., 2010).  Some researchers use the term “complexity theory” to mean CASs, and some 

use both terms interchangeably (The Health Foundation, 2010).  As to the definition, 

while Holland (2006) defined CASs as “systems that have a large numbers of 

components, often called agents, that interact and adapt or learn” (p. 1), Nobel laureate 

Murray Gell-Mann referred to the “agents” in Holland’s definition as CASs (Gell-Mann, 

1994).  This discrepancy in definition may be because CASs usually have a nested 

hierarchy; that is, a system’s components (the agents) are themselves smaller-scaled 

CASs (Keshavarz et al., 2010; Pathak, Day, Nair, Sawaya, & Kristal, 2007).   In this 
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study, I adopted Holland’s definition because it is now adopted by the majority of the 

ABM society.   

Characteristics of Complex Adaptive Systems  

Although researchers in the field of CASs may have different opinions about the 

terminology and the precise definition of such systems, they seem to agree that the most 

distinguishing characteristics of CASs are emergence and adaptation.  In CASs, 

macroscopic, or collective, properties emerge from the simultaneous and parallel 

interactions of more primitive parts with each other and with their environment (Choi, 

Dooley, & Rungtusanatham, 2011; Damper, 2000; Holland, 1992, 2006; Levin et al., 

2013).  The constituents in a CAS are mostly heterogeneous; an example is human 

beings.  Even if the massive heterogeneous individuals all follow a few simple behavioral 

rules, or schemata as termed by Gell-Mann (1994), their interactions typically still form 

nonlinear aggregate patterns and thus make the system complex (Choi et al., 2011).   

Emergent properties, or emergent system behaviors, do not follow individual 

agents’ behaviors (Newman, 2011).  Emergent properties cannot be predicted simply 

from the knowledge about the individual agents; they are irreducible to the sum of the 

properties of the constituents (E. P. Odum, H. T. Odum, & Andrews, 1971).  The whole 

is more than the sum of the parts (Hiance, Doogan, Warren, Hamilton, & Lewis, 2012).   

Birth rate, for example, is not an emergent property because it is just the 

summation of individual births in a period expressed in the percentage format (Odum et 

al., 1971).  On the other hand, wealth inequality observed in many free economies is an 

emergent property. This macrophenomenon emerges from individuals’ self-interested 
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economic activities; it cannot be investigated only by studying individuals’ economic 

behaviors.  Another example is a stock market crash, which is a nonlinear property 

emerging from the interactions of heterogeneous stock market players, who typically 

pursue their own maximum profits (Levin et al., 2013).  Emergence results from the 

interactions of the self-organized constituent entities in the system without any central 

control.  Because of this nonlinear, irreducible, emergent feature, it is not easy to use 

equations derived from the conventional reductionist thinking to study CASs (Heusser et 

al., 2012).  Therefore, researchers have explored new approaches, such as simulation 

modeling, to deal with the emergent properties of CASs (Cioffi-Revilla, 2013). 

The second distinguishing feature of CASs is agents’ abilities to adapt to the 

problems and changes in their environments (Holland, 1992).  All complex systems show 

the feature of emergence while CASs show not only the characteristic of emergence but 

also the characteristic of adaptation (Newman, 2011).  Some examples of adaptation in 

social CASs are children adapting to school lives, parents adapting to new job 

requirements, and firms adapting to technological changes.   

Adaptation involves the concepts of fitness and anticipation (Holland, 1992; 

Newman, 2011).  Agents anticipate the consequences of their reaction options in 

comparison to competitions and choose the best available behavioral rules or strategies 

that help them fit the changes in their environments (Holland, 1992; Newman, 2011).  

The process of adaptations can be briefly described as follows: (a) agents store their 

input-output experiences where inputs are their behaviors and outputs are the results of 

these behaviors; (b) from their input-output experiences, agents identify perceived 
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patterns or regularities; (c) agents compress these perceived patterns to form schemata for 

actions; and (d) after receiving feedbacks regarding the outcomes of the schemata, agents 

replace some schemata with new ones or enhance the standings of some schemata with 

respect to other competitive ones (Arthur, 1994; Gell-Mann, 1994).  Adaptation in social 

CASs is a continuous process because agents’ interactions change the environment, 

which in turn causes agents to adapt to fit the environmental changes (Keshavarz et al., 

2010).   

In social CASs, adaptation by no means implies that agents always have complete 

knowledge or information to choose the strategies that can maximize their interests as 

assumed in classical economics (the Homo Economicus assumption); instead, agents 

mostly act with bounded rationality (Arthur, 1994; Heckbert et al., 2010).  There are 

several reasons that agents cannot exercise perfect rationality in CASs: (a) human 

rationality can cope with complexity only to a certain level; (b) agents have no way to 

know but guess other agents’ actions in the interactive situations which agents frequently 

encounter; and (c) to acquire complete information to make unboundedly rational 

decision is costly, while less-expensive heuristics often provides adequate solutions 

(Arthur, 1994; Conlisk, 1996).  Since adaptation is mostly made with bounded rationality, 

it can succeed or fail.  Cioffi-Revilla (2014) argued that a successful adaptation needs to 

go through a series of processes: (a) the agents are aware of the need to adapt, (b) the 

agents have the intent to adapt, (c) the agents have the capacity to adapt, and (d) the 

agents can overcome various challenges to implement the adaptation.  Since agents in 
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CASs are heterogeneous and autonomous, their adaptation decisions and results are also 

heterogeneous (Epstein, 1999; Heckbert et al., 2010).   

Because of the continuous adaptation of the agents and continuous emergence of 

global phenomena, CASs can hardly reach the state of optimality, if optimality can even 

be defined for CASs (Holland, 1992).  Sometimes, a CAS may seem to stay at local 

optima, but the stays are usually only temporary for live systems (Holland, 1992).  

Morrison (2008) explained that “Change, disequilibrium and unpredictability are 

requirements for survival: a butterfly that flies only in a straight line is soon eaten.” (p. 

20).  However, classical equation-based computational models, such as computable 

general equilibrium models, concentrate on optimal fixed points and assume 

representative agents.  These models do not seem to be very useful to deal with CASs.  

Instead, ABM, by allowing agents to self-organize their activities, is a better candidate 

when heterogeneity, bounded rationality, and adaptation are involved (Heckbert et al., 

2010; Epstein & Axtell, 1996; Lansing, 2002).  

Computational Irreducibility  

Computational irreducibility is a concept claimed by Stephen Wolfram (2002), 

who argued that there are computationally irreducible questions in nature and in human 

societies that cannot be answered by any mathematical shortcut but must be analyzed by 

simulating the system directly (Wolfram, 2002).  From the study of cellular automata, 

Wolfram concluded that systems could be categorized into four classes.  Class 1 systems 

refer to systems that will always have the same fixed or repetitive final patterns 

regardless of their initial settings.  Class 2 systems grow into several different final states, 
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depending on their initial settings, but these states all appear to have either repetitive 

patterns or nested structures.  Class 3 systems produce random or chaotic final states, and 

their initial conditions have long-lasting effects on the evolutions of the systems.  Class 4 

systems are systems between order and chaos.   

In Class 4 systems, the cells organize themselves to form localized structures that 

move around and sometimes interact with each other to form a cascade of new 

complicated patterns.  In the transition between patterns, the systems seem to be in 

chaotic states but far from chaos.  Waldrop (1993) named this state “edge of chaos”.  

Cioffi-Revilla (2014) described Class 1 to Class 4 cellular automata as stable, oscillating, 

chaotic, and complex, respectively.  While mathematical equations (computational 

shortcuts) can be used to describe the behaviors of Class 1 and Class 2 cellular automata, 

Wolfram claimed that systems belonging to Class 3 and Class 4 are computationally 

irreducible.  There is no way to know the future states of Class 3 and Class 4 systems 

with any computational shortcuts; the only way is “to simulate each step in their 

evolutions explicitly” (Wolfram, 1988, p. 187).  Figures 1 shows the graphical examples 

of the four classes.  

Cellular automata contain some popular models that demonstrate the emergence 

of complex macrolevel patterns from microlevel interactions of agents who follow simple 

behavioral rules (Chen, 2012).  These popular models are used by social scientists to 

describe the properties of CASs (Chen, 2012).  Like Wolfram’s Class 4 systems, the 

patterns in social CASs expand, contract, suddenly collapse, and transform into new 

patterns.  With this concept in mind, it is not surprising to see some large companies 
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suddenly suffer enormous loss, or some ancient nations fell apart abruptly (Crockett, 

1993).  Because social CASs have the characteristics as shown in Class 4 cellular 

automata, many researchers concluded that social CASs are computationally irreducible 

(Borrill & Tesfatsion, 2011; Corckett, 1993).  The traditional models using differential or 

difference equations can hardly find out how these systems behave and evolve.  The only 

way to solve the problems in CASs is to use computational simulations, preferably ABM, 

to compute every step of the systems’ possible evolutions (Borrill & Tesfatsion, 2011). 

 

Figure 1. Graphical example of each class of cellular automata.  This figure is adopted 

from Wolfram, 2002, p. 231.   

Educational Complex Adaptive Systems 

 Education systems involve learning, pedagogical strategies, resource allocations, 

and interactions between and within all levels of hierarchy from policymakers, school 

administrators, teachers, to students and parents.  Education systems are CASs 

comprising nested CASs (Burns & Knox, 2011; Groff, 2013).  A school district has 

schools as its subsystems while each school has classrooms as its subsystems; 

meanwhile, school districts, schools, and classrooms are all CASs (Burns & Knox, 2011).  
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Take schools as an example.  A school is composed of administrators, teachers, students, 

and their parents, all of whom are of different properties and constantly interact with each 

other.  The constituents of a school are autonomous even though laws, culture, and ethos 

strongly affect their actions (Keshavarz et al., 2010).  In addition to autonomy, schools 

exhibit the characteristics of CASs: learning, adaptation, and emergence (Keshavarz et 

al., 2010). 

The ethos of a school is an example of an emergent phenomenon.  It emerges 

from the intertwining effects of many factors including principal’s leadership style, 

teachers’ morale, student’s learning environment, parent’s participation, and so on 

(Mason, 2008).  To change the negative ethos of a school, it is often not enough to 

implement just one intervention but interventions at many levels, including a job policy 

to improve students’ family incomes, a school leadership reform to stimulate teachers’ 

commitment, a curriculum transformation project, a plan to develop a more efficient 

learning environment for students, and a project to encourage parental involvement 

(Mason, 2008).     

Educational interventions cannot be blindly copied from one system to another 

because autonomous agents in a different system may react to the same intervention 

differently.  Policymakers should estimate stakeholders’ possible reactions in designing a 

new educational policy.  Knowing not only what agents will do but also why they do it is 

essential to have a better estimate of agents’ behaviors in a new environment (Lemke & 

Sabelli, 2008).  The findings of educators, psychologists, sociologists, economists, and 

political scientists, to name a few, shall all be referenced to have a better knowledge 
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about how students may respond to a new educational intervention.  Even if students’ 

reactions are all the same, different initial settings of a CAS may generate different 

interaction patterns and thus different emergent macrophenomena (Haggis, 2008).   

Although educational systems exhibit all the features of CASs, educational 

policymakers often pass legislation based on linear cause-effect models, ignoring the 

nonlinear features of CASs (Groff, 2013).  Many complexity researchers have urged 

educational researchers and policymakers to apply the concepts of CASs and CASs tools 

to studying educational issues and policies (e.g., Groff, 2013; Maroulis et al., 2010).  The 

concept of CASs requires researchers to study not only the variables in a CAS but also 

the dynamic interactions between the variables in a holistic view (Radford, 2008).  The 

complexity thinking also requires researchers to expect possibilities and interdisciplinary 

collaboration (Groff, 2013; Keshavarz et al., 2010).  If complexity thinking and 

simulation were applied to the decision-making process of, for example, California’s 

mandated statewide class-size reduction in 1996, the supply shortage of qualified teachers 

might have been considered a priori (Maroulis et al., 2010; Sklar, Davies, & Co, 2004).  

Similarly, the reactions of the states, schools, and teachers to the NCLB policy might 

have been simulated beforehand if complex systems tools were applied in the policy 

analysis. 

From the viewpoint of CASs, building an agent-based simulation model is the 

right way, or even the only way, to analyze the design of new educational interventions.  

As early as 2004, researchers attempted to construct agent-based models representing 

hierarchical educational systems for educational policy analysis (e.g., Sklar et al., 2004).  
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In 2008, Lemke and Sabelli began to define the conceptual framework of a complex 

education system model.  They argued that modelers should consider what levels of 

hierarchies to be included in the model (students, teachers, classrooms, schools, district, 

or up to states and central government), how these levels are related, the variables that 

may drive changes, and the scale of the model.  These considerations will guide the 

collection of data needed for model construction (Lemke and Sabelli, 2008).  As to the 

modeling tool, Lemke and Sabelli found ABM promising for the study of the dynamic 

changes in a complex education system.   

The above pioneering works do not seem to lead the trend toward agent-based 

educational research.  Up to today, the application of ABM to educational policy analysis 

is still in the exploratory stage, not to mention a fully calibrated agent-based educational 

model capable of real-world quantitative prediction.  The construction of an agent-based 

educational model capable of prediction requires multidisciplinary collaboration among 

educators, agent-based modelers, behavioral scientist, design economists, to name a few, 

and intensive feedbacks between data collection, testing, and simulation (Farmer & Foley, 

2009; Yu, 2015).  More efforts are needed to produce a full-fledged agent-based 

educational model.  This study contributes to the continuing efforts needed to realize that 

goal.   

Agent-Based Modeling  

ABM is a simulation approach characterized by modeling individual agents’ 

behaviors and interactions, from which, complex, dynamic macropatterns emerge 

(Axelrod, 2005; Gilbert, 2004; Macal & North; 2010).  In an agent-based model, the 
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aggregate phenomena “grow” from the individual agents’ interactions.  Therefore, ABM 

is a bottom-up modeling approach, in contrast to equation-based modeling approaches, 

such as computable general equilibrium modeling and systems dynamics, which model 

the macrostructures of a system directly without addressing too much of its 

microfoundation (Parunak, Savit, & Riolo, 1998).   

Epstein (1999) argued that ABM is a generative approach to social science.  ABM 

does not accept the law of excluded middle, which accepts a hypothesis as long as its 

negation is derived to be false.  To claim the existence of a linkage between a 

microspecification and a macroemergence, an agent-based modeler must generate the 

emergence from the microspecifications, or the modeler does not explain the emergence 

(Epstein, 1999).  A famous saying of Epstein (1999) is: “If you didn’t grow it, you didn’t 

explain its emergence” (p. 43).   

The logic behind Epstein’s claim that ABM is a generative approach is abduction 

(Richiardi, Leombruni, Saam, & Sonnessa, 2006).  Abduction is a type of logic 

introduced by Charles Sanders Peirce; different from deduction and induction, it is “the 

process of forming explanatory hypotheses” (as cited in Frankfrut, 1958, p. 593).  By 

generating a causal relationship between a set of input and outputs, ABM provides an 

explanatory hypothesis, which is to be verified by way of induction, with the aid of 

deduction (Frankfurt, 1958).  Without using the term “abduction”, Axelrod (1997) 

regarded agent-based simulation as the third way of doing science, different from 

deduction and induction.  Like deduction, agent-based simulations start from a rigorous 

set of assumptions.  However, unlike deduction, agent-based simulation is not to prove 
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theorems; instead, it is to produce data to be analyzed inductively (Axelrod, 1997).  

Unlike induction, the data generated by agent-based simulation is from a rigorous set of 

rules rather than empirical observations (Axelrod, 1997).  Therefore, the data generated 

from agent-based models will not have the problems of missing data or uncontrolled 

variables as happened in social science experiments and observations (Axelrod, 1997).   

The basic elements of an agent-based model are agents, agents’ interaction rules, 

and agents’ environment (Macal & North, 2010).  An agent is an identifiable autonomous 

individual situated in an environment where it interacts with other agents (Macal & 

North, 2010).  Each agent has a state consisting of its attributes, and its state may change 

over time.  Agents’ attributes may include, for example, gender, socioeconomic status, 

location, preference, performance score, ability to adapt (ability to change behavioral 

rules), and goals to achieve.  Agents can be heterogeneous in attributes and behaviors 

(Macal & North, 2010).   Additionally, agents are endowed with behavioral protocols and 

mechanisms to interact with other agents in their spatial neighborhoods or social 

networks.  Agents’ behavioral rules usually are rather simple, reflecting the behavioral 

patterns of humans, who mostly follow norms, habits, and protocols (Macy & Willer, 

2002).  Agents’ environment refers to the space where agents perform activities.  The 

environment may simply be used to tell the locations of the agents or may be constructed 

in a way to constrain agents’ actions (Macal & North, 2010).  Once an agent-based 

modeler programs the three elements, all the modeler needs to do is to execute the model, 

which generally runs in discrete time (in steps), and see how the observations emerge 
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from agents’ interactions (Axtell, 2000).  Figure 2 shows a conceptual example of an 

agent-based model in which the environment simply is used to show agents’ positions.  

 

Figure 2. A snapshot of an agent-based simulation in this study. The 10 rectangles 

represent the 10 schools.  The agents within each school are the newly admitted.  The 

agents below the rectangles (outside of the schools) are those who are unassigned to any 

school.     

Advantages of doing ABM  

ABM as a right tool for CASs. ABM is a right methodology to study complex 

systems and complex adaptive systems because its design embeds the features of these 

systems: heterogeneity, decentralization, explicit space, interactions, bounded rationality, 

and emergence (Borrill & Tesfatsion, 2011; Epstein, 1999; Macal & North, 2010).  As in 

the real world, agents can be heterogeneous in every attribute whether it is a character, 
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background, or decision rule.  There is no need to assume representative agent or to 

group agents into several homogeneous groups as in classical equation-based models or 

system dynamics.  All agents can be autonomous in making decisions without a central 

control although they may be constrained by social norms or institutions endogenously 

generated by agents’ interactions in earlier steps (Epstein, 1999; Macal & North, 2010).  

Agents interact with other agents according to their social networks that are explicitly 

presented in the computational environment (space) and may be changed endogenously 

when the artificial system evolves.  Agents do not need to be rational with full 

information or use optimizing strategy as assumed in equation-based models for 

mathematical tractability.  Agents can only have bounded information and bounded 

computing power as most people in the real world (Epstein, 1999; Macal & North, 2010).  

In an agent-based model, the macropatterns emerge from the interactions of individual 

agents.  Therefore, ABM allows researchers to link and map microbehaviors to 

macroperformance, which is a function difficult to achieve by equation-based models. 

(Chen, 2015; Epstein, 1999; Macal & North, 2010).   

Equation-based modeling focuses on equilibria while ABM allows researchers to 

collect and analyze the entire dynamical data in a process, not just equilibria if equilibria 

exist (Axtell, 2000).  Continuously changing and adapting is how a CAS survives; a CAS 

will soon move out of an equilibrium even if there is an equilibrium, or the CAS will 

probably die (Holland, 1992). Therefore, the focus of a CAS study shall be on dynamics 

rather than equilibria.  Although the approach of system dynamics is also used to handle 

the dynamics of a system, it is under the assumption that the system structure is fixed 
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(Schieritz & Milling, 2003).  Under system dynamics, adaptation is either unconsidered 

or assumed to have no effect on system structure (Schieritz & Milling, 2003).  On the 

contrary, ABM is flexible in handling adaptation either through learning at the individual 

level or through the reproduction of fitter individuals at the population level (Schieritz & 

Milling, 2003).   

ABM also can easily handle dynamic networks, both spatial and social, because 

networks (interaction topologies) are embedded in the programming of agent interactions 

(Macal & North, 2010).  On the other hand, equation-based models, including system 

dynamics, have difficulties reflecting the function of networks, not to mention network 

dynamics (Axtell, 2000).  Since the interactions in complex social systems are mostly 

non-linear, it is extremely difficult to deduce its emergences into equations, which makes 

ABM the only existent candidate to study global properties of complex social systems 

(Axelrod, 1997; Borrill & Tesfatsion, 2011; Macal & North, 2010).  Borrill and 

Tesfatsion (2011) further argued that it is not only impractical but also impossible 

theoretically to study social systems by using equation-based models because social 

systems are Wolfram’s Class 4 systems, which are computationally irreducible.  

Therefore, the only option to understand the macroproperties of social systems is to build 

and run agent-based models representing these systems and then observe the simulation 

results (Borrill & Tesfatsion, 2011).   

ABM as a complement to and an extension of human-subject experiments.  

ABM can also be viewed as a complement to human-subject experiments (Duffy, 2006).  

Experimenters face more constraints on what they can do than agent-based modelers 
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(Duffy, 2006).  For example, the cost and the size of the lab may constrain the number of 

human subjects in an experiment.  Another example is that human fatigue may limit the 

time length of an experiment.  That is why many agent-based models have been 

calibrated with the experimental data to understand the laboratory findings or to scale up 

the size of a human-subject experiment by, for example, increasing the number of 

artificial agents or the periods of treatment (Chen, 2015).  Nowadays, the findings in 

ABM even inspire experimenters to redesign their human-subject experiments so that 

they can examine the findings in ABM (Chen, 2015).  ABM allows researchers to lift the 

constraints in human-subject experiments and create an artificial system in which 

parameters and variables can be changed one at a time to build the causal relationships 

between microinputs and macrooutputs (Epstein, 2008; Montes, 2012).  These simulated 

causal relationships may not be available in literature yet and thus can serve as 

hypotheses for future data collection and empirical testing (Epstein, 2008; Montes, 2012).  

Therefore, ABM is not only a tool to represent or imitate a system based on experimental 

findings or other empirical data but also a methodology to discover new questions and 

new theories (Axelrod, 1997; Chen, 2015; Epstein, 2008).  Indeed, as argued by Cioffi-

Revilla (2013), the major scientific contribution of ABM is its ability to run 

computational experiments on complex social systems because too often, it is impossible 

to conduct human-subject experiments on the social systems of interest for either 

scientific research or policy analysis.  
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Limitation of ABM  

Although ABM is created to tackle the problems in CASs, it is not to say that 

agent-based models have better prediction power than classical models.  It is because we 

may not have enough knowledge to know how the agents in a CAS will adapt to changes 

and, in turn, affect the network and structure of the system (Hazy, 2012; Holland, 1992).  

Nevertheless, as George E. P. Box’s famous quote says “Essentially, all models are 

wrong, but some are useful” (Box & Draper, 1987, p. 424).  When there are significant 

uncertainties, ABM is much more flexible than equation-based modeling to perform 

scenario analysis and provide critical information needed to make policy decisions 

(Bankes, 1993; Lansing, 2002).     

Although each simulation run is sufficient to build the possible causal relationship 

between microspecification and macrostructure, one single run is not enough to answer 

the question about how robust the result is (Axtell, 2000).  Multiple runs of simulation 

with different initial settings and parameters are needed to test the robustness of the result, 

which takes a lot more computational power than analytical or numerical resolutions of 

equations (Axtell, 2000).  Fortunately, this problem has become manageable due to the 

rapid development of computer technology.  

Even when a microspecification in an agent-based model can “grow” the 

macropatterns of interest, the microspecification can only be viewed as one hypothetical 

explanation, because other microspecifications (individual behavioral rules) might also 

have the same explanatory power (Epstein, 1999).  How to find alternative 

microspecifications and determine the right explanation often challenges agent-based 
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modelers (Epstein, 1999).  Agent-based modelers usually need to collaborate with other 

researchers to conduct transdisciplinary research because ABM intrinsically needs to 

program the features of agents and their environments, which inevitably are multi-

disciplinary (Epstein, 1999).  Sometimes, it is challenging to establish an interdisciplinary 

research team.  However, agent-based research is not the only research that requires 

transdisciplinary collaboration.  Social science researchers have long called for 

interdisciplinary research because it is impossible to decompose human activities clearly 

into separate disciplines.  In comparison with other disciplines in social sciences, agent-

based social science naturally promotes interdisciplinary teamwork.     

Educational Equality  

Throughout human history, education has played a major role in determining an 

individual’s life chances (Green, 2011).  People with higher education tend to have more 

earnings, better health, and longer lives (Colclough, Kingdon, & Patrinos, 2010; Green, 

2011; Spasojevic, 2010).  Another worldwide phenomenon is that people born in families 

with higher socioeconomic status tend to have better educational performance than those 

born in families with lower socioeconomic status (OECD, 2010).  Family socioeconomic 

status, education, and personal well-being seem to be reciprocally related.  A general 

belief is that education, especially higher education, is the key to moving upward for 

most individuals (Attewell, 2010; Hojo & Oshio, 2012).  Therefore, when income 

disparity and health disparity are expanding globally in most countries, many scholars 

focus on the issue of educational inequality, in hopes of finding education policies that 

can eventually reduce the gap in well-being (Corak, 2013; Ortiz & Cummins, 2011).  
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The Organization for Economic Co-operation and Development (OECD, 2010) 

suggested three types of policies to ameliorate educational inequality: (a) additional 

assistance to lower-performing schools and students as well as disadvantaged students, 

(b) higher evaluation standards for all students, and (c) inclusion of all marginalized 

students in mainstream schools and regular classrooms.  As to which specific policies to 

apply, OECD admitted that it depends on the situation of each region.  Whether or not 

following OECD’s suggestions, the governments in different countries and regions have 

made various policies and reforms to tackle the problems of inequality of school quality 

and educational opportunity.  Examples are NCLB in the United States, HSEP in South 

Korea, and Taiwan’s 12-Year Education Reform.    

Whether reducing educational inequality will certainly result in reducing income 

and health inequality is questionable.  The reason is that the distribution of well-being is a 

complex phenomenon, emerging from the interacting influences of many factors, 

including the social, cultural, and economic structure of a labor market (Thompson & 

Simmons, 2013). For example, a meritocratic labor market where professional interns 

receive extremely low or no pay may scare students from middle- and poorer-class 

families away from pursuing those professional careers.  A labor market that does not 

have enough demand to absorb graduates from higher education will keep the graduates 

from finding the fitted jobs (Thompson & Simmons, 2013).  Societies desiring to tackle 

the problem of well-being inequality shall consider multifaceted interventions that are 

relatively more beneficial to lower-income families, alongside policies that reduce 

educational inequity (Corak, 2013).   
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In any case, educational achievement is a powerful driver of upward social 

mobility and intergenerational earning mobility (Attewell & Lavin, 2007).  To reduce the 

gap in well-being, policies reducing educational inequality undoubtedly play a significant 

role.  However, before the evaluation of a policy aiming at reducing educational 

inequality, the definition of educational equality and its measures must be determined.  

Unfortunately, there has not been a universal answer ever since the seminal survey 

Equality of Educational Opportunity by Coleman et al. (1996), commonly known as the 

Coleman Report.  Educational equality usually refers to equality of educational 

opportunity, which is a tradition inherited from the Coleman Report.  However, as 

explained by Coleman (1968), there is no single concept of equality of educational 

opportunity.  Moreover, because the global trend has shifted the responsibility of 

education to the public sector, the concept of educational opportunity is now intertwined 

with that of school quality.  Depending on researchers’ perspectives, the concepts of 

equality of educational opportunity and equality of school quality may be the same, 

enclaved in the other, or overlapping.  Even if the concepts can be clearly defined, their 

measures may not be able to fully capture the concepts.  The reasons include the 

involvement of many interacting factors, the long-lasting effects of schooling, the 

limitation of methodology, and the difficulties in collecting data (Borman & Dowling, 

2010; Jennings et al., 2015; Ladd & Loeb, 2013).  Because of the complexity of 

definition and difficulty in measurement, it is necessary for each study to state clearly the 

operational definitions of the concepts as well as their measures. 
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Equality of Educational Opportunity  

Originally, the US society perceived equality of educational opportunity as 

providing students with equal school resources (Coleman, 1968).  The idea has evolved 

to include the discussion of this issue from the effect side of school resources (Coleman, 

1968).  The Coleman Report provides five definitions of equality of educational 

opportunity to accommodate the different perspectives of this issue.  These five 

definitions are: (a) same tangible school inputs, such as per student expenditures and 

quality of teachers that can be measured quantitatively; (b) same student composition of 

schools; (c) same intangible school inputs, such as teacher’s morale, teacher’s 

expectation of students, and average student’s learning attitude; (d) same school results 

given the same student background and abilities; and (e) same school results given 

different student backgrounds and abilities (Coleman et al., 1966).  The former three are 

related to school input; the latter two, effects of schooling.  Coleman (1968) explained 

that there was no evidence to show that policies based on the definitions in (a) and (b) 

could improve school’s effects.  The definition in (c) does not offer where to stop and 

how relevant these factors are for school quality.  The definition in (e) is impossible to 

achieve by any policy unless children can be free from the influence of their unequal 

family environments (Coleman, 1968).  Therefore, the Coleman report focused on 

providing information related to the definition in (d).  However, Coleman (1968) also 

argued that if the focus of the policies is on the definition in (d), then the constant gap 

between different student groups would be considered acceptable, which again would not 
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be acceptable in a society where the purpose of schooling is to prevent the disadvantages 

in children’s family environments from impeding their achievements in adult life.  

Up to today, the definition of inequality of educational opportunity still depends 

on the purpose and limitation of a study; the same applies to the measure (Ladd & Lauen, 

2010).  Since the social trend is to hold schools responsible for reducing the impacts of 

family differences, most of the studies on inequality of educational opportunity focus on 

measuring the portion of student achievements accounted for by students’ family 

background (Ferreira & Gignoux, 2014).  If there is perfect equality in educational 

opportunity (that is, no achievement difference is caused by family background), then the 

mean achievements of students from all types of family backgrounds shall be the same 

(Ferreira & Gignoux, 2014).  The proxies for student achievements commonly used are 

regional or national test scores, Program for International Student Assessment (PISA) 

scores, the highest level of education attained, and earnings (e.g., Brunello, Fort, & 

Weber, 2009; Ferreira & Gignoux, 2014; Pfeffer, 2008).   

In this study, I defined equality of educational opportunity from the input point of 

view; that is, all junior high graduates have the same opportunity to attend any senior 

high school, regardless of their residences, backgrounds, or test scores.  This definition is 

in accord with the intention of Taiwan’s 12-Year Education Reform, which was to 

change the high school entrance system from ability tracking to mixing.  There is an 

equality of educational opportunity if the mean family income of the admitted students in 

each school is the same.   
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Equality of School Quality  

To discuss school quality is to discuss how much value a school can add to the 

well-being of a student, a community, or a country.  Since well-being is a property 

emerging from the interaction of many factors, how to measure a school’s value-added 

has long been an issue among scholars, especially when some benefits of schooling 

cannot be seen immediately.  The common proxies for school quality are measures of 

resources, measures of school process, and measures of student achievements, 

corresponding to the viewpoints of input, the effectiveness of the inputs, and the outcome 

of the inputs, respectively (Ladd & Loeb, 2013).  Spending per student, teacher-to-

student ratio, and teacher’s years of teaching or certification are examples of measures of 

resources.  However, the measurement of the quantities of resources cannot catch the 

quality and effectiveness of the resources because two schools with the same amount of 

resources may not have the same quality due to different resource processes (Ladd & 

Loeb, 2013).  Evaluation of teacher’s practice in a classroom is an example of measures 

of school process.  Nevertheless, the evaluation itself is difficult because it is costly and 

hard to standardize the evaluators’ rating practice (Ladd & Loeb, 2013).  Therefore, some 

researchers turn to student outcomes to measure school quality.  Student’s scores and 

educational attainment are examples of the measures of student outcomes.  This approach 

is not without problems because test score or educational attainment only represents a 

portion of contents learned in schools that will benefit student’s future life (Ladd & Loeb, 

2013).  Even if test score is a good indicator of student’s future outcome, it is still 
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difficult to calculate a specific portion of test result attributed to schooling even with 

today’s most sophisticated model (Ladd & Loeb, 2013). 

With all these criticisms in mind, when the discussion of school quality focuses 

on educational outcome, test score is still appropriate to be the proxy for school quality, 

even if it is not the best.  The reason is that test score reflects whether a student attains a 

specified outcome, which in this case is more important than whether the outcome is 

accurately attributed to schools (Ladd & Loeb, 2013).  However, it may not be practical 

to require schools to make every student have equal test performance because students’ 

performances also depend on their individual motivation, aptitude, and family influences 

(Ladd & Loeb; Tsai & Yang, 2015).  A more reasonable proxy for school quality is the 

average test score, which can also serve as an index for schools to examine their input 

efficiency and adequacy (Ladd & Loeb, 2013).  Therefore, in this study, I chose seniors’ 

average score in a school as the proxy for school quality.   

Factors Affecting Student Performance  

Student performance is a complex phenomenon, emerging from the interaction of 

many factors, including, but not limited to, student’s attitude and attributes, family 

background, teacher’s quality, school resources, and peer effect.  Due to the complexity 

of the interactions, it is not easy to find all of the influencing factors and their 

magnitudes, even after researchers’ tremendous efforts in this regard.  Additionally, 

methodology remains as an issue half a century after the Coleman Report, regardless of 

the advancement of statistical technologies.  What and how the factors affect student 

performance is still under debate.   
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The 1966 Coleman report’s main finding was that after controlling students’ 

socioeconomic status, schools contribute little to the difference in student performance, 

although schools do have different effects on students with different socioeconomic 

statuses (Coleman et al., 1966).  The most influential school factor is peers.  

Disadvantaged students benefit more from being mixed with peers having strong 

educational supports while advantaged students’ performance is hardly affected by peers 

with lower socioeconomic statuses (Coleman et al., 1966).  Teacher’s quality also has 

some effects, but the effects are more on disadvantaged students than on advantaged 

students (Coleman et al., 1966).  Over the decades, these findings are still largely 

supported by voluminous empirical studies (Burke & Sass, 2013; Dearden, Ferri, & 

Meghir, 2002; Hanushek, 1989; Jennings et al., 2015).  However, the findings on the size 

of peer effect across different ability groups are mixed.  Burke and Sass (2013) argued 

that the loss experienced by higher performing students in a class with an increased 

percentage of very low-performing peers is more than the gain received by a very low-

performing student in a class with an increased percentage of high-performing peers.  On 

the other hand, Carman and Zhang (2012) found that peer effect is significant on middle-

performing students but insignificant on students at both ends.  

The empirical findings on the factors influencing Asian students’ performance 

also largely conform with those of the Coleman Report.  Using the data from the 2007 

Trends in International Mathematics and Science Study (TIMSS), Hojo and Oshio (2012) 

showed that individual and family factors are the keys to student’s performance in the top 

5 mathematics-performing Asian countries (Taiwan, South Korea, Singapore, Hong 
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Kong, and Japan).  School resources have very limited impact, but peer effect, measured 

by the average peer scores, has a significant influence on student performance, which 

implies that ability-sorting will further improve the performance of higher-performing 

students and exacerbate the inequality of educational outcomes (Hojo & Oshio, 2012).  

By investigating the science achievement of the 8th-grade students in Taiwan, Tsai and 

Yang (2015) again confirmed the significance of family and individual factors on student 

performance; as to school-level factors, while school ethos contributes to student 

performance significantly, school resources play a little role.  Using the 2006 PISA Hong 

Kong sample for their research, Sun, Bradley, and Akers (2012) also confirmed the 

significance of the individual and family factors.  As to the school factors, Sun et al. 

(2012) argued that the socioeconomic status composition of the student body and the 

length of instruction time both contribute to the variance of science performance among 

the 15-year-old students in Hong Kong.  Sun et al. (2012) did not measure peer effect 

directly.  However, they argued that the significance of the student socioeconomic status 

composition of a school implies the significance of peer effect because socioeconomic 

status and peer performance are positively and highly correlated (Sun et al. 2012).     

Although most empirical studies worldwide have shown that school factors have 

much less influence on student performance than individual and family factors, many 

educators still believe in the power of school education to reduce socioeconomic 

inequality.  As argued by Hojo and Oshio (2012), the findings could only be interpreted 

as the inefficiency of the current schemes for school education; they did not mean that 

school education could not be improved.  Other scholars argued that test score, as used in 
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most studies, cannot fully reflect the impact of school education on students’ future well-

being; other measures must be used to have a better understanding of the effect of school 

education (Dearden et al., 2002; Jennings & Sohn, 2014).  

Regardless of the mixed opinions about the overall school effect, the statement 

that peers influence a student’s performance is generally accepted in the literature.  

However, how the peers influence student performance or what the process of peer effect 

is cannot easily be seen through statistical regression, which is mostly used to study peer 

effect.  Lomi, Snijders, Steglich, and Torlo (2011) argued that students tend to have a 

performance similar to the average performance of their friends.  Therefore, Salgado et 

al. (2014) assumed that peer effect is through networks; they further assumed that 

students form networks based on how much they can tolerate the differences in 

performance, gender, and family background (represented by father’s occupation in their 

model).  They then used an agent-based model to simulate students’ fifth-grade math 

scores based on their actual third-grade math scores to find the best-fit parameters of the 

three variables. They found that across the 22 schools in their data, students all had high 

tolerance towards performance difference; what made the network formation mechanisms 

different between schools were the different levels of tolerance in gender and family 

background.  Their simulated parameters could generate students’ fifth-grade math scores 

with 90% accuracy, which indicates that network is a candidate explanation of how peer 

effect works (Salgado et al., 2014).  

Educational institutions may also have effects on student performance.  Compared 

to comprehensive education, tracking (sorting students into academic or vocational 
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tracks) in secondary schools magnifies inequality in performance by family background 

(Ferreira & Gignoux, 2014; Van de Werfhorst & Mijs, 2010).  Tracking may further 

increase future socioeconomic differences if those who attend vocational schools have 

less chance or tendency to receive tertiary education (Ferreira & Gignoux, 2014; Van de 

Werfhorst & Mijs, 2010).  In Taiwan, students in secondary schools were mainly tracked 

by test scores.  Since Taiwan students’ scores are positively correlated with their 

socioeconomic statuses, tracking by test scores largely resulted in a sorting of students by 

socioeconomic status (Liu & Chen, 2010).  Ferreira and Gignoux (2014) also suspected a 

strong relationship between the tracking and high inequality in math performance in 

Taiwan.  These empirical studies support the intention of Taiwan’s 12-Year Education 

Reform to change the system from tracking to mixing.  

School Choices  

School choice is a concept initially discussed in Milton Friedman’s (1955) 

seminal article “The Role of Government in Education.”  Friedman argued that the 

governmental action of administering or operating educational institutions is not justified, 

even though the governmental action of financing the primary and secondary education 

and requiring all educational institutions to meet minimum quality standards is justified.  

Friedman (1955) believed that parents should have the freedom to send their children to 

the schools that meet their needs; school vouchers can achieve this objective by 

increasing the variety and quality of educational institutions through inter-school 

competition for students.   Nowadays, in addition to school vouchers, various designs of 

school choices have emerged, including charter schools, open enrollment, education 
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savings accounts, tax-credit scholarships, and individual tax credits and deductions 

(Cunningham, 2013).   

Advocates of school choices argued that school choices help mitigate socio-

economic segregation between schools (Pathak, 2011).  Under the traditional 

neighborhood school system, only the rich can afford to live in the neighborhood of 

better schools, and better schools tend to attract richer people and further contribute to the 

rising of the neighboring housing prices.  With school choices, better schools are no 

longer the privilege of the rich, and thus a society with less educational inequality can be 

achieved (Pathak, 2011).  However, the discussion about whether and how to implement 

school choices has never stopped because the empirical studies have mixed conclusions 

about the benefits of school choices claimed by the advocates (Musset, 2012).  Taking 

open enrollment as an example, by analyzing the data from a lower-income urban school 

district, Hastings, Neilson, and Zimmerman (2012) found that open enrollment improves 

participants’ test scores significantly.  On the other hand, Choi and Hwang (2014) 

analyzed the empirical data of test scores after the implementation of open enrollment 

policy in Seoul, Korea, 2010 and found that those exercised school choices and enrolled 

in private schools experienced a significant improvement in scores but at the cost of score 

deterioration among students who remained in public schools.  Since the overall average 

score did not change, Choi and Hwang (2014) argued that what school choice brings 

about is not productivity enhancement through competition as claimed by the advocates 

but private schools’ cream-skimming better-performing students from public schools.   
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Another example of school choice is voucher systems.  Wolf et al. (2013) 

examined student graduation rate and performance under Washington DC’s school 

voucher program and concluded that voucher participants who attend private schools 

have higher graduation rate but no higher performance, except reading, than their 

counterparts in public schools.  Lindbom (2010) reviewed the empirical studies on the 

impacts of government-funded private schools, mostly established after the 1990s’ 

Swedish large-scale voucher reform, and concluded that Sweden experiences marginal 

positive effect of school choice on student performance and limited negative effect on 

segregation, after controlling the effect of residential segregation.  However, Lindbom 

(2010) could not rule out the possibility that the much higher residential segregation 

experienced in Sweden after the school voucher reform was indeed caused by the new 

voucher system.       

After reviewing the studies published in the 2000s, Musset (2012) summarized 

the effects of school choices as follows: (a) there is only weak or no correlation between 

school choices and student performance; and (b) there is a positive correlation between 

school choices and student segregation in terms of socioeconomic status and academic 

performance.  Nevertheless, Lindbom (2010) argued that it is dangerous to generalize the 

findings of school-choice effect because the impact of a school-choice program is 

context-dependent; the success of school choices highly depends on their forms, sizes, 

implementations, and social environments.  Regardless of the effect of school choices, 

many societies worldwide, including the Taipei School District, recognize students’ 
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rights to choose their own schools and provide students with various forms of school 

choices.    

Factors influencing School Choice Decisions  

Researchers also have different opinions about the factors influencing parents’ 

and students’ school choice decisions.  A key premise underpinning the idea that school 

choice helps improve student performance and educational equity is that academic 

performance is the main determinant of all parents’ school-choice decisions (Musset, 

2012; Burgess, Greaves, Vignoles, & Wilson, 2014).  However, empirical data showed 

that advantaged parents are more likely than disadvantaged parents to exercise school 

choices, which suggests the possibility of heterogeneous factors that influence school-

choice decisions (Musset, 2012).  Researchers have found that in choosing schools, 

parents consider not only academic performance but also travel distance and school 

socioeconomic composition (Burgess et al., 2014; Musset, 2012).  On the one hand, 

Burgess et al. (2014) argued that although less affluent parents weigh distance a little 

higher than more affluent parents, generally speaking, all parents’ consideration priorities 

are similar: high academic performance, school socioeconomic composition with less 

poor student percentage, and distance.  On the other hand, Dronkers and Avram (2010) 

made a cross-national analysis and argued that students (parents) in different countries 

have different considerations in choosing schools; some even weigh religious, ethnic, and 

socioeconomic factors over performance.   

The mixed findings in the empirical studies on the impact of school choice and 

the factors influencing students’ school choices reflect the complexity of educational 
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systems and the heterogeneity in constituent agents’ decision rules.  How students are 

admitted depends not only on how students make their school choices but also on the 

implemented matching mechanism.  A change in matching mechanism will also change 

students’ strategies in making school choices.  These complex and adaptive interactions 

among constituents and institutions make classical reductionist techniques hard to study 

the effects of school choices.  The agent-based approach used in this study provides a 

new way to study complex school choice effects.   

Factors considered by students in Taiwan.  Taiwan students consider both 

school quality and transportation cost, in importance order, in making their high school 

choices (Chang, 2011; Chen, 2007).  However, middle- and low-performing students give 

more consideration to transportation cost than higher-performing students (Chang, 2011).  

The reason may be that Taiwan students are prioritized by schools mainly based on their 

academic performance in the admission process; when students feel that their academic 

performance is so low that only low-quality schools will admit them, school quality no 

longer matters and distance becomes relatively important (Chang, 2011).  Chang’s (2011) 

argument could be inferred that Taiwan students have similar preferences for high-quality 

schools but prefer nearby low-quality schools to far-away low-quality schools.  Tuition is 

a factor of school choice only among low-income students (Chen, 2007).  I referred to the 

above findings to design students’ school preferences and school-choice rules in this 

model. 
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Matching Mechanisms 

The core of school-choice designs is matching mechanism (assignment 

procedure), which determines how to assign students to schools.  Matching mechanisms 

have long interested mathematicians and economists because they are essential to a well-

functioning market (Roth, 2002).  When a free market fails to produce a satisfying 

matching result, a centralized clearinghouse is usually established to implement the 

matching procedures, such as the establishment of the National Resident Matching 

Program in 1952 to solve the problem of matching medical interns to hospitals (Roth, 

2008; Roth & Peranson, 1999).  The matching mechanisms in school choice programs 

have also received researchers’ wide attention since the pioneering work of 

Abdulkadiroglu and Sonmez (2003).   Abdulkadiroglu and Sonmez (2003)’s discussion 

of student assignment mechanisms led to a series of school-choice mechanism reforms, 

such as New York City’s 2003 reform and Boston’s 2005 reform (Pathak, 2011).  The 

2003 reform in New York City (NYC) successfully reduced the percentage of students 

not being assigned to a school in their choice lists from 30% to 3% (Zweifel, 2009).  

Since the matching mechanism in an admission policy is critical to the policy’s success, it 

is important to have a clear understanding of how the matching mechanism implemented 

in an admission system works.  

A matching mechanism can be one-sided (either the demand side or the supply 

side) or two-sided (Pathak, 2011).  In a one-sided mechanism, the matching is determined 

according to the preferences and rankings (order of choices) of the agents on the 

autonomous side, while the agents on the other side are only objects (Pathak, 2011).  In a 
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two-sided mechanism, agents in both sides are autonomous and can have their own 

preferences and rankings, even though some agents’ priorities may be controlled by law; 

for example, schools may be required by law to have special treatments for disadvantaged 

students and reserved seats for students within the walk zone (Abdulkadiroglu & 

Sonmez, 2003; Pathak, 2011).  It is not unusual for both types of mechanisms to coexist 

in a school-student matching system.   

In literature, the following three criteria usually are used to evaluate a matching 

mechanism: Pareto efficiency, stability, and strategy-proofness (or strategy immunity).   

Pareto efficiency in school choice usually is defined from the perspective of students’ 

welfare as follows:  Pareto efficiency is reached when it is impossible to assign a student 

to his or her more preferred school without assigning another student to his or her less 

preferred school (Abdulkadiroglu & Sonmez, 2003).  Stability is to pair a student and a 

school in a way that no students and schools that are not paired prefer to be paired with 

each other; that is, there is no blocking pair (Gale & Shapley, 1962; Roth, 2008).   A 

stable matching algorithm will assign a student to his or her preferred school before 

assigning those who have lower priorities than this student to the same school; that is, a 

stable matching algorithm eliminates justified envy (Abdulkadiroglu & Sonmez, 2003).  

Capable students tend to play complicated ranking games when they feel that, if they do 

not rank higher their less preferred schools in which they have higher priorities, they may 

waste their top choices and end up of being assigned to even worse schools 

(Abdulkadiroglu & Sonmez, 2003).  A matching mechanism is strategy-proof if students’ 

best strategy to choose schools is to rank the schools according to their true preferences 
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(Roth, 2008).  These three criteria, Pareto efficiency, stability, and strategy-proofness, 

may not be compatible.  A stable algorithm may not be a Pareto-efficient one and vice 

versa; stability or Pareto-efficiency does not equal strategy-proofness either 

(Abdulkadiroglu & Sonmez, 2003; Roth, 2008).  The empirical evidences show that 

stability is critical to the success of a matching policy (Roth, 2008).  However, in 

practice, policymakers usually have other considerations and do not always choose a 

stable mechanism.  The Taipei mechanism is an example.   

In the following paragraphs, I discuss six matching mechanisms: serial 

dictatorship, deferred acceptance, the Boston mechanism, top trading cycles, the Chinese 

parallel mechanism, and the Taipei mechanism.  The first four are widely discussed in the 

literature.  The Chinese parallel mechanism is a matching mechanism used to be adopted 

by many Chinese provinces and municipalities to admit university students.  The Taipei 

mechanism is the one adopted by the Taipei School District in 2016.       

Serial Dictatorship  

Under this mechanism, the student with the top priority receives his or her top 

choice, the student with the second priority receives his or her top choice among the 

schools that still have seats, and so on (Pathak, 2011).  I demonstrate this mechanism in 

the following example. 

Example 1. There are 4 students, S = {s1, s2, s3, s4} and 3 schools, C = {c1, c2, 

c3}.  Every school has 1 seat and prioritizes the students in the following order: s1⪰ s2 ⪰ 

s3  ⪰ s4, where the symbol ⪰ means “superior to”.  The students’ school choices are as 

follows: 
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s1: c1 ≻ c2 ≻ c3,   

s2: c1 ≻ c2 ≻ c3,   

s3: c2 ≻ c1 ≻ c3,   

s4: c2 ≻ c3 ≻ c1. 

The symbol ≻ means “preferred to.”    Under serial dictatorship, Student s1 has the first 

right of choice and receives her first choice, School c1.  Then, s2 has the right of choice 

and receives her second choice, c2, since c1 has no more empty seat.  Next, s3 receives 

her third choice, c3, while s4 is rejected by all schools because there is no more empty 

seat remained in the system.  The matching result, MSD, is presented as below: 

 MSD =   ( s1 s2 s3 s4 ). c1 c2 c3 --  
 

Serial dictatorship is considered strategy-proof (manipulation-free) and Pareto 

efficient; it is stable only when the school agents prioritize the students in the same way 

(Abdulkadiroglu & Sonmez, 2003; Pathak, 2011).  This mechanism was chosen for 

Chicago’s selective high schools admission reform in 2009 (Pathak & Sonmez, 2013).  

However, the number of choices a student could make in this reform was less than the 

number of participating schools, which made this mechanism subject to strategy 

manipulation (Pathak & Sonmez, 2013).    

Deferred Acceptance 

The school-student matching mechanism adopted by NYC and Boston in the 

2000s was a stable mechanism design called student-proposing deferred-acceptance 

algorithm (Roth, 2008).   This mechanism is a version of deferred acceptance originally 
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published by Gale and Shapley (1962).  In this mechanism, students are temporarily 

assigned to their first-choice schools, and the schools temporarily accept them according 

to the priority order of the students in the schools up to the schools’ capacities.  Those 

who are rejected by their first-choice schools are assigned to their next-choice schools, 

and the schools reselect among the previously accepted students and the newly assigned 

students according to their priority orders. This process continues until all students 

exhaust their choice lists (Pathak, 2011).  Example 2 explains this algorithm. 

Example 2. The conditions here are the same as in Example 1.  The process is as 

follows: 

Step 1: All students are temporarily assigned to their first choices.  The schools 

temporarily accept those with the highest priorities and reject the rest.  Therefore, c1 

temporarily accepts s1 and rejects s2; c2 temporarily accepts s3 and rejects s4.   

MDA1 =   ( s1 s2 s3 s4 ). c1 -- c2 --  
 
Step 2: Those who are not assigned go to their second choice.  Each school 

compares the priories of the students assigned to it in step 1 and step 2, temporarily 

accepts those with the highest priorities and reject the rest. Therefore, s2 goes to c2 and 

s4 goes to c3.  Since s2 has higher priority than s3, c2 accepts s2 and rejects s3.  Since s4 

is the only student assigned to c3, s4 stays in c3. 

MDA2 =   ( s1 s2 s3 s4 ). c1 c2 -- c3  
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Step 3: The student who has not been assigned in this step is s3.  So, s3 goes to 

his next choice, c1.  Since s1 has higher priority than s3, c1 keeps s1 and rejects s3.  

Therefore, the assignments remain the same as MDA2. 

Step 4: Now s3 goes to his next choice, c3.  Since s3 has higher priority than s4, 

School c3 accepts s3 and rejects s4. 

MDA4 =   ( s1 s2 s3 s4 ). c1 c2 c3 --  
 
Step 5: The student who has not been assigned in this step is s4.  So, s4 goes to 

his next choice, c1.  Since s1, the student who is currently assigned to c1, has higher 

priority than s4, s4 is rejected by c1.  The process ends here because s4 exhausts his 

choice lists.   

MDA =   ( s1 s2 s3 s4 ). c1 c2 c3 --  
 

The above MSD is the same as MDA because the students have the same prioritized 

orders in all schools in the above two examples.  That is, when all schools prioritize 

students in the same way and the number of choices is not limited, deferred acceptance is, 

in fact, the same as serial dictatorship (Chen et al., 2015; Pathak, 2011).  Deferred 

acceptance is stable and eliminates justified envy.  It is also strategy-proof as long as the 

number of students’ choices are not limited.  Because of these advantages, deferred 

acceptance is the most popular mechanism in school-choice reforms (Chen et al., 2015).       
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The Boston Mechanism 

The Boston mechanism refers to the mechanism adopted by the Boston city 

before the 2005 reform (Abdulkadiroglu et al., 2005).  While deferred acceptance and 

serial dictatorship emphasize student’s performance, the Boston mechanism emphasizes 

student’s choice.  This mechanism works as follows.  First, each school considers only 

those students who list it as their top choice and assigns seats to the students according to 

their priority orders until no more space left or no more students left.  Second, each 

school that still has space considers those unassigned students who list it as their second 

choice and accepts the students in the same way as in the first step.  This process 

continues until no school has any seat left or all students have been assigned (Pathak & 

Sonmez, 2013).  The acceptance in each step is final.   Example 3 explains this 

mechanism. 

Example 3. The conditions here are the same as in Example 1.  The process is as 

follows. 

Step 1: All students are assigned to their first choices.  Since each school has only 

one seat, each school accepts the student with the highest priority in that school and 

rejects the rest.  Therefore, c1 accepts s1 and rejects s2; c2 accepts s3 and rejects s4.  The 

acceptance is final.   

MBM1 =   ( s1 s2 s3 s4 ). c1 -- c2 --  
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Step 2: s2 and s4 go to their second choices, c2, and c3, respectively.  Since c2 is 

full, s2 remains unassigned.  The assignment of s4 to c3 is final.  Since no more seat is 

left, the process stops here.  

MBM =   ( s1 s2 s3 s4 ). c1 -- c2 c3  
 
Under the Boston mechanism, it is possible that if students do not list a school as 

their top choice, they will lose the seat in that school to a student with lower priority.  

That is, the Boston mechanism easily creates justified envy.  Often, students must 

manipulate their submitted choices in a way different from their true preferences to 

secure places in the schools that they like more.  Therefore, the Boston mechanism is 

neither strategy-proof nor stable (Chen et al., 2015).  Nevertheless, even though it is 

heavily criticized for its strategy complexity and creation of justified envy, the Boston 

mechanism and its similar versions are still widely used in school admissions (Chen et 

al., 2015).  In China, the traditional college admission mechanism (the sequential 

mechanism) is equivalent to the Boston mechanism; a newer mechanism called the 

Chinese parallel mechanism adopted to replace the sequential mechanism by many 

provinces still has the attributes of the Boston mechanism in its design (Chen et al., 

2015).   

The Boston mechanism may not be efficient when students manipulate their 

choices (Chen et al., 2015).  However, when students have very similar ordinal 

preferences and schools have coarse or no priorities over students, the Boston mechanism 

may be more Pareto-efficient than deferred acceptance in ex-ante welfare 
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(Abdulkadiroglu, Che, & Yasuda, 2011).  Therefore, Abdulkadiroglu et al. (2011) 

suggested that governments reconsider their decision on switching the Boston mechanism 

to deferred acceptance because justified envy for better-performing students means more 

chances for low-prioritized students, who are usually disadvantaged students, to attend 

better schools.    

Top Trading Cycles 

The mechanism of top trading cycles was attributed to David Gale by Shapley and 

Scarf (1974).  Abdulkadiroglu and Sonmez (2003) were the first to apply this mechanism 

to school-choice design.  This mechanism works as follows.  Each student points to his or 

her top choice, and each school points to its top-priority student.  This process will form 

at least one cycle.  The students in the cycle are assigned to the schools that they point to 

and leave the process.  Each remaining student points to his or her next choice, and each 

school that still has space points to the remaining student who has the highest priority in 

that school.  Also, there is at least a cycle, and the students in the cycle are assigned to the 

schools to which they point.  This process ends when all students are assigned, all schools 

have exhausted space, or all students have used up their choice lists.  The top trading 

cycles mechanism is considered Pareto efficient and strategy-proof, but not stable 

(Abdulkadiroglu & Sonmez, 2003).  This mechanism has been widely discussed in the 

literature since its first introduction in 2003.  However, it was not implemented in any 

real-world school system until 2012 by New Orleans’s Recovery School District 

(Vanacore, 2012).  Example 4 shows how this mechanism works.  
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Example 4. There are 3 students, S = {s1, s2, s3} and 3 schools, C = {c1, c2, c3}.  

Each school has only one seat.  The students’ school-choice lists are:  

s1: c2 ≻ c1 ≻ c3,   

s2: c1 ≻ c2 ≻ c3,  

s3: c1 ≻ c2 ≻ c3. 

The students’ priorities in each school are: 

c1: s1 ⪰ s3 ⪰ s2,  

c2: s2 ⪰ s1 ⪰ s3,  

c3: s3 ⪰ s1 ⪰ s2. 

Step 1: s1 points to c2, his top choice; c2 points to s2, its top priority student; s2 

points to c1; c1 points to s1.  Now the first cycle is formed as shown in Figure 3 (left 

cycle), and Students s1 and s2 are assigned to Schools c2 and c1 respectively.  

MTTC1 =   ( s1 s2 s3 ). c2 c1 -- 
 

Step 2: s3, who has not been assigned, points to his next choice that still has seats, 

which is c3; c3 points to his top priority student who has not been assigned, s3.  Now the 

second cycle is formed as shown in Figure 3 (right cycle).  Since all students are 

assigned, the process ends here.  

MTTC =   ( s1 s2 s3 ). c2 c1 c3 
 



75 
 

 

 

Figure 3. Top trading cycles explained in Example 4.  The left cycle is formed in Step 1; 

the right cycle is formed in Step 2.   

The Chinese Parallel Mechanism  

Before 2003, all provinces and municipalities in China used the Boston 

mechanism to admit university students (Chen et al., 2015; Zhu, 2014).  As in other 

places where the Boston mechanism is adopted, many Chinese parents complained about 

justified envy, and media never stopped reporting the news that some elite students were 

unadmitted simply because of the way they ranked their choices (Zhu, 2014).  Therefore, 

more and more provinces and municipalities changed their matching mechanism from the 

Boston mechanism to the parallel choice algorithm, or the Chinese parallel mechanism as 

named in the literature, to alleviate the problem of justified envy.   

The feature of the Chinese parallel mechanism is to insert deferred acceptance (or 

serial dictatorship since all Chinese universities prioritize students in the same way) into 

the Boston mechanism.  Under the Chinese parallel mechanism, each choice in the 

Boston mechanism becomes a class of choices with several choices within each class.  

For example, the Chinese parallel mechanism used in Beijing’s 2014 university 
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admission process had two classes of choices: Class 1 and Class 2.  Students were 

allowed to submit two choices in Class 1 and three choices in Class 2.  Deferred 

acceptance (or serial dictatorship) is employed within each class while the Boston 

mechanism is implemented between the classes.  Choices within the same class are 

considered parallel, and thus this mechanism is named the parallel choice algorithm.  The 

following is an example of the Chinese parallel mechanism. 

Example 5. There are 4 students, S = {s1, s2, s3, s4} and 4 schools, C = {c1, c2, 

c3, c4}.  Every school has one seat and prioritizes the students in the same way as 

follows: s1⪰ s2 ⪰ s3 ⪰ s4.  Each student is allowed to have two choices in Class 1 and 

one choice in Class 2. The students’ school choices are as follows. 

s1: (c1 ≻ c2), c3; 

s2: (c1 ≻ c2), c3; 

s3: (c2 ≻ c1), c3; 

s4: (c2 ≻ c3), c1. 

Step 1: Deferred acceptance is applied to the choices in Class 1.  s1 goes to his top 

choice in Class 1, which is c1. s2 goes to c2.  Since the schools listed in s3’s Class 1 are 

full, s3 is not assigned.  s4 goes to c3.  Because all students run out of their Class 1 

choices, the process for Class 1 ends here, and the assignments are final.  

MCP1 =   ( s1 s2 s3 s4 ). c1 c2 -- c3  
 
Step 2: Those who remain unassigned after the process for Class 1 go to the 

process for Class 2.   In this example, only Student s3 has not been assigned.  The choice 
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of Student s3 in Class 2 is School c3.  However, c3 has no seat left.  Therefore s3 is 

rejected by c3.  Since all choices in all classes have been processed, the whole process 

stops here.  The final assignment for the four students is the same as in MCP1:  

MCP =   ( s1 s2 s3 s4 ). c1 c2 -- c3  
 
According to the experimental results, Chen et al. (2015) argued that the 

performance of the Chinese parallel mechanism lies between those of deferred 

acceptance and the Boston mechanism in terms of stability and manipulability.  Students 

are most likely to use strategies under the Boston mechanism, followed by the Chinese 

parallel mechanism and then deferred acceptance.  Deferred acceptance is more stable 

than the Chinese parallel mechanism, and the Chinese parallel mechanism is more stable 

than the Boston mechanism (Chen et al., 2015).  The Chinese parallel mechanism can 

become the Boston mechanism if only one choice is allowed in each class.  The Chinese 

parallel mechanism can also become deferred acceptance if all choices allowed are in 

Class 1.  

The empirical data show that the Chinese parallel mechanism indeed reduces 

justified envy in China.  However, some scholars criticized that the shift from 

emphasizing choices to emphasizing test scores in the matching process gives students 

even more study pressure to have better test scores and causes students to focus only on 

high-stakes subjects, which jeopardizes a balanced learning (Xin, 2008).  This 

mechanism also caused some lower-ranked universities but with highly praised special 

programs hard to find good students for those special programs (Xin, 2008).  The Chinese 
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government has decided to reform university admission system again in 2017 to tackle 

these problems but insisted in upholding the policy of transforming all university 

matching mechanisms to deferred acceptance nationwide (State Council, 2014).   

The Taipei Mechanism  

I named the 2016 admission mechanism adopted by the Taipei School District the 

Taipei mechanism.  There are two major features in this mechanism.  The first is the 

inclusion of the spirit of the Boston mechanism in deferred acceptance by assigning 

points to each student’s choice and adding this “choice score” to the composite score, 

which is used by each school to prioritize students.  36 points are assigned to student’s 

first five choices; 35, the sixth to the tenth choices; 34, the eleventh to the fifteenth 

choices; 33, the sixteenth to the twentieth choices; 32, the twenty-first to the thirtieth 

choices.  No points will be assigned after the 30th choices.  Whether or not achievable, 

the intent of this design was to encourage students to focus on their own interests rather 

than blindly follow school ranks. This feature was more salient in its original 2014 

design.  In 2014, the point was decreased per each consecutive choice; 30 points were 

assigned to the first choice; 29, the second, and so on.  In 2015, it was revised to assign 

decreasing points to each consecutive group of choices to mitigate many parents’ 

objections to the gaming feature embedded in this design (School Year 104's Committee 

for Exam-free Admission to Taipei District Senior High School (CEFA), 2015).  The 

second feature is to convert students’ raw scores to coarse-grained scores.  This design of 

blurring scores aims at reducing students’ study pressure under the assumption that 

students care about every point of grade; the less distinctive the grade is, the less pressure 
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students have.  Under this design, a student’s raw exam scores (1-100 percentage scores 

from the Comprehensive Assessment Program for Junior High Students) are converted to 

7-scale scores.  A rough conversion from 1-100 percentage score to 1-7 scale score is 

shown in Table 1.   

Table 1 

Conversion of Raw Score to 7-Scale Score under the Taipei Mechanism  

 Raw score = x 
 

 x < 41 41 ≤ x < 
61 

61 ≤ x < 
71 
 

71 ≤ x < 
84 
 

84 ≤ x < 
90 
 

90 ≤ x < 
94 
 

x ≥ 94 

7-scale 
score 

1 2 3 
 

4 5 6 7 

Note. The conversion is approximate to the average conversion rate of all subjects 

calculated based on the press release issued by Research Center for Psychological and 

Educational Testing (RCPET, 2015).   

Under the Taipei mechanism, a school prioritizes students based on their 

composite scores.  The composite score is the sum of the scores of the following three 

categories: tests, school choice, and diversity learning (Taipei City Government 

Department of Education, 2015).  Each student has to take the tests administered by 

Taipei’s Comprehensive Assessment Program for Junior High Students.  There are six 

tests in the program: Chinese, mathematics, English, sociology, science, and Chinese 

composition.  All tests are measured on the scale of 1-7 as illustrated in Table 1, except 

that Chinese composition is measured on the scale of 0-1 (0.1, 0.2, 0.4, 0.6, 0.8, and 1).  

Hence, the maximum score a student can receive is 36 in this category.  As illustrated in 
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the previous paragraph, the maximum choice score is also 36.  The diversity learning 

score refers to student’s performance in art, physical education, and community service.  

A student can also receive a maximum of 36 points in this category.  Therefore, the 

maximum composite score a student can receive is 108.  If a tie happens in the 

prioritization process, the following scores are compared in a consecutive order to break 

the tie: (1) the diversity learning score, (2) the total test score, (3) the choice score, (4) 

Chinese test score, (5) math test score, (6) English test score, (7) sociology test score, (8) 

science test score, and (9) Chinese composition score.  Once students are prioritized in 

each school, deferred acceptance is employed to allocate students to schools (Taipei City 

Government Department of Education, 2015).  Example 6 explains the features of the 

Taipei mechanism in a simplified version. 

Example 6. There are 4 students, S = {s1, s2, s3, s4} and 4 schools, C = {c1, c2, 

c3, c4}.  36 points are assigned to students’ first choice; 35, the second; 34, the third; 33, 

the fourth. Every school has one seat.  Table 2 shows the students’ raw exam scores, 

converted 7-scale scores, diversity-learning score, and their school choices.       

Student s1’s composite score in School c1 is 78 (7 for the 7-scale score + 35 for 

the diversity learning score + 36 for the choice score); s1’s composite score is decreased 

by 1 in each consecutive choice of schools.  Table 2 shows each student’s composite 

score and priority in each school. 
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Table 2 

Example 6 - Student’s raw exam score, converted 7-scale score, diversity-learning score, 

and school choices   

Student Raw exam 
score 

7-scale 
score 

Diversity- 
learning score 

School choices 

s1 95 7 35 c1 ≻ c2 ≻ c3≻ c4 

s2 93 6 35 c1 ≻ c2 ≻ c3≻ c4 

s3 85 5 36 c1 ≻ c3 ≻ c2≻ c4 

s4 75 4 36 c3 ≻ c4 ≻ c2≻ c1 

  
Table 3 

Example 6 – Student’s total score and rank in each school 

 Composite score  
 s1 s2 s3 s4 Student’s ranking 
c1 78 77 77 73 s1 ⪰ s3 ⪰ s2⪰ s4 

c2 77 76 75 74 s1 ⪰ s2 ⪰ s3⪰ s4 

c3 76 75 76 76 s3 ⪰ s4 ⪰ s1⪰ s2 

c4 75 74 74 75 s4 ⪰ s1 ⪰ s3⪰ s2 

 

In Schools c1 and c4, although s2 and s3 have the same composite score, s3 is 

prioritized higher than s2 because s3 has a higher diversity-learning score than s2.  

Similarly, s4 is ranked higher than s1 in School c4 because s4 has higher diversity-

learning score than s1.  In School c3, s1, s3, and s4 have the same composite score.  
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Since s3 and s4 have higher diversity-learning score than s1, s3 and s4 are ranked higher 

than s1.  s3 is ranked top in School c3 because s3 has higher test score than s4.   

Once the students’ priorities in each school are determined, deferred acceptance is 

applied to match the students.   

Step 1: All students are temporarily assigned to their first choices.  The schools 

temporarily accept those with the highest priorities and reject the rest.  Therefore, c1 

temporarily accepts s1, and c3 temporarily accepts s4.  Students s2 and s3 are temporarily 

unassigned.   

MTM1 =   ( s1 s2 s3 s4 ). c1 -- -- c3  
 
Step 2: Those who are not assigned go to their second choices.  Each school 

compares the priories of the students assigned to it in step 1 and step 2, temporarily 

accepts those with the highest priorities, and rejects the rest. Therefore, s2 temporarily 

goes to c2, s3 takes over the seat of s4 in c3, and s4 is now unassigned.   

MTM2 =   ( s1 s2 s3 s4 ). c1 c2 c3 --  
 

Step 3: s4 goes to his next choice, which is c4.  Since s4 has no competitor in c4, 

s4 stays in c4.  Now, all students receive their seats.  The process ends here.  

MTM =   ( s1 s2 s3 s4 ). c1 c2 c3 c4  
 
Under the Taipei mechanism, more than 90% of the students can receive the 

maximum diversity-learning score (The Central News Agency, 2014).   The inclusion of 

this category seems to be more for the purpose of promoting balanced learning than for 
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the purpose of prioritizing students.  Therefore, students’ priorities (ranks) in each school 

are primarily determined by their choice scores and test scores.  Assigning scores to 

student’s choices is an unconventional design and puzzles many parents who argue that it 

is ridiculous to assign decreasing scores to school choices because it is like punishing 

students for their bad choices (Zheng, 2015).  Whether this unconventional design can 

better reach the purpose of mixing students than other mechanisms is undiscussed in 

literature; it would be answered by agent-based simulations in this study.  

Summary  

Most researchers used set-theoretical models to study the stability, strategy 

immunity, and Pareto efficiency of a new school-choice mechanism in equilibriums (e.g., 

Abdulkadiroglu et al., 2003; Abdulkadiroglu, Pathak, & Roth, 2009; Kamada & Kojima, 

2014; Pathak & Sonmez, 2013).  It is not until recently that a few researchers have used 

general equilibrium models and simulation models to explore the impacts of a school-

choice mechanism on distribution equality (e.g., Calsamiglia, Martinez-Mora, & 

Miralles, 2014; Hafalir, Yenmez, & Yildirim, 2013; Hatfield, Kojima & Narita, 2015; 

Maroulis et al. 2014).  However, the existing simulation models in this line either employ 

historical data as students’ choices or randomly generate students’ choices by assuming 

that students truthfully report their school preferences as their school choices without 

employing strategies (e.g., Abdulkadiroglu et al., 2009; Erdil & Ergin, 2008; Hafalir et al., 

2013).  Roth and Ockenfels (2002) warned that a small change in mechanism design 

could induce a significant change in agents’ behaviors and interactions.  This change, in 

turn, may result in dynamic changes in macropatterns, such as the distribution of 
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admissions and distribution of school quality.  Therefore, it is improper only to consider 

agents’ truth-telling behaviors or assume static system structures.  A promising 

alternative to study the effects of school-choice mechanisms on educational equality is 

ABM.  Agent-based simulation is flexible in assuming agents’ behaviors and allows 

researchers to investigate the dynamic impacts of a new admission policy.  In the next 

section, I discuss the pioneering agent-based models applied to school-choice studies.  

Agent-Based Models of Education Systems 

ABM is still a new research tool in the field of education.  In literature, not many 

researchers have used ABM to study educational macrophenomena or analyze 

macroeducational policies.  To the best of my knowledge, there are only five agent-based 

models published in peer-reviewed journals addressing macroeducational phenomena in 

school-choice systems.  In this section, I compare these models to have a better 

understanding of the current development of ABM in this field.    

Maroulis et al. (2014) wrote an agent-based model in NetLogo (Wilensky, 1999)  

to study the aggregate effect of an open-enrollment policy on student achievement by 

calibrating the initial setting of their model to reflect the patterns of the student and 

school distributions in Chicago School District.  Maroulis et al. (2014) argued that 

whether school choice can improve student achievement depends on the portion of 

parents participating in the school-choice program, higher performing schools’ capacities, 

and the survival rate of new, higher value-added schools.   Harland and Heppenstall 

(2012) hypothesized seven common-sense rules to choose schools and tested them by 

adding one rule at a time to their model to find a set of rules that best explains the 
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patterns of student allocation in Leeds, UK.  In Harland and Heppenstall’s (2012) model, 

the rule of closest distance alone could explain 50% of the student allocation in Leeds; all 

seven rules combined could explain 60% of the student allocation.  Millington, Butler, 

and Hamnett (2014) used their model, also written in NetLogo, to replicate the geography 

of educational inequality in London, UK.  In this region, popular schools have more 

percentage of higher-performing students than less popular schools, and the students of 

popular schools live closer to their schools than the students of less popular schools.  

Millington et al. (2014) argued that one of the following two conditions must be met to 

generate such geography: (a) parents must have various aspirations and abilities to move 

to the neighborhood of higher performing schools, and (b) schools have different value-

adds.  Chen et al. (2017) focused their NetLogo model on the operational algorithms of 

serial dictatorship, the Boston mechanism, and the Chinese Parallel mechanism and used 

the assignment result of serial dictatorship as the baseline to investigate the distributional 

effects of the above three mechanisms.  Wang et al. (2017) extended Chen et al.’s (2017) 

model to compare Taipei’s 2015 student-assignment mechanism with the Chinese 

Parallel mechanism for their abilities to mix students.  

Regarding model structures, the models of Maroulis et al. (2014), Harland and 

Heppenstall (2012), and Millington et al. (2014) showed the geographic distribution of 

student agents and considered the distance between a school and a student in forming 

students’ school choices.  In addition to spatial differences, the student agents’ 

backgrounds in the above three models were heterogeneous in at least one aspect.  

Maroulis et al.’s (2014) student agents were heterogeneous in race, gender, 
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socioeconomic level, and school performance.  Harland and Heppenstall’s (2012) student 

agents had heterogeneous backgrounds in religious belief, gender, and social status.  

Millington et al.’s (2014) student agents had different aspirations to attend higher 

performing schools; if the student agents were affluent and had high aspiration, they 

would move closer to the schools of their choices one period before the start of the 

admission process to improve their chances of attending those schools.  As to the 

structure of school agents, all of the above three models had school agents different in 

value-added and location.  Harland and Heppenstall’s school agents also differed in types, 

such as Catholic schools, same-sex schools, and regular public schools.   

In comparison to the above three models, the models of Chen et al. (2017) and 

Wang et al. (2017) were relatively simple; none of them have geographic features.  Their 

school agents were only different in fixed ranks, and their student agents only had the 

state variables of scores and school preference lists.  However, these two models 

contained the operational algorithms of more than one matching mechanism, while the 

other three only employed one mechanism.  Millington et al. (2014) claimed that the 

matching mechanism they used was Gale-Shapley’s deferred acceptance, but the 

matching algorithm described in their latest model document published at the website of 

OpenABM is more like the Boston mechanism.  Neither Maroulis et al. (2014) nor 

Harland and Heppenstall (2012) explicitly stated the matching mechanism used in their 

models.  From their model descriptions, I inferred that the Boston mechanism was used in 

both models. 
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Regarding agent’s behaviors, Millington et al.’s (2014) model allowed student 

agents to have heterogeneous aspiration to attend higher performing schools, so the 

agents weigh school distance and school performance differently.  Similarly, in Maroulis 

et al.’s model, school choice was a function of school performance and school distance.  

Each student agent weighed these two factors differently.  In Harland and Heppenstall’s 

model, only the more affluent student agents considered school performance in making 

their school choices.  The student agents in the above three models were all truth-tellers; 

that is, students report their school preferences as their school choices without applying 

any strategies.  On the other hand, in addition to the truth-telling strategy, students in the 

models of Chen et al. (2017) and Wang et al. (2017) used strategies to report their school 

choices which might be different from their school preferences.  

As to student prioritization, Maroulis et al’s (2014) school agents randomly 

prioritized their student applicants.  Millington et al.’s (2014) school agents prioritized 

students based on their distances to schools.  Harland and Heppenstall’s (2012) school 

prioritization rule was the most sophisticated among the three; the schools prioritized the 

student applicants not only based on distance but also based on gender and religion.  On 

the other hand, the schools in the models of Chen et al. (2017) and Wang et al. (2017) 

only used scores to prioritize students.  

I consider both Maroulis et al.’s (2014) and Millington et al.’s (2014) models 

OLG models because in their simulations, there were several generations of agents 

coexist during a period and older generations’ performances affected younger generations’ 

school-choice decisions.  Both models used the grades of the older student generations as 
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the proxy for school performance, which in turn was considered by younger student 

generations in making their school-choice decisions.  Once student agents enter schools, 

both models calculated their performances based on a fixed formula calibrated to a set of 

empirical data without considering how student agents’ performances would be affected 

by their peers.   

Another agent-based educational model that deserves attention is Salgado et al.’s 

(2014) hierarchical model, which contains the levels of student agents, student networks 

within classes, and classes.  As described in the section of educational equality, the 

purpose of their model was to test whether students’ social networks could explain peer 

effect and subgroup achievement differences within classes.  Among all models discussed 

in this section, Salgado et al.’s model is the only model having more than two levels of 

hierarchy.  Although Salgado et al.’s model pre-assigns students to classes and does not 

contain a matching process, it was a pioneering mesoscopic model that provided middle-

level processes to link the micro- and macrophenomena in a complex educational system. 

In summary, although the current agent-based models of educational systems are 

still simple in comparison to agent-based models developed in other fields, such as 

economics, their simulation results have generated interesting policy implications that 

may not be easily detected by equation-based models.  For example, Maroulis et al.’s 

(2014) model showed that the treatment effect of a school-choice program might become 

diminishing with the increase of participants’ emphasis on school quality.  This 

information alerts policymakers to the possible disproportional effects of a school-choice 

program in complex educational systems.  Salgado et al. (2014) argued that their agent-
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based model can provide a reasonable causal explanation of peer effect, while traditional 

equation-based models, such as its counterpart of a multilevel model, generally lack this 

ability.  With more improved models, ABM is foreseen to further benefit the field of 

educational policy analysis (Harland & Heppenstall, 2012).  In this study, I enhanced the 

design of the matching mechanisms and agents’ behavioral rules in existing agent-based 

models with an agent-based OLG school-choice model to contribute to the ongoing 

development of the agent-based models for educational policy analysis.   

Conclusion  

Founded on the concepts of CASs and computational irreducibility, ABM is a 

right methodology to study complicated educational systems because it naturally embeds 

the features of CASs: emergence, adaptation, heterogeneity, bounded rationality, and 

dynamics (Epstein, 1999; Macal & North, 2010; Maroulis et al., 2014).  However, to the 

best of my knowledge, only five agent-based models have been published to study 

macroeducational phenomena.  In this chapter, I describe and compare these five models 

in detail because they served as stepping stones to construct the model in this study which 

contains enhanced real-world matching mechanisms and students’ behavioral rules.  I 

also review in detail the processes of the six real-world matching mechanisms included in 

this model: serial dictatorship, deferred acceptance, the top trading cycles mechanism, the 

Boston mechanism, the Chinese parallel mechanism, and the Taipei mechanism.   

The literature has mixed findings on how students prioritize schools in their 

preference lists.  I adopted Chang’s (2011) findings to construct students’ preferences 

because Chang’s research was one of the few empirical studies that focused on 
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Taiwanese students.  Since there is no strong evidence in the empirical literature to 

explain students’ school-choice strategies, I referred to Chen et al.’s (2017) hypotheses 

and my observation in the Taipei School District to construct the behavioral strategies in 

this study.  An advantage of ABM is that it is flexible to do what-if analysis to 

accommodate data shortage (Montes, 2012).  This study has run simulations with 

different strategic scenarios.   

Many researchers agree that student performance is influenced largely by 

individual and family factors and only modestly by school factors (Burke & Sass, 2013; 

Dearden et al., 2002; Hanushek, 1989; Jennings et al., 2015).  Among the influential 

school factors, peer effect is the most prominent one (Burke & Sass, 2013; Carman and 

Zhang, 2012; Coleman et al., 1966).  In constructing the module to adjust the scores of 

high school students, I referred to the above findings and Salgado et al.’s (2014) 

assumption that peer effect is through the networks formed by students themselves.     

 The purpose of this model was to answer the research questions of whether the 

Taipei mechanism and Taipei’s free-tuition policy help equalize educational opportunity 

and school quality.  There is no consensus about the definition of educational opportunity 

or school quality in the literature; it all depends on the purpose and limitation of the study 

(Ladd & Lauen, 2010).  In this study, I chose the definition of educational opportunity 

from the input point of view and that of school quality from the output point of view.  I 

defined equality of educational opportunity as equality of freshmen’s average family 

incomes across the schools.  This definition is in line with the intention of Taiwan’s 12-

Year Education Reform.  I defined equality of school quality as equality of seniors’ mean 



91 
 

 

scores across the schools, as suggested by Ferreira and Gignoux (2014) as well as Ladd 

and Loeb (2013).  

 In Chapter 3, I discuss the model in detail, including the design concepts, 

parameters, variables, processing, computational algorithms, and data analysis plan.  The 

discussion also includes the issues of model verification and validation.     
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Chapter 3: Research Method 

Introduction  

The purpose of this study was to contribute to the development of agent-based 

educational modeling for educational policy analysis.  I built an agent-based OLG model 

to qualitatively reflect the environment of Taipei’s senior high school system, including 

its 2016 admission mechanism (the Taipei mechanism) and the free tuition policy.  I 

collected the simulated data to answer the research questions regarding whether Taipei’s 

2016 admission policies could help equalize educational opportunity and school quality.  

This chapter includes a description of this model according to the overview, design 

concepts, and details protocol (the ODD protocol) designed by Grimm et al. (2010) and 

the rationale for the model design. 

Research Design and Rationale  

The classical methodology to study school admission mechanisms is set-

theoretical models (e.g., Abdulkadiroglu et al., 2003; Abdulkadiroglu, Pathak, & Roth, 

2009; Kamada & Kojima, 2014; Pathak & Sonmez, 2013).  These models are not proper 

to investigate the complex effects of admission policies or useful for understanding the 

relative consequences of policies for different groups of students (Hafalir et al., 2013).  

Researchers have long called for using ABM to conduct research in this line (e.g., 

Maroulis et al., 2010).  The few existing agent-based school-choice models also have 

demonstrated that ABM is more flexible to handle heterogeneous student agents (Chen et 

al., 2017; Harland & Heppenstall, 2012; Maroulis et al., 2014; Millington et al., 2014; 
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Wang et al., 2017).   Therefore, I chose ABM to study admission policies in an 

environment qualitatively representing the Taipei School District.  

Most of the few agent-based school-choice models assumed that students were 

truth tellers, who submit their school preferences as their school choices.  The literature 

has shown that students use strategies corresponding to the matching mechanism to make 

their school choices (Chen et al., 2014; Pathak, 2011).  To assume truth-telling is 

ineffective for admission policy analysis.  Although Chen et al. (2017) and Wang et al. 

(2017) have started the attempt to distinguish students’ preference from choices and 

model students’ strategic behaviors, the factor considered in their designs was too simple 

to reflect the real-world observations.  Therefore, I enhanced their design by adding the 

factors of distance and family income, which complied with the findings in the literature 

and my observation in the Taipei School District.     

An admission mechanism is essential to school choice systems; it determines how 

students are assigned to school.  Most existing agent-based school-choice models only 

used the Boston mechanism to assign students to schools (e.g., Harland & Heppenstall, 

2012; Maroulis et al., 2014; Millington et al., 2014).  Although the Boston mechanism 

might still be the dominant mechanism to assign students to schools in the United States 

and some other countries, it has been replaced with deferred acceptance or other mixed 

mechanisms in many admission reforms globally.  Interestingly, abiding by Taiwan’s 12-

Year Education Reform, the Taipei School District has brought back the spirit of the 

Boston mechanism by mixing it with the original deferred acceptance to form its 

admission mechanism since 2014.  It seems that none of the mechanisms mentioned 
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above would be rid of easily.  Therefore, an agent-based model for educational admission 

systems should be able to process not only the matching mechanism of interest but also 

the commonly used matching mechanisms to provide an in-depth understanding of the 

complicated effects of a matching mechanism in comparison with those of the other real-

world mechanisms.  Wang et al. (2017) have programmed the operational algorithms of 

serial dictatorship, the Boston mechanism, deferred acceptance, the Chinese Parallel, and 

Taipei’s 2015 admission mechanism in their NetLogo model.  I adopted their program 

codes to process the former four mechanisms and wrote the code for Taipei’s 2016 

admission mechanism (the Taipei mechanism) because the Taipei School District 

overhauled the school prioritization rules in its 2015 admission mechanism in 2016.  

With all the above improvements, this agent-based simulation model could process five 

real-world student-assignment mechanisms in each simulation run and thus allowed a 

better analysis of the effects of Taipei’s 2016 admission policies (the Taipei mechanism 

and the free tuition policy) on educational equalities. 

I made this model an OLG model because in the Taipei School District, students’ 

school preferences and school ranking are highly correlated, and school ranking are 

largely determined by seniors’ performance (Shao, 2015; Stanley1986, 2014).  Since 

older generations’ behaviors will affect the overlapping younger generations’ decision 

making, OLG design is necessary.      

One of the advantages of ABM is its flexibility to run scenario analysis.  This 

feature is important in policymaking because how students may react to a new 

educational policy is usually unknown or uncertain.  I simulated 300 scenarios with 
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different combinations of students’ strategic behaviors, the number of choices, and type 

of mechanism with and without the free tuition policies.  The simulated results provide 

policymakers and stakeholders with a range of plausible policy outcomes and thus 

facilitate informative admission policy decisions.   

The independent variables in this study were the parameters that defined students’ 

behavioral rules and admission policies.  The control variables were the parameters that 

defined the attributes of the entities in this model.  I describe these parameters in the 

section of model description below.  The dependent variables were the outcomes 

generated from simulations.  Agent-based simulations generate rich microscopic, 

mesoscopic, and macroscopic outcomes.  It can trace the activity and status of each 

individual agent and record the evolution of meso- and macrophenomena of interest at 

every time step.  The outcomes that I was interested were the distribution of the mean 

freshman family income and the distribution of the mean senior score, which are the 

proxies for the distribution of educational opportunities and distribution of school quality, 

respectively.  I used descriptive statistics and paired samples t-tests to compare the 

simulated outcomes of all mechanisms and answered the research questions of whether 

Taipei’s new admission policies help equalize educational opportunity and school quality.   

Model Description  

Under ABM, a system is modeled as a collection of autonomous agents that 

interact with each other and with the computational world within which the agents reside 

(Borrill & Tesfatsion, 2011).  Researchers then set the parameters to determine the 

system’s initial conditions and let the model run to collect and analyze the micro-, meso- 
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and macrodata generated from the simulations.  Grimm et al. (2006) suggested the ODD 

protocol to clearly and rigorously document a model’s purpose and design so that a third 

party can replicate it.  After reviewing the uses of the ODD protocol, Grimm et al. (2010) 

modified some terms used in the original ODD protocol to better fulfill its purpose and 

for the users to better understand and adopt the protocol.  The ODD protocol is also 

advocated by the Network for Computational Modeling for SocioEcological Science 

(CoMSES Net), which maintains the website of OpenABM to promote the methodology 

of ABM and to serve as a node for agent-based modelers to share models and exchange 

ideas.  Therefore, I adopted the 2010 ODD protocol to describe the model in this study.    

Under the 2010 ODD protocol, a model should be described with three 

consecutive components: overview, design concepts, and details.  The context and the 

general structure of a model should first be described (overview), followed by the general 

concepts supporting the model design (design concepts) and then the technical details 

(details).  The overview section is further divided into three parts: (a) purpose; (b) 

entities, state variables (variables that characterize an entity), and scales; and (c) process 

overview and scheduling.  The section of design concepts includes the following 11 

elements: (a) basic principles underlying the model’s design, including concepts, 

theories, and hypotheses; (b) emergence of phenomena from individual agents’ 

behaviors; (c) adaptation, (d) objectives of the act of adaptation; (e) learning that can 

change the adaptive traits of individual agents; (f) prediction involved in agents’ decision 

making; (g) sensing the information in the environment; (h) interaction among the agents; 

(i) stochasticity applied in the processes; (j) collectives formed by individual agents; and 
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(k) observations collected from model simulations.  However, any of these elements not 

included in a model can be omitted.  The last section, details, includes the three 

subsections: (a) initialization of each simulation, (b) input data, and (c) submodels for the 

processes (Grimm et al., 2010).   

In the following sections, I describe the agent-based OLG model of this study in 

the format guided by the 2010 ODD protocol. 

Overview 

Purpose. The purpose of this model is to understand qualitatively how Taipei’s 

new high school admission policies affect the distribution of educational opportunity and 

school quality under different behavioral scenarios, in comparison with other matching 

mechanisms including serial dictatorship, deferred acceptance, the Boston mechanism, 

and the Chinese parallel mechanism.  This model is an OLG model because in each 

simulation run, there will be three generations of student agents in the same time and the 

older generation’s performance will affect the school choice decisions of the younger 

generation.  This model is an example of how ABM can facilitate the micro-,meso-, and 

macroanalysis of educational policies, especially in a centralized school admission 

system.   

Entities, State Variables, and Scales. This model contains three types of entities: 

schools, student agents, and the governmental authority.  The schools refer to 3-year 

senior high schools covering grades 10-12.  Each school agent has the following 

attributes (state variables): location, admission capacity, type (private or public), the 

lowest score of the admitted freshmen, and the lowest rank of the admitted freshmen.  
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The government works as a clearinghouse and determines the high school admission and 

tuition policies, including the school-student matching mechanism, the level of 

information to be released, the number of school choices each student can make, and the 

tuition policy.  These educational policies are the exogenous factors of the model.  They 

are determined before the start of each run and remain constant during the run.  Student 

agents are characterized by the following state variables: scores, location, school 

preference, school choice, and family income.  There will be three student cohorts in each 

simulation year: the cohort of candidates for high school freshmen, the cohort of high 

school sophomores, and the cohort of high school seniors.   

Space is implicitly included in the model.  There are two neighborhoods in the 

model (Neighborhood 1 and Neighborhood 2) to represent the two neighborhoods in the 

Taipei School District.  Neighborhood 1 represents Taipei City and has higher average 

household income, higher average student performance, and better high schools than 

Neighborhood 2, which represents Suburban Taipei.  In the model, there are a total of 10 

schools which are distributed in a way that resembles qualitatively the distribution of 

school ranks in the Taipei School District in 2015 (Sleepcat615, 2015). The proportions 

of the total school capacity in these two neighborhoods are similar to those in Taipei City 

and Suburban Taipei in 2015 (sleepcat615, 2015). Table 4 describes the distribution of 

the 10 schools.  The identification of each school represents its initial rank.  For example, 

School #1 is initially ranked the highest; School #10, the lowest.  The distribution of the 

schools in this model reflects the fact that on average, the schools in Taipei City are 

ranked higher than the schools in Suburban Taipei.  School #3 represents a fee-paying 
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private school which lower-income students will not choose if there is no free-tuition 

policy. The locations of the student agents also represent their admission statuses.  The 

admission candidates stay outside of the schools (see Figure 2 for illustration.)  Once they 

are admitted, they move into the locations of the schools that they are admitted to.  Those 

who are rejected by all schools leave the system.   

Table 4 

School Distribution 

 Neighborhood 1 Neighborhood 2 
School ID 
 

School #1 
School #2 
School #3 
School #5 
School #8 

School #4 
School #6 
School #7 
School #9 
School #10 

Total Capacity percentage 50% 50% 
Note. The spatial distribution of the 10 schools in the model qualitatively represents the 

distribution of school ranks in the two neighborhoods of the Taipei School District 

(Taipei City and Suburban Taipei).  School #3 represents a fee-paying private academic 

school.  Each school’s ID represents its initial rank in the system.    

Each simulation run proceeds in discrete time steps for 33 steps.  Since most high 

school districts process admissions once a year, each time step represents 1 school year.   

Process Overview and Scheduling. At the beginning of each year, freshmen 

become sophomores, sophomores become seniors, and seniors graduate and leave the 

system.  Then, a new set of admission candidates (new student agents) enters into the 

system.  While some of the new candidates stay in Neighborhood 1 and some stay in 

Neighborhood 2, all stay outside of the 10 schools.  Admission candidates receive raw 
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scores and family incomes from a multivariate normal distribution, form their school 

preference lists, and use strategies to make their school choices.  Each school prioritizes 

the students based on the rules set by the admission policy.  The governmental authority 

(clearinghouse) matches the schools and the students according to the matching 

mechanism determined by the admission policy.  The students who are admitted move to 

their high schools and stay in the same schools until graduation.  Those who are not 

admitted leave the system.  After the admission process, the system updates the scores of 

the new sophomores and seniors, records the lowest scores and the lowest ranks of the 

freshmen each school admits, and calculates the standard deviations of the distribution of 

the mean freshman family incomes and the distribution of the mean senior scores across 

the schools.  These 2 standard distributions are the measures of the inequalities of 

educational opportunity and school quality, respectively, in the computer environment.  

Figure 4 illustrates the process flow of the model.  

Design Concepts 

Basic Principles. The design of student agents’ behaviors was based on the 

observations made in the Taipei School District and the empirical findings in the 

literature.  The surveys show that Taiwan students prefer higher quality schools to lower 

quality schools and use school rank as the index for school quality (Chang, 2011; Lu, 

2012; Shao, 2015; Yan, 2015).  However, when schools’ qualities are too low, quality 

becomes relatively irrelevant, and students prefer the nearby low-quality schools to the 

far-away low-quality schools (Chang, 2011).  That is, Taiwan students have highly 
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correlated preferences for higher-ranked schools and prefer nearby lower-ranked schools 

to far-away lower-ranked schools.   

 

 

Figure 4. Process overview of the model.  Schools prioritize students according to the 

admission policy.  Candidates submit their school-choice lists based on their preferences 

and strategies used.  The clearinghouse matches students and schools according to the 

matching mechanism determined by the policy.  After the matching process, freshman 

cohorts emerge as well as the admission distribution.  Next year, the freshman cohorts 

will become the sophomore cohorts, and the sophomore cohorts will become the senior 

cohorts.  At the end of each school year, the model updates school information and 

collect data needed for analysis.       

Students do not always report their school preferences as their school choices.  If 

how students rank their schools affect their admission results under a mechanism, 

students will respond to that mechanism and use strategies to form their school-choice 
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lists in a way that they think will maximize their chances to attend their most preferred 

schools possible (Chen et al., 2015; Pathak, 2011).  A strategy commonly taught to Taipei 

students states as follows: (a) Student should first review each school and its features to 

form a preference list; (b) student should collect each school’s past admission 

information, such as the lowest accepted rank or score, in comparison to student’s own 

rank or score, to predict the chance of being admitted to each school and form a list of 

possible schools; (c) students should understand the admission mechanism and choose 

schools mainly from the list of possible schools; (d) student should form the school-

choice list in a way that student is confident to be admitted to a school while gambling 

for the admission to a more preferred school (Sun, 2015; Zhang & Wang, 2015).  A 

similar strategy is also widely disseminated in mainland China (e.g., H. Wang, 2015; R. 

Wang, 2015; Song, 2015).  There are three strategies in this model.  Strategy #2 and 

Strategy #3 reflect the above commonly advised strategy (see the subsection of details 

below).  In this information age, it is very likely that students all learn about and use the 

same strategy to form their school choices.  Therefore, when Strategy #2 or Strategy #3 is 

simulated, all student agents use the same strategy to make their school choices.  The 

design of Strategy #1 was based on the assumption that student agents are truth tellers 

and choose schools according to their own considerations (see Strategy #1 in the 

subsection of details below).   

Without tuition subsidy, it is unlikely for lower-income students to choose 

expensive private schools (Chen, 2007).  Therefore, student agents in the bottom 50% 

income group will not choose School #3, the fee-paying private school, if there is no free-
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tuition policy.  All student agents are boundedly rational.  Like students in the Taipei 

School District, student agents in the model have limited information about their 

competitors’ scores, ranks, and school-choice decisions.   

At the beginning of each simulation run, the ranks of the schools are in the 

following order:  

School #1 ⪰ School #2 ⪰ …. ⪰ School #10, 

where the symbol “⪰” means “superior to.”  The distribution of the school ranks in this 

model qualitatively represents the distribution of school ranks in the Taipei School 

District in 2015, where most schools in Taipei City were ranked higher than those in 

Suburban Taipei.  In Taiwan, high schools are ranked mainly based on the percentage of 

their graduates who attend elite universities (Shao, 2015; Stanley1986, 2014).  The higher 

the seniors’ scores, the better chances they have to attend the elite universities.  Generally 

speaking, if a school’s average senior score is higher, the percentage of its graduates who 

attend elite universities will be higher.  Therefore, the ranks of the schools in this model 

will be adjusted according to their seniors’ average scores in the simulation process.   

Income in Taiwan, like those in many other countries, follows a lognormal 

distribution (Pinkovskiy & Sala-i-Martin, 2009).  As in other Asian countries, Taiwan 

students’ performances are positively correlated with their incomes (Hojo & Oshio, 

2012).  Based on the central limit theorem, it is reasonable to assume that student agents’ 

scores are normally distributed.  It is further assumed that a high-performing student, in 

average, performs well in all subjects and vice versa.  Under all the above assumptions, 
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candidate agents’ log family incomes and their subject test scores form a multivariate 

normal distribution in this model.  

After the admission (matching) process, student agents stay in their assigned 

schools for the entire high school years (Grades 10-12).  These high school student 

agents’ scores are calculated based on the following two assumptions: (a) The individual 

and family factors are constant throughout the agents’ existence in the model, and (b) the 

influence of schooling is mainly through peer effect as evidenced in many studies (e.g., 

Coleman et al., 1966; Burke & Sass, 2013; Hojo & Oshio, 2012; Jennings et al., 2015).  

The design of peer effect is based on Salgado et al.’s (2014) hypotheses that peer effect is 

through the formation of network and that the level of tolerance towards the difference in 

family background plays an important role in the network formation.  Only those who 

can join the peers will be influenced by the peers.   

Emergence. After the matching process, a new freshman cohort emerges in each 

school, and a new admission distribution emerges.   

Adaptation, Objectives, Learning, and Prediction. Candidates for admission 

pursue the objective of attending their most preferred schools possible.  They use the 

information released to them to predict which schools they are confident to be admitted to 

(their possible schools) and adapt strategies to form the best school-choice lists possible.  

Since each candidate for admission will be in the matching process only once, this 

activity is considered a one-shot game.  Thus, no learning behavior is programmed in the 

candidate agents’ decision process.  However, learning is implied in the peer effect 

assumed in the calculation of the scores of the high school student agents.  
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Sensing. All admission candidates know each school’s quality, the lowest score 

and rank of the students admitted to each school, and, as long as the admission policy 

allows, their own scores and ranks without any information seeking process.  Once 

candidate agents form their school-choice lists, the governmental authority receives them 

without the need to go through any transmission process either. 

Interaction. In the real world, admission candidates talk to their peers and 

advisers about how the tests went and how to form school-choice strategies.  Students 

also talk to high school students they know to seek advice.  Even so, admission 

candidates can hardly have the same school-choice lists because their scores are hardly 

the same.  However, in this information age, it is very likely for all of them to use the 

same decision strategy as described in the previous paragraph of basic concepts.  

Therefore, when Strategy #2 or #3 is employed, all candidate agents will use the same 

strategy to make their school choices (see the submodel of student’s school choice list 

below.)  

Stochasticity. In the Taipei School District, 36% of the admission candidates 

reside in Taipei City; 64%, Suburban Taipei (Taipei City Government Department of 

Education, 2016).  In the model, the admission candidates created each year are placed 

randomly in Neighborhoods 1 and 2 according to the above ratio.  Each admission 

candidate’s log family income and subject test scores are randomly generated from a 

multivariate normal distribution.  The estimated parameters to generate incomes and 

scores are described in the subsection of details below and listed in Table 5.  Candidate 

agent’s preference list is generated from a Zipf distribution, Zipf (α, n), in conjunction 
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with the distance consideration for low-quality schools.  The parameter α depicts how 

correlated the candidate agents’ preferences are and n is the number of the remaining 

schools to be ranked (see the subsection of details below).    

Collectives. Each year, after the matching process, candidate agents move to their 

individual schools, and the freshman cohort of each school emerges.  The old freshman 

cohorts formed last year become the sophomore cohorts; the sophomore cohorts become 

the senior cohorts; the senior cohorts graduate and leave the system.     

Observation. For model testing, individual candidate agents’ admission results 

and individual senior agent’s scores were recorded and observed.  For model analysis, 

only the macro- and mesodata were recorded and observed, e.g., the freshman cohorts’ 

average incomes, the senior cohorts’ average scores, the top 10-percent candidates’ 

admission status, and the admission status of the students in the bottom income quartile.   

Details 

The model, written in NetLogo 5.3 (Wilensky, 1999), can be downloaded from 

the website of OpenABM.  The direct link is 

https://www.openabm.org/model/5521/version/1/view.  I also attach the code in 

Appendix A. 

Initializations.  At each initial state, the model created 10 schools, 5 in 

Neighborhood 1 and 5 in Neighborhood 2 (see Table 4).  These 10 schools were located 

in the same places throughout the simulation runs, and all schools were of the same 

admission capacity.  I set each school to provide 100 admission seats; therefore, there 

were a total of 1,000 admission seats for the candidates each year.  This level of capacity 
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represents a 100% admission opportunity rate, as in the Taipei School District, because 

exactly 1,000 admission candidates were created each simulation year in all simulation 

runs.  At each initial state, the schools were ranked in the following order: School #1 ⪰ 

School #2 ⪰ … ⪰ School #10.  The lowest score accepted by each school was set to be 0.  

The lowest ranks accepted by the schools were all set to be the lowest rank of all 

students, which was 1,000 in the simulations.   

Similar to the residence distribution of the admission candidates in the Taipei 

School District, 36% of the candidate agents live in Neighborhood 1; 64%, Neighborhood 

2.  

The mean and standard deviation of the family income in Neighborhood 1 are 

TWD1,575,000 (around USD47,700) and TWD873,000 (around USD26,400), 

respectively, approximating to the mean and standard deviation of the 2014 household 

income in Taipei City (Taipei City Government Department of Budget, Accounting and 

Statistics, 2015).  The mean and standard deviation of the family income in 

Neighborhood 2 are TWD1,147,000 (around USD34,700) and TWD574,000 (around 

USD17,400), respectively, approximating to those of the 2014 household income in 

Suburban Taipei (New Taipei City Government, 2015a).  These values are constant 

throughout all simulations.  

The mean and standard deviation of all students’ entrance exam scores in the 

Taipei School District were roughly calculated to be 54 and 23, respectively (RCPET, 

2015).  Based on this information, I set the mean scores of the admission candidate 

agents in Neighborhood 1 and Neighborhood 2 to be 65.00 and 47.50, respectively, to 
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qualitatively represent the positive correlation between income and score.  I set the 

standard deviations of the scores in both neighborhoods to be 23, which was the same as 

that in the whole Taipei School District.  Without empirical data to support the above 

information, the above score figures were arbitrarily assumed.  In Taiwan, the entrance 

exams have been systematically designed to properly reflect students’ performances.  

Therefore, the score means and standard deviations were constant throughout all 

simulations.     

Each candidate agent had five subject test scores.  The log family income and 

student’s five subject scores formed a 6-dimensional multivariate normal distribution.  I 

set the correlation coefficient between any two standardized variables in this multivariate 

normal distribution, Rho, to be .80, which reflected qualitatively a moderate to high 

correlation between score and family income as empirically found in the literature (e.g., 

Hojo & Oshio, 2012; Tsai & Yang, 2015).  

I set the alpha in the Zipf distribution used to generate admission candidates’ 

school preference lists to be 3.  This value helped the model to produce moderately to 

highly correlated preferences for higher-quality schools among the candidates as 

observed in the Taipei School District.  The parameter Tolerance determines which high 

school student will be affected by the peers, and the parameter PeerEffect determines the 

magnitude of the peer effect.  I set the value of the parameter Tolerance to be .58, which 

means that only those high school student agents whose family incomes are within (1 + 

58%) of the average family income of their peers would be affected by their peers.  I 

adopted this value from the estimated average tolerance level calculated by Salgado et al. 
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(2014).  I also assumed the value of PeerEffect to be .58, denoting that for each point of 

the peers’ mean score higher (lower) than the student’s score, the student’s score would 

be increased (decreased) by .58.  This value was a direct adoption of the regression 

coefficient on peer’s mean score calculated by Hojo and Oshio (2012) to predict Taiwan 

students’ math score.  Without empirical evidence in the literature, the values of 

Tolerance and PeerEffect were arbitrary, just to reflect the quality of peer effect.  Table 5 

summarizes the parameters and their values at the initial state.  These values were 

constant in the simulations.   

At the initial state of each simulation, the admission policies, given exogenously, 

determine the matching mechanism, the number of school choices allowed, the level of 

information to be released, and the tuition policy of that simulation.  The parameter sort-

extra-choice is an additional design to reflect candidate agents’ risk aversion attitude. 

When sort-extra-choice = yes, candidate agents have a lower risk-aversion level; when 

sort-extra-choice = no, candidate agents have a higher risk aversion level.  Table 6 shows 

the 300 combinations of the values of sort-extra-choice, the types of strategy, the 

mechanisms, and the values of the parameters related to the admission and tuition 

policies.  I simulated each combination 30 times to make statistical analysis feasible.     

Input Data.  This is an exploratory model to simulate the impact of admission 

and tuition policies.  No input or data file from external sources were used, except that I 

referred to the data from Taipei’s Comprehensive Assessment Program for Junior High 

Students in 2015 and the income statistics for the Taipei area to set the values of the 

means and standard deviations of candidate agents’ scores and family incomes (see the 
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previous paragraph of initializations).  

Table 5 

Parameters at Initialization  

Parameter Description Value 
Students 
 

Number of students 1,000 

Capacity 
 

School capacity 100 

Score-Mean-1 
 

Mean test score of candidates in Neighborhood 1 65.00 

Score-Mean-2 
 

Mean test score of candidates in Neighborhood 2 47.50 

Score-SD 
 

Standard deviation of candidates’ test scores  
 

23.00 

Income-mean-1 Average household income in Neighborhood 1 
(representing Taipei City)  
 

$1,575,000.00 

Income-mean-2 Average household income in Neighborhood 2 
(representing Suburban Taipei) 
 

$1,147,000.00 

Income-SD-1 Standard deviation of household income in 
Neighborhood 1  
 

$873,000.00 

Income-SD-2 Standard deviation of household income in 
Neighborhood 2  
 

$574,000.00 

Rho Correlation coefficient between scores and log 
family income and among scores  
 

.80 

Alpha α of the Zipf distribution used to generate school 
preference list 
 

3.00 

Tolerance Family income difference tolerance rate .58 
   
PeerEffect Coefficient of peer effect .58 
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Table 6 

Combinations of Policy Parameters and risk aversion level in Simulations  

Parameters Serial 
dictatorship/deferred 
acceptance 

Boston 
mechanism 

Chinese parallel 
mechanism 

Taipei 
mechanism 

Free tuition? 
 

Yes, No Yes, No Yes, No Yes, No 

Number of 
Choices 
 

2, 4, 6, 8, 10 2, 4, 6, 8, 10 (1, 1), (2,2), (3, 
3), (4, 4), (5,5) 

2, 4, 6, 8, 10 

Strategy used? 
  

#1, #2, #3  #1, #2, #3 #1, #2, #3 #1, #2, #3 

Sort-extra-
choice? 

Yes, No Yes, No Yes, No Yes, No 

 

Submodels.  There are a total of 6 submodels in the program as described in the 

following paragraphs. 

Candidate’s log family income and scores. Each new candidate agent’s log 

family income and five subject test scores are randomly selected from a 6-dimensional 

multivariate normal distribution.  To simplify the process, I use Derde and Massart’s 

(1984) technique of sampling from the standardized multivariate normal distribution and 

then converting the sample points to their original units.  In the standardized multivariate 

normal distribution, its variable zi has a mean of 0 and a standard deviation of 1.  Its 

variance-covariance matrix coincides with its correlation matrix Γ,  

Γ =

⎣
⎢
⎢
⎢
⎢
⎡

1 𝜌𝜌12
𝜌𝜌21 1

𝜌𝜌13 𝜌𝜌14
𝜌𝜌23 𝜌𝜌24

𝜌𝜌15 𝜌𝜌16
𝜌𝜌25 𝜌𝜌26

𝜌𝜌31 𝜌𝜌32
𝜌𝜌41 𝜌𝜌42

1 𝜌𝜌34
𝜌𝜌43 1

𝜌𝜌35 𝜌𝜌36
𝜌𝜌45 𝜌𝜌46

𝜌𝜌51 𝜌𝜌52
𝜌𝜌61 𝜌𝜌62

𝜌𝜌53 𝜌𝜌54
𝜌𝜌63 𝜌𝜌64

1 𝜌𝜌56
𝜌𝜌65 1 ⎦

⎥
⎥
⎥
⎥
⎤
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where ρij is the correlation coefficient between zi and zj.  In this model, I set ρij to be .8.  z1 

is the variable for the standardized log family income; z2 to z6  are the variables for the 

standardized subject test scores.  The unstandardized means and standard deviations of 

the family income and the five subject test scores are listed in Table 5.  Note that the 

means and standard deviations of family incomes and scores in Neighborhood 1 are 

different from those in Neighborhood 2.  The mean, µ, and variance, σ2, of log family 

income can be calculated as below:  

µ = ln( 𝑚𝑚2

√𝑣𝑣+𝑚𝑚2) ;   

σ = �ln(1 +
𝑣𝑣
𝑚𝑚2) 

where 𝑣𝑣 and m are the variance and mean of family income, respectively.  Therefore, the 

µ in Neighborhood 1 is 14.14; the µ in Neighborhood 2 is 13.84.  The σ in Neighborhood 

1 is .52; the σ in Neighborhood 2 is .47.   

Once the six values, represented by the vector zk, are randomly sampled from the 

standardized multivariate normal distribution, they are converted to their original units, 

represented by the vector xk, by using the following formula: 

𝑥𝑥𝑖𝑖𝑖𝑖 = σi𝑧𝑧𝑖𝑖𝑖𝑖 + µi. 

Note that x1k is student’s log family income.  It then is converted to student’s family 

income, y = exp (x1k).  

Under the Taipei mechanism, each subject test score is coarse-grained into a 7-

scale score (Table 1), and schools must use students’ 7-scale scores to prioritize students.  
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Under all other mechanisms, students’ five subject test scores are summed up, and 

schools use the summed scores to prioritize students. 

Candidate’s school preference list. Each year, the ten schools are ranked 

according to their quality represented by the average scores of their senior students, and 

this ranking is assumed to be publicly recognized.  Student agents have similar 

preferences for higher-ranked schools.  Each student’s preference for the top seven 

schools is generated in sequential order from a Zipf distribution, i.e., x~Zipf(α, n), where 

n = the number of the remaining schools to be selected and x is the rank of the remaining 

schools (x = 1,...,n).  In this study, I set α to be 3.  To set α = 3 is to depict the moderate to 

high correlation between candidates’ school preferences. Therefore, Zipf(3,7) (Figure 5) 

is used to determine the most preferred school of a student agent, Zipf(3, 6) is used to 

determine the second preferred school, and so on.  

To determine the preference for the bottom three schools, student agents first 

group them into neighborhood schools and non-neighborhood schools, and the program 

will prioritize the schools in the same group by using the Zipf distribution.  The following 

is an example of how a student’s preference list is determined.  
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Figure 5. The probability mass function for Zipf (3,7).  The top-ranked school has an 

83.81% probability to be selected as a student’s most preferred school under Zipf(3,7). 

Example 7. Assuming that the schools are ranked as in the initial setting; that is, 

School #1 ⪰ School #2 ⪰ … ⪰ School #10.  Candidate i lives in Neighborhood 2.  After 

randomly selected from the Zipf distribution, Candidate i’s preference for the top seven 

schools is:  

Pit = {2, 1, 3, 4, 5, 6, 7}  

in which School #2 is the candidate’s most preferred school.  For the bottom three 

schools, Candidate i first ranks the schools in Neighborhood 2 (Schools #9 and #10).  The 

program randomly ranks these two schools from the Zipf distribution, Zipf (3, 2), and the 

result is: Pic = {10, 9}.  Now, the only school to be ranked is School #8.  Apparently, 

School # 8 is Candidate i’s least preferred school.  As a result, Candidate i’s complete 

preference list is as follows: 

Pi = {2, 1, 3, 4, 5, 6, 7, 10, 9, 8}.                                                       
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I use the above preference list in later paragraphs to explain the simulation process.   

If there is no free-tuition policy and Candidate i is from a bottom 50% family, 

Candidate i will not consider School #3 at all.  In this case, Candidate i’s preference list is 

adjusted to be the following:  

Pi,-3 = {2, 1, 4, 5, 6, 7, 10, 9, 8}.                                                       

Candidate’s school choice list. Candidates’ school-choice decisions depend on 

the strategies applied.  There are three heuristic strategies for the candidate agents to 

adopt.  Strategies #2 and #3 are the mimics of the commonly advised strategy described 

in the previous subsection of design concepts.  Strategy #1 is a truth-telling strategy as 

commonly assumed in the literature on school choice and is used for comparison purpose.  

I simulated each scenario listed in Table 5 with all of the three strategies to explore how 

student agents’ behaviors would change the outcomes of an admission policy.   

Under Strategy #1, candidate agents are truth tellers, who arrange their school 

choices in the same order as their school preferences.  Therefore, when students are 

allowed to choose 10 schools, their school-choice lists are the same as their preference 

lists.  When the number of choices allowed is less than 10, students each form a strategy 

that fits his or her risk aversion level and other considerations.  The application of the 

principle of maximum entropy reflects candidate agents’ heterogeneous considerations. 

That is, under Strategy #1, students randomly select the schools from their preference 

lists up to the number of choices allowed.  Therefore, Strategy #1 is not a single strategy 

but a combination of many strategies.  The selected schools will then be sorted according 

to their orders in candidates’ preference lists because candidate agents are truth tellers.  
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For example, if the number of choices allowed is 4, a possible school-choice list of 

Student i in Example 7 is Ci = {2, 5, 7, 10}.  

Under Strategy #2, candidate agents consider their own test scores and all 

information released by the government to make their choice lists.  They first compare 

their total raw scores, qi,t, with the lowest total raw scores of the students admitted to each 

school last year, rj,t-1, to form two groups of schools: the possible group, PG, and the 

impossible group, IG.  PG contains all schools whose rj,t-1 are lower than the student’s qi,t, 

while the rj,t-1 of the schools in IG are at least the same or higher than the student’s qi,t,. 

PG = { j : qi,t  >  rj,t-1},  IG = { j : qi,t  ≤  rj,t-1} 

Refer to Example 7.  Candidate i's PG and IG may be as follows: PG = {7, 10, 9, 

8}; IG = {2, 1, 3, 4, 5, 6}.  If Candidate i is from a bottom 50% family and there is no 

tuition subsidy, then Candidate i's PG and IG are as follows: PG = {7, 10, 9, 8}; IG = {2, 

1, 4, 5, 6}.   

Then the candidate agent begins the school-choice process by first selecting 

schools from PG up to the number of choices allowed.  If the school-choice list is not 

full, the student agent will strategically select the schools from IG until the list is full.  

Again, I apply the principle of maximum entropy to reflect agents’ heterogeneous 

considerations to form the strategies to select the schools from IG; that is, the schools in 

IG will be randomly selected to fill the school choice list.  If sort-extra-choice = yes, 

candidates have a low risk-aversion level and are willing to take the risk of wasting their 

top choices in order to gamble for the chance of attending their more preferred schools; 

that is, candidate agents will sort all of the selected schools according to their preference 
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lists.  If sort-extra-choice = no, candidate agents have a higher risk-aversion level and 

will simply put those impossible schools selected at the end of their school-choice lists.  

Refer to Example 7.  Using Strategy #2, Candidate i may have the school-choice lists 

under the influence of the parameter sort-extra-choice as shown in Table 7. 

Table 7 

Effect of sort-extra-choice on Candidate i’s School Choice List  

  
Number of 

choices 
allowed 

Serial 
dictatorship/deferred 
acceptance/Boston 
mechanism/Taipei 

mechanism 

 
 

Chinese parallel 
mechanism 

Sort-extra-choice 
= yes 

4 
 

{7, 10, 9, 8} {7, 10}, {9, 8} 

10 
 

{2, 1, 3, 4, 5, 6, 7, 10, 9, 
8} 
 

{3, 7, 10, 9, 8}, {2, 1, 4, 
5, 6} 

Sort-extra-choice 
= no 

4 
 

{7, 10, 9, 8} {7, 10}, {9, 8} 

10 {7, 10, 9, 8, 2, 1, 3, 4, 5, 
6} 

{7, 10, 9, 8, 3}, {2, 1, 4, 
5, 6} 

Note. Refer to Example 7 and assume Candidate i’s PG = {7, 10, 9, 8} and IG = {2, 1, 3, 

4, 5, 6}.  When there are only 4 choices allowed, Candidate i selects schools only from 

PG.  When the number of choices is 10, Candidate i selects schools first from PG and 

then from IG.  If sort-extra-choice is yes, Candidate i sorts all selected schools according 

to his preference list.  If sort-extra-choice is no, Candidate i simply puts the schools 

selected from IG behind the schools selected from PG.   

Strategy #3 is the same as Strategy #2, except that the information of score rank, 

instead of score, is used.  That is, candidates compare their own score ranks with the 

lowest score rank of the students accepted by each school last year to determine their PG 
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and IGs.  From the example in Table 7, one can see that when sort-extra-order = True 

and the number of choices = 10, the choice lists generated by Strategy #2 and Strategy #3 

under SD, DA, TM, and BM are the same as students’ preference lists.  When a student’s 

choice list is the same as his or her preference list, the strategy used by the student is 

called the truth-telling strategy.  

Matching. After receiving all candidates’ school-choice lists, the clearinghouse 

matches the schools and the candidates according to the matching mechanism regulated 

by the policy.  The model processes the following five mechanisms for each simulation 

run: serial dictatorship, deferred acceptance, the Boston mechanism, the Chinese parallel 

mechanism, and the Taipei mechanism.  To increase the computational speed, I have 

simplified the process of the Taipei mechanism without jeopardizing its quality in the 

following aspects: (a) Instead of grouping every 5 choices, this model groups every 2 

choices in computing a student’s choice score, i.e., 35 points for the 1st and 2nd choices, 

34 points for the 3rd and 4th choices, 33 points for the 5th and 6th choices, and so on; (b) 

since almost all students can receive the full diversity learning score, this category is not 

functional in distinguishing students’ performance and thus omitted in the computation; 

and (c) since the maximum score for Chinese composition is only 1, this score is 

relatively unimportant and is also omitted in the process.  Therefore, the composite score 

of the Taipei mechanism in this model is composed of the choice score (a maximum of 

35 points) and the five subject test scores (a maximum of 35 points total).  In the real-

world, the maximum choice score under the Taipei mechanism is 36.  It is changed to 35 

in this model to maintain the same proportion of these two scores in the composite score.  
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After the matching process, candidates who are admitted move to their individual 

schools, and each school updates the record of the lowest score and the lowest rank of its 

admitted freshman students.  The candidate agents who are not admitted to any school 

leave the system.  

High school student’s score. The scores of the high school students are their 

original scores adjusted by the peer effect.  A student’s total raw test scores will be 

adjusted by the peer effect only when the student’s family income is within the tolerance 

range of the peer.  

𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡+1 = �
𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡 + �𝑆𝑆𝑈𝑈𝑗𝑗,𝑡𝑡 − 𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡�𝑃𝑃,                  if (1 − 𝑇𝑇)𝐹𝐹𝑈𝑈𝑗𝑗,𝑡𝑡 < 𝑓𝑓𝑖𝑖𝑖𝑖,𝑡𝑡 < (1 + 𝑇𝑇)𝐹𝐹𝑈𝑈𝑗𝑗,𝑡𝑡

𝑞𝑞𝑖𝑖𝑖𝑖,𝑡𝑡,                                                    otherwise,
 

where qi,t is the score of Student i in School j in year t, qij,t+1 is the student’s score in year 

t+1, SUj, t is the mean score of the student’s cohort in School j in year t, P = PeerEffect, T 

= Tolerance, FUj, t is the mean family income of the student’s cohort in School j in year t, 

and fij, t is the student’s family income in year t.  In this model, both PeerEffect and 

Tolerance are .58.  The score adjustment is made at the end of each high school year for 

freshmen, sophomores, and seniors.  After the senior students’ scores are updated, the 

mean senior score in each school is calculated, and the schools are re-ranked according to 

the mean scores of their senior students.  

Data collection. At the end of each matching process, the program automatically 

collects the following macro- and mesolevel data: (a) the mean freshman family income 

in each school, (b) the standard deviation of the mean freshman family income, (c) the 

mean senior score in each school, (d) the standard deviation of the mean senior score, (e) 
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the percentage of the top 10-percent performing candidates admitted to their most 

preferred schools, (f) the preference index for students in each income quartile and 

students with the bottom 10-percent family income, (g) the overall preference index, and 

(h) match rate.  

  I used the distribution of the mean freshman family income as the proxy for the 

distribution of educational opportunity.  The less the standard deviation of this 

distribution, the less the inequality of educational opportunity.  Using standard deviation 

to measure inequality has been supported by many scholars (Dorius, 2013).  I also 

compared the standard deviations of the mean freshman family income under different 

policy settings to see which policy setting is more efficient in equalizing educational 

opportunity.  I used the mean senior score as the proxy for school quality.  If all of the 

mean senior scores across the schools are not significantly different, then it is possible to 

say that the qualities of all schools are similar.  I also compared the standard deviations of 

the mean senior scores under different policy settings to see which policy setting is more 

efficient in equalizing school quality.   

The reason to collect the admission information about the top 10-percent 

candidates was that the cases of justified envy suffered by elite students easily dominate 

the news, creating pressures on policymakers to change policies in favor of the top 10-

percent.  Therefore, how well elite students are admitted to their most preferred schools 

under a particular policy setting certainly concerns policymakers.  When less than 100% 

of the top performing students are admitted to their most preferred schools, justified envy 
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occurs.  The magnitude of justified envy can be measured by the preference index (PI), 

which is calculated as follows:  

PI = baseline preference rank – actual preference rank.  

Baseline preference rank is the position of the baseline school in a student’s preference 

list.  Baseline school is the school assigned to a truth-telling student under deferred 

acceptance with no choice constraint.  I used deferred acceptance without choice 

constraint as the baseline mechanism because it avoids strategy manipulation and 

justified envy (Pathak, 2011).  Therefore, it is the most desired mechanism by elite 

students in competitive school districts, such as the Taipei School District.  Actual 

preference rank is the position of the actual school in a student’s preference list.  Actual 

school is the school actually assigned to a student.  For example, assuming Student i’s 

preference list, Pi = {2, 1, 4, 3, 5, 7, 6, 9, 10, 8}, if Student i would be assigned to School 

#4 under the baseline mechanism, then the student’s baseline preference rank = 3 because 

School #4 is ranked third in the student’s preference list.  If the student is actually 

admitted to School #3, then the student’s actual preference rank = 4 because School #3 is 

ranked fourth in the preference list.  Therefore, Student i’s PI = 3 – 4 = -1.   

A negative PI indicates the occurrence of justified envy or an admission loss 

experienced by a student.  The larger the negative PI, the larger the scale of justified 

envy.  On the other hand, a positive PI indicates an admission gain experienced by a 

student. While deferred acceptance without choice constraint avoids justified envy, it also 

sorts the students completely based on their scores.  Under this policy setting, students 

with the bottom 10-percent family income probably will all stay in the lowest-quality 



122 
 

 

schools when income and scores are highly and positively correlated.  Some societies 

may not desire such result.  The calculation of PI for students in each income quartiles 

and students with the bottom 10-percent family income provides useful information to 

evaluate the effects of an admission policy on various groups of students.  The overall PI 

= ∑ |𝑃𝑃𝑃𝑃|
𝑁𝑁

 , where N is the total number of students.  I used this index to examine whether 

the model passed the empirical output validation (see the section of verification and 

validation below.)    

Match rate is the number of candidates who are assigned to schools divided by the 

number of total candidates.  If there are a total of 1,000 seats and a total of 1,000 

candidates in a school district, then the match rate can be as high as 100%.  However, 

some students may not be admitted under certain admission policies.  If the match rate of 

a matching mechanism is low, then the mechanism may not be efficient in assigning 

students.  Match rate serves as an index to assess the allocation efficiency of a 

mechanism.     

Data Analysis Plan 

The purpose of this study was to answer the research question of whether the 

Taipei mechanism, in comparison to other commonly used mechanisms, and the free-

tuition policy can help equalize educational opportunity and school quality in the Taipei 

School District.  I simulated 300 combinations of the parameters to explore the possible 

results under different behavioral assumptions.     

An advantage of running computational experiments is that computational 

experiments are controlled experiments, in which clear causal relationships can be 



123 
 

 

defined (Chen, 2015; Epstein, 1999).  The data collected from the simulations are clean.  

Little data cleaning and screening procedure are needed for computer-generated data, in 

comparison to human experiments.  The software used to build the model and run the 

simulations was NetLogo 5.3, developed by Wilensky (1999).  NetLogo 5.3 could 

automatically generate the needed data during simulations.  Because the values of the 

computer-generated state variables, such as candidates’ scores and preference lists, will 

be not the same in each simulation run, the result of each simulation even under the same 

scenario might not be the same.  Multiple runs of simulations should be performed to 

make statistical analysis feasible.  Therefore, I performed 30 simulation runs for each 

scenario listed in Table 5.  

I exported the simulated data collected from the NetLogo 5.3 model to IBM SPSS 

v. 23 to perform descriptive statistics and paired samples t-tests with α = 0.01 to compare 

the results of different matching mechanisms under the same scenario or the results under 

different scenarios with the same matching mechanism.  I used Microsoft Excel to draw 

histogram graphs and tables to have a better visual comparison of policy outcomes.  I also 

calculated Cohen’s d to help determine the effect size.   

Verification and Validation  

A model must undergo verification and validation to be a rigorous simulation tool 

(Rand & Rust, 2011).  For simulation models, model verification is to test whether a 

model performs as described.  Model validation is to determine how well a model 

represents the reality that it is designed to represent (Rand & Rust, 2011).  However, if 

the model is exploratory, model validation should focus on whether the modeler has a 
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sound analytic strategy rather than whether the input and output of a model fit the 

empirical data (Bankes, 1993).  

Verification 

Rand and Rust (2011) suggested three steps to properly verify a model: 

documentation, programmatic testing, and test cases.  I have fully documented the 

conceptual model in the section of model description and uploaded the model codes with 

clear descriptions to the website of OpenABM for other researchers to verify and 

replicate the model.  For programmatic testing, I have performed the technique of unit 

testing by designing scenarios to test each submodel and the technique of code 

walkthrough by reading through the codes to examine whether they did as planned.  I 

have also performed the technique of debugging walkthrough by running the program 

with a small number of student agents to ensure that it generated the correct result for 

each agent.  For test cases, I have examined the specific scenarios to ensure that the 

model produced the three stylized facts as mentioned in the next section of validation.  

Therefore, the model in this study has been verified; i.e., the model performs as 

described.  

Validation  

In the field of ABM, how to validate and what to validate are constantly under 

debate.  Simulation models are usually categorized into two types: consolidated models, 

or descriptive models, and exploratory models, or demonstration models (Bankes, 1993; 

Marks, 2013).  Consolidated models are the models built on known facts or historical 

data and used as approximations of the real systems.  Exploratory models are built with 



125 
 

 

hypothetical details and mechanisms, often due to insufficient knowledge or inherent 

uncertainty, and used to explore the implications of the hypotheses and assumptions 

(Bankes, 1993).  Schelling’s (1971) segregation model is an example of exploratory 

models.  For consolidated models, it may be possible to validate the model with historical 

data.  However, if a model’s input and output perfectly fit the historical data, it may be 

over-fitted by ignoring the inherent uncertainly in human behavior and produce little 

insight in prediction (Banke, 1993).  For exploratory models, even though they cannot be 

validated with historical data, they help to explore the outcomes within the range of 

possible behaviors or help to hypothesize a plausible explanation and guide data 

collection to test the hypothesis (Bankes, 1993; Epstein, 2008).  Schelling’s segregation 

model serves as a good example.  Although unable to be validated in a traditional sense, 

Schelling’s model provides rich insight into segregation, showing us that macrobehavior 

can be very misleading in explaining the micromotives.  Therefore, Bankes (1993) argued 

that the traditional concept of validation does not apply to exploratory models; instead, 

what should be focused is the validity of the analytic strategy.  Since this study was an 

exploratory modeling, I adopted Bankes’s argument to examine the validity of this study.  

In this study, the simulated data were collected by using the measures founded on the 

common concepts of educational opportunity and school quality.  I ran each scenario 30 

times to generate enough data for sound statistical analysis.  I analyzed the data by using 

statistical techniques offered by SPSS.  Therefore, this study had a valid analytic strategy.   

Rand and Rust (2011) promoted the following four guidelines to validate a 

simulation model: (a) “micro-face” validation to make sure that the properties and 
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mechanisms of a model correspond “on face” to the properties and mechanisms of the 

real-world system; (b) “macro-face” validation to show that the aggregate patterns 

generated by the model on face correspond to the aggregate patterns of the real-world 

system; (c) empirical input validation to ascertain a sufficient explanation about how the 

input of the model is derived, even if it cannot be calibrated to historical data; and (d) 

empirical output validation to show that the output of the implemented model 

corresponds to the stylized facts or empirical data of the real-world system.  In the 

process of empirical output validation, an exploratory model is considered valid as long 

as its output corresponds to the stylized facts of the real world.  If the model is for 

prediction purpose, then the model must demonstrate that one of the exhibited outputs of 

the model matches the empirical data of the real world.  In the process of both micro-face 

and macro-face validation, no data are compared to the model (Rand & Rust, 2011).   

In this model, the parameters and agent’s behavioral rules were programmed 

based on the findings in the literature and the observations in the Taipei School District, 

which allowed the model to be micro-face valid.  This model is macro-face valid because 

the matching processes in the model comply with those in the real world.  This model 

met the guidelines of Rand and Rust’s (2011) empirical input validation because 

candidates’ scores and incomes generated from a distribution of which the values of the 

parameters were derived from the statistical data.  This exploratory model also passed the 

empirical output validation defined by Rand and Rust (2011) because it reveals the 

following stylized facts of the matching mechanisms, which are also well proved in the 

literature: (a) serial dictatorship with full number of school choices is strategy-proof and 
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avoids justified envy, (b) the Boston mechanism causes justified envy, and (c) the 

admission results under serial dictatorship and deferred acceptance are the same in one-

sided matching markets (Abdulkadiroglu & Sonmez, 2003; Pathak, 2011; Chen et al., 

2015).  Since the Taipei mechanism is new, no related stylized fact was studied in the 

literature.  I discuss the model’s production of these stylized facts in Chapter 4.  

Participant Protection  

This study did not involve human experiment or any data containing private 

information.  The values of the parameters in this model were assumed by reference to 

the published literature, and all inputs and outputs of this exploratory model were 

generated endogenously by the computer.  This research has been carefully reviewed to 

ensure the compliance of Walden University’s ethical standards and approved by the 

Walden Institutional Review Board (IRB approval No. 08-24-16-0304007) on August 24, 

2016. 

Summary  

ABM is the right methodology to study the macrophenomena emerging from the 

interactions of the heterogeneous, autonomous, adaptive individual agents in complex 

adaptive systems (Borrill & Tesfatsion, 2011).  It allows researchers to build models for 

complex educational systems with assumptions closer to the real world.  The flexibility of 

ABM in performing scenario analysis makes it a proper approach to study a new 

education policy that involves anticipating human behaviors in its design.  ABM also 

allows researchers to build causal hypotheses between microbehaviors and 

macrophenomena.  
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In this chapter, I describe the agent-based OLG model in detail according to the 

format of the ODD protocol (Grimm et al., 2010).  All concepts, assumptions, and 

calculations underpinning this model have been clearly stated so that the model can be 

verified by others in the future.  The values of the parameters, students’ decision 

strategies, and the processes of the matching mechanisms were programmed by reference 

to the empirical literature or the real-world systems so that the model is valid in the on-

face level and the empirical input level (Rand & Rust, 2011).  The outputs of this model 

exhibit the stylized facts of the matching mechanisms; thus, this model is also valid in the 

empirical output level.  

Agent-based simulations provide rich micro-, meso-, and macroinformation.  

What and how much data to collect depends on research questions.  In this study, I 

collected the meso-and macroinformation related to the inequalities of educational 

opportunity and school quality.  I analyzed these data by using descriptive statistics and 

paired samples t-tests and compared the outcomes of different matching mechanisms 

under the same behavioral scenario or the outcomes of different behavioral scenarios 

under the same matching mechanism.  I discuss the simulation results in Chapter 4.  
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Chapter 4: Results  

Introduction 

The purpose of this study was to contribute to the development of ABM for 

educational policy analysis.  I constructed an agent-based OLG model to represent 

qualitatively the environment of the Taipei School District.  I have uploaded the model 

code (see Appendix A) to the website of OpenABM for anyone to download and 

replicate.  I simulated a total of 300 combinations of the parameters (see Table 5) to 

explore the impacts of the Taipei mechanism (TM) and the free-tuition policy on 

equalities of educational opportunity and school quality, in comparison with the impacts 

of the following matching mechanisms: serial dictatorship (SD), the Boston mechanism 

(BM), deferred acceptance (DA), and the Chinese Parallel mechanism (CP).  I analyzed 

the simulation results to answer the research questions listed below:   

Question 1: Does the Taipei mechanism help equalize educational opportunities? 

Question 2: Does the Taipei mechanism help school qualities converge upward? 

Question 3: Does the Taipei mechanism with the free-tuition policy help equalize 

educational opportunities? 

Question 4: Does the Taipei mechanism with the free-tuition policy help school 

qualities converge upward? 

Additionally, I examined whether the model produced the following stylized facts 

to ensure that it passed the empirical output validation as defined by Rand and Rust 

(2011):  
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Stylized Fact #1: SD and DA with the full number of school choices are strategy-

proof and avoid justified envy (Abdulkadiroglu & Sonmez, 2003; Pathak, 2011; Chen et 

al., 2015); 

Stylized Fact #2: BM causes justified envy (Abdulkadiroglu & Sonmez, 2003; 

Pathak, 2011; Chen et al., 2015); and  

Stylized Fact #3: The admission results under SD and DA are the same in one-

sided matching markets (Abdulkadiroglu & Sonmez, 2003; Pathak, 2011; Chen et al., 

2015). 

The organization of this chapter is as follows.  First, I review the data generation 

process and the appropriateness of the statistical analysis.  I then examine the simulated 

stylized facts to ensure that the model passed the empirical output validation.  I analyze 

the simulated standard deviation of the mean freshman family income (SD-Freshman) 

and the standard deviation of the mean senior scores (SD-Senior) to have an overall 

understanding of the effects of TM on educational opportunity and school quality in 

comparison with those of the other four student-assignment mechanisms.  I also analyze 

the preference index (PI) defined in the section of model description in Chapter 3 to 

understand how TM, compared with the other four mechanisms, assigns the students in 

different groups to schools.  Finally, a summary of the results concludes this chapter.  

Data Collection and Analysis 

Agent-based computational simulations are controlled experiments (Chen, 2015; 

Epstein, 1999).  The inputs are preprogrammed and generated directly by the computer; 

the outputs are computer simulated through a predetermined process.  The data is clean, 
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and the causality is clear.  There is no need to perform data cleaning or screening 

procedures.  In this study, each simulation result is a sample observation because the 

input set in each simulation step is randomly generated from predefined distributions and 

thus different from each other.  To have enough data points for statistical analysis, I 

simulated each scenario 30 runs, and there were 33 steps (years) in each run.  As a result, 

each collected output variable had 990 data points, except that the variables related to 

senior’s scores had only 930 data points.  The reason is that in this model, a freshman 

agent takes two years to become a senior in the high schools (Grades 10 – 12), and thus 

there were no seniors in the first two steps (years) in each simulation run.  Because the 

sample sizes were large enough, the central limit theorem applies to all data collected 

from the simulations.       

Since this was an exploratory study, the purpose of the data analysis was to gain 

qualitative insights, rather than quantitative preciseness.  Although I performed paired 

samples t-tests on SPSS v. 23 to facilitate the comparison of the results under TM and the 

other mechanisms, I mainly used graphing to find the relative patterns.  The two essential 

assumptions under the paired samples t-test are the independence of the observations and 

the normality of the pair differences (van den Berg, 2014).  Since each observation 

resulted from an independently generated input set and the same input set was processed 

independently under each matching mechanism, the independence assumption was met.  

Because of the central limit theorem, the normality assumption was also upheld.  

Therefore, it was appropriate to conduct the paired samples t-tests in this study.  In the 

cases where a Cohen’s d was reported to measure the effect size, I calculated the Cohen’s 
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d by using the calculator on the website of Dr. Lee A. Becker (Effect size Calculators), 

University of Colorado Colorado Springs.    

Empirical Output Validation 

Stylized Fact #1  

Justified envy occurs when a higher ranked student loses the seat in his or her 

preferred school to a lower ranked student (Abdulkadiroglu & Sonmez, 2003).  SD with 

the full number of choices avoids justified envy because a student with a higher rank can 

always choose a school before a student with a lower rank under this mechanism.  PI 

serves as a measure of justified envy.  It measures how much a student prefers the school 

actually assigned to him (the actual school) in comparison to the school the student would 

have been assigned to under the SD with the full choices (the baseline school). For 

example, PI = -2 means that the student's actual school is ranked 2 lower than his baseline 

school on his preference list.  If a student does not suffer justified envy, his or her PI = 0.  

If a student is unassigned and his baseline school is ranked the second in his preference 

list, then the student’s PI is 2 – 11 = -9.      

Tables 8 and 9 show the average overall PI under each mechanism and strategic 

scenario with and without the free-tuition policy, respectively.  The overall PI = ∑ |𝑃𝑃𝑃𝑃|
𝑁𝑁

 , 

where N is the total number of students.  The average overall PI is the average of the 

overall PIs collected from each step and each run of the simulations under the same 

scenario.  The only situation where the average overall PI = 0 is when the mechanism = 

SD or DA, the number of choices = 10, and sort-extra-choice = True.  Since there are 10 

schools in this model, the number of choices equal to 10 means that there is no limit to 
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the number of schools that a student can choose.  Sort-extra-choice = True indicates that 

students are truth tellers, who report their preference lists as their choice lists.  Therefore, 

this model has correctly produced Stylized Fact #1: SD and DA with the full number of 

school choices are strategy-proof and avoid justified envy.  

Table 8 

The Average Overall Preference Index without the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order  SD   BM   DA   TM   CP  

2 1 FALSE 1.97* 2.17* 1.97* 1.99 2.18* 

  
TRUE 1.97* 2.18* 1.97* 1.99 2.18* 

 
2 FALSE 2.35* 2.84* 2.41* 1.55 2.86* 

  
TRUE 2.45* 2.82* 2.38* 1.53 2.82* 

 
3 FALSE 2.17* 2.72* 2.14* 1.19 2.75* 

  
TRUE 2.16* 2.68* 2.18* 1.19 2.67* 

4 1 FALSE 1.12* 1.84* 1.12* 1.16 1.43* 

  
TRUE 1.12* 1.84* 1.12* 1.16 1.43* 

 
2 FALSE 1.00* 2.28* 0.99* 0.60 1.71* 

  
TRUE 0.98* 2.53* 0.98* 0.56 1.67* 

 
3 FALSE 0.91* 2.06* 0.92* 0.39 1.50* 

  
TRUE 0.78* 2.37* 0.78* 0.31 1.50* 

6 1 FALSE 0.65* 1.76* 0.65* 0.73 0.92* 

  
TRUE 0.65* 1.75* 0.65* 0.73 0.92* 

 
2 FALSE 0.67* 1.91* 0.66* 0.54 0.95* 

  
TRUE 0.38* 2.17* 0.40* 0.29 0.92* 

 
3 FALSE 0.56* 1.72* 0.57* 0.37 0.85* 

  
TRUE 0.19* 2.13* 0.21* 0.27 0.84* 

8 1 FALSE 0.26* 1.78* 0.26* 0.41 0.47* 

  
TRUE 0.25* 1.80* 0.26* 0.41 0.47* 

 
2 FALSE 0.49   1.57* 0.49* 0.48 0.57* 

  
TRUE 0.08* 1.74* 0.07* 0.25 0.60* 

 
3 FALSE 0.47* 1.53* 0.50* 0.32 0.54* 

  
TRUE 0.05* 1.64* 0.05* 0.24 0.48* 

10 1 FALSE 0.00* 1.76* 0.00* 0.24 0.25* 

  
TRUE 0.00* 1.76* 0.00* 0.24 0.24* 

 
2 FALSE 0.48 1.45* 0.48  0.45 0.53* 

  
TRUE 0.00* 1.76* 0.00* 0.24 0.49* 

 
3 FALSE 0.43* 1.34* 0.43* 0.34 0.47* 

  
TRUE 0.00* 1.76* 0.00* 0.24 0.40* 

 Note. * denotes that the value is statistically significantly different from that under the 

column of TM in the same scenario (the same row), p < .01.   
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Stylized Fact #2 

 Table 8 and Table 9 show that none of the overall PI under BM equals to 0, which 

means that BM always produces justified envy.  Therefore, this model has successfully 

replicated Stylized Fact #2: BM causes justified envy. 

Table 9 

The Average Overall Preference Index with the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order SD BM DA TM CP 

2 1 FALSE 1.98 2.16 1.98 2.00 2.16 
  TRUE 1.98 2.15 1.98 2.00 2.16 
 2 FALSE 2.27 2.62 2.19 1.56 2.63 
  TRUE 2.13 2.69 2.10 1.51 2.70 
 3 FALSE 1.96 2.49 2.01 1.24 2.45 
  TRUE 1.98 2.54 1.97 1.24 2.42 

4 1 FALSE 1.14 1.95 1.14 1.19 1.49 
  TRUE 1.14 1.95 1.14 1.19 1.49 
 2 FALSE 0.95 2.27 0.99 0.74 1.73 
  TRUE 0.98 2.53 0.96 0.64 1.75 
 3 FALSE 0.81 2.08 0.87 0.45 1.58 
  TRUE 0.79 2.47 0.79 0.43 1.61 

6 1 FALSE 0.72 2.01 0.72 0.80 1.03 
  TRUE 0.72 2.01 0.72 0.80 1.03 
 2 FALSE 0.61 2.13 0.61 0.49 1.00 
  TRUE 0.45 2.69 0.44 0.30 1.02 
 3 FALSE 0.51 2.02 0.51 0.31 0.92 
  TRUE 0.25^ 2.59 0.24^ 0.25 0.89 

8 1 FALSE 0.35 1.99 0.35 0.48 0.65 
  TRUE 0.35 2.00 0.35 0.48 0.65 
 2 FALSE 0.48 1.90 0.48 0.44 0.59 
  TRUE 0.09 2.28 0.10 0.26 0.57 
 3 FALSE 0.40 1.90 0.41 0.34 0.53 
  TRUE 0.05 2.26 0.05 0.26 0.53 

10 1 FALSE 0.00 2.41 0.00 0.28 0.44 
  TRUE 0.00 2.41 0.00 0.28 0.44 
 2 FALSE 0.37 1.66 0.37 0.43 0.44^ 
  TRUE 0.00 2.41 0.00 0.28 0.46 
 3 FALSE 0.35 1.72 0.35 0.29 0.41 
  TRUE 0.00 2.40 0.00 0.28 0.36 

Note. ^ denotes that the value is statistically insignificantly different from that under the 

column of TM in the same scenario (the same row), p > .01.   
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Stylized Fact #3 

 The literature has shown that other things being equal, the results of DA and SD 

in one-sided matching are equivalent (Zhu, 2014).  Table 8, Table 9, and the rest of the 

tables in this chapter also show that the simulation results of SD and DA were 

insignificantly different in almost all scenarios, especially when the number of choices 

was large.  The reason why there were discrepancies between the two is that stochasticity 

is applied in two procedures related to the student assignment process in this model (see 

the section of model description in Chapter 3 for details).  The first is the tie-breaking 

procedure adopted from the common practice in many real-world school admission 

systems.  The model randomly assigns ranks to the students involved in a tie and applies 

this random process in each simulation with a different matching mechanism.  Therefore, 

the same student may be ranked and assigned differently between SD and DA.  The 

second is the procedure to generate students’ school-choice lists.  When the number of 

choices is constrained and students need to make a selection among the schools, the 

model applies the principle of maximum entropy to make a choice for the students.  

Therefore, the same student may have a school-choice list under SD different from that 

under DA, resulting in assignment discrepancies between SD and DA.   

The smaller the number of choices, the lower the probability of the same school to 

be selected twice.  Therefore, the difference of the average overall PIs under SD and DA 

is larger when the number of choices is smaller, and vice versa.  When the number of 

choices = 10, all schools are included in a student's choice list, which eliminates the 

lottery process of school selection, and thus the simulated results under SD and DA are 
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identical or only less than 0.01 insignificantly different, p < .01.  The insignificant 

difference results from the occasional occurrence of the random tie breaking.  From the 

above analysis, it is safe to say that this model has successfully generated Stylized Fact 

#3: The admission results under SD and DA are the same in one-sided matching markets.  

In the rest of this chapter, when the results of SD and DA are equivalent or insignificantly 

different, I use “SD (DA)” to imply that the discussion applies to both SD and DA.   

Effects of TM without the Free-tuition policy  

Overall Effect on Educational Opportunity  

 SD-Freshman-N.  As stated in Chapter 3, I defined equal educational 

opportunities as equal freshmen’s average family income across the schools.  I measured 

the inequality by using the standard deviation of the distribution of the mean freshman 

family incomes in the schools (SD-Freshman).  The higher the standard deviation, the 

more the inequality.  SD-Freshman-N denotes the SD-Freshman collected from 

simulations without the free-tuition policy.  Table 10 summarizes the average SD-

Freshman-N collected over the 33 simulated years in the 30 simulation runs for each 

scenario.  The same data in Table 10 are also presented graphically in Figure 6.   

I first examined the simulation results under TM in Table 10 and Figure 6 and 

summarize the findings below. 

• When students used heterogeneous truth-telling strategies (Strategy #1), the 

greater the number of choices, the higher the SD-Freshman-N under TM.   
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• Strategy #1 produced lower SD-Freshman-Ns under TM than Strategy #2 or 

Strategy #3 as long as the number of choices was constrained (< 10 in our 

model).   

• When students used Strategy #2 and the number of choices > 2, to sort the 

choices according to students’ preference lists (sort-extra-choice = True) 

resulted in higher SD-Freshman-N than not to sort the choices (sort-extra -

choice = False). 

• When students used Strategy #3, sort-extra-choice = True resulted in higher 

SD-Freshman-Ns than sort-extra -choice = False in all cases.        

Table 10 

The average standard deviation of the mean freshman family income without the free-

tuition policy (Average SD-Freshman-N) 

Number 
of 

choices Strategy 
Extra-

in-order 
Scenario 

# SD BM DA TM CP 
2 1 FALSE 1 $373,600  $365,863*  $374,352  $373,065  $366,755*  
  TRUE 2 $375,788*  $365,907*  $374,571  $372,486  $365,968*  
 2 FALSE 3 †$813,078*  $830,445*  $833,570*  $715,455  $828,561*  
  TRUE 4 $831,010*  $825,781*  $829,641*  $714,095  $821,971*  
 3 FALSE 5 $788,836*  $794,645*  $781,408*  $677,684  $818,599*  
  TRUE 6 $791,934*  $785,829*  $794,182*  $682,904  $800,938*  

4 1 FALSE 7 $518,298*  $487,050*  $518,032*  $515,725  $510,853*  
  TRUE 8 $517,200*  $487,098*  $517,498*  $515,675  $510,091*  
 2 FALSE 9 †$634,528*  $764,334*  $629,649*  $613,066  $724,282*  
  TRUE 10 $633,968*  $801,722*  $633,010*  $613,682  $722,457*  
 3 FALSE 11 $624,110*  $715,601*  $625,876*  $611,737  $702,533*  
  TRUE 12 $618,968*  $786,467*  $619,354*  $615,186  $706,921*  

        (Continued) 
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Number 
of 

choices Strategy 
Extra-

in-order 
Scenario 

# SD BM DA TM CP 
6 1 FALSE 13 †$566,061*  $527,617*  $564,510  $563,535  $557,478*  
  TRUE 14 $564,378*  $525,074*  $563,715*  $561,825  $557,328*  
 2 FALSE 15 $609,967  $669,068*  $609,843  $609,593  $615,142*  
  TRUE 16 $606,513*  $657,893*  $606,502*  $613,795  $614,564  
 3 FALSE 17 $608,858*  $640,310*  $608,253*  $610,715  $611,687  
  TRUE 18 $613,901*  $643,539*  $613,750*  $617,233  $612,853*  

8 1 FALSE 19 †$591,201  $532,099*  $592,844*  $590,036  $587,071*  
  TRUE 20 $591,538  $531,457*  $591,311  $590,565  $587,327*  
 2 FALSE 21 $600,505  $595,067*  $600,673  $600,031  $597,918*  
  TRUE 22 $604,633*  $563,831*  $604,911*  $609,384  $597,681*  
 3 FALSE 23 $600,505*  $594,896*  $600,263*  $603,785  $597,802*  
  TRUE 24 $608,538*  $565,879*  $608,358*  $609,798  $598,461*  

10 1 FALSE 25 $612,510*  $551,870*  $612,510*  $609,485  $606,689* 
  TRUE 26 $611,901*  $551,620*  $611,901*  $609,836  $606,122* 
 2 FALSE 27 $601,404  $573,069*  $601,403  $601,258  $600,187 
  TRUE 28 $612,714*  $550,680*  $612,714*  $609,332  $597,945* 
 3 FALSE 29 $601,336*  $576,949*  $601,335*  $603,423  $600,721* 
  TRUE 30 $613,740*  $552,721*  $613,740*  $610,722  $601,751* 

Note. * denotes that the value is statistically significantly different from that under the 

column of TM in the same scenario (the same row), p < .01.  $ here represents Taiwan 

dollar.  † denotes that the value is significantly different from that under the column of 

DA in the same scenario (the same row), p < .01.   

I then compared the simulation results under TM with those under the other 

mechanisms on the scenario-by-scenario basis.  The followings summarize the 

comparison findings.  

• When Strategy = #1 or the number of choices < 6, the SD-Freshman-N under 

TM was smaller than that under SD (DA). 

• When the number of choices ≥ 6 and Strategy = #2 or #3, there was no clear 

rule about the relationships of the SD-Freshman-Ns under TM and SD (DA).  
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• When the number of choices ≥ 8, the SD-Freshman-Ns under TM and SD 

(DA) were relatively stable, regardless of the school-choice strategy.     

 

Figure 6. The average standard deviation of mean freshman family incomes without the 

free-tuition policy (SD-Freshman-N).  The scenario # in this figure corresponds to that in 

Table 10.     

When the numbers of choices were 6, 8, and 10, the SD-Freshman-Ns under TM 

was no more than 1.20%, 0.79%, and 0.55% different from the SD-Freshman-Ns under 

SD, respectively.  Although some of the differences were statistically significant (see 

Table 10), a maximum of 1.20% change in the original SD-Freshman (SD-Freshman-N 

under SD) was deemed small, Cohen’s d = 0.21 (Cohen, 1988).  Therefore, I considered 

the values of the SD-Freshman-Ns under SD (DA) and TM in the above scenarios very 

close, TM ≈ SD (DA).   

The simulation results under BM, compared to TM and the other mechanisms in 

each scenario, showed the followings.  
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• When Strategy = #1, BM produced the lowest SD-Freshman-N among the 

five mechanisms regardless of the number of choices.   

• When Strategy = #2 or #3 and the number of choices > 6, BM still produced 

the lowest SD-Freshman-N among all mechanisms. 

• When Strategy = #2 or #3 and the number of choices was 4 or 6, BM 

generated the highest SD-Freshman-N among the five mechanisms.   

• When Strategy = #2 or #3 and the number of choices was 2, although SD-

Freshman-N under BM was not the highest among the five mechanisms, it 

was still higher than the SD-Freshman-N under TM.   

I then compared the SD-Freshman-Ns under TM and CP in each scenario and 

found the following relationships.  

• When Strategy = #1, TM always generated higher SD-Freshman-N than CP, 

regardless of the number of choices.   

• When Strategy = #2 or #3 and the number of choices > 6, TM still generated 

higher SD-Freshman-Ns than CP. 

• When Strategy = #2 or #3 and the number of choices < 6, TM produced lower 

SD-Freshman-Ns than CP. 

• When Strategy = #2 or #3 and the number of choices = 6, the relationships 

between TM and CP were mixed, depending on whether students sorted their 

school choices according to their preference lists.   

Finally, I compared the five mechanisms together, scenario by scenario, and 

found the following properties. 
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• When Strategy = #1, the higher the number of choices, the higher the SD-

Freshman-N under each mechanism.   

• When Strategy = #1, the size of SD-Freshman-N produced by each matching 

mechanism was always in the following order: SD (DA) > TM > CP > BM.   

• When Strategy = # 2 or #3, the SD-Freshman-N under TM was more robust to 

the change in the number of choices than BM, CP, and then SD (DA). 

• When Strategy = #2 or #3 and the number of choices > 6, the SD-Freshman-N 

under each mechanism was in the following order: TM ≈ SD (DA) > CP > 

BM. 

• When Strategy = #2 or #3 and the number of choices < 6, the SD-Freshman-N 

under each mechanism was in the following order: TM < CP, TM < BM, and 

TM < SD (DA). 

When Strategy #2 or #3 was used, the number of choices 6 seemed to work as a 

bifurcation or turning point for the relationships of the SD-Freshman-N between TM and 

the other mechanisms.  While TM produced the lowest SD-Freshman-Ns when the 

number of choices < 6, the SD-Freshman-Ns produced by TM were among the highest 

when the number of choices > 6.  

Match rate.  Match rate should be considered in the analysis of a student-

assignment mechanism.  If the system has enough seats for all candidates and the 

candidates do not leave any allowed choices blank, a student-assignment policy resulting 

in some students unassigned does not seem to be efficient.  Match rate is the number of 

candidates assigned to schools divided by the number of total candidates.  The simulated 
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environment had a total of 1,000 seats (10 schools x 100 seats per school) for the 1,000 

candidates per year.  Table 11 summarizes the average match rate over the 33 simulation 

years in the 30 simulation runs for each scenario without the free-tuition policy.  The 

same data in Table 11 are also presented graphically in Figure 7.   

Table 11 

The average match rate under each scenario without the free-tuition policy (Match-N) 

Number 
of 

choices Strategy 
Extra-

in-order 
Scenario 

# 
SD 
% 

BM 
% 

DA 
% 

TM 
% 

CP 
% 

2 1 FALSE 1 90.47 87.14* 90.41 90.45 87.20* 
  TRUE 2 90.39 87.13* 90.41 90.39 87.11* 
 2 FALSE 3 59.86* 56.79* 58.76* 71.60 56.53* 
  TRUE 4 58.72* 55.87* 59.59* 72.13 57.21* 
 3 FALSE 5 61.78* 57.91* 62.47* 77.55 57.12* 
  TRUE 6 61.81* 58.06* 61.78* 77.73 58.72* 

4 1 FALSE 7 95.23 93.13* 95.25 95.16 94.19* 
  TRUE 8 95.23 93.14* 95.24 95.25 94.15* 
 2 FALSE 9 85.16* 72.83* 85.47* 92.43 75.06* 
  TRUE 10 86.03* 67.49* 85.98* 93.85 75.27* 
 3 FALSE 11 86.71* 74.72* 86.43* 95.84 77.44* 
  TRUE 12 88.78* 68.85* 88.76* 97.63 77.22* 

6 1 FALSE 13 97.67 95.33* 97.43* 97.64 97.53 
  TRUE 14 97.61 95.37* 97.56 97.62 97.68 
 2 FALSE 15 95.52 85.59* 95.52 95.68 92.53* 
  TRUE 16 97.48* 82.35* 97.35* 98.55 92.86* 
 3 FALSE 17 95.73* 87.33* 95.62* 96.97 93.08* 
  TRUE 18 98.55 83.17* 98.48* 98.67 93.41* 

8 1 FALSE 19 98.89* 98.29* 99.16 99.19 99.13 
  TRUE 20 98.81* 98.27* 98.81* 99.13 99.07 
 2 FALSE 21 98.03 94.83* 97.88 97.88 97.98 
  TRUE 22 99.35* 94.86* 99.40* 99.71 97.69* 
 3 FALSE 23 97.77* 95.21* 97.75* 98.50 97.69* 
  TRUE 24 99.58 95.27* 99.55 99.68 97.85* 
       (Continued) 
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Number 
of 

choices Strategy 
Extra-

in-order 
Scenario 

# 
SD 
% 

BM 
% 

DA 
% 

TM 
% 

CP 
% 

10 1 FALSE 25 99.74 100.00* 99.74 99.80 99.78 
  TRUE 26 99.67* 100.00* 99.67* 99.92 99.70* 
 2 FALSE 27 98.41* 98.93 98.41* 98.77 98.27* 
  TRUE 28 99.84 100.00* 99.84 99.85 98.76* 
 3 FALSE 29 98.62 99.09* 98.62 98.85 98.48* 
  TRUE 30 99.86* 100.00 99.86* 99.98 98.95* 

Note. * denotes that the value is statistically significantly different from that under the 

column of TM in the same scenario (the same row), p < .01.   

 

Figure 7. The average match rate under each scenario without the free-tuition policy 

(Match-N).  The scenario # in this figure corresponds to that in Table 11.  

Match-N denotes the match rate without the free-tuition policy.  Figure 7 shows 

the trend that under the same mechanism and strategy, the higher the number of choices, 

the higher the Match-N.  If a match rate of at least 95% is desired without regarding 

students’ behaviors, TM, SD, and DA must be accompanied by an allowance of 6 or 

more school choices; CP, 8 or more; BM, the full number of choices.     
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Among the five mechanisms, only BM could reach a Match-N of 100%.  All other 

mechanisms always had years in which some slots in the private school (School #3) were 

unfilled.  The reasons for this phenomenon were as follows: (a) Without the free-tuition 

policy, poorer students (student's income < the average income of all candidates in that 

year) could not afford to choose School #3; and (b) students' school choices were not 

identical.  In this study, the similarity of students’ preferences was controlled by α, which 

was set to be 3 (see the subsection of details in Chapter 3 for the generation of students' 

preferences.)  The higher the value of α, the more similar students’ preferences are.  

When α = 3, students' preferences are moderately-to-highly correlated.  It was possible 

that some richer candidates who were eligible to attend School #3 preferred other schools 

to School #3.  When this situation happened, those richer candidates would “crowd out” 

some poorer candidates with lower priorities and make them ended up with no school to 

attend under SD and DA because SD and DA emphasize students’ priorities.  The 

argument also applies to TM and CP because both TM and CP have the element of SD 

(DA).  

This crowding out effect can be avoided in some situations under BM because 

BM emphasizes students’ choices instead of priorities.  That is, other things being equal, 

a student who ranks School j higher in the choice list has a better chance to be admitted to 

School j than a student who ranks School j lower in the choice list.  Because of this 

property of BM, the more heterogeneous the students’ choice lists are, the higher the 

chances they are assigned to their top choices.  Under BM, the assignment in every step is 

final.  That is, once a student is assigned to a school, no one can crowd the student out, 
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regardless of the students’ priorities.  The simulated 100% Match-N under BM 

demonstrates that students’ preferences generated under α = 3 are heterogeneous enough 

for BM to avoid the crowding out effect in the scenarios where the number of choices = 

10 and students are truth tellers.    

I then compared the Match-Ns in each scenario and summarize the findings below. 

• TM produced higher Match-N than CP and SD (DA) in almost all cases; in the 

cases where TM generated lower Match-N than CP and SD (DA), the 

difference was no more than 0.15%. 

• When Strategy = #2 or #3 and the number of choices < 6, TM produced 

7.27% to 15.95% higher Match-Ns than SD (DA). 

• When Strategy = #1 or the number of choices ≥ 8, if the Match-Ns under TM 

were greater than those under SD (DA), the differences were no more than 

0.73%, Cohen's d = 0.31. 

• BM produced lower Match-Ns than the other mechanisms when the number 

of choices < 10 but slightly higher Match-Ns than the others when the number 

of choices = 10. 

The above findings show that not only the matching mechanism but also the 

number of choices and student’s strategy affect the assignment of students to schools.  

The interactions of these three factors also affect match rate.  An efficient admission 

policy should produce a high match rate.  Therefore, in the next paragraphs, I make 

further discussions about SD-Freshman-N by focusing on scenarios where the number of 

choices ≥ 8 (94% or higher of Match-Ns under all mechanisms).   
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The comparisons of the simulated SD-Freshman-Ns in the previous paragraphs 

were on the scenario-by-scenario basis, which implied that students use the same 

strategies under different admission policies.  However, students may change their 

behaviors when the assignment policy changes (Chen et al., 2015; Lucas, 1996; Roth, 

2002).  Before or at the beginning of the implementation of a new policy, policymakers 

often do not have enough information to know whether and how students will change 

their behaviors.  Even under the same mechanism, students may change their behaviors in 

response to a change in the number of choices.  If how students behave is not explicitly 

known, it may be necessary to group the simulated results under various behavior 

assumptions together and make the group-to-group comparisons to estimate the best and 

worst consequences.   

To calculate the best-worst estimates, I grouped the scenarios with different 

strategies under the same number of choices together for each mechanism.  When the 

number of choices = 8, the highest and lowest SD-Freshman-Ns under SD were $608,538 

and $591,201 (Taiwan Dollars), respectively (see Table 10).  The highest and lowest SD-

Freshman-Ns under TM were $609,798 and $590,036, respectively.  If the mechanism is 

changed from SD to TM, the maximum increase in the original SD-Freshman can be 

$18,598 ($609,798 - $591,201) or 3.15% ($18,598/$591,201), Cohen’s d = 0.92; the 

maximum decrease, $18,502 ($608,538 -$590,036) or 3.04% ($18,502/$608,538), 

Cohen’s d = 0.91.  I used the interval notation [] to present the estimates of the maximum 

increase and maximum decrease of a variable.  Thus, the estimated maximum percentage 

increase and the estimated maximum percentage decrease in the original SD-Freshman 
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caused by the change from SD to TM were reported as [3.15%, -3.04%].  Table 12 

presents such best-worst estimates for a change from SD to BM, TM, and CP, 

respectively.  Since I focused on high match rate, Table 12 only shows the best-worst 

estimates with the number of choices ≥ 8.   

Table 12 

The estimated maximum percentage increase and decrease in the original SD-Freshman 

resulting from the change from SD to the other mechanisms without the free tuition policy 

Number of 
choices 

To BM 
% 

Cohen’s d 

To TM 
% 

Cohen’s d 

To CP 
% 

Cohen’s d 
8 [0.65%, -12.67%] 

0.11, -3.30 
[3.15%, -3.04%] 

0.92, -0.91 
[1.23%, -3.53%] 

0.32, -1.05 
10 [0.00%*, -10.27%] 

-, -2.85 
[2.06%, -2.02%] 

0.42, -0.55 
[0.89%, -2.57%] 

0.23, -0.69 
Note. The first percentage in the square brackets represents the estimated maximum 

percentage increase in the original SD-Freshman (SD-Freshman-N under SD) due to the 

change from SD to the new mechanism, and the second percentage in the square brackets 

denotes the estimated maximum percentage decrease. The corresponding Cohen’s d is 

presented right below each percentage.  * No Cohen’s d was calculated for this 

percentage because BM did not increase the original SD-Freshman in any scenario within 

this category.  

From Table 12, one can see that under the same number of choices, BM could 

offer the most decrease and least increase in the original SD-Freshman, followed by CP, 

and then TM.  When the number of choices = 8, while TM had the potential to reduce 3% 

of the original SD-Freshman, it also had the potential to increase 3% of the original SD-
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Freshman, depending on students’ strategies before and after the change.  If the number 

of choices increases to 10, the range of TM’s effects on the original SD-Freshman could 

shrink about 1% on both ends.  If we follow Cohen’s (1988) suggestions on effect size, 

we should take TM’s potential to increase the original SD-Freshman more seriously than 

CP’s and BM’s, because the effect size under TM was larger than the effect sizes under 

CP and BM as shown in Table 11.   

Overall Effect on School Quality  

SD-Senior-N.  As stated in Chapter 3, I used the mean senior scores as the proxy 

for school quality and the standard deviation of the distribution of the mean senior scores 

(SD-Senior) to measure the magnitude of the inequality of school quality.  The higher the 

SD-Senior, the greater the inequality of school quality.  SD-Senior-N denotes the SD-

Senior collected from simulations without the free-tuition policy.  Since a freshman must 

study for two years to become a senior in this model, there was no SD-Senior-N in the 

first two steps (years) of each simulation run.  Therefore, each SD-Senior-N listed in 

Table 13 was the average of the SD-Senior-Ns collected over the last 31 simulated steps 

in the 30 simulation runs.  The same data in Table 13 are presented graphically in Figure 

8.   
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Table 13 

The average standard deviation of the mean senior scores without the free-tuition policy 

(average SD-Senior-N) 

Number 
of 

choices Strategy 

Sort-
extra-
choice 

Scenario 
# SD BM DA TM CP 

2 1 FALSE 1 13.92 13.48* 13.96 13.90 13.53* 

  
TRUE 2 13.94* 13.49* 13.97* 13.83 13.49* 

 
2 FALSE 3 30.06* 30.54* 30.78* 26.77 30.45* 

  
TRUE 4 30.49* 30.87* 30.53* 26.81 30.27* 

 
3 FALSE 5 29.63* 29.61* 29.31* 25.26 30.54* 

  
TRUE 6 29.75* 29.53* 29.76* 25.32 29.58* 

4 1 FALSE 7 19.61* 17.07* 19.58* 19.46 18.82* 

  
TRUE 8 19.59* 17.07* 19.57* 19.50 18.78* 

 
2 FALSE 9 22.72* 26.79* 22.49* 21.73 26.40* 

  
TRUE 10 22.60* 29.76* 22.58* 21.68 26.47* 

 
3 FALSE 11 22.08* 26.00* 22.29* 21.59 25.80* 

  
TRUE 12 22.03* 29.37* 22.05* 21.83 25.97* 

6 1 FALSE 13 20.93* 17.18* 20.81 20.74 19.93* 

  
TRUE 14 20.89* 17.15* 20.86* 20.72 20.00* 

 
2 FALSE 15 21.20* 22.72* 21.21* 21.49 21.38 

  
TRUE 16 21.42* 22.09 21.40* 21.87 21.27* 

 
3 FALSE 17 21.29* 22.05 21.29* 21.56 21.28* 

  
TRUE 18 21.82* 21.70* 21.80* 21.97 21.24* 

8 1 FALSE 19 21.52* 16.59* 21.64* 21.43 21.01* 

  
TRUE 20 21.50* 16.51 21.48* 21.41 20.98* 

 
2 FALSE 21 20.94 19.89* 20.93 20.99 20.71* 

  
TRUE 22 21.61 17.96* 21.63 21.65 20.58* 

 
3 FALSE 23 20.83* 19.78* 20.80* 21.14 20.63* 

  
TRUE 24 21.76* 18.05* 21.75* 21.66 20.73* 

10 1 FALSE 25 21.86* 16.83* 21.86* 21.64 21.29* 

  
TRUE 26 21.84* 16.83* 21.84* 21.68 21.27* 

 
2 FALSE 27 20.95 18.95* 20.95 21.09 20.81* 

  
TRUE 28 21.90* 16.80* 21.90* 21.66 20.97* 

 
3 FALSE 29 21.05* 19.13* 21.05* 21.23 20.97* 

  
TRUE 30 21.90* 16.84* 21.90* 21.70 21.14* 

Note. * denotes that the value is significantly different from that under the column of TM 

in the same scenario (the same row), p < .01.    
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Figure 8. The average standard deviation of the mean senior scores without the free-

tuition policy (average SD-Senior-N).  The scenario # in this figure corresponds to that in 

Table 13.  

An interesting phenomenon is that the graphic shape of the average SD-Senior-Ns 

(Figure 8) resembles that of the SD-Freshman-Ns (Figure 6).  The reason is that in this 

study, students’ family incomes were highly correlated with their scores (with a 

correlation coefficient of .8) and remained constant throughout the students’ stay in the 

high schools.  The algorithm to calculate senior scores was based on the consistent 

empirical findings since the 1966 Coleman’s report.  The findings have shown that after 

controlling students’ socioeconomic status, schools contribute little to the difference in 

student performance and the most influential school factor is peer effect (Burke & Sass, 

2013; Dearden, Ferri, & Meghir, 2002; Coleman et al., 1966; Hanushek, 1989; Jennings 

et al., 2015).  Therefore, although some high school students’ scores were adjusted and 
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moved toward the average of their cohorts’ scores in their schools (see the calculation of 

high school student’s scores in the subsection of details in Chapter 3), the score change 

was not significant enough to transform the shape of the original distributions of scores. 

Since Figure 8 resembles Figure 6, SD-Senior-N had the following properties 

similar to those observed in SD-Freshman-Ns based on the scenario-by-scenario 

comparisons. 

• When Strategy = #1, the SD-Senior-N produced under each mechanism had 

the following order: SD (DA) > TM > CP ≥ BM; the higher the number of 

choices, the higher the SD-Senior-N under each mechanism.   

• When Strategy = # 2 or #3 and the number of choices > 6, the relationships of 

the SD-Senior-Ns produced under SD (DA) and TM were mixed, although 

their differences were less than 0.32 points or 1.53% of the SD-Senior-N 

under SD, Cohen’s d = .28.  

•  When Strategy = # 2 or #3 and the number of choices > 6, the SD-Senior-Ns 

under TM, CP, and BM were in the following order: TM > CP > BM.   

• When Strategy = # 2 or #3 and the number of choices < 6, TM produced the 

lowest SD-Senior-Ns among all mechanisms. 

Following the logic to calculate the values in Table 12, I estimated the maximum 

increase and maximum decrease in the original SD-Senior (SD-Senior-N produced by SD) 

caused by a mechanism change from SD to the other mechanisms and compiled the 

results in Table 14.     
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Table 14 

The estimated maximum increase and decrease in the original SD-Senior resulting from 

the mechanism change from SD to the other mechanisms without the free tuition policy 

Number 
of 

choices 

To BM 
% 

Cohen’s d 

To TM 
% 

Cohen’s d 

To CP 
% 

Cohen’s d 

8 
[0.00%, -24.13%] 

--, -7.52 
[4.00%, -3.54%] 

0.85, 0.80 
[0.88%, -5.45%] 

0.18, -1.09 

10 
[0.00%, -23.29%] 

--, -10.74 
[3.62%, -3.72%] 

0.66, 0.85 
[1.65%, -4.98%] 

0.29, -1.00 
Note. The first percentage in the square brackets represents the maximum percentage 

increase in the original SD-Senior (SD-Senior-N under SD) due to the change from SD to 

the new mechanism, and the second percentage in the square brackets denotes the 

maximum percentage decrease. The corresponding Cohen’s d is presented right below 

each percentage.  * No Cohen’s d was calculated for this percentage because BM did not 

increase the original SD-Freshman in any scenario within this category.  

Like Table 12, Table 14 shows that under the same number of choices allowed, 

BM, followed by CP, and then TM, could offer the most decrease and least increase in 

the original SD-Senor.  Table 14 also shows that while TM could reduce the original SD-

Senior, TM could also increase the original SD-Senior, depending on students’ behaviors 

before and after the policy change.  Since the maximum increase in the original SD-

Senior by TM could reach 3.62% or higher, Cohen’s d ≥ 0.66, this risk of increase should 

not be taken lightly. 

Like SD-Freshman-N, SD-Senior-N emerged from the interactions among the 

matching mechanism, the number of choices, and student’s strategies.  SD-Senior-N 
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measures the size of the inequality of school quality.  However, it does not inform 

whether the average senior score moves upward after the change of the assignment 

mechanism. The comparison of the mean senior scores under different mechanisms in the 

following paragraphs could answer the question.     

Mean Senior Score.  I first calculated the mean senior score of each of the first 

31 generations assigned to the high schools in each of the 30 simulation runs.  I then 

calculated the average of these mean senior scores in each scenario.  The results are 

presented in Table 15 and Figure 9.   

Table 15 

The mean scores of the high school seniors enrolled without the free-tuition policy  

Number of 
choices Strategy 

Sort-extra-
choice 

Scenario 
# SD BM DA TM CP 

2 1 FALSE 1 59.38* 58.96* 59.40* 59.30 58.94* 
  TRUE 2 59.40  58.96* 59.39 59.35 58.96* 
 2 FALSE 3 61.17* 60.28* 61.78* 56.86 60.67* 
  TRUE 4 61.35* 59.98* 61.68* 56.77 60.10* 
 3 FALSE 5 59.94* 60.05* 59.75* 55.77 60.50* 
  TRUE 6 60.40* 59.09* 60.13* 55.80 59.73* 
4 1 FALSE 7 56.63 55.84* 56.64 56.59 56.32* 
  TRUE 8 56.62* 55.83* 56.64* 56.49 56.38* 
 2 FALSE 9 54.82* 56.37* 54.88 55.07 55.81* 
  TRUE 10 54.91 55.60 54.87* 55.12 55.66* 
 3 FALSE 11 55.15 56.27* 55.00 55.11 55.60* 
  TRUE 12 54.89 55.77* 54.93 54.83 55.59* 
6 1 FALSE 13 55.30 55.08* 55.45* 55.34 55.49* 
  TRUE 14 55.34 55.09* 55.38 55.35 55.41 
 2 FALSE 15 55.60* 54.97* 55.60* 55.39 54.93* 
  TRUE 16 55.22* 54.03* 55.28* 54.86 55.16* 
 3 FALSE 17 55.40 54.84* 55.43 55.39 55.00* 
  TRUE 18 54.82 54.18* 54.86 54.84 55.04* 
       (Continued) 
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Number of 
choices Strategy 

Sort-extra-
choice 

Scenario 
# SD BM DA TM CP 

8 1 FALSE 19 54.77 55.50* 54.66 54.71 54.77* 
  TRUE 20 54.78* 55.49* 54.79* 54.72 54.80* 
 2 FALSE 21 55.03 54.42* 55.08 55.07 55.00 
  TRUE 22 54.51* 54.44 54.49* 54.43 55.13* 
 3 FALSE 23 55.17* 54.59* 55.17* 54.91 55.11* 
  TRUE 24 54.42 54.46 54.43 54.44 55.04* 

10 1 FALSE 25 54.40* 54.50 54.40* 54.47 54.45 
  TRUE 26 54.42 54.46 54.42 54.43 54.46* 
 2 FALSE 27 55.03 54.76* 55.03 54.95 55.10 
  TRUE 28 54.36* 54.52* 54.36* 54.45 54.87* 
 3 FALSE 29 54.98 54.67* 54.98 54.89 55.04 
  TRUE 30 54.35* 54.49* 54.35* 54.40 54.72* 

Note. * denotes that the value is significantly different from that under the column of TM 

in the same scenario (the same row), p < .01.  

 

Figure 9. The average mean scores of the high school seniors enrolled without the free-

tuition policy.  The scenario # in this figure corresponds to that in Table 15. 

In each school, only the scores of the students whose incomes were within a range 
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of their cohort’s mean income would be adjusted to move toward their cohort’s mean 

scores.  The income distribution and score distribution of a cohort determined how the 

scores were adjusted and thus the mean senior scores of that cohort.  Since different 

mechanisms, behaviors, and the numbers of choices had different influences on 

freshmen’s income and score distributions, the mean senior scores under different 

mechanisms were different in most scenarios as shown in Figure 9.  

Like the graphs of SD-Freshman-N and SD-Senior-N, Figure 9 shows a spike of 

senior scores in the scenarios where the number of choices was small, and the scores 

became relatively stable when the number of choices ≥ 8.  The relationships of the mean 

senior scores under different mechanisms were mixed.  No single mechanism could 

outperform the other in all cases, although CP produced higher senior scores than the 

others in two third of the scenarios where the number of choices > 2.  Nevertheless, when 

the number of choices > 2, the differences of the mean senior scores under CP and SD 

(DA) were no more than 1.85%, Cohen’s d = 0.23; under TM and SD (DA), no more than 

0.65%, Cohen’s d = 0.17.  When the number of choices > 6, the differences between CP 

and SD (DA), as well as TM and SD (DA), were even smaller.  From this point of view, 

TM did not seem to be effective in improving senior scores; it could even reduce the 

original mean senior scores in some scenarios.   

Following the same logic to calculate the best-worst estimates for SD-Freshman-

N and SD-Senior-N, I calculated the best-worst estimates of the senior scores caused by a 

change from SD to the other mechanisms without the free-tuition policy as shown in 

Table 16.  Here, we also see that with a mechanism change from SD to TM or BM, the 
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range of the best-worst estimates shrank when the number of choices changed from 8 to 

10.  While the scenario-by-scenario comparison suggested that TM is likely to reduce 

senior scores, the best-worst estimates suggested that TM is also possible to increase the 

mean senior scores by more than 1%, Cohen’s d = 0.62, depending on how students react 

to the policy change.     

Table 16 

The estimated maximum increase and decrease in the original senior score resulting from 

a mechanism change from SD to the other mechanisms without the free tuition policy  

Number 
of 

choices 

To BM 
% 

Cohen’s d 

To TM 
% 

Cohen’s d 

To CP 
% 

Cohen’s d 

8 
[1.99%, -1.35%] 

2.55, -0.45 
[1.20%, -1.34%] 

0.62, -0.59 
[1.30%, -0.71%] 

0.59, -0.31 

10 
[0.76%, -1.04%] 

0.54, -0.45 
[1.10%, -1.15%] 

0.62, -0.51 
[1.37%, -1.06] 

0.59, -0.46 
Note. The first percentage in the square brackets represents the maximum increase in the 

original senior score (senior score under SD) due to the change from SD to the new 

mechanism, and the second percentage in the square brackets represents the maximum 

percentage decrease. The corresponding Cohen’s d is presented right below each 

percentage.   

Impacts on Different Student Groups  

OECD (2010) suggested that a policy aiming at reducing educational inequality 

should be able to help lower-performing and disadvantaged students.  A competitive 

school admission system where students are prioritized mainly by their scores usually 

results in sorting if it employs a stable matching mechanism.  Sorting means that the top-
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performing students go to the top-ranked schools, and the bottom-performing students go 

to the bottom-ranked schools.  Many studies since the 1966 Coleman’s report have shown 

that disadvantaged students benefit more in a mixed environment while advantaged 

students’ performance is hardly affected by peers with lower socioeconomic statuses 

(Coleman et al., 1966; Carman & Zhang, 2012; Van de Werfhorst & Mijs, 2010).  

Therefore, to help disadvantaged students, a student-assignment mechanism may be 

desired to mix students and assign the disadvantaged students to higher ranked schools.  

SD-Freshman tells us the degree of dispersion of the schools’ mean family incomes.  It 

does not say much about how the students in different groups are assigned.  The per-

group information helps us understand the how and is presented in Tables 17 – 22 and 

Figures 10 – 12.     

Table 17 

The average percentage of the top 10% performing students being assigned to their top 

choices (top-choice match rate) without the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD BM DA TM CP 

2 1 FALSE 1 19.84  19.94  19.99  19.84  20.00  
  TRUE 2 20.07  19.84  19.89  19.90  20.03  
 2 FALSE 3 95.87  94.85  96.22  99.42  95.48  
  TRUE 4 93.73  96.90  94.53  99.45  95.57  
 3 FALSE 5 98.32  98.35  98.61  99.63  98.24  
  TRUE 6 99.22  99.06  98.19  99.57  96.46  
4 1 FALSE 7 40.11  39.97  39.85  40.23  40.36  
  TRUE 8 40.07  40.11  39.93  40.15  40.09  
 2 FALSE 9 99.53  89.57  99.68  99.53  96.48  
  TRUE 10 99.85  96.09  99.75  99.56  97.30  
 3 FALSE 11 99.87  99.18  99.69  99.60  98.74  
  TRUE 12 99.99  98.29  99.98  99.60  99.00  
       (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD BM DA TM CP 

6 1 FALSE 13 59.97  60.12  60.03  60.14  59.90  
  TRUE 14 60.37  60.02  59.82  59.95  60.21  
 2 FALSE 15 99.94  95.65  99.97  99.54  99.93  
  TRUE 16 99.94  96.51  99.95  99.57  99.96  
 3 FALSE 17 99.99  99.67  100.00  99.60  99.98  
  TRUE 18 100.00  98.94  100.00  99.61  100.00  
8 1 FALSE 19 80.34  80.03  80.20  80.00  80.12  
  TRUE 20 80.00  80.10  80.24  80.37  80.11  
 2 FALSE 21 99.95  99.80  99.96  99.55  99.97  
  TRUE 22 99.85  99.82  99.85  99.58  99.95  
 3 FALSE 23 100.00  99.84  100.00  99.64  100.00  
  TRUE 24 100.00  99.98  100.00  99.64  100.00  

10 1 FALSE 25 100.00  100.00  100.00  99.43  100.00  
  TRUE 26 100.00  100.00  100.00  99.48  100.00  
 2 FALSE 27 99.96  99.95  99.96  99.55  99.96  
  TRUE 28 100.00  100.00  100.00  99.45  99.94  
 3 FALSE 29 100.00  100.00  100.00  99.58  100.00  
  TRUE 30 100.00  100.00  100.00  99.43  100.00  

 

Figure 10. The percentage of the top 10% performing students being assigned to their top 

choices.  The scenario # in this figure corresponds to that in Table 17. 
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Impacts on Top 10% Performing Students.  In a competitive admission system 

like the Taipei School District, there are few objections against increasing disadvantaged 

students’ educational opportunity, but there are serious objections against achieving that 

by creating justified envy for top performing students (Zhang, 2016).  Policymakers 

seeking to change the system from sorting to mixing usually take this public opinion into 

account and will need the information about how the new policy affects the assignments 

of the top performing students.  Table 17 and Figure 10 show the percentage of the top 

10% performing students who were assigned to their top choice schools (top-choice 

match rate) under each mechanism and reveal the followings.  

• When Strategy = #2 or #3, TM could reach a top-choice match rate of more 

than 99% regardless of the number of choices.  

• When Strategy = #2 or #3, to reach a top-choice match rate of more than 99%, 

SD (DA) needed the number of choices to be higher than 2; CP, higher than 4; 

BM, higher than 6. 

• If Strategy = 1, the greater the number of choices, the greater the top-choice 

match rate under all mechanisms. 

• When the number of choices = 10, all mechanisms could produce a top-choice 

match rate of more than 99% regardless of the strategy used; if students were 

truth tellers (reporting their preference lists as their choice lists), the match 

rates could even reach 100% except for those under TM. 

I defined the top 10% performing students as the students whose total raw scores 

are in the top decile.  Since the model randomly breaks a tie, a top 10% performing 
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student may be rejected by his top choice simply because the seats are full.  Therefore, a 

top-choice match rate slightly less than 100% but more than 99.9% should not be 

interpreted as the occurrence of justified envy.  However, the top-choice match rates 

under TM were no more than 99.64%, which seemed to be lower than the match rate 

resulting from mere random tie breaking.  The reason might be TM’s feature of coarse 

prioritization.  Unlike the other mechanisms which prioritize students based on their raw 

scores, TM prioritizes students based on their total coarse-grained scores converted from 

their raw scores (see the subsection of the Taipei mechanism in Chapter 2 and the 

subsection of details in Chapter 3 for the conversion rules in the program.)  In this 

prioritization process, Student i with higher total raw score may be prioritized lower than 

Student j with lower total raw score and thus lose the seat in his top-choice school to 

Student j.  Therefore, the top 10% performing students under TM will always face the 

risk of justified envy, and the top-choice match rate under TM is hard to reach 100%.   

Table 18 

The average preference index (PI) of the students with the bottom 10% family income 

enrolled without the free-tuition policy 

Number 
of 

choices Strategy 
Extra-

in-order 
Scenario 

# SD BM DA TM CP 
2 1 FALSE 1 (0.74) (0.39) (0.76) (0.70) (0.38) 
  TRUE 2 (0.76) (0.38) (0.75) (0.71) (0.38) 
 2 FALSE 3 (1.64) (0.71) (1.67) (1.42) (0.79) 
  TRUE 4 (1.57) (0.90) (1.59) (1.35) (0.76) 
 3 FALSE 5 (1.61) (0.81) (1.53) (1.26) (0.87) 
  TRUE 6 (1.64) (0.80) (1.61) (1.20) (0.82) 
       (Continued) 
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Number 
of 

choices Strategy 
Extra-

in-order 
Scenario 

# SD BM DA TM CP 
4 1 FALSE 7 (0.51) 0.84  (0.50) (0.44) 0.11  
  TRUE 8 (0.50) 0.85  (0.51) (0.42) 0.08  
 2 FALSE 9 (0.70) 0.72  (0.67) (0.51) (0.38) 
  TRUE 10 (0.65) 0.82  (0.63) (0.41) (0.43) 
 3 FALSE 11 (0.72) 0.60  (0.68) (0.37) (0.46) 
  TRUE 12 (0.63) 0.75  (0.63) (0.16) (0.47) 
6 1 FALSE 13 (0.33) 1.57  (0.33) (0.20) 0.12  
  TRUE 14 (0.32) 1.57  (0.32) (0.19) 0.12  
 2 FALSE 15 (0.07) 1.56  (0.09) (0.16) 0.38  
  TRUE 16 (0.27) 1.97  (0.31) (0.10) 0.35  
 3 FALSE 17 (0.12) 1.54  (0.13) (0.27) 0.27  
  TRUE 18 (0.17) 1.98  (0.17) (0.09) 0.29  
8 1 FALSE 19 (0.13) 1.67  (0.12) (0.03) 0.21  
  TRUE 20 (0.13) 1.72  (0.12) (0.04) 0.22  
 2 FALSE 21 0.03  1.71  (0.00) 0.08  0.28  
  TRUE 22 (0.05) 1.99  (0.05) 0.05  0.27  
 3 FALSE 23 (0.04) 1.75  (0.02) (0.06) 0.16  
  TRUE 24 (0.04) 1.89  (0.04) 0.05  0.11  

10 1 FALSE 25 0.00  2.88  0.00  0.05  0.50  
  TRUE 26 0.00  2.89  0.00  0.05  0.50  
 2 FALSE 27 0.11  1.72  0.11  0.23  0.26  
  TRUE 28 0.00  2.88  0.00  0.05  0.25  
 3 FALSE 29 0.11  1.69  0.11  0.08  0.22  
  TRUE 30 0.00  2.89  0.00  0.05  0.20  

Note. Values in parentheses are negative values.  

 Impacts on Students with Bottom 10% Family Income.  Table 18 and 

Figure 11 show the average PI of the students with the bottom 10% family income in 

each scenario.  As explained in the subsection of details in Chapter 3, a positive PI means 

that a student is assigned to a school that he prefers more to his baseline school and thus a 

gain to the student.  In a complete sorting system, the bottom-performing students will be 

assigned to the bottom-ranked schools.  Since students’ income and scores are usually 

positively correlated, most bottom-performing students are disadvantaged students 
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(Pinkovskiy & Sala-i-Martin, 2009).  Therefore, a mechanism designed to help 

disadvantaged students should generate positive PIs for the students with the bottom 10% 

family income.   

  

Figure 11. The average preference index (PI) of the students with the bottom 10% family 

income enrolled without the free-tuition policy.  The scenario # in this figure corresponds 

to that in Table 18. 

Table 18 and Figure 11 show the following simulated properties of TM compared 

with the other four mechanisms. 

• TM could generate positive PIs for students with the bottom 10% income 

regardless of student’s strategy used only when the number of choices = 10; 

BM, when the number of choices > 2; CP, when the number of choices > 4.  

• Students with the bottom 10% income could hardly have positive PIs under 

SD (DA). 
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• When the number of choices > 6, BM could generate an average PI between 

1.67 and 2.88 for students with the bottom 10% income; CP, between 0.11 

and 0.50; TM, between -0.06 and 0.23; SD (DA), between -0.12 and 0.11.   

• When the number of choices <6, TM generated less negative PIs for students 

with bottom 10% income than SD (DA).   

From Figure 11, one can see that only BM could generate substantial positive PIs 

for the students with the bottom 10% family income; all other mechanisms generated 

little or no benefit for those students.  However, the number of choices must be high for 

the benefits from BM to be realized.   

Table 19 

The average preference index (PI) of the students with the bottom quartile family income 

enrolled without the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD25 BM25 DA25 TM25 CP25 

2 1 FALSE 1 (0.65) (0.54) (0.66) (0.62) (0.52) 
  TRUE 2 (0.66) (0.53) (0.66) (0.62) (0.52) 
 2 FALSE 3 (2.26) (1.58) (2.30) (1.76) (1.66) 
  TRUE 4 (2.22) (1.78) (2.23) (1.69) (1.64) 
 3 FALSE 5 (2.20) (1.67) (2.12) (1.45) (1.72) 
  TRUE 6 (2.21) (1.67) (2.18) (1.41) (1.66) 
4 1 FALSE 7 (0.50) 0.47  (0.50) (0.45) (0.12) 
  TRUE 8 (0.49) 0.49  (0.49) (0.43) (0.12) 
 2 FALSE 9 (1.00) (0.21) (0.98) (0.57) (1.03) 
  TRUE 10 (0.91) (0.17) (0.91) (0.42) (1.07) 
 3 FALSE 11 (0.95) (0.28) (0.93) (0.34) (1.02) 
  TRUE 12 (0.79) (0.20) (0.79) (0.13) (1.02) 
       (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD25 BM25 DA25 TM25 CP25 

6 1 FALSE 13 (0.26) 1.12  (0.28) (0.20) 0.03  
  TRUE 14 (0.26) 1.12  (0.26) (0.18) 0.04  
 2 FALSE 15 (0.21) 0.87  (0.23) (0.28) (0.09) 
  TRUE 16 (0.17) 1.11  (0.20) (0.07) (0.10) 
 3 FALSE 17 (0.25) 0.84  (0.27) (0.26) (0.15) 
  TRUE 18 (0.11) 1.14  (0.12) (0.07) (0.10) 
8 1 FALSE 19 (0.08) 1.41  (0.08) (0.01) 0.18  
  TRUE 20 (0.09) 1.45  (0.09) (0.01) 0.17  
 2 FALSE 21 (0.03) 1.22  (0.04) (0.06) 0.09  
  TRUE 22 (0.03) 1.63  (0.03) 0.05  0.08  
 3 FALSE 23 (0.09) 1.24  (0.08) (0.09) 0.00  
  TRUE 24 (0.02) 1.54  (0.02) 0.05  (0.01) 

10 1 FALSE 25 0.00  2.31  0.00  0.06  0.35  
  TRUE 26 0.00  2.31  0.00  0.06  0.35  
 2 FALSE 27 0.04  1.25  0.04  0.04  0.11  
  TRUE 28 0.00  2.31  0.00  0.06  0.11  
 3 FALSE 29 0.03  1.21  0.03  (0.04) 0.08  
  TRUE 30 0.00  2.31  0.00  0.06  0.06  

Note. Values in parentheses are negative values.  

Table 20 

The average preference index (PI) of the students with the second quartile family income 

without the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD50 BM50 DA50 TM50 CP50 

2 1 FALSE 1 (0.37) (0.67) (0.38) (0.38) (0.66) 
  TRUE 2 (0.39) (0.67) (0.38) (0.39) (0.67) 
 2 FALSE 3 (3.01) (3.13) (3.08) (1.93) (3.21) 
  TRUE 4 (3.09) (3.22) (3.05) (1.90) (3.15) 
 3 FALSE 5 (2.79) (3.11) (2.75) (1.44) (3.16) 
  TRUE 6 (2.79) (3.06) (2.79) (1.42) (3.05) 
       (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD50 BM50 DA50 TM50 CP50 

4 1 FALSE 7 (0.42) (0.66) (0.42) (0.43) (0.62) 
  TRUE 8 (0.42) (0.65) (0.42) (0.41) (0.62) 
 2 FALSE 9 (1.07) (1.90) (1.06) (0.49) (1.76) 
  TRUE 10 (1.03) (1.94) (1.03) (0.40) (1.72) 
 3 FALSE 11 (0.96) (1.77) (0.99) (0.26) (1.51) 
  TRUE 12 (0.78) (1.87) (0.77) (0.13) (1.52) 
6 1 FALSE 13 (0.19) (0.33) (0.20) (0.20) (0.26) 
  TRUE 14 (0.19) (0.31) (0.19) (0.19) (0.25) 
 2 FALSE 15 (0.49) (0.79) (0.48) (0.35) (0.69) 
  TRUE 16 (0.13) (0.64) (0.15) (0.05) (0.66) 
 3 FALSE 17 (0.44) (0.76) (0.44) (0.23) (0.66) 
  TRUE 18 (0.06) (0.62) (0.07) (0.05) (0.60) 
8 1 FALSE 19 (0.04) 0.33  (0.04) (0.01) 0.03  
  TRUE 20 (0.05) 0.35  (0.04) (0.01) 0.03  
 2 FALSE 21 (0.30) (0.03) (0.31) (0.27) (0.33) 
  TRUE 22 0.01  0.47  0.01  0.03  (0.35) 
 3 FALSE 23 (0.32) (0.08) (0.33) (0.16) (0.35) 
  TRUE 24 0.00  0.44  0.00  0.02  (0.31) 

10 1 FALSE 25 0.00  0.79  0.00  0.05  0.05  
  TRUE 26 0.00  0.79  0.00  0.05  0.05  
 2 FALSE 27 (0.29) 0.11  (0.29) (0.23) (0.32) 
  TRUE 28 0.00  0.80  0.00  0.05  (0.24) 
 3 FALSE 29 (0.28) 0.08  (0.28) (0.18) (0.29) 
  TRUE 30 0.00  0.78  0.00  0.05  (0.22) 

Note. Values in parentheses are negative values. 
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Table 21 

The average preference index (PI) of the students with the third quartile family income 

without the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD75 BM75 DA75 TM75 CP75 

2 1 FALSE 1 (0.49) (0.65) (0.50) (0.53) (0.65) 
  TRUE 2 (0.51) (0.65) (0.51) (0.53) (0.67) 
 2 FALSE 3 (2.21) (2.85) (2.30) (1.27) (2.93) 
  TRUE 4 (2.36) (2.81) (2.24) (1.25) (2.83) 
 3 FALSE 5 (1.94) (2.71) (1.92) (0.85) (2.75) 
  TRUE 6 (1.92) (2.65) (1.98) (0.85) (2.64) 
4 1 FALSE 7 (0.34) (0.81) (0.34) (0.35) (0.54) 
  TRUE 8 (0.33) (0.81) (0.34) (0.33) (0.55) 
 2 FALSE 9 (0.61) (2.02) (0.61) (0.31) (1.29) 
  TRUE 10 (0.61) (2.04) (0.61) (0.29) (1.20) 
 3 FALSE 11 (0.55) (1.70) (0.56) (0.18) (1.00) 
  TRUE 12 (0.44) (1.83) (0.43) (0.11) (1.02) 
6 1 FALSE 13 (0.17) (0.77) (0.18) (0.19) (0.30) 
  TRUE 14 (0.17) (0.77) (0.17) (0.19) (0.29) 
 2 FALSE 15 (0.38) (1.45) (0.37) (0.26) (0.61) 
  TRUE 16 (0.20) (1.38) (0.21) (0.07) (0.60) 
 3 FALSE 17 (0.31) (1.21) (0.31) (0.18) (0.50) 
  TRUE 18 (0.08) (1.30) (0.09) (0.05) (0.51) 
8 1 FALSE 19 (0.07) (0.67) (0.07) (0.08) (0.13) 
  TRUE 20 (0.07) (0.70) (0.08) (0.08) (0.13) 
 2 FALSE 21 (0.30) (1.04) (0.30) (0.24) (0.33) 
  TRUE 22 (0.02) (0.82) (0.02) (0.02) (0.35) 
 3 FALSE 23 (0.29) (0.97) (0.31) (0.16) (0.32) 
  TRUE 24 (0.01) (0.75) (0.01) (0.01) (0.28) 

10 1 FALSE 25 0.00  (0.88) 0.00  (0.01) (0.05) 
  TRUE 26 0.00  (0.88) 0.00  (0.02) (0.05) 
 2 FALSE 27 (0.31) (0.72) (0.31) (0.22) (0.33) 
  TRUE 28 0.00  (0.88) 0.00  (0.02) (0.27) 
 3 FALSE 29 (0.27) (0.67) (0.27) (0.17) (0.28) 
  TRUE 30 0.00  (0.88) 0.00  (0.02) (0.20) 

Note. Values in parentheses are negative values. 
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Table 22 

The average preference index (PI) of the students with the top quartile family income 

without the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD100 BM100 DA100 TM100 CP100 

2 1 FALSE 1 (1.80) (1.80) (1.80) (1.79) (1.80) 
  TRUE 2 (1.79) (1.81) (1.79) (1.80) (1.80) 
 2 FALSE 3 (0.70) (1.16) (0.75) (0.35) (1.20) 
  TRUE 4 (0.77) (1.08) (0.72) (0.34) (1.13) 
 3 FALSE 5 (0.55) (1.00) (0.55) (0.21) (1.01) 
  TRUE 6 (0.54) (0.97) (0.58) (0.20) (0.99) 

4 1 FALSE 7 (0.69) (0.83) (0.69) (0.70) (0.71) 
  TRUE 8 (0.69) (0.84) (0.69) (0.69) (0.72) 
 2 FALSE 9 (0.18) (0.89) (0.17) (0.10) (0.41) 
  TRUE 10 (0.18) (0.82) (0.18) (0.10) (0.37) 
 3 FALSE 11 (0.17) (0.63) (0.16) (0.06) (0.28) 
  TRUE 12 (0.12) (0.65) (0.12) (0.03) (0.29) 

6 1 FALSE 13 (0.30) (0.62) (0.31) (0.32) (0.32) 
  TRUE 14 (0.30) (0.62) (0.30) (0.32) (0.32) 
 2 FALSE 15 (0.15) (0.75) (0.14) (0.10) (0.20) 
  TRUE 16 (0.09) (0.78) (0.10) (0.03) (0.21) 
 3 FALSE 17 (0.10) (0.52) (0.10) (0.07) (0.15) 
  TRUE 18 (0.04) (0.67) (0.05) (0.02) (0.16) 

8 1 FALSE 19 (0.12) (0.65) (0.12) (0.13) (0.14) 
  TRUE 20 (0.12) (0.66) (0.12) (0.14) (0.14) 
 2 FALSE 21 (0.11) (0.77) (0.12) (0.09) (0.12) 
  TRUE 22 (0.04) (0.89) (0.04) (0.02) (0.14) 
 3 FALSE 23 (0.11) (0.62) (0.11) (0.06) (0.11) 
  TRUE 24 (0.02) (0.76) (0.02) (0.01) (0.10) 

10 1 FALSE 25 0.00  (0.79) 0.00  (0.01) (0.01) 
  TRUE 26 0.00  (0.79) 0.00  (0.01) (0.01) 
 2 FALSE 27 (0.12) (0.62) (0.12) (0.09) (0.13) 
  TRUE 28 0.00  (0.79) 0.00  (0.01) (0.10) 
 3 FALSE 29 (0.10) (0.51) (0.10) (0.06) (0.10) 
  TRUE 30 0.00  (0.79) 0.00  (0.01) (0.07) 

Note. Values in parentheses are negative values. 
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Figure 12. The average preference indexes (PIs) of the students in each income quartile 

enrolled without the free-tuition policy. The upper left is the PIs of the students in the 

first quartile; the upper right, the second quartile; the lower left, the third quartile; the 

lower right, the fourth quartile.  The scenario # in this figure corresponds to that in Tables 

19-22.  

Impacts on Students in Each Income Quartile.  Tables 19-22 and Figure 12 

show the average PIs of the students in the four income quartiles and reveal the following 

properties of TM and the other mechanisms.  

• Justified envy (negative PIs) always occurred to the students in the top and 

third income quartiles regardless of the mechanism or scenario except for the 

scenarios where mechanism = SD (DA), the number of choices = 10, and sort-

extra-choice = True; in this exceptional case, the PI = 0.   
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• TM generated negative PIs for all students except that TM generated small 

positive PIs (< 0.06) for the students in the bottom and second income 

quartiles in some scenarios where the number of choices ≥ 8.  

• Under SD (DA), students could only receive negative or zero PIs except that 

the students in the bottom and second income quartiles would have a small 

positive PI (< .04) in some scenarios where the number of choices ≥ 8.  

• BM generated positive PIs for the students in the bottom income quartile in all 

scenarios where the number of choices ≥ 6 and for the students in the second 

income quartile in all scenarios where the number of choices = 10. 

• CP generated positive PIs for the students in the bottom income quartiles in all 

scenarios where the number of choices = 10 and in most scenarios where the 

number of choices = 8.   

• CP generated positive PIs for the students in the second income quartile only 

when the number of choices ≥ 8 and Strategy = #1.  

• The positive PIs received by students were all less than 1 (less than one rank) 

except for the PIs received by the students in the bottom income quartile 

under BM in cases where the number of choices ≥ 8 and some cases where the 

number of choices = 6.  

• When the number of choices = 10 and the mechanism = TM, BM, or CP, the 

students in the third income quartile had larger negative PIs than those in the 

top income quartile.  
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• When the number of choices > 6, the PIs under SD (DA) were between 0.04 

and -0.32; under TM, between 0.06 and -0.27; under CP, between 0.18 and -

0.35.  

• When the number of choices > 6 and under BM, the PIs of the bottom-

income-quartile students were between 1.20 and 2.31; the PIs of the second-

income-quartile students, between 0.80 and -0.08; the PIs of the other students, 

between -0.51 and -0.89.    

The above results showed us how the students were assigned.  If a mechanism 

aiming at equality should benefit the more disadvantaged students, then BM is the best 

among all mechanisms because BM produced the highest positive PIs for those in the 

bottom income quartile.  However, this benefit occurred only when the number of 

choices ≥ 6.  When the number of choices was not high enough, many students, 

regardless of their groups, would end up having no school to attend because of their “bad” 

choices, which could be evidenced by the low match rates and substantially negative PIs 

in the cases where the number of choices was low as seen in Figure 7 and Figure 12, 

respectively.  When the number of choices ≥ 8, BM could also generate the largest 

positive PIs or the least negative PIs for the second-income-quartile students and 

produced the largest negative PIs for the top- and third-income-quartile students.  This 

finding suggests that BM mixes students the most, which might be the reason why BM 

had the lowest SD-Freshman-Ns when the number of choices ≥ 8. When the number of 

choices > 6, CP, by and large, produced more negative PIs for the top- and third-income 

quartile students than TM and SD (DA), which might also be the reason why CP had a 



171 
 

 

slightly lower average SD-Freshman-Ns than TM and SD (DA).  When the number of 

choices > 6, the relationships of the PIs in each quartile under TM and SD (DA) were 

mixed.  However, their values were very close, which might be the reason why SD-

Freshman-Ds under TM and SD (DA) were close. 

Effects of TM with the Free-tuition policy  

This section presents the data simulated with the free-tuition policy.  I arranged 

this section in the same way as the previous section to have a better comparison of the 

outcomes with and without this policy. 

Overall Effect on Educational Opportunity  

SD-Freshman-Y. I defined SD-Freshman-Y as the SD-Freshman with the free-

tuition policy.  Table 23 and Figure 13 show the average SD-Freshman-Y across all the 

simulation steps in the 30 simulation runs in each scenario.  

Table 23 

The average standard deviation of the mean freshman family income under the free-

tuition policy (SD-Freshman-Y) 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD BM DA TM CP 

2 1 FALSE 1 $327,710 $314,351 $327,890 $324,949 $314,063 
  TRUE 2 $327,056† $314,986 $326,390 $324,674  $313,398 
 2 FALSE 3 $833,206 $827,860 $818,280 $735,152 $841,903 
  TRUE 4 $817,636 $829,770 $809,773 $738,503 $835,469 
 3 FALSE 5 $795,739 $804,619 $796,459 $697,264 $814,662 
  TRUE 6 $806,719 $810,684 $792,117 $704,203 $799,248 

4 1 FALSE 7 $502,868 $455,527 $502,773 $499,008 $489,158 
  TRUE 8 $502,423 $455,205 $502,164 $499,536 $488,754 
 2 FALSE 9 $648,400 $734,276 $656,049 $626,650 $743,329 
  TRUE 10 $648,728 $791,605 $641,767 $618,485 $747,045 
 3 FALSE 11 $631,826 $725,813 $639,992 $613,047* $727,410 
  TRUE 12 $631,019 $786,105 $632,518 $611,652* $728,609 
       (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD BM DA TM CP 

6 1 FALSE 13 $557,758 $475,594 $557,569 $554,080 $545,080 
  TRUE 14 $558,334 $475,636 $558,049 $554,702 $545,812 
 2 FALSE 15 $602,448 $652,995 $602,039 $605,337* $609,972 
  TRUE 16 $603,820 $714,579 $603,743 $609,219* $609,150† 
 3 FALSE 17 $602,984 $646,793 $603,149 $607,954* $609,734† 
  TRUE 18 $606,900 $705,442 $606,872 $611,182* $608,849† 

8 1 FALSE 19 $585,916 $491,894 $585,794 $582,426 $579,040 
  TRUE 20 $587,554 $493,994 $587,332 $583,622 $579,919 
 2 FALSE 21 $594,665 $582,670 $594,946 $597,339* $591,458 
  TRUE 22 $600,876 $545,027 $600,888 $601,875 $590,970 
 3 FALSE 23 $595,813 $579,511 $595,783 $598,608 $593,155 
  TRUE 24 $602,934† $543,321 $602,915† $602,872 $593,242 

10 1 FALSE 25 $606,656 $490,788 $606,656 $603,347 $599,036 
  TRUE 26 $605,986 $489,865 $605,986 $602,723 $598,154 
 2 FALSE 27 $598,392† $557,177 $598,362† $598,522* $597,267† 
  TRUE 28 $606,084 $490,105 $606,084 $603,095 $595,657 
 3 FALSE 29 $598,190 $554,051 $598,191 $599,712 $597,144 
  TRUE 30 $607,571 $492,488 $607,571 $604,370 $599,414 

Note. Each value under the columns of SD, BM, DA, and CP is significantly different 

from that under the column of TM in the same scenario (the same row), p < .01, except 

for the values with a †.  * denotes that the SD-Freshman-Y under TM is insignificantly 

different from the corresponding SD-Freshman-N under TM, p > .01.  $ here represents 

Taiwan dollar. 

 

Figure 13. The average standard deviation of mean freshman family income under the 

free-tuition policy (SD-Freshman-Y).  The scenario # in this figure corresponds to that in 

Table 23. 
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Figure 13 and its counterpart (Figure 6) share a similar pattern.  The relationships 

among SD-Freshman-Ys based on the scenario-by-scenario comparisons were also 

similar to those among SD-Freshman-Ns and summarized below.   

• When Strategy = #1, the size of SD-Freshman-Y produced by each of the 

mechanisms had the following orders: SD (DA) > TM > CP, and SD (DA) > 

TM > BM.    

• When Strategy = #1 or the number of choices ≥ 6, the differences between the 

SD-Freshman-Ys under TM and SD (DA) were limited (less than 0.89% of 

the SD-Freshman-Y under SD, Cohen’s d = 0.10).  

• When Strategy = #2 or #3 and the number of choices > 6, the SD-Freshman-Y 

produced by each mechanism was in the following order: TM ≈ SD (DA) > 

CP > BM.  

• When Strategy = #2 or #3 and the number of choices < 6, the SD-Freshman-Y 

produced by each mechanism was in the following orders: TM < SD (DA) < 

CP, and TM < BM; that is, TM generated the lowest SD-Freshman-Y in this 

condition. 

• When Strategy = #2 or #3 and the number of choices = 6, the relationships of 

the SD-Freshman-Ys under the mechanisms depended on sort-extra-order, 

while the SD-Freshman-Y under BM was the highest among all mechanisms 

in this condition.  
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To see how well the free-tuition policy can reduce the SD-Freshman-N, I 

compared SD-Freshman-N and SD-Freshman-Y on the scenario-by-scenario basis as 

shown in Table 24 and summarized the findings below. 

• Under SD, DA, TM, and CP, if Strategy = #1 or the number of choices ≥ 6, 

SD-Freshman-Y < SD-Freshman-N. 

• Under BM, if Strategy = #1 or the number of choices > 6, SD-Freshman-Y < 

SD-Freshman-N. 

• If Strategy = #2 or #3, SD-Freshman-Y > SD-Freshman-N in some scenarios 

other than the above. 

Table 24 

The comparisons of the standard deviations of the mean freshman family income (SD-

Freshman) with and without the free-tuition policy  

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# 

A 
SD 

B 
BM 

C 
DA 

D 
TM 

E 
CP F G 

2 1 FALSE 1 45,890  51,512  46,462  $48,116  52,692  535  48,651  

  
TRUE 2 48,731  50,922  48,182  $47,812  52,570  3,302  51,114  

 
2 FALSE 3 (20,128) 2,586  15,290  ($19,697) (13,341) 97,623  77,926  

  
TRUE 4 13,374  (3,989) 19,868  ($24,407) (13,498) 116,915  92,507  

 
3 FALSE 5 (6,903) (9,974) (15,051) ($19,580) 3,937  111,152  91,571  

  
TRUE 6 (14,784) (24,855) 2,065  ($21,299) 1,690  109,030  87,732  

4 1 FALSE 7 15,430  31,523  15,259  $16,717  21,695  2,573  19,290  

  
TRUE 8 14,777  31,893  15,334  $16,139  21,337  1,525  17,664  

 
2 FALSE 9 (13,872) 30,059  (26,400) ($13,584) (19,046) 21,462  7,878  

  
TRUE 10 (14,760) 10,117  (8,757) ($4,804) (24,588) 20,287  15,483  

 
3 FALSE 11 (7,717) (10,212) (14,116) ($1,310) (24,877) 12,373  11,063  

  
TRUE 12 (12,051) 362  (13,164) $3,534  (21,688) 3,782  7,316  

         (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# 

A 
SD 

B 
BM 

C 
DA 

D 
TM 

E 
CP F G 

6 1 FALSE 13 8,302  52,022  6,941  $9,455  12,398  2,525  11,980  

  
TRUE 14 6,044  49,439  5,666  $7,124  11,517  2,553  9,677  

 
2 FALSE 15 7,518  16,073  7,803  $4,255  5,170  374  4,629  

  
TRUE 16 2,693  (56,686) 2,759  $4,576  5,414  (7,283) (2,707) 

 
3 FALSE 17 5,874  (6,482) 5,105  $2,761  1,953  (1,857) 904  

  
TRUE 18 7,001  (61,903) 6,878  $6,051  4,004  (3,333) 2,719  

8 1 FALSE 19 5,285  40,205  7,049  $7,610  8,031  1,165  8,775  

  
TRUE 20 3,984  37,463  3,979  $6,943  7,408  973  7,916  

 
2 FALSE 21 5,841  12,397  5,727  $2,692  6,460  475  3,167  

  
TRUE 22 3,757  18,803  4,023  $7,508  6,711  (4,751) 2,758  

 
3 FALSE 23 4,693  15,386  4,480  $5,176  4,647  (3,279) 1,897  

  
TRUE 24 5,604  22,558  5,444  $6,926  5,219  (1,260) 5,666  

10 1 FALSE 25 5,854  61,082  5,854  $6,138  7,653  3,024  9,163  

  
TRUE 26 5,916  61,755  5,916  $7,113  7,968  2,065  9,178  

 
2 FALSE 27 3,012  15,892  3,041  $2,736  2,920  145  2,882  

  
TRUE 28 6,630  60,575  6,630  $6,237  2,287  3,381  9,619  

 
3 FALSE 29 3,146  22,898  3,144  $3,711  3,577  (2,087) 1,625  

  
TRUE 30 6,170  60,233  6,170  $6,352  2,336  3,019  9,370  

Note. Columns A to E = SD-Freshman-N minus SD-Freshman-Y under SD, BM, DA, 

TM, and CP, respectively.  Column F = SD-Freshman-N under SD minus SD-Freshman-

N under TM in the same scenario.  Column G = SD-Freshman-N under SD minus SD-

freshman-Y under TM in the same scenario.  A value in parentheses is a negative value.  

$ here represents Taiwan dollar.  

The intuition is that under the free-tuition policy, students with below-average 

family income can afford to choose and attend School #3 (the private school initially 

ranked the third best school in the model).  With an increase in the population of lower-

income freshmen, School #3’s average Freshman family income could decrease, which in 

turn could reduce the overall SD-Freshman-Y.  Table 24 shows a counterintuitive 

phenomenon that SD-Freshman-Y was larger than SD-Freshman-N in many cases where 

Strategy = #2 or #3 and the number of choices ≤ 6.  A possible reason is that when the 
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number of choices becomes less, school choice becomes more like a game.  The free-

tuition policy gives some players more options to bet on and increases the complexity of 

the game, which in turn may cause the policy to have a mixed effect on the equality of 

educational opportunity. 

Columns F and G in Table 24 shows how well TM and the free tuition alone and 

combined could help reduce the SD-Freshman under Taipei’s original mechanism, which 

was SD, when students’ strategy was constant.   As stated in the previous section, TM 

and SD (DA) should be accompanied by an allowance of six or more choices to generate 

a Match-N of at least 95% without regard to students’ behaviors.  This rule also applied 

to TM and SD (DA) with the free-tuition policy (see Table 25.)  Assuming that high 

match rate is a requirement for efficiency, I focus the following discussion on the 

scenarios where the number of choices ≥ 6.  The free-tuition policy always helped the 

original mechanism reduce SD-Freshman (Column A), while the effect of TM on the 

original mechanism depended on students' strategies (Column F).  Combining TM and 

the free-tuition policy helped balance out TM’s adverse effect and enhance TM’s positive 

effect on the original SD-Freshman (see Column G.)  If the number of choices > 6, TM 

with the free-tuition policy could decrease the original SD-Freshman in all scenarios (see 

Column G.)   

The above findings were based on the scenario-by-scenario comparisons.  I also 

calculated the best-worst estimates of the change in SD-Freshman-Y caused by the 

change from SD to the mechanisms with the free tuition policy when the number of 

choices ≥ 8.  Table 25 shows the estimates. 
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Table 25 

The estimated maximum percentage increase and decrease in the original SD-Freshman 

by a change from the SD without the free-tuition policy to the mechanisms with the free-

tuition policy  

Number of choices To SD+Free 
% 

Cohen’s d 

To BM+Free 
% 

Cohen’s d 

To TM+Free 
% 

Cohen’s d 

To CP+Free 
% 

Cohen’s d 
8 [1.98%, -3.72%] 

0.60, -1.14 
[ --*, -16.95%] 

 --*, -5.32 
[1.97%, -4.5%] 

0.60, -1.32 
[0.35%, -3.19%] 

0.10, -1.48 
10 [1.04%, -2.53%] 

0.28, -0.76 
[ --*, -20.18%] 

 --*, -5.49 
[0.50%, -2.48%] 

0.14, -0.62 
[ --*, -2.95%] 

 --*, -0.76 
Note. The first percentage in the square brackets represents the maximum percentage 

increase in the original SD-Freshman (SD-Freshman-N under SD) due to the change from 

SD to the new mechanism with the free-tuition policy (SD+Free, BM+Free, TM+Free, 

and CP+Free), and the second percentage in the square brackets is the maximum 

percentage decrease. The corresponding Cohen’s d is presented right below each 

percentage.  * denotes that the policy in this column did not increase the original SD-

Freshman.   

As in the scenarios without the free-tuition policy, BM with the free-tuition policy 

could provide the largest decrease and least increase in the original SD-Freshman among 

all mechanisms with the free-tuition policy.  CP with the free-tuition policy also provided 

a minimal or no effect on increasing the original SD-Freshman.  Additionally, with the 

free-tuition policy, CP, as well as TM and SD, could decrease the original SD-Freshman.  

However, their effect sizes were much less than that of BM with the free-tuition policy.  

The ranges and effect sizes of TM and SD (DA) with the free-tuition policy on the 

original SD-Freshman crossed zero, which means that a wrong prediction of students’ 
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behaviors might cause an opposite expectation of the effect of TM with the free-tuition 

policy on SD-Freshman.     

In summary, when the number of choices > 6, the free-tuition policy helped TM 

reduce the original SD-Freshman.  However, in this case, the SD-Freshman-Y under SD 

and the SD-Freshman-Y under TM were similar.  The SD-Freshman-Y under SD 

measured the effect of the free-tuition policy alone on the original SD-Freshman (SD-

Freshman-N under SD).  SD-Freshman-Y under TM measured the combined effect of 

TM and the free-tuition policy on the original SD-Freshman.  This finding implied that 

the free-tuition policy was the primary factor for TM with the free-tuition policy to 

reduce the original SD-Freshman.  That is, a similar effect could be obtained by 

implementing the free-tuition policy alone without changing the mechanism from SD to 

TM.  I further discuss the policy implication of this fining in Chapter 5.      

Match Rate.  Match-Y denotes the rate of the candidates assigned to the schools 

under a mechanism with the free-tuition policy.  Table 26 and Figure 14 show the 

average Match-Y across all the simulation steps for each scenario.  

Like their counterparts (Table 11 and Figure 7), Table 26 and Figure 14 show a 

trend that the higher the number of choices, the higher the Match-Y under all 

mechanisms.  Also like their counterparts, the TM and SD (DA) with the free-tuition 

policy needed an allowance of six or more choices to generate a match rate of at least 

95% without regard to students’ strategies, while CP needed eight choices and BM 

needed ten choices.  However, unlike Table 10 where only BM could reach the 100% 

match rate, all mechanisms with the free-tuition policy reached the 100% match rate 



179 
 

 

when the number of choices = 10.  That being said, the effect of the free-tuition policy on 

match rate under the same mechanism was nonlinear and crossed zero.  When the number 

of choices < 10, the match rates in many scenarios with the free-tuition policy decreased 

instead.  The reason might still be the increased complexity of the game caused by the 

free-tuition policy as explained in the previous paragraph.   

Table 26 

The average rate of students assigned to schools under a student-assignment mechanism 

with the free-tuition policy (Match-Y) 

Number 
of 

choices  Strategy 

Extra-
in-
order 

Scenario 
# 

 SD  
% 

 BM  
% 

 DA 
%  

 TM  
% 

 CP  
% 

2 1 FALSE 1 90.57 87.46* 90.52 90.50 87.46* 

  
TRUE 2 90.51 87.49* 90.50 90.51† 87.46* 

 
2 FALSE 3 55.87* 56.13* 57.52* 66.95† 55.90* 

  
TRUE 4 57.84* 54.39* 58.75* 67.47† 55.69* 

 
3 FALSE 5 60.42* 57.15* 59.94* 72.59† 57.73* 

  
TRUE 6 59.58* 56.24* 60.21* 72.42† 58.01* 

4 1 FALSE 7 95.10* 91.52* 95.13* 94.99† 93.80* 

  
TRUE 8 95.13* 91.58* 95.13* 95.04† 93.81* 

 
2 FALSE 9 80.00* 71.55* 79.33* 86.62† 71.56* 

  
TRUE 10 80.34* 66.03* 80.89* 89.52† 70.86* 

 
3 FALSE 11 82.63* 72.48* 81.63* 92.88† 72.98* 

  
TRUE 12 83.62* 66.44* 83.29* 93.85† 72.79* 

6 1 FALSE 13 97.60* 94.85* 97.59* 97.52† 97.53 

  
TRUE 14 97.59* 94.85* 97.60* 97.51† 97.56 

 
2 FALSE 15 95.29* 82.94* 95.33* 95.78 90.37* 

  
TRUE 16 97.47* 73.91* 97.50* 98.48 90.16* 

 
3 FALSE 17 95.42* 83.68* 95.37* 97.59 90.78* 

  
TRUE 18 98.44* 75.23* 98.50* 99.00 91.25* 

       (Continued) 
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Number 
of 

choices  Strategy 

Extra-
in-
order 

Scenario 
# 

 SD  
% 

 BM  
% 

 DA 
%  

 TM  
% 

 CP  
% 

8 1 FALSE 19 98.91 97.81* 98.92 98.89† 98.95* 

  
TRUE 20 98.92 97.83* 98.90 98.91† 98.94 

 
2 FALSE 21 98.27* 93.50* 98.26* 98.01 97.96 

  
TRUE 22 99.61 92.29* 99.61 99.62 98.02* 

 
3 FALSE 23 98.31* 93.69* 98.29* 98.58 97.93* 

  
TRUE 24 99.61 92.55* 99.61 99.61 97.99* 

10 1 FALSE 25 100.00 100.00 100.00 100.00† 100.00 

  
TRUE 26 100.00 100.00 100.00 100.00† 100.00 

 
2 FALSE 27 100.00 100.00 100.00 100.00† 100.00 

  
TRUE 28 100.00 100.00 100.00 100.00† 100.00 

 
3 FALSE 29 100.00 100.00 100.00 100.00† 100.00 

  
TRUE 30 100.00 100.00 100.00 100.00 100.00 

Note. * denotes that the value is statistically significantly different from that under the 

column of TM in the same scenario (the same row), p < .01.  † denotes that the Match-Y 

under TM was significantly different from the corresponding Match-N under TM, p < 

.01.   

I then compared the match rates under TM and SD with and without the free-

tuition policy on the scenario-by-scenario basis (Tables 11 and 25).  

• When the number of choices = 10, the Match-Ys under TM and SD were both 

100%.   

• When the Strategy = #1, the match rates under TM alone, SD alone, SD with 

the free-tuition policy, and TM with the free-tuition policy were no more than 

0.32% different.   

• When Strategy = #2 or #3 and the number of choices < 6, TM alone produced 

the highest match rates, while SD with the free-tuition policy produced the 

lowest.  
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• When Strategy = #2 or #3 and the number of choices = 6, SD with the free-

tuition policy produced the lowest match rates, while the relationships of the 

match rates under TM alone, SD alone, and TM with the free-tuition policy 

were mixed.  

• When Strategy = #2 or #3 and the number of choices = 8, the relationships of 

the match rates under the four combinations were mixed but no more than 

0.81% different, while SD with the free-tuition policy always produced higher 

match rates than SD alone (the original mechanism).   

 

Figure 14. The average rate of students assigned to schools under a mechanism with the 

free-tuition policy (Match-Y).  The scenario # in this figure corresponds to that in Table 

26.  
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In summary, when the number of choices was high (more than 6 in the 

simulations), the free-tuition policy alone was enough to increase the match rate of the 

original mechanism.  If the number of choices ≤ 6, then TM alone was effective enough 

to raise the match rate.  TM with the free-tuition policy did not perform better than the 

free tuition alone when the number of choices > 6 or TM alone when the number of 

choices ≤ 6.      

Overall Effect on School Quality  

SD-Senior-Y.  I defined SD-Senior-Y as the SD-Senior under a mechanism with 

the free-tuition policy.  Table 27 and Figure 15 show the average SD-Senior-Y over the 

last 31 simulation steps in the 30 simulation runs in each scenario.    

Table 27 

The average standard deviation of the mean scores of the seniors enrolled under the free-

tuition policy (average SD-Senior-Y) 

Number 
of 

choices Strategy 

Extra-
in-

order 
Scenario 

#  SD   BM   DA   TM   CP  
2 1 FALSE 1 13.27 12.63 13.26 13.11 12.60 

  
TRUE 2 13.28 12.73 13.22† 13.17 12.67 

 
2 FALSE 3 31.10 30.90 30.55 27.95 31.18 

  
TRUE 4 30.50 31.31 30.09 28.21 30.61 

 
3 FALSE 5 30.09 30.46 29.90 26.46 30.38 

  
TRUE 6 30.45 30.56 29.97 26.93 30.03 

4 1 FALSE 7 19.81 16.77 19.80 19.61 18.74 

  
TRUE 8 19.81 16.76 19.81 19.61 18.76 

 
2 FALSE 9 24.20 26.73 24.48 23.18 27.70 

  
TRUE 10 24.27 29.82 23.86 22.78 27.78 

 
3 FALSE 11 23.40 27.01 23.74 22.32 27.34 

  
TRUE 12 23.34 29.88 23.46 22.21 27.25 

       (Continued) 
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Number 
of 

choices Strategy 

Extra-
in-

order 
Scenario 

#  SD   BM   DA   TM   CP  
6 1 FALSE 13 21.14 15.98 21.16 21.00 19.96 

  
TRUE 14 21.18 15.99 21.16 20.99 19.96 

 
2 FALSE 15 21.44 23.04 21.40 21.78 21.62† 

  
TRUE 16 21.64 26.09 21.64 22.04 21.51 

 
3 FALSE 17 21.50 22.77 21.52 21.92 21.64 

  
TRUE 18 21.94 25.69 21.93 22.16 21.60 

8 1 FALSE 19 21.68 15.68 21.69 21.46 20.82 

  
TRUE 20 21.70 15.66 21.70 21.48 20.85 

 
2 FALSE 21 21.07 19.48 21.09 21.35 20.65 

  
TRUE 22 21.80 17.65 21.80 21.71 20.68 

 
3 FALSE 23 21.17 19.28 21.17 21.49 20.84 

  
TRUE 24 21.86 17.50 21.86 21.74 20.82 

10 1 FALSE 25 22.00 15.19 22.00 21.79 21.14 

  
TRUE 26 22.00 15.18 22.00 21.79 21.12 

 
2 FALSE 27 21.53† 18.61 21.53† 21.49 21.40† 

  
TRUE 28 22.01 15.24 22.01 21.80 21.39 

 
3 FALSE 29 21.51† 18.34 21.51† 21.61 21.40 

  
TRUE 30 21.99 15.22 21.99 21.78 21.51 

Note. All values in the columns of SD, BM, DA, and CP are significantly different from 

the corresponding values in the column of TM except for those with a †, p < .01.   

Table 27 and Figure 15 have a structure similar to those of their counterparts 

(Table 13 and Figure 8), although the gap between BM and the other mechanisms was 

wider in the former.  Also largely similar to the relationships of SD-Senior-Ns, the 

relationships of SD-Senior-Ys were as follows: (a) When Strategy = #1, SD (DA) > TM 

> CP and SD (DA) > TM > BM; (b) when Strategy = #2 or #3 and the number of choices 

< 6, TM had the lowest SD-Senior-Ys among all mechanisms; and (c) when Strategy = 

#2 or #3 and the number of choices > 6, TM > CP > BM, while the relationships between 

TM and SD (DA) were mixed and depended on students’ strategies.   
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Figure 15. The average standard deviation of the mean scores of the seniors enrolled 

under the free-tuition policy (average SD-Senior-Y).  The scenario # in this figure 

corresponds to that in Table 27.  

Table 28 

The differences of the standard deviations of the mean scores of the seniors enrolled with 

and without the free-tuition policy  

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# 

A 
SD 

B 
BM 

C 
DA 

D 
TM 

E 
CP F G 

2 1 FALSE 1  0.65   0.85   0.69   0.79   0.92   0.02   0.81 

  
TRUE 2  0.66   0.76   0.74   0.66   0.82   0.11   0.77 

 
2 FALSE 3 (1.04) (0.37)  0.23  (1.18) (0.73)  3.30   2.12 

  
TRUE 4 (0.01) (0.45)  0.45  (1.39) (0.34)  3.68   2.29 

 
3 FALSE 5 (0.46) (0.85) (0.59) (1.20)  0.16   4.37   3.17 

  
TRUE 6 (0.70) (1.03) (0.21) (1.61) (0.44)  4.43   2.82 

         (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# 

A 
SD 

B 
BM 

C 
DA 

D 
TM 

E 
CP F G 

4 1 FALSE 7 (0.20)  0.30  (0.22) (0.15)  0.07   0.16   0.01 

  
TRUE 8 (0.22)  0.31  (0.23) (0.11)  0.03   0.09  (0.02) 

 
2 FALSE 9 (1.48)  0.06  (2.00) (1.44) (1.30)  0.99  (0.45) 

  
TRUE 10 (1.68) (0.07) (1.28) (1.10) (1.31)  0.92  (0.18) 

 
3 FALSE 11 (1.32) (1.01) (1.45) (0.72) (1.54)  0.48  (0.24) 

  
TRUE 12 (1.31) (0.51) (1.41) (0.39) (1.28)  0.20  (0.18) 

6 1 FALSE 13 (0.22)  1.19  (0.36) (0.26) (0.02)  0.19  (0.07) 

  
TRUE 14 (0.28)  1.16  (0.30) (0.26)  0.03   0.17  (0.09) 

 
2 FALSE 15 (0.24) (0.32) (0.19) (0.28) (0.25) (0.30) (0.58) 

  
TRUE 16 (0.23) (3.99) (0.24) (0.17) (0.24) (0.46) (0.63) 

 
3 FALSE 17 (0.20) (0.72) (0.23) (0.36) (0.36) (0.27) (0.63) 

  
TRUE 18 (0.12) (3.99) (0.13) (0.19) (0.36) (0.15) (0.34) 

8 1 FALSE 19 (0.16)  0.91  (0.05) (0.03)  0.18   0.09   0.06  

  
TRUE 20 (0.20)  0.86  (0.22) (0.07)  0.13   0.09   0.02  

 
2 FALSE 21 (0.13)  0.42  (0.15) (0.36)  0.06  (0.05) (0.41) 

  
TRUE 22 (0.19)  0.30  (0.17) (0.06) (0.10) (0.04) (0.10) 

 
3 FALSE 23 (0.34)  0.50  (0.37) (0.35) (0.21) (0.32) (0.67) 

  
TRUE 24 (0.10)  0.55  (0.10) (0.09) (0.09)  0.10   0.02  

10 1 FALSE 25 (0.14)  1.64  (0.14) (0.16)  0.16   0.22   0.07  

  
TRUE 26 (0.16)  1.65  (0.16) (0.11)  0.15   0.16   0.05  

 
2 FALSE 27 (0.58)  0.34  (0.58) (0.40) (0.59) (0.14) (0.54) 

  
TRUE 28 (0.11)  1.57  (0.11) (0.15) (0.42)  0.24   0.09  

 
3 FALSE 29 (0.46)  0.79  (0.46) (0.38) (0.43) (0.19) (0.56) 

  
TRUE 30 (0.09)  1.62  (0.09) (0.08) (0.37)  0.20   0.12  

Note. Columns A to E = SD-Senior-N minus SD-Senior-Y under SD, BM, DA, TM, and 

CP, respectively.  Column F = SD-Senior-N under SD minus SD-Senior-N under TM.  

Column G = SD-Senior-N under SD minus SD-Senior-Y under TM.  A value in 

parentheses is a negative value.    

To see how well the free-tuition policy could help each mechanism shape student 

compositions that promote lower SD-Senior-Ys, I compared the SD-Senior-Ns with the 

SD-Senior-Ys under the same mechanism on the scenario-by-scenario basis and show 

their differences in Table 28. 
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Columns A – E in Table 28 show that except for some scenarios where the 

number of choices = 2, the free-tuition policy increased the SD-Seniors under TM, SD, 

and DA (SD-Senior-Y > SD-Senior-N).  With few exceptions, the free-tuition policy also 

increased SD-Seniors under CP when Strategy = #2 or #3.  Contrarily, the free-tuition 

policy helped BM reduce SD-Seniors when Strategy = #1 or the number of choices > 6.  

Column F shows that a change of the mechanism from SD to TM reduced the original 

SD-Senior when students used Strategy #1 or the number of choices < 6, while TM's 

effects were mixed in other scenarios, depending on the number of choices and students’ 

strategies.  Since the free-tuition policy increased the original SD-Seniors in almost all 

cases (Column A), when combined with TM, the free-tuition policy weakened TM’s 

positive effects and magnified TM’s negative effects on the original SD-Seniors in all 

scenarios except for some scenarios where the number of choices = 2 (Column G).  From 

this point of view, TM with the free-tuition policy was less effective than TM alone on 

reducing the original SD-Senior. 

I also calculated the best-worst estimates for the original SD-Senior when there is 

a change from SD to the other mechanisms with the free-tuition policy.  The estimates 

presented in Table 29 show that with the free-tuition policy, BM, followed by CP, still 

offered the most decrease and least increase in the original SD-Senior among all 

mechanisms.  When the number of choices increased from 8 to 10, the effect range of TM 

with the free-tuition policy remained stable, while the effect of the free-tuition policy 

alone (the column of SD+Free) became more adverse by having an interval showing 

more increase and less decrease in the original SD-Senior.  The comparison of the best-
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worst estimates with and without the free tuition policy showed that the free-tuition 

policy weakened TM’s performance by enlarging the size of its maximum increase and 

reducing the size of its maximum decrease in the original SD-Seniors. 

Table 29 

The estimated maximum percentage increase and decrease in the original SD-Senior by a 

change from the SD without the free tuition policy to the other mechanisms with the free 

tuition policy 

Number of 
choices 

To SD+Free 
% 

Cohen’s d 

To BM+Free 
% 

Cohen’s d 

To TM+Free 
% 

Cohen’s d 

To CP+Free 
% 

Cohen’s d 
8 [4.97%, -3.19%] 

1.09, -0.73 
[0.00%*, -28.06%] 

 --, -11.23 
[4.41%, -1.89%] 

0.97, -0.46 
[0.11%, -5.12%] 

0.02, -1.10 
10 [5.06%, -1.81%] 

0.94, -0.47 
[0.00%*, -30.67%] 

 --, -13.42 
[4.09%, -1.90%] 

0.75, -0.48 
[2.71%, -3.56%] 

0.44, -1.96 
Note. The first percentage in the square brackets represents the maximum percentage 

increase in the original SD-Senior (SD-Senior-N under SD) by the change from SD to the 

new mechanism with the free-tuition policy (SD+Free, BM+Free, TM+Free, and 

CP+Free), and the second percentage in the square brackets is the maximum percentage 

decrease. The corresponding Cohen’s d is presented right below each percentage.  * 

denotes that the policy in this column did not increase the original SD-Freshman and thus 

no Cohen’s d was calculated.   

Mean Senior Score. To see whether the free-tuition policy helped increase the 

mean senior scores, I followed the same logic used to calculate the mean senior scores in 

Table 15 to calculate the mean senior scores in each scenario with the free-tuition policy 

and present the results in Table 30 and Figure 16.  
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Table 30 

The average senior scores under each mechanism with the free-tuition policy 

Number of 
choices Strategy 

Sort-extra-
choice 

Scenario 
# SD BM DA TM CP 

2 1 FALSE 1 58.60† 58.09 58.60† 58.57 58.13 
  TRUE 2 58.62 58.08 58.65 58.55 58.08 
 2 FALSE 3 61.67 59.64 61.21 57.72 59.71 
  TRUE 4 60.61 58.82 60.75 57.41 59.18 
 3 FALSE 5 60.16 58.57 60.12 56.36 59.30 
  TRUE 6 60.58 58.23 59.99 56.21 59.06 
4 1 FALSE 7 55.94† 55.41 55.94† 55.96 55.74 
  TRUE 8 55.97† 55.41 55.97† 55.97 55.76 
 2 FALSE 9 53.71† 54.91 53.89† 53.73 56.01 
  TRUE 10 53.44 54.51 53.65† 53.81 56.14 
 3 FALSE 11 53.81 55.19 53.76 54.39 55.73 
  TRUE 12 53.69 54.09† 53.62 54.46 55.68 
6 1 FALSE 13 55.06 55.43 55.04† 55.03 55.24 
  TRUE 14 55.04† 55.44 55.04† 55.03 55.23 
 2 FALSE 15 54.57† 53.89 54.57† 54.56 54.00 
  TRUE 16 54.71 52.41 54.70 54.65 54.01 
 3 FALSE 17 54.57 53.94 54.58† 54.62 54.16 
  TRUE 18 54.62 52.93 54.61 54.66 54.18 
8 1 FALSE 19 54.61 54.84 54.61 54.66 54.78 
  TRUE 20 54.60 54.88 54.60 54.66 54.77 
 2 FALSE 21 54.27† 54.48 54.28† 54.30 54.28† 
  TRUE 22 54.35 54.11 54.35 54.39 54.31 
 3 FALSE 23 54.28† 54.51 54.28† 54.31 54.29† 
  TRUE 24 54.35 54.19 54.35 54.39 54.31 

10 1 FALSE 25 54.32 54.67 54.32 54.35 54.31 
  TRUE 26 54.33 54.61 54.33 54.37 54.33 
 2 FALSE 27 54.12 54.63 54.13 54.22 54.13 
  TRUE 28 54.32 54.65 54.32 54.35 54.15 
 3 FALSE 29 54.14 54.68 54.14 54.25 54.15 
  TRUE 30 54.32 54.60 54.32 54.36 54.17 

Note. Each value in Columns SD, BM, DA, and CP are significantly different from the 

corresponding value in the column of TM (in the same row), except for the value with a 

†, p < .01.   
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Figure 16. The average mean scores of the high school seniors enrolled with the free-

tuition policy.  The scenario # in this figure corresponds to that in Table 30. 

When the number of choices ≤ 6, like their counterparts in Figure 9, the senior 

scores under each mechanism with the free-tuition policy fluctuated with students' 

strategies and the number of choices.  When the number of choices > 6, unlike their 

counterparts, the senior scores under the free tuition policy became rather stable; the 

range (the highest score minus the lowest score) was less than 0.50 points under SD, DA, 

and TM and less than 0.80 points under BM and CP.  The scenario-by-scenario 

comparison of the scores in the cases where the number of choices > 6 shows the 

followings. 
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• When the number of choices = 10, the average senior score under the 

mechanisms with the free-tuition policy had the following orders: BM > TM > 

SD (DA) and BM > TM > CP. 

• When the number of choices = 8 and with the free tuition policy, TM resulted 

in higher senior scores than SD (DA), while the relationships between TM and 

the other mechanisms were mixed.  

• The score differences between TM and SD (DA), with the free tuition policy, 

were small (no more than 0.11 points, Cohen’s d = 0.27).   

I also compared the effects of TM alone, the free-tuition policy alone, and the two 

interventions combined on the original senior scores (senior scores resulting from SD) on 

the scenario-by-scenario basis.  Their differences are presented in Table 31. 

Column (A) in Table 31 shows that the effects of TM alone on the original senior 

scores were mixed.  However, if the number of choices > 6, the score differences between 

TM and SD were small and no more than 0.26 points different, Cohen’s d = 0.18.  On the 

other hand, the effect of the free-tuition policy alone on the original senior scores was 

quite clear.  When the number of choices > 2, all values in Columns (B) are negative, 

which means that the free-tuition policy had an adverse effect on senior scores.  

Therefore, when these two interventions were combined, the free-tuition policy worsened 

TM’s performance and made TM with the free-tuition policy produce a lower senior 

score than the original mechanism in almost all scenarios.    

I also calculated the best-worse estimates of the senior score change caused by a 

change from SD to the mechanisms with the free-tuition policy as shown in Table 32. 
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Under the number of choices = 8 and with the free-tuition policy, the positive effect of 

the mechanisms on the original senior scores had the following order: BM > CP > TM > 

SD, while the sizes of their negative effects were about the same. Under the number of 

choices = 10, BM with the free-tuition policy could provide the most increase and least 

decrease in the original senior score.  The rest of the mechanisms could hardly increase 

the original mean senior score, while their effect sizes on decreasing the original senior 

score were about medium.   

Table 31 

The differences of the mean senior scores resulting from SD alone, TM alone, SD with 

the free-tuition policy, and TM with the free-tuition policy  

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# 

(A) 
TM 

alone 

(B) 
Free tuition 

alone 

(C) 
TM with the free-

tuition policy 
2 1 FALSE 1 (0.08) (0.78) (0.81) 

  
TRUE 2 (0.04) (0.77) (0.84) 

 
2 FALSE 3 (4.31) 0.50  (3.45) 

  
TRUE 4 (4.58) (0.74) (3.94) 

 
3 FALSE 5 (4.17) 0.22  (3.58) 

  
TRUE 6 (4.60) 0.18  (4.19) 

4 1 FALSE 7 (0.04) (0.69) (0.67) 

  
TRUE 8 (0.12) (0.65) (0.64) 

 
2 FALSE 9 0.25  (1.12) (1.09) 

  
TRUE 10 0.21  (1.47) (1.11) 

 
3 FALSE 11 (0.03) (1.33) (0.76) 

  
TRUE 12 (0.06) (1.21) (0.44) 

6 1 FALSE 13 0.04  (0.24) (0.27) 

  
TRUE 14 0.01  (0.31) (0.32) 

 
2 FALSE 15 (0.20) (1.03) (1.04) 

  
TRUE 16 (0.36) (0.51) (0.57) 

 
3 FALSE 17 (0.01) (0.84) (0.78) 

  
TRUE 18 0.01  (0.21) (0.17) 

      (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# 

(A) 
TM 

alone 

(B) 
Free tuition 

alone 

(C) 
TM with the free-

tuition policy 
8 1 FALSE 19 (0.06) (0.16) (0.10) 

  
TRUE 20 (0.06) (0.19) (0.13) 

 
2 FALSE 21 0.04  (0.75) (0.73) 

  
TRUE 22 (0.08) (0.16) (0.12) 

 
3 FALSE 23 (0.26) (0.89) (0.86) 

  
TRUE 24 0.02  (0.07) (0.03) 

10 1 FALSE 25 0.07  (0.09) (0.05) 

  
TRUE 26 0.01  (0.09) (0.05) 

 
2 FALSE 27 (0.08) (0.91) (0.82) 

  
TRUE 28 0.09  (0.05) (0.01) 

 
3 FALSE 29 (0.09) (0.84) (0.73) 

  
TRUE 30 0.05  (0.03) 0.00 

 Note. Column (A) is the mean senior score under TM without the free-tuition policy 

minus the mean senior score under SD without the free-tuition policy.  Column (B) is the 

mean senior score under SD with the free-tuition policy minus the mean senior score 

under SD without the free-tuition policy.  Column (C) is the mean senior score under TM 

with the free-tuition policy minus the mean senior score under SD without the free-tuition 

policy.  A value in parentheses is a negative value.   

In summary, when the number of choices > 6, whether TM alone could improve 

SD-Senior depended on students’ behaviors before and after the policy change.  Both the 

scenario-by-scenario analysis and the best-worst estimates showed that the free-tuition 

policy worsened TM’s performance.  Therefore, TM with the free-tuition policy could 

not increase the original senior score as much as TM alone, if any.  When the number of 

choices = 10, TM with the free-tuition policy had little chance to increase the original 

senior score but probably could decrease it instead. 
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Table 32 

The estimated maximum percentage increase and decrease in the original senior scores 

by a change from the SD without the free-tuition policy to the mechanisms with the free-

tuition policy  

Number of choices To SD+Free 
% 

Cohen’s d 

To BM+Free 
% 

Cohen’s d 

To TM+Free 
% 

Cohen’s d 

To CP+Free 
% 

Cohen’s d 
8 [0.36%, -1.62%] 

0.51, -0.69 
[0.84%, -1.92%] 

1.04, -0.58 
[0.45%, -1.57%] 

0.64, -0.68 
[0.66%, -1.61%] 

0.95, -0.68 
10 [ ---*, -0.91%] 

 --, -0.70 
[0.32%, -0.44%] 

0.64, -0.34 
[0.01%, -0.81%] 

0.07, -0.64 
[ --*, -0.91%] 

 --, -0.70 
Note. The first percentage in the square brackets represents the maximum percentage 

increase in the original senior score (senior score under SD without the free-tuition policy) 

by the change from SD to the new mechanism with the free-tuition policy (SD+Free, 

BM+Free, TM+Free, and CP+Free), and the second percentage in the square brackets is 

the maximum percentage decrease. The corresponding Cohen’s d is presented right below 

each percentage.  * denotes that the policy in this column did not increase the original 

SD-Freshman and thus no Cohen’s d was calculated.   

Impacts on Different Student Groups  

Impacts on Top 10% Performing Students.  Table 33 and Figure 17 show the 

top-choice match rate under the mechanisms with the free-tuition policy.  The 

comparison between Figure 17 and its counterpart (Figure 10) on the scenario-by-

scenario basis showed that the percentages under TM with and without the free tuition 

policy were less than 0.5% different.  The same statement applied to SD (DA) when the 

number of choices > 2, CP when the number of choices > 4, and BM when the number of 

choices > 6.  If the top-choice match rate was 100% in a scenario without the free-tuition 



194 
 

 

policy, the percentage remained 100% after the implementation of the free-tuition policy.  

Therefore, the free-tuition policy had limited impact on the assignment of the top 10% 

performing students.  However, when the number of choices < 10, Strategy #1 produced 

a significantly different top-choice match rate from Strategy #2 or #3, which implied that 

when the number of choices < 10 and students changed their behaviors, the 

implementation of the free-tuition policy could have a significant impact on the 

assignment of the top 10% performing students.   

Table 33 

The average percentage of the top 10% performing students assigned to their top choices 

under the mechanisms with the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD BM DA TM CP 

2 1 FALSE 1 19.87 20.13 19.99 19.98 19.94 
  TRUE 2 20.07 19.93 20.15 20.01 19.85 
 2 FALSE 3 96.53 96.19 97.01 99.08 93.92 
  TRUE 4 96.36 96.76 96.80 99.62 94.28 
 3 FALSE 5 99.15 98.56 98.69 99.68 97.01 
  TRUE 6 98.65 96.84 98.92 99.72 97.78 
4 1 FALSE 7 39.84 40.16 39.90 39.84 40.00 
  TRUE 8 39.89 40.07 40.03 40.17 40.12 
 2 FALSE 9 99.95 97.42 99.87 99.51 98.92 
  TRUE 10 99.98 99.30 99.86 99.57 97.96 
 3 FALSE 11 99.98 99.47 100.00 99.60 99.50 
  TRUE 12 99.94 99.74 100.00 99.62 99.66 
6 1 FALSE 13 60.28 59.93 59.80 60.01 59.71 
  TRUE 14 60.22 59.84 59.57 60.04 60.04 
 2 FALSE 15 99.95 99.30 99.95 99.55 99.93 
  TRUE 16 99.93 99.83 99.93 99.64 99.95 
 3 FALSE 17 100.00 99.75 100.00 99.59 100.00 
  TRUE 18 100.00 99.98 100.00 99.61 100.00 
       (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD BM DA TM CP 

8 1 FALSE 19 79.89 79.71 80.12 80.02 80.08 
  TRUE 20 79.93 79.92 80.06 79.87 79.93 
 2 FALSE 21 99.95 99.83 99.95 99.49 99.96 
  TRUE 22 99.92 99.96 99.92 99.64 99.96 
 3 FALSE 23 100.00 99.79 100.00 99.60 100.00 
  TRUE 24 100.00 100.00 100.00 99.59 100.00 

10 1 FALSE 25 100.00 100.00 100.00 99.42 100.00 
  TRUE 26 100.00 100.00 100.00 99.45 100.00 
 2 FALSE 27 99.96 99.97 99.96 99.54 99.95 
  TRUE 28 100.00 100.00 100.00 99.44 99.93 
 3 FALSE 29 100.00 100.00 100.00 99.60 100.00 
  TRUE 30 100.00 100.00 100.00 99.38 100.00 

 

 

Figure 17. The percentage of the top 10% performing students assigned to their top 

choices under the mechanisms with the free-tuition policy.  The scenario # in this figure 

corresponds to that in Table 33. 

Impacts on Students with the Bottom 10% Family Income.  Table 34 and 
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Figure 18 show the PIs of the students with the bottom 10% family income under the 

mechanisms with the free-tuition policy.  Compared with its counterpart (Table 18), 

Table 34 shows that the free-tuition policy increased the PIs of the students in this group 

in almost all scenarios under SD, DA, and TM and all scenarios under BM and CP.  Even 

if the PIs with the free-tuition policy were lower than the PIs without the free-tuition 

policy, their differences were no more than 0.06 if the number of choices ≤ 6 and no 

more than 0.02 if the number of choices > 6.  Therefore, the free-tuition policy brought 

no harm, if no benefit, to the students with the bottom 10% income.  When the free-

tuition policy was implemented with an allowance of 6 choices, BM generated a PI 

between 2.07 and 3.10 for this group of students; CP, between 0.23 and 0.69; TM, 

between -0.05 and 0.58; SD (DA) between -0.13 and 0.47.  Therefore, BM, followed by 

CP, still helped the students in this group the most.   

Table 34 

The average preference index (PI) of the students with the bottom 10% family income 

under the mechanisms with the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD BM DA TM CP 

2 1 FALSE 1 (0.20) 0.27  (0.21) (0.19) 0.24  
  TRUE 2 (0.20) 0.27  (0.22) (0.16) 0.28  
 2 FALSE 3 (0.75) 0.05  (0.76) (0.80) 0.01  
  TRUE 4 (0.74) 0.08  (0.73) (0.74) 0.16  
 3 FALSE 5 (0.71) 0.01  (0.69) (0.77) (0.06) 
  TRUE 6 (0.77) 0.00  (0.74) (0.72) (0.05) 
       (Continued) 
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Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD BM DA TM CP 

4 1 FALSE 7 (0.17) 1.30  (0.17) (0.11) 0.54  
  TRUE 8 (0.15) 1.32  (0.16) (0.09) 0.56  
 2 FALSE 9 (0.37) 1.35  (0.34) (0.28) 0.35  
  TRUE 10 (0.28) 1.63  (0.28) (0.19) 0.27  
 3 FALSE 11 (0.37) 1.28  (0.36) (0.21) 0.19  
  TRUE 12 (0.30) 1.62  (0.33) (0.21) 0.27  
6 1 FALSE 13 (0.16) 1.91  (0.15) (0.01) 0.35  
  TRUE 14 (0.15) 1.91  (0.15) (0.01) 0.36  
 2 FALSE 15 0.38  2.00  0.41  0.21  0.76  
  TRUE 16 0.06  2.73  0.06  0.01  0.78  
 3 FALSE 17 0.30  2.01  0.30  0.07  0.65  
  TRUE 18 (0.01) 2.67  0.00  0.02  0.64  
8 1 FALSE 19 (0.13) 2.53  (0.13) (0.05) 0.23  
  TRUE 20 (0.13) 2.53  (0.13) (0.05) 0.23  
 2 FALSE 21 0.39  2.09  0.36  0.36  0.69  
  TRUE 22 (0.02) 2.94  (0.02) 0.06  0.66  
 3 FALSE 23 0.33  2.20  0.33  0.25  0.58  
  TRUE 24 (0.02) 2.87  (0.02) 0.05  0.58  

10 1 FALSE 25 0.00  3.09  0.00  0.12  0.83  
  TRUE 26 0.00  3.10  0.00  0.12  0.84  
 2 FALSE 27 0.46  1.95  0.46  0.58  0.65  
  TRUE 28 0.00  3.10  0.00  0.11  0.61  
 3 FALSE 29 0.47  2.07  0.47  0.35  0.65  
  TRUE 30 0.00  3.10  0.00  0.12  0.49  
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Figure 18. The average preference index (PI) of the students with the bottom 10% family 

income under the mechanisms with the free-tuition policy.  The scenario # in this figure 

corresponds to that in Table 34. 

Impacts on Students in Each Income Quartile.  Tables 35-38 and Figure 19 

show the PIs of the students in each quartile enrolled under the free-tuition policy.  I 

compared the results under each mechanism with the free tuition policy (Figure 19) and 

without the free tuition policy (Figure 12) and summarize the findings below.  

• The free-tuition policy helped BM and CP increase the PIs of the bottom-

income-quartile students in all scenarios.  

• The free-tuition policy helped SD (DA) remain or increase the PIs of the 

bottom-income-quartile students in all scenarios except for the scenarios 

where the number of choices = 8 and Strategy = #1.  

• The free-tuition policy helped TM increase the PIs of the bottom-income-
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quartile students in all scenarios except for the scenarios where the number of 

choices = 8 and Strategy = #1 and the scenario where the number of choices = 

4, Strategy = #3, and sort-extra-order = True. 

• The free-tuition policy helped all mechanisms increase the PIs of the second-

income-quartile students in most scenarios, but there were more scenarios 

where the free-tuition policy harmed the second-income-quartile students than 

the scenarios where the free-tuition policy harmed the bottom-income-quartile 

students.       

• The effects of the free-tuition policy on the third-income-quartile students 

were mixed; it helped SD, DA, TA, and CP improve these students’ PIs in 

most scenarios where the number of choices > 6 and Strategy = 2 or 3 but 

helped BM improve these student’s PI only in the scenarios where the number 

of choices = 10.   

• The free-tuition policy helped remain or improve the PIs of the top-income-

quartile students under SD (DA) and TM except for a few scenarios where the 

number of choices = 2 and under CP except for some scenarios where the 

number of choices ≤ 6. 

• The free-tuition policy worsened the PIs of the top-income-quartile students 

under BM in all scenarios except for some scenarios where the number of 

choices ≥ 8 and Strategy = #2. 

• When the number of choices ≥ 8, the PIs under SD (DA) were between ± 

0.28; under TM, between 0.28 and -0.13; under CP, between 0.61 and -0.31.  
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• When the number of choices ≥ 8 and under BM, the PIs of the bottom-

income-quartile students were between 2.69 and 1.57; the PIs of the second-

income-quartile students, between 1.04 and 0.00; the PIs of the third- and top-

income-quartile students, between -0.66 and -1.07.  

The above findings show that with the free-tuition policy, BM was still the best 

mechanism to improve the assignments of the bottom-income-quartile students, followed 

by CP.  However, the free-tuition policy made BM produce more negative PIs for the 

top-income-quartile students while helping all other mechanisms improve the PIs of the 

students in this group.  Compared with Taipei’s original mechanism (SD) on the 

scenario-by-scenario basis, TM alone or the free tuition alone improved the PIs of the 

bottom-income-quartile students in most scenarios but also decreased their PIs in a few 

scenarios.  With the two interventions combined, the PIs of the students in the bottom 

income quartile were all higher than those under the original mechanism.  From the 

viewpoint of OEDC (2010), since TM with the free-tuition policy benefited the 

disadvantaged students, it helped reduce educational inequality.   
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Table 35 

The average preference index (PI) of the students with the bottom quartile family income 

enrolled under the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD25 BM25 DA25 TM25 CP25 

2 1 FALSE 1 (0.11) 0.10  (0.12) (0.08) 0.10  
  TRUE 2 (0.11) 0.12  (0.12) (0.07) 0.12  
 2 FALSE 3 (1.46) (0.78) (1.44) (1.28) (0.81) 
  TRUE 4 (1.43) (0.77) (1.41) (1.22) (0.71) 
 3 FALSE 5 (1.35) (0.80) (1.34) (1.11) (0.84) 
  TRUE 6 (1.40) (0.80) (1.37) (1.09) (0.84) 
4 1 FALSE 7 (0.20) 0.84  (0.20) (0.15) 0.24  
  TRUE 8 (0.19) 0.85  (0.20) (0.15) 0.24  
 2 FALSE 9 (0.80) 0.47  (0.79) (0.52) (0.38) 
  TRUE 10 (0.71) 0.67  (0.71) (0.36) (0.46) 
 3 FALSE 11 (0.73) 0.40  (0.74) (0.30) (0.47) 
  TRUE 12 (0.64) 0.66  (0.67) (0.23) (0.42) 
6 1 FALSE 13 (0.16) 1.42  (0.16) (0.09) 0.24  
  TRUE 14 (0.16) 1.42  (0.16) (0.09) 0.24  
 2 FALSE 15 0.07  1.33  0.09  (0.02) 0.20  
  TRUE 16 0.05  1.75  0.05  0.01  0.20  
 3 FALSE 17 0.01  1.29  0.01  (0.04) 0.14  
  TRUE 18 0.01  1.73  0.01  0.01  0.14  
8 1 FALSE 19 (0.11) 1.90  (0.11) (0.04) 0.23  
  TRUE 20 (0.11) 1.91  (0.11) (0.03) 0.23  
 2 FALSE 21 0.21  1.61  0.19  0.13  0.34  
  TRUE 22 (0.01) 2.29  (0.01) 0.05  0.32  
 3 FALSE 23 0.15  1.67  0.16  0.08  0.27  
  TRUE 24 (0.02) 2.26  (0.02) 0.05  0.28  

10 1 FALSE 25 0.00  2.69  0.00  0.10  0.60  
  TRUE 26 0.00  2.69  0.00  0.10  0.60  
 2 FALSE 27 0.28  1.57  0.28  0.28  0.39  
  TRUE 28 0.00  2.68  0.00  0.10  0.37  
 3 FALSE 29 0.27  1.69  0.27  0.15  0.35  
  TRUE 30 0.00  2.68  0.00  0.10  0.26  
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Table 36 

The average preference index (PI) of the students with the second quartile family income 

enrolled under the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD50 BM50 DA50 TM50 CP50 

2 1 FALSE 1 0.11  (0.12) 0.10  0.10  (0.11) 
  TRUE 2 0.10  (0.12) 0.11  0.10  (0.11) 
 2 FALSE 3 (2.72) (2.49) (2.63) (1.89) (2.51) 
  TRUE 4 (2.56) (2.55) (2.53) (1.80) (2.53) 
 3 FALSE 5 (2.35) (2.41) (2.38) (1.46) (2.39) 
  TRUE 6 (2.40) (2.44) (2.37) (1.44) (2.39) 
4 1 FALSE 7 (0.23) (0.38) (0.23) (0.24) (0.40) 
  TRUE 8 (0.23) (0.38) (0.22) (0.23) (0.40) 
 2 FALSE 9 (1.09) (1.38) (1.15) (0.63) (1.54) 
  TRUE 10 (1.12) (1.35) (1.09) (0.47) (1.59) 
 3 FALSE 11 (0.93) (1.32) (1.01) (0.29) (1.45) 
  TRUE 12 (0.87) (1.34) (0.86) (0.22) (1.44) 
6 1 FALSE 13 (0.17) 0.00  (0.17) (0.18) (0.21) 
  TRUE 14 (0.18) 0.00  (0.17) (0.17) (0.20) 
 2 FALSE 15 (0.39) (0.54) (0.39) (0.24) (0.61) 
  TRUE 16 (0.12) (0.50) (0.12) (0.03) (0.63) 
 3 FALSE 17 (0.35) (0.53) (0.34) (0.12) (0.59) 
  TRUE 18 (0.05) (0.44) (0.05) (0.02) (0.56) 
8 1 FALSE 19 (0.09) 0.22  (0.09) (0.05) (0.04) 
  TRUE 20 (0.09) 0.23  (0.09) (0.05) (0.03) 
 2 FALSE 21 (0.22) (0.00) (0.22) (0.17) (0.30) 
  TRUE 22 0.01  0.45  0.01  0.03  (0.28) 
 3 FALSE 23 (0.20) 0.01  (0.21) (0.11) (0.27) 
  TRUE 24 0.00  0.46  0.00  0.03  (0.26) 

10 1 FALSE 25 0.00  1.04  0.00  0.06  0.04  
  TRUE 26 0.00  1.03  0.00  0.06  0.04  
 2 FALSE 27 (0.14) 0.34  (0.14) (0.14) (0.17) 
  TRUE 28 0.00  1.03  0.00  0.06  (0.16) 
 3 FALSE 29 (0.16) 0.37  (0.16) (0.07) (0.19) 
  TRUE 30 0.00  1.02  0.00  0.06  (0.15) 
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Table 37 

The average preference index (PI) of the students with the third quartile family income 

enrolled under the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD75 BM75 DA75 TM75 CP75 

2 1 FALSE 1 (0.36) (0.50) (0.35) (0.39) (0.51) 
  TRUE 2 (0.35) (0.50) (0.35) (0.38) (0.50) 
 2 FALSE 3 (2.39) (2.70) (2.23) (1.40) (2.73) 
  TRUE 4 (2.16) (2.78) (2.12) (1.34) (2.83) 
 3 FALSE 5 (1.85) (2.52) (1.95) (0.99) (2.48) 
  TRUE 6 (1.89) (2.58) (1.88) (0.96) (2.43) 
4 1 FALSE 7 (0.27) (0.94) (0.27) (0.29) (0.52) 
  TRUE 8 (0.27) (0.94) (0.27) (0.30) (0.52) 
 2 FALSE 9 (0.60) (1.88) (0.66) (0.35) (1.33) 
  TRUE 10 (0.65) (1.94) (0.63) (0.28) (1.36) 
 3 FALSE 11 (0.47) (1.61) (0.52) (0.15) (1.15) 
  TRUE 12 (0.46) (1.87) (0.44) (0.13) (1.16) 
6 1 FALSE 13 (0.19) (0.94) (0.20) (0.21) (0.35) 
  TRUE 14 (0.19) (0.94) (0.19) (0.21) (0.35) 
 2 FALSE 15 (0.28) (1.44) (0.28) (0.16) (0.52) 
  TRUE 16 (0.19) (1.61) (0.19) (0.06) (0.54) 
 3 FALSE 17 (0.22) (1.32) (0.22) (0.08) (0.45) 
  TRUE 18 (0.10) (1.50) (0.10) (0.03) (0.45) 
8 1 FALSE 19 (0.10) (0.73) (0.10) (0.10) (0.17) 
  TRUE 20 (0.10) (0.72) (0.10) (0.10) (0.17) 
 2 FALSE 21 (0.24) (1.07) (0.23) (0.13) (0.28) 
  TRUE 22 (0.01) (0.90) (0.01) (0.01) (0.28) 
 3 FALSE 23 (0.18) (1.05) (0.19) (0.09) (0.24) 
  TRUE 24 (0.00) (0.87) 0.00  (0.01) (0.24) 

10 1 FALSE 25 0.00  (0.66) 0.00  0.01  (0.07) 
  TRUE 26 0.00  (0.66) 0.00  0.01  (0.07) 
 2 FALSE 27 (0.21) (0.70) (0.21) (0.13) (0.23) 
  TRUE 28 0.00  (0.66) 0.00  0.01  (0.21) 
 3 FALSE 29 (0.18) (0.73) (0.18) (0.07) (0.20) 
  TRUE 30 0.00  (0.66) 0.00  0.01  (0.15) 
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Table 38 

The average preference index (PI) of the students with the top quartile family income 

enrolled under the free-tuition policy 

Number of 
choices Strategy 

Extra-in-
order 

Scenario 
# SD100 BM100 DA100 TM100 CP100 

2 1 FALSE 1 (1.79) (1.80) (1.79) (1.80) (1.80) 
  TRUE 2 (1.79) (1.81) (1.79) (1.80) (1.82) 
 2 FALSE 3 (0.78) (1.17) (0.72) (0.38) (1.21) 
  TRUE 4 (0.69) (1.20) (0.67) (0.37) (1.27) 
 3 FALSE 5 (0.52) (1.03) (0.57) (0.24) (0.99) 
  TRUE 6 (0.55) (1.05) (0.54) (0.22) (0.95) 

4 1 FALSE 7 (0.67) (0.92) (0.66) (0.68) (0.71) 
  TRUE 8 (0.66) (0.92) (0.66) (0.68) (0.71) 
 2 FALSE 9 (0.12) (0.89) (0.13) (0.08) (0.39) 
  TRUE 10 (0.13) (0.89) (0.13) (0.06) (0.41) 
 3 FALSE 11 (0.09) (0.66) (0.10) (0.03) (0.30) 
  TRUE 12 (0.09) (0.82) (0.09) (0.03) (0.32) 

6 1 FALSE 13 (0.30) (0.83) (0.30) (0.32) (0.34) 
  TRUE 14 (0.30) (0.84) (0.30) (0.31) (0.33) 
 2 FALSE 15 (0.08) (0.81) (0.07) (0.05) (0.14) 
  TRUE 16 (0.07) (1.01) (0.07) (0.03) (0.14) 
 3 FALSE 17 (0.06) (0.69) (0.06) (0.02) (0.11) 
  TRUE 18 (0.04) (0.95) (0.04) (0.01) (0.11) 

8 1 FALSE 19 (0.12) (0.69) (0.12) (0.13) (0.13) 
  TRUE 20 (0.12) (0.70) (0.12) (0.13) (0.13) 
 2 FALSE 21 (0.08) (0.69) (0.07) (0.05) (0.08) 
  TRUE 22 (0.03) (0.86) (0.03) (0.02) (0.08) 
 3 FALSE 23 (0.05) (0.68) (0.06) (0.03) (0.07) 
  TRUE 24 (0.02) (0.84) (0.02) (0.01) (0.07) 

10 1 FALSE 25 0.00  (0.98) 0.00  (0.01) (0.01) 
  TRUE 26 0.00  (0.97) 0.00  (0.01) (0.01) 
 2 FALSE 27 (0.07) (0.59) (0.07) (0.05) (0.07) 
  TRUE 28 0.00  (0.97) 0.00  (0.01) (0.08) 
 3 FALSE 29 (0.06) (0.56) (0.06) (0.03) (0.06) 
  TRUE 30 0.00  (0.97) 0.00  (0.01) (0.04) 
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Figure 19. The average preference indexes (PIs) of the students in each income quartile 

enrolled under the free-tuition policy. The upper left is the PIs of the students in the first 

quartile; the upper right, the second quartile; the lower left, the third quartile; the lower 

right, the fourth quartile.  The scenario # in this figure corresponds to that in Tables 35-

38.  

Summary  

Educational equality and school quality are complex phenomena emerging from 

the interaction between students’ behaviors and their environment.  The simulation 

results demonstrated that whether TM alone or TM with the free-tuition policy helped 

equalize educational opportunities and converge school quality upward depended on the 

interactions of students’ school-choice strategies, the admission policy, and the number 

of choices.  Additionally, as shown in the best-worst analyses, a wrong expectation of 
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students’ behaviors might result in an opposite expectation of the effects of a policy on 

educational equality and school quality.  

SD without the free tuition policy was Taipei’s original admission policy.  When 

the number of choices < 6 and students use Strategy #2 or #3, the replacement of SD with 

TM without the free-tuition policy helped equalize educational opportunity not only by 

reducing the SD-Freshman-Ns but also by increasing the match rates.  When Strategy = 

#1, TM alone still produced less SD-Freshmans than SD, but the match rates produced 

under TM were similar to those under SD.  When Strategy = #2 or #3 and the number of 

choices > 6, the results of TM and SD were mixed but similar regarding SD-Freshman 

and the match rate. However, the above analysis was based on the assumption that 

students’ behaviors remain the same regardless of the mechanisms.  If students changed 

their behavioral rules with the change of the mechanism, the effect of TM on SD-

Freshman might change from positive to negative and vice versa.   

The effects of TM alone on the equality of school quality were quite similar to its 

effects on educational opportunity.  TM reduced the inequality in school quality by 

producing less SD-Senior-Ns than SD when (a) Strategy = #1 or (b) Strategy = #2 or #3 

and the number of choices < 6.  When Strategy = #2 or #3 and the number of choices > 6, 

the effects of TM and SD on the equality of school quality were close.  However, the 

effect of TM alone on improving senior scores was limited.  In some scenarios, TM even 

reduced the average senior scores.      

The effects of the free-tuition policy also depended on the interaction between 

students’ behaviors and their environment.  When the number of choices < 6, the free-
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tuition policy worsened the performance of TM in reducing the original SD-Freshman in 

many scenarios where Strategy = #2 or #3.  However, when the number of choices > 6, 

the free-tuition policy improved TM’s performance and made TM outperform SD in 

reducing the original SD-Freshman without regard to students’ behaviors.  That being 

said, the benefit of the free-tuition policy might come at the cost of lower overall match 

rate, unless the number of choices = 10.  When the number of choices = 10, the free-

tuition policy made all mechanisms produce a 100% match rate, which was a 

phenomenon that only BM could achieve if there was no free-tuition policy.  Again, if 

students changed their behaviors with the change of policy, the effect of TM with the 

free-tuition policy on the original SD-Freshman might be reversed from positive to 

negative, and vice versa. 

The effects of the free-tuition policy on the equality of school quality were 

relatively consistent.  As long as the number of choices > 2, the free-tuition policy 

worsened the inequality of school quality under SD, DA, and TM by increasing the 

original SD-Senior in each scenario.  Senior students in the above scenarios also had 

lower average scores than those in the same scenarios without the free-tuition policy.  

However, if students changed their strategies with the change of policy, it was still 

possible that TM with the free-tuition policy could reduce the inequality of school quality 

and increase the average senior scores, depending on students’ new strategies.   

The simulations also showed the effects of TM and the free-tuition policy on the 

welfares of the students in each quartile.  An ideal admission mechanism or policy is to 

increase the educational opportunity of the most disadvantaged students without hurting 
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the top performing students. Both TM alone and TM combined with the free-tuition 

policy could produce a top-choice match rate of more than 99% for the top 10% 

performing students when Strategy # 2 or #3 was used or when the number of choices = 

10.  The above statement also applied to SD (DA) with and without the free-tuition 

policy.  Therefore, the implementation of TM either with or without the free-tuition 

policy did not affect the welfare of the top 10% performing students.  Additionally, TM 

and the free-tuition policy benefited the students with the bottom 10% income and in the 

bottom income quartile in most scenarios.  However, there were still a few scenarios 

where TM alone or the free-tuition policy alone reduced the PIs of those students.  When 

these two interventions were combined, the PIs of those students increased in all 

scenarios.  Since TM with the free-tuition policy benefited the most disadvantaged 

students, it contributed to the improvement of educational equality in this sense.  

Chapter 5 provides an in-depth interpretation of the simulation results, the 

limitation of this study, and the policy implication of this study.  It concludes with 

recommendations for future research.   
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Chapter 5: Discussion, Conclusions, and Recommendations 

Instruction 

In this study, I proposed an agent-based OLG model to study the effects of school 

admission policies on educational equality and school quality.  The traditional approach 

to studying macroscopic education policy is equation-based modeling, which assumes a 

fixed system structure and can hardly address the relationship between microbehaviors 

and macrophenomena (Chen, 2015).  However, educational systems are CASs, where the 

macropatterns emerge from the interaction between the individual agents and their 

environment.  Agents may change their behaviors in response to the change of policies, 

which in turn changes the system structures (Lucas, 1976).  Therefore, it may not be 

proper to analyze policy implications simply based on a model assuming fixed system 

structures.  ABM enables researchers to address agents’ potential behaviors and let the 

macropatterns emerge from the interaction of the agents and the computational 

environment through the execution of agents’ behavioral rules (Borrill & Tesfatsion, 

2011; Macal & North, 2010).  Since the macropatterns in an agent-based model are 

generated from the bottom-up, the causal relationship between individual behaviors and 

macrophenomena is clear.  Therefore, ABM helps to answer not only what an educational 

policy can do but also how it works (Maroulis et al., 2010). 

The Taipei government implemented TM and the free tuition policy in 2016, with 

the goal of enhancing educational opportunity and school quality.  Since the government 

did not issue any research report to support their decisions, the goal seemed to be more 

ideology-based than research-based.  Because the government had changed the student-
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assignment mechanism every year since 2014, parents criticized the government for 

treating their children as experimental subjects (Center for Educational Research and 

Evaluation, NTNU).  It is understandable that to conduct human-subject experiments on 

new macroeducational policies is often impossible because of the constraints such as 

ethical issues, cost, time, and human fatigue (Chen, 2015; Roth, 2002).  However, these 

policies could be tested by conducting computational experiments and scenario analysis, 

and ABM is the right complexity methodology to perform the above tasks.   

I simulated the outcomes of TM and the other four real-world mechanisms, with 

and without the free tuition policy under 30 different scenarios in this study.  The 

findings demonstrated that the effects of the matching mechanisms depend on how 

students react to the mechanisms and how many choices students are allowed to submit.  

The simulation results also reveal interesting counterintuitive outcomes that could not be 

obtained by using equation-based models.  Therefore, this study contributes not only to 

the development of ABM in educational policy analysis but also to the literature on 

student-assignment mechanisms.  

Interpretation of the Findings 

This was an exploratory study.  The quantities collected from the simulations 

cannot be interpreted as having a direct relationship with the quantities in the real world. 

For example, a 2% increase in SD-Freshman cannot be interpreted as a 2% increase in the 

real world.  Instead, the quantitative amounts in the simulation results should be viewed 

as information regarding the qualitative magnitude of the system’s possible 

macroproperties.   
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Impacts on Educational Opportunities  

In this study, I measured the equality of educational opportunity by using the 

standard deviation of the mean freshman family income across all schools (SD-

Freshman).  However, this measure only measured the educational inequality among the 

students who were admitted to schools.  If a school system has enough seats for all 

candidates but a high percentage of candidates remain unassigned, then educational 

inequality is still high even with a low SD-Freshman.  Therefore, match rate and SD-

Freshman should be discussed together.   

The simulated result reveals that like SD-Freshman, match rate depends on 

students’ strategy and the number of choices.  The number of choices needs to be large to 

have a robust high match rate, resistant to students’ strategies.  How large the number of 

choices is required depends on the mechanisms.  The simulations showed that while TM 

needed the smallest number of choices, BM needed the most.  However, when students 

were given the full number of choices, only BM could produce a 100% match rate; the 

other mechanisms could only produce a match rate between 98.2% and 99.9% unless 

they were accompanied by the free tuition policy.  This result suggests that if a little less 

than 100% match rate is acceptable, there is no need to implement the costly free tuition 

policy to increase match rate, so long as the government does not constrain the number of 

choices.  On the other hand, if 100% match rate is required, then the free tuition policy 

seems to be a must.    

Compared with SD, which was Taipei’s original mechanism, TM substantially 

reduced the inequality of educational opportunities, but only when the number of choices 
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was low and all students used the same strategies. In other scenarios, the performance of 

TM was close to that of SD.  As mentioned in the previous paragraph, a low number of 

choices may result in a low match rate.  Therefore, if the government expects TM to 

reduce the inequality of educational opportunity, it should keep the number of choices 

low and expect a potential loss in the match rate.   

In the simulations, the free tuition policy alone reduced the inequality of 

educational opportunity in all scenarios where students use heterogeneous strategies or 

the number of choices was high but increased the inequality in most scenarios where the 

number of choices was low and students use the same strategies.  Supplemented by the 

free tuition policy, TM could reduce the inequality in almost all scenarios.  However, 

when the number of choices was high, the SD-Freshmans between SD with the free 

tuition policy and TM with the free tuition policy were similar, which implies that a 

similar result may be obtained by simply implementing the free tuition policy without the 

complicated prioritization rules of TM, as long as students have enough number of 

choices.  In fact, when the number of choices was high, the SD-Freshmans under SD and 

TM with or without the free tuition policy were all very close.  On the other hand, when 

the number of choices was high, the SD-Freshmans under BM were significantly lower 

than those under the other mechanisms, and the free tuition policy further improved BM’s 

performance.  Although BM seems to be a more efficient mechanism to reduce the 

inequality of educational opportunity in an environment with a high number of choices, 

BM may cause significant justified envy for students in the top and the third income 
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quartiles, which may not be accepted by the parents of higher performing students in a 

competitive school district.   

Under Taipei’s old admission policy, students had the score and rank information 

to use the strategy similar to Strategies #2 or #3 in the model.  At the beginning of the 

implementation of the new mechanism in 2014, the government released little score or 

rank information, hoping students would select schools based on their own preferences 

and considerations (Strategy #1).  Without the experimental or empirical evidence, it is 

unclear whether students would behave as the government planned.  If they did, then the 

simulated data support the government’s strategy because the simulated SD-Freshman 

under Strategy #1 was lower than that under Strategy #2 or #3 regardless of the 

mechanisms, so long as there was a choice constraint.  However, the government has 

constantly been under pressure and has compromised to release more rank and score 

information.  My observation shows that students would coordinate themselves to use the 

same old strategy to make their choices.  If students would not behave as the government 

expected, the best-worst estimates demonstrate that the actual result could be 

significantly different from or even opposite to the anticipated result.  This finding 

stresses the importance of the Lucas critique and the importance of simulating students’ 

potential behaviors in educational policy design.   

Impacts on School Quality  

In this study, the inequality of school quality was measured by the standard 

deviation of the mean senior scores in the schools (SD-Senior).  The model assumes that 

a student’s family income and scores are highly correlated.  The model also assumes that 
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the only factor that affects a student’s high school scores is his or her peers.  Peer effect 

will move the student’s scores toward the peers’ mean scores.  However, only those 

students whose family incomes are within a tolerance range of the peers’ average family 

income will be affected by their peers (see the subsection of details in Chapter 3 for the 

calculation of senior’s scores.)  Under these assumptions, it is not surprising to see that in 

the study, the graphic structure of SD-Senior resembles that of SD-Freshman.  The 

inequality of school quality resulting from the distribution of students assigned by TM 

was substantially lower than that assigned by SD only when the number of choices was 

small and all students used the same strategy (Strategy #2 or #3 in this model).  In other 

cases, the levels of the inequality of school quality under TM and SD were close.   

When the number of choices was low, the simulated scores of the seniors enrolled 

under TM were lower than those of the seniors enrolled under SD in most behavior 

scenarios.  When the number of choices was high, the relationships of the scores between 

TM and SD were mixed but close.  This result suggests that TM does not help converge 

school quality upward.  Neither does the free tuition policy.  The simulations showed that 

except for some scenarios where the number of choices was low (4 or lower in the 

simulations) and some other scenarios under BM, students enrolled under the free tuition 

policy had an even lower average senior score than those enrolled without the policy.   

The simulations showed that the free tuition policy, under TM, SD, and DA, 

worsens the inequality in school quality, except for some scenarios where the number of 

choices was extremely low (2 in the model).  Under CP, whether the free tuition policy 

helped reduce the inequality of school quality depended on students’ behaviors.  If 
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students used the same strategy, CP with the free tuition policy resulted in a wider 

disparity of school qualities than CP without the free tuition policy in almost all scenarios.  

If students used heterogeneous strategies, then the results were reversed in almost all 

scenarios.  Under BM, the free tuition policy helped lower inequality of school quality 

when students used heterogeneous strategies or when the number of choices was high. 

From the above discussion, it is interesting to see the complex effects of the free 

tuition policy on educational opportunity and school quality.  When the number of 

choices was high, the free tuition policy did not work well with TM but worked quite 

well with BM in reducing the inequalities of educational opportunity and school quality.  

When students were truth tellers and allowed the full number of choices, the free tuition 

policy even helped BM to form a distribution of assignments that resulted in higher 

average senior scores.  The simulated results suggest that BM, instead of TM, plus the 

free tuition policy has the potential to simultaneously reduce the inequalities of 

educational opportunity and school quality, maintain a high match rate, and achieve a 

better average senior score.  Nevertheless, BM plus the free tuition policy may create 

more justified envy for the top-income-quartile students, which may not be accepted by 

parents in the Taipei School District.   

Impacts on Students in Different Groups  

Some researchers advocate SD and DA because these mechanisms avoid justified 

envy and are strategy free for all students.  This argument is true only when there is no 

choice constraint (see the section of empirical output validation in this chapter).  The 

simulated results demonstrate that under the same condition, CP and BM can also avoid 
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justified envy for the elite candidates (top 10% performing students), even though they do 

create justified envy for other higher performing candidates.  In the simulations, TM 

could not reach 100% top-choice match rate.  However, when students used the same 

strategy or there is no choice constraint, TM could allow 99% of the elite students to 

attend their top-choice schools regardless of the number of choices allowed.  In fact, 

when all students use the same strategies, all the five mechanisms could have at least 

99% top-choice match rate for the elite students as long as the number of choices was 

high enough (at least 8 in this model).  When the free tuition policy was implemented, the 

threshold could be lower (from 8 to 6).  The above results demonstrate that for elite 

students, SD and DA are not superior to TM unless 100% top-choice match rate is 

required.  Even if 100% top-choice match rate is required, SD and DA are not the only 

mechanisms that can reach that requirement.  BM and CP can also reach the 100% 

requirement with the full number of choices.   

If a policy is expected to benefit the most disadvantaged students (students with 

the bottom 10% income), SD and DA are the worst mechanisms in most cases.  I used the 

assignment result of no justified envy as the baseline, which occurs when students report 

their preferences as their choices without any constraint under DA.  In the simulations, 

under SD and DA, the bottom-10%-income students were worse off in all scenarios other 

than their baseline scenarios.  TM and the free tuition policy alone or combined helped 

improve the assignments of these students but in a very limited way.  By and large, the 

performances of CP and CP with the free tuition policy were better than those of TM and 

TM with the free tuition policy, respectively.  However, the benefits CP, even with the 
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free tuition policy, could generate for this group of students were small in comparison to 

those generated by BM, when the number of choices is high.  With the free tuition policy, 

BM could assign these students to even better schools than BM without the free tuition 

policy.  If we extend the definition of disadvantaged students to all students in the bottom 

income quartile, the above statements largely held true, except that the scenarios where 

CP could bring positive PIs to the students in this group became less and BM needed a 

higher number of choices to bring substantial benefits for these students.   

In the simulations, when the number of choices was high, BM could produce the 

most positive PIs for the students in the bottom income quartile, the most positive PIs or 

the least negative PIs for the second income quartiles, and the most justified envy for the 

students in the third and top income quartiles among all mechanisms.  This statement also 

applied to the scenarios under BM with the free tuition policy.  This result implies that 

BM could mix students the most.  CP produced the second largest justified envy for the 

students in the third and top income quartile, which implies that CP could mix students 

the second most.  The above findings correspond to the simulation results that BM, 

followed by CP, produced the lowest inequality of educational opportunity when the 

number of choices was high, which might support the claim that mixing, compared with 

sorting, helps reduce educational inequality (Van de Werfhorst & Mijs, 2010).      

Summary of the findings  

Assuming students use the same strategies before and after the policy change, A 

simple answer to the research questions is as follows. 
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• TM helps equalize educational opportunities if the number of choices is low and 

students use the same school-choice strategy. 

• TM helps school qualities converge upward in few behavioral and admission 

policy settings.  

• TM with the free tuition policy helps equalize educational opportunities with few 

exceptions.  

• TM with the free tuition policy performs worse than TM without the free tuition 

policy in helping school qualities converge upward.  

However, the discussions in the previous subsections show that the simulation 

results tell more stories than the above simple answer and reveal the complex nature of 

the interventions.  The effects of both TM and the free tuition policy were nonlinear, 

depending on and emerging from students’ behaviors interacting with the interventions 

and the number of choices.  If students change their behaviors with the change of the 

policy, the above answer may not apply.  Therefore, if students’ reaction to the new 

policy is unknown or uncertain, policymakers should perform the best-worst estimates to 

have a better understanding of the possible policy effects.   

In addition to the answers to the research questions, the simulations provide 

information about the alternatives to the current policies.  BM seems to be a better 

alternative to reduce the inequality of educational opportunities and converge school 

quality upward.  I evaluate the simulated results of BM in the section of implications.   
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Limitations of the Study 

ABM is a generative approach; the macroemergences are generated from the 

microspecifications (Epstein, 1999).  Therefore, knowing the microspecifications of a 

system is essential to an agent-based modeler.  However, unlike macropatterns, 

microspecifications are usually hard to obtain.  In this model, students’ preferences and 

school-choice strategies are assumptions based on my observations and the literature.  

Since I did not include all plausible preferences and strategies in the model due to the 

time and cost constraints, how robust the simulated findings are to students’ preferences 

and strategies is unknown.  Additionally, this study was exploratory. The parameter 

values were not calibrated to the real data.  For example, there are more than 100 schools 

in the Taipei School District, while the model has only 10.  It is uncertain whether scale 

has an effect on the macropatterns found in this study.   

With the above limitations, the accuracy of the model to predict the outcomes of 

TM and the free tuition policy in the context of the Taipei School District may be 

challenged.  An agent-based model for real-world prediction requires “close feedback 

between simulation, testing, data collection and development of theory” (Farmer & 

Foley, 2009, p. 686).  This enormous task requires funding and interdisciplinary 

collaboration because ABM involves computer programming, human behaviors, and 

environment construction.  If the above issues can be resolved, agent-based models have 

a potential to perform policy predictions better than their counterpart equation-based 

models for the following two reasons: (a) Agent-based models are not subject to the 

constraint of mathematical tractability and can build a virtual world with as many 
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features as the modelers deem necessary; and (b) ABM relaxes the behavioral 

assumptions of rationality and optimization and allows human learning and adaptation 

(Epstein, 1999; Farmer & Foley, 2009).      

Even though this exploratory model cannot be viewed as a quantitative prediction 

model for Taipei’s new admission policies, the simulation results provide many insights 

into the nature of these interventions and the relative effectiveness of different matching 

mechanisms.  The simulation results show a pattern change in the mechanisms’ 

relationships at some point in the change of the number of choices, which is a 

phenomenon that has never been discussed in the literature.  The simulation results also 

reveal the significant impacts of students’ behaviors on the macroeffects of the 

mechanisms.  The behavior of using a homogeneous strategy may lead to higher 

inequalities in educational opportunity and school quality than the behavior of using 

heterogeneous strategies if the number of choices is low, while the difference in their 

effects may become small but still exist if the number of choices is high.  To the best of 

my knowledge, this phenomenon has never been discussed in the literature either.  

Whether the simulated findings are practical can be tested by empirical data collected in 

the future.  In other words, the findings from agent-based simulations help researchers 

form hypotheses for empirical research and serve as a guide for data collection (Chen, 

2015; Epstein, 2008).   

Recommendations 

In this study, I have tested the five student-assignment mechanisms with 30 

different scenarios under a computer environment designed to qualitatively represent the 
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Taipei School District, which exhibits a moderate-to-high correlation among students’ 

school preferences and an admission capacity adequate for all candidates.  I did not test 

scenarios where students have higher or lower preference correlation than students in the 

Taipei School District or where the admission capacity is inadequate for all candidates.  

Therefore, it is not clear whether the findings in this study can apply to school districts 

with different preference correlation or different admission capacity.  Future work can 

include a robustness test to examine how sensitive the distribution of student assignments 

is to preference correlation and admission capacity.  

The simulated results have shown that students’ behaviors play an important role 

in the formation of the distribution of students’ assignments.  The simulated scenarios 

only included a few assumptions of school-choice strategies, which can be divided into 

the maximum heterogeneous truth-telling strategies (Strategy #1) and the homogeneous 

strategies (Strategies #2 and #3).  I designed Strategies #2 and #3 according to the 

commonly advised strategies in the Taipei School District (Sun, 2015; Zhang & Wang, 

2015).  Strategy #1 was based on the principle of maximum entropy.  Since TM is new, 

there has not been any empirical evidence on students’ strategies in response to this new 

mechanism.  Further work may include the real-world strategic behaviors when the 

information becomes available.   

The simulations show that the top-choice match rate of the top 10% performing 

students was seriously affected by the number of choices if Strategy #1 was used.  Since 

students in this group have the top scores and the top priorities, it is possible that they do 

not need to play games but honestly report their top preferences as their top choices.  
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Future work can apply different strategies to different student groups.  It will be 

interesting to see whether always truthfully reporting their preferences as choices by the 

top-performing students regardless of how other students make their decisions can make 

the assignments of the top-performing students resistant to the changes in the number of 

choices.      

The computational environment in this study contains 10 schools and 1,000 

candidates, which represents a system about one-tenth the scale of the Taipei School 

District.  Future work can expand the computational environment by increasing the 

numbers of schools and students to test whether there is a scaling effect on the 

performance of the interventions.     

Implications 

Educational policies are powerful tools to make social changes.  However, the 

history shows a myriad of cases where educational policies produced unexpected and 

undesired consequences (Groff, 2013). Lack of the right complexity model to study the 

complex educational problems may be one of the reasons.  A prediction agent-based 

educational model may be difficult to construct.  However, an exploratory model still can 

provide useful insights into the nature of a macroeducational policy.  “Essentially, all 

models are wrong, but some are useful” (Box & Draper, 1987, p. 424).  As argued by 

Epstein (2008), “by revealing tradeoffs, uncertainties, and sensitivities, models can 

discipline the dialogue about options and make unavoidable judgments more considered” 

(para. 1.7).  The findings in this study indeed provide a disciplined basis for Taipei’s 
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policymakers and stakeholders to discuss the criticisms of the current admission policies 

and the solutions for the current problems.  

One criticism of the free tuition policy is that this expensive policy is cost-

inefficient not only because it would crowd out the programs that could directly benefit 

disadvantaged students but also because the high school attendance rate had been 93% 

before the implementation of this policy.  The simulation results show that match rate 

was affected not only by the free tuition policy but also by the number of choices and the 

mechanism.  The number of choices must be high to have a high match rate.  In this case, 

the free tuition policy has a limited effect on reducing inequality of educational 

opportunity.  Besides, when there was no choice constraint, even without the free tuition 

policy, all mechanisms could reach a match rate of at least 98%; BM could even reach 

100%.  The above findings seem to support the criticism.  Although the free tuition 

policy is necessary to bring all mechanism to reach 100% match rate from 98%, 

policymakers should perform the cost-benefit analysis carefully to justify the 

implementation of the free tuition policy.    

TM has been criticized for its design of assigning decreasing scores to student’s 

choices.  Many parents view this design as a punishment for student’s bad choices 

(Zheng, 2015).  The Taipei government’s reason for adopting such design was that it 

could induce students to focus more on their true preferences than on school ranking and 

thus would result in more mixing than sorting.  The simulation results show that when the 

number of choices was large, the distributions of assignments under TM and SD (Taipei’s 

original mechanism) were similar.  TM could substantially reduce educational inequality 
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only when the number of choices was low.  However, a low number of choices might 

cause the match rate to drop several to dozens of points.  Whether this is acceptable to the 

society is doubtful.  If the number of choices must be high, then the effect of TM is small.  

Whether it is worth implementing TM with a small effect but a heavy criticism is also 

debatable.  

To ensure a high match rate and low inequalities in both the educational 

opportunity and school quality, BM seems to be the best solution if policymakers allow a 

high or a full number of choices.  Additionally, BM could benefit the disadvantaged 

students the most even though BM could create the most justified envy for the students in 

the top income quartile.  Nevertheless, BM with the full number of choices would not 

harm the top 10% performing students.  BM emphasizes students’ choices, which 

inspired the initial design of choice score in the algorithm of TM.  However, because of 

the creation of severe justified envy, the role of BM was diminished in the revised 

algorithm of TM implemented in 2016.  Therefore, despite all the benefits BM can 

provide, its acceptance by a society viewing the avoidance of justified envy as fairness is 

questionable.   

As stated by Ostrom (2005), “if the individuals who are crafting and modifying 

rules do not understand how particular combinations of rules affect actions and outcomes 

in a particular ecological and cultural environment, rule changes may produce unexpected 

and, at times, disastrous outcomes” (p. 3).  If the Taipei government intends to have a 

successful admission reform to reduce educational inequality, it may want to reconsider 

its priority and engage more in public opinion change.  Unless the public agrees that 
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fairness includes equal opportunity to attend each school, any implementation of a 

mechanism deviating from SD may be doomed to be heavily criticized.   

An interesting phenomenon revealed by the simulation results is that a change in 

the relationships among the effects of the five mechanisms occurs at a certain point in the 

change in the number of choices.  In the simulations, when students used the same 

strategy, the number of choices 6 acted like a bifurcation or turning point.  The SD-

Freshman under BM was among the highest and TM the lowest when the number of 

choices < 6; the relationship reversed when the number of choices > 6.  Many school 

systems constrain the number of choices a student can submit.  For example, the Taipei 

School District assigns choice scores only to the first 30 choices a student makes, while 

there are more than 100 schools in the district (New Taipei City Government, 2015).  

Similarly, Boston School District only allows up to 14 choices selected from their 125 

schools (Boston Public Schools, 2017).  A common reason for the constraints is the 

limited computational power.  Other causes include stimulating students to contemplate 

their real preferences and making school-choice advice feasible (Liu, Liu, & Tu, 2012).  

This finding alerts the policymakers to the impact of choice constraints.  If policymakers 

decide to constrain the number of choices, they must investigate carefully the impact of 

the number they choose, or they may experience an “unexpected and, at times, disastrous 

outcomes” (Ostrom, 2005, p. 3).    

Conclusions 

Educational systems are complex adaptive systems.  Macroeducation policies 

cannot be evaluated easily by using linear regression models.  Complexity tools are 



226 
 

 

needed to understand what and how an educational policy’s macroeffects emerge from 

the interactions between the students and the environment.  This study demonstrates that 

ABM can provide counterintuitive insights into the impacts of admission policies that can 

hardly be found by the traditional equation-based models.   

Intuitively, the benefits of the free tuition policy, which makes private schools 

affordable for poorer students, are twofold: (a) It gives poorer students more 

opportunities to attend higher quality private schools and thus can improve the match 

rate; and (b) with a higher proportion of poorer students, this policy helps reduce private 

schools’ average family income and consequently result in a lower educational 

inequality.  However, the agent-based simulation results counterintuitively show that the 

free tuition policy may instead reduce the match rate and increase the inequality if the 

number of choices is not high enough.  The simulations also show a change in the 

relationships among the effects of the mechanisms at a certain point in the change of the 

number of choices.  This nonlinear relationship can hardly be seen in an equation-based 

model either.  Additionally, ABM is convenient to perform multilevel analysis.  In this 

study, I analyzed not only macrolevel data but also mesolevel data.  This model also 

allows me to collect microlevel data, including individual students’ school-assignment 

results and their high-school scores.  In this sense, ABM is a methodology that can 

generate big data, which help researchers to have a multifaceted understanding of the 

hierarchical properties of an educational system and the complex effects of educational 

policy.  
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 As argued by Roth (2002), computational simulations “help us analyze games 

that are too complex to solve analytically” (p. 1374).  This agent-based model helps us 

understand what and whom the admission policies work for, in what condition it works, 

and how it works.  However, few agent-based educational models have been constructed 

to analyze macroeducational policies.  More efforts are needed to produce full-fledged 

agent-based educational models and strengthen the development of ABM in educational 

research.  
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Appendix A : NetLogo Code of the Model  

extensions [r] 

breed [students student] 

breed [universities university] 

globals [ 

  predict-score           ; the predict score of university (may be the min-score or max-rank) 

  ave-score               ;; 

  ave-score-sd            ; average score, serial dictator 

  ave-score-bm            ; average score, boston mechanism 

  ave-score-da            ; average score, deferred acceptance 

  ave-score-tm            ; average score, taipei mechanism 

  ave-score-cp            ; average score, chinese parallel 

  min-score               ;; 

  min-score-sd            ; minimum score, serial dictator 

  min-score-bm            ; minimum score, boston mechanism 

  min-score-da            ; minimum score, deferred acceptance 

  min-score-tm            ; minimum score, taipei mechanism 

  min-score-cp            ; minimum score, chinese parallel 

  max-rank                ;; the ranking of the students who has the lowest scores and was 

admitted to the universities 

  max-rank-sd             ; maximum rank, serial dictator 

  max-rank-bm             ; maximum rank, boston mechanism 
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  max-rank-da             ; maximum rank, deferred acceptance 

  max-rank-tm             ; maximum rank, taipei mechanism 

  max-rank-cp             ; maximum rank, chinese parallel 

  max-rank-score          ;; the score in this year according to the max-rank last year 

  high-school 

  num-univ                ;; number of universities 

  univ 

  u 

  mean-utility 

  average-mismatch-sd     ;; to measure the error, serial dictator 

  average-mismatch-bm     ;; to measure the error, boston mechanism 

  average-mismatch-da     ;; to measure the error, deferred acceptance 

  average-mismatch-tm     ;; to measure the error, Taipei mechanism 

  average-mismatch-cp     ;; to measure the error, Chinese parallel 

  sd-mismatch-sd          ;; standard deviation of the mismatch, serial dictator 

  sd-mismatch-bm          ;; standard deviation of the mismatch, boston mechanism 

  sd-mismatch-da          ;; standard deviation of the mismatch, deferred acceptance 

  sd-mismatch-tm          ;; standard deviation of the mismatch, taipei mechanism 

  sd-mismatch-cp          ;; standard deviation of the mismatch, chinese parallel 

  x                        ;; to produce random number 

  no-choices-1            ;; number of choices list 1 

  no-choices-2            ;; number of choices list 2 
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  score-mean              ; 

  score-sdv               ; 

  seven-letter-tiers 

  mu 

;;;;;  zipf-H                  ; array of H(n,n) 

  income-average 

  univ-rank               ; university rank 

  univ-rank-sd            ; university rank, serial dictator 

  univ-rank-bm            ; university rank, boston mechanism 

  univ-rank-da            ; university rank, deferred acceptance 

  univ-rank-tm            ; university rank, taipei mechanism 

  univ-rank-cp            ; university rank, chinese parallel 

  y1end-score             ; year-1 end score list, aligned to capacity, ordered according to 

university 

  y1end-score-sd          ; year-1 end score list, serial dicator 

  y1end-score-bm          ; year-1 end score list, boston mechanism 

  y1end-score-da          ; year-1 end score list, deferred acceptance 

  y1end-score-tm          ; year-1 end score list, taipei mechanism 

  y1end-score-cp          ; year-1 end score list, chinese parallel 

  y1end-income            ; year-1 end family income list, aligned to capacity, ordered 

according to university 

  y1end-income-sd         ; year-1 end family income list, serial dicator 
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  y1end-income-bm         ; year-1 end family income list, boston mechanism 

  y1end-income-da         ; year-1 end family income list, deferred acceptance 

  y1end-income-tm         ; year-1 end family income list, taipei mechanism 

  y1end-income-cp         ; year-1 end family income list, chinese parallel 

  y2end-score             ; year-2 end score list, aligned to capacity, ordered according to 

university 

  y2end-score-sd          ; year-2 end score list, serial dicator 

  y2end-score-bm          ; year-2 end score list, boston mechanism 

  y2end-score-da          ; year-2 end score list, deferred acceptance 

  y2end-score-tm          ; year-2 end score list, taipei mechanism 

  y2end-score-cp          ; year-2 end score list, chinese parallel 

  y2end-income            ; year-2 end family income list, aligned to capacity, ordered 

according to university 

  y2end-income-sd         ; year-2 end family income list, serial dicator 

  y2end-income-bm         ; year-2 end family income list, boston mechanism 

  y2end-income-da         ; year-2 end family income list, deferred acceptance 

  y2end-income-tm         ; year-2 end family income list, taipei mechanism 

  y2end-income-cp         ; year-2 end family income list, chinese parallel 

  y3end-score-ave 

  y3end-score-ave-sd 

  y3end-score-ave-bm 

  y3end-score-ave-da 
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  y3end-score-ave-tm 

  y3end-score-ave-cp 

  y3end-score-stdev 

  y3end-score-stdev-sd 

  y3end-score-stdev-bm 

  y3end-score-stdev-da 

  y3end-score-stdev-tm 

  y3end-score-stdev-cp 

  income-quartile           ;; the average misplacement of each quartile 

  income-quartile-sd 

  income-quartile-bm 

  income-quartile-da 

  income-quartile-tm 

  income-quartile-cp 

  mean-quartile           ;; the average misplacement of each quartile 

  mean-quartile-sd 

  mean-quartile-bm 

  mean-quartile-da 

  mean-quartile-tm 

  mean-quartile-cp 

  mean-top10 

  mean-top10-sd 
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  mean-top10-bm 

  mean-top10-da 

  mean-top10-tm 

  mean-top10-cp 

  mean-bottom10 

  mean-bottom10-sd 

  mean-bottom10-bm 

  mean-bottom10-da 

  mean-bottom10-tm 

  mean-bottom10-cp 

  max-top10 

  max-top10-sd 

  max-top10-bm 

  max-top10-da 

  max-top10-tm 

  max-top10-cp 

  percent-top10 

  percent-top10-sd 

  percent-top10-bm 

  percent-top10-da 

  percent-top10-tm 

  percent-top10-cp 
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  income-mean 

  income-mean-sd 

  income-mean-bm 

  income-mean-da 

  income-mean-tm 

  income-mean-cp 

  income-stdev 

  income-stdev-sd 

  income-stdev-bm 

  income-stdev-da 

  income-stdev-tm 

  income-stdev-cp 

  y1-income-mean 

  y1-income-mean-sd 

  y1-income-mean-bm 

  y1-income-mean-da 

  y1-income-mean-tm 

  y1-income-mean-cp 

  y1-income-stdev 

  y1-income-stdev-sd 

  y1-income-stdev-bm 
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  y1-income-stdev-da 

  y1-income-stdev-tm 

  y1-income-stdev-cp 

  private-list 

  univ-fill 

  mvrnorm-r-cmd 

  mvrnorm-matrix 

  mvrnorm-idx 

  zone-ln-income-mean 

  zone-ln-income-stdev 

  zone-score-mean 

  zone-score-stdev 

  univ-enrollment 

  univ-enrollment-sd 

  univ-enrollment-bm 

  univ-enrollment-da 

  univ-enrollment-tm 

  univ-enrollment-cp 

  end-score 

  end-income 

  average-score 

  average-income 
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] 

universities-own [ 

  priority-students-list    ;; 

  potential-students        ;; 

  univ-zone                 ;; school location zone (0 or 1) 

] 

students-own [ 

  score                     ;; students' score, it is now the average of the score-subjects 

  score-subjects            ;; students' score of each of the 5 subject 

  preference-rank           ;; students' preference of school ranks 

  preference-list           ;; student's preference of school ID 

  choice                    ;; a list to store student's total choice (use n-value choices [] 

  seven-scale-score         ;; sum of seven scale for "Taipei mechanism" 

  last-choice               ;; index for deferred acceptance 

  next-choice               ;; index for deferred acceptance 

  choice-1                  ;; a list of student's first choice under Chinese parallel 

  choice-2                  ;; a list of student's second choice under Chinese parallel 

  utility                   ;; utility the students have 

  base-place                ;; where he could go 

  actual-place              ;; where he goes actually 

  misplacement-abs          ;; to measure the misplacement-abs (absolute distance of base-

place and what he really get) 



267 
 

 

  misplacement              ;; to measure misplacement gain or loss 

  rank 

  base-preference           ;; index of preference 

  actual-preference         ;; index of enrollment 

  income                    ;; student's family income 

  district                  ;; student's living district (1 or 2) 

] 

to setup 

  clear-all 

  ;; initialize R interface 

  ;; activate MASS library for mvrnorm function 

  r:eval "library(MASS)" 

  ;; initialize covariance matrix 

  r:eval (word "Sig <- matrix(c(" 

    "1.0, 0.8, 0.8, 0.8, 0.8, 0.8, " 

    "0.8, 1.0, 0.8, 0.8, 0.8, 0.8, " 

    "0.8, 0.8, 1.0, 0.8, 0.8, 0.8, " 

    "0.8, 0.8, 0.8, 1.0, 0.8, 0.8, " 

    "0.8, 0.8, 0.8, 0.8, 1.0, 0.8, " 

    "0.8, 0.8, 0.8, 0.8, 0.8, 1.0), nrow=6)") 

  ;; initialize mvrnorm command string 

  ;; This is needed because number of students may vary 
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  set mvrnorm-r-cmd (word "X <- mvrnorm(" num-students ", mu=rep(0, 6), Sigma = Sig, 

empirical = TRUE)") 

;;  set tolerance 0.5         ;;0.58 

;;  set peer-effect 0.1       ;;0.58 

  ;random-seed 0 

  set-default-shape students "person" 

  set-default-shape universities "house" 

  set num-univ 10 

  set zone-ln-income-mean [14.14 13.84] 

  set zone-ln-income-stdev [0.52 0.47] 

  set zone-score-mean [65.0 47.5] 

  set zone-score-stdev [23.0 23.0] 

  set univ-rank n-values num-univ [?] 

  set univ-rank-sd univ-rank 

  set univ-rank-bm univ-rank 

  set univ-rank-da univ-rank 

  set univ-rank-tm univ-rank 

  set univ-rank-cp univ-rank 

  set seven-letter-tiers [41 61 71 84 90 94 100] 

  set mu 3 

  set ave-score n-values num-univ [-1 - ?] 

  set ave-score-sd ave-score 
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  set ave-score-bm ave-score 

  set ave-score-da ave-score 

  set ave-score-tm ave-score 

  set ave-score-cp ave-score 

  set min-score n-values num-univ [0] 

  set min-score-sd min-score 

  set min-score-bm min-score 

  set min-score-da min-score 

  set min-score-tm min-score 

  set min-score-cp min-score 

  set y1end-score n-values (num-univ * capacity) [-1] 

  set y1end-score-sd y1end-score 

  set y1end-score-bm y1end-score 

  set y1end-score-da y1end-score 

  set y1end-score-tm y1end-score 

  set y1end-score-cp y1end-score 

  set y1end-income n-values (num-univ * capacity) [0] 

  set y1end-income-sd y1end-income 

  set y1end-income-bm y1end-income 

  set y1end-income-da y1end-income 

  set y1end-income-tm y1end-income 

  set y1end-income-cp y1end-income 
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  set y2end-score n-values (num-univ * capacity) [-1] 

  set y2end-score-sd y2end-score 

  set y2end-score-bm y2end-score 

  set y2end-score-da y2end-score 

  set y2end-score-tm y2end-score 

  set y2end-score-cp y2end-score 

  set y2end-income n-values (num-univ * capacity) [0] 

  set y2end-income-sd y2end-income 

  set y2end-income-bm y2end-income 

  set y2end-income-da y2end-income 

  set y2end-income-tm y2end-income 

  set y2end-income-cp y2end-income 

  set y3end-score-ave n-values num-univ [-1 - ?] 

  set y3end-score-ave-sd y3end-score-ave 

  set y3end-score-ave-bm y3end-score-ave 

  set y3end-score-ave-da y3end-score-ave 

  set y3end-score-ave-tm y3end-score-ave 

  set y3end-score-ave-cp y3end-score-ave 

  set univ-enrollment n-values num-univ [0] 

  set univ-enrollment-sd univ-enrollment 

  set univ-enrollment-bm univ-enrollment 

  set univ-enrollment-da univ-enrollment 
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  set univ-enrollment-tm univ-enrollment 

  set univ-enrollment-cp univ-enrollment 

  set max-rank n-values num-univ [num-students] 

  set max-rank-sd max-rank 

  set max-rank-bm max-rank 

  set max-rank-da max-rank 

  set max-rank-tm max-rank 

  set max-rank-cp max-rank 

  set income-quartile n-values 4 [0] 

  set income-quartile-sd income-quartile 

  set income-quartile-bm income-quartile 

  set income-quartile-da income-quartile 

  set income-quartile-tm income-quartile 

  set income-quartile-cp income-quartile 

  set mean-quartile n-values 4 [0] 

  set mean-quartile-sd mean-quartile 

  set mean-quartile-bm mean-quartile 

  set mean-quartile-da mean-quartile 

  set mean-quartile-tm mean-quartile 

  set mean-quartile-cp mean-quartile 

  set mean-top10-sd 0 

  set mean-top10-bm 0 
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  set mean-top10-da 0 

  set mean-top10-tm 0 

  set mean-top10-cp 0 

  set mean-bottom10 0 

  set mean-bottom10-sd 0 

  set mean-bottom10-bm 0 

  set mean-bottom10-da 0 

  set mean-bottom10-tm 0 

  set mean-bottom10-cp 0 

  set max-top10-sd 0 

  set max-top10-bm 0 

  set max-top10-da 0 

  set max-top10-tm 0 

  set max-top10-cp 0 

  set percent-top10-sd 0 

  set percent-top10-bm 0 

  set percent-top10-da 0 

  set percent-top10-tm 0 

  set percent-top10-cp 0 

  set predict-score n-values num-univ [0] 

  set income-mean n-values num-univ [0] 

  set income-mean-sd income-mean 
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  set income-mean-bm income-mean 

  set income-mean-da income-mean 

  set income-mean-tm income-mean 

  set income-mean-cp income-mean 

  set income-stdev 0 

  set income-stdev-sd income-stdev 

  set income-stdev-bm income-stdev 

  set income-stdev-da income-stdev 

  set income-stdev-tm income-stdev 

  set income-stdev-cp income-stdev 

  set y1-income-mean n-values num-univ [0] 

  set y1-income-mean-sd y1-income-mean 

  set y1-income-mean-bm y1-income-mean 

  set y1-income-mean-da y1-income-mean 

  set y1-income-mean-tm y1-income-mean 

  set y1-income-mean-cp y1-income-mean 

  set y1-income-stdev 0 

  set y1-income-stdev-sd y1-income-stdev 

  set y1-income-stdev-bm y1-income-stdev 

  set y1-income-stdev-da y1-income-stdev 

  set y1-income-stdev-tm y1-income-stdev 

  set y1-income-stdev-cp y1-income-stdev 
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  set end-score n-values num-students [-1] 

  set end-income n-values num-students [0] 

  set average-score n-values num-univ [-1 - ?] 

  set average-income n-values num-univ [0] 

;;  set top10-rank 0 

  setup-schools                                       ;; setup ten universities and high-school 

  set univ-fill n-values num-univ [11 + ?] 

  setup-students 

;;;;;  setup-zipf num-univ alpha                           ;; init zipf array index 

  if behaviorspace-run-number < 2 [ 

    write-file-header 

  ] 

 

  reset-ticks 

end 

to setup-schools 

  set univ n-values num-univ [?] 

  let n 0 

  let i 0 

  let d (max-pxcor - min-pxcor) / num-univ 

  repeat num-univ 
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  [ 

    set i n / d 

     set univ replace-item i univ patches with [pycor > -10 and pxcor > (min-pxcor + n) 

and pxcor < (min-pxcor + d + n)] 

     ask patches with [pycor > -10 and pxcor > (min-pxcor + n) and pxcor < (min-pxcor + 

d + n)] [ 

       ifelse i = 0 or i = 1 or i = 2 or i = 4 or i = 7 [ 

         set pcolor 105 

       ] [ 

         set pcolor 102 

       ] 

     ] 

     ask patch (min-pxcor + d / 2 + n) -10 [set plabel-color white set plabel (n / d  + 1) ] 

     ask patch (min-pxcor + d / 2 + n) -11 [set plabel-color red set plabel item (n / d)  

predict-score] 

     ask patch (min-pxcor + d / 2 + n) (max-pycor) [ 

            sprout-universities 1 [ 

         ;; hard code school zones 

         ifelse i = 0 or i = 1 or i = 2 or i = 4 or i = 7 [ 

           set univ-zone 1 

         ] [ 

           set univ-zone 2 
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         ] 

         ;; hard code private schools without supplement 

         ;; use color to code this flag 

         ;; color white indicates public schools or private schools with supplement 

         ;; color 27 indicates private schools without supplement 

         ifelse i != 2 [ 

           set color white 

         ] [ 

           set color 27 

         ] 

       ] 

     ] 

     set n (n + d) 

  ] 

  set high-school patches with  [pycor < -11] 

  ask high-school [set pcolor lime - 4] 

  set private-list [] 

  ;; remove private school from list, hard coded for now 

  foreach sort universities with [color != white] [ 

    ask ? [ 

      set private-list lput (who + 1) private-list 

    ] 
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  ] 

end 

to setup-students 

  create-students num-students [ 

    set last-choice 0 

    set next-choice 0 

    setxy random-xcor (- 12 - random 5) 

    set color magenta 

    set size 1 

    set district 2 

  ] 

  ask n-of round (num-students * 0.36) students [ 

    set district 1 

  ] 

end 

to generate-rank-list 

  set preference-rank [] 

  let z-value 0 

  let j 1 

  let school-list n-values zone-split [? + 1] 

  repeat zone-split [ 

    set z-value zipf (zone-split + 1 - j) alpha 
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    set preference-rank lput item (z-value - 1) school-list preference-rank 

    set school-list remove-item (z-value - 1) school-list 

    set j (j + 1) 

  ] 

  set school-list n-values (num-univ - zone-split) [? + 1] 

  set j 1 

  repeat (num-univ - zone-split) [ 

    set z-value zipf (num-univ - zone-split + 1 - j) alpha 

    set preference-rank lput (zone-split + item (z-value - 1) school-list) preference-rank 

    set school-list remove-item (z-value - 1) school-list 

    set j (j + 1) 

  ] 

end 

to generate-preference 

  set preference-list [] 

  let univ-zone-list [] 

  let t0 0 

  let j 1 

  repeat zone-split [ 

    set preference-list lput (1 + item (item (j - 1) preference-rank - 1) univ-rank) 

preference-list 

    set j (j + 1) 
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  ] 

  ;; update school zone list here too 

  set j 1 

  repeat (num-univ - zone-split) [ 

    set t0 item (item (zone-split + j - 1) preference-rank - 1) univ-rank 

    set preference-list lput (t0 + 1) preference-list 

    set univ-zone-list lput get-univ-zone t0 univ-zone-list 

    set j (j + 1) 

  ] 

  ; perform shuffle 

  ; initialize starting list index 

  let temp-zone-idx zone-split 

  let temp-pref-list [] 

  ; check for list of schools in the same district 

  while [member? district univ-zone-list] [ 

    ; if the remaining schools are still in the list 

    ifelse item 0 univ-zone-list != district [ 

      ; first school is not in the same zone, start shuffling 

      ; get the first school in district from the list 

      let univ-id item (temp-zone-idx + position district univ-zone-list) preference-list 

      ; remove the first school from the list 

      set preference-list remove univ-id preference-list 
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      ; insert the school to the front 

      set preference-list se (se sublist preference-list 0 temp-zone-idx univ-id) sublist 

preference-list temp-zone-idx length preference-list 

      ; remove the school from zone list 

      set univ-zone-list remove-item (position district univ-zone-list) univ-zone-list 

    ] 

    [ 

      ; current top school is in the same zone, remove it from list 

      set univ-zone-list remove-item 0 univ-zone-list 

    ] 

    set temp-zone-idx (temp-zone-idx + 1) 

  ] 

  ; remove private school without grant 

  if not grant and income <= income-average [ 

    foreach private-list [ 

      if member? ? preference-list [ 

        set preference-list remove ? preference-list 

      ] 

    ] 

  ] 

end 
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to-report get-univ-zone [id] 

  let tval 0 

  ask university id [ 

    set tval univ-zone 

  ] 

  report tval 

end 

to generate-students-priority 

  set priority-students-list [] 

  let school-id who + 1 

  ifelse mechanism = "Taipei mechanism" [ 

      set priority-students-list sort-on [ 

        (- (score / 1000000000 + seven-scale-score + (35 - floor (ifelse-value is-number? 

(position school-id choice) [position school-id choice / group-size][35])))) 

        ] students 

    ] [ 

      set priority-students-list sort-on [(- score)] students 

    ] 

end 

to go-to-high-school 

  move-to one-of high-school 

  set color magenta 
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  set last-choice 0 

  set next-choice 0               ;; index for deferred acceptance 

end 

 

to go 

  if ticks >= max-tick  [stop] 

  set score-mean (random-normal population-mean (population-standard-deviation / 3.0)) 

  set score-sdv sqrt (random-gamma 30 0.5 * population-standard-deviation ^ 2 / 60) 

  ;; generate normalized student income/score matrix 

  r:eval mvrnorm-r-cmd 

  ;; receive income/score matrix from R 

  ;; matrix structure is as follows 

  ;; items 0 * num-students to (1 * num-students - 1) => normalized delta of student's 

household income 

  ;; items 1 * num-students to (2 * num-students - 1) => normalized delta of student's 

subject 1 score 

  ;; items 2 * num-students to (3 * num-students - 1) => normalized delta of student's 

subject 2 score 

  ;; items 3 * num-students to (4 * num-students - 1) => normalized delta of student's 

subject 3 score 

  ;; items 4 * num-students to (5 * num-students - 1) => normalized delta of student's 

subject 4 score 
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  ;; items 5 * num-students to (6 * num-students - 1) => normalized delta of student's 

subject 5 score 

  set mvrnorm-matrix r:get "X" 

  ;; create index to easily map inome and subjects scores to mvrnorm-matrix 

  set mvrnorm-idx 0 ;;n-values 6 [? * num-students] 

  ask students [get-score]                     ;; get score 

  set income-average mean [income] of students 

  ask students [generate-rank-list] 

  set no-choices-2 floor no-choices / 2 

  set no-choices-1 (no-choices - no-choices-2) 

  let mechanisms (list "Serial dictatorship" "Boston mechanism" "Deferred acceptance" 

"Taipei mechanism" "Chinese parallel mechanism") 

  if dbg-print [print (word "########## tick count: " ticks)] 

  ifelse All_mechanism? [ 

    foreach mechanisms [ 

      if dbg-print [print (word "<<<< mechanism: " ? " >>>>")] 

      set mechanism ? 

      update-begin-variables ? 

      ask students [generate-preference]           ;; generate random preference list according 

to the probability matrix P 

      ask students [get-seven-scale-score] 
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      get-fair-place                              ;; to find out the base-place, i.e. the university that the 

student could go 

      ask students [go-to-high-school] 

      get-max-rank-score 

      ask students [ 

        set next-choice 0 

        set last-choice 0 

        choose 

      ] 

      ask universities [generate-students-priority] 

      enroll 

      ask students [calculate-misplacement] 

      update-min-score-and-rank 

      update-label 

      class-mismatch 

      ; update year 3 end score from year 2 end score 

      update-y3end-score 

      ; update school ranking based on year 3 end score 

      update-univ-rank y3end-score-ave 

      ; update year 2 end score from year 1 end score 

      update-y2end-score 

      ; update year 1 end score from year 1 beginning score 
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      update-y1end-score 

      update-dynamic-variables ? 

    ] 

    ifelse print-first-three [ 

      write-simulation-data 

    ] 

    [ 

      if ticks > 2 [write-simulation-data] 

    ] 

  ] 

  [ 

    update-begin-variables mechanism 

    ask students [generate-preference]           ;; generate random preference list according 

to the probability matrix P 

    ask students [get-seven-scale-score] 

    get-fair-place                              ;; to find out the base-place, i.e. the university that the 

student could go 

    ask students [go-to-high-school] 

    get-max-rank-score 

    ask students [ 

      set next-choice 0 

      set last-choice 0 
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      choose 

    ] 

    ask universities [generate-students-priority] 

    enroll 

    ask students [calculate-misplacement] 

    update-min-score-and-rank 

    update-label 

    class-mismatch 

    ; update year 3 end score from year 2 end score 

    update-y3end-score 

    ; update school ranking based on year 3 end score 

    update-univ-rank y3end-score-ave 

    ; update year 2 end score from year 1 end score 

    update-y2end-score 

    ; update year 1 end score from year 1 beginning score 

    update-y1end-score 

    update-dynamic-variables mechanism 

    ifelse print-first-three [ 

      write-simulation-data 

    ] 

    [ 

      if ticks > 2 [write-simulation-data] 
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    ] 

  ] 

  tick 

  ;;ask students [do-plots] 

end 

to-report cut-list [string] 

  let temp (word map [(word ? ", ")] string) 

  set temp remove-item 0 remove-item (length temp - 1) temp 

  report temp 

end 

to get-score 

  let i 0 

  ;; get the current student map index 

  let n mvrnorm-idx 

  ;; update map index for next student 

  set mvrnorm-idx (mvrnorm-idx + 1) 

  ;; setup student's living district index 

  let zone (district - 1) 

  ;; calculate income by e ^ (log of income) 

  set income exp (item zone zone-ln-income-stdev * item n mvrnorm-matrix + item zone 

zone-ln-income-mean) 
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  ;; calculate student's subject scores 

  set score-subjects [] 

  while [i < 5] [ 

    ;; update mvrnorm index by adding num-students to n 

    set n (n + num-students) 

    set score-subjects se score-subjects (max (se 0.00001 min (se 99.99999 (item zone 

zone-score-stdev * item n mvrnorm-matrix + item zone zone-score-mean)))) 

    set i (i + 1) 

  ] 

  ;; calculate composite score 

  set score mean score-subjects 

end 

to get-seven-scale-score 

  let i 0 

  let mult-scale 0.001 

  set seven-scale-score 0 

  repeat length score-subjects [ 

    let t-score item i score-subjects 

    let j 1 

    while [t-score >= item (j - 1) seven-letter-tiers] [set j (j + 1)] 

    set seven-scale-score (seven-scale-score + (j * 1.01) + (j * mult-scale)) 

    set mult-scale (mult-scale * 0.1) 
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    set i (i + 1) 

  ] 

end 

to get-max-rank-score 

  set max-rank-score map [item (? - 1) sort-by > [score] of students ] max-rank          ;; get 

max-rank-score based on the max-rank last year and the scores this year 

end 

to get-fair-place 

  let c-max 0 

  set u n-values num-univ [0] 

  foreach sort-on  [(- score)] students [ 

    ask ? [ 

      set c-max length preference-list 

      let i 1                                 ;; the i th univ that the students choose 

      while [i <= c-max] [ 

        set base-place item (i - 1) preference-list  ;;of self) 

        ifelse item (base-place - 1) u >= capacity [ 

          set i (i + 1) 

        ] [ 

          set base-preference i 

          set i c-max + 2                                                             ;; to end the circle 
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          set u replace-item (base-place - 1) u (item (base-place - 1) u + 1)         ;; count the 

students 

        ] 

        if i = c-max + 1 [ 

          set base-place num-univ + 1 

          set base-preference num-univ + 1 

        ] 

      ] 

    ] 

  ] 

end 

to choose                             ;; to choose university 

  ifelse scheme = "1" [ 

    produce-random-strategy 

  ] [ 

    produce-c&c-strategy 

  ] 

  ;;  move-to one-of (item (first choice - 1) univ) 

end 

to produce-random-strategy 

  let c-max length preference-list 

  if c-max > no-choices [set c-max no-choices] 
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  set choice n-of c-max preference-list 

  if mechanism = "Chinese parallel mechanism" [ 

    let t1 no-choices-1 

    if t1 > c-max [set t1 c-max] 

    set choice-1 sublist choice 0 t1 

    set choice-2 sublist choice t1 c-max 

  ] 

end 

to produce-c&c-strategy 

  ifelse scheme = "2 or 3" [ 

    set predict-score  min-score 

  ] [ 

    set predict-score  max-rank-score 

  ] 

  set choice [] 

  let school-left [] 

  let i 0 

  let c-max length preference-list 

  foreach preference-list [                              ;; get the F_i set 

    ifelse score >= item (? - 1) predict-score [ 

      set choice lput ? choice 

      set i (i + 1) 
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    ] [ 

      set school-left lput ? school-left 

    ] 

  ] 

  if c-max > no-choices [set c-max no-choices] 

  if i < c-max [ 

    let choice-left n-of (c-max - i) school-left 

    set choice se choice choice-left 

  ] 

  set choice sublist choice 0 c-max 

  ifelse (mechanism = "Chinese parallel mechanism") [ 

    chinese-choice 

  ] [ 

    if extra-in-order = true [ 

      set choice sort-by-preference choice preference-list 

    ] 

  ] 

end 

to chinese-choice 

  let c-max length choice 

  let t1 no-choices-1 

  if t1 > c-max [set t1 c-max] 
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  set choice-1 sublist choice 0 t1 

  set choice-2 sublist choice t1 c-max 

  if extra-in-order = true [ 

    set choice-1 sort-by-preference choice-1 preference-list 

    set choice-2 sort-by-preference choice-2 preference-list 

  ] 

end 

to enroll                                ;; the university give offer according to its enrollment plan 

and the ranking of students 

  set u n-values num-univ [0]                   ;; the number of students that enrolled 

  if mechanism = "Serial dictatorship" 

    [serial-dictatorship] 

  if mechanism = "Boston mechanism" 

    [boston-mechanism] 

  if mechanism = "Deferred acceptance" 

    [deferred-acceptance] 

  if mechanism = "Taipei mechanism" 

    ;;[taipei-mechanism] 

    [deferred-acceptance] 

  if mechanism = "Chinese parallel mechanism" 

    [chinese-parallel] 

end 
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to serial-dictatorship 

  foreach sort-on  [(- score)] students [ 

    ask ? [ 

      let c-max length choice 

      let i 1                                 ;; the i th univ that the students choose 

      while [i <= c-max] [ 

        set actual-place (item (i - 1) choice) ;;[choice] of self) 

         ifelse item (actual-place - 1) u >= capacity [ 

          set i (i + 1)                                                       ;; over capacity, not placed, test for 

next choice 

        ] [ 

          set actual-preference position actual-place preference-list + 1 

          set i (c-max + 2)                                                  ;; to end the circle 

                                                                             ;; set utility (12 / 11 - actual-place / 11 -  

score / 1089)          ;; set the utility 

                                                                             ;; set misplacement abs (base-place - 

actual-place)                     ;; set the misplacement 

          move-to one-of (item (actual-place - 1) univ)                      ;; show placement 

          ifelse district = 1 [set color yellow] [set color lime]                         ;; change display 

color 
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          set u replace-item (actual-place - 1) u (item (actual-place - 1) u + 1)         ;; count 

the students that enrolled 

        ] 

        if i = c-max + 1 [ 

          ;; move-to one-of high-school set color white        ;;the student go back to high 

school if got no offer] 

          set actual-place num-univ + 1 

          set actual-preference num-univ + 1 

          ;; set misplacement abs (base-place - 11)] 

        ] 

      ] 

    ] 

  ] 

end 

to boston-mechanism 

  let n 0 

  while [n < no-choices and (any? students with [color = magenta])] [ 

    foreach n-values num-univ [?] [ 

      foreach sort-on [(- score)] students with [item n (se choice univ-fill) = ? + 1 and color 

= magenta ] [  ; ? represents 0, 1, 2,..., 9 

        ask ? [                                                                                   ;; students from highest 

score to lowest score 
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          set actual-place item n choice ;;[choice] of self 

          if item (actual-place - 1) u <  capacity 

          [ 

            move-to one-of (item (actual-place - 1) univ) 

            ifelse district = 1 [set color yellow][set color lime]                    ;; change display 

color 

            set u replace-item (actual-place - 1) u (item (actual-place - 1) u + 1)   ;; count the 

students that enrolled 

            set actual-preference position actual-place preference-list + 1 

          ] 

        ] 

      ] 

    ] 

    set n n + 1 

  ] 

  if any? students with [color = magenta] [ 

    ask students with [color = magenta] [ 

      set actual-place num-univ + 1 

      set actual-preference num-univ + 1 

    ] 

  ] 

end 
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to deferred-acceptance 

  let excluded-students [] 

  let choice-sum 1 

  let temp [] 

  let c-max 0 

  while [choice-sum != 0] [ 

    ;; create a sublist of unassigned students 

    ;; initialize the list 

    set excluded-students students 

    foreach sort universities [ 

      ask ? [ 

        set temp students with [item next-choice choice = ([who] of ? + 1) and color = 

magenta ] 

        let univ-priority [priority-students-list] of ? 

        ;show univ-priority 

        set potential-students (sort-by-preference sort temp univ-priority) 

        ;show potential-students 

        if length potential-students >= capacity [ 

          set potential-students sublist potential-students 0 capacity 

        ] 

        ;show potential-students 
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        set excluded-students (sort-by-not-listed sort excluded-students potential-students) 

        foreach (sort temp) [ 

          if not member? ? potential-students [ 

            ask ? [ 

              set c-max length choice 

              set last-choice next-choice 

              set next-choice next-choice + 1 

              if next-choice >= (c-max - 1) [ 

                set next-choice (c-max - 1) 

              ] 

            ] 

          ] 

        ] 

      ] 

    ] 

    ;; detect end of loop 

    ;show excluded-students 

    set choice-sum 0 

    foreach (sort excluded-students) [ 

      ask ? [ 

        set c-max length choice 
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        if last-choice != (c-max - 1) [ 

          set choice-sum (choice-sum + 1) 

        ] 

      ] 

    ] 

    ;show choice-sum 

  ] 

  ; enroll 

  foreach sort universities [ 

    ask ? [ 

      foreach potential-students [ 

        ask ? [ 

          ifelse district = 1 [set color yellow][set color lime]                ;; change display color 

          set actual-place ([who] of myself + 1) 

          set actual-preference position actual-place preference-list + 1 

          set u replace-item (actual-place - 1) u (item (actual-place - 1) u + 1) 

          move-to one-of (item (actual-place - 1) univ) 

        ] 

      ] 

    ] 

  ] 

  if any? students with  [color = magenta] 
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   [ask students with  [color = magenta] 

    [ 

      set actual-place num-univ + 1 

      set actual-preference num-univ + 1 

    ] 

  ] 

end 

to chinese-parallel 

  let c-max 0 

  foreach sort-on [(- score)] students [ 

    ask ? [ 

      set c-max length choice-1 

      let i 1                                 ;; the i th univ that the students choose 

      while [i <= c-max] [ 

        set actual-place (item (i - 1) choice-1) ;;[choice-1] of self) 

          ifelse item (actual-place - 1) u >= capacity [ 

            set i (i + 1)                                   ;; over capacity, not placed, test for next choice 

          ] [ 

          ifelse district = 1 [set color yellow][set color lime]                ;; change display color 

          set u replace-item (actual-place - 1) u (item (actual-place - 1) u + 1)         ;; count 

the students that enrolled 

          move-to one-of (item (actual-place - 1) univ)                       ;; show placement 
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          set i (c-max + 2)                                            ;; to end the circle 

          set actual-preference position actual-place preference-list + 1 

          ] 

;        ] 

        if (i = c-max + 1) and (no-choices-2 = 0) [ 

          ;; move-to one-of high-school set color white        ;;the student go back to high 

school if got no offer] 

          set actual-place num-univ + 1 

          set actual-preference num-univ + 1 

          ;; set misplacement abs (base-place - 11)] 

        ] 

      ] 

    ] 

  ] 

  if no-choices-2 != 0 [ 

    foreach sort-on  [(- score)] students with [color = magenta ] [ 

      ask ? [ 

        set c-max length choice-2 

        let i 1                                 ;; the i th univ that the students choose 

        while [i <= c-max ] [ 

          set actual-place (item (i - 1) choice-2) ;;[choice-2] of self) 

            ifelse item (actual-place - 1) u >= capacity [ 
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              set i (i + 1) 

            ] [ 

            set i (c-max + 2)                                                    ;; to end the circle 

                                                                                        ;; set misplacement abs (base-

place - actual-place)                         ;; set the misplacement 

            move-to one-of (item (actual-place - 1) univ) 

            ifelse district = 1 [set color yellow][set color lime]                       ;; change display 

color 

            set u replace-item (actual-place - 1) u (item (actual-place - 1) u + 1)  ;; count the 

students that enrolled 

            set actual-preference position actual-place preference-list + 1 

            ] 

          if i = c-max + 1 [ 

            ;; move-to one-of high-school set color white        ;;the student go back to high 

school if got no offer] 

            set actual-place num-univ + 1 

            set actual-preference num-univ + 1 

            ;;set misplacement abs (base-place - 11)] 

          ] 

        ] 

      ] 

    ] 
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  ] 

end 

to calculate-misplacement 

  set misplacement-abs abs (base-preference - actual-preference)         ;; set the 

misplacement-abs 

  set misplacement (base-preference - actual-preference)                 ;; set misplacement 

gain or loss 

end 

to class-mismatch 

  set income-quartile [0 0 0 0] 

  let quartile-turtles [0 0 0 0] 

  (foreach [0 1 2 3] [0 0.25 0.5 0.75] [0.25 0.5 0.75 1] 

    [set quartile-turtles replace-item ?1 quartile-turtles turtle-set sublist sort-on [income] 

students int (?2 * num-students) int (?3 * num-students)]) 

  set income-quartile replace-item 0 income-quartile (mean [misplacement] of item 0 

quartile-turtles) 

  set income-quartile replace-item 1 income-quartile (mean [misplacement] of item 1 

quartile-turtles) 

  set income-quartile replace-item 2 income-quartile (mean [misplacement] of item 2 

quartile-turtles) 

  set income-quartile replace-item 3 income-quartile (mean [misplacement] of item 3 

quartile-turtles) 
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  set mean-quartile [0 0 0 0] 

  ; get the 25% 50% 75% quartile using the "TI-83" method 

  ; divide to students into four group according to their score 

  set quartile-turtles [0 0 0 0] 

  (foreach [0 1 2 3] [0 0.25 0.5 0.75] [0.25 0.5 0.75 1] 

    [set quartile-turtles replace-item ?1 quartile-turtles turtle-set sublist sort-on [score] 

students int (?2 * num-students) int (?3 * num-students)]) 

  ; calculate the mean of misplacement of each quartile 

  set mean-quartile replace-item 0 mean-quartile (mean [misplacement] of item 0 quartile-

turtles) 

  set mean-quartile replace-item 1 mean-quartile (mean [misplacement] of item 1 quartile-

turtles) 

  set mean-quartile replace-item 2 mean-quartile (mean [misplacement] of item 2 quartile-

turtles) 

  set mean-quartile replace-item 3 mean-quartile (mean [misplacement] of item 3 quartile-

turtles) 

  ; get the top 10% of students 

  let top10 turtle-set sublist sort-on [score] students int (0.9 * num-students) num-students 

  set mean-top10 mean [misplacement] of top10 

  set max-top10 max [misplacement-abs] of top10 

  set percent-top10 count top10 with [actual-preference = base-preference] / count top10 
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  ; get the bottom 10% of students 

  let bottom10 turtle-set sublist sort-on [income] students 0 int (0.1 * num-students) 

  set mean-bottom10 mean [misplacement] of bottom10 

end 

to update-min-score-and-rank 

  set ave-score n-values num-univ [0] 

  set min-score n-values num-univ [0] 

  set max-rank n-values num-univ [num-students] 

  let i 0 

  repeat num-univ [ 

    if any? students with [actual-place = (i + 1)] [ 

      set ave-score replace-item i ave-score (mean [score] of students with [actual-place = 

(i + 1)]) 

      set min-score replace-item i min-score ([score] of min-one-of students with [actual-

place = (i + 1)] [score]) 

      set max-rank replace-item i max-rank (position (item i min-score) (sort-by > [score] 

of students) + 1) 

    ] 

    set i i + 1 

  ] 

end 

to update-label 
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  let n 0 

  let d (max-pxcor - min-pxcor) / num-univ 

  repeat num-univ  [ 

    ask patch (- (max-pxcor - d / 2) + n) -11  [set plabel-color red set plabel  round item (n 

/ d)  min-score] 

    set n (n + d) 

  ] 

end 

to-report sort-by-preference [list1 list2]        ;;define a function to sort list1 according to 

list2 

  let newlist [] 

  foreach sort map [position ? list2] list1 [ 

    set newlist lput item ? list2 newlist 

  ] 

  report newlist 

end 

to-report sort-by-not-listed [list1 list2]        ;;define a function to sort list1 according to 

NOT in list2 

  let newlist [] 

  foreach sort list1 [ 

    if position ? list2 = false [ 

      set newlist lput ? newlist 
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    ] 

  ] 

  report newlist 

end 

to do-plots 

  set-current-plot "E1" 

  set-current-plot-pen "E1" 

  plotxy ticks mean [misplacement-abs] of students 

  ;; set-current-plot "E2" 

  ;; set-current-plot-pen "E2" 

  ;; plotxy ticks mean [misplacement-abs] of students with [base-place <= 10] 

  ;; set-current-plot "E3" 

  ;;set-current-plot-pen "E3" 

  ;;plotxy ticks mean [misplacement-abs] of students with  [color = yellow ] 

end 

; draw zipf (zeta) distribution 

;;----------------------- generate random number in Zeta distribution (or Zipf distribution)  

;; -----  1. Generate a uniform random number z in [0,1] 

;; ------ 2. The cumulative distribution function F(x) = \frac{H_{x,a}}{H_{n,a}}, where 

H_{n,a} = \sum_{n=1}^{\infty}  \frac{1}{n^a} 

;;------- 3. The random number we get is F^{-1}(z) 

;; --------------------------------------------------------------------------------------------------------- 
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to-report zipf [n a] 

  let  H 0 

  let zipf-value 0 

  ;draw a uniform random number z in [0,1] 

  let z random-float 1 

  ; calculate  H_{n,a} = \sum_{n=1}^{\infty}  \frac{1}{n^a} 

  let i 1 

  repeat n [ 

    set H (H + (1 / i) ^ a) 

    set i i + 1 

  ] 

  ;map z to the to F^{-1}(z) 

  let sum-pro 0 

  set i 1 

  repeat n [ 

    set sum-pro (sum-pro + 1 / (H * i  ^ a)) 

    if (sum-pro >= z) [ 

      set zipf-value i 

      report zipf-value 

      stop 

    ] 

    set i i + 1 
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  ] 

end 

to update-univ-rank [rank-list] 

  let sorted-rank-score sort-by > rank-list 

  let i 0 

  repeat num-univ [ 

    let temp-position position (item i sorted-rank-score) rank-list 

    set univ-rank replace-item i univ-rank temp-position 

    set rank-list replace-item temp-position rank-list (min rank-list - 1) 

    set i (i + 1) 

  ] 

end 

to update-endyear-score [begin-score begin-income]  ;; this is to calculate the avergae 

score of a cohort in each school 

  set end-score begin-score 

  set end-income begin-income 

  set average-score n-values num-univ [-1 - ?] 

  set average-income n-values num-univ [0] 

  let n 0 

  repeat num-univ [ 

    let idx-a n * capacity 

    let temp sublist begin-score idx-a (idx-a + capacity) 
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    let enrollment-count capacity 

    if min temp = -1 [ 

      set enrollment-count position -1 temp 

    ] 

    let idx-b (idx-a + enrollment-count) 

    if idx-b != idx-a [ 

      let income-bot mean sublist end-income idx-a idx-b 

      set average-income replace-item n average-income income-bot 

      let income-top income-bot * (1 + tolerance) 

      set income-bot income-bot * (1 - tolerance) 

      let score-effect mean sublist temp 0 enrollment-count 

      set score-effect score-effect * peer-effect 

      let idx-c idx-a 

      ;; the following is to calculate the new scores of the students in a school 

      repeat enrollment-count [ 

        let temp-income item idx-c end-income 

        if (temp-income < income-top and temp-income > income-bot) [ 

          let temp-score item idx-c end-score 

          set temp-score temp-score * (1 - peer-effect) + score-effect 

          set end-score replace-item idx-c end-score temp-score 

        ] 

        set idx-c idx-c + 1 
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      ] 

      set average-score replace-item n average-score mean sublist end-score idx-a idx-b 

    ] 

    set n (n + 1) 

  ] 

end 

to update-y1end-score 

  let y1start-score n-values (num-univ * capacity) [-1] 

  let y1start-income n-values (num-univ * capacity) [0] 

  set univ-enrollment n-values num-univ [0] 

  let n 0 

  let idx-a 0 

  let idx-b 0 

  repeat num-univ [ 

    set idx-a (n * capacity) 

    set idx-b idx-a 

    let temp students with [actual-place = (n + 1)] 

    set univ-enrollment replace-item n univ-enrollment count temp ;;To count how many 

students are in each university 

    foreach sort-on  [(- score)] temp [ 

      ask ? [ 
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        set y1start-score replace-item idx-b y1start-score (score)  ;; make a list of freshmen's 

start scores in each school. This list contains all students. 

        set y1start-income replace-item idx-b y1start-income (income) ;; make a list of 

freshmen's incomes in each school. This list contains all students. 

      ] 

      set idx-b idx-b + 1 

    ] 

    set n n + 1 

  ] 

  update-endyear-score y1start-score y1start-income 

  set y1-income-mean average-income 

  set y1-income-stdev standard-deviation average-income 

  set y1end-score end-score 

  set y1end-income end-income 

  if dbg-print [ 

    print (word "y1-end enrollment: " univ-enrollment) 

    print (word "y1-end score average: " average-score) 

  ] 

end 

to update-y2end-score 

  update-endyear-score y1end-score y1end-income 

  set y2end-score end-score 



313 
 

 

  set y2end-income end-income 

  if dbg-print [ 

    print (word "y2-end score average: " average-score) 

  ] 

end 

to update-y3end-score 

  update-endyear-score y2end-score y2end-income 

  set y3end-score-ave average-score 

  set income-mean average-income 

  set income-stdev standard-deviation average-income 

  let temp-ave y3end-score-ave 

  let n 0 

  repeat num-univ [ 

    if item n temp-ave < 0 [ 

      set temp-ave replace-item n temp-ave 0 

    ] 

    set n n + 1 

  ] 

  set y3end-score-stdev standard-deviation temp-ave 

  if dbg-print [ 

    print (word "y3-end score average: " average-score) 

  ] 
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end 

to update-dynamic-variables [m] 

  if m = "Serial dictatorship" [ 

    set average-mismatch-sd mean [misplacement-abs] of students ;show  average-

mismatch-sd 

    set sd-mismatch-sd standard-deviation [misplacement-abs] of students 

    set ave-score-sd ave-score 

    set min-score-sd min-score 

    set max-rank-sd max-rank 

    set income-quartile-sd income-quartile 

    set mean-quartile-sd mean-quartile 

    set mean-top10-sd mean-top10 

    set mean-bottom10-sd mean-bottom10 

    set max-top10-sd max-top10 

    set percent-top10-sd percent-top10                         ;; to report misplacement-abs 

    set univ-rank-sd univ-rank 

    set y1end-score-sd y1end-score 

    set y1end-income-sd y1end-income 

    set y2end-score-sd y2end-score 

    set y2end-income-sd y2end-income 

    set income-mean-sd income-mean 

    set income-stdev-sd income-stdev 
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    set y1-income-mean-sd y1-income-mean 

    set y1-income-stdev-sd y1-income-stdev 

    set y3end-score-ave-sd y3end-score-ave 

    set y3end-score-stdev-sd y3end-score-stdev 

    set univ-enrollment-sd univ-enrollment 

;;    set top10-rank-sd top10-rank 

  ] 

  if m = "Boston mechanism" [ 

    set average-mismatch-bm mean [misplacement-abs] of students ;show average-

mismatch-bm 

    set sd-mismatch-bm standard-deviation [misplacement-abs] of students 

    set ave-score-bm ave-score 

    set min-score-bm min-score 

    set max-rank-bm max-rank 

    set income-quartile-bm income-quartile 

    set mean-quartile-bm mean-quartile 

    set mean-top10-bm mean-top10 

    set mean-bottom10-bm mean-bottom10 

    set max-top10-bm max-top10 

    set percent-top10-bm percent-top10                         ;; to report misplacement-abs 

    set univ-rank-bm univ-rank 

    set y1end-score-bm y1end-score 
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    set y1end-income-bm y1end-income 

    set y2end-score-bm y2end-score 

    set y2end-income-bm y2end-income 

    set income-mean-bm income-mean 

    set income-stdev-bm income-stdev 

    set y1-income-mean-bm y1-income-mean 

    set y1-income-stdev-bm y1-income-stdev 

    set y3end-score-ave-bm y3end-score-ave 

    set y3end-score-stdev-bm y3end-score-stdev 

    set univ-enrollment-bm univ-enrollment 

;;    set top10-rank-bm top10-rank 

  ] 

  if m = "Deferred acceptance" [ 

    set average-mismatch-da mean [misplacement-abs] of students ;show  average-

mismatch-da 

    set sd-mismatch-da standard-deviation [misplacement-abs] of students 

    set ave-score-da ave-score 

    set min-score-da min-score 

    set max-rank-da max-rank 

    set income-quartile-da income-quartile 

    set mean-quartile-da mean-quartile 

    set mean-top10-da mean-top10 
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    set mean-bottom10-da mean-bottom10 

    set max-top10-da max-top10 

    set percent-top10-da percent-top10                         ;; to report misplacement-abs 

    set univ-rank-da univ-rank 

    set y1end-score-da y1end-score 

    set y1end-income-da y1end-income 

    set y2end-score-da y2end-score 

    set y2end-income-da y2end-income 

    set income-mean-da income-mean 

    set income-stdev-da income-stdev 

    set y1-income-mean-da y1-income-mean 

    set y1-income-stdev-da y1-income-stdev 

    set y3end-score-ave-da y3end-score-ave 

    set y3end-score-stdev-da y3end-score-stdev 

    set univ-enrollment-da univ-enrollment 

;;    set top10-rank-da top10-rank 

  ] 

  if m = "Taipei mechanism" [ 

    set average-mismatch-tm mean [misplacement-abs] of students ;show  average-

mismatch-tm 

    set sd-mismatch-tm standard-deviation [misplacement-abs] of students 

    set ave-score-tm ave-score 
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    set min-score-tm min-score 

    set max-rank-tm max-rank 

    set income-quartile-tm income-quartile 

    set mean-quartile-tm mean-quartile 

    set mean-top10-tm mean-top10 

    set mean-bottom10-tm mean-bottom10 

    set max-top10-tm max-top10 

    set percent-top10-tm percent-top10                         ;; to report misplacement-abs 

    set univ-rank-tm univ-rank 

    set y1end-score-tm y1end-score 

    set y1end-income-tm y1end-income 

    set y2end-score-tm y2end-score 

    set y2end-income-tm y2end-income 

    set income-mean-tm income-mean 

    set income-stdev-tm income-stdev 

    set y1-income-mean-tm y1-income-mean 

    set y1-income-stdev-tm y1-income-stdev 

    set y3end-score-ave-tm y3end-score-ave 

    set y3end-score-stdev-tm y3end-score-stdev 

    set univ-enrollment-tm univ-enrollment 

;;    set top10-rank-tm top10-rank 

  ] 



319 
 

 

  if m = "Chinese parallel mechanism" [ 

    set average-mismatch-cp mean [misplacement-abs] of students ;show  average-

mismatch-cp 

    set sd-mismatch-cp standard-deviation [misplacement-abs] of students 

    set ave-score-cp ave-score 

    set min-score-cp min-score 

    set max-rank-cp max-rank 

    set income-quartile-cp income-quartile 

    set mean-quartile-cp mean-quartile 

    set mean-top10-cp mean-top10 

    set mean-bottom10-cp mean-bottom10 

    set max-top10-cp max-top10 

    set percent-top10-cp percent-top10                         ;; to report misplacement-abs 

    set univ-rank-cp univ-rank 

    set y1end-score-cp y1end-score 

    set y1end-income-cp y1end-income 

    set y2end-score-cp y2end-score 

    set y2end-income-cp y2end-income 

    set income-mean-cp income-mean 

    set income-stdev-cp income-stdev 

    set y1-income-mean-cp y1-income-mean 

    set y1-income-stdev-cp y1-income-stdev 
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    set y3end-score-ave-cp y3end-score-ave 

    set y3end-score-stdev-cp y3end-score-stdev 

    set univ-enrollment-cp univ-enrollment 

;;    set top10-rank-cp top10-rank 

  ] 

end 

to update-begin-variables [m] 

  if m = "Serial dictatorship" [ 

    ;set ave-score ave-score-sd 

    set univ-rank univ-rank-sd 

    set min-score min-score-sd 

    set max-rank max-rank-sd 

    set y1end-score y1end-score-sd 

    set y1end-income y1end-income-sd 

    set y2end-score y2end-score-sd 

    set y2end-income y2end-income-sd 

    set y3end-score-ave y3end-score-ave-sd 

  ] 

  if m = "Boston mechanism" [ 

    ;set ave-score ave-score-bm 

    set univ-rank univ-rank-bm 

    set min-score min-score-bm 
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    set max-rank max-rank-bm 

    set y1end-score y1end-score-bm 

    set y1end-income y1end-income-bm 

    set y2end-score y2end-score-bm 

    set y2end-income y2end-income-bm 

    set y3end-score-ave y3end-score-ave-bm 

  ] 

  if m = "Deferred acceptance" [ 

    ;set ave-score ave-score-da 

    set univ-rank univ-rank-da 

    set min-score min-score-da 

    set max-rank max-rank-da 

    set y1end-score y1end-score-da 

    set y1end-income y1end-income-da 

    set y2end-score y2end-score-da 

    set y2end-income y2end-income-da 

    set y3end-score-ave y3end-score-ave-da 

  ] 

  if m = "Taipei mechanism" [ 

    ;set ave-score ave-score-tm 

    set univ-rank univ-rank-tm 

    set min-score min-score-tm 
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    set max-rank max-rank-tm 

    set y1end-score y1end-score-tm 

    set y1end-income y1end-income-tm 

    set y2end-score y2end-score-tm 

    set y2end-income y2end-income-tm 

    set y3end-score-ave y3end-score-ave-tm 

  ] 

  if m = "Chinese parallel mechanism" [ 

    ;set ave-score ave-score-cp 

    set univ-rank univ-rank-cp 

    set min-score min-score-cp 

    set max-rank max-rank-cp 

    set y1end-score y1end-score-cp 

    set y1end-income y1end-income-cp 

    set y2end-score y2end-score-cp 

    set y2end-income y2end-income-cp 

    set y3end-score-ave y3end-score-ave-cp 

  ] 

end 

to write-file-header 

  if write-mismatch [ 

    write-header-type2 "mismatch.csv" "sd," "bm," "da," "tm," "cp" 
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  ] 

  if write-sd-mismatch [ 

    write-header-type2 "sd_mismatch.csv" "sd," "bm," "da," "tm," "cp" 

  ] 

  if write-ave-score [ 

    write-header-type2 "ave_score.csv" 

        "sd 1,sd 2,sd 3,sd 4,sd 5,sd 6,sd 7,sd 8,sd 9,sd 10," 

        "bm 1,bm 2,bm 3,bm 4,bm 5,bm 6,bm 7,bm 8,bm 9,bm 10," 

        "da 1,da 2,da 3,da 4,da 5,da 6,da 7,da 8,da 9,da 10," 

        "tm 1,tm 2,tm 3,tm 4,tm 5,tm 6,tm 7,tm 8,tm 9,tm 10," 

        "cp 1,cp 2,cp 3,cp 4,cp 5,cp 6,cp 7,cp 8,cp 9,cp 10" 

  ] 

  if write-min-score [ 

    write-header-type2 "min_score.csv" 

        "sd 1,sd 2,sd 3,sd 4,sd 5,sd 6,sd 7,sd 8,sd 9,sd 10," 

        "bm 1,bm 2,bm 3,bm 4,bm 5,bm 6,bm 7,bm 8,bm 9,bm 10," 

        "da 1,da 2,da 3,da 4,da 5,da 6,da 7,da 8,da 9,da 10," 

        "tm 1,tm 2,tm 3,tm 4,tm 5,tm 6,tm 7,tm 8,tm 9,tm 10," 

        "cp 1,cp 2,cp 3,cp 4,cp 5,cp 6,cp 7,cp 8,cp 9,cp 10" 

  ] 

  if write-mean-quartile-score [ 

    write-header-type2 "mean_quartile_score.csv" 
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        "sd 25%,sd 50%,sd 75%,sd 100%," 

        "bm 25%,bm 50%,bm 75%,bm 100%," 

        "da 25%,da 50%,da 75%,da 100%," 

        "tm 25%,tm 50%,tp 75%,tp 100%," 

        "cp 25%,cp 50%,cp 75%,cp 100%" 

    write-header-type2 "income_quartile_score.csv" 

        "sd 25%,sd 50%,sd 75%,sd 100%," 

        "bm 25%,bm 50%,bm 75%,bm 100%," 

        "da 25%,da 50%,da 75%,da 100%," 

        "tm 25%,tm 50%,tp 75%,tp 100%," 

        "cp 25%,cp 50%,cp 75%,cp 100%" 

  ] 

  if write-mean-top10 [ 

    write-header-type2 "mean_top10.csv" "sd," "bm," "da," "tm," "cp" 

    write-header-type2 "mean_bottom10.csv" "sd," "bm," "da," "tm," "cp" 

  ] 

  if write-max-top10 [ 

    write-header-type2 "max_top10.csv" "sd," "bm," "da," "tm," "cp" 

  ] 

  if write-percent-top10 [ 

    write-header-type2 "percent_top10.csv" "sd," "bm," "da," "tm," "cp" 

;;    write-header-type2 "top10_rank.csv" "sd," "bm," "da," "tm," "cp" 
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  ] 

  if write-univ-rank [ 

    write-header-type2 "univ-rank.csv" 

        "sd 1,sd 2,sd 3,sd 4,sd 5,sd 6,sd 7,sd 8,sd 9,sd 10," 

        "bm 1,bm 2,bm 3,bm 4,bm 5,bm 6,bm 7,bm 8,bm 9,bm 10," 

        "da 1,da 2,da 3,da 4,da 5,da 6,da 7,da 8,da 9,da 10," 

        "tm 1,tm 2,tm 3,tm 4,tm 5,tm 6,tm 7,tm 8,tm 9,tm 10," 

        "cp 1,cp 2,cp 3,cp 4,cp 5,cp 6,cp 7,cp 8,cp 9,cp 10" 

    write-header-type2 "univ-enrollment.csv" 

        "sd 1,sd 2,sd 3,sd 4,sd 5,sd 6,sd 7,sd 8,sd 9,sd 10," 

        "bm 1,bm 2,bm 3,bm 4,bm 5,bm 6,bm 7,bm 8,bm 9,bm 10," 

        "da 1,da 2,da 3,da 4,da 5,da 6,da 7,da 8,da 9,da 10," 

        "tm 1,tm 2,tm 3,tm 4,tm 5,tm 6,tm 7,tm 8,tm 9,tm 10," 

        "cp 1,cp 2,cp 3,cp 4,cp 5,cp 6,cp 7,cp 8,cp 9,cp 10" 

  ] 

  if write-senior-ave [ 

    write-header-type2 "senior-ave.csv" 

        "sd 1,sd 2,sd 3,sd 4,sd 5,sd 6,sd 7,sd 8,sd 9,sd 10," 

        "bm 1,bm 2,bm 3,bm 4,bm 5,bm 6,bm 7,bm 8,bm 9,bm 10," 

        "da 1,da 2,da 3,da 4,da 5,da 6,da 7,da 8,da 9,da 10," 

        "tm 1,tm 2,tm 3,tm 4,tm 5,tm 6,tm 7,tm 8,tm 9,tm 10," 

        "cp 1,cp 2,cp 3,cp 4,cp 5,cp 6,cp 7,cp 8,cp 9,cp 10" 
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    write-header-type2 "senior-stdev.csv"  "sd," "bm," "da," "tm," "cp" 

    write-header-type2 "mean-income.csv" 

        "sd 1,sd 2,sd 3,sd 4,sd 5,sd 6,sd 7,sd 8,sd 9,sd 10," 

        "bm 1,bm 2,bm 3,bm 4,bm 5,bm 6,bm 7,bm 8,bm 9,bm 10," 

        "da 1,da 2,da 3,da 4,da 5,da 6,da 7,da 8,da 9,da 10," 

        "tm 1,tm 2,tm 3,tm 4,tm 5,tm 6,tm 7,tm 8,tm 9,tm 10," 

        "cp 1,cp 2,cp 3,cp 4,cp 5,cp 6,cp 7,cp 8,cp 9,cp 10" 

    write-header-type2 "stdev-income.csv" "sd," "bm," "da," "tm," "cp" 

    write-header-type2 "y1-mean-income.csv" 

        "sd 1,sd 2,sd 3,sd 4,sd 5,sd 6,sd 7,sd 8,sd 9,sd 10," 

        "bm 1,bm 2,bm 3,bm 4,bm 5,bm 6,bm 7,bm 8,bm 9,bm 10," 

        "da 1,da 2,da 3,da 4,da 5,da 6,da 7,da 8,da 9,da 10," 

        "tm 1,tm 2,tm 3,tm 4,tm 5,tm 6,tm 7,tm 8,tm 9,tm 10," 

        "cp 1,cp 2,cp 3,cp 4,cp 5,cp 6,cp 7,cp 8,cp 9,cp 10" 

    write-header-type2 "y1-stdev-income.csv" "sd," "bm," "da," "tm," "cp" 

  ] 

end 

to write-simulation-data 

  if write-mismatch [ 

    write-data-type1 "mismatch.csv" average-mismatch-sd average-mismatch-bm average-

mismatch-da average-mismatch-tm average-mismatch-cp 

   ] 
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  if write-sd-mismatch [ 

    write-data-type1 "sd_mismatch.csv" sd-mismatch-sd sd-mismatch-bm sd-mismatch-da 

sd-mismatch-tm sd-mismatch-cp 

  ] 

  if write-ave-score [ 

    write-data-type2 "ave_score.csv" ave-score-sd ave-score-bm ave-score-da ave-score-

tm ave-score-cp 

  ] 

  if write-min-score [ 

    write-data-type2 "min_score.csv" min-score-sd min-score-bm min-score-da min-score-

tm min-score-cp 

  ] 

  if write-mean-quartile-score [ 

    write-data-type2 "mean_quartile_score.csv" mean-quartile-sd mean-quartile-bm mean-

quartile-da mean-quartile-tm mean-quartile-cp 

    write-data-type2 "income_quartile_score.csv" income-quartile-sd income-quartile-bm 

income-quartile-da income-quartile-tm income-quartile-cp 

  ] 

  if write-mean-top10 [ 

    write-data-type1 "mean_top10.csv" mean-top10-sd mean-top10-bm mean-top10-da 

mean-top10-tm mean-top10-cp 
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    write-data-type1 "mean_bottom10.csv" mean-bottom10-sd mean-bottom10-bm mean-

bottom10-da mean-bottom10-tm mean-bottom10-cp 

  ] 

  if write-max-top10 [ 

    write-data-type1 "max_top10.csv" max-top10-sd max-top10-bm max-top10-da max-

top10-tm max-top10-cp 

  ] 

  if write-percent-top10 [ 

    write-data-type1 "percent_top10.csv" percent-top10-sd percent-top10-bm percent-

top10-da percent-top10-tm percent-top10-cp 

;;    write-data-type1 "top10_rank.csv" top10-rank-sd top10-rank-bm top10-rank-da 

top10-rank-tm top10-rank-cp 

  ] 

  if write-univ-rank [ 

    write-data-type2 "univ-rank.csv" univ-rank-sd univ-rank-bm univ-rank-da univ-rank-

tm univ-rank-cp 

    write-data-type2 "univ-enrollment.csv" univ-enrollment-sd univ-enrollment-bm univ-

enrollment-da univ-enrollment-tm univ-enrollment-cp 

  ] 

  if write-senior-ave [ 

    write-data-type2 "senior-ave.csv" y3end-score-ave-sd y3end-score-ave-bm y3end-

score-ave-da y3end-score-ave-tm y3end-score-ave-cp 
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    write-data-type1 "senior-stdev.csv" y3end-score-stdev-sd y3end-score-stdev-bm 

y3end-score-stdev-da y3end-score-stdev-tm y3end-score-stdev-cp 

    write-data-type2 "mean-income.csv" income-mean-sd income-mean-bm income-mean-

da income-mean-tm income-mean-cp 

    write-data-type1 "stdev-income.csv" income-stdev-sd income-stdev-bm income-stdev-

da income-stdev-tm income-stdev-cp 

    write-data-type2 "y1-mean-income.csv" y1-income-mean-sd y1-income-mean-bm y1-

income-mean-da y1-income-mean-tm y1-income-mean-cp 

    write-data-type1 "y1-stdev-income.csv" y1-income-stdev-sd y1-income-stdev-bm y1-

income-stdev-da y1-income-stdev-tm y1-income-stdev-cp 

  ] 

end 

 

to write-header-type2 [fn c1 c2 c3 c4 c5] 

  if file-exists? fn and keep_files = FALSE [file-delete fn] 

  if NOT file-exists? fn [ 

    file-open fn 

    file-print (word 

      "run," 

      "ticks," 

      "scheme," 

      "alpha," 
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      "capacity," 

      "order," 

      "choices," 

      "choices-2," 

      "grant," 

      c1 

      c2 

      c3 

      c4 

      c5 

      ) 

    file-close 

  ] 

end 

to write-data-type1 [fn c1 c2 c3 c4 c5] 

  file-open fn 

  file-print (word 

    behaviorspace-run-number 

    " ," ticks 

    " ," scheme 

    " ," alpha 

    " ," capacity 
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    " ," extra-in-order 

    " ," no-choices 

    " ," no-choices-2 

    " ," grant 

    " ," c1 

    " ," c2 

    " ," c3 

    " ," c4 

    " ," c5 

    ) 

  file-close 

end 

to write-data-type2 [fn c1 c2 c3 c4 c5] 

  file-open fn 

  file-print (word 

    behaviorspace-run-number 

    " ," ticks 

    " ," scheme 

    " ," alpha 

    " ," capacity 

    " ," extra-in-order 

    " ," no-choices 
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    " ," no-choices-2 

    " ," grant " ," 

    cut-list c1 

    cut-list c2 

    cut-list c3 

    cut-list c4 

    cut-list c5 

    ) 

  file-close 

end 
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