
Walden University
ScholarWorks

Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies
Collection

2017

On Comparative Algorithmic Pathfinding in
Complex Networks for Resource-Constrained
Software Agents
Michael Moran
Walden University

Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations

Part of the Databases and Information Systems Commons, and the Statistics and Probability
Commons

This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been
accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please
contact ScholarWorks@waldenu.edu.

http://www.waldenu.edu/?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.waldenu.edu/?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissanddoc?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissanddoc?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ScholarWorks@waldenu.edu

Walden University

College of Management and Technology

This is to certify that the doctoral study by

Michael Moran

has been found to be complete and satisfactory in all respects,
and that any and all revisions required by
the review committee have been made.

Review Committee
Dr. Timothy Perez, Committee Chairperson, Information Technology Faculty

Dr. Steven Case, Committee Member, Information Technology Faculty
Dr. Gail Miles, University Reviewer, Information Technology Faculty

Chief Academic Officer
Eric Riedel, Ph.D.

Walden University
2017

Abstract

On Comparative Algorithmic Pathfinding in Complex Networks for

Resource-Constrained Software Agents

by

Michael J. Moran

MS, Columbus State University, 2013

BA, Thomas Edison State University, 2010

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

July 2017

Abstract

Software engineering projects that utilize inappropriate pathfinding algorithms carry a

significant risk of poor runtime performance for customers. Using social network theory,

this experimental study examined the impact of algorithms, frameworks, and map

complexity on elapsed time and computer memory consumption. The 1,800 2D map

samples utilized were computer random generated and data were collected and processed

using Python language scripts. Memory consumption and elapsed time results for each of

the 12 experimental treatment groups were compared using factorial MANOVA to

determine the impact of the 3 independent variables on elapsed time and computer

memory consumption. The MANOVA indicated a significant factor interaction between

algorithms, frameworks, and map complexity upon elapsed time and memory

consumption, F(4, 3576) = 94.09, p < .001, h2 = .095. The main effects of algorithms,

F(4, 3576) = 885.68, p < .001, h2 = .498; and frameworks, F(2, 1787) = 720,360.01, p <

.001, h2 = .999; and map complexity, F(2, 1787) = 112,736.40, p < .001, h2 = .992, were

also all significant. This study may contribute to positive social change by providing

software engineers writing software for complex networks, such as analyzing terrorist

social networks, with empirical pathfinding algorithm results. This is crucial to enabling

selection of appropriately fast, memory-efficient algorithms that help analysts identify

and apprehend criminal and terrorist suspects in complex networks before the next attack.

On Comparative Algorithmic Pathfinding in Complex Networks for Resource-

Constrained Software Agents

by

Michael J. Moran

MS, Columbus State University, 2013

BA, Thomas Edison State University, 2010

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

July 2017

Dedication

I dedicate this to my late father, Robert, who I miss dearly, whose service to his

country during WWII helped shape my values and encourage me to similarly support my

country in the U.S. Army during the First Gulf War era. When I was young, he always

tried to answer all my questions, and as I got older and the questions got tougher, he

never wavered in his support, even when he no longer had answers (or, no longer had

answers that my younger, unwise self, wanted to hear). I will always remember the

kindness, wisdom and love he shared with me, my wife and two sons. Dad, we love and

miss you.

I also dedicate this to my wife, Letty. I thank her for her unwavering and

incalculable support over these last few years. I know it hasn't been easy with me in

school, nor was our 2015 relocation across country for my new job easy, so I love you for

patiently supporting me. And I thank my two boys, Michael and John, for putting up with

a dad who was usually too busy writing or studying, to do anything cool. I missed a lot of

family time, I know. I apologize for being so busy, and I love you both for your

continued support. This degree is for you. May you learn from my experience; complete

your future degrees before you have children!

"Go where you are loved. People who see the best in you bring out the best in you."

 -- Lupita Nyong'o

Acknowledgments

Many thanks to my committee members and instructors for guidance, especially

my Chair, Dr. Tim Perez, my Second Chair, Dr. Steven Case, and my URR, Dr. Gail

Miles.

Special thanks go out to my instructors Dr. Steve Case, and Dr. Bhanu Kapoor

(my former Chair), for being inspirational mentors early in my doctoral study, during a

time of confusion, darkness and strife. Remember, the DIT degree program was

completely new at that time (late 2013 through 2015); it was constantly changing; many

in my cohort dropped out for various reasons; and no one had yet graduated from the

program. Your positive spirits and attitudes were greatly appreciated, as was the much-

appreciated introduction to downtown Atlanta's finest Indian cuisine at Haveli's

restaurant, during my second DIT residency in August 2015. The DIT program has

grown from those early days, and now has graduates. Thank you.

Finally, my current employer and immediate managers deserve a big thank you

affording me time to complete my research. Without your assistance, this endeavor would

have taken me much more time. Thank you for all your support!

"Do or do not. There is no try."

"Always pass on what you have learned."

 -- Yoda

i

Table of Contents

List of Tables ...v	

List of Figures ... vii	

Section 1: Foundation of the Study ..1	

Background of the Problem ...1	

Problem Statement ...2	

Purpose Statement ..3	

Nature of the Study ..3	

Quantitative Research Question ...5	

Hypotheses ...5	

Theoretical Framework ..5	

Definition of Terms ..7	

Assumptions, Limitations, and Delimitations ..9	

Assumptions .. 9	

Limitations .. 11	

Delimitations ... 13	

Significance of the Study ...14	

Contribution to Information Technology Practice .. 14	

Implications for Social Change ... 15	

A Review of the Professional and Academic Literature ..16	

Theoretical Framework: Social Network Theory ... 19	

Modern Applications of Social Network Theory .. 43	

ii

Rival Theory to the Selected Theoretical Framework .. 51	

Independent Variable: Pathfinding Algorithms .. 55	

Independent Variable: Graph Analysis Frameworks .. 60	

Independent Variable: Map Complexity ... 63	

Dependent Variable: Elapsed Time .. 70	

Dependent Variable: Memory Consumption .. 74	

Computer Programming Languages: Python vs. Java .. 76	

Modern Applications of Algorithmic Pathfinding. ... 80	

Transition and Summary ..85	

Section 2: The Project ..88	

Purpose Statement ..88	

Role of the Researcher ...89	

Participants ...90	

Research Method and Design ..92	

Method .. 92	

Research Design .. 93	

Population and Sampling ...101	

Ethical Research ...112	

Data Collection ..113	

Instruments .. 113	

Data Collection Technique ... 127	

Data Analysis Technique ...131	

iii

Study Validity ..136	

Transition and Summary ..141	

Section 3: Application to Professional Practice and Implications for Change143	

Overview of Study ...143	

Presentation of the Findings ...143	

Pilot Test of the Algorithm Instrumentation ... 144	

Results of the Algorithm Instrumentation Pilot Test .. 150	

MANOVA and its Relationship to the Experimental Variables 150	

Data Screening and Transformations .. 152	

Descriptive Statistics ... 153	

MANOVA Assumptions ... 156	

MANOVA Statistical Output .. 165	

Interpretation of Inferential Results .. 171	

Summary and Theoretical Framework Implications ... 183	

Applications to Professional Practice ..191	

Implications for Social Change ..193	

Recommendations for Action ..195	

Recommendations for Further Study ...197	

Reflections ...201	

Summary and Study Conclusions ..203	

References ..205	

Appendix A: Graph-Tool A* Algorithm Instrument ...240	

iv

Appendix B: Graph-Tool Bellman-Ford Algorithm Instrument243	

Appendix C: Graph-Tool Dijkstra Algorithm Instrument ...246	

Appendix D: Network-X A* Algorithm Instrument ..249	

Appendix E: Network-X Bellman-Ford Algorithm Instrument251	

Appendix F: Network-X Dijkstra Algorithm Instrument ..254	

Appendix G: Python TimeIt Instrument ..256	

Appendix H: Python Memory_Profiler Instrument ...258	

v

List of Tables

Table 1. The Categorical Variables and their Levels .. 96	

Table 2. The Experiment: Randomized, Between Groups, Post-Test Only 97	

Table 3. The 12-way Factorial Matrix, in Standard Research Design Notation 98	

Table 4. List of Pathfinding Algorithms Analyzed in this Study (per Graph Framework)

... 99	

Table 5. List of Graph Analysis Frameworks Analyzed in this Study 99	

Table 6. Map Complexities Considered in this Study .. 100	

Table 7. Dependent Variables Analyzed in this Study ... 100	

Table 8. Summary List of Variables Used in this Study ... 100	

Table 9. Small-World Network Properties of the 2D Map Samples 103	

Table 10. Recommended Sample Sizes: Summary of G*Power Inputs and Results 107	

Table 11. List of Instruments Used and their Validity and Reliability References 114	

Table 12. The 8 Instruments Used in this Study and their Reference Locations 115	

Table 13. Wilcoxon Signed Ranks -- Pilot Test Results for Graph-Tool A* Instrument 146	

Table 14. Wilcoxon Signed Ranks -- Pilot Test Results for Graph-Tool Bellman-Ford

Instrument ... 146	

Table 15. Wilcoxon Signed Ranks -- Pilot Test Results for Graph-Tool Dijkstra

Instrument ... 147	

Table 16. Wilcoxon Signed Ranks -- Pilot Test Results for Network-X A* Instrument 148	

Table 17. Wilcoxon Signed Ranks -- Pilot Test Results for Network-X Bellman-Ford

Instrument ... 148	

vi

Table 18. Wilcoxon Signed Ranks -- Pilot Test Results for Network-X Dijkstra

Instrument ... 149	

Table 19. Sample Counts (N) per Between-Subject Factors .. 153	

Table 20. Statistical Test, Assumptions, and Methods of Verifying Assumptions 156	

Table 21. Mahalanobis Distances between Elapsed_Time and Memory_Consumption 158	

Table 22. The General MANOVA Analysis Process (Mertler & Reinhart, 2017, p. 128)

... 165	

Table 23. Homogeneous Subsets (Scheffe): Elapsed Time .. 169	

Table 24. Homogeneous Subsets (Scheffe): Memory Consumed 170	

Table 25. Summary of the Multivariate (Pillai's Trace) Testsa 172	

Table 26. Means and Standard Deviations for the Dependent Variables for All Treatment

Groups ... 182	

vii

List of Figures

Figure 1. Milgram's small-world theory in a small social network. 6	

Figure 2. References by peer review status. ... 19	

Figure 3. References by year of publication. .. 19	

Figure 4. An example graph. ... 20	

Figure 5. Sparse and dense graphs visually compared. .. 24	

Figure 6. A high density (i.e., low occlusion ratio, few obstructions) grid map and

corresponding graph. ... 26	

Figure 7. A low density (i.e., high occlusion ratio, many obstructions) grid map and its

corresponding graph. ... 27	

Figure 8. Two regular 2D lattice networks: grid (left) and circular (right). 33	

Figure 9. Two semi-random 2D lattice networks: grid (left) and circular (right). 34	

Figure 10. Regular, small-world & random networks (based on Watts & Strogatz, 1998).

... 37	

Figure 11. (a) Shortest grid path, (b) the real shortest path (based on Nash & Koenig,

2013). .. 69	

Figure 12. Grid-based autonomous rover algorithmic pathfinding (NASA, n.d.). 84	

Figure 13. High-level overview of this study's experimental process flow. 96	

Figure 14. This study's experimental 12-way factorial matrix. .. 97	

Figure 15. Example two dimensional grid map. ... 101	

Figure 16. Population and sample stratification plan. ... 104	

Figure 17. MANOVA interaction effects: 12 Groups, 3 IVs, and 2 DVs. 108	

viii

Figure 18. MANOVA main effects for IV algorithm (with three levels). 108	

Figure 19. MANOVA main effects for IVs framework and map complexity (each with

two levels). .. 108	

Figure 20. An example of random assignment used in this study. 110	

Figure 21. The relationships between this study's instrumentation. 116	

Figure 22. A python example of time profiling using the TimeIt python module. 121	

Figure 23. A python example using the memory_profiler python module. 124	

Figure 24. A random generated grid map (left) and its abstracted genotype (right). 128	

Figure 25. Outline of python program to collect experimental data. 130	

Figure 26. Outline of python program to parse experimental data. 131	

Figure 27. Descriptive statistics (part 1 of 2): elapsed time. .. 154	

Figure 28. Descriptive statistics (part 2 of 2): computer memory consumption. 155	

Figure 29. Graph-Tool, A* (a-star): scatter plot of (transformed) elapsed time (in sec) vs.

memory consumed (in MB) (low-complexity map group on left; high-complexity

map group on right). ... 160	

Figure 30. Graph-Tool, Bellman-Ford: scatter plot of (transformed) elapsed time (in sec)

vs. memory consumed (in MB) (low-complexity map group on left; high-complexity

map group on right). ... 161	

Figure 31. Graph-Tool, Dijkstra: scatter plot of (transformed) elapsed time (in sec) vs.

memory consumed (in MB) (low-complexity map group on left; high-complexity

map group on right). ... 161	

ix

Figure 32. Network-X, A* (a-star): scatter plot of (transformed) elapsed time (in sec) vs.

memory consumed (in MB) (low-complexity map group on left; high-complexity

map group on right). ... 162	

Figure 33. Network-X, Bellman-Ford: scatter plot of (transformed) elapsed time (in sec)

vs. memory consumed (in MB) (low-complexity map group on left; high-complexity

map group on right). ... 162	

Figure 34. Network-X, Dijkstra: scatter plot of (transformed) elapsed time (in sec) vs.

memory consumed (in MB) (low-complexity map group on left; high-complexity

map group on right). ... 163	

Figure 35. Box's M-test for equality of covariance matrices. ... 163	

Figure 36. MANOVA summary table of multivariate results. 166	

Figure 37. Univariate ANOVA data summary. .. 167	

Figure 38. Post hoc results (Scheffe test) for elapsed time and memory consumed, per

pathfinding algorithm. ... 168	

Figure 39. Homogeneous subsets: mean elapsed time per pathfinding algorithm. 169	

Figure 40. Homogeneous subsets: mean memory consumption per pathfinding algorithm.

... 170	

Figure 41. Multivariate effect sizes (Pillai's trace). .. 174	

Figure 42. Elapsed time (seconds) per framework and algorithm. 178	

Figure 43. Memory consumed (megabytes) per framework and algorithm. 179	

Figure 44. Elapsed time (seconds) per map complexity and algorithm. 180	

Figure 45. Memory consumed (megabytes) per map complexity and algorithm. 180	

x

Figure 46. Elapsed time (seconds) per algorithm and map complexity. 181	

Figure 47. Memory consumed (megabytes) per algorithm and map complexity. 181	

Figure A1. Abbreviated Graph-Tool A* (a-star) algorithm API demonstration. 241	

Figure B1. Abbreviated Graph-Tool Bellman-Ford algorithm API demonstration. 244	

Figure C1. Abbreviated Graph-Tool Dijkstra algorithm API demonstration. 247	

Figure D1. Abbreviated Network-X A* (a-star) algorithm API demonstration. 250	

Figure E1. Abbreviated Network-X Bellman-Ford algorithm API demonstration. 252	

Figure F1. Abbreviated Network-X Dijkstra algorithm API demonstration. 255	

Figure G1. Abbreviated python TimeIt API demonstration ... 257	

Figure H1. Abbreviated python memory_profiler API demonstration. 260	

1

Section 1: Foundation of the Study

Algorithms play an important role in computer science. In modern computing,

algorithms are the rules and step-by-step instructions by which computer programs solve

problems. Because algorithms are necessary to modern computing, it is important that

software engineers choose appropriate algorithms. Poor algorithm selection may yield

suboptimal computer program performance to the detriment of customers. For example,

in the scenario of unmanned aerial vehicle (UAV) flight navigation, poor pathfinding

algorithm choice can lead to tracking and navigation errors (Liu, Egan, & Santoso, 2015),

which may result in costly accidents. In the scenario of semiautonomous robotic

microsurgery, poor pathfinding algorithm choice may lead to permanent injury or

paralysis (Gerber et al., 2014). This study does not cover every aspect of algorithm

choice, design or implementation, but the intent of this study is to provide software

engineers with information on applied pathfinding algorithm performance, so they can

make better-informed algorithm choices when writing their own pathfinding software.

Background of the Problem

Stakeholders face many challenges when creating good software, in part because

engineering good, non-trivial software is not easy (Wohlin & Aurum, 2015). It is

incumbent upon software engineers to appropriately select the algorithms used in the

software they write. However, for some problem domains, such as robotic search and

rescue, algorithm selection may be very complicated because there are so many

algorithms from which to select and implement, thus creating an inconvenient gap

between what is theoretically possible, and real-world physical limitations (Bazregar,

2

Piltan, Nabaee, & Ebrahimi, 2013). By sharing knowledge gained from applied algorithm

experiments, effective algorithm selection may be made easier. By examining the

relationship between pathfinding algorithms, graph analysis frameworks, map

complexity, elapsed time and memory consumption, this study was specifically designed

to provide software engineers writing pathfinding software with new insight on

comparative pathfinding algorithm performance.

Problem Statement

The shortest path problem is a critical issue in diverse domains like Internet

packet routing, military, robotics, transportation, and social networking – Facebook for

example manages a graph containing over 1 billion users (Balaguru, Nallathamby &

Robin, 2015; Brooks, Hogan, Ellison, Lampe & Vitak, 2014). Peta-scale pathfinding

problems are unsolvable within a human timescale when using poorly selected

algorithms, but with appropriate algorithms it is possible to achieve a significant 80´

factor improvement in performance (Franke & Ivanova, 2014). The general IT problem is

software engineers sometimes select inappropriate algorithms, resulting in poor software

performance. The specific IT problem is that some software engineers lack information

on the relationship between pathfinding algorithms, graph analysis frameworks, map

complexity, elapsed time, and memory consumption, in order to select appropriate

pathfinding algorithms for resource-constrained software agents running in complex

networks, network dead zones or GPS-denied environments.

3

Purpose Statement

The purpose of this quantitative experimental study is to examine the relationship

between pathfinding algorithms, graph analysis frameworks, map complexity, elapsed

time, and memory consumption, in order to select appropriate pathfinding algorithms for

resource-constrained software agents running in complex networks, network dead zones

or GPS-denied environments. The targeted population consists of local computer

random-generated two-dimensional (2D) maps. The three independent variables are (a)

pathfinding algorithms; (b) graph analysis frameworks; and (c) map complexity (e.g.,

small vs. large maps; high random rewiring vs. low random rewiring). The two dependent

variables are (a) elapsed time, and (b) computer memory consumption. Contributions to

positive social change from efficient pathfinding algorithms are wide-ranging, from

saving lives to saving money. Some recent examples include (a) fast robotic debris

cleanup of airport runways to prevent fatal accidents during takeoff and landing (Öztürk

& Kuzucuoğlu, 2016); (b) bounded-cost optimization of business expenses (Stern, et al.,

2014); and (c) search and rescue missions in unmapped terrain (Liu & Lyons, 2015).

Nature of the Study

This doctoral study follows a quantitative research method. Based on a positivist

philosophy (Luft & Shields, 2014), the goal of this study is to examine potential causal

relationships between these three independent variables: (a) pathfinding algorithms; (b)

graph analysis frameworks; (c) map complexity (e.g., small vs. large maps; high random

rewiring vs. low random rewiring); and these two dependent variables: (d) elapsed time;

and (e) the amount of computer memory consumed during pathfinding operations.

4

Researchers employing qualitative methods may explore new problems by seeking open-

ended where or who answers rather than statistically explain a cause-effect outcome

(Balakrishnan & Penno, 2014). Because this study aims to identify cause-effect

relationships between the aforementioned variables of interest, not to answer open-ended

where or who questions, this renders qualitative research methods inappropriate. Mixed

methods research involves combining both quantitative and qualitative approaches within

a single research study (Daigneault & Jacob, 2014). Because this study does not use

qualitative research methods, this renders the mixed methods approach inappropriate.

Quantitative methods may use descriptive statistics to describe the sample population,

and inferential statistics to infer the results to the broader population (Hoare & Hoe,

2013, p. 50). The quantitative method was selected over a qualitative approach (e.g., case

study, ethnographic, phenomenological) because of my desire to statistically identify

cause-effect between the variables of interest.

Experimental designs are considered strongest of all designs regarding internal

validity, which itself is the center of cause-effect inferences (Gassen, 2014). An

experimental design was selected for this study because of the desire to identify causal

relationships between the variables of interest by intentional manipulation of the

independent variables, sample stratification, and random assignment of samples to

treatment groups. As indicated by Turner, Balmer, and Coverdale (2013),

quasiexperimental designs do not permit random assignment of samples to treatment

groups, and correlational designs do not permit control or manipulation of treatments (p.

305). Therefore, because of its lack of random sample assignment to treatment groups, a

5

quasiexperimental design is not appropriate. Because my research involves intentional

manipulation of the independent variables in order to measure possible treatment effects

on the dependent variables, the correlational design is therefore also rendered

inappropriate.

Quantitative Research Question

What is the relationship between pathfinding algorithms, graph analysis

frameworks, map complexity, elapsed time, and computer memory consumption?

Hypotheses

Null Hypothesis (H0): There is no relationship between pathfinding algorithms,

graph analysis frameworks, map complexity, elapsed time, and computer memory

consumption.

Alternative Hypothesis (Ha): There is a relationship between pathfinding

algorithms, graph analysis frameworks, map complexity, elapsed time, and computer

memory consumption.

Theoretical Framework

Social network theory grounded my study. Social network theory has roots in

graph theory, which itself has its origin in the 18th century work of Leonard Euler (Albert

& Barabási, 2002, p. 9). The grand premise of social network theory is that patterns of

interaction among nodes in a network (i.e., the people or objects abstracted in a graph)

are the building blocks of networks (Erikson, 2013; Krause, Croft, & James, 2007;

Merchant, 2012). In 1954, social networks were first mentioned in a scientific context by

the social anthropologist John A. Barnes during his anthropological research on the

6

population of a small fishing village in Bremnes, Norway (Barnes, 1954; Wasserman &

Faust, 1994, p. 10). In 1965, Stanley Milgram developed his theory of small-world social

networks (Korte & Milgram, 1970). His small-world experiments examined the average

path length of social networks between people in the United States. Today, Milgram's

seminal work is considered the basis of modern social network theory (Wang, 2015).

Figure 1. Milgram's small-world theory in a small social network.

As applied to this doctoral study, social networks can be mathematically

represented as 2D graphs (adjacency matrices), which can represent many different

relationships (Kepner et al., 2015). In this study, social network theory is applied to gain

an understanding of the relationship between the dependent and independent variables as

applied to the shortest path problem in networks represented as 2D graphs. Social

network theory drives this research because it addresses pathfinding, connectivity, and

path lengths in networks, all of which are key concepts addressed in this pathfinding

algorithm study.

Milgram's small-world social network theory (Korte & Milgram, 1970) explains

the choice of independent and dependent variables because in this study the independent

7

variables are deliberately manipulated to see what impact (if any) such changes have on

the dependent variables. The independent variable map complexity controls the overall

maximum size of each graph to be searched by each of the pathfinding algorithms

compared, per graph analysis framework, and it drives the complexity of the network

structure by controlling the level of randomness exhibited in nodal connectivity patterns

(e.g., a grid vs. a random network structure) in the 2D grid maps (and their underlying

adjacency matrices). The interactions between pathfinding algorithms, graph analysis

frameworks, and map complexity were measurable and noticeably impacted the

dependent variables: elapsed time and computer memory consumption. These

relationships were measured and statistically analyzed in this empirical study.

Definition of Terms

The content of this study is graph theoretic and mathematical in nature, as such

there may be terms that could be unfamiliar to readers. The following definitions provide

context to what may be unfamiliar terms.

Clustering coefficient: A mathematical value, ranging from 0.0 to 1.0,

representing the tendency for connected node communities to form in a graph (Albert &

Barabási, 2002, p. 3). It is calculated by dividing the actual number of links (edges) in a

graph, by the maximum possible number of links in that graph.

Degree distribution: The probability that a randomly selected node in a graph has

exactly k edges, where k is a number ³ 0 (Albert & Barabási, 2002, p. 3).

Graph: A mathematical and visual representation of a network, where the nodes

(vertices) are represented by circles or dots, and the edges which connect the vertices are

8

represented by lines (or arcs) (Barnes, 1954, p. 43). A complete graph is one in which

each node in a graph is connected to every other node within the same graph.

Graph Analysis Framework: These are source code libraries and software

programs that enable graph theoretic network analyses and visualizations of complex

networks (Nocke et al., 2015). Many are free or open source, while others are proprietary.

The graph analysis frameworks used in this study were free or open source. Some graph

analysis frameworks provide an application programmer's interface (API) which permits

software engineers to programmatically utilize internal framework code within custom

computer programs, thereby extending (customizing) the utility of the graph analysis

framework.

Path length: The number of steps (links) in a graph between the starting object

and the destination object (Barnes, 1954, p. 46). More specifically, the shortest path

length would be the least number of steps (links) between two nodes of a graph (Albert,

Jeong, & Barabási, 1999).

Random network: Graphs where the probability that any two vertices of a graph

being connected is completely random (Barabási & Albert, 1999, p. 511). These networks

exhibit little overt structure or pattern to the way the vertices are connected, yet tend to

have short path lengths.

Regular (i.e., grid) network: Graphs where nodes and edges are constructed in an

organized fashion, like a two-dimensional (2D) grid such as a chessboard. Nodes in

regular networks are not randomly connected because connections in regular networks

are structured (i.e., regularly positioned), unlike connections in random networks.

9

Regular networks have higher clustering coefficients (i.e., nodes tend to share similar

connections with their neighbors) and longer path lengths, than comparable-sized random

networks, or small-world networks (Albert & Barabási, 2002; Watts & Strogatz, 1998).

Scale-free network: A graph where the degree distribution follows a power law

(Albert & Barabási, 2002, p. 27), not a Poisson (i.e., Bell-curve) distribution. These

graphs are characterized by most nodes having few links, held together by a few super

connected hub nodes. The hub and spoke network architecture of the air traffic system is

a relevant example.

Small-world network: Graphs which are rich in structured short-range connections

(i.e., high clustering coefficient), but also have a few, random, long-range connections

(Kleinberg, 2000, p. 845; Watts & Strogatz, 1998). These few long-range connections

give small-world networks overall shorter path lengths than corresponding regular

networks (Zhang & Wang, 2013).

Social network analysis: The analysis of the relationship between network actors.

The actors may be individual humans, or they could be organizations, nation states,

animals, bank accounts, IP addresses, etc. The typical focus of social network analysis is

on relationships (edges, arcs) between the actors, not on the individual actors (nodes,

vertices) themselves (Erikson, 2013, pp. 219-221).

Assumptions, Limitations, and Delimitations

Assumptions

Assumptions are factors or beliefs that could be considered true, but may be

difficult to verify (Kirkwood & Price, 2013). These beliefs may drive the approaches and

10

conduct of the research process itself, and the conclusions drawn afterwards (Kirkwood

& Price, 2013). I assumed the computer language selected for implementation of this

doctoral study's experimental framework, Python, was appropriate for scientific and

research-oriented computing, as suggested by Day (2014, p. 88), and for data analysis, as

suggested by Severance (2015, p. 10), and therefore was appropriate for this study. As a

long time Java developer, this was a difficult choice to make since another computer

language that is not interpreted, but rather is compiled, such as Java or C, could have

been selected. Although Python is an interpreted language (Farooq, Khan, Ahmad, Islam,

& Abid, 2014), Python has well documented and widespread support for scientific

computing via the plethora of free or open source modules available, such as (but not

limited to) NumPy for numerical computing, and the Graph-Tool and Network-X graph

analysis frameworks for network analysis and visualization. The existence of many open

source modules makes Python a flexible, quick to develop, easy to use language for

scientific computing, prototyping, and rapid development (Orchard & Rice, 2014), in part

because much of the code is already written for you in the form of freely available

modules and frameworks.

Another assumption made in this study was that the instruments used to gather

elapsed runtime (in seconds) and memory consumption (in megabytes) statistics in

Python, were implemented well enough (possibly at the operating system kernel level) to

generate reliable and valid results. These instruments are discussed in more detail in

Section 2 of this study.

11

A final assumption made in this study was that the pseudo random number

generator (PRNG) available in Python (and by extension, supported by Mac OS which is

the operating system that ran the Python development environment on the Apple

hardware used in this doctoral study), generated random numbers that were random

enough for this study. Generating true random numbers on computers may be challenging

(Nilsen, 2007; Thomas, Luk, Leong, & Villasenor, 2007), but testing the randomness of

the Python random number generator running on the targeted Apple Mac hardware was

beyond the scope of this study. It is assumed that the PRNG provided by Python, on the

targeted Apple MacBook Air laptop hardware, generated random numbers which were

truly random enough to not have negatively impacted the results of this study.

Limitations

There were some noteworthy limitations in this study. According to Horga, Kaur,

and Peterson (2014), limitations in experimental studies are shortcomings that may

reduce the validity and the reproducibility of a study's findings (p. 4). Sometimes these

limitations are beyond the control of the researcher, and other times they are self-imposed

(pp. 3-4).

Much modern Internet software development depends on free or open source

software, in part because it is cost effective (Zhang, Anzalone, Faria, & Pearce, 2013).

This study specifically compared pathfinding algorithms supported by two popular free

or open source graph analysis software frameworks (a) Graph-Tool, and (b) Network-X.

Therefore, the first limitation with this study was a self-imposed limit to only compare

pathfinding algorithms supported by two popular graph analysis frameworks, not to

12

compare all possible graph analysis frameworks that currently exist. Next, from a positive

social change perspective, I deemed it more socially beneficial to the wider Internet

software engineering community to compare pathfinding algorithm implementations

already available in free or open source graph analysis frameworks, rather than to write

pathfinding algorithm implementations myself (which I assumed would likely generate

less world-wide social interest).

Each computer language (e.g., Java, Python) and software framework has pros

and cons (Orchard & Rice, 2014). Some may be better implemented than others. This is

simply a reality of professional software development. Another limitation with this study

was that it did not delve into the reasons why one graph analysis framework was better

than the other (although that could be a topic for further research). Instead, it measured

the pathfinding algorithm performance of each graph analysis package and algorithm

tested, and then statistically analyzed the outputs to answer the research questions and

hypotheses. Thus, at a high level, this study has a self-imposed limit to benchmark

several pathfinding algorithms commonly supported by two popular graph analysis

frameworks, not to write and compare pathfinding algorithms I implemented myself. I

felt it would be impossible to implement the most efficient pathfinding algorithms myself

in Python because such implementations, if attempted, could suffer biased runtime

performance, which therefore would have reduced the validity of this study. Furthermore,

more people use the aforementioned free or open source graph analysis frameworks

compared in this study, than would ever use pathfinding algorithm code written

13

specifically by me (and I have never contributed any source code to any open source

project). Finally, I am relatively new to the Python computer language.

Delimitations

There were several delimitations in this study. Delen, Kuzey, and Uyar (2013)

suggested that some delimitations may restrict the ability to use or follow certain research

approaches, but that these restrictions are sometimes made by choice. Ionel-Alin and

Emil (2013) suggested that delimitations are self-imposed boundaries incurred, in part, by

the reality that resources and capacities are limited, and that exceeding those self-

imposed limits may cause research challenges that could compromise results.

Although each computer language has its own characteristics (Farooq et al.,

2014), the first delimitation with this study was that it does not compare algorithmic

pathfinding performance between programs written in different computer languages. This

study uses the same computer language for implementation, Python, for consistency.

Similarly, this study also did not compare pathfinding algorithm performance across

different hardware brands or vendors, nor between different computer operating systems

(OS).

A second delimitation was with the variables used in this study. Regarding map

complexity, a deliberate choice was made to test only two categories of maps: (a) small

and highly rewired; and (b) large with less random connectivity rewiring. This choice

was deliberately made to maintain a low number of factorial treatment groups.

Additionally, while both elapsed time and memory consumption are relevant

dependent variables in my study, this study did not measure the impact of path finding

14

algorithms upon external storage (e.g., solid state drive, and hard drive utilization). Some

data structures, like B-trees, are designed to work well on external storage, and are used

(either directly, or derivations thereof) in the Linux operating system today (Rodeh,

Bacik, & Mason, 2013). Comparative benchmarking of the effect of pathfinding

algorithms upon external storage devices was beyond the scope of this research (but

could be a topic of further research).

Finally, it was deemed beyond the scope of this study to compare and analyze

parallel computing algorithms. It was also beyond the scope of this study to directly,

utilize the computational capability of graphics processing units (GPUs) to assist the

central processing unit (CPU) with pathfinding algorithm computations. While these

topics are interesting, and may indeed be worthy of further research, they were beyond

the scope of this study.

Significance of the Study

Contribution to Information Technology Practice

Software developers face challenges comparing algorithm analyses from disparate

authors, which may impede the selection of appropriate algorithms. Some of these

challenges include (a) authors might analyze only one algorithm; (b) authors may use

incompatible comparison metrics; (c) samples used in one analysis might not relate to

samples used in other analyses; (d) differences in computer hardware may yield different

results; (e) differences between computer languages may yield different results; and (f)

some authors may implement their own pathfinding algorithms, while other authors may

instead use pathfinding algorithms already implemented (by someone else) in free, open

15

source, or proprietary software frameworks. These differences make it difficult to

quantitatively compare algorithm analyses published by disparate researchers. In contrast,

the results of this study may provide software engineers with empirical information

related to pathfinding algorithm performance, by providing a single-source reference that

compares several pathfinding algorithms and graph analysis frameworks at once, using

the same computer language, using the same metrics, using comparable samples, in a

clinical experimental setting, all implemented and tested on the same computer hardware.

This single-source compilation of research results is intended for applied software

developers who need help selecting appropriate pathfinding algorithms for the

pathfinding computer software they write.

Implications for Social Change

Contributions to positive social change from efficient pathfinding algorithms are

wide-ranging: from saving lives to saving money (sometimes both). Some examples of

the positive social benefits derived from efficient pathfinding algorithms include (a) fast

robotic debris cleanup of airport runways to prevent fatal accidents during takeoff and

landing (Öztürk & Kuzucuoğlu, 2016); (b) bounded-cost optimization of business

expenses (Stern et al., 2014); (c) search and rescue missions in unmapped terrain (Liu &

Lyons, 2015); and (d) terrorist social network analysis for the identification and

apprehension of terror suspects and perpetrators (McBride & Hewitt, 2013). The last

example is particularly important given the recent terrorist attacks that occurred in (a)

Manchester, UK, concert arena bombing on May 22, 2017; (b) St. Petersburg, Russia,

metro train station suicide bombing on April 4, 2017; (c) Istanbul, Turkey, nightclub

16

shooting on January 1, 2017; (d) Orlando, FL, nightclub shooting on June 12, 2016; (e)

Brussels, Belgium, airport and rail station bombings on March 22, 2016; (f) San

Bernardino, CA, shooting on December 2, 2015; (g) Paris, France, shootings and

Bataclan theatre bombing on November 13, 2015; and (h) the Charlie Hebdo shooting in

Paris, France on January 7, 2015; to name just a few recent examples whose perpetrators

were suspected to be involved in terrorist social networks. By combining pathfinding

algorithms with complex network analysis and information technology, links between

terror suspects might be detected before deadly attacks occur, giving law enforcement the

chance to apprehend the terrorists, thus preventing loss of life and thereby contributing to

positive social change.

A Review of the Professional and Academic Literature

This quantitative experimental study examined the relationship between

pathfinding algorithms, graph analysis frameworks, map complexity, elapsed time, and

memory consumption, in order to help software engineers, select appropriate pathfinding

algorithms for resource-constrained software agents running in network dead zones or

GPS-denied environments. The research question for this study addressed the relationship

between pathfinding algorithms, graph analysis frameworks, map complexity, elapsed

time, and computer memory consumption. The three independent variables are (a)

pathfinding algorithms, (b) graph analysis frameworks and (c) map complexity. The two

dependent variables are (a) elapsed time, and (b) computer memory consumption. The

null hypothesis (H0) postulated there was no relationship between pathfinding algorithms,

graph analysis frameworks, map complexity, elapsed time, and computer memory

17

consumption. The alternative hypothesis (Ha) postulated there was a relationship between

pathfinding algorithms, graph analysis frameworks, map complexity, elapsed time, and

computer memory consumption.

A hallmark of efficient computer algorithms is the ability to complete tasks while

using the minimum computational resources (e.g., memory and CPU), in the minimum

amount of elapsed time (Becton & Wang, 2015; Thakur & Guttman, 2016). In economic

terms, finding the shortest, most efficient routes between entities of interests, such as (but

not limited to) cities, cars, and people, has positive utility value. Knowledge gained from

this study may be used by software engineers to write more efficient CPU, memory, and

time-efficient pathfinding software. Although algorithmic pathfinding could be

considered a mature field, in reality new and faster hardware will cause major changes in

computer-assisted navigation, particularly in the area of augmented reality (Algfoor,

Sunar, & Kolivand, 2015, p. 9). Therefore, although algorithmic pathfinding has a long

history of scholarly research, next generation hardware, big data, complex software, and

ever rising end-user expectations suggest increased future demand for more efficient

algorithmic pathfinding software.

This literature review consists of 10 categories. The first involves an examination

of the theoretical framework used in this study. The second involves a discussion of

modern applications of social network theory. The third section discusses a rival theory to

the selected theoretical framework. The fourth, fifth, and sixth categories review the

independent variables used in this study (pathfinding algorithms, graph analysis

frameworks, and map complexity, respectively). The seventh and eighth categories

18

review the two dependent variables (elapsed time, and computer memory consumption,

respectively). The ninth category reviews implementation concerns related to computer

languages. The tenth (last) category ends this section with a review of literature related to

modern applications of algorithmic pathfinding.

A review of current literature to provide a framework and basis for this study was

conducted, upon which gaps were identified in the literature that showcased the need for

further empirical research, particularly for software developers actively writing modern

pathfinding software. Peer-reviewed material was sourced from many online research

databases including Academic Search Complete, Association for Computing Machinery

(ACM), EBSCOhost, Elsevier, Emerald, Google Scholar, Institute of Electrical and

Electronics Engineers (IEEE), ProQuest, SAGE, and ScienceDirect. Search terms

included: social network theory, social network analysis, complex networks, random

network, small-world network, scale free network, algorithm performance, performance

benchmarks, shortest path algorithm, graph theory, network theory, Dijkstra's algorithm,

breadth first search, depth first search, Bellman-Ford algorithm, A* (pronounced "A

star") algorithm, memory consumption, elapsed time calculation, Java, Python, artificial

intelligence, transport networks, epidemiological networks, terror networks, and criminal

networks. Only English-language or English-translated papers, articles, journals or books

were used for all source material. A key word search for relevant literature for this

literature review yielded 248 references, of which 236 (95.2%) were from peer-reviewed

sources, and 221 (89.1%) were published within the last five years (2013 through 2017).

A total of 113 (45.6%) of the references were used in the literature review.

19

Figure 2. References by peer review status.

Figure 3. References by year of publication.

Theoretical Framework: Social Network Theory

Social network theory grounded my study. The grand premise of social network

theory is that patterns of interaction among nodes in a network graph (i.e., the people or

objects abstracted in a graph) are the building blocks of networks (Erikson, 2013; Krause,

Croft, & James, 2007; Merchant, 2012). Networks are frequently drawn as 2D

mathematical graphs, with nodes (vertices) represented by circles or points, and

20

connections between the nodes represented as lines (arcs, edges), as discussed in

Koujaku, Takigawa, Kudo, and Imai (2016).

Figure 4. An example graph.

Social network theory has roots in graph theory, which itself has its origin in the

early 18th century work of Swiss mathematician Leonard Euler (Albert & Barabási,

2002, p. 9). Due to the lack of computers and large datasets in Euler's time, early graph

theory focused on small, mostly regular graphs that could be hand drawn. In 1954, social

networks were first mentioned in a scientific context by the English social anthropologist

John A. Barnes, in his anthropological research of the small fishing village of Bremnes,

in western Norway (Barnes, 1954; Wasserman & Faust, 1994, p. 10). In the Barnes study,

concepts were first mentioned that are common in social network analyses today, such as

social network stratification, network analysis, community membership (cliques), and the

importance of the shortest path, such as the minimum number of connections between

any two members of a given population (Barnes, 1954, pp. 45-46). Today, modern social

network analysis is based on a structuralist interpretation of the foundational theoretical

21

works (Barnes, 1954; De Sola Pool & Kochen, 1979; and Korte & Milgram, 1970),

combined with a neo-Kantian identification of a priori categories of relational types and

patterns, making it flexible enough to operate outside the constraints of purely historical

context or cultural settings (Erikson, 2013, p. 219). This implies social network theory

may be applicable to problem domains beyond anthropology.

Small-world networks are a specific type of complex network that can be

analyzed with social network theory using graph theoretic methods. In the late 1950s,

social researchers Ithiel de Sola Pool and Manfred Kochen circulated an early manuscript

describing the importance of influence, social contacts and social networks, calling it the

small-world phenomenon. This manuscript was later formally published in 1979 (De Sola

Pool & Kochen, 1979). In the mid 1960s, social psychologist Stanley Milgram read the

manuscript, was intrigued by De Sola Pool and Kochen's concept of small-world

networks, and began researching topic of human communication paths. While there were

some theoretical models at that time that described small-world networks such as the

aforementioned manuscript of De Sola Pool and Kochen, and the early work of Barnes

(1954), there was little empirical evidence to describe the shortest path lengths

connecting hypothetical friends and acquaintances in actual social networks

(González-Bailón, 2013). Milgram ran his, now famous, small-world experiments and

published several results in 1967, 1969, and 1970 (Korte & Milgram, 1970). Milgram's

small-world experiments examined the average path lengths between random people in

the United States. He discovered that random pairs of people in the U.S. were separated,

on average, by six intermediary persons within their combined network of friends and

22

acquaintances (Korte & Milgram, 1970, p. 101). This surprisingly short path length later

came to be known by others as the "six degrees of separation" (Kleinberg, 2000; Zhang &

Wang, 2013). As described in Opsahl, Vernet, Alnuaimi, and George (2017), and in

Watts and Strogatz (1998), the small-world network model was mathematically

formalized by Watts and Strogatz (1998), whose work provided a framework and

methodology that future researchers could use to detect small-world network

characteristics in their networks of interest. While the early empirical research on small-

world networks originated from Milgram's efforts of the mid-1960s, since then, as

discussed by Erikson (2013), González-Bailón (2013), and Opsahl et al. (2017), small-

world networks, and social network analysis more generally, have become very active

areas of cross disciplinary science research.

Milgram's seminal small-world work is considered the basis of modern social

network theory (Wang, 2015), and has been referenced in many subsequent peer-

reviewed papers in diverse domains, such as computer science (Balaguru, Nallathamby,

& Robin, 2015), economics (Wang, 2015), history (Mills et al., 2013), industrial supply

chains (Capaldo & Giannoccaro, 2015), and social networks (Rezvanian & Meybodi,

2015), to name a few. Corporations that focus on social networking, like Facebook and

Twitter, have also benefited from social network theory (Johnston, Tanner, Lalla, &

Kawalski, 2013). This spread of social network theory across a broad spectrum of

disciplines supports earlier claims by Erikson (2013), and González-Bailón (2013), that it

has cross disciplinary appeal.

23

Social networks can be mathematically represented as graphs. Graphs

can represent many different types of relationships (Kepner et al., 2015, p. 2455). In this

doctoral study, Milgram’s small-world social network theory is applied to gain an

understanding of the relationship between the dependent and independent variables, as

they relate to the shortest path problem in graphs, which today may be larger (in

aggregate node and edge counts), and exhibit higher graph density (i.e., a high edge count

to node ratio), than the personal networks studied and reported in the aforementioned

seminal work of Korte and Milgram (1970).

Brooks, Hogan, Ellison, Lamp, and Vitak (2014) indicated that the average degree

of separation between Facebook users is 3.74 persons (p. 12) which is much lower than

Milgram's often cited six degrees of separation (Largeron, Mougel, Rabbany, & Zaïane,

2015, p. 6). In graph theory terminology, this may indicate that the vertex degree (the

number of incoming and outgoing edges, per vertex) -- which in social network graphs

represent connections with other people (and in 2D grid maps, can represent connected

objects) -- might be larger now than the vertex degree for interconnected people during

1965 through 1970, when Milgram conducted and published his small-world social

network experiments. This may be because if each intermediary person today has more

connections to begin with (thanks, in part, due to technology, and social networking

products like Facebook and LinkedIn) than people had in the mid-1960s, then the average

path length between two random people may be shorter now, indicating potentially

denser graph networks. The impact of dense graphs versus sparse graphs on algorithmic

shortest path computation may be measurable.

24

Figure 5. Sparse and dense graphs visually compared.

The impact of dense vs. sparse graphs on pathfinding, along with applied social

network theory and Milgram's small-world social networks, drove this research, to help

determine the nature of the relationship between pathfinding algorithms, graph analysis

frameworks, map complexity, elapsed time, and computer memory consumption. More

specifically, social network theory drives this research for two reasons. First, if the

shortest path between two people today is less than the six degrees of separation noted by

Milgram (Brooks, Hogan, Ellison, Lamp, & Vitak, 2014, p. 12), and if this is due to

higher graph density, then measuring the relationship between graph density (i.e., graphs

with a higher ratio of open connections per node than blocked connections) and

pathfinding algorithm performance, particularly for algorithms designed to traverse

sparse graphs but applied to dense graphs (and vice versa), may be worthy of further

research. Xu, Liu, Li, & Ren (2014) suggested that the shortest path between nodes

rapidly increases as the average vertex degree of the network decreases (p. 11), which

may be interpreted as the average path lengths between two random nodes are generally

longer in sparse networks, and shorter in dense networks. This may be measurable.

25

Second, today's software agents without native pathfinding capabilities may rely

on other resources to find shortest paths, if they are Wi-Fi or radio frequency (RF)

enabled, such as GPS, and/or network-enabled Web services (Huang, Zhang, Yuan,

Zhang, & Ma, 2016). But, for software agents wholly dependent on pathfinding Web

services for guidance, if or when GPS and network-enabled Web services are not

available, pathfinding then may become an intractable problem. One possible

contingency is adding onboard algorithmic pathfinding capability (Dean, 2013) to the

software agent. My research compared pathfinding algorithms for software agents denied

the benefits of GPS and network Web services, upon Watts and Strogatz (1998) style

small-world graphs, which may be visually represented as 2D grid maps (and

mathematically represented as 2D adjacency matrices).

Milgram's small-world theory (Korte & Milgram, 1970) explained my choice of

independent variables, my dependent variables, and my aforementioned hypotheses,

because in this study the independent variables are intentionally manipulated to see what

impact (if any) this has on the dependent variables. More specifically, network graphs

were abstracted and represented by random computer generated 2D grid maps. The

independent variable "map complexity" controlled the overall maximum size of each

graph to be searched by each of the pathfinding algorithms compared, per graph analysis

framework, and it drove the network connectivity structure (i.e., a structured "grid"

network vs. random network) by controlling the percentage of random connections made

by each node in the 2D grid maps. The interactions between pathfinding algorithms,

graph analysis frameworks, and map complexity, was measurable, and impacted the

26

dependent variables: elapsed time, and computer memory consumption. These

relationships were measured and statistically analyzed in this study.

Figure 6. A high density (i.e., low occlusion ratio, few obstructions) grid map and
corresponding graph.

A high-density graph (also known as a "dense graph") means there are fewer

obstructions (i.e., low occlusion ratio, fewer potential blockages) between adjacent

vertices, which generally yields more possible connections per graph node, hence the

high density. By contrast, a low-density graph (also known as a "sparse" graph) means

there are fewer connections (i.e., high occlusion ratio, more potential blockages) per

graph node. To visually see the impact of differing types of node connectivity in 2D

graphs, compare and contrast the high-density (i.e., less obstructed) grid map images in

Figure 6, against the low-density (i.e., sparsely connected, highly obstructed) grid maps

in Figure 7.

27

Figure 7. A low density (i.e., high occlusion ratio, many obstructions) grid map and its
corresponding graph.

 Visualizing graphs and node connections is important to understanding the

underlying data represented in those graphs (Dawson, Munzner, & McGrenere, 2015;

Wasserman & Faust, 1994). In a graph, interaction among node pairs is represented by a

line connecting two nodes. This implies some form of communication or connectivity, or

the possibility thereof, as shown in Figure 7. The existence of lines connecting two or

more nodes in a graph provide the possibility for interaction, and, in some complex

networks, present the possibility for nodes to try to influence each other (Chewning &

Doerfel, 2013, p. 42). The study of complex networks is an active area of heavy cross-

disciplinary research (Erikson, 2013). Merchant (2012) stated that relational networks

create a sense of belonging and that the study of such networks allows one to trace the

contours of existing divisions and conflicts between network entities (p. 4). These

divisions may be wide ranging and varied, as are the modern networks one can join: (a)

technological, (b) political, (c) economic, (d) class-based, (e) social, (f) epidemiological,

28

and (g) distance-oriented, to name a few. Krause, Croft and James (2007) suggested that

experimental addition or removal of nodes in graphs during network analysis can have

profound effects on the resulting descriptive statistics that describe the underlying

network and entities studied (pp. 17, 27). Some factors related to social network theory

and real world networks include (a) algorithmic pathfinding, (b) small-world networks,

and (c) the path length, as mentioned by Lamprecht et al. (2015, pp. 3-4), all of which is

discussed in detail, later in this quantitative study.

 Social network theory provides a framework for understanding organizational

structure, and how the entities modeled in a graph (e.g., people, robots, communities,

corporations, nation-states, planetary bodies, galaxies, etc.) relate to other entities within

their networks (Chewning & Doerfel, 2013, p. 41). In a graph, nodes may represent

object that interact with each other (Albert & Barabási, 2002). According to Barnes-

Mauthe, Gray, Arita, Lynham, and Leung (2015), from a resource acquisition

perspective, one's position in a social network (i.e., proximity to other nodes and types of

connections) determines the nature and extent of access to critical information and

resources within that network (p. 3). The possibility of interaction between nodes in

complex networks, and the desire to efficiently model such nodal interactions (e.g., path

length calculations, graph traversal costs) makes social network theory relevant to this

algorithm study.

Unlike some mathematical theorems which date back to ancient antiquity (e.g.,

the Pythagorean Theorem), formal social network theory was discovered between 1952-

1953, during anthropologist John Barnes' study of the small fishing village of Bremnes,

29

Norway, later published in 1954, making social network theory a comparatively modern

discovery (Barnes, 1954). In his seminal work (Barnes, 1954), Barnes did not specifically

mention use of computational resources, and given the age of the publication (1954),

what we know of the general state of computational technology at the time, and his field

research location (a small, rural, Norwegian fishing village), together these factors may

explain why Barnes did not specifically mention use of computational data or

computational social science techniques in his seminal work. The population of Bremes,

Norway at the time was just 4,600 people (Barnes, 1954, p. 40). From today's perspective

of big data analytics and data mining, the Barne's dataset from 1954 seems small

(Balaguru, Nallathamby, & Robin, 2015). For social scientists engaged in qualitative

research, interviewing and analyzing a few thousand people and their social networks, in

person, may seem like a time-consuming endeavor, but as Barnes mentioned in his work,

he spent two years (between 1952-1953) in the field, gathering his data through in-person

interviews and observation (p. 39). By contrast, today's online social networks, such as

Facebook with its over 1 billion active users alone (Balaguru et al, 2015; Brooks, Hogan,

Ellison, Lampe, & Vitak, 2014), is several orders of magnitude larger than the dataset

from the original Barnes study, and there are application programmer interfaces (APIs)

available to help mine Facebook data (Brooks et al, 2014). These are modern

computational tools that Barnes did not have back in 1954.

To better understand social network theory and how it applies to the research

problem of pathfinding in complex networks for software agents running in network dead

zones and GPS-denied environments, deeper research into the following constituent

30

aspects of social network theory literature must be addressed (a) graph theory, (b) random

network theory, (c) small-world network theory, and (d) scale-free network theory; each

of which is a constituent of social network theory, and is discussed in subsequent sections

of this literature review.

Graph theory is a well-established branch of mathematics, and has influenced

social network theory (Barnes-Mauthe et al., 2015; Wasserman & Faust, 1994). Graph

theory originated in the 18th century work of mathematician Leonard Euler (Albert &

Barabási, 2002, p. 9), and has been used in computer science since the mid-20th century

(Phillips, Schwanghart, & Heckmann, 2015, p. 148). The findings of Phillips et al.

(2015), suggested that graph theory was well suited to network analysis, and they

considered graph theory to be a powerful tool for scientists (2015, p. 148). Due to the

lack of computers and large, easily accessible datasets in Euler's time, early graph theory

focused on small, highly regular graphs that could be hand drawn (Albert & Barabási,

2002). Additionally, according to Malliaros and Vazirgiannis (2013), graphs are an

efficient way to represent a network, and are now a dominant structure used for analyses

in many multidisciplinary problem domains, including (but not limited to) computer

science, biology, neuroscience, physics, and sociology. Furthermore, in the 20th century,

graph theory became more algorithmic and statistical, thanks in part to the development

of computers, programming languages, and graph analysis software (Albert & Barabási,

2002, p. 9). This permitted graph theory to be more easily utilized across many disparate

problem domains. In a study of complex networks, Mears and Pollard (2016) concluded

that graph theory is flexible, enabling researchers to measure connectivity of individual

31

nodes within larger networks (p. 601). Mears and Pollard combined biology with

computer science to solve neurological complex network problems. They advocated

advancement of graph theoretic knowledge by way of longitudinal studies that identified

possible temporal correlations between changes in network topology, or nodal

characteristics, and the development of pathological conditions within the broader

network graph (p. 602). They also acknowledged that variable results may occur due to

differences in experimental design, subject cohort selection, sample size, network

construction and analysis techniques (p. 602), but to be fair, these precautions (e.g.,

research design, subject selection, sample size, etc.) could generally apply to much

experimental research anyway (Donaldson, Qiu, & Luo, 2013). Although this quantitative

experimental study is not longitudinal, that could be an avenue for further research.

While analyzing and studying large networks in computer science with graph

theory may be useful, in a study by Afuah (2013) the author's findings suggested that

focusing primarily on network size as a sole determinant of a network's "value" would

cause biased estimates of that network's worth, make research difficult to interpret, and is

"tantamount" to the omission of important variables in network analysis (p. 271). Afuah

recommended that network researchers also consider network structure (i.e., the layout of

nodes and edges within a network graph), and network conduct (i.e., the behavior of

nodes within the network graph) (p. 258). According to Afuah, only by considering all

three variables (size, structure, and conduct) of a network graph, not just network size,

may researchers reduce the likelihood of overlooking important information when

conducting complex network analyses. Similarly, the work of Newman, Watts, and

32

Strogatz (2002), also discussed the importance of considering both graph structure, and

graph size, when conducting complex network analysis. Taking network structure into

consideration therefore leads to the topic of complex networks.

Complex networks abound in nature, as well as in the modern technology world

(Mears & Pollard, 2016, p. 590). Some pertinent issues related to the study of complex

networks include (a) estimating the maximum velocity objects may travel in their

networks, (b) identifying the impact (if any) of network structure on object velocity, (c)

identification of the shortest path between random source and destination nodes within a

network, and (d) methods for calculation and quantification of shortest paths (Majeed &

Rahman, 2015). What follows next is a discussion of current research on complex

networks, the importance of social network theory as it relates to complex networks,

several proposed social network-oriented answers to the above questions, and a

discussion of several gaps in the literature.

Complex networks are not unique to computer science or social science. At a

fundamental level these networks (whether social or technological) are comprised of

entities called nodes, possibly connected to other nodes through one or more commonly

shared characteristics (Barnes-Mauthe et al., 2015; Majeed & Rahman, 2015, p. 20).

They occur in both computational and non-computational situations. Some example of

complex networks include disease transmission networks (e.g., viruses, outbreaks of

food-borne illnesses), the World Wide Web (WWW), the electrical power grid, social

networks (e.g., Facebook, LinkedIn), financial networks (e.g., online banking and

investing), volunteer networks, terrorist networks (e.g., Al Qaeda, Boko Haram, ISIS),

33

airline and highway transportation networks, political parties (e.g., Republican,

Democrat), geopolitical networks (e.g., EU, NAFTA, NATO, United Nations), and even

biological predator-prey (i.e., food chain) networks (Newman, Watts, & Strogatz, 2002;

Traag, Drings, & Van Dooren, 2013; Watts & Strogatz, 1998). There are four main types

of complex networks (a) regular (i.e., grid), (b) random, (c) small-world, and (d) scale-

free. Each is discussed next.

Early research on random graphs was performed by Erdős and Rényi (1961). The

classic Erdős and Rényi (ER) model of random graphs was their early attempt to explain

the behavior of complex networks. The ER model of random graphs defined a random

graph as having N random nodes, connected by M random edges (recall, each edge

connects only two nodes). One way to generate a random graph is to start with a simple

2D rectilinear grid map of N by M points (also known as a regular, grid, or lattice

network), as shown on the left in Figure 8. Note that researchers can also use circular

regular graphs, as shown on the right in Figure 8.

Figure 8. Two regular 2D lattice networks: grid (left) and circular (right).

Next, the probability P, with 0 £ P £ 1, where P = 0 means 0% randomization

(i.e., the network is a pure regular network), and P = 1 means each link has a 100%

34

chance of being randomly connected to another node (i.e., the network is the opposite of

a regular network, nodal connections do not follow a structured "grid" or "lattice"

pattern), determines the amount of randomization applied to the regular grid map. In

Figure 9, the original example graphs have been semi-randomized (with P » 0.5). Note

how randomization of edge placement in a grid network changes the network, and

therefore may change shortest paths among existing nodes within each network (Watts &

Strogatz, 1998). For example, in the circular lattice network of Figure 8 (on the right), the

shortest path between nodes 7 and 2, follows the path 7 ® 9 ® 2, yielding a shortest path

length of 2 between nodes 7 and 2. By contrast, in the circular semi-random network in

Figure 9 (to the right), randomization has changed the shortest path between nodes 7 and

2. Now the shortest path between nodes 7 and 2 is simply 7 ® 2, with a shortest path

length of 1.

Figure 9. Two semi-random 2D lattice networks: grid (left) and circular (right).

The study of random graph theory was useful in that it provided a foundation for

subsequent network research. But one weakness with the Erdős and Rényi (1961) paper

was that although it did mention the importance of average path length, it did not mention

which algorithms Erdős and Rényi used to calculate shortest path lengths in their test

35

networks, nor did they mention the performance of their random network generation

algorithm, nor shortest path length statistics. My study may help fill those gaps in the

literature.

The main goal of the ER model of random graph theory was to determine at what

probability, P, would a desired property of a graph most likely arise (Albert & Barabási,

2002, p. 10). The greatest discovery of the ER random graph model is that many

important properties of random graphs appear quite suddenly. That is, at a given

probability P either most random graphs have some property Q, or most random graphs

do not have that property. Two characteristic of regular (non-randomized) grid maps is

that they feature high clustering (i.e., neighboring nodes tend share many of the same

connections), and high average path lengths (i.e., there are no short cuts from one edge of

the grid to the other side) (Watts & Strogatz, 1998). By contrast, highly random graphs

(i.e., graphs where probability P lies closer to 1 than to 0) are characterized by short path

lengths due to the randomization effect on edge placement between nodes, and low

clustering (Mears & Pollard, 2016, pp. 590-591). Furthermore, Newman, Watts, and

Strogatz (2002) suggested that random graphs are well-studied in the discipline of

discrete mathematics, with many published articles devoted to describing the properties

of random graphs (p. 2567). Deficiencies with both the Newman, Watts, and Strogatz

(2002), and the Mears and Pollard (2016) studies were (a) the lack of source code for

analysis, (b) no indication if they used a graph analysis framework instead of

implementing their own pathfinding algorithms, (c) no indication of which computer

languages were used (if any), and (d) no indication which OS and hardware platforms

36

were used. These represent gaps in the literature that may be filled by my quantitative

experimental study.

A drawback with random graphs is that they do not model certain complex real-

world networks very well (Albert & Barabási, 2002; Barabási, 2016). For example, social

(friendship) networks are characterized by mostly non-random development; in social

networks, most people generally prefer connecting (non-randomly) to friends and

acquaintances, not with random strangers. Alternately, regular graphs (e.g., grid maps)

where nodes only connect with nearby neighbors as depicted in the 2D regular graph

images earlier, do not model all real world complex networks (Kleinberg, 2000). Hence,

as discussed by Albert and Barabási (2002), a new graph model was needed to explain

some real-world networks.

 In 1998, Watts and Strogatz published a paper on small-world networks, building

on the earlier work on the six-degrees of separation by Korte and Milgram (1970), and

the small-world networks theory postulated by De Sola Pool and Kochen (1979). The

quantitative work by Milgram in 1965, 1967 and 1970 demonstrated the existence of the

small-world phenomenon, meaning that, in theory, most people can be linked by short

chains of acquaintances (Korte & Milgram, 1970). Furthermore, Milgram's experiments

also showed that not only do short chains exist between people but that individuals are

very good finding these chains by using primarily local information, like querying friends

and acquaintances for the desired network knowledge (Fraigniaud & Giakkoupis, 2014,

p. 231). On the scale of purely random to purely regular networks, small-world networks

reside in the middle (Watts & Strogatz, 1998). Assume, P, equals the amount of

37

randomness in a network. Small-world networks are somewhere between pure regular

networks (where P = 0), and completely random networks (where P = 1), that is, for

small-world networks, 0 < P < 1 (see Watts & Strogatz, 1998). Figure 10 depicts three

example networks. As the randomization coefficient, P, of each network grows, its effect

on path length and graph structure becomes more noticeable. Visually it is possible to see

how the additional randomization (i.e., an increase in P) in the small-world network

(center) can substantively shorten the path length from one side of the network to the

other, compared to that of the (nonrandom) regular network on the left.

Figure 10. Regular, small-world & random networks (based on Watts & Strogatz, 1998).

Small-world networks are characterized by high clustering (neighbor nodes share

most of the same connections), similar to regular (grid) networks, but have shorter path

lengths than regular networks because of the potential "short-cut" path provided due to

randomization (Watts & Strogatz, 1998). This means getting from one side of the graph

to the other can be done in fewer hops in a small-world network than in a regular

network, as described by Fraigniaud and Giakkoupis (2014). This has implications when

38

finding shortest paths in complex networks, as is discussed in more detail later in this

literature review.

 Small-world networks are useful at modeling (a) the working relationships

between actors (i.e., the "six degrees of Kevin Bacon"); (b) the modern power grid; and

(c) neural brain networks; among other real world networks (Kleinberg, 2000). Watts &

Strogatz (1998) described small-world networks in much detail, but ultimately admitted

that small-world networks do not model all real-world networks. Where small-world

networks showed promise, however, was in the realm of modeling the behavior of supply

chains. According to Hearnshaw and Wilson (2013), the Watts and Strogatz (WS) model

can better model real world supply chains than does random networks, or regular (i.e.,

grid, lattice) networks, because the WS model optimally combines two conflicting goals

of network management: (a) minimizing the high transaction costs of long distance

connections due to decentralization; and (b) permitting efficient flow transfer throughout

a complex network, again due to decentralization (p. 448). But there is an issue that the

WS model does not answer, namely, how or why certain network connections form in the

first place. According to Hearnshaw and Wilson (2013, p. 449), the WS small-world

network model does not answer or predict if there is a preference for certain connections

over others during network formation, nor if past network growth affects future network

connectivity. One example network not explained by the WS small-world model is the

growth of the World-Wide Web (Albert, Jeong, & Barabási, 1999). Yet again, a new

graph model was needed. One weakness with the Watts and Strogatz (1998) paper was

the lack of publically available source code describing their approach and methodology.

39

Another weakness was the lack of description about which pathfinding algorithm(s) they

used in their software (if any), or how they benchmarked pathfinding algorithm

performance. These deficiencies represent gaps in the literature that may be covered by

this study.

 In 1999, Albert, Jeong, and Barabási published a paper where they describe trying

to measure the diameter of the World-Wide Web (WWW). Despite its increasing

relevance to the modern world, and the fact that no one institution, entity or country

controls it, its uncontrolled growth made it impossible to catalog all vertices (nodes) and

edges (links) of the WWW (p. 130), furthermore although they tried, Albert, Jeong, and

Barabási had difficulty matching their estimated diameter of the WWW, and its estimated

structure, to the small-world network model. Albert, Jeong, and Barabási (1999)

discovered that networks like the WWW are characterized by a vast majority of nodes

having few connections, sprinkled with a few very highly connected "hub" nodes. This

network topology did not correspond to small-world network topology promulgated by

Watts and Strogatz (1998), or the earlier random networks of Erdős and Rényi (1961).

Albert, Jeong, and Barabási called these new networks "scale-free" networks, because

they are inhomogeneous, and connections are not made randomly, but instead are formed

based on preferential attachment, with a degree distribution that follows a power-law

statistical distribution, not a Poisson distribution like random and small-world networks

(Albert & Barabási, 2002, p. 27). Poisson distributions are often depicted as bell curves.

Barabási (2016, pp. 120, 123) describes the 2D graphical difference between Poisson and

Power-Law degree distributions.

40

 These two distinctly different degree distributions (Poisson vs. Power-Law)

originate from distinctly different graphs. Random graphs follow the Poisson distribution,

because most nodes have similar numbers of links (Erdős & Rényi, 1961). But scale-free

networks follow a Power-Law degree distribution, characterized by most nodes having

few links, but a few nodes have disproportionately many links (Albert & Barabási, 2002).

Thus, this implies network structure may have implications in algorithmic shortest path

calculations.

Researchers Albert, Jeong, and Barabási (1999) determined that two randomly

chosen documents on the WWW were, on average, just 19 clicks (links) away from each

other (1999, p. 130). Scale-free networks can be used to model traffic networks. In an

urban transportation network study by Zou, Wu, Gao, and Xu (2014), they described how

urban traffic flows could be modeled as scale-free networks. In this case, traffic flows

toward the popular hub nodes due to the drivers' desire to take the shortest path to their

destination, which in turn could convert those highly popular hub nodes into potential

bottlenecks (i.e., virtual parking lots) under conditions of heavy traffic load, or a random

node attack (i.e., a critical weather event), or intentional node attack (i.e., terrorism). One

weakness with the Albert, Jeong, and Barabási (1999) study is that although they

specifically mention creation and use of a software "bot," which crawled the Web,

gathering data on URLs and links, from which the researchers derived their calculated

diameter of the WWW, I could not find any publically available source code for the Web

crawling "bot" for deeper analysis. Another weakness is the age of the study itself, since

the Albert, Jeong, and Barabási experiment now is over 16 years old. Today's Internet is

41

larger and more complex (more links and users) than the Internet of 1999. Furthermore,

they did not describe which graph algorithms (if any) they used in their bot software. The

Zou, Wu, Gao, and Xu (2014) study showed similar weaknesses in not including source

code used in their study (if any). By contrast, Franke and Ivanova (2014) did mention the

influence of graph algorithms and frameworks on network traversal elapsed time, and

recommended one framework (albeit theirs) for speedy pathfinding over the other

frameworks they tested. A final weakness in the Albert, Jeong, and Barabási (1999) paper

was the lack of raw statistical data to support their assertions. These deficiencies are gaps

in the literature that are covered in my quantitative study, which includes source code,

and numeric data.

Regular networks, random networks, small-world networks, and scale-free

networks, may be considered further refinements to general graph theory (Barabási,

2016). Each network type provided a means to further understand networks, like social

networks or traffic networks. In particular, concepts such as path length, path finding,

clustering and vertex degree are relevant to graph theory, random network theory, small-

world network theory and scale-free network theory, as they are relevant to modern social

network theory (Barabási, 2016; Erikson, 2013), which is discussed next.

There is an issue with social network theory that must be discussed, notably its

inconsistent theoretical foundation. According to Erikson (2013) in social network theory

there are two major belief systems, relationalism, and formalism. Relationalism is aligned

with inductive (i.e., qualitative) reasoning, and focuses on the experiences of the entities

(i.e., the graph nodes) in their network, who derive their meaning, significance and

42

identity by the ever-changing roles they play and transactions which occur within their

social milieu (p. 222). That is, it is the actions performed by these entities which, a

posteriori, give form to the social network. So, distance and connectivity between nodes

may change as nodes compete within their social milieu. This constant flux, ambiguity,

and change in one's position require subjective interpretation for the relationalist (p. 235),

with subjective analyses and interpretations leading toward qualitative analysis

approaches. By contrast, in formalism, which is more aligned with deductive (i.e.,

quantitative) reasoning, it is the shape and form of the social network itself which, a

priori, gives rise to the possibility of social interactions between entities (p. 228). For the

formalist, it is the individual's position within the already existing network which

generally dictates what actions the individual may take (p. 238). The formalist view that

the a priori existence of networks drives behavior, not the other way around, was

confirmed in a separate study by Chewning and Doerfel (2013) who stated that social

network theory assumes the a priori existence of networks, without which social network

theory would have little utility value (Chewning & Doerfel, 2013, p. 41).

 This study, which is quantitative and experimental in design and methodology,

aligns more with the aforementioned formalist approach to social network theory, due to

reliance on deductive (quantitative), not inductive (qualitative) reasoning, thus best aligns

with quantitative analysis and experimental research (Collins & Cooper, 2014). That is,

the shape and structure of existing, non-changing networks (i.e., the static 2D maps used

by the pathfinding algorithms in my study) were a focus of this research. In this

experimental study, the independent variables are intentionally manipulated to infer

43

causal effects (if any) on the dependent variables. This is a deductive approach

(Venkatesh, Brown, & Bala, 2013), which lends itself well to the formalist view to social

network theory, because through post-positivist deduction this study intends to measure

the effects of different 2D map samples on pathfinding algorithm output behavior, not the

other way around (i.e., pathfinding algorithms did not modify any 2D sample maps in this

study, but 2D maps may influence the output of algorithmic pathfinding results).

Modern Applications of Social Network Theory

As discussed earlier, social network theory can be used in multiple problem

domains, and itself utilizes graph theory. What follows is a discussion of the applications

of social network theory (e.g., terrorist network detection), and several gaps in the

literature are identified, which reinforce the need for this quantitative experimental study.

Community detection is a problem partially solved with algorithmic pathfinding.

According to a social network theory study by Harenberg, Bello, Gjeltema, Ranshous,

Harlalka, Seay, ... and Samatova (2014), community detection is a widely researched

problem domain in the field of data analytics (p. 427). In their research, Harenberg et al,

determined that it is possible to empirically compare community detection algorithms,

both in terms of broad "goodness of fit" characteristics, as well as with quantitative

performance metrics, but that these metrics are not equivalent. An algorithm that

identifies social network communities "well," may exhibit poor runtime performance, and

vice-versa (p. 438). In another study of social networks and community detection by

Traag, Krings, and Van Dooren (2013), they analyzed a network based on votes from

members of parliament (MEPs) of the European Parliament (EP) of the European Union

44

(EU). They used simple, unweighted Erdős and Rényi (ER) model random graphs. Their

results indicated that the EP (i.e., the network of MEPs who themselves represent

constituents of EU member nations) has become increasingly ideologically divided, with

nationality playing little to no role (p. 6). From a graph theory perspective, one could

view this as a situation where within the wider EP network comprised of MEPs, the

ideologically oriented MEPs have formed communities which share similar viewpoints,

and thus share shorter path lengths within their communities than outside their

communities. One deficiency with the Traag, Krings and Van Dooren (2013) study was

its heavy reliance on Erdős and Rényi (1961) networks, to the exclusion of small-world

networks and scale-free networks. A deficiency with the Harenberg et al. (2014) study is

that they inconsistently used three different computer languages (C++, Java, Python) in

their algorithm implementations. Not surprisingly, the implementation language had an

impact on run-time performance, as admitted by the authors (p. 437). This is a research

gap that may be filled by this study which, in the interest of consistency, used one

computer language, so as to avoid making incongruent "apples to oranges" comparisons

between selected pathfinding algorithms implemented with different computer languages.

By contrast, in a complex network study by Zhang and Wang (2013), they confirmed the

Watts and Strogatz (1998) findings that small-world networks exhibit large clustering

coefficients and short characteristic path lengths (p. 971). So, in the Traag et al. (2013)

study, because the authors specifically used only ER style random networks, it is

unknown whether use of additional Watts and Strogatz (WS) style small-world networks

would have changed the results of the Traag et al. (2013) study. Additionally, the Traag

45

et al. (2013) study did not include computer source code, nor mention use of any graph

analysis frameworks by their study. These gaps in the literature were filled by my

quantitative study which includes source code and describes, in detail, the usage of

several graph analysis frameworks.

Shorter paths may represent better-connected networks. Yang, Poon, Liu, and

Bagchi-Sen (2015) performed a study of geographical information system (GIS) and

complex networks from 1988 to 2013 (p. 534), with source data that originated from the

United Nations commodity trade database. They confirmed the importance of measuring

the shortest paths between network nodes of interest, and that the shorter the path length

between partners, the better-connected the network (p. 536). Researchers Rohden,

Witthaut, Timme, and Meyer-Ortmanns (2017) also described using shortest path

calculations in power grid networks to seek bottleneck links, in order to increase the

power transmission capacity of the identified weak links (p. 6). In a separate study of

Internet geolocation techniques by Li, Chen, Guo, Liu, Zhang, Zhang, and Zhang (2013),

they mentioned it may be possible to geo-locate devices based on Internet protocol (IP)

addresses. So, although Yang, et al. (2015) did mention usage of the open source Gephi

graph analysis framework, they did not take the next step and combine their GIS findings

with geolocation techniques, such as those described by Li, et al. (2013). Geolocation

and/or social network analysis may help detect social network cliques, like terrorist

network cells, which is discussed at length in the works of Eiselt and Bhadury (2015) and

Medina (2014). In a separate study of social networks by Zaglia (2013), the author's

findings indicated that online social networks are "web based services" (p. 217), and that

46

the presence of the Internet further boosts user participation in virtual communities

worldwide (p. 216). A question arises, could Zaglia's (2013) virtual communities work be

geo-located in the Li et al. (2013) sense, and can this be combined with the GIS findings

discovered by the aforementioned Yang et al. (2015) work? Perhaps it is possible that

these three studies could be combined somehow, using techniques from social network

analysis, to the broader benefit of society. There are some weaknesses with the studies,

however. Both Yang, et al. (2015), and Rohden, et al. (2017) did not mention which

computer language was used in their studies. Nor did Yang, et al. (2015) mention why

they only used one graph analysis framework. While the Zaglia (2013) study mentioned

use of inferential statistics, like the independent t-test, to determine if there was a

statistically significant difference between the means of different population groups (p.

219), one weakness with that study was it did not show the underlying statistical data

used by the authors in their statistical analyses. Lack of supporting data were also

demonstrated in the Rohden, et al. (2017) study. These deficiencies represent gaps in the

literature addressed by this quantitative study, which for completeness specifies the exact

statistical methodology, provides underlying data, and includes the computer program

source code.

 Due to recent historical events, there is increased interest in using social network

theory to analyze of terrorists and terrorist communication networks from a technological

perspective (e.g., analysis of communication between suspected terrorists). In a peer-

reviewed study of terrorist social network communication structure, researchers Eiselt

and Bhadury (2015), investigated complex networks using communication metadata (i.e.,

47

the origin, destination, start time, and end time of the communication, not the actual

contents of the communication) to identify and track membership in terrorist networks

without the need for wiretapping. This involved calculating and monitoring the shortest

paths and degrees of separation between suspected individuals to identify terrorist leaders

(p. 2), similar in concept to Milgram's "six degrees of separation" mentioned earlier in

this study (Korte & Milgram, 1970). Knowing the shortest path between network

members is important as this helps researchers identify command nodes by identify key

positions in the network structure. This research showcased the importance of

determining the shortest path between terrorist leaders and their network's followers

(each of whom can be represented as nodes in a graph structure). Their research also

described that small-world networks are more sensitive to attacks on "bridge nodes" than

on their corresponding hub nodes (p. 2). In graph theory, "bridge nodes" are nodes

through which pass many shortest paths (they have high "between-ness"). But as

described separately by Xu and Chen (2008, p. 84), hub nodes by contrast are nodes

which have many links (they exhibit high degree") but not necessarily through which

pass many shortest paths. The Xu and Chen (2008) paper studied dark networks, and their

findings indicated that pure scale-free networks are susceptible to both hub and bridge

node attacks, whereas small-world networks are more susceptible to bridge node attacks,

than to hub node attacks (p. 64). Another finding from the Xu and Chen (2008) paper was

the calculation that the length of the average shortest path between Osama Bin Laden and

members of his Global Salafi Jihad (GSJ) network, was only 2.5 steps. This means the

degrees of separation between Bin Laden and a typical member of his GSJ organization

48

was between just two to three people, and that the GSJ network was sparse (not dense), as

sparseness combined with short path length helped to lower the risk of detection and

enhance communication efficiency (p. 62). Thus, finding shortest paths in complex

networks of interest can yield valuable intelligence information, and helps justify this

quantitative study on algorithmic pathfinding. A weakness with the Xu and Chen (2008)

study was the lack of mention of any graph analysis frameworks used, nor algorithms

implemented. This weakness seemed to also be shared with the Eiselt and Bhadury

(2015) study. If both studies had elucidated their graph analysis techniques, it would have

benefited both papers. These weaknesses represent gaps in the literature which are filled

by this quantitative experiment which, by contrast, specifically discussed graph

pathfinding algorithms.

 Terror networks are resilient even after removal of key network nodes. In another

study of terrorist network communication using methodologies from social network

theory, Medina (2014) studied the resiliency of terrorist network communication

structures before and after the removal of key terrorists (e.g., Osama Bin Laden, and Abu

Mussab al-Zarqawi). The fact that terrorist networks are not comprised of purely random

members of society initially indicated to the author that terror networks were not random

networks, but rather they could be classified, perhaps confusingly, as either small-world,

or scale-free, or both (Medina, 2014, p. 108). The findings of Medina's analyses indicated

that the Al Qaeda social network was indeed a scale-free network, not a small-world

network, because the average path length between known terrorist members was too

short, meaning this network did not meet the Watts and Strogatz (1998) definition of

49

small-world networks, which requires small-world networks to have average path lengths

longer than, or equal to, random networks with the same number of nodes and edges, and

that the clustering coefficient be much larger than that of a comparable random network

(Medina, 2014, p. 109; Watts & Strogatz, 1998, p. 440). But despite repeated, targeted

node attack to remove terrorist leaders, which should otherwise hurt small-world

networks, as discussed in detail by Albert and Barabási (2002), and by Lordan, Sallan,

and Simo (2014), Medina admitted that there is some network property, yet to be

determined, that gave the Al Qaeda network its efficiency and resiliency (Medina, 2014,

p. 109). Discovery of this "hidden network property" could be a further research

opportunity. A deficiency with the Medina (2014) study was that although the author

analyzed several communication networks, providing statistics on path lengths, clustering

coefficients, network diameter and degree centrality, Medina did not mention which

graph analysis tool or framework, or computer language was used to generate his results.

These are gaps in the literature that were filled by this study.

 According to a study of small-group 9/11 terrorist social networks by Lewis

(2013), and confirmed by Watts and Strogatz (1998), while there are properties of small-

world social networks (e.g., short radius, high between-ness centrality) that are shared by

some physical networks, social network topologies do not need to be similar to topologies

of physical networks, like the electric power grid, Internet, transportation systems, water

and pipeline networks (Lewis, 2013, p. 7). One possible reason for the differences in the

topological structures between social networks and physical networks, is that physical

infrastructure is limited, in part, by economics, landscape, and regulations. By contrast,

50

social network topologies are much more resistant to the physical constraints of

landscape, country, and economics (p. 18), thereby transcending boundaries of space,

place and time. The Lewis (2013) paper shared the same deficiencies that the

aforementioned Medina (2014) study had, namely, no graph analysis frameworks were

discussed, and no computer language source code was provided. The Watts and Strogatz

(1998) study lacked details on how to apply small-world network analysis to physical

world problems, and also did not mention graph analysis frameworks used. This study

addressed the graph analysis framework issue by describing, in detail, the graph analysis

frameworks utilized.

Finally, while today's computational complex networks are large and

sophisticated, such as the over 1 billion users of the Facebook social network (Balaguru

et al, 2015; Brooks et al, 2014), a study by Poisot (2013) suggested that graph theory and

social network theory -- while useful in performing complex network analysis -- may not

be sufficient to analyze all aspects of complex networks. Poisot (2013) postulated that

while measuring network structure is indeed important to understanding both the latent

and emerging properties of complex networks, researchers lack an a posteriori measure

that serves as a "goodness-of-fit" indicator for the results of complex network analyses.

The author's proposed goodness-of-fit indicator is network modularity, which Poisot

defined as the ratio of interactions established between members of the same module (i.e.,

community) vs. members of different modules within the same overall network (2013, p.

1). The Poisot network modularity factor is applied, a posteriori (that is, after other

complex network analyses have been performed), to help choose the most appropriate

51

community partitioning scheme according to the desired network property the researcher

wishes to study (p. 6). While the Poisot (2013) method could provide another way to

analyze complex networks, one concern with the Poisot (2013) study was Poisot's use of

"pseudo-random" networks (pp. 4, 11). Poisot did not elaborate why "pseudo-random"

networks were selected, nor how Poisot style "pseudo-random" networks compare

against the traditional ER style random networks and WS style small-world networks

described earlier in this literature review. From a real-world network analysis

perspective, Poisot did not describe how to apply the Poisot network modularity factor to

very large social networks, such as Facebook with its over 1 billion users (Balaguru et al,

2015). Next, regarding Poisot's "pseudo-random" networks (pp 4, 11) in particular, two

issues remain: (a) it is not clear if Poisot networks called "pseudo-random" due to usage

of a computer pseudo random number generator (PRNG) during network creation; and

(b) Poisot did not refer to the fact that WS style small-world networks can be derived

from regular networks by manipulating the randomization probability coefficient, P

(Watts & Strogatz, 1998). One gap in the Poisot (2013) study was the use of only the

Network-X and iGraph graph analysis frameworks; no mention was made of the popular

open source graph analysis framework Graph-Tool. Finally, while Poisot (2013) did

mention use of Python (p. 3), it was not made clear which version of Python was used.

These gaps were filled by this quantitative study.

Rival Theory to the Selected Theoretical Framework

To ensure an exhaustive review of the professional and theoretical literature, a

search for opposing theories that could have served as alternative core theoretical

52

frameworks by which this study's variables could be measured, examined, and

interpreted, was conducted. One such rival theory was identified: chaos theory. Chaos

theory was developed in 1963 by meteorologist and mathematician Edward Lorenz while

he worked on weather systems and weather prediction algorithms (Hung & Tu, 2014, p.

1227). Lorenz conjectured that very small changes, such as a butterfly's wing-beat, may

lead to radical consequences on a global scale. He coined this concept the "butterfly

effect." Weather systems can be described as chaotic systems because they are aperiodic

(they never repeat in the exact same way), yet are sensitive to initial conditions

(Adewumi, Kagamba, & Alochukwu, 2016, p. 5). From this study's perspective, because

network connections between nodes in dynamic graphs will change over time, dynamic

graphs could also exhibit chaotic behavior. Such networks, with their ephemeral node and

link structures that vary over time, would exhibit dynamic network topologies (Baingana

& Giannakis, 2017). An example of this would be using a graph to model real-time urban

traffic flow congestion, and then trying to find the shortest path through that traffic

congestion (Adewumi, Kagamba, & Alochukwu, 2016, p. 5).

A small change can have a large, unintended (and unforeseen) effect on a

complex system (Hung & Tu, 2014). Under chaos theory, the so-called "butterfly effect"

of extreme local sensitivity leading to dynamic, global change, is due to the non-linear

nature of the initial conditions because complex behavioral patterns may occur that are

not proportional (and unpredictable) to their original causes, as discussed by Peters

(2014). An example of this would be the spread of a vector-borne epidemic, where a

small number of initially infected people within a dense network are sufficient to cause

53

the epidemic to broadly spread within the larger complex network, with an unpredictable

end state (Dantas-Torres, 2015, p. 452). Upon initial inspection, chaos theory appeared to

be a potentially viable theoretical framework for this study because removing nodes from

network graphs in a chaotic (i.e., random) fashion may appear to lead to unintended

consequences during shortest path calculations, particularly if a graph is small,

connections are sparse, or the nodes removed are the major hub nodes (Barabási, 2016).

However, depending on the type of network, randomly removing nodes does not

necessarily irreparably "harm" all graphs to the same extent, especially for networks with

many redundant connections, such as, but not limited to, ER style random networks

(Barabási, 2016; Watts and Strogatz, 1998). For example, if randomly selected nodes and

edges are both removed from, and added to a given graph, the damage to the network in

terms of being able to find a shortest path between any two nodes may be partially

mitigated, because according to Albert and Barabási (2002), random node removal will

have different outcomes on different networks, not all of which are equally bad.

However, Albert and Barabási do caution that, in general, node removal inflicts more

damage to a network than edge removal (2002, p. 42).

Air transport networks are susceptible to chaos. In a study of air transport

networks by Lordan, Sallan and Simo (2014), who used airports to represent nodes in

their network graph, they determined that random "point to point" connections between

airports, generally utilized by low cost air carriers, and follow the Erdős and Rényi

(1961) random network model, are more robust and likely to survive both random and

targeted node removal than the "hub-and-spoke" air transport networks generally used by

54

the full service air carriers, which more resemble scale-free networks, and which are

quite vulnerable to targeted node removal (2014, p. 118), i.e., terrorist attack. Computer

networks may be similarly vulnerable. The ultimate effect of chaotic (random) node

removal depends on the underlying network. The structure of the network (e.g., regular,

random, small-world, scale-free) may be impacted by chaos in different ways. This may

be measurable. In separate research by Zou, Xiao, and Gao (2013) which studied the

infliction of random chaos vs. intentional chaos on the urban transit system of the city of

Foshan, China -- a network the authors claim had both small-world and scale-free

network characteristics (p. 393) -- they discovered that random node removal from the

Foshan urban transportation system noticeably degraded network performance, but not as

quickly as the damage caused by intentional node removal (p. 390). Random vs.

intentional node removal represented different levels or types of "chaos" in the Zou et al.

(2013) study. A weakness with both the Lordan, Sallan and Simo (2014) study, and the

Zou, Xiao, and Gao (2013) study, was the lack of quantified data describing the before

and after effects of the application of chaos on their respective systems studied.

It seems evident from the aforementioned studies that network perturbations may

have a negative impact on network routing and pathfinding performance. This

quantitative study was not designed to research the a posteriori effects of chaotic node

perturbations. Also, this study's randomly generated 2D network map samples are static

throughout the algorithmic pathfinding phase, that is, the samples don't "grow" or change

over time. Thus, chaos theory was deemed to be less relevant to this study than social

network theory, because in this study's experimental design, there is no possibility of the

55

2D maps ever changing during the algorithmic pathfinding phase of the experiments. By

contrast, if this study were designed to research dynamically changing network maps

(i.e., 2D map samples that change during the algorithmic pathfinding phase), with the

express intent to measure the impact of chaotic node perturbations on subsequent

pathfinding results, then chaos theory would be a more appropriate theoretical framework

for this study than the formalist approach of social network theory that I selected.

Although this study does not use dynamic 2D maps (i.e., maps that change over time),

research on dynamic maps and graphs, chaos theory, and implications thereof, are

possible topics for further research, which were discussed in the recommendations for

further research part of Section 3.

Independent Variable: Pathfinding Algorithms

Many graph theoretic pathfinding algorithms have been discovered that perform

the task of finding the shortest path between nodes in graphs, and therefore have many

modern uses in a wide variety of problem domains (Boguchwal, 2015). In this section,

pathfinding algorithms relevant to this study are discussed. These algorithms are Dijkstra,

Bellman-Ford, and A* (pronounced "A star").

One mid-20th century example of pathfinding algorithms is the now-famous

Dijkstra shortest path algorithm. Edsger Dijkstra, a theoretical physicist by training,

developed his pathfinding algorithm in the 1950s, and then published it in 1959 (Ammar,

Bennaceur, Châari, Koubâa, & Alajlan, 2015). Dijkstra's algorithm is a graph search

algorithm that finds the shortest path between nodes in non-negative weighted graphs,

provided such a path exists, as discussed by Abdulkadir, Fadzli, Jamal, Makhtar, Awang,

56

Mohamad, and Susilawati (2015). It was a significant advancement beyond the breadth

first search (BFS) and depth first search (DFS) pathfinding algorithms prevalent at that

time. According to an algorithm study by Bohács, Gyimesi, and Rózsa (2015), both

Dijkstra's algorithm, and BFS are guaranteed to find the shortest path between two nodes,

provided a path exists, but Dijkstra's algorithm is more efficient than BFS in terms of

memory consumption, and unlike BFS, Dijkstra's algorithm can handle different positive

edge weights, since edge weights in BFS are not considered (p. 15). For completeness, it

must be noted that while the depth first search (DFS) algorithm will also find a path

between source and destination nodes, provided one exists, it is not guaranteed to be the

shortest path (Bohács, Gyimesi, & Rózsa, 2015). As this study is focused on finding

shortest paths, this rendered DFS to be of little relevance to this study. Additionally,

researchers DʼAngelo, DʼEmidio, and Frigioni (2014) confirmed that, despite its age,

Dijkstra's algorithm is still widely used today as part of the Open Shortest-Path First

(OSPF) algorithm. Use of Dijkstra's algorithm in OSFP was also confirmed in a separate

algorithm study by Vesović, Smiljanić, and Kostić (2016). The OSPF algorithm is an

interior gateway protocol (IGP), used to exchange routing information between gateways

(routers) over Internet Protocol (IP) networks. The fact that Dijkstra's algorithm is used in

today's Internet, nearly sixty years after Dijkstra's algorithm was published, demonstrates

how a well-designed algorithm may enjoy decades of longevity. This study compared

Dijkstra's algorithm to other pathfinding algorithms, as is discussed in much more detail

in Section 2.

57

One limitation with Dijkstra's algorithm is that for very large graphs it may

exhaust all available memory when searching for shortest paths, according to Ammar,

Bennaceur, Châari, Koubâa, and Alajlan (2015). A second limitation with Dijkstra's

algorithm is that it cannot handle negative edge weights, that is, the weights assigned to

the edges in a graph must not be negative, or Dijkstra's algorithm will fail (Vesović,

Smiljanić, & Kostić, 2016). One algorithm that can handle negative edge weights (but not

negative cycles) is the Bellman-Ford algorithm (Vesović et al, 2016). Additionally, Jukna

and Schnitger (2016) confirm the utility of the Bellman-Ford algorithm in the areas of

shortest path calculations, dynamic programming, and switching networks. However,

there are weaknesses with the Bellman-Ford algorithm. While the algorithm can be

distributed, according to Nanongkai (2014) the Bellman-Ford algorithm is not suitable for

parallelization. But, since this study does not compare parallelized versions of

pathfinding algorithms, this specific limitation of the Bellman-Ford algorithm was not a

factor in this study. However, algorithm parallelization may be a fruitful avenue for

further research, and is discussed in the further research part of Section 3.

Dijkstra's algorithm and the Bellman-Ford algorithm are not the only relevant

algorithms to study. Another family of pathfinding algorithms to consider is the A*

(pronounced "A star") algorithm. In a study by Yoon, Yoon, Lee, and Shim (2015) who

used the A* algorithm, and several customized variants thereof, in car-like vehicles and

robots running on grid maps, they discovered that not only is pathfinding algorithm

choice important, but the kinematics of the robot or vehicle itself (e.g., turning radius,

vehicle width, the ability to make 2-point and 3-point turns, the ability to drive in reverse

58

while turning, etc.) may affect the ability of these robotic vehicles to travel down tight

corridors, collision free. The result of the Yoon et al. (2015) research suggested that when

researchers think about autonomous vehicle pathfinding, in some cases researchers

should also take the kinematics of the vehicle into consideration, not just the pathfinding

algorithms alone. By contrast, in a separate study of robot pathfinding algorithms by

Yang, Qi, Song, Xiao, Han, and Xia (2016), they compared over a dozen pathfinding

algorithms for suitability in robots in autonomous path planning and navigation, not just

the A* algorithm. Interestingly, their first step was to model a terrain environment as a

grid map (p. 2), which is an activity also performed in this study too (to be discussed in

more detail in Section 2). Yang, et al. (2016), suggested that multifusion algorithm

solutions (i.e., using more than one pathfinding algorithm at a time) may provide the best

overall solution for complex network pathfinding scenarios. The authors did provide time

complexity metrics, in mathematical big-Omega notation (p. 19), but they did not

recommend which would be the best secondary algorithm to fuse with A* despite being

proponents of algorithm multifusion, nor did they discuss the impact of hardware on

runtime algorithm performance. In a separate hardware-oriented algorithm study by

Ediger, Jiang, Riedy, and Bader (2013), they tested multithreaded graph algorithms for

massive graph analysis on synthetic (i.e., randomly generated) scale-free graphs. In their

experiment involving graphs with 4.27 billion edges, they were able to detect all

connected components in 2 minutes (p. 2227) using the GraphCT framework, customized

for use with the 128 processor Cray XMT super computer. But in reality, few software

developers have access to Cray XMT super computers, thereby limiting the

59

generalizability of Ediger et al. (2013) research results. This represents a gap in the

literature that was filled by this study, because this study was not performed on expensive

Cray XMT super computers. By comparison, the experiments performed in this study

were performed on much less expensive commodity Apple hardware.

Comparing path finding algorithms can provide useful knowledge. In a 2014

study by Singh and Mishra, they compared four pathfinding algorithms in Erdős and

Rényi (1961) ER style random networks. Their results showed that performance differed

in sparse graphs vs. dense graphs (p. 26), and that Dijkstra's algorithm can achieve better

runtime performance by using Fibonacci heaps vs. binary heaps (p. 23). This paper had a

gap in the literature, however, in that it focused exclusively on ER style random

networks. As discussed by Albert and Barabási (2002), and Watts and Strogatz (1998),

most real world networks are not ER-style random networks. Close friendship networks

are an example of this: these networks generally are not randomly generated (Albert &

Barabási, 2002). Because the Singh and Mishra (2014) paper focused on only ER-style

random networks, it loses applicability to other real world networks of the scale-free and

small-world varieties discussed earlier. But to be fair, the seminal Watts and Strogatz

(1998) paper also did not discuss the which pathfinding algorithms were the best for

small-world network shortest path searches, which the Singh and Mishra (2014) study, to

their credit, attempted to do, so both papers could have benefited from intellectual cross-

pollination with each other. Additionally, while the experimental computer programs

Singh and Mishra used were written in the C language, they did not provide source code.

By using one language, at least they were consistent, but not including source code

60

represents a research gap. This gap was covered by my experimental study, which

includes freely available source code (discussed in more detail in Section 2 of this study).

Independent Variable: Graph Analysis Frameworks

To accomplish computational science endeavors, there are three main approaches

software engineers may take: (a) write custom software; (b) use proprietary software; or

(c) use free or open source software (Freeman, 2015). The open source software

community benefits from open collaboration, ease of sharing and maintenance, and the

testing and development efforts performed by others (p. 160). This quantitative

experiment, for example, used free or open source graph analysis frameworks to save

time and development effort. Many of the open source frameworks used specifically for

graph analysis are also compatible with Python, and are discussed next.

Not all graph analysis frameworks, or computer languages, are equally liked by

software engineers and researchers. In a comprehensive study of graph analysis

frameworks by Nocke, Buschmann, Donges, Marwan, Schulz, and Tominski (2015), they

compared 17 different graph analysis frameworks for complex networks analysis. Their

findings indicated that 72% of researchers preferred using Python over other

tools/languages like MATLAB, Mathematica, and even GIS systems (p. 549), in part

because of Python's ease of use, and compatibility with a wide array of scientific and

numerical libraries (e.g., NumPy, SciPy). In a separate study by Yang, Algesheimer, and

Tessone (2016) of the widely used, open source (and Python compatible) iGraph graph

analysis framework, they provided quantitative data on elapsed time consumed by eight

different community detection algorithms supported by iGraph, after analyzing complex

61

networks of varying sizes and complexities. The results varied, depending on the type

and size of network analyzed. There were no one-size fits all "best-of-fit" pathfinding

algorithm answer to derive from their research results. One deficiency with the Yang,

Algesheimer, and Tessone (2016) study was the lack of memory consumption as a

dependent variable, even though the authors admitted that memory consumption would

be a "crucial" issue when analyzing larger complex networks (p. 10). Additionally, they

could have compared more graph analysis frameworks, like Nocke et al. (2015) did.

Yang et al, did not quantitatively investigate other widely popular Python-compatible

graph frameworks, such as Graph-Tool and Network-X. Similarly, the Nocke et al.

(2015) paper is also not immune to critique. While the Nocke et al. (2015) paper is

informative and a comprehensive resource for a high-level comparison of graph analysis

frameworks, one significant weakness was the lack of numerical data quantifying the

speed and efficiency of each framework against the others. Nocke et al. (2015) also did

not specify if the same pathfinding algorithms were compared and tested by each graph

analysis framework. These represent gaps in the literature which may be filled by this

study.

Graph analysis frameworks can be used by researchers in disparate problem

domains. Researchers Phillips, Schwanghart, and Heckmann (2015), who studied the

applicability of graph theory to network analysis, determined that graph theory was well

suited to network analysis, and recommended its use as a powerful tool in the sciences.

Their findings also suggested that there are several free and open source software tools

for graph analysis. One of these tools is iGraph (p. 149), which the authors found to be

62

Python compatible. Another Python-compatible graph analysis tool the authors discussed

is Graph-Tool, and their findings suggested that Graph-Tool is one of the "most popular

graph theory modules" for Python programmers" (p. 149). Although they mention two of

the graph analysis frameworks used in this quantitative experimental study, they did not

mention the Network-X graph analysis framework, which represents a gap in the

literature to be filled by this study. The issue of "analyzing" a graph analysis framework,

but not providing quantitative supporting data, was also noticed in the following graph

analysis framework studies by Csardi and Nepusz (2006); Majeed and Rahman (2015);

and Sayama, Pestov, Schmidt, Bush, Wong, Yamanoi and Gross (2013).

Although somewhat dated, the 2006 study by Csardi and Nepusz provided

excellent information on the iGraph graph analysis framework, including actual Python

source code examples showing how to use the framework. Unfortunately, the weakness

with the Csardi and Nepusz (2006) paper was its focus on only the iGraph framework (no

quantitative or qualitative cross comparisons with other graph analysis frameworks were

provided). In the 2013 study by Sayama et al., they modeled and tested scale-free

complex networks using Python and the Network-X graph analysis framework. Their

results indicated researching network topologies is applicable not only to the social

sciences (where social network theory originated), but also in other sciences (e.g.,

biology, physics). One deficiency with the Sayama et al. (2013) study was its primary

focus on Albert and Barabási (AB) style scale-free networks. They did not provide an

explanation why only AB-style networks were studied, nor why they neglected both ER

63

style random networks and WS style small-world networks. Another weakness was its

focus on only the Network-X graph analysis framework.

Finally, in the Majeed and Rahman (2015) study of graph analysis frameworks,

they studied four less popular graph analysis frameworks: (a) Gephi; (b) Pajek; (c)

Cytoscape; and (d) Tulip. The authors admitted to having discovered memory leaks with

Cytoscape, Tulip, and Pajek (p. 24). Memory leaks are bad in that they limit the ability of

graph frameworks to handle large datasets (where graph visualization can be most

useful), so why Majeed and Rahman (2015) continued to study memory leaking graph

analysis frameworks was unclear. By contrast, the authors did not report similar memory

leakage issues with the Gephi graph analysis framework. Interestingly, while the Majeed

and Rahman (2015) study did use elapsed time as a metric in their tests, aside from

noting memory leakage issues, they did not utilize memory consumption as a dependent

variable in their study, which seemed odd, considering they discovered memory leaks in

three of the four graph analysis frameworks they evaluated. Interestingly, the issue of

memory consumption was also not mentioned in the seminal Watts and Strogatz (1998)

study, nor in the seminal Albert, Jeong, and Barabási (1999) study. Not using memory

consumption as a dependent variable represents a gap in the literature which was filled by

this quantitative study.

Independent Variable: Map Complexity

Not all terrain maps are equal. Some maps (or regions within maps) are more

complex than others (Subarno, Siregar, Agus, & Sunuddin, 2016). One topic addressed

my quantitative study is the impact of map size on algorithmic pathfinding efforts.

64

Another topic addressed is the impact of network structure (e.g., small-world networks

and random node connectivity) on algorithmic pathfinding efforts. Together, map size

and nodal connectivity (or lack thereof) are factors that comprise the "map complexity"

independent variable in this study. Discussed next are studies related specifically to map

size and algorithmic pathfinding.

Map size has an impact on pathfinding algorithms. In a study of robot pathfinding

simulators by Alotaibi and Al-Rawi (2016), their findings indicated that one critical

factor which affected pathfinding algorithm performance was the size of the map (p.

147). As the grid maps they tested grew larger, more time was required for the selected

pathfinding algorithm to find a shortest path solution (pp. 150-152). One weakness with

their paper was the lack statistical test results for all algorithms and map sizes compared.

This literature gap may be filled by the results of this quantitative study. By contrast, in a

comparative study of four pathfinding algorithms by Lim, Seng, Yeong, Ang, and Ch’ng

(2015), they used maps of length and width n (where n is a positive integer) to represent

terrain grids (cells). These n ´ n grid maps were used in their comparative algorithmic

pathfinding experiments. They tested maps of sizes ranging from the smallest at

dimensions of 10 ´ 10 (i.e., 102 = 100 grid cells), up to the largest dimensions of 70 ´ 70

(i.e., 702 = 4900 grid cells). Their findings suggested that maps with larger dimensions

(i.e., more grid cells) took longer for their chosen pathfinding algorithms to process than

the time needed for the same algorithms to process smaller terrain maps (p. 2727). While

both the Alotaibi and Al-Rawi (2016) study, and the Lim, Seng, Yeong, Ang, and Ch’ng

65

(2015) study covered terrain maps, they both lacked detailed comparative statistical

analyses. This is a gap that was covered by this quantitative study.

Large maps require more time to process when seeking shortest paths. In a

comparative algorithm experiment by Zhu and Chiu (2015), which used grid maps of

varying grid cell counts, they compared three maps of different grid cell counts (a) small:

2,888 grid map cells; (b) medium: 9,873 grid map cells; and (c) large: 13,108 grid map

cells. Their results suggested that a map's total grid cell count is directly proportional to

the computational time required to find the shortest path in the map, and in some cases as

the map size grew linearly, the time required to find the shortest path also grew

exponentially (p. 84). In a separate but supporting study of grid map-based comparative

pathfinding algorithm experiments, by Sharon, Stern, Goldenberg, and Felner (2013) they

compared three pathfinding algorithms in a multi-agent pathfinding context. They also

used four different grid map dimensions as an independent variable: (a) 3x3 grid; (b) 4x4

grid; (c) 8x8 grid; and (d) 257x257 grid (p. 490). Their results suggested that grid map

size had a direct impact on multi-agent pathfinding runtime performance, with larger

maps requiring more time to process than smaller maps (p. 491). This is confirmed in

similar findings by Zhu and Chiu (2015). Furthermore, these results concur with the

results of a small-world network study of graph visualization frameworks, and network

analysis community detection algorithms by Gibson and Vickers (2016). Gibson and

Vickers (2016) confirmed the Watts and Strogatz (1998) findings that small-world

networks are characterized by high clustering coefficients, and short average path

lengths, but they also discovered that path lengths that grow logarithmically as more

66

nodes are added (Gibson & Vickers, 2016, p. 81). The study used maps which varied

from 500 nodes with 5000 edges (their smallest network map), up to 5000 nodes with

25,000 edges (their largest network map). The Gibson and Vickers (2016) results

suggested that the overall time required to calculate the shortest paths with their selected

graph algorithms was greater when processing larger maps than when processing smaller

maps (p. 83). These results correspond to the separate findings of Zhu and Chiu (2015),

and Sharon, Stern, Goldenberg, and Felner (2013).

Two-dimensional terrain maps can be generated several different ways. One way

is to abstract a 2D map of the Earth, or a portion of it, and convert that into a format

readily accessible to pathfinding algorithm benchmark programs, a process known as

map abstraction or map genotyping (Liapis, Yannakakis, & Togelius, 2015). A practical

example of the benefits of map abstraction is described in Zhang, Su, Liu, Hu, and Zhu

(2016) where they abstracted an aerial Earth map into a grid map, for subsequent aerial

and land-based threat analyses for unmanned aerial vehicles (UAVs) using a more

detailed 2D map grid for the actual pathfinding algorithm shortest path calculations.

Using map genotypes (i.e., map abstractions) aids in the algorithmic pathfinding

process according to Zhang et al. (2016), who saved time and money using synthetically

generated map genotypes to test various pathfinding routes without having to pilot a

UAV, purchase fuel, or endanger civilian bystanders. Applications of this map

abstraction (genotyping) technique can be applied to not just the military, but also for

search and rescue operations (p. 27). In a separate but related study of robot pathfinding

simulators by Alotaibi and Al-Rawi (2016), they tested maps from popular PC computer

67

games that were then abstracted into mathematical graphs, from which graph theoretic

shortest path pathfinding algorithms could be benchmarked and performance results

compared. The findings of Alotaibi and Al-Rawi (2016) suggested that it is possible to

transform maps from popular PC computer games (e.g., Baldur’s Gate II), into a

numerical format for easy ingestion into an algorithm performance test harness for

subsequent algorithm performance testing (p. 148). The Alotaibi and Al-Rawi (2016)

map abstraction approach is similar to the Zhang et al. (2016) approach of abstracting

maps of the Earth, in that each approach transforms existing complex terrain maps into

simpler 2D grid maps for easier processing by pathfinding algorithms. One weakness

with both the Alotaibi and Al-Rawi (2016) study and the Zhang et al. (2016) study, was

the lack of mention of any sort of theoretical framework which may have guided their

work.

Raw grid map size is not the only factor to influence algorithmic pathfinding

performance. A second factor to consider in algorithmic pathfinding studies is the

number of occluded (i.e., blocked or impassable) grids on a grid map, as this may affect

the network structure and therefore nodal connectivity patterns (Zhang, Li, & Bi, 2016).

In the real world, blockages (i.e., lack of connection between two nodes in a 2D grid

map) may be due to several causes: (a) natural blocking terrain features (e.g., mountains,

swamps, oceans); (b) other smart agents or vehicles or people already occupying a

destination space (i.e., grid cell); or (c) unexpected hazardous conditions (e.g., fire).

Together, map size and the network structure (including terrain obstructions, which may

impact nodal connectivity) are the factors that comprise the "map complexity" variable

68

used in this study. Discussed next are studies that specifically involve terrain map

obstacles (blockages), and their impact on algorithmic pathfinding.

More obstacles on a map means more time is required to algorithmically process

that map. Zhang, Li, and Bi (2016) conducted a quantitative comparison of a custom

variant of the A* (pronounced "A star") algorithm versus the original A* algorithm. The

authors targeted the A* algorithm for study because the popular A* algorithm is

considered the "gold standard" in some situations for shortest path search algorithms due

to its overall effectiveness (p. 1). They tested their algorithms on 8-direction grid cell

maps with obstacles consisting of blocked (impassible) cells, and traversable areas

consisting of unblocked cells. Their findings indicated that A* could be upgraded to

improve its performance on maps with high blockage ratios (p. 9), especially where the

blockages are irregularly shaped. In a separate, but similar, A* algorithm study,

researchers Ammar, Bennaceur, Châari, Koubâa, and Alajlan (2015) conducted a

quantitative study on eight variant algorithms of the A* pathfinding family. Their

experiments involved grid maps with varying occlusion ratios. The findings by both

Ammar et al. (2015) and Zhang et al. (2016), were that a high obstacle ratio broadly

impeded pathfinding algorithm performance. Furthermore, Ammar et al. (2015)

concluded that some algorithms are more affected than others during algorithmic shortest

path calculations on occluded terrain maps, with the performances of both the popular

Dijkstra's algorithm and the A* algorithm noticeably degraded on highly occluded ratio

grid maps. One limitation with both studies was the lack of details on statistical methods

used, and no publicly available numeric data to support their assertions. These

69

deficiencies were covered by this study which includes a full description of the statistical

methodology used, the numeric data, and results.

Figure 11. (a) Shortest grid path, (b) the real shortest path (based on Nash & Koenig,
2013).

Shortest paths on grid maps are not necessarily the true shortest paths. Nash and

Koenig (2013) conducted a comparison study of path-planning methodologies for finding

shortest paths in continuous terrain. Their findings indicated that in robotics and video

games it is not unusual for software engineers to discretize continuous terrain into grid

cells that are classified as either passable, or occluded (i.e., blocked, impassable), and

then follow with a grid-based pathfinding algorithm to find the shortest non-occluded

path in the resulting grid map (p. 85). However, occluded grid cells may cause distortions

in the resulting calculated shortest paths, depending on the size or position of the

occlusion vis-a-vis the size of the discretized grid cells (Nash & Koenig, 2013). The

result is the shortest path may be short if one were to follow the edges of each discretized

grid cell, but may not be the true shortest paths (pp. 90-91). This is demonstrated in

Figure 11, which depicts a 2 ´ 4 grid map (8 grid cells in total) with 2 blocked grid cells.

70

The occlusion ratio for the grid map in Figure 11, can be easily calculated as 2 / 8 = 25%,

which means a quarter of the grid map is blocked due to impassible terrain.

Taking larger grid maps with differing occlusion ratios into consideration, there

may be a divergence between the algorithmically calculated shortest grid path (which

follows the grid cell edges) versus the true shortest path (which is free to short cut

through the non-obstacle grids cells), making the occlusion ratio, and any possible impact

on shortest path pathfinding, a worthy variable to study. The impact of map obstacles on

algorithmic pathfinding was confirmed in a separate study of robot pathfinding

simulators by Alotaibi and Al-Rawi (2016), whose findings indicated that one critical

factor which affected pathfinding algorithm performance was the ratio of occupied

vertices to unoccupied vertices (p. 147). One weakness with the Alotaibi and Al-Rawi

(2016) paper was the lack statistical test results for all algorithms, map sizes, and map

occupancy ratios they compared. Another limitation was although their simulation was

written in C++, they did not indicate if any graph analysis frameworks were used, or if

they implemented the pathfinding algorithms themselves. Similarly, the Nash and Koenig

(2013) study, while comprehensive, did not include source code, nor did it mention which

graph analysis frameworks were utilized in their study (if any). These represent gaps in

the literature which may be covered by this quantitative experimental study.

Dependent Variable: Elapsed Time

There is a common technique used when comparing algorithms. For quantitative

algorithm comparisons, a vast majority of the pathfinding literature follows this general

approach to algorithm analysis: (a) a set of benchmark problems are selected; (b)

71

mathematical constructs and algorithms to be compared are configured to operate on the

selected problems; (c) the algorithms are then iteratively applied to each problem, and the

results are collected from multiple trial runs; (d) the results are then statistically analyzed

(McClymont, Keedwell, & Savic, 2015). This format is useful because it provides a

deductive, quantitative, logical way to side-by-side compare algorithm performance. This

approach was used with some variations (i.e., sample sizes, dependent variables, etc.) in

the studies related to elapsed time that are described next.

As discussed by Freeman (2015), software engineers may write their own custom

software, use proprietary software, or use free or open source software alternatives. In a

quantitative comparative algorithm study by Franke and Ivanova (2014), they opted to

create their own graph analysis framework. They measured time consumption during

network navigation in complex, dynamically changing networks. They compared their

own pathfinding framework, FALCON, written in C++, against several popular graphing

libraries, running against dynamic graphs, and measured the elapsed time needed to find

the shortest path. According to the authors, their framework, FALCON, was fastest

compared to the others. As their framework was not tested against the graph analysis

frameworks used in this study, the external validity of their results suffers, and this limits

the applicability of Franke and Ivanova's (2014) research results to my study.

Additionally, as my experimental study compared popular free, or open source, Python-

compatible graph analysis frameworks, not the proprietary FALCON framework, the

external validity of my study should be greater than that of the Franke and Ivanova

(2014) study. Similarly, in a comparative computer language and pathfinding algorithm

72

study by Klimaszewski (2014), the author studied the runtime efficiency of the A*

(pronounced "A star") algorithm, with programs written in C++, Java and Python. The

findings of Klimaszewski (2014) suggested that in the most complex tests, Java was one

order of magnitude slower (in elapsed seconds at runtime) than C++, and that Python was

three orders of magnitude slower than C++ (p. 68). One deficiency with the

Klimaszewski (2014) study is that only C++ source code was provided (no Java, nor

Python source code). The second deficiency was that only elapsed seconds were

measured (as a dependent variable), but not memory consumption. In both cases, Franke

and Ivanova (2014) and Klimaszewski (2014) could have spent more time (a) describing

their statistical methodologies, (b) providing supporting numeric data, and (c) discussing

theoretical frameworks which directed their research efforts (if any). These deficiencies

were addressed in this quantitative study.

The vehicle routing problem is a problem domain ripe for pathfinding algorithm

research, but it is also a difficult problem domain to solve. Koç, Bektaş, Jabali, and

Laporte (2016) compared several metaheuristic algorithms in the vehicle routing problem

(VRP) domain. One dependent variable measured was elapsed time (p. 14), as this

provided a way to benchmark algorithms against each other. The findings of their study

suggest that while several highly accurate VRP algorithms have been developed, they

suffer from high computation times, or they lack simplicity, or their results are difficult to

reproduce (p. 16). So, while Koç, Bektaş, Jabali, and Laporte confirmed that some

algorithms provided good compute times, the lack of simplicity makes implementation of

their selected algorithms challenging, at best. Lack of implementations simplicity makes

73

it harder for others to replicate their research findings in different environments, thereby

negatively impacting the external validity of the Koç, Bektaş, Jabali, and Laporte (2016)

study. In a similar study of robot pathfinding simulators by Alotaibi and Al-Rawi (2016),

they tested algorithmic pathfinding algorithms against computer game maps, while

measuring execution time (i.e., elapsed time). Their findings suggested that, all else being

equal, larger maps required more time to be processed by pathfinding algorithms than

smaller maps (pp. 151-153). One weakness with the Alotaibi and Al-Rawi (2016) paper

was the lack of mention of any sort of theoretical framework which guided their study,

and no mention of the statistical methodology used, nor the resulting statistical output.

The lack of mention of an overall theoretical framework which guided their research was

a deficiency also shared by the Koç, Bektaş, Jabali, and Laporte (2016) study.

Genetic algorithms can also be used to solve pathfinding problems. Bezerra,

Goldbarg, Goldbarg, and Buriol (2013) studied multiple variants of ant colony

optimization (ACO) pathfinding algorithms on grid maps of varying sizes, and measured

elapsed time as one of their dependent variables. They used the Kruskal and Wallis

statistical test with a significance level of 95%, and the Wilcoxon one-tailed test at 97.5%

significance level to determine if there was a statistically significant difference found

between the groups they studied (p. 351). Their findings suggested that larger grid maps

required more to complete pathfinding objectives than the time required on smaller maps

(pp. 351, 353). While it was helpful that they described the statistical methods they used,

they could have included more statistical output to support their conclusions. They could

have also compared more algorithms. To be fair, the seminal Watts and Strogatz (1998)

74

paper, the Albert, Jeong, and Barabási (1999) study, and the Erdős, and Rényi (1961)

study could have also included descriptions of comparison algorithms, or statistical

methods and resulting output, but they also did not, therefore, the Bezerra, Goldbarg,

Goldbarg, and Buriol (2013) study results are in similar company. Nonetheless, these

deficiencies represent gaps in the literature which may be filled by this quantitative study.

Dependent Variable: Memory Consumption

Available computer random access memory (RAM) has certainly grown over the

last three decades, but it is not infinite, and out-of-memory warnings may still occur

today. In a comparative Python implementation study by Redondo and Ortin (2015), one

of the dependent variables they studied was computer memory consumption. Their

findings suggested that not all implementations of Python are equal. Some Python

implementations use more memory to complete the same programmatic task, than other

Python implementations (pp. 82-83). This implies that if memory consumption is a

concern to Python software engineers, then they must be cognizant which version(s) of

Python they use. Similarly, in a graph theoretical study of De Bruijn graphs (DBG)

authors Salmela and Rivals (2014) used Dijkstra's algorithm to analyze and calculate the

shortest paths in specialized DBG networks (p. 3509). One of the metrics they used to

compare data results included gigabytes of memory consumed during program execution

(p. 3509). They obtained computer memory consumption results by periodically polling

the Linux operating system of their computers. Their results suggested that it is possible

to measure gigabytes of memory consumption (to the hundredths of a gigabyte of

accuracy, e.g., "24.04 GB") by periodically polling the OS for memory consumption data

75

(Salmela & Rivals, 2014). This is similar to the methodology used for computer memory

profiling, described by in a separate treatise by Gorelick and Ozsvald (2014). This study

used similar OS polling techniques to gather memory usage statistics, which is described

in more detail in Section 2.

Terrain features can have an impact on pathfinding algorithm performance in

terms of memory consumption. In a study by Mora, Merelo, Castillo, and Arenas (2013),

they compared 12 different variants of multi-objective ant colony optimization

(MOACO) algorithms for shortest pathfinding efforts on terrain maps. One of the

primary dependent variables they measured was memory consumption (in megabytes,

MB). The other dependent variable was elapsed time. Each of the 12 MOACO algorithms

followed different approaches (e.g., safety vs. speed vs. cost minimization) to achieve

their pathfinding goals on hexagonal grid maps. Their results suggested that the

characteristics of the grid map (e.g., the predominant terrain type: mountain, forest, river,

etc.) and the pathfinding algorithm approach (e.g., safety, vs. speed, vs. cost

minimization, etc.) had direct impacts on pathfinding algorithm performance in terms of

memory consumption and the actual calculated paths from start to finish. The Mora et al.

(2013) study was similar to the aforementioned Bezerra, Goldbarg, Goldbarg, and Buriol

(2013) study in that both studied ant colony pathfinding algorithms on grid maps. One

weakness with both the Mora et al. (2013) study, and the Bezerra et al. (2013) study, was

lack of discussion of the exact statistical methods used and resulting data to support their

assertions. This gap was filled in my study which includes all data and details of the

statistical methods used.

76

 There is more to consider than the shortest path, when it comes to pathfinding.

Wen, Çatay, and Eglese (2014) performed a quantitative study of algorithmic solutions to

network routing and scheduling problems. Their study used memory consumption and

elapsed time as dependent variables (p. 920), and used two different heuristic variants to

their chosen pathfinding algorithm (Dijkstra's algorithm) in order to determine the

minimum cost path between a pair of nodes (p. 915). Their findings suggested that if time

was the most desirable factor, then Dijkstra's algorithm would find the optimal path (p.

916). However, if cost minimization (excluding time) was the most desirable factor (i.e.,

minimization of fuel, labor, or avoidance of network congestion), then Dijkstra's

algorithm was not guaranteed to always find the least cost path (p. 917). This implied that

purely shortest paths and minimum cost paths may be significantly different, depending

on current network traffic congestion. One weakness with this study was its lack of

publically available source code describing the authors' implementation of Dijkstra's

algorithm. A second weakness was no mention of the overarching theoretical framework

which drove their research process and design. The lack of mention of a foundational

theoretical framework was also shared by the Abdulkadir, Fadzli, Jamal, Makhtar,

Awang, Mohamad, and Susilawati (2015) study which similarly discussed Dijkstra's

algorithm. By contrast, the theoretical framework used in this experimental study was

already mentioned earlier in Section 1.

Computer Programming Languages: Python vs. Java

Today's software engineers have many computer languages available from which

to choose. Over the last two decades, the popularity and features of Python, Java, C++,

77

and other languages, has yielded many software frameworks and libraries for use

(Dierbach, 2014; Farooq, Khan, Ahmad, Islam, & Abid, 2014; Freeman, 2015), some free

or open-source, others proprietary. Some of those frameworks were used and referenced

in this doctoral study, as discussed in more detail in Section 2. Regardless of the specific

computer language, there are broader issues of runtime efficiency, language simplicity

and ease-of-use which must be considered, and are discussed next.

Shorter programs may be easier to understand than functionally equivalent longer

programs written in another language. In a study of concurrency programming by

Williamson and Olsson (2014), they explored language flexibility and the ease of writing

highly parallelizable programs. Their findings suggested that Python's easy to learn,

concise syntax allows developers to quickly create considerably shorter (in terms of lines

of written code) and easier to read programs, than functionally equivalent programs

written in other languages (p. 309). Similarly, in a discussion of Python by Dierbach

(2014), the author's findings suggested that over the last decade, the popularity of Python

has increased considerably, to the point where it has even become one of the first

languages taught to undergraduate computer science (CS) students at some colleges. Java

and Python are two popular language choices taught in colleges, and while the authors

did not suggest that learning Java is a poor choice, they did note that there have been

reports of significant improvement in student and instructor satisfaction after redesigning

introductory CS courses to use Python rather than Java (Dierbach, 2014). A common

deficiency of both the Williamson and Olsson (2014) study, and the Dierbach (2014)

78

study, was the lack of statistical methodology and output data to support their assertions.

By contrast, this quantitative study includes a full statistical report.

The "simplicity" of a programming language has an impact on popularity and use.

In a Java vs. Python language comparison by Hunt (2015), the author's findings

suggested that the surge of interest in Python is due, in part, to the simplicity of Python,

compared to the complexity inherent to languages like Java and C++. While, Java is an

"excellent" language in many ways, Java was not designed or intended as a "teaching

language" (p. 173). This implies that students may find learning Python easier than

learning Java. Programs written in Python were 1/3 the size (in number of lines of code)

than Java equivalents (p. 173). The author's findings suggested that by using Python one

may end up writing fewer lines of code than by using Java, thereby saving the software

engineer precious time during computer program implementation. A separate but related

study by Muller, Bednar, Diesmann, Gewaltig, Hines, and Davison (2015), documented

the surge in the popularity of Python among the sciences, due in part to its readability,

modularity, and large, freely available standard library. Muller et al. pointed out that

Python's popularity with scientists began with the emergence of Python's NumPy

numerical analysis package in the late 1990s (2015, p. 1). There are also many other

third-party, open source libraries and frameworks for graph analysis, easily usable with

Python. However, a weakness with both the Hunt (2015) study, and the Muller et al.

(2015) study, is that they did not specifically compare pathfinding algorithms or Python-

compatible graph analysis frameworks. This is a research gap that was filled by this

quantitative experimental study.

79

The Python language is not monolithic. There are many versions and

implementations of Python available for use, as discussed next. Redondo and Ortin

(2015) performed a comprehensive performance evaluation of seven common Python

implementations: (a) CPython, (b) Cython, (c) WPython, (d) Stackless Python, (e) PyPy,

(f) Jython, and (g) IronPython. Where available, they also compared Python version 2

and version 3 implementations of the aforementioned common Python implementations.

CPython, being the reference implementation of Python, implemented in the C

programming language (p. 79), was the standard to which the six other Python

implementations were measured against. Their findings were mixed. Overall CPython did

well, but it was not the fastest nor most memory efficient Python implementation for long

running Python 2.x processes (p. 84). For long running Python 3.x processes, Cython

performed better than CPython (p. 84). Two weaknesses with this study was its reliance

on Windows only implementations of Python, and no performance results for Mac OS or

Linux versions of Python were provided for comparison. As this study used Python on

Mac OS, this limits the applicability of the Redondo and Ortin (2015) paper to this

quantitative study. Nonetheless, the benefit of the Redondo and Ortin (2015) paper is that

it should make Python developers aware that the version of Python used is important, as

performance characteristics may differ between Python implementations and versions. To

that end, in the interest of generating consistent results, where possible, this study limits

its use of Python to one version only.

80

Modern Applications of Algorithmic Pathfinding.

 Autonomous robotic pathfinding can be aided with network support services, such

as the Global Positioning System (GPS), and/or Wi-Fi (IEEE 802.11 protocol) networks

(Sung, Kwak, & Park, 2015). With GPS or Wi-Fi-oriented Web services (that are GPS-

enabled), the robot (i.e., the "bot," smart agent, or drone), or the human end user, may

receive pathfinding guidance (Milner, 2016). Common everyday modern examples

include using Google Maps on a mobile device, or using GPS in a personal automobile to

map and locate a target destination. Some related topics of interest include (a) using

pathfinding algorithms in emergency evacuation situations; (b) the formation of mobile

ad-hoc networks (MANETs) for remote routing support; and (c) autonomous planetary

surface navigation. These topics are described next.

 Natural occurring fires cause large amounts of socio-economic loss and create

many victims. In a study of emergency escape route planning for forest fires by Wang,

Zlatanova, Moreno, Van Oosterom, and Toro (2014), they researched the problem of how

to get emergency relief vehicles to the affected areas as quickly as possible to fight forest

fires. Their research used the A* pathfinding algorithm to calculate escape routes and

transit routes in both static and dynamic map environments. Their research also reviewed

crowd-sourced data regarding the state of the area for calculating the shortest paths. Their

findings implied they could be used not just for route planning during forest fires, but

also for navigation in other types of disasters. In a related study by Kaur and Gangal

(2015), they compared seven different mobile ad-hoc network (MANET) routing

protocols. Their findings seemed to suggest that no specific protocol they compared was

81

the final "overall" best one, as each had their pros and cons. One finding from the Kaur

and Gangal (2015) study was that using the "shortest path" as a routing metric (p. 26) is

key from a resource efficiency perspective. Both studies, however, could have been

combined to the benefit of each other. For example, in the interest of creating an

ephemeral local communication network to enable emergency routing of traffic and

personnel, Wang et al. (2014) could have discussed use of MANETs, in the manner

described by Kaur and Gangal (2015), to provide peer-to-peer (P2P) message routing

support. Conversely, Kaur and Gangal (2015) could have discussed ways to apply their

MANET findings to the emergency support problem domain, or the benefits of

algorithmic pathfinding approaches, in the manner described by Wang et al. (2014). One

weakness with the Wang et al. (2014) findings was that they failed to address the topic of

having secondary pathfinding support (whether GPS or some other method) if for some

reason (e.g., computer memory exhaustion) their primary A* algorithm approach failed to

find a suitable path. Furthermore, although Wang et al. (2014), did measure elapsed time

as a dependent variable, they did not evaluate the memory consumed by their software,

nor did they describe if they tested their system on terrain maps of varying complexities.

Finally, a weakness with the Kaur and Gangal (2015) study was the lack of statistical data

to support their assertions, for each of the algorithms the authors compared. In both the

Kaur and Gangal (2015) and the Wang et al. (2014) cases, the noted deficiencies

represent gaps in the literature, some of which may be filled by this quantitative

experimental study.

82

 In a similar disaster evacuation study by Kang and Choo (2016), the authors

compared various approaches to finding emergency evacuation routes, including graph

theory approaches, and biological-inspired approaches. Their findings suggested that

excessive local network communication overhead during an emergency would cause

transmission interference and network communication congestion in the afflicted region.

This suggested that if the local communication network were rendered inoperable, then

the aforementioned A* pathfinding algorithm-oriented emergency evacuation system

described by Wang, Zlatanova, Moreno, Van Oosterom, and Toro (2014), could be a

useful backup, as the Wang et al. (2014) method does not depend on GPS or Wi-Fi. This

scenario could also make the MANET approach from the aforementioned Kaur and

Gangal (2015) study useful, for if the Kaur and Gangel (2015) method could create an ad

hoc ephemeral MANET to route communication traffic, independent from the overloaded

local communication network, then that ephemeral MANET may supplant the original

communication framework rendered inoperable due to emergency transmission overload,

allowing emergency vehicle routing. One strength with the Kang and Choo (2016) study

was the discovery that many evacuation algorithms focus on finding the safest paths, or

the shortest paths, but do not consider route congestion. One weakness with this paper

was the lack of statistical output, or mention of statistical methods used to compare

results. Another weakness with the Kang and Choo (2016) study was that although they

discuss many algorithms, they did not provide algorithm pseudo code or actual source

code for analysis. These are gaps in the literature which were filled with this study which

83

will includes source code, a full description of statistical methods, and the resulting

quantitative output.

 One problem with relying on GPS or Wi-Fi Web services is dependence on access

to overhead satellite resources, or dependence on wireless network connectivity (e.g.,

IEEE 802.11 communication protocols) between sending and receiving devices (Milner,

2016). Underground or undersea settings may not have GPS or Wi-Fi support, nor would

non-Earth planetary bodies, like the Moon or Mars. According to a study by Dean (2013),

starting in 2004, and serially launched over the course of several subsequent years, three

separate Martian surface rovers (named Spirit, Opportunity, and Curiosity, respectively)

were sent to Mars to explore that planet's surface (see Figure 12). Although they

supported manual control from Earth, they also employed autonomous pathfinding with

onboard pathfinding software (Dean, 2013, p. 161). Due to the varying 3 to 22-minute

delay in radio frequency (RF) transmission between Earth and Mars because of the

distances involved, autonomous pathfinding can yield more responsive results for each

rover than manual control from Earth. But autonomous pathfinding also runs the risk of

the rovers getting mired in non-traversable terrain without Earth knowing about the

situation for several minutes. To reduce the possibility of getting mired bad terrain, the

rovers were preloaded with Martian terrain maps to help reduce uncertainty during

algorithmic pathfinding. But static maps are not always 100% accurate as they do not

account for dynamic terrain changes.

84

Figure 12. Grid-based autonomous rover algorithmic pathfinding (NASA, n.d.).

 The alternative, truly autonomous real time pathfinding using pathfinding

algorithms, may better handle dynamic terrain changes and situations when direct manual

control (via RF communication) from Earth is not possible (Dean, 2013). Findings from

the Dean (2013) study confirmed that while an increase in terrain obstacles reduced the

chance of pathfinding success, the biggest impact to successful algorithmic pathfinding

was the interval at which the rovers' internal terrain maps were refreshed with updated

terrain data (p. 177). One drawback with the Dean (2013) study was that it did not

mention emergency alternatives to robotic algorithmic pathfinding, and it could have

been enriched with concepts from the Kaur and Gangal (2015) study. For example, if a

supporting mesh network of communication devices were scattered across the Martian

85

terrain, creating an ad hoc MANET network in the style of the aforementioned Kaur and

Gangal (2015) study, then a Mars rover might be able to communicate with that local

MANET to get supporting local navigational data for pathfinding purposes. Such a Kaur

and Gangal (2015) style MANET network, if appropriately configured and equipped, in

turn could communicate with Earth and vice-versa. This might solve the problem

mentioned by Dean (2013) where a planetary rover needs real time pathfinding support,

but cannot communicate directly with Earth. The Kaur and Gangal (2015) style MANET

could be the intermediary between Earth and the Mars rover. Unfortunately, this was not

discussed in the Dean (2013) study. Finally, although Dean (2013) did mention use of

Python (pp. 163, 171), he did not provide any source code. Lack of publically available

source code for analysis and review was also shared by the Kaur and Gangal (2015)

study. This represents a gap in the literature filled by my study, which includes publicly

available source code.

Transition and Summary

Section 1 was an introduction to the study on the relationship between pathfinding

algorithms, graph analysis frameworks, map complexity, elapsed time, and memory

consumption. Section 1 also included the problem statement, the purpose statement, the

nature of the research, the research hypotheses, the definition of terms, and the theoretical

framework. The purpose of this quantitative experimental study was to examine whether

there was a relationship between the study's variables of interest. While researching

issues related to algorithmic pathfinding, social network theory seemed most directly

relevant to this literature review due to its roots in graph theory, its interest in shortest

86

path calculations, and the importance of nodal interactions in complex networks. In

investigating the plethora of applications where algorithmic pathfinding may be used, it

was evident that the principles of social network theory -- strengthened by its deep roots

in graph theory, random network theory, small-world social network theory, and scale-

free network theory -- are significant and provide a theoretical framework by which

researchers can quantifiably measure the impact of pathfinding algorithm selection on

complex network navigation, while providing the lens by which algorithmic pathfinding

research can be interpreted within the larger milieu of future applied pathfinding software

problems. As discussed, software engineers may benefit from social network theory when

it is applied to pathfinding problems because this knowledge may help software engineers

solve future challenges in pathfinding software development while providing positive

social change, such terrorist network analysis and terrorist identification, and autonomous

planetary surface exploration, both of which were discussed earlier. Pathfinding

algorithm performance depends on a confluence of factors, each of which contributes to

the end goal of writing efficient pathfinding software. The complexity, cost, and risks

inherit in major software development projects (both in up-front development costs, and

in later support/maintenance costs) make it essential that appropriate algorithms and

software frameworks are evaluated, early, before significant time and money are spent on

implementation and support. The lack of quantitative research on applied, comparative

real world algorithm performance using Python and free or open source graph analysis

frameworks, may hinder some pathfinding software development efforts. This literature

87

review attempted to identify existing knowledge on this topic, and also identified several

gaps in the current algorithmic pathfinding research literature.

Section 2 contains a discussion of this study's chosen methodology. This includes

elaboration of the research design, the setting and samples, all instrumentation,

approaches to data collection, and analysis of the experimental data. Strategies to ensure

reliability and validity of the proposed research are presented. Also discussed are issues

related to test subject generation, selection, and privacy protection. Section 3 includes the

results of this study and a discussion on how the research findings support or reject the

null hypothesis, followed by a discussion of further research opportunities relevant to

comparative algorithmic pathfinding.

88

Section 2: The Project

This study examined the impact of pathfinding algorithms, graph analysis

frameworks, and map complexity, on elapsed time and computer memory consumption. I

used popular free or open source graph analysis frameworks (and their built-in

pathfinding algorithms), instead of writing the pathfinding algorithms myself. This study

helped elucidate how the chosen graph analysis frameworks performed at the task of

algorithmic 2D grid map pathfinding, in terms of elapsed time and memory consumption.

This section contains discussions of (a) my role as researcher; (b) the research method

and design used by this study; (c) data collection methodology; (d) population, sampling

and grouping issues; and (e) ethical concerns.

Purpose Statement

The purpose of this quantitative experimental study was to examine the

relationship between pathfinding algorithms, graph analysis frameworks, map

complexity, elapsed time, and memory consumption, in order to select appropriate

pathfinding algorithms for resource-constrained software agents running in complex

networks, network dead zones or GPS-denied environments. The targeted population

consisted of local computer random-generated two-dimensional (2D) grid maps. The

three independent variables were (a) pathfinding algorithms; (b) graph analysis

frameworks; and (c) map complexity (e.g., small vs. large maps; high random rewiring

vs. low random rewiring). The two dependent variables are (a) elapsed time; and (b)

computer memory consumption. Contributions to positive social change from efficient

pathfinding algorithms are wide-ranging, from saving lives to saving money. Some recent

89

examples include (a) fast robotic debris cleanup of airport runways to prevent fatal

accidents during takeoff and landing (Öztürk & Kuzucuoğlu, 2016); (b) bounded-cost

optimization of business expenses (Stern et al., 2014); and (c) search and rescue missions

in unmapped terrain (Liu & Lyons, 2015).

Role of the Researcher

For this quantitative experimental study my high-level role was a combination of

data collector, analyzer, statistician, and software developer of the computer programs

used to gather grid map-oriented algorithmic pathfinding performance data. More

specifically, my role in this study involved (a) creating measurable research questions

and hypotheses; (b) finding gaps in the relevant literature; (c) locating software

frameworks that perform algorithmic pathfinding; (d) writing short computer programs to

instrument and automate data gathering; (e) collating the experimental results; and (f)

applying appropriate statistical methodologies with rigor, trustworthiness, neutrality, and

without bias, to confirm any findings, as recommended separately by Katz (2015);

Lunde, Heggen, and Strand (2013); and Rutledge, Jones, Bailey, and Stewart, (2014).

Challenges with algorithm performance and memory consumption have interested

me for over 20 years. To prevent my 23 years of experience as a professional software

engineer from negatively biasing this research, this study relied on existing code

frameworks, application programmer interfaces (APIs), and pathfinding algorithm

implementations. Therefore, I only wrote "glue code" which connected the test harness to

the graph analysis frameworks in order to collect algorithmic performance data, thereby

90

letting the graph analysis frameworks do the actual algorithmic pathfinding work, using

their internal pathfinding algorithm implementations, not mine.

Because this study did not involve humans (living or deceased), nor their

personally identifiable information (PII), the Belmont protocols established for the

protection of vulnerable populations (Quinn, Kass, & Thomas, 2013) did not apply to this

doctoral study.

Participants

This research was conducted using local computer random-generated 2D grid

maps, represented mathematically as 2D adjacency matrices. No human participants were

required to collect this graph theory-related research data. The 2D maps used in this study

were the participants, and were represented mathematically as graphs, thereby aligning

with the main research question of this study. Researchers Shi and Weninger (2016)

generated synthetic graphs which were then used as participants for their algorithm study

with no human participants required. Similarly, Stevenson and Cordy (2014) utilized

computer-generated graphs for their algorithm study, also without the need for human

participants. Although the population and sampling methodology is discussed in much

more detail later in the Population and Sampling part of Section 2, a brief summary

follows.

A population of several thousand 2D maps were computer random-generated.

This pool of 2D maps represented the initial population from which map samples were

randomly selected. Randomization is required in true experimental designs (Maertens &

Barrett, 2013). From the large initial population pool of random 2D maps, each map was

91

stratified into subgroups based on demographic characteristics. Demographic group

membership was based on the map complexity independent variable: (a) high complexity

maps; or (b) low complexity maps. Next, from each of the population demographic

subgroups, random assignment was used to allocate map samples from the population

subgroups to the targeted experimental treatment groups. This study sought to identify

causal inference between the aforementioned variables of interest, so the random

generation, stratification, and selection process used in this experiment was consistent

with the 2D map characteristics and population that were the focus of this study, and

represented by the map complexity independent variable. Stratification of the random

samples into homogeneous groups was useful because some population demographic

groups may behave differently to experimental treatments, as was noted in a quantitative

experimental study by Krauss, et al., (2013), who compared treatment effects on different

stratified sample groups. The aforementioned 2D map population generation strategy was

similar to the graph generation concepts utilized in separate studies by Shi and Weninger

(2016), and Stevenson and Cordy (2014). Furthermore, Qasem and Viswanathappa

(2016) showcased the utility of sample stratification in experimental research. Finally,

Almaghairbe and Roper (2016) also discussed use of stratified random sampling and

random assignment in the domains of software engineering, software testing, and

software anomaly detection. Again, the 2D map population and 2D map samples are

discussed in more detail in the Population and Sampling part of Section 2.

92

Research Method and Design

This doctoral study used a quantitative experiment research method to analyze the

impact of pathfinding algorithms, graph analysis frameworks, and map complexity, on

elapsed time and memory consumption. The research method and design were selected to

align with the problem statement, purpose, and research question, in the interest of

identifying causal relationships between my aforementioned variables of interest.

Method

This doctoral study followed a quantitative research method. Based on a positivist

philosophy (Tsang, 2014), the goal of this study was to examine potential causal

relationships between these three independent variables: (a) pathfinding algorithms, (b)

graph analysis frameworks, (c) map complexity, and these two dependent variables: (a)

elapsed time, and (b) the amount of computer memory consumed during pathfinding

operations.

Researchers employing qualitative methods may explore new problems by

seeking open-ended where or who answers rather than statistically explain a cause-effect

outcome (Ittner, 2014). Similarly, Barnham (2015) argued that qualitative research is

generally focused on why questions, not on what questions. Other characteristics of

qualitative research include interviews, observations, and a focus on the lived experience

(Madill, 2015, p. 215). Since this study aimed to identify cause-effect relationships

between the aforementioned variables of interest, not to answer open-ended where or who

questions, this rendered qualitative research methods inappropriate.

93

Mixed methods research involves combining both quantitative and qualitative

approaches within a single research study (Landrum & Garza, 2015). One benefit of

mixed methods research is a more comprehensive understanding of the object under

study (Riazi & Candlin, 2014). Another benefit to using mixed methods over single

method studies is enhanced stimulation of theoretical imagination, permitting new ideas

to flourish that otherwise would not in single method studies; however, the researcher

pays a higher price with mixed methods in terms of time and resources consumed (Raich,

Müller, & Abfalter, 2014). Since this study did not use qualitative research methods, this

rendered the mixed methods approach inappropriate.

Quantitative methods generally use empirical data, often requiring descriptive

statistics to describe the sample population under study (Bettany-Saltikov & Whittaker,

2014). Another indicator of quantitative methods is usage of inferential statistics, to infer

results discovered in a small sample back to the wider population (Ersoy & Akbulut,

2014). Quantitative methods also focus less on interviews and open-ended where or who

questions, but more on targeted what questions, using investigative techniques such as,

but not limited to, experiments, multivariate statistics, and computer modeling (Jackson,

2015). For this study, the quantitative method was selected over a qualitative method

(e.g., case study, ethnographic, phenomenological) because of my desire to statistically

identify cause-effect relationships between the aforementioned variables of interest.

Research Design

According to Cokley and Awad (2013), there are three main research design

approaches available to quantitative researchers attempting to identify possible

94

relationships between dependent and independent variables: (a) correlational, (b)

quasiexperimental, and (c) experimental.

Correlational designs do not permit control or manipulation of treatments;

however, they can be used in surveys, and to assess relationships among variables

(Cokley & Awad, 2013; Granato, Calado, & Jarvis, 2014). Another common use of

correlational designs is in trend analysis (Groeneveld, Tummers, Bronkhorst, Ashikali, &

Van Thiel, 2015). Since this study involves intentional manipulation of the

aforementioned independent variables in order to measure treatment effects (if any) on

the dependent variables, the correlational design is rendered inappropriate.

As described by Kumar, Nilsen, Abernethy, Atienza, Patrick, Pavel, ... and

Hedeker (2013), quasiexperimental designs do not use random assignment of samples to

treatment groups. A weakness with quasiexperimental designs is that making causal

inference is more challenging than with experimental designs, as potential confounding

variables may limit interpretation of effects (p. 14). But researchers Hancox, Quested,

Thøgersen-Ntoumani, and Ntoumanis (2015), discussed how in some situations, due to

the nature of the sample population under study, randomization may not be possible, nor

even desired. Furthermore, quasiexperiments may implement certain study design

features in order to rule out some plausible alternative associations between variables of

interest (Donofrio, Class, Lahey, & Larsson, 2014). As this study intentionally used

random assignment, and since quasiexperimental research does not support

randomization, this rendered quasiexperimental designs inappropriate.

95

Experimental designs are considered strongest of all designs regarding internal

validity, which itself is the center of cause-effect inferences, and are characterized by the

introduction and intentional manipulation of one or more treatment variables (Quick &

Hall, 2015). Furthermore, researchers Donaldson, Qiu and Luo (2013) suggested that

experiments, particularly clinical laboratory experiments, are more rigorous than other

types of research, and that such rigor aids in the detection of causal relationships.

Experimental designs support use of random assignment, and this technique helps reduce

threats to internal validity (Krishnan & Sitaraman, 2013). Randomized controlled trials

(RCTs) are examples of experimental design, and due to their strong statistical support

are considered by some to be the "gold standard" in causal inference (Clair, Cook, &

Hallberg, 2014, p. 311). Additionally, experiments can give particular insight into

algorithm performance issues, especially regarding asymptotic analyses where theorists

might ignore constant factors of large orders of magnitude, though such factors may have

dramatic performance impacts in the real world (Mitzenmacher, 2015). An experimental

design was selected for this study, because of my desire to identify causal relationships

between the aforementioned variables of interest, utilizing intentional manipulation of the

independent variables and randomized assignment of samples to treatment groups.

In the interest of explaining this study's research design, it helps to understand its

high-level process flow. Figure 13 depicts this study's high-level process flow, from the

initial randomized inputs (left), to comparative performance tests and post-test

measurements (middle), and then finally the statistical analyses (right).

96

Figure 13. High-level overview of this study's experimental process flow.

 Knowing the number of treatment groups is important in factorial experimental

research (Papaneophytou & Kontopidis, 2014), and this study's independent categorical

variables and levels were: (a) three pathfinding algorithms; (b) two graph analysis

frameworks; and (c) two map complexity types, which resulted in a 3 ´ 2 ´ 2 (i.e., 12-

way) factorial experimental study. The combinations of the independent variables,

yielding the experimental treatment groups, are summarized in Table 1.

Table 1

The Categorical Variables and their Levels

Categorical Variable Name Number of Levels

Pathfinding Algorithm 3

Graph Analysis Framework 2

Map Complexity 2

97

To help visualize the aforementioned 3 ´ 2 ´ 2 factorial test matrix of treatment

groups used in this study, all 12 treatment groups are depicted in Figure 14.

Figure 14. This study's experimental 12-way factorial matrix.

 In standard research design notation, where "R" = random assignment to a

treatment group, "X" = treatment intervention, and "O" = observation and measurement,

each treatment group in this experiment follows a randomized, between groups, post-test

only experimental design, as depicted in Table 2.

Table 2

The Experiment: Randomized, Between Groups, Post-Test Only

R X O

 Standard research design notation can be applied to all treatment groups of the

experiment, as depicted next in Table 3.

98

Table 3

The 12-way Factorial Matrix, in Standard Research Design Notation

Groups and Demographics
(by algorithm, graph analysis
framework, and map complexity)

Random
Sample

Assignment

Algorithm
Intervention

("Treatment")

Post Test
Observation

Group 1: A*; Graph-Tool; Map

Complexity: High

R X

O

Group 2: Bellman-Ford; Graph-Tool;

Map Complexity: High

R X O

Group 3: Dijkstra; Graph-Tool; Map

Complexity: High

R X O

Group 4: A*; Graph-Tool; Map

Complexity: Low

R X O

Group 5: Bellman-Ford, Graph-Tool,

Map Complexity: Low

R X

O

Group 6: Dijkstra, Graph-Tool, Map

Complexity: Low

R X O

Group 7: A*, Network-X, Map

Complexity: High

R X O

Group 8: Bellman-Ford, Network-X,

Map Complexity: High

R X O

Group 9: Dijkstra, Network-X, Map

Complexity: High

R X

O

Group 10: A*, Network-X, Map

Complexity: Low

R X O

Group 11: Bellman-Ford, Network-X,

Map Complexity: Low

R X O

Group 12: Dijkstra, Network-X, Map

Complexity: Low

R X O

99

As mentioned earlier, the pathfinding algorithm was the first categorical,

independent variable. The pathfinding algorithms were discussed in more detail in the

literature review in Section 1 of this study. Pathfinding algorithms represented the first

categorical (independent) variable used in this study, and are summarized in the Table 4.

Table 4

List of Pathfinding Algorithms Analyzed in this Study (per Graph Framework)

Pathfinding Algorithm (independent, categorical variable

1. A* Algorithm
2. Bellman-Ford Algorithm
3. Dijkstra's Algorithm

The graph analysis framework was the second categorical, independent variable

in this study. These were discussed in detail in Section 1. There were two different graph

analysis frameworks compared in this study, and they are summarized in Table 5.

Table 5

List of Graph Analysis Frameworks Analyzed in this Study

Graph Analysis Framework (an independent, categorical variable)

1. Graph-Tool
2. Network X

Map complexity was the third (and final) categorical, independent variable in this

study. This factor was also discussed in the literature review in Section 1. There were two

different map complexities utilized in this study, summarized in Table 6.

100

Table 6

Map Complexities Considered in this Study

Map Complexity (structure) Adjacency Matrix
Dimensions

Small-World
Random
Rewiring

Coefficient

Number of
Links per

Node

1. High (circular lattice) 1000 ´ 1000 0.25 % 2
2. Low (circular lattice) 200 ´ 200 0.5 % 2

 There were two dependent, quantitative variables used in this study. The first

quantitative dependent variable was elapsed time. The second quantitative dependent

variable was computer memory consumed. These are summarized in Table 7.

Table 7

Dependent Variables Analyzed in this Study

The Dependent, Quantitative Variables Unit of Measurement

1. Elapsed Time Seconds
2. Computer Memory Consumed Megabytes

 For ease of reference, a complete listing of the variables used in this study, by

name, type, and level of measurement, are summarized in Table 8.

Table 8

Summary List of Variables Used in this Study

Variable Name Variable Type Level of Measurement

1. Pathfinding Algorithm Independent Categorical (3 levels)
2. Graph Analysis Framework Independent Categorical (2 levels)
3. Map Complexity Independent Categorical (2 levels)

101

4. Elapsed Time Dependent Continuous (seconds)
5. Memory Consumed Dependent Continuous (megabytes)

Population and Sampling

The target population for this study was local computer random-generated 2D

maps, represented mathematically as adjacency matrices. No human participants were

required in order to collect this research data. This is not unusual. In empirical studies of

algorithms, the population and samples are usually limited by computational (not human)

resources (Arcuri & Briand, 2014). Each member of the computer random-generated map

population can be represented as a 2D grid map, where each grid represents a vertex (i.e.,

node), with some vertices connected to other vertices by edges (i.e., arcs, lines). There

may be many vertices and edges per 2D grid map, as described by Maciejewski and

Puleo (2014). Depicted in Figure 15 is an example 2D grid map with 18 vertices and 12

connecting edges.

Figure 15. Example two dimensional grid map.

Utilizing a population of 2D grid maps was important to this study because grid

maps can represent terrain, and terrain can be traversed, algorithmically, to find the

102

shortest path from a starting vertex, to a destination vertex. This related to the

overarching research question of this study, which was: "What is the relationship between

pathfinding algorithms, graph analysis frameworks, map complexity, elapsed time, and

computer memory consumption?" With that research question in mind, in order to find a

relationship between pathfinding algorithms and 2D maps, I first needed a population of

2D maps to draw samples from. It did not make sense to use a population of humans as

2D grid maps, because humans do not easily represent terrain. Since no humans were

involved, the population of 2D maps were computer random-generated. There is a long

history of using grid maps, combined with algorithmic pathfinding, for activities ranging

from video games to planetary exploration with the Mars rovers (Spirit and Opportunity),

as discussed in detail by Algfoor, Sunar, and Kolivand (2015), and by Dean (2013). Once

a population of 2D grid maps was generated, I drew random samples from that 2D map

population in order to experimentally test algorithms and graph analysis frameworks on

those samples. The goal was to measure and compare the performances of the algorithms

and graph analysis frameworks, on specific 2D map population demographics, as the

pathfinding algorithms sought shortest paths in the 2D grid map samples, which helped

me answer this study's main research question.

A population of two thousand 2D maps was computer random-generated, 1000

per each of the two desired demographic groups: (a) high complexity maps, and (b) low

complexity maps. These 2D grid maps were generated via computer random number

generation. Randomization is required in true experimental designs (Maertens & Barrett,

2013), and random sample selection reduces threats to internal validity by eliminating

103

sample selection bias (Rooney et al., 2016). Contrast this to quasiexperimental research

which does not benefit from randomization (Krishnan & Sitaraman, 2013) and therefore

is not as useful at making causal inference. Since this study sought causal inference

between the aforementioned variables of interest, and since this was an experimental

study, it was logical to use randomization in 2D map generation.

From the large initial population pool of random 2D maps, each map was

stratified based on desired demographic characteristics. Stratification of samples into

homogenous groups (e.g., by demography) for subsequent random sampling in

randomized control trials, improves internal validity (Ariel et al., 2016). Demographic

group membership was based on the map complexity property (i.e., high vs. low

complexity) of the 2D map samples (which represented small-world networks), as

depicted in Table 9.

Table 9

Small-World Network Properties of the 2D Map Samples

Map Complexity
(structure)

Adjacency Matrix
Dimensions

Random Rewiring
Coefficient

Number of
Links per Node

1. High (circular lattice) 1000 ´ 1000 0.25 % 2

2. Low (circular lattice) 200 ´ 200 0.5 % 2

104

Figure 16. Population and sample stratification plan.

Next, from each of the population demographic subgroups, random assignment

was used to allocate map samples from the population subgroups to the target

experimental treatment groups, as depicted in the sample stratification plan in Figure 16.

Once the samples were assigned, each framework could then perform comparative

algorithmic pathfinding performance tests on those map samples, using the relevant

pathfinding algorithm. The selection criteria for this experiment was consistent with the

2D map characteristics and population that are the focus of this study. Stratification of the

random samples into homogeneous groups was useful because some population

demographic groups may behave differently to experimental treatments, as was noted in a

quantitative experimental study by Krauss et al. (2013), who compared treatment effects

on stratified sample groups.

105

An a priori power analysis using G*Power 3.1 was conducted to determine the

appropriate sample size. G*Power is a freely available, statistical software program that

can be used to conduct a priori sample size analyses (Faul, Erdfelder, Buchner, & Lang,

2009). G*Power supports two different types of MANOVA a priori effect size

calculations relevant to this study: (a) main effects, and (b) interaction effects. According

to Fritz, Cox, and MacKinnon (2015) it is appropriate to calculate sample size, a priori,

using multiple predictors, as this can reduce standard error. Both the MANOVA main

effects a priori sample size, and MANOVA interaction effects a priori sample size

calculations are described next.

For MANOVA interaction effects calculations, one may use the MANOVA

"Special effects and interactions" option in the G*Power GUI. Using this option, with an

a priori medium effect size (ES) = 0.1, power (i.e. 1 - b) = 0.8, with 12 groups (i.e., the

number of experimental treatment groups), 3 predictor (i.e. independent) categorical

variables, and 2 response (i.e., dependent) variables, tested at an alpha (p) level = 0.05,

would indicate interaction effects significance. The G*Power analysis indicated a sample

size of 72 (per treatment group) is sufficient to achieve the desired power level, given the

above parameters. Increasing the sample size to 144 increases power to .99.

For MANOVA main effects calculations for the independent categorical variable

pathfinding algorithms, one may use the MANOVA "Global effects" option in the

G*Power GUI. The independent variable pathfinding algorithms has three groups (i.e.,

each "level" of a categorical factor is called a "group" for this purpose), and its main

effects sample size was calculated as follows. Using an a priori medium effect size (ES)

106

= 0.1, with power (i.e. 1 - b) = 0.8, with three groups (i.e., three "levels" of the

categorical independent variable "pathfinding algorithms"), and two response (i.e.,

dependent) variables, tested at an alpha (p) level = 0.05, would indicate main effects

significance for the categorical independent variable pathfinding algorithm. The

G*Power analysis indicated that a sample size of 63 (per treatment group) would be

sufficient to achieve the desired power level given the above parameters. Increasing the

sample size to 129 increases power to .99.

Similarly, the categorical independent variables graph analysis framework and

map complexity each have 2 groups (i.e., "levels"), and their main effects sample sizes

were both calculated as follows. Using the "MANOVA: Global effects" option, an a

priori medium effect size (ES) = 0.1, with power (i.e. 1 - b) = 0.8, with two groups (i.e.,

two "levels" in both of the categorical independent variables of interest), and two

response (i.e., dependent) variables, tested at an alpha (p) level = 0.05, would indicate

main effects significance for the categorical independent variables graph analysis

framework, and map complexity, respectively. The G*Power analysis indicated that a

sample size of 100 (per treatment group) would be sufficient to achieve the desired power

level, given the above parameters. Increasing the sample size to 218 increases power to

.99. All G*Power results are summarized next in Table 10.

107

Table 10

Recommended Sample Sizes: Summary of G*Power Inputs and Results

G*Power
Calculation

G*Power GUI Input
Parameters

Minimum Sample
Size Needed for

Power = 0.8

Sample Size
Required to

Increase Power to
0.99

1. MANOVA
interaction effects

Effect Size (ES) = 0.1,
alpha (p) = 0.05,
Power (i.e. 1 - b) = 0.8,
groups = 12
predictors = 3
response variables = 2

72 (per group) 144 (per group)

2. MANOVA
global effects for
variable
Pathfinding
algorithm

Effect Size (ES) = 0.1
alpha (p) = 0.05
Power (i.e. 1 - b) = 0.8
groups (levels) = 3
response variables = 2

63 (per group) 129 (per group)

3. MANOVA
global effects for
variable Graph
Analysis
Framework

Effect Size (ES) = 0.1
alpha (p) = 0.05
Power (i.e. 1 - b) = 0.8
groups (levels) = 2
response variables = 2

100 (per group) 218 (per group)

4. MANOVA
global effects for
variable Map
Complexity

Effect Size (ES) = 0.1
alpha (p) = 0.05
Power (i.e. 1 - b) = 0.8
groups (levels) = 2
response variables = 2

100 (per group) 218 (per group)

The resulting G*Power output for MANOVA interaction effects and main effects

calculations are depicted next in Figures 21, 22, and 23.

108

Figure 17. MANOVA interaction effects: 12 Groups, 3 IVs, and 2 DVs.

Figure 18. MANOVA main effects for IV algorithm (with three levels).

Figure 19. MANOVA main effects for IVs framework and map complexity (each with
two levels).

109

In empirical software research, using alpha values of p = .05 to guard against

Type I error, and power = .8 (i.e., 1 - beta) to guard against Type II error, is not unusual,

and in fact may even be considered "traditional" (Dybå, Kampenes, & Sjøberg, 2006, p.

746). According to Faul et al. (2009), Cohen's f 2 serves as the effect size measure in F-

tests, such as MANOVA, where f 2 values of ".02, .15, and .35 can be called 'small,'

'medium,' and 'large' effects, respectively" (p. 1155). These same values were confirmed

in the seminal work of Cohen (1992). The use of an a priori medium effect size for

MANOVA analyses (f 2 = .1) is appropriate for this study. The selected medium effect

size was based on review of the following two complex network-related articles.

In a graph-theoretic study of small-world biological networks by Hwang,

Hallquist, and Luna (2013), they successfully utilized Cohen-style small and medium

effect sizes (pp. 2384, 2386), and their findings suggested they could successfully detect

efficient communication network hubs of information transmission in biological small-

world networks, initially present in childhood, that remain stable well into adulthood (p.

2391). In a study of emotional intelligence by Fernández-Berrocal, Cabello, Castillo, and

Extremera (2012), they successfully utilized Cohen-style small and medium effects sizes

(pp. 82, 83), and their findings suggested that age and gender did not play a large role

emotional intelligence, even though women are generally more concerned with

constructing satisfying social networks than men (p. 79).

As noted earlier, an initial population of several thousand computer random-

generated 2D maps was created, and then evenly stratified into the aforementioned

demographic groups: (a) high complexity maps; and (b) low complexity maps, thus

110

yielding many homogeneous sample 2D maps per demographic group, available for

subsequent random assignment to treatment groups, as needed. A visual example of the

random sample assignment process used in this study is depicted in Figure 20.

Figure 20. An example of random assignment used in this study.

 There is precedent for using computer random map generation in comparative

pathfinding algorithm research. In a study of robot pathfinding simulators by Alotaibi and

Al-Rawi (2016), they used computer random map generation to create 2D maps of

variable sizes and grid cell occupancy ratios, to compare runtime pathfinding algorithm

performance (in elapsed seconds). Their findings suggested that writing a computer

program to generate random maps, instead of the researchers creating maps by hand,

saved the researchers time, allowing them to focus on writing or using pathfinding

algorithms, not on creating maps for pathfinding tests (p. 145). Similarly, a study by

111

Arcuri and Briand (2014) confirmed that it is not unusual to use random sample

generation in algorithm studies, since such studies generally do not involve human

participants. One weakness with both papers was the lack of instructions on how to

integrate test algorithms into a specific target test framework. Another weakness was no

mention of the reality that many pathfinding algorithms already exist, in free or open

source graph analysis frameworks. No mention of how to integrate their test tools with

said graph analysis frameworks was provided, nor was there any statistical output

provided, nor was there any mention of the statistical methods used to quantitatively

compare algorithms. These statistical gaps may be filled by this quantitative study.

As mentioned earlier in the G*Power calculations, between 63 to 218 samples

were recommended by G*Power to achieve the power levels from .8 to .99, depending on

the specific MANOVA analysis required. To ensure that I had more than enough samples

to maintain the power level of at least .8, this study used 150 randomly selected sample

2D maps, per each of the 12 treatment groups. This meant 150 ´ 12 = 1,800 samples

would be utilized. Half originateed from the high complexity maps demographic group,

and the other half originated from the low complexity maps demographic group. Several

hundred samples remained, unselected, in the demographically stratified sample groups.

This was by design. They were held in reserve in case extra samples were required (i.e.,

to replace missing data, or to replace data outliers, as appropriate).

A study by Nunn, Jordán, McCabe, Verdolin, and Fewell (2015) demonstrated

that using random assignment was a valid technique to test and evaluate experimental

treatment outcomes between different sample demographics in quantitative studies. As

112

the map samples used in this study were 100% computer random generated, if necessary

it would not have been difficult to random-generate more 2D map samples, as I had full

programmatic control over the 2D random map generator program.

Ethical Research

Ethical research is an important part of experimental information technology

research. Reasons for this include ethical issues related to data collection, data

interpretation, patient consent, privacy and the de-identification (obfuscation) of private

patient data (Slade & Prinsloo, 2013). This means researchers should seek to add to social

welfare, not to detract from it by exploiting their test subjects' private data.

Twenty-first century data gathering techniques now include online questionnaires

and surveys. Yet despite the advancements in data gathering technology, researchers still

have ethical and legal issues to consider regarding research participation and data privacy

that have not disappeared simply because of new and convenient data gathering

techniques (Kaye, Whitley, Lund, Morrison, Teare, & Melham, 2015). Ethical concerns

are not unique to research performed in the U.S. more broadly, or at U.S. universities

more specifically. In a 2013 Canadian study of massive open online courses (MOOCs),

researchers found that although many research studies used publically available data

derived from MOOC research, only a small percentage considered the ethical issues of

using such data (Liyanagunawardena, Adams, & Williams, 2013). In a 2014 South

African study of geographical information sciences (GIS) education frameworks, ethics

are taught to university students as part of the body of knowledge (BoK) in the interest of

improving the future South African GIS workforce (du Plessis & Van Niekerk, 2014).

113

While there is the potential for bias between researchers and subjects by

inadvertently influencing the responses of participants, or by not maintaining the data

privacy of test subjects, since my study does not rely upon human subjects, nor data

derived from human subjects, there is no possibility that private data from my test

subjects would ever be lost or stolen, because there is no such data. The test samples are

random computer generated 2D grid maps. Because these computer-generated maps are

not human, and have no private data, there is nothing of personal value to be lost or

stolen, therefore ethical concerns over private data use (or misuse) are prevented and

mitigated. Finally, although this experiment did not rely on human subjects, or human-

derived personal data, I still worked with the IRB to obtain IRB approval (approval

number 03-10-17-0469285), prior to performing official data collection.

Data Collection

Instruments

The research instruments used in this study gathered data on the two dependent

variables (a) the elapsed time (in seconds), and (b) memory consumption (in megabytes).

The data were gathered by the me, in person, while running the algorithm benchmark

tests on my personal laptop computer, in a controlled experiment environment.

Randomized controlled trials (RCTs) are often considered the "gold standard" of clinical

trials since they provide the researcher the ability to assess the value and efficacy of

multiple treatments (Wildiers et al., 2013). This study was an experiment and measured

the efficacy of algorithmic treatments applied to random-generated 2D grid maps, in

alignment with, and to answer the main research question of this study.

114

Eight instruments were used in this study (a) the pathfinding algorithms (three per

graph analysis framework, for a total of six algorithm instruments); (b) one elapsed time

counter; and (c) one memory profiler. See Table 11 for a summary of the eight

instruments utilized in this study.

Table 11

List of Instruments Used and their Validity and Reliability References

Eight Experiment Instruments Methods Used to Verify Validity and Reliability

Six Pathfinding Algorithms:

Graph-Tool
(1) A* algorithm
(2) Bellman-Ford algorithm
(3) Dijkstra algorithm

Network X
(4) A* algorithm
(5) Bellman-Ford algorithm
(6) Dijkstra algorithm

Instruments were verified by me in a pilot test, using
the Wilcoxon "signed ranks" statistic.

Scholarly literature supporting the chosen statistic:
(a) Dybå, Kampenes, and Sjøberg (2006)
(b) Bezerra, Goldbarg, Goldbarg, and Buriol (2013)
(c) Arcuri and Briand (2014)
(d) Hric, Peixoto, and Fortunato (2016)
(e) Taylor et al. (2016)
(f) Vegas, Apa, and Juristo (2016)

One Elapsed Time Counter:
(7) Python: TimeIt

Corroborating scholarly literature:
(a) Akeret, Gamper, Amara, and Refregier (2015)
(b) Gorelick and Ozsvald (2014)
(c) Pettengill et al. (2016)
(d) Schreier (2017)
(e) Steininger, Greiner, Beaujean, and Enßlin (2016)

One Memory Consumption
Counter:
(8) Python: memory_profiler

Corroborating scholarly literature:
(a) Dunn and Weissman (2016)
(b) Gorelick and Ozsvald (2014)
(c) Li, Zhou, and Liu (2012)
(d) Rossant and Harris (2013)
(e) Murphy, O’Connell, Cox, and Schulz-Trieglaff
(2015)

The algorithms themselves were already discussed in detail in Section 1 (Review

of the Literature) and in Section 2 (Research Design). All eight instruments discussed

next are also described in the appendices (A through H). Table 12 lists the instruments,

115

and their appendix reference locations. The subsequent paragraphs discuss how the

validity and reliability of the six algorithm instruments were measured. Finally, a

discussion of the other two test instruments used in this study concludes this section.

Table 12

The 8 Instruments Used in this Study and their Reference Locations

Instruments (8 total) Appendix

1. Graph-Tool: A* algorithm Appendix A

2. Graph-Tool: Bellman-Ford algorithm Appendix B

3. Graph-Tool: Dijkstra algorithm Appendix C

4. Network X: A* algorithm Appendix D

5. Network X: Bellman-Ford algorithm Appendix E

6. Network X: Dijkstra algorithm Appendix F

7. Python: TimeIt Appendix G

8. Python: memory_profiler Appendix H

 The instruments are related as follows. First, the six pathfinding algorithm

instruments (described in Appendices A through F) seek the shortest paths for each of the

input 2D map samples; however, they do not measure how long it takes, nor how much

memory was consumed to find these paths. The elapsed time instrument, and the memory

consumption instrument measured the time and memory required, respectively, by each

pathfinding algorithm instrument, per input 2D map sample. Figure 21 visually depicts

this relationship.

116

Figure 21. The relationships between this study's instrumentation.

 Since no peer-reviewed literature could be found specifically describing the

validity or reliability of the six pathfinding algorithms (i.e., three algorithms per graph

analysis framework) used in this study, I verified the reliability and validity of the six

algorithm instruments in a pilot test, using the Wilcoxon Signed Ranks statistical test,

with sample size n =150, per algorithm instrument. One iteration of an algorithm

instrument test was compared against another subsequent iteration, using the same input

2D map samples, to generate the "repeated measure" used by the Wilcoxon Signed Ranks

statistic (with p = .05 to guard against Type I error). If the results between groups were

statistically similar for each tested algorithm instrument, then for this study that algorithm

instrument was considered reliable and valid (i.e., with a reliable instrument, similar

inputs should yield correspondingly similar outputs). This process was repeated for all six

117

algorithm instruments (i.e., three algorithms, per graph analysis framework). The six

algorithm instruments are also described in Appendices A through F, and listed in Table

12. The next few paragraphs describe why this method was selected to test the reliability

and validity of the six algorithm instruments.

Software validity, broadly speaking, is the ability of software to produce the result

it was intended to produce (do Carmo Machado, McGregor, Cavalcanti, & De Almeida,

2014). Software reliability is the ability to consistently obtain similar outputs given

similar inputs (do Carmo Machado, McGregor, Cavalcanti, & De Almeida, 2014), also

known as test-retest reliability. As described in detail by Taylor et al. (2016), and by

Hric, Peixoto, and Fortunato (2016), software validity and reliability can be verified by

performing a statistical analysis on the output of the software under test. Furthermore, as

recommended by Arcuri and Briand (2014, p. 220), statistical analyses are the preferred

method for verifying algorithm validity and reliability. This is particularly important

when performing empirical software engineering research (Dybå, Kampenes, & Sjøberg,

2006), such as the comparative algorithm research performed in this study.

Each of the six algorithms tested in this study were interventions (i.e., treatments)

whose performances against the input 2D map samples were measured in terms of

elapsed time and memory consumption. Researchers Hayes and Preacher (2014)

described the utility of using multi-category independent variables in experiments aimed

at inferencing causality. In this fashion, for this study, pathfinding algorithm was an

independent, categorical variable, with 3 levels, where each level represented one of the

118

pathfinding algorithms commonly supported by the graph analysis frameworks compared

in this study.

In a review of 92 different peer-reviewed, controlled software engineering

experiments, authors Dybå, Kampenes, and Sjøberg (2006) discovered the four most

popular statistical methods used to verify reliability and validity were (a) ANOVA, (b) t-

test, (c) Wilcoxon, and (d) Mann-Whitney U-test (pp. 748-749). Per Hoare and Hoe

(2013, p. 51), there are several varieties of the t-test, but its main purpose is to check for

differences in the means between observations. The Mann-Whitney U-test is the

nonparametric version of the independent (unrelated pairs) t-test. The Wilcoxon signed

ranks test is the non-parametric version of the related pairs t-test. Using an appropriate

sample size in statistical analyses is important. The mean sample sizes used in the

aforementioned controlled experiments discussed by Dybå, Kampenes, and Sjøberg

(2006) were: (a) ANOVA: 79 samples; (b) t-test: 34 samples; (c) Wilcoxon: 40 samples;

and (d) Mann-Whitney: 34 samples (p. 749). The researchers Dybå et al. (2006) caution

against using too many samples, because certain studies may, misleadingly, show

significant results if the input sample sizes are too large (p. 752).

Regarding instrument reliability, per studies by Paiva et al. (2014), and by

Bezerra, Goldbarg, Goldbarg, and Buriol (2013), using methods such as, but not limited

to the paired t-test, ANOVA, Wilcoxon, and/or Mann-Whitney U-test, allows researchers

to validate test-retest reliability. Similarly, in separate research by Raz, Bar-Haim, Sadeh,

and Dan (2014, p. 112), and by Zaglia (2013), both papers also suggested using the t-test,

Mann-Whitney U-Test, and/or Wilcoxon test as methods for assessing differences in

119

experiments, again to validate test-retest reliability. In a separate analysis of statistical

tests used in algorithm research by Arcuri and Briand (2014), they reported that

commonly used statistical methods in algorithm research are the t-test, Wilcoxon and the

Mann-Whitney U-test (p. 228). One drawback to using parametric statistical tests such as

t-test, or ANOVA, is the required distribution normal that the underlying data must meet

in order to not violate those tests (Kitchenham et al., 2002). Nonparametric tests, like the

Mann-Whitney U-Test and the Wilcoxon signed ranks test, are more flexible in this

regard than the parametric versions since the input data need not be normally distributed;

however, they generally require larger samples sizes (Arcuri & Briand, 2014).

Fortunately for this study generating a large 2D map population (and samples thereof)

was not problematic, since the 2D maps were local computer random-generated.

To test algorithm reliability, one recommended approach is to measure statistical

differences between test runs (Arcuri & Briand, 2014; Taylor et al., 2016). For

nonparametric statistical methods, recommended sample size, n, may range from n = 100,

up to n = 1000 (Arcuri & Briand, 2014, p. 244). Note this was larger than n = 34 and n =

40 for t-test and Wilcoxon tests, respectively, reported in the aforementioned study by

Dybå, Kampenes, and Sjøberg (2006). If there are no significant statistical differences

between test runs, then algorithm performance can be considered reliable and valid

(Arcuri & Briand, 2014; Taylor et al., 2016). Successfully using the Mann-Whitney,

Wilcoxon, and/or the t-test, for reliability and validity testing by comparing differences

between iterations, was also separately confirmed by Sun, Ha, Teh, and Huang (2016),

and by Vegas, Apa, and Juristo (2016, p. 128).

120

In this study, each pathfinding algorithm instrument accepted 2D map samples

(one at a time) as input, and then was tasked with finding the shortest path in that map.

The path length, and a list of the nodes comprising the shortest path, was provided by the

algorithm. The pathfinding results included the elapsed time and memory consumption

data, measured on ratio scales (i.e., continuous, quantitative results), using the memory

and timing instruments described later (in much detail). Those algorithm instruments

were statistically verified for reliability and validity in a pilot test. Reports from the

instrumentation pilot tests were included with the final statistical output of this study in

Section 3. The chosen algorithm instruments were appropriate for this study because this

was an algorithm study, therefore logically, algorithm instruments were needed for

analyses in an algorithm study. Administration of the algorithm instruments were

performed by me.

Next is a discussion of the instruments used to collect elapsed time (see Appendix

G), and memory consumption data (see Appendix H). Because there were two dependent

variables for which data needed to be collected (a) elapsed time; and (b) memory

consumption, two specialized instruments were used to collect this data. The first

instrument, TimeIt, calculated elapsed time during pathfinding operations (described in

Appendix G); the second instrument, Memory_Profiler, calculated the memory

consumption during pathfinding operations (described in Appendix H). Since the

computer test programs for this study were written by me in the Python computer

language, it was deemed logical to use Python-compatible test instrumentation. These

instruments were administered by me, and are described next.

121

The data instrument used to gather runtime elapsed time results was the TimeIt

module (Appendix G), which is built-in to Python (Akeret, Gamper, Amara, & Refregier,

2015), and is part of the Python Standard Library (Steininger, Greiner, Beaujean, &

Enßlin, 2016). Capturing elapsed time data can be done by writing a few lines of Python

code. The following Python code demonstrates the ease of using TimeIt to capture

elapsed time for a hypothetical Python function that calculates factorials.

Figure 22. A python example of time profiling using the TimeIt python module.

The above Python example took 0.000699 seconds to complete a call to the

iterative factorial function and return the result. In summary, there are four simple steps

to follow when using TimeIt: (a) start the timer, (b) call a function whose elapsed time

needs measurement, (c) stop the timer, and (d) subtract the start time from the end time to

yield the elapsed time. This technique of using TimeIt to measure elapsed time was

similarly used in this doctoral study to capture elapsed time data for pathfinding

122

operations performed on each input 2D map sample, per pathfinding algorithm, per graph

analysis framework.

The TimeIt module was an appropriate instrument to use in this study because it

was simple to use (only a few lines of Python code, as shown above), it was freely

available (it comes with Python), it was reliable and well-supported in the Python

community (Gorelick & Ozsvald, 2014). Administration of the instrument, TimeIt, was

simple because the programmer has total control over when, and how frequently to use it

(Gorelick & Ozsvald, 2014). The instrument, TimeIt, is popular with researchers and

engineers, and has been widely used in a many problem domains. For example, Akeret,

Gamper, Amara, and Refregier (2015) successfully used the TimeIt module, repetitively,

to record elapsed time performance of a custom just-in-time compiler made for

astronomical computations, running on Apple MacBook hardware (similar to the

hardware used by the author of this doctoral study), allowing them to monitor and

measure runtime performance areas of concern. In another case, Pettengill, Pightling,

Baugher, Rand, and Strain (2016), used TimeIt to measure runtime performance of gene-

distance calculations in their big data genomic study (pp. 3-5). Next, Schreier (2017) used

the TimeIt module to quantify elapsed time performance of complex computations

performed on multigrid matrices (pp. 12-13). Finally, Steininger, Greiner, Beaujean, and

Enßlin (2016) used TimeIt, repetitively, to measure the runtime performance and

scalability of a Python high-performance parallel computing framework. The above cases

are real-world examples where TimeIt successfully measured elapsed time of

computationally critical operations.

123

The results of TimeIt were quantitative, measured in seconds of elapsed time. This

was appropriate for this study since quantitative elapsed seconds corresponded with the

aforementioned dependent variable Elapsed Time. The larger the values reported by

TimeIt, the more elapsed time has passed for the function or program under test. While I

could have written my own elapsed time counter, doing so would have been far beyond

the scope of this pathfinding algorithm study.

Finally, the data instrument used to gather memory consumption statistics is the

memory_profiler Python code module (described in Appendix H), freely available from

the Python Software Foundation and published at the Python Package Index (PyPI)

website: https://pypi.python.org/pypi. This instrument has been freely available for over a

decade (Gorelick & Ozsvald, 2014). By programmatically using Python and

memory_profiler, a software engineer can calculate the amount of memory consumed by

a Python script (Li, Zhou, & Liu, 2012). In a study of pathfinding algorithms and

memory consumption, researchers Salmela and Rivals (2014) suggested that it was

possible to measure megabytes of memory consumed during algorithm tests by

periodically polling the operating system (OS) for memory consumption data, and this is

what memory_profiler does.

The memory_profiler module (see Appendix H), available in Python, calculates

memory consumption by querying the underlying OS. It can be called programmatically

in Python scripts via its application programmer interface (API), or manually from the

command line. Calculating the memory consumed by a Python script can be done by

writing a few lines of Python code. In the following code snippet, a Python script named

124

"Network-X-pathfinding.py" was run using Python's memory_profiler module. This

hypothetical script was a test harness which called the Network-X graph analysis

framework, instructing it to perform a shortest path test using Dijkstra's algorithm on a

2D map sample (map ID # 31). The example hypothetical Python script output follows.

Figure 23. A python example using the memory_profiler python module.

 Note in the above hypothetical example, the amount of memory consumed during

the Dijkstra's algorithm test was 66.016 MB, as shown by the value in the Increment

column. In summary, the memory increment values which resulted from usage of the

memory_profiler instrument were the values captured, parsed, summarized, and reported

in this doctoral study, as they were relevant to the aforementioned memory consumed

dependent variable utilized in this study.

Administration of the instrument, memory_profiler, was simple because the

programmer has total control over when to use it (Gorelick & Ozsvald, 2014). The

instrument was valid and reliable, because it relied on underlying operating system kernel

calls (Gorelick & Ozsvald, 2014) to gather the memory information, and has been

thoroughly tested. In a quantitative performance study of graph analysis software by

Rossant and Harris (2013), they reliably and successfully used memory_profiler to

125

measure the memory consumed at runtime by an OpenGL-based graph analysis

framework. Their memory_profiler findings suggested that more memory efficiency

could be gained by their software if it reduced unnecessary array copying during data

load and transformation operations (p. 6). In a separate quantitative study, researchers

Murphy, O’Connell, Cox, and Schulz-Trieglaff (2015) successfully used

memory_profiler to measure memory consumption of software running on a single core

computer with 8 GB RAM available (p. 8). Their memory_profiler findings indicated that

the most memory-intensive portion of the software they tested occurred during the

creation of tree-based data structures (pp. 6, 12-13). In a study that processed large

genomic datasets in Python, the authors Dunn and Weissman (2016) also successfully

used memory_profiler to measure peak memory usage (pp. 2, 10, 11). Each of the above

examples successfully showcased use of memory_profiler to measure computer memory

consumption with Python.

The results of memory_profiler were quantitative, and represented megabytes of

memory consumed. This output was appropriate for my study since this data type

corresponded to the aforementioned quantitative memory consumed dependent variable.

The larger the values reported by memory_profiler, the more memory was consumed by

the program under test. While I could have written operating system kernel-level code to

gather memory statistics, doing so would have been far beyond the scope of this

pathfinding algorithm study.

All data resulting from this study will be retained by the author of this study, and

may be available upon request. Additionally, source code is available on GitHub

126

(https://github.com) for free download, in a new online GitHub project created by me,

specifically for this doctoral study. See the instrument descriptions in the appendices for

more details on where to find the downloadable source code.

Validity and Reliability

As discussed earlier, I statistically tested the validity and reliability of each of the

algorithm instruments, per graph analysis framework, used in this study, in a pilot test.

The statistical output from the pilot test of the algorithm instruments is noted in Section 3

of this doctoral study.

The instruments TimeIt, and memory_profiler (see Appendices G and H,

respectively) are both valid and reliable, as already noted in their respective

instrumentation descriptions above, and because they come with Python (now a 20-year-

old computer language), or are official Python extensions, and rely on underlying

operating system kernel calls to calculate elapsed time, or memory consumption,

respectively (Gorelick & Ozsvald, 2014). This means that I did not need to write custom

kernel-level code to measure elapsed time and memory consumption at the operating

system (OS) level, as writing OS code was beyond the scope of this pathfinding

algorithm study. Memory and time profilers are valid software engineering tools because

they allow engineers to quickly identify performance problems and bottlenecks in

complicated computing environments, especially considering that in some cases there are

no other tools than could successfully perform this task (Yamamoto, Ono, Nakashima, &

Hirai, 2016). Finally, since no human intervention or post data collection manipulation of

results were manually performed (i.e., I merely recorded the results generated by the

127

aforementioned instruments), researcher bias, subject bias, and data coding interpretation

bias did not impact results, as the results were straightforward. No manual hand-coding

of responses or results, no interviews, and no subject-to-researcher human interaction was

required nor was possible. The use of programmatically obtained data (instead of human

interaction) eliminated the possibility for subject bias in data collection, which further

enhanced the internal validity of this study.

Data Collection Technique

In experimental research, using randomized controlled trials (RCTs) (also known

as "clinical trials") can be a high-cost endeavor due to the time intensive nature of the

testing process and the meticulous manner in which data must be collected and recorded

in quantitative experiments (Dunn, Arslanian-Engoren, DeKoekkoek, Jadack, & Scott,

2015). However, writing computer programs to create computer random generated 2D

map samples on demand, as was performed in this study, had several benefits. First, using

local computer random-generated content helped reduce the financial and time burdens of

data collection because no human interaction was required (no interviews needed, no

time spent traveling to/from interview locales), and data privacy storage concerns did not

exist (because no personally identifiable information was used). This liberated me from

the burden of human interaction, and reduced the possibility of sample bias, thereby

permitting me to focus more energy on the research study itself (Liapis, Yannakakis, &

Togelius, 2015, p. 5), and less on administrative-oriented tasks.

A second benefit to using computer generated 2D map samples, such as the ones

generated and used by this study, was the ease that such abstract 2D map samples can be

128

mapped directly to an array of integers equal to the number of grids on the map, where

each integer represented or determined the contents of a single map tile, e.g., a forest, a

mountain, a river, a plain, an obstacle, and so forth (Liapis, Yannakakis, & Togelius,

2015, p. 9). A hypothetical example map, and its abstraction (i.e., its numeric genotype)

is depicted in Figure 24. The map terrain (highly abstracted) is on the left, and its numeric

abstraction (the map's genotype) is shown on the right. In this example, note how the

value of "0" indicates clear terrain, a "1" represents a diamond obstacle, a "2" represents a

star obstacle, and "3" represents a black wall obstacle.

Figure 24. A random generated grid map (left) and its abstracted genotype (right).

One disadvantage with computer random generated 2D map samples is that they

are not real world maps. However, in this study, the benefits outweighed the

disadvantages because of the aforementioned convenience factor (low cost) and because

random generated maps, while not 100% representative of reality, provided the

opportunity to test pathfinding algorithms on simulated maps, at a fraction of the time

129

and cost that testing real pathfinding vehicles at hard-to-access locales (e.g. in enemy

territory, under water, on Mars, etc.) would entail.

Once the map genotypes (i.e., map population) were randomly created, they were

stratified into the demographic groups used in the study, as described earlier, and random

selection was utilized to assign samples to the experimental treatment groups. More

samples were available than were used. Testing pathfinding algorithms on randomly

generated 2D map samples required installation of the aforementioned graph analysis

frameworks on a test machine, which for this study was my MacBook Air laptop. A

Python data collection program performed the steps shown in Figure 25, to collect

experimental data, and then wrote the resulting data to file (for subsequent analysis).

The data collected were stored on file, in text format, for all 2D map samples

tested, and included the following: (a) sample map ID, (b) the path length for the shortest

path (if one exists) from source to destination nodes on the input 2D map, (c) pathfinding

algorithm tested, (d) graph analysis framework tested, (e) elapsed time, and (f) memory

consumed. Because the experimental data collected was stored in text file on the hard

drive of my computer running the experiments, the experimental data were parsed using a

second Python program to prepare it for subsequent statistical analyses. This data

processing Python program performed the steps depicted in Figure 26.

Once the data were parsed and cleaned, it was collated into the final master text

file for SPSS, and was later imported into SPSS for statistical analyses (e.g., MANOVA).

All data resulting from this study will be retained by the author of this study, and may be

available upon request.

130

Figure 25. Outline of python program to collect experimental data.

131

Figure 26. Outline of python program to parse experimental data.

 In all maps, for simplicity, all edges (arcs) were each assigned a uniform weight

of 1.0. This was because, as noted in Vesović, Smiljanić, and Kostić (2016), Dijkstra's

algorithm cannot handle negative edge weights. Therefore, to be able to fairly test all

three pathfinding algorithms, all random generated maps used the same positive, equal,

edge weight of 1.0. Use of varying edge weights could be a topic for further research.

Data Analysis Technique

The data analysis for this quantitative study focused on determining statistical

significance regarding the research question: What is the relationship between

pathfinding algorithms, graph analysis frameworks, 2D map complexity, elapsed time,

and computer memory consumed?

The hypotheses of this study were tested to identify causal inference between

pathfinding algorithms, graph analysis frameworks, map complexity, elapsed time, and

computer memory consumed. Next are my hypotheses for this study.

132

Null Hypothesis (H0): There is no relationship between pathfinding algorithms,

graph analysis frameworks, map complexity, elapsed time, and computer memory

consumed.

Alternative Hypothesis (Ha): There is a relationship between pathfinding

algorithms, graph analysis frameworks, map complexity, elapsed time and computer

memory consumed.

The sample data consisted of random computer generated, 2D grid maps

(mathematically represented as adjacency matrices) that were stratified into the

demographic categories mentioned in Section 2. Randomized trials are the "gold

standard" in causal inference due to their strong statistical supporting evidence (Clair,

Cook, & Hallberg, 2014, p. 311).

The collected data came from the aforementioned experimental treatment groups,

as discussed earlier. The computer random-generated 2D map samples were stratified

into demographic groups based on map complexity, and from these demographically

homogenous groups, random sample assignment was used to allocate samples to each of

the 12 groups for subsequent algorithm testing. According to Ariel et al. (2016),

stratification of samples into homogenous groups (by demographic traits) for subsequent

random sampling in randomized control trials, significantly improves internal validity.

Statistical analysis began with descriptive statistical analyses on the population of

2D map samples in order to verify homogeneity and calculate other descriptive

characteristics of the input population. In a comparative study of shortest paths used for

school route travel in urban vs. non-urban environments, researchers Buliung, Larsen,

133

Faulkner, and Stone (2013), demonstrated the benefits of using descriptive statistics in

quantitative research. Additionally, output data were cleaned and transformed so that

outliers which did not fit the desired demographics were modified accordingly. The

samples removed or modified in this fashion were replaced (or modified) with the desired

demographic characteristics to maintain equal sized groups. Using strict selection

criterion and grouping demographics aids the researcher when testing hypotheses on

samples that may exhibit clinically significant reactions to experimentally applied

treatments (Drislane et al., 2014). Additionally, as discussed by Marozzi (2016, p. 42),

removal of outliers improves the robustness of MANOVA calculations.

Following the descriptive statistical analysis, the factorial multivariate analysis of

variance (MANOVA) statistical procedure was conducted. MANOVA is a standard

statistical procedure to use when multiple dependent variables are present (Tonidandel &

LeBreton, 2013). In a study of pathfinding in complex graphs, researchers Dawson,

Munzner, and McGrenere (2015) successfully used multiple regression to evaluate the

impact of multiple factors on their dependent variable. However, multiple regression is

not used in this study because multiple regression supports only one dependent variable

(Dawson, Munzner, & McGrenere, 2015; Mertler & Reinhart, 2017). Since this study

intentionally uses multiple dependent variables, multiple regression was clearly rejected

in favor of MANOVA, as MANOVA supports multiple dependent variables (Blasco-

Arcas, Hernandez-Ortega, & Jimenez-Martinez, 2013; Puckett, Eggleston, Kerr, &

Luettich, 2014).

134

One weakness with MANOVA, however, is that when there is a significant

correlation between variables, MANOVA has limits on its ability to discriminate the

effects between multiple dependent variables (Tonidandel & LeBreton, 2013). To address

this weakness in MANOVA, when significant MANOVA effects were detected,

subsequent follow-up analyses were conducted using univariate ANOVAs with Scheffe's

post hoc test (Marsh-Hunkin, Gochfeld, & Slattery, 2013).

Regarding missing data, there was no missing data in this study. This study was a

controlled experiment, and if results were missing or was somehow inappropriate, it

could be removed and a new one either (a) pulled from its demographic group surplus, or

(b) a new one could be programmatically created with the desired demographic

characteristics, as needed. This helped maintain equal sized groups. More practically,

keeping group sizes equal, while not strictly required for MANOVA, was recommended

because this helped avoid problems in the statistical analysis if assumptions related to the

equality of the covariance matrices (i.e., homoscedasticity) were not met, as described in

Field (2013, p. 194), and by Howitt and Cramer (2014, p. 291).

MANOVA analysis assumes the following are satisfied: (a) dependent variables

must be continuous data types, not discrete or categorical; and independent variables

must be categorical, not continuous -- this was handled during organization and test

setup; (b) there is at a minimum at least one independent variable with at least two

categories -- this was handled during organization and test setup; (c) the sample size is

adequate -- as discussed in detail in Section 2, this experiment uses 150 samples (n =

150) per treatment group (12 groups total), yielding total n = 150 ´ 12 = 1,800 samples;

135

(d) independence of observations and use of random sampling (Mertler & Reinhart, 2017,

p. 129) -- which was resolved early, by utilizing proper theory and study design

(Tabachnick & Fidell, 2014, p. 291); (e) univariate normality -- which was detected

through boxplots, histograms, P-P plots, Q-Q plots, or normal curve inspection

(Korkmaz, Goksuluk, & Zararsiz, 2014, p. 10), and then mitigated by data

transformations or outlier removal (Tabachnick & Fidell, 2014, pp. 110, 117); (f)

multivariate normality -- which was detected using Mahalanobis distance (Korkmaz,

Goksuluk, & Zararsiz, 2014, p. 10; Mertler & Reinhart, 2017, p. 52; Tabachnick & Fidell,

2014, pp. 108-109), and mitigated through data transformations or outlier removal

(Tabachnick & Fidell, 2014, pp. 110, 117); (g) linearity between the dependent variables

within each treatment group (Gaston, Wilson, Mack, Elliot, & Prapavessis, 2013) --

which was verified with bivariate scatter plots (Hair, Anderson, Babin, & Black, 2010, p.

76; Mayorga & Gleicher, 2013, p. 1526; Veletsianos & Kimmons, 2016, p. 4), or

statistical bivariate correlation (Amin, Malik, Kamel, Chooi, & Hussain, 2015, pp. 8-9;

White & Perrone-McGovern, 2017, p. 42), and mitigated through data transformations or

outlier removal (Tabachnick & Fidell, 2014, pp. 110, 117); and (h) homoscedasticity

(Bird & Hadzi-Pavlovic, 2014), also known as homogeneity of variance (Tabachnick &

Fidell, 2014, p. 120) -- which was detected with bivariate scatter plots, or Box's M test

for equality of variance-covariance matrices (Mertler & Reinhart, 2017, p. 36). Finally,

while transformations usually mitigate most violations of homoscedasticity (Tabachnick

& Fidell, 2014, p. 120), violations of homoscedasticity are not fatal to multivariate

statistical analyses (Mertler & Reinhart, 2017, p. 130). Tabachnick and Fidell (2014, p.

136

293) noted that when using equal sample sizes per treatment group, with at least n = 100

per group (i.e., a large sample size, p. 114), robustness of multivariate significance tests

are to be expected and one may disregard results of Box's M Test (p. 294). Nonetheless,

if homoscedasticity were violated, MANOVA is generally resistant to assumptions

violations (Rosa et al., 2016, p. 4), and usage of the more robust Pillai's Trace can be

employed when interpreting the MANOVA results, as suggested by Mertler and Reinhart

(2017, p. 132); Rosa et al. (2016, p. 4); Tabachnick and Fidell (2014, p. 311); and Warne

(2014, p. 6). As a precaution, this study followed the process of removing or transforming

outliers early (upstream) during the data screening phase, and always used equal numbers

of samples per treatment group, as was strongly recommended by Tabachnick and Fidell

(2014, p. 316) to simplify and improve later (downstream) multivariate statistical

analyses and inferential results (p. 316).

The data were analyzed using IBM SPSS version 23. Using an a priori medium

effect size (ES = 0.1), power = 0.8, 12 treatment groups, three predictor (i.e. independent)

variables, two response (i.e., dependent) variables, and tested at p = 0.05, would indicate

main effects and interaction effects significance, as mentioned earlier in the Population

and Sampling section.

Study Validity

In the tradition of quantitative science research, research instruments and methods

of data collection are tested, controlled and examined for validity (Collins & Cooper,

2014). Validity in the context quantitative research refers to how accurately do the results

represent the objective truth. Regarding causal inference, bias influences the validity of

137

experimental, quantitative studies (Pluye & Hong, 2014). According to Venkatesh,

Brown, and Bala (2013) in quantitative research there are three broad categories of

validity: (a) content and construct validity (i.e., measurement validity); (b) internal and

external validity (i.e., design validity); and (c) statistical conclusion validity (i.e.,

inferential validity).

Content validity refers to extent that questions posed actually measure the

intended construct of research interest (Drost, 2013). The intent of this study was to

specifically measure the impact of pathfinding algorithms, graph analysis frameworks,

and map complexity on elapsed time and memory consumption, in order to make causal

inference. For example, this study does not measure computer central processing unit

(CPU) temperature, nor does it measure the refresh rate of computer monitors, as those

concerns have no relevance to this study. Instead, the content validity is high in this study

because the study only uses tools that specifically measure elapsed time and memory

consumption. These tools have existed for over a decade so they have been well tested by

the Python development community (Gorelick & Ozsvald, 2014), with newer versions

(with bug fixes, enhancements) made available to the public, as needed.

Construct validity refers to the ability of the instruments to measure what they

claim to measure (Drost, 2013). This study used instrumentation specifically geared to

running algorithm pathfinding tests, measure computer timing and memory consumption.

This is because elapsed time and memory consumption are my dependent variables of

interest. Reliability is the degree to which the measurements are free from error and are

consistent (Lakshmi & Mohideen, 2013). The aforementioned instruments used to

138

measure elapsed time and memory consumption are reliable because they reliably and

repeatedly produce consistent output for a given consistent input (Gorelick & Ozsvald,

2014). Because the instrumentation is reliable, and because the instruments measure what

is intended, no more, no less, high construct validity is maintained with the selected

instrumentation. The pathfinding algorithm instruments were checked for validity and

reliability by me, as mentioned earlier.

Internal validity refers to the ability to draw causal inferences from the data (Neall

& Tuckey, 2014). When internal validity is high, one can make a strong case that one

variable directly impacts another, hence the importance of internal validity in

experimental studies. Internal validity can be increased reducing sample attrition and

sample mortality. Additionally, history bias is a threat to internal validity, in that natural

life historical events (e.g., death of family member) can cause human subjects to behave

in unexpected ways, thereby potentially causing confounding effects. In this study, my

samples are not alive, they do not mature, and they do not die, so they did not suffer from

the effects of selection mortality or selection history. Selection bias is another threat to

internal validity, but this can be reduced or eliminated by using random sampling and

sample stratification, which were both utilized in this study.

External validity refers to the ability to generalize the results to other populations

and other settings (Henderson, Kimmelman, Fergusson, Grimshaw, & Hackam, 2013;

Zohrabi, 2013). Sample bias is a threat to external validity. One can more easily

generalize study results if the samples are diverse. This study uses several different

sample demographics, thereby providing a heterogeneous population from which to draw

139

samples. One drawback with using too much sample variety is that if the samples are too

varied, yes external validity increases, but this also increases threats to statistical

conclusion validity (Luft & Shields, 2014). Therefore a balance must be made between

narrow vs. wide sampling strategies, which I followed in this study by utilization of a

targeted population, stratified by the demographic criteria of interest.

Statistical conclusion validity is the degree to which conclusions drawn from the

data are correct and reasonable (Neall & Tuckey, 2014). Threats to statistical conclusion

validity include using samples that exhibit too much or too little heterogeneity, as this

may create confounding results. Too much heterogeneity can occur if the sample

population is too wide, as discussed earlier. Using variable (inconsistent) experimental

procedures presents another threat to statistical conclusion validity because the treatment

implementation would be unreliable, and therefore the data derived may be unreliable.

This study did not suffer from these threats to statistical conclusion validity because (a)

the use of randomly generated, demographically stratified samples; and (b) the

experimental procedures were written in Python computer scripts which repeatedly and

reliably ran the tests, in an automated fashion, one by one, until all samples were

processed.

To prevent the my experience as a professional software engineer from negatively

biasing this research, this study relied on existing code frameworks, application

programmer interfaces (APIs), and pathfinding algorithm implementations. Therefore, I

wrote only glue code which connected the test harness to the graph analysis frameworks

to collect algorithmic performance data, and therefore let the graph analysis frameworks

140

do the actual algorithmic pathfinding work using their internal pathfinding algorithm

implementations. This approach meant I did not implement the pathfinding algorithms

used in this study. This is because, as already mentioned and documented in the literature

review in Section 1, many Python developers world-wide use the graph analysis

frameworks I quantitatively compared in this study, so a study researching and

comparing those popular graph analysis frameworks may be of greater interest to them,

than research on pathfinding algorithms specifically implemented by me (especially

considering the fact that I have never contributed pathfinding code to any open source

projects). To be clear, this empirical, applied study was a quantitative experiment

comparing open source pathfinding algorithm code already written and published by

others. This study did not compare pathfinding algorithm code implemented by me.

Using and comparing popular algorithm code written by others, thus not limiting

this research to algorithm code written specifically by me, reduced author bias, and

thereby increased internal validity. By not being the author of the pathfinding code, I was

less likely to be biased when collecting and recording the test results. Methods to widen

the potential audience for this study can improve its clinical generalization (Henderson,

Kimmelman, Fergusson, Grimshaw, & Hackam, 2013). This improvement in

generalizability (i.e., external validity) was accomplished by using open source code

frameworks, since I assumed more people use the aforementioned open source graph

analysis frameworks I compared than would ever use pathfinding algorithm code

implemented specifically by me.

141

The samples used in the study consisted of local computer random-generated 2D

maps (adjacency matrices). The sample size was limited to maps that can easily be

processed on my laptop. However, these map samples are not representative of all the

possible complex maps in the information technology world. Therefore, as is sometimes

the case with clinical laboratory tests, any findings from this study may only be limited to

similar settings (Zohrabi, 2013). This is due to the limitations of the variety of random

computer-generated maps used. However, using more map variety and/or more

pathfinding algorithms to increase external validity are valid avenues for further research

and is discussed in detail in Section 3 of this study.

Transition and Summary

Section 2 included details of my role as the researcher (and software engineer) of

this study, and justification for the quantitative method and chosen experimental design.

Furthermore, it described how this study did not require human subjects. Section 2

described this study's use of computer random generated 2D map samples, stratification

of those samples based on demographic traits, and subsequent random sample assignment

to experimental treatment groups. Random assignment is a hallmark of experimental

research, and randomized trials are the "gold standard" in causal inference due to their

strong statistical backing (Clair, Cook, & Hallberg, 2014, p. 311). This study is a

quantitative experiment with the goal of identifying a causal nexus between pathfinding

algorithms, graph analysis frameworks, map complexity, elapsed time, and computer

memory consumption. Section 2 concluded with a presentation of the post data collection

and analysis procedures, including a discussion of validity and reliability.

142

Next, Section 3 consists of a presentation of my findings, a discussion of the

applicability and practicality of these findings for software engineers specifically, and to

the wider information technology community more broadly, and it concludes with a

discussion of implications for positive social change that may emerge from this study's

results.

143

Section 3: Application to Professional Practice and Implications for Change

Section 3 contains the results of the analysis presented in Section 2. This section

includes (a) a brief overview of the study, (b) presentation of findings, (c) discussion of

applications to professional practice, (d) discussion social change implications, (e)

recommendations for action, (f) recommendations for further study, and (g) personal

reflections. I then close the section with a summary and my conclusions.

Overview of Study

The purpose of this quantitative experimental study was to examine the

relationship between pathfinding algorithms, graph analysis frameworks, map

complexity, elapsed time, and memory consumption, to help software engineers select

appropriate pathfinding algorithms for resource-constrained software agents running in

complex networks, network dead zones or GPS-denied environments. The target

population consisted of local computer random-generated two-dimensional (2D) maps

(i.e., adjacency matrices). The three independent variables were (a) pathfinding

algorithms; (b) graph analysis frameworks; and (c) map complexity. The two dependent

variables were (a) elapsed time; and (b) computer memory consumption. The null

hypothesis was rejected, and the alternative hypothesis was accepted. Elapsed time and

computer memory consumption are both significantly affected by pathfinding algorithms,

graph analysis frameworks, and map complexity.

Presentation of the Findings

I first reintroduce my quantitative research question, followed by my two

hypotheses.

144

Research Question (RQ): What is the relationship between pathfinding

algorithms, graph analysis frameworks, map complexity, elapsed time, and computer

memory consumption?

Null Hypothesis (H0): There is no relationship between pathfinding algorithms,

graph analysis frameworks, map complexity, elapsed time, and computer memory

consumption.

Alternative Hypothesis (Ha): There is a relationship between pathfinding

algorithms, graph analysis frameworks, map complexity, elapsed time, and computer

memory consumption.

Analysis of the research question and hypotheses using MANOVA lead me to

reject the null hypothesis. There was strong statistical evidence to support a relationship

between pathfinding algorithms, graph analysis frameworks, map complexity, elapsed

time, and computer memory consumption. Before I discuss the main effects and

interaction effects results of the MANOVA statistic, I first discuss the results of the pilot

test (first mentioned in Section 2) that I used to statistically verify the reliability of my

algorithm instruments.

Pilot Test of the Algorithm Instrumentation

As I discussed in Section 2, since no peer-reviewed literature could be found

specifically describing the validity or reliability of the six pathfinding algorithms from

the selected graph analysis frameworks used in this study, I verified the reliability and

validity of the six algorithm instruments in a pilot test, using the Wilcoxon Signed Ranks

statistic, with 150 map samples per algorithm instrument. As there were six algorithm

145

instruments, the total sample size n utilized in the pilot test = (150 samples ´ 6

instruments) = 900. The pilot test was a repeated-measures design without intervention.

There were six treatment groups (one per algorithm instrument). The population pool

consisted of 1000 random generated map samples of the same size (200 ´ 200 adjacency

matrix), all with uniform edge weights of 1.0. Next, each group was assigned 150

randomly selected samples. Each group was tested against one of the six pathfinding

algorithms, to find the shortest paths in those 2D map samples, while measuring the

elapsed time and memory consumption results. Later, in a separate, second iteration

(without intervention), the same map samples, per group, were again tested against the

same pathfinding algorithm they were tested with the first time (hence the repeated-

measures and no intervention aspects of the pilot test), and the resulting elapsed time and

memory consumption results from the second iteration were also recorded. Afterwards,

the results from both iterations, per algorithm, 2D map sample, and experimental group,

were compared using the Wilcoxon Signed Ranks statistic. The Wilcoxon Signed Ranks

statistic was used with p = .05 to guard against Type I error. Usage of the Wilcoxon

Signed Ranks test to verify the validity and reliability of software was recommended

separately by Arcuri and Briand (2014); Bezerra, Goldbarg, Goldbarg, and Buriol (2013);

Dybå, Kampenes, and Sjøberg (2006); Hric, Peixoto, and Fortunato (2016); Taylor, et al.,

(2016); and by Vegas, Apa, and Juristo (2016). The results from the Wilcoxon Signed

Ranks pilot test are depicted in Table 13 through Table 18.

146

Table 13

Wilcoxon Signed Ranks -- Pilot Test Results for Graph-Tool A* Instrument

Graph-Tool: A*
ELAPSED_TIME_2 -

ELAPSED_TIME

MEMORY_CONSUMED_2 -

MEMORY_CONSUMED

Z -.433a -.929a

Asymp. Sig. (2-tailed) .665 .353

a. Based on negative ranks.

 A Wilcoxon Signed Ranks test was conducted to evaluate whether the Graph-

Tool A* algorithm instrument showed statistically different results between test runs,

using a repeated measures design (150 samples) with no intervention. As shown in Table

13 above, for elapsed time, z (n = 150) = -.433, with two-tailed p =.665, which indicated

no significant difference in the amount of elapsed time between either instrument test

iteration. For memory consumption, z (n = 150) = -.929, with two-tailed p = .353, which

indicated no significant difference in the amount of memory consumption between either

instrument test iteration.

Table 14

Wilcoxon Signed Ranks -- Pilot Test Results for Graph-Tool Bellman-Ford Instrument
Graph-Tool: Bellman-
Ford

ELAPSED_TIME_2 -

ELAPSED_TIME

MEMORY_CONSUMED_2 -

MEMORY_CONSUMED

Z -.627a -1.048b

Asymp. Sig. (2-tailed) .531 .295

a. Based on positive
ranks.

b. Based on negative
ranks.

147

 A Wilcoxon Signed Ranks test was conducted to evaluate whether the Graph-

Tool Bellman-Ford algorithm instrument showed statistically different results between

test runs, using a repeated measures design (150 samples) with no intervention. As shown

in Table 14 above, for elapsed time, z (n = 150) = -.627, with two-tailed p =.531, which

indicated no significant difference in the amount of elapsed time between either

instrument test iteration. For memory consumption, z (n = 150) = -1.048, with two-tailed

p = .295, which indicated no significant difference in the amount of memory

consumption between either instrument test iteration.

Table 15

Wilcoxon Signed Ranks -- Pilot Test Results for Graph-Tool Dijkstra Instrument

Graph-Tool: Dijkstra
ELAPSED_TIME_2 -

ELAPSED_TIME

MEMORY_CONSUMED_2 -

MEMORY_CONSUMED

Z -.743a -.784b

Asymp. Sig. (2-tailed) .458 .433

a. Based on positive
ranks.

b. Based on negative
ranks.

 A Wilcoxon Signed Ranks test was conducted to evaluate whether the Graph-

Tool Dijkstra algorithm instrument showed statistically different results between test

runs, using a repeated measures design (150 samples) with no intervention. As shown in

Table 15 above, for elapsed time, z (n = 150) = -.743, with two-tailed p =.458, which

indicated no significant difference in the amount of elapsed time between either

instrument test iteration. For memory consumption, z (n = 150) = -.784, with two-tailed p

= .433, which indicated no significant difference in the amount of memory consumption

between either instrument test iteration.

148

Table 16

Wilcoxon Signed Ranks -- Pilot Test Results for Network-X A* Instrument

Network-X: A*
ELAPSED_TIME_2 -

ELAPSED_TIME

MEMORY_CONSUMED_2 -

MEMORY_CONSUMED

Z -.428a -.357b

Asymp. Sig. (2-tailed) .669 .721

a. Based on positive
ranks.

b. Based on negative
ranks.

 A Wilcoxon Signed Ranks test was conducted to evaluate whether the Network-X

A* algorithm instrument showed statistically different results between test runs, using a

repeated measures design (150 samples) with no intervention. As shown in Table 16

above, for elapsed time, z (n = 150) = -.428, with two-tailed p =.669, which indicated no

significant difference in the amount of elapsed time between either instrument test

iteration. For memory consumption, z (n = 150) = -.357, with two-tailed p = .721, which

indicated no significant difference in the amount of memory consumption between either

instrument test iteration.

Table 17

Wilcoxon Signed Ranks -- Pilot Test Results for Network-X Bellman-Ford Instrument
Network-X: Bellman-
Ford

ELAPSED_TIME_2 -

ELAPSED_TIME

MEMORY_CONSUMED_2 -

MEMORY_CONSUMED

Z -.943a -1.724b

Asymp. Sig. (2-tailed) .346 .085

a. Based on positive
ranks.

b. Based on negative
ranks.

149

A Wilcoxon Signed Ranks test was conducted to evaluate whether the Network-X

Bellman-Ford algorithm instrument showed statistically different results between test

runs, using a repeated measures design (150 samples) with no intervention. As shown in

Table 17 above, for elapsed time, z (n = 150) = -.943, with two-tailed p = .346, which

indicated no significant difference in the amount of elapsed time between either

instrument test iteration. For memory consumption, z (n = 150) = -1.724, with two-tailed

p = .085, which indicated no significant difference in the amount of memory

consumption between either instrument test iteration.

Table 18

Wilcoxon Signed Ranks -- Pilot Test Results for Network-X Dijkstra Instrument

Network-X: Dijkstra
ELAPSED_TIME_2 -

ELAPSED_TIME

MEMORY_CONSUMED_2 -

MEMORY_CONSUMED

Z -1.692a -.639b

Asymp. Sig. (2-tailed) .091 .523

a. Based on negative
ranks.

b. Based on positive
ranks.

 A Wilcoxon Signed Ranks test was conducted to evaluate whether the Network-X

Dijkstra algorithm instrument showed statistically different results between test runs,

using a repeated measures design (150 samples) with no intervention. As shown in Table

18 above, for elapsed time, z (n = 150) = -1.692, with two-tailed p = .091, which

indicated no significant difference in the amount of elapsed time between either

instrument test iteration. For memory consumption, z (n = 150) = -.639, with two-tailed p

= .523, which indicated no significant difference in the amount of memory consumption

between either instrument test iteration.

150

Results of the Algorithm Instrumentation Pilot Test

The results of the pilot test on the six algorithm instruments demonstrated that the

algorithm instruments were statistically valid and reliable, as no Wilcoxon Signed Ranks

tests, in a repeated-measures without intervention design, yielded p values £ 0.05. Per

Howitt and Cramer (2014), a Wilcoxon Signed Ranks value of p £ 0.05 indicates

statistical significance, thus indicating significant differences between test iterations (pp.

186-191). In the pilot test, all Wilcoxon results were not significant (p > .05), meaning

each pair of iterations tested, per algorithm, generated statistically similar results. In

conclusion, the results of the pilot test indicated the six algorithm instruments were both

statistically valid and reliable enough to be used in this specific doctoral study.

MANOVA and its Relationship to the Experimental Variables

The multivariate analysis of variance (MANOVA) is a multivariate version of the

ANOVA, and supports two or more dependent variables, whereas ANOVA only supports

a single dependent variable (Tabachnick & Fidell, 2014). Like ANOVA, the MANOVA

is used to test the significance of group differences (Mertler & Reinhart, 2017), but unlike

ANOVA, by design the MANOVA will support multiple, continuous (non-categorical)

dependent variables. A factorial MANOVA is a MANOVA that involves two or more

categorical independent variables (each with at least two categories or levels), and two or

more continuous dependent variables. For MANOVA (whether one-way, multi-way, or

factorial) the independent variables must always be categorical (e.g., gender, political

party affiliation, marital status, etc.) each with at least two levels, and the dependent

variables must be continuous (e.g., age in years, salary, bank balance, etc.)

151

As discussed in Section 2, this quantitative experimental study utilized a between-

groups, post-test only, 3 ´ 2 ´ 2 factorial MANOVA design, with three independent

categorical variables: (a) pathfinding algorithm (with 3-levels); (b) graph analysis

framework (with 2-levels); and (c) map complexity (with 2-levels); and two continuous

(i.e., quantitative) dependent variables: (a) elapsed time (measured in seconds); and (b)

computer memory consumed (measured in megabytes).

There were 12 experimental treatment groups, and each was provided with an

equal number (n = 150) of pre-stratified and random-selected 2D sample maps from a 2D

map population pool that was computer random-generated, as discussed in Section 2.

The reason for using MANOVA in this experiment is that I intentionally

manipulated the three categorical independent variables (pathfinding algorithm, graph

analysis framework, and map complexity), to detect and measure the impact of those

various treatment manipulations upon two dependent variables (elapsed time, and

computer memory consumption) in 12 experimental treatment groups. As discussed in

detail below, MANOVA results indicated the mean differences between groups, due to

the experimental treatments, were statistically significant, and therefore did not occur by

chance. The ability to detect the significance of treatment group differences is a main

feature of MANOVA (Mertler & Reinhart, 2017, p. 125). In this study, MANOVA

results indicated which independent and dependent variables were statistically affected by

the treatments, and the extent of the statistical relationship. When significant MANOVA

effects were detected, follow-up analyses were conducted using univariate ANOVAs

152

with Scheffe's post hoc test, as recommended by Marsh-Hunkin, Gochfeld, and Slattery

(2013), and by Tabachnick and Fidell (2014).

Experimental manipulations of the independent variables had a statistically

significant impact on the dependent variables, so I rejected the null hypothesis (H0) and

accepted the alternate hypothesis (Ha).

Data Screening and Transformations

SPSS version 23.0 was utilized to conduct the data analysis for this study. Before

I conducted inferential statistical analyses, the data were screened to ensure they were

reliable and valid for this study. The initial screen checked for missing data to ensure

enough data existed for the MANOVA statistic. There was no missing data. The second

screening checked for outliers in the dependent variables, as this could limit the accuracy

of MANOVA results. This was performed by analyzing the boxplots, stem and leaf plots,

and histograms generated by the SPSS Descriptive Statistics Explore feature, as

recommended by Field (2013), Howitt and Cramer (2014), and by Mertler and Reinhart

(2017). Further analyses of the data distributions (normality) of the dependent variables

was verified by reviewing the shape of the distributions, seeking skewness and kurtosis.

When outliers were found, they were transformed to fit within at least +/- 2.50 standard

deviations of the mean for that variable, as recommended by Field (2013, p. 198), and to

keep skewness and kurtosis both within +/- 1.0, as recommended by Mertler and Reinhart

(2017, p. 45). Two new variables in SPSS were created to contain the transformed results

of "elapsed time" and "memory consumed", and were named "Elapsed_Time_2" and

"Memory_Consumed_2" respectively. Finally, I verified the homoscedasticity and

153

linearity of the dependent variables by using SPSS software. After data transformations,

all subsequent inferential statistical analyses were performed using the transformed

variables, as recommended by Mertler and Reinhart (2017, p. 44).

Descriptive Statistics

A total of 1,800 samples were used in this study, utilized in various between-

subject factors, as depicted below in Table 19, Figure 27, Figure 28, and Table 26.

Figures 31 and 32, depict the SPSS results of the descriptive statistics for each

combination of the three independent variables ("Algorithm", "Framework", and "Map

Complexity"), and the two (transformed) dependent variables (i.e., "Elapsed Time _2",

and "Memory_Consumed_2").

Table 19

Sample Counts (N) per Between-Subject Factors

Between-Subject Factors N % of total

Algorithm A* (A-star) 600 33.3
Bellman-Ford 600 33.3
Dijkstra 600 33.3

Framework Graph-Tool 900 50.0
Network-X 900 50.0

Map Complexity High 900 50.0
Low 900 50.0

Each of the 1,800 samples were tested for Elapsed Time and Computer Memory

Consumption. Samples were evenly distributed among the three independent variables, as

described earlier in Table 3, and Figure 14, of Section 2. The means and standard

deviations for the samples are depicted in Figure 27, Figure 28, and Table 26.

154

Figure 27. Descriptive statistics (part 1 of 2): elapsed time.

 The Elapsed Time mean and standard deviation for the A* group (from Figure

27): M = .10888, SD = .101900, N = 600. For the Bellman-Ford group: M = .10277, SD =

.098135, N = 600. For the Dijkstra group: M = .10801, SD = .100188, N = 600. Overall

Elapsed Time descriptive statistics for all groups: M = .10655, SD = .100067, N = 1800.

155

Figure 28. Descriptive statistics (part 2 of 2): computer memory consumption.

 Memory consumption mean and standard deviation for the A* group (from Figure

28): M = 1.08061, SD = .980557, N = 600. For the Bellman-Ford group: M = 2.60553, SD

= 2.373227, N = 600. For the Dijkstra group: M = 1.16935, SD = .897895, N = 600.

Overall Memory Consumption descriptive statistics for all groups: M = 1.161850, SD =

1.718312, N = 1800.

156

Table 20

Statistical Test, Assumptions, and Methods of Verifying Assumptions
Statistical Test Assumptions Verifying Methods

Factorial-

MANOVA

1. At least two dependent,
continuous (i.e.,
quantitative) variables.

A priori study design choice

 2. At least two independent
(categorical) variables, each
with at least two levels (i.e.,
categories)

A priori study design choice

 3. Independence of
Observations

A priori study design choice

 4. Random sampling A priori study design choice

 5. Sample size A priori study design choice

 6. Univariate normality Boxplots; Histograms; P-P plots; Q-Q
plots

 7. Multivariate normality Mahalanobis distance; Bivariate
scatter plots

 8. Linearity Bivariate scatter plots

 9. Homoscedasticity (i.e.,
"homogeneity of variance")

Box's M-Test for equality of variance-
covariance matrices; Bivariate scatter
plots

MANOVA Assumptions

There are nine factorial MANOVA statistical assumptions, although Field (2013),

Mertler and Reinhart (2017), and Tabachnick and Fidell (2014), discussed several

situations where MANOVA is quite robust to violations of several of these assumptions.

A summary of the MANOVA assumptions is depicted in Table 20.

The results of my MANOVA assumptions verifications were as follows.

157

1. Dependent variables. As discussed in Section 2, I designed this study to use

two continuous dependent variables: elapsed time (measured in seconds), and computer

memory consumption (measured in megabytes). This was by design.

2. Independent variables. As discussed in Section 2, I designed this study to use

three categorical independent variables, all of which have at least two categories: (a)

pathfinding algorithm (with three categories); (b) graph analysis framework (with two

categories); and (c) map complexity (with two categories). This was by design.

3. Independence of observations: As discussed in Section 2, I designed this study

to ensure each 2D map sample was used only once per graph analysis framework. Also,

no dependent variable results derived from any 2D map sample was dependent on prior

results derived from any other 2D map sample. This was by design.

4. Random sampling. As discussed in detail in Section 2, I designed this study

around the fact that the entire 2D map population pool of 2,000 maps was local computer

random generated. Furthermore, this population pool was stratified based on the "map

complexity" independent variable (i.e., high vs. low map complexity), thereby forming

two stratified population subgroups, from which random assignment of samples to

experimental treatment groups was possible. This was by design.

5. Sample size. As discussed in Section 2, my a priori G*Power analyses for

MANOVA sample sizes yielded a minimum recommended sample size of 63 per

treatment group. I used 150 samples (n =150), for each of the 12 treatment groups (150 ´

12 = 1800 samples total). This was by design. Using a large and equal number of samples

per treatment group was recommended by Tabachnick and Fidell (2014) to ensure a

158

robust MANOVA, and provided the option to disregard Box's M-test (p. 294). The

freedom to ignore Box's M-test by using a large total sample size and equal-sized

treatment groups was also separately confirmed by Field (2013, p. 652), Howitt and

Cramer (2014, p. 291), Mertler and Reinhart (2017, p. 130), and by Tabachnick and

Fidell (2014, p. 294). Note that my choice of n = 150 samples per treatment group was

considered a large sample size according to Korkmaz, Goksuluk, and Zararsiz (2014, p.

11), Mertler and Reinhart (2017, p. 130), Tabachnick and Fidell (2014, p. 114), and by

White and Perrone-McGovern (2017, pp. 39-40). A final indicator that I utilized a large

sample size was the fact that my selected per group sample size of n = 150 was far larger

than the G*Power a priori minimum recommended sample size of 63 samples per

treatment group, described in Section 2.

6. Univariate normality. This assumption is best tested through boxplots, P-P

plots, and/or histograms, as recommended separately by Amin, Malik, Kamel, Chooi, and

Hussain (2015, pp. 9-11); and by Tabachnick and Fidell (2014). As discussed above, the

few univariate outliers discovered were manually transformed to have skewness and

kurtosis scores +/- 1.0, as recommended by Field (2013), and by Mertler and Reinhart

(2017, p. 45). Subsequent tests of the transformed variables (using boxplots, histograms,

and/or P-P plots) showed no violations of univariate normality.

Table 21

Mahalanobis Distances between Elapsed_Time and Memory_Consumption
Framework Map Complexity Algorithm Mahalanobis Distance

Graph-Tool High (1000 ´ 1000) A* (A-star) 9.027

 Bellman-Ford 8.267

159

 Dijkstra 6.483

 Low (200 ´ 200) A* (A-star) 8.321

 Bellman-Ford 10.109

 Dijkstra 8.602

Network-X High (1000 ´ 1000) A* (A-star) 8.111

 Bellman-Ford 7.305

 Dijkstra 6.304

 Low (200 ´ 200) A* (A-star) 11.369

 Bellman-Ford 6.987

 Dijkstra 9.231

7. Multivariate normality. This assumption was tested by calculating the

Mahalanobis distance of the transformed dependent variables, and comparing that to the

permitted c2 critical value based on the degrees of freedom (i.e., number of dependent

variables), with p < .001, as discussed by Korkmaz, Goksuluk, and Zararsiz (2014, p. 10),

Mertler and Reinhart (2017, p. 52), and by Tabachnick and Fidell (2014, pp. 108-109). In

this study, no Mahalanobis distance for any of the multivariates exceeded 13.816, which

was maximum permitted c2 critical value, for df = 2, at p < .001 (per Mertler & Reinhart,

2017, pp. 53, 357). Therefore, based on tests of the Mahalanobis Distances, there were no

violations of multivariate normality. A summary of the Mahalanobis distances between

the transformed dependent variables is depicted in Table 21.

8. Linearity. Linearity between dependent variables within each treatment group

can be tested with bivariate scatter plots, as recommended by Field (2013, p. 192); Hair,

Anderson, Babin, and Black (2010, pp. 76, 366); Mayorga and Gleicher (2013, p. 1526);

160

Mertler and Reinhart (2017, pp. 34, 55-56, 148); Tabachnick and Fidell (2014, p. 117);

and by Veletsianos and Kimmons (2016, p. 4). Based on the 12 bivariate scatter plots

(i.e., one per treatment group) depicted in Figure 29 through Figure 34 below, no linearity

violations occurred. The shapes displayed in each of the 12 bivariate scatter plots are

approximately elliptical (i.e., roughly oval). An approximate elliptical shape is indicative

of a linear relationship between the dependent variables, as described by Field (2013, p.

192); Lampis, Díaz-Emparanza, and Banerjee (2015, p. 236); Mertler and Reinhart (2017,

pp. 34, 55-56, 148); and by Tabachnick and Fidell (2014, pp. 117-118). It was clear to

me, upon inspection of the dependent variable scatter plots, that no non-linear (e.g.,

curvilinear) relationship between dependent variables existed.

Figure 29. Graph-Tool, A* (a-star): scatter plot of (transformed) elapsed time (in sec) vs.
memory consumed (in MB) (low-complexity map group on left; high-complexity map
group on right).

161

Figure 30. Graph-Tool, Bellman-Ford: scatter plot of (transformed) elapsed time (in sec)
vs. memory consumed (in MB) (low-complexity map group on left; high-complexity map
group on right).

Figure 31. Graph-Tool, Dijkstra: scatter plot of (transformed) elapsed time (in sec) vs.
memory consumed (in MB) (low-complexity map group on left; high-complexity map
group on right).

162

Figure 32. Network-X, A* (a-star): scatter plot of (transformed) elapsed time (in sec) vs.
memory consumed (in MB) (low-complexity map group on left; high-complexity map
group on right).

Figure 33. Network-X, Bellman-Ford: scatter plot of (transformed) elapsed time (in sec)
vs. memory consumed (in MB) (low-complexity map group on left; high-complexity map
group on right).

163

Figure 34. Network-X, Dijkstra: scatter plot of (transformed) elapsed time (in sec) vs.
memory consumed (in MB) (low-complexity map group on left; high-complexity map
group on right).

Figure 35. Box's M-test for equality of covariance matrices.

9. Homoscedasticity. This assumption was tested with Box's M-test (i.e., Box's

Test of Equality of Covariance Matrices), using p > .001 as the criterion, as

recommended by Howitt and Cramer (2014, p. 269); and Mertler and Reinhart (2017, p.

36). As shown in Figure 35, Box's M-test yielded F(33, 6775059.794), p £ 0.001, which

was significant, therefore there were significant differences between covariance matrices,

164

so the assumption of homoscedasticity was not met. However, Tabachnick and Fidell

(2014) contend that IBM's SPSS Box's M-test is "too strict" when using the large sample

sizes often required in MANOVA analyses (2014, p. 120). Additionally, if samples sizes

are both large and equal sized (for all treatment groups), one may disregard a statistically

significant Box's M-test and use the stricter Pillai's Trace statistic in all subsequent

MANOVA analyses, instead of the traditional Wilks' Lambda (L) for subsequent

interpretation of the MANOVA multivariate F results (2014, p. 294). With equal

numbers of samples per treatment group robustness of significance tests can be expected

(2014, p. 294). Additionally, Field (2013, pp. 643, 652) and Howitt and Cramer (2014,

pp. 291, 305) also noted that violations of homoscedasticity due to results of a significant

Box's M-test are not a concern if group sizes are equal. Field (2013, p. 643) even

indicated that Box's M-test is "unstable" when per group sample sizes are equal, hence a

major reason why Field (and others) recommended Box's M-Test be ignored when using

equal sample sizes (I used equal sized groups). Marozzi (2016, p. 42) also discussed use

of equal-sized groups to improve MANOVA robustness. Utilizing n =150 samples per

treatment group is considered a "large" sample size according to Korkmaz, Goksuluk,

and Zararsiz (2014, p. 11), Mertler and Reinhart (2017, p. 130), Tabachnick and Fidell

(2014, p. 114), and by White and Perrone-McGovern (2017, pp. 39-40). Therefore,

although the homoscedasticity assumption was not met, I analyzed the collected data

anyway because: (a) I used a large sample size (n = 150 per group; total n = 12´150 =

1,800); (b) I used equal sized treatment groups (n = 150 each); and (c) I utilized the

165

stricter Pillai's Trace statistic (instead of Wilks' L) to interpret the MANOVA

multivariate F results; as recommended in the aforementioned references.

Table 22

The General MANOVA Analysis Process (Mertler & Reinhart, 2017, p. 128)
1. Examine the overall multivariate test of significance. If the overall MANOVA results

are significant, proceed to the next step. Else stop.

2. Examine the univariate tests of each of the individual dependent variables. If any
ANOVAs are significant, proceed to the next step. Else stop.

3. Examine the post hoc tests (e.g., Scheffe's Test) for significance, and (if available)
examine the homogeneous subsets.

MANOVA Statistical Output

The MANOVA statistical analyses occurred in three steps, listed in Table 22. As

discussed earlier in Section 3, the stricter Pillai's Trace statistic was used to interpret the

MANOVA results. The multivariate MANOVA test results generated by SPSS are

presented in Figure 36. The MANOVA results, interpreted with the strict Pillai's Trace

statistic, showed significant factor interaction between (a) Algorithm ´ Framework; (b)

Algorithm ´ Map Complexity; (c) Framework ´ Map Complexity; and (d) the combined

Algorithm ´ Framework ´ Map Complexity; on both dependent variables (elapsed time,

and memory consumption).

MANOVA results also indicated significant main effects for (a) Algorithm; (b)

Framework; and (c) Map Complexity; on both dependent variables (elapsed time, and

memory consumption). A summary of the means and standard deviations for each

166

dependent variable utilized in this study is depicted in Table 26. I discuss results of the

MANOVA in the "Interpretation of Inferential Results" part of Section 3.

Figure 36. MANOVA summary table of multivariate results.

 The second step assessed the univariate ANOVAs for the transformed dependent

variables "Elapsed_Time_2" and "Memory_Consumption_2", on each of the independent

167

variables (singly, and in combination), with results depicted in Figure 37. I discuss results

of the univariate ANOVAs in the "Interpretation of Inferential Results" part of Section 3.

Figure 37. Univariate ANOVA data summary.

 The third step in MANOVA analysis was the assessment of pair-wise

comparisons using Scheffe's post-hoc statistical test. Results of the SPSS Post-Hoc

analyses on the Pathfinding Algorithm independent variable are depicted in Figure 38.

Note, post-hoc analysis could only be performed on the independent variable Pathfinding

Algorithm because only it had three levels (i.e., categories). The other two independent

168

variables, Graph Analysis Framework and Map Complexity each had only two levels

(i.e., categories), and therefore SPSS did not perform Post-Hoc Scheffe's statistical

analyses on those independent variables. Because the univariate ANOVA scores for the

dependent variables (Elapsed Time and Memory Consumed) were both significant on the

independent variable Algorithm, as depicted in Figure 37, it was appropriate to further

examine the the Scheffe post-hoc analyses, depicted in Figure 38. I discuss results of the

post hoc analyses, in more detail, in the Interpretation of Inferential Results part of

Section 3.

Figure 38. Post hoc results (Scheffe test) for elapsed time and memory consumed, per
pathfinding algorithm.

169

Table 23

Homogeneous Subsets (Scheffe): Elapsed Time

ALGORITHM N
Subset

1 2 3
Scheffea Bellman-Ford 600 .10277

 Dijkstra 600 .10801
 A-Star 600 .10888
 Sig. 1.000 1.000 1.000

Note. Means for groups in homogeneous subsets are displayed.
Based on observed means.
The error term is Mean Square (Error) = 3.51E-005.
a. Uses Harmonic Mean Sample Size = 600.

Figure 39. Homogeneous subsets: mean elapsed time per pathfinding algorithm.

170

Table 24

Homogeneous Subsets (Scheffe): Memory Consumed

ALGORITHM N
Subset

1 2 3
Scheffea A-star 600 1.08061

 Dijkstra 600 1.16935
 Bellman-Ford 600 2.60553
 Sig. 1.000 1.000 1.000

Note. Means for groups in homogeneous subsets are displayed.
Based on observed means. The error term is Mean Square (Error) = .003.
a. Uses Harmonic Mean Sample Size = 600.

Figure 40. Homogeneous subsets: mean memory consumption per pathfinding algorithm.

171

Interpretation of Inferential Results

The purpose of this study was to determine the nature of the relationship between

pathfinding algorithms, graph analysis frameworks, map complexity, elapsed time, and

computer memory consumption. The three independent variables were (a) pathfinding

algorithm; (b) graph analysis framework; and (c) map complexity. The two dependent

variables were (a) elapsed time; and (b) computer memory consumption. My research

question was "What is the relationship between pathfinding algorithms, graph analysis

frameworks, map complexity, elapsed time, and computer memory consumption?"

The null hypothesis (H0) stated there would be no relationship between

pathfinding algorithms, graph analysis frameworks, map complexity, elapsed time, and

computer memory consumption. The alternative hypothesis (Ha) stated there would be a

relationship between pathfinding algorithms, graph analysis frameworks, map

complexity, elapsed time; and computer memory consumption.

Conducting a MANOVA using Pillai's Trace statistic, this study applied an alpha

level of .05 to examine the p-value linked with the resulting multivariate F statistic. If the

resulting p-value was less than the alpha level (.05), then the multivariate F statistic was

significant, and the null hypothesis was rejected. Conversely, a p-value greater than the

alpha level signified the relationship between the variables was not significant, and

therefore the null hypothesis would be accepted.

172

Table 25

Summary of the Multivariate (Pillai's Trace) Testsa

Effect Value F Hyp.
df

Error
df p (sig.) Partial Eta

Squared

1. Algorithm .995 885.68 4.0 3576.00 .000 .498

2. Framework .999 720360.01b 2.0 1787.00 .000 .999
3. Map Complexity .992 112736.40b 2.0 1787.00 .000 .992

4. Algorithm ´
Framework .994 883.04 4.0 3576.00 .000 .497

5. Algorithm ´ Map
Complexity .283 147.12 4.0 3576.00 .000 .141

6. Framework ´ Map
Complexity .988 70669.98b 2.0 1787.00 .000 .988

7. Algorithm ´
Framework ´
Map Complexity

.190 94.09 4.0 3576.00 .000 .095

Note. Statistical values are from Figure 36.
a. Design: Intercept + Algorithm + Framework + Map_Complexity +
Algorithm´Framework + Algorithm´Map_Complexity + Framework´Map_Complexity
+ Algorithm´Framework´Map_Complexity.
b. Exact Statistic.

Analysis of the results of the Pillai's Trace statistic indicated that there was a

significant relationship between the variables: pathfinding algorithm, graph analysis

framework, map complexity, elapsed time, and computer memory consumption. A

summary of the results of the Pillai's Trace statistic are depicted in Table 25.

For the three independent variables (Pathfinding Algorithm, Graph Analysis

Framework, and Map Complexity) their main effects were all significant (although some

more than others), as discussed next.

173

 1. Pathfinding Algorithm: the Pillai's Trace value of .995 is significant, F(4, 3576)

= 885.86, p < .001. The multivariate effect size, h2 = .498, was moderate.

 2. Graph Analysis Framework: the Pillai's Trace value of .999 is significant, F(2,

1787) = 720360.01, p < .001. The multivariate effect size, h2 = .999, was very strong.

 3. Map Complexity: the Pillai's Trace value of .992 is significant, F(2, 1787) =

112736.40, p < .001. The multivariate effect size, h2 = .992, was very strong.

 Next, the interaction effects for all combinations of the three independent

variables, were all significant (some more than others), as discussed next.

 4. Pathfinding Algorithm ´ Graph Analysis Framework: the Pillai's Trace value of

.994 is significant, F(4, 3576) = 883.04, p < .001. The multivariate effect size, h2 = .497,

was moderate.

 5. Pathfinding Algorithm ´ Map Complexity: the Pillai's Trace value of .283 is

significant, F(4, 3576) = 147.12, p < .001. The multivariate effect size, h2 = .141, was

weak.

 6. Graph Analysis Framework ´ Map Complexity: the Pillai's Trace value of .988

is significant, F(2, 1787) = 70669.98, p < .001. The multivariate effect size, h2 = .998,

was very strong.

 7. Pathfinding Algorithm ´ Graph Analysis Framework ´ Map-Complexity: the

Pillai's Trace value of .190 is significant, F(4, 3576) = 94.09, p < .001. The multivariate

effect size, h2 = .095, was very weak.

174

Figure 41. Multivariate effect sizes (Pillai's trace).

 In summary, multivariate Pillai's Trace results were all significant for the

independent variables, whether alone or in combination, but only the main effects for

Framework, Map Complexity, and the interaction effect for "Framework ´ Map

Complexity," exhibited strong effect sizes (i.e., partial eta, h2 > .90). The remaining

independent variables, while significant, had moderate to weak effect sizes (h2 < .50). A

summary of the multivariate effect sizes is depicted in a column chart in Figure 41.

 Because results of the MANOVA were statistically significant, multiple

ANOVAs were conducted on the dependent variables (Elapsed Time, Memory

Consumption) as follow up tests to the MANOVA, to evaluate the between-subject

effects, as recommended by Howitt and Cramer (2014, p. 289). Prior to examination of

the univariate ANOVA results, the alpha level was adjusted to a = .025 because two

175

dependent variables were analyzed, as recommended by Mertler and Reinhart (2017, p.

140). Univariate ANOVA results (see Figure 37) indicated several significant findings.

 1. Pathfinding Algorithm: The univariate ANOVA indicated Algorithm

significantly affected Elapsed Time, F(2, 1788) = 186.68, p < .001, h2 = .173; and

Algorithm significantly affected Memory Consumed, F(2, 1788) = 144,492.53, p < .001,

h2 = .994.

 2. Graph Analysis Framework: The univariate ANOVA indicated Framework

significantly affected Elapsed Time, F(1, 1788) = 144,945.93, p < .001, h2 = .988; and

Framework significantly affected Memory Consumed, F(1, 1788) = 118,798.37, p < .001,

h2 = .998.

 3. Map Complexity: The univariate ANOVA indicated Map Complexity

significantly affected Elapsed Time, F(1, 1788) = 224,654.23, p < .001, h2 = .992; and

Map Complexity significantly affected Memory Consumed, F(1, 1788) = 606.07, p <

.001, h2 = .253.

 4. Pathfinding Algorithm ´ Graph Analysis Framework: The univariate ANOVA

indicated Algorithm ´ Framework significantly affected Elapsed Time, F(2, 1788) =

6.48, p = .002, h2 = .007; and Algorithm ´ Framework significantly affected Memory

Consumed, F(2, 1788) = 136,086.80, p < .001, h2 = .993.

 5. Pathfinding Algorithm ´ Map Complexity: The univariate ANOVA indicated

Algorithm ´ Map Complexity significantly affected Elapsed Time, F(2, 1788) = 196.94,

176

p < .001, h2 = .181; and Algorithm ´ Map Complexity significantly affected Memory

Consumed, F(2, 1788) = 109.95, p < .001, h2 = .110.

 6. Graph Analysis Framework ´ Map Complexity: The univariate ANOVA

indicated Framework ´ Map Complexity significantly affected Elapsed Time, F(1, 1788)

= 141,272.90, p < .01, h2 = .988; and Framework ´ Map Complexity significantly

affected Memory Consumed, F(1, 1788) = 1006.43, p < .001, h2 = .360.

 7. Pathfinding Algorithm ´ Graph Analysis Framework ´ Map Complexity: The

univariate ANOVA indicated Algorithm ´ Framework ´ Map Complexity significantly

affected Elapsed Time, F(2, 1788) = 5.97, p = .003, h2 = .007; and Algorithm ´

Framework ´ Map Complexity significantly affected Memory Consumed, F(2, 1788) =

195.921, p < .001, h2 = .180.

 In addition to the univariate ANOVAs, Scheffe post hoc tests were also conducted

as follow-up tests. Analysis of the Scheffe post hoc results (see Figure 38) yielded

significant findings for both elapsed time and memory consumption.

 1. Scheffe post hoc results for Elapsed Time and Pathfinding Algorithm: The

elapsed time results for the A* algorithm differed significantly from the Bellman-Ford

algorithm (sig. £ .001). And the A* algorithm differed significantly (but less so) from

Dijkstra (sig. = .039). Bellman-Ford significantly differed from Dijkstra (sig. £ .001).

 2. Scheffe post hoc results for Memory-Consumption and Path Finding

Algorithm: The memory consumption results for the A* algorithm differed significantly

from the Bellman-Ford algorithm (sig. £ .001). And the A* algorithm differed

177

significantly from Dijkstra (sig. £ .001). Bellman-Ford significantly differed from

Dijkstra (sig. £ .001).

Lastly, I compared the SPSS generated Homogenous Subsets results (see Table

23, Table 24, Figure 39, and Figure 40). The results of the Elapsed Time Homogeneous

Subset tests, depicted in Table 23, indicated that the means (in elapsed seconds) for all

three pathfinding algorithms were significantly different from each other. The Bellman-

Ford algorithm was the fastest, and A* was the slowest, while Dijkstra's elapsed time

performance was in-between Bellman-Ford and A*. A summary of the Elapsed Time

means are depicted in a line chart in Figure 39.

The results of the Memory Consumption Homogeneous Subset tests, depicted in

Table 24, indicated that the means (in memory consumed) for all three pathfinding

algorithms were significantly different from each other. The A* algorithm was the most

memory efficient (i.e., consumed less memory), and Bellman-Ford consumed the most

memory, while Dijkstra's memory consumption was in-between Bellman-Ford and A*.

The memory consumed mean values are depicted in a line chart in Figure 40.

A graphical relationship between Elapsed Time to Algorithm and Framework is

depicted in Figure 42. It was evident that Network-X was slower that Graph-Tool, for all

pathfinding algorithms tested in this study. A graphical relationship between Memory

Consumed to Algorithm and Framework is depicted in Figure 43. It is evident that

Network-X was more memory efficient (consumed less memory) than Graph-Tool, for all

pathfinding algorithms tested in this study.

178

Figure 42. Elapsed time (seconds) per framework and algorithm.

 A graphical relationship between Elapsed Time to Map Complexity and

Algorithm is depicted in Figure 44. It is evident that map complexity had a noticeable

impact on elapsed time. The high complexity map samples required more time to process

than the low complexity map samples. Next, a graphical relationship between Memory

Consumed to Map Complexity and Algorithm is depicted in Figure 45.

 The relationship between Elapsed Time to Algorithm and Map Complexity is

depicted in Figure 46. The relationship between Memory Consumed to Algorithm and

Map Complexity is depicted in Figure 47. It is evident from Figure 47 that map

179

complexity impacted the maximum memory consumed by the Bellman-Ford algorithm,

more than the maximum memory consumed by either the Dijkstra or A* algorithms.

Figure 43. Memory consumed (megabytes) per framework and algorithm.

180

Figure 44. Elapsed time (seconds) per map complexity and algorithm.

Figure 45. Memory consumed (megabytes) per map complexity and algorithm.

181

Figure 46. Elapsed time (seconds) per algorithm and map complexity.

Figure 47. Memory consumed (megabytes) per algorithm and map complexity.

182

Table 26

Means and Standard Deviations for the Dependent Variables for All Treatment Groups
Dependent Variable Independent Variable

 Pathfinding
Algorithm

Graph
Framework

Map
Complexity M SD N

Elapsed-Time A* Graph-Tool High .072 .003 150

 Low .040 .002 150

 Network-X High .283 .013 150

 Low .040 .001 150

 Bellman-Ford Graph-Tool High .058 .003 150

 Low .040 .002 150

 Network-X High .272 .006 150

 Low .041 .002 150

 Dijkstra Graph-Tool High .071 .003 150

 Low .040 .001 150

 Network-X High .280 .013 150

 Low .042 .001 150

Memory-Consumed A* Graph-Tool High 2.074 .014 150

 Low 2.046 .006 150

 Network-X High .127 .043 150

 Low .075 .013 150

 Bellman-Ford Graph-Tool High 4.942 .027 150

 Low 5.010 .025 150

 Network-X High .303 .046 150

 Low .167 .016 150

 Dijkstra Graph-Tool High 2.050 .012 150

 Low 2.065 .007 150

 Network-X High .407 .172 150

 Low .155 .031 150

 The means for Elapsed Time (seconds) and Memory Consumption (megabytes)

by Pathfinding Algorithm, Graph Analysis Framework, and Map Complexity, are

depicted in Table 26.

183

Summary and Theoretical Framework Implications

This study's findings indicated a clear statistical relationship between pathfinding

algorithms, graph analysis frameworks, map complexity, elapsed time, and computer

memory consumption. Therefore, because of this relationship I rejected the null

hypothesis (H0), and accepted the alternative hypothesis (Ha). Thus, pathfinding

algorithms, graph analysis frameworks, and map complexity can significantly affect

elapsed time and computer memory consumption.

Furthermore, based on Pillai's Trace statistic (see Table 25, and Figure 41), the

independent variables Graph Analysis Framework and Map Complexity (both as

individual main effects, and as a combined interaction effect) had greater impacts on the

dependent variables, in terms of effect size (ES), than did Pathfinding Algorithm alone.

Additionally, while Graph-Tool overall was faster than Network-X (see Figure 42), in

terms of overall memory consumption when applied to the targeted 2D map samples, the

Network-X framework consumed less memory than the Graph-Tool framework.

As related to my chosen theoretical framework, social network theory, the

relevancy of this study's results is clear and can be summarized in two key points.

1. Regarding elapsed time, map complexity and algorithm choice both matter.

Refer to Figure 44 and Figure 46. The 2D map samples with less complex map topology

required less time to process by the pathfinding algorithms than the more complex map

samples. Additionally, the Pillai's Trace results (see Table 25, and Figure 41) indicated

that the more complex the network topology, the more time is required to do algorithmic

pathfinding, which in social networks such as those described by Barnes (1954), De Sola

184

Pool and Kocheck (1979), and Korte and Milgram (1970), may imply more time is

required to find connections and objects of interest in complex networks. This will have

implications in terrorist network analysis, and criminal network analysis (see Eiselt &

Bhadury, 2015; and see Medina, 2014). Based on the results of this quantitative study,

computationally analyzing large social networks (e.g., complex terrorist networks),

mapped as 2D graphs, will require more time to calculate shortest paths between nodes of

interest, than doing the similar calculations in smaller networks.

2. Regarding memory consumption, the graph analysis framework and

pathfinding algorithm choice both matter. Refer to Figure 41, Figure 45 and Figure 47. In

terms of effect size (i.e., partial Eta squared, h2), the Pillai's Trace results indicate that on

average while Bellman-Ford was the fastest algorithm, it also consumed the most

memory, in fact over twice as much memory than either A* or Dijkstra. This will have

implications in terms of autonomous pathfinding for robots, as described by Dean (2013),

and Kaur and Gangal (2015). Algorithm choice will impact the amount of memory

needed in such autonomous agents. And it will likewise impact software agents working

in network dead zones or GPS-denied environments, as described by Kang and Choo

(2016), and by Wang, Zlatanova, Moreno, Van Oosterom, and Toro (2014).

In this quantitative study the Bellman-Ford algorithm consumed the most

memory, but also demonstrated the fastest performance, as noted in Figures 43 and 44.

There was some contradictory material on this topic. First, according to the seminal work

of Cormen, Leiserson, Rivest, and Stein (2009), the run-time performance of Dijkstra's

algorithm, with a good priority queue implementation, should be better than Bellman-

185

Ford (p. 658). However, in my quantitative study, the reverse was noted: the Bellman-

Ford algorithm performed faster than Dijkstra's algorithm (see Figures 43, and 44).

Cormen et al. (2009) further suggest that the run-time performance of Dijkstra's

algorithm (and by extension the A* algorithm, which is a direct descendent of Dijkstra's

algorithm) clearly depends on how the priority queue was implemented (Cormen et al,

2009, p. 661). However, in a later solo publication, Cormen (2013) claimed that while the

O(n3) runtime performance of Bellman-Ford may be considered slow, it is "not too bad"

in applied practice, because the constant factors in the running times of the Bellman-Ford

loops are low (Cormen, 2013, p. 106). By contrast, if Dijkstra is implemented with a

Fibonacci heap for the priority queue, the constant hidden factors in the asymptotic

notation (due to the Fibonacci implementation) are not as good as those for standard

binary heaps (Cormen, 2013, p. 101). It remains to be seen how the priority queues for

Dijkstra and A* were implemented in the graph analysis frameworks tested in this study.

Line by line source code analysis and further testing might confirm these conclusions, but

such actions were beyond the scope of this study. Poor implementation of the priority

queues could explain why Dijkstra and A* performed worse in this study in terms of run-

time speed (but in not memory consumption) than the Bellman-Ford algorithm.

Additionally, according to Brodnik and Grgurovič (2017) Dijkstra's algorithm run-time

performance will degrade with dense graphs, yielding slower performance than the

Floyd-Warshall algorithm which exhibits asymptotic O(n3) runtime performance (pp. 8-

9), which is the same asymptotic runtime as Bellman-Ford's O(n3). The Dijkstra speed

186

assertion made by Brodnik and Grgurovič (2017, pp. 8-9) corresponds to the runtime

performance of Dijkstra's algorithm seen in this quantitative study.

There is further supporting material describing situations where the Bellman-Ford

algorithm could perform better (i.e., have faster runtime) than Dijkstra's algorithm. In the

seminal work by Sedgewick and Wayne (2011), they indicated that while the worst-case

runtime for Bellman-Ford is slower than Dijkstra's algorithm, in many of what they call

"typical applications" Bellman-Ford will exhibit linear runtime performance (Sedgewick

& Wayne, 2013, p. 682). In one of their tests involving a network of 250 vertices,

Sedgewick and Wayne noticed that the Bellman-Ford algorithm completed pathfinding

with fewer required path-length comparisons than Dijkstra's algorithm for the same

network problem (2013, p. 675).

The Cormen (2013), and Sedgewick and Wayne (2011) publications clearly

indicated scenarios where Bellman-Ford exhibits faster run-time performance, which was

seen in this quantitative study. But in neither work (Cormen, 2013; Sedgewick & Wayne,

2011) was the memory consumption of Bellman-Ford predicted to be less than that of

Dijkstra or A*. This effect of Dijkstra and A* consuming less memory than Bellman-

Ford was confirmed in this quantitative study (see Figures 43 and 45). So, although in

this quantitative study the Bellman-Ford algorithm was found to perform statistically

faster than either Dijkstra's algorithm and the A* algorithm (which was a surprising

finding), Bellman-Ford also consumed more memory than the other two algorithms as

was theorized and discussed by Sedgewick and Wayne (2011), and Cormen (2013)

(which was not a surprising finding).

187

To discover why Bellman-Ford performed faster, the actual implementations of

the priority queue(s) used in the Dijkstra algorithm implementations by the Network-X

and Graph-Tool frameworks could be examined, since the source code to both

frameworks is available online. However, such a microscopic line-by-line code analysis

and comparison was beyond the scope of this quantitative study. My goal in this study

was to measure and compare pathfinding algorithm performance between the selected

graph analysis frameworks at a macro-level, not to perform a microscopic, line-by-line,

source code analyses of the chosen frameworks (although doing such a line-by-line

performance comparison of the pathfinding algorithm implementations of both

frameworks could be a topic for further research).

There are other situations that may explain the surprisingly fast runtime results of

the Bellman-Ford algorithm that were noted in this quantitative study. One is the use of

parallel graph algorithms. Lenharth, Nguyen, and Pingali (2016) described situations for

large complex networks (such as those of Facebook, Amazon and Netflix) where use of

parallel graph algorithms may provide a way to efficiently analyze huge networks with

over a billion nodes and edges (p. 78). For example, if one of the frameworks tested in

this quantitative study used parallel-enhanced pathfinding algorithms, but the other did

not do so, then perhaps that could explain the surprising faster runtime performance of

Bellman-Ford against the other algorithms compared. However, validating if the

pathfinding algorithms for the chosen graph analysis frameworks used parallel graph

algorithm techniques was beyond the scope of this study, as that would require line-by-

line source code analysis; yet doing so could be an avenue for future research.

188

Another situation that could cause unexpected run-time performance for

pathfinding algorithms is the presence (or absence) and quantity of obstacles on the grid

map, and the map topology itself. Obstacle placement (quantity and layout) can have a

detrimental effect on grid-based path planning by increasing the complexity and

difficulty of optimal path discovery, as discussed in Kang and Lee (2017, pp. 3, 5-6).

Additionally, the type, quantity and placement of obstacles could negatively impact the

heuristics used by heuristic search algorithms, such as (but not limited to) the A*

algorithm, as was discussed by Cavazza, Aranyi, and Charles (2017, pp. 2, 7). Also,

Ammar, Bennaceur, Châari, Koubâa, and Alajlan (2015) suggested that high terrain

blockage ratios impeded some algorithms (e.g., Dijkstra, A*) more than other algorithms

when calculating the shortest path in some maps with many obstacles. Related to my

quantitative study's results, detecting the impact of obstacle placement on the runtime

output of algorithm performance by the chosen graph analysis frameworks could be

explored by doing a code review of the algorithm implementations, but as already noted,

that was beyond the scope of this study (yet may be worthy of further research for those

interested in discovering the root cause of the algorithmic performance results).

Another situation that may impact performance results (and could answer the

reason why the Bellman-Ford algorithm was the fastest in this quantitative study) is the

implementation of the pathfinding algorithms. Specifically, as discussed in Algfoor,

Sunar, and Abdullah (2017, pp. 319-322, 324, 331); and in Kuipers, Feigenbaum, Hart,

and Nilsson (2017, pp. 99-100), there are many different implementations of the A*

algorithm, and each may have different run-time performance characteristics. Likewise,

189

according to Lenharth, Nguyen, and Pingali (2016, p. 82), there are variants to the

Bellman-Ford algorithm that may have different run-time performance characteristics.

Additionally, per Kang and Lee (2017, p. 4), there are different implementations of

Dijkstra's algorithm that yield different paths, depending on the need for smooth or not

smooth paths, and therefore may exhibit different run-time performance. This implies that

comparing the same-named algorithms from different graph analysis frameworks does

not guarantee that one has compared the same algorithm implementation. Different

implementations of same-named algorithms between frameworks may exhibit different

runtime behavior. Detecting differences in the implementations would require deeper

analysis of the source code, which was beyond the scope of this study.

One last reason to be discussed, which may account for the unexpected Bellman-

Ford runtime speed (but not memory consumption) results may have to do with this

study's random generated maps. There were only two types of adjacency matrices used in

this study: 200 ´ 200 graphs, or 1000 ´ 1000 graphs. Additionally, so that all three

algorithms could be fairly compared as discussed in Section 2 of this study, none of the

random generated maps had negative weighted edges since only Bellman-Ford could

support negative edge weights (Cormen, 2013). Next, I random-generated only small-

world network graphs of the type described by Barnes (1954), De Sola Pool and Kocheck

(1979), Korte and Milgram (1970), and Watts and Strogatz (1998). I did not random

generate scale-free graphs of the type described by Albert, Jeong, and Barabási (1999), or

Barabási (2016), nor random networks discussed by Erdős and Rényi (1961). Finally, I

used uniform edge weight values of 1.0. These factors, together, could be surprisingly

190

favorable to Bellman-Ford. Perhaps use of scale-free graphs, or different edge weights,

would have been more advantageous to Dijkstra's algorithm, or to the A* algorithm. This

could be implemented by having more categories for the map complexity independent

variable (e.g., scale-free maps, variable edge weighted maps, random maps, regular maps,

etc.), and therefore would have impacted this study by requiring more treatment groups.

For example, 3 pathfinding algorithms ´ 2 graph analysis frameworks ´ 4 map

complexities = 3 ´ 2 ´ 4 = 24 treatment groups, instead of the 3 ´ 2 ´ 2 = 12 treatment

groups actually used in this study. Other options include using larger maps (e.g., 2000 ´

2000, or even larger). Clearly, using 24 (or more) factorial treatment groups may have

generated more pathfinding algorithm results, but doing so was beyond the scope of this

quantitative study, yet could be the topic of future research.

In conclusion, studying the problem of shortest path discovery through the lens of

social network theory (while utilizing small-world network maps) is useful, as the results

can be directly applied to the analysis of social networks, such as terrorist networks

(Lenharth, Nguyen, & Pingali, 2016, p. 78), which is relevant today, given the often-

reported instances in terrorist attacks over the last few years. But as noted above, small-

world maps are only one type of graph. It would be useful to compare pathfinding

algorithm performance with other types of graphs (e.g., regular grid maps, scale-free

graphs, or even pure random networks). This means using small-world graphs alone only

provides one set of answers. To obtain a more complete analysis of pathfinding algorithm

performance in complex networks, more and different types of networks must be

analyzed. Doing this could provide analyses of maps and networks more representative of

191

the real world, and therefore would provide results to a potentially broader audience,

beyond those interested in only small-world networks and social network theory.

Applications to Professional Practice

My results indicated that there was a significant impact on elapsed time and

memory consumption by pathfinding algorithm, graph analysis framework, and map

complexity. The implication is that the choice of graph analysis framework and

pathfinding algorithm matter, but so does the structure of the underlying complex

network. In short, this study's findings suggest that software engineers should try to know

their problem domain (i.e., complex network) before choosing a graph analysis

framework and pathfinding algorithm, because as was shown in Figure 46 and Figure 47,

the complexity of the network map directly impacted elapsed time performance. This

means that simply selecting a graph analysis framework and a pathfinding algorithm are

insufficient if the software engineer is concerned about elapsed time performance. For

example, if beforehand I have a general idea what kind of complex network I face, I

could pick algorithms that are more compatible (e.g., more memory efficient) for that

problem. For example, if the network I am working with has many nodes, then memory

efficient frameworks and algorithms that can handle many nodes may be more useful

than fast frameworks and algorithms that are less memory efficient.

The application of these findings to the professional practice indicated that not all

open source frameworks exhibit the same runtime behavior. This may seem obvious in

retrospect, but software engineers writing Python code to perform algorithmic

pathfinding now have a starting point (the results of this study) to make a truly

192

quantitative assessment whether the Graph-Tool framework, or the Network-X

framework is the right choice for their pathfinding problem. While Network-X used less

memory than Graph-Tool (see Figure 43), it also exhibited slower run-time speed than

Graph-Tool (see Figure 42). This represents an opportunity for the software engineer,

who must decide which is more important: run-time performance, or memory

consumption. This is a real-world tradeoff that software engineers often must balance, but

if they lack comparative quantitative data on the frameworks in question then they may

erroneously select the wrong software framework or algorithm for their problem. The

results of this study may help prevent that error as I quantitatively evaluated two popular

Python graph analysis frameworks, and provided data-driven statistics for software

engineers in desperate need of real-world, comparative performance-oriented, applied

algorithm and graph analysis framework advice.

Regarding social network analysis, the implications of this study are clear. In

social network analysis finding connections between nodes is important (Korte &

Milgram, 1970; Watts & Strogatz, 1998). If runtime speed is important, perhaps during a

search for key players in criminal or terrorist networks (see Eiselt & Bhadury, 2015; and

Medina, 2014), say because there is an insider tip regarding an impending terror attack,

then the speed at which one can link nodes of interest together to find the key players in a

complex terrorist network suggests a framework that performs quickly (e.g., Graph-Tool)

may be more relevant. On the other hand, if one can process billions of nodes and edges

with automated scripts, perhaps on a nightly basis when real-time speed is not necessary

193

but memory usage is critical due to huge node and edge volumes, then this suggests that a

memory efficient framework may be more relevant (e.g., Network-X).

Regarding algorithmic pathfinding for resource-constrained smart agents (e.g.,

drones, self-driving cars, robots) located in network dead zones or GPS-denied

environments, knowing the size and general complexity of the terrain maps are important,

because, as was demonstrated in this study, map complexity and algorithm choice both

impacted runtime performance in terms of elapsed time and memory consumption (see

Figure 44, and Figure 45). Large and complex terrain maps may exhaust computer

memory during pathfinding operations, therefore, using memory efficient algorithms, like

the A* algorithm (see Figure 47), may be the best choice.

Implications for Social Change

There are two ways in which this study may immediately contribute to social

change. First, from the perspective of terrorist and criminal network analyses, applying

appropriate pathfinding algorithms and graph analysis frameworks may better enable law

enforcement and intelligence agencies to find key players in criminal and terrorist

networks of interest (see Eiselt & Bhadury, 2015; Medina, 2014), before they attack.

Terrorist attacks happen, unfortunately, but by analyzing terrorist social networks it may

be possible to identify and apprehend terror suspects and perpetrators (Lenharth, Nguyen,

& Pingali, 2016, p. 78; see also McBride & Hewitt, 2013). This is particularly important

given the recent terrorist attacks that occurred in (a) Manchester, UK, concert arena

bombing on May 22, 2017; (b) St. Petersburg, Russia, metro train station suicide

bombing on April 4, 2017; (c) Istanbul, Turkey, nightclub shooting on January 1, 2017;

194

(d) Orlando, FL, nightclub shooting on June 12, 2016; (e) Brussels, Belgium, airport and

rail station bombings on March 22, 2016; (f) San Bernardino, CA, shooting on December

2, 2015; (g) Paris, France, shootings and Bataclan theatre bombing on November 13,

2015; and (h) the Charlie Hebdo shooting in Paris, France on January 7, 2015; to name

just a few recent examples whose perpetrators were suspected to be involved in terrorist

social networks. By combining pathfinding algorithms with complex network analysis

and information technology, as demonstrated in this study, links between terror suspects

might be detected before deadly attacks occur, giving law enforcement the chance to

apprehend the terrorists, prevent loss of life, and thereby contribute to positive social

change.

Second, this study may contribute to social change by providing a concrete,

working example of the importance of gathering and analyzing quantitative data for the

purpose of making informed technology decisions. From my 20+ years of experience as a

software engineer, we are often asked to solve specific programming challenges, and are

often given the flexibility to implement our own solutions. Yet if hard pressed for time,

engineers sometimes choose the easiest solutions (e.g., use the same languages, tools, and

methodologies already most familiar to us) because that is the short-term path of least

resistance when facing tight time constraints. We do not always have sufficient time to

quantitatively compare technologies, to make the best data-driven choice up front. The

end result of rushed implementations and deployments is that sometimes we must re-

engineer a previous so-called solution because it no longer scales well. And we may rely

on word-of-mouth experiences (i.e., rumors and advice) from others, regarding which

195

technologies worked best for them (even though the specifics of their problem domain

and circumstances may be different than ours). With this study, I presented not only

comparisons of two popular Python graph analysis frameworks relevant to software

engineers today and which Python programmers may immediately apply, but I also

presented a method and working example for software engineers to follow which can be

utilized to quantitatively compare many frameworks, for different problem domains.

Software engineers can take this experience and apply it to their work, to discover which

tools and algorithms work best for them, because such decisions would be supported by

quantitative, data-driven facts, not by rumors or qualitative feelings.

Recommendations for Action

This study is a call to action for all software engineers looking to move from a

qualitative view of tools and technology, to a quantitative one. This study provides a

working example how to quantitatively compare two or more algorithms, software tools

and code frameworks (i.e., libraries). Engineers may start by picking the tools and

services they wish to quantitatively compare. Then, consider creating a population pool

of random generated objects relevant to their problem domain. Next, stratify the pool for

subsequent stratified random sample selection. Finally, compare the results,

quantitatively and statistically, as I demonstrated in this study. One tool may appear to

dominate in many aspects, but not likely in all performance aspects. This is normal and is

part of the engineering tradeoff that we often must make. By following the quantitative

techniques demonstrated in this study, software engineers may be better informed and

196

educated how to make data-driven technology choices, not make guesses based solely on

qualitative opinions.

The immediate application of this study's results should be considered by

organizations implementing pathfinding software, whether it be for autonomous agents,

or social network analysis, because the quantitative results may be relevant to their

problem domains. Other organizations that perhaps do not use Python, or the Graph-Tool

or Network-X frameworks may also benefit, because while the frameworks and

languages may be interchangeable, the experience imparted by this study, in terms of

how to generate local computer random-generated samples, stratify them, and then test

them, can be applied to other experimental problem domains.

The results of this study may eventually be spread in peer-reviewed publications.

I intend to publish aspects of this work in several peer-reviewed journals, such as, but not

limited to, Algorithms (ISSN: 1999-4893), The Journal of Discrete Algorithms (ISSN:

1570-8667), The Journal of Computational and Applied Mathematics (ISSN: 0377-

0427), and The Python Papers (ISSN: 1834-3147).

Additionally, at work I am a technology leader and plan to speak about how

software engineers can make the transition from qualitative, feelings-based decision

making, to quantitative, data-driven decision making. After publication I will also

consider spreading this knowledge at my work place and beyond. The fora most

appropriate for distribution of this knowledge include industry conferences and symposia.

It could also include creation, or contribution to, one or more open source projects that

are related to aspects of this doctoral study.

197

Finally, after I become a doctor, I will become an educator. In that role, I plan to

spread knowledge of applied quantitative techniques to my students. This is because one

way to have lasting impact on your profession is by positively influencing the next

generation.

Recommendations for Further Study

There are many ways one may approach comparative algorithm analysis. The

concrete example provided by this doctoral study represented just one way to do so.

Further research could utilize and compare more frameworks (including proprietary

options, not just the open source frameworks used in this study); or use other computer

languages (not just Python); and employ more complex map types instead of the two

options used in this study. Another research approach could study the impact of dynamic

maps on algorithmic pathfinding, as discussed by Zhang, Chan, Yang, and Deng (2017).

Other research options include (a) use of 3D maps and 3D-oriented pathfinding

algorithms instead of the 2D options used here; (b) utilize other hardware and operating

systems (instead of the Apple laptop, and Mac OS used in this study); or (c) use virtual

machines.

More exotic research options include testing multi-threaded implementations of

pathfinding algorithms (e.g., see how many threads is the optimal number). Another

option would be to research parallel processing oriented algorithms, systems and

architectures as discussed in Chakaravarthy, Checconi, Murali, Petrini, and Sabharwal

(2016); and in Ediger, Jiang, Riedy, and Bader (2013). Further research in this area might

198

indicate if parallel processing enhances pathfinding algorithm performance, and if so then

at what price in terms of memory usage, increased code complexity, or other factors.

There are many options available when selecting a research design and

methodology. Other avenues for further research may involve different experimental

approaches or different research designs and methods, for example, instead of the

between-groups post-test only approach used in this study, one could try a (a)

longitudinal study; or (b) repeated-measures study; or (c) combine a repeated-measures,

pre-test and post-test approach; or (d) combine several algorithms on very complex maps

or problems, to see if combined solutions perform better than single algorithm solutions.

One might explore trying qualitative approaches to algorithm comparison or evaluation,

instead of the strictly quantitative approach I followed in this study. Also, changing the

lens by which the study is interpreted, away from social network theory (used in this

study) to another theoretical framework, such as chaos theory as discussed in Hung and

Tu (2014) for example, might lead to new and interesting revelations.

Using a different statistic is an option worth considering. Perhaps finding

causation within random generated data, as was the focus of this study, may not be as

important as finding a more general correlation between someone else's existing data. In

this case, not using MANOVA, and instead using another statistical method, such as

logistic regression as discussed by Arcuri and Briand (2014), or other statistical methods,

such as multiple regression, factor analysis, or discriminant analysis, could lead to

interesting results and applications thereof. Changing the statistic utilized may require

changing the number, and type, of dependent and independent variables used, as

199

discussed in Mertler and Reinhart (2017), but such changes could present many new

opportunities from which interesting, useful algorithm research studies may emerge.

Regarding the limitations discussed in Section 1 of this doctoral study, several are

still relevant. First, use of only two graph analysis frameworks (Network-X and Graph-

Tool) may be less relevant to potential readers, particularly if their pathfinding

framework choice is neither of the options I tested during this doctoral study. There are

other graph frameworks that can also be tested in future research to broaden the appeal of

this study, such as the iGraph framework discussed in Nocke, et al., (2015), and the Pajek

framework, as discussed in Ma, Fukuda, and Schmöcker (2013), among others. Another

limitation noted in Section 1 of this study was the deliberate avoidance of discovering

"why" a particular framework and/or algorithm performed as it did, since that may have

required line-by-line code analysis and/or code profiling, which was clearly beyond the

scope of this study. Some readers may be interested in knowing exactly why the Bellman-

Ford algorithm exhibited faster runtime performance over Dijkstra in this study, when

according to the algorithm theory discussed in Cormen, Leiserson, Rivest, and Stein

(2009), the Bellman-Ford algorithm should have exhibited generally slower runtime

performance than Dijkstra. The quality of the pathfinding algorithm implementation is

important as discussed in Kapanowski and Gałuszka (2016), and may have impacted the

runtime performance results of this study, as was my deliberate use of Python, not Java,

C, or some other compiled computer language, although Python is a good language for

data structures development, as noted by Kapanowski and Gałuszka (2016, p. 1).

200

Next, regarding the delimiters I discussed in Section 1, several are still relevant

and deserve discussion. I delimited this study to only use the Python computer language.

As discussed in Farooq, Khan, Ahmad, Islam, and Abid (2014), each computer language

has its own characteristics. By choosing Python, I unfortunately limited this study mainly

to personal computers (PCs), laptops and servers, but not to mobile devices. Had I

selected the Objective-C or Swift programming languages for implementation, I could

have run the algorithm comparison tests on mobile Apple devices such as the iPhone,

iPad, or iWatch smart watch. This would have allowed me to collect algorithm

performance data on Apple mobile devices, which may have broadened the appeal of this

study. Alternately, choosing Java as the implementation programming language would

have made it easier to benchmark the pathfinding algorithms on Android mobile devices,

and servers, laptops and PCs, since Java runs on many of these devices (but not on Apple

mobile phones it should be noted). However, had I used Objective-C, Swift, I would have

had to find different graph analysis frameworks because it seemed very difficult to use

Graph-Tool and Network-X on Apple devices, so by switching to the Objective-C or

Swift languages, I would likely have had to choose other graph analysis frameworks too.

Java seemed to face a similar situation, regarding the chosen graph analysis frameworks.

In conclusion, while using Objective-C, Swift or Java may have broadened the appeal of

this study, doing so would have significantly complicated my experiment, and would

have caused delays.

As discussed earlier, another self-imposed boundary (i.e., delimiter), was the

deliberate use of only two different map complexities (i.e., low complexity and high

201

complexity). Not all real-world maps nicely fit into a 200 ´ 200 adjacency matrix, nor a

1000 ´ 1000 adjacency matrix. Real world complex networks may be quite complicated

and certainly not represented by the two map complexity options used in this study.

Adding more map options may broaden the appeal of this study, and certainly represent a

future research opportunity. Some complex network types, such as scale-free networks

(Barabási, 2016), random networks (Erdős & Rényi, 1961), and even dynamically

changing maps as discussed in Franke and Ivanova (2014) represent future research

opportunities.

Finally, use of parallel programming techniques and algorithms, as discussed in

Bazregar, Piltan, Nabaee, and Ebrahimi (2013) is something that was not explicitly tested

in this experiment, but could be useful to readers working with billions of nodes and in

need of high performance graph analysis frameworks that support parallel programming.

This study does not answer how parallel programming enhanced pathfinding algorithms

would perform, and at what price in terms of CPU, memory, and increased programming

complexity, as those topics were deemed beyond the scope of this study, yet they could

represent future research opportunities for the next intrepid researcher.

Reflections

In conducting research on pathfinding algorithms, using graph analysis

frameworks, I had some pre-conceived notions (garnered from my days as a hardcore C

and C++ programmer at Microsoft, back in the 1990s) that any framework written in C or

C++ (e.g., Graph-Tool) would be superior in all aspects of run-time performance, to a

framework written in an interpreted language such as Python (e.g., Network-X).

202

However, while the Python framework (Network-X) was not the fastest (Graph-Tool was

faster), Network-X was not too much slower, but it was much easier to use and program

the Network-X framework, than the Graph-Tool framework. This represented a classic

dilemma we software engineers sometimes face: "option A" is easy to program and

debug, but has slow run-time performance; while "option B" is harder to program and

debug, but has faster run-time performance. My pre-conceived notion that Python would

be exhibit very poor performance overall, was unjust and has since been corrected, due to

what I learned during this study about the Python computer language, and Python runtime

performance. Python is a useful language, it has many tools and supporting frameworks,

it is easy to learn (I was new to Python when I started this doctoral study), and now I

intend to use Python much more.

Regarding the DIT program, I honestly did not know much about the value of the

scholar-practitioner role before embarking on the DIT journey. I just wanted a doctoral

degree, but I did not have the time to earn one at a traditional brick-and-mortar college.

Being an early student in the DIT program has its challenges, including the sad reality

that there were no DIT doctoral studies from which I could draw experience and

knowledge. I had to rely on DBA studies, which while useful up to a point, are not the

same as a true DIT doctoral study.

I have learned to become a much better researcher, and now I have a much better

grasp of statistics, and statistics-friendly tools such as SPSS, Excel, and even the R

programming language. These facts and skills will help me greatly at work, and will help

me be a productive researcher. Another pre-conceived notion I had regarding PhDs vs.

203

applied doctoral degree holders, was my assumption that in traditional PhD programs one

creates a new theory, and that holders of applied doctoral degrees were second class

citizens because they did not create new theories. That viewpoint has since been

corrected. Applied doctorates, such as the DIT, are valuable, because someone must take

that new theory, test it, and then apply it to a real-world problem to help prove the utility

of that theory in the real world. As an applied scholar practitioner and applied researcher,

I am that bridge between pure theory and the real world. I did not know I would become

the bridge when I first started on the DIT path, but I know it now, and I will be forever

empowered by it.

Summary and Study Conclusions

Algorithm choice matters. Framework choice matters. Knowledge of one's

problem domain matters. Software engineers are responsible for implementing the

software which runs many aspects of the modern world (e.g., self-driving cars, planetary

surface rovers, implantable biomedical devices, drones, automated financial trading

systems). While it is possible to get by as a software engineer using only qualitative

methods to assess software frameworks and algorithm choices, we and our customers can

benefit from our use of data-driven, quantitative approaches to software engineering.

Software engineers can benefit, long term, by spending some time, up front, in

quantitative evaluation of the performance of a product, framework, or service, prior to

implementation and eventual production deployment. This may help prevent unscalable

software solutions from being implemented, to the benefit of our customers, and

ultimately, to us software engineers (who ultimately must support such software).

204

Based on the MANOVA analysis of the frameworks, algorithms, and population

pool tested in this quantitative experimental study, the null hypothesis was rejected. It

was determined that there was a statistically significant causal relationship between

pathfinding algorithms, graph analysis frameworks, map complexity, elapsed time, and

computer memory consumption. This information will aid decision makers (e.g., software

engineers, software architects, systems designers, technical managers) determine which

graph analysis frameworks and algorithms to use. But more broadly, the information

provided by this study should empower decision makers with a working example of

quantitative data-driven analysis and decision making, and the knowledge how to

quantitatively compare most any software framework or algorithm. If the product or

service being compared produces output that can be measured, it can likely be

quantitatively compared, and therefore its performance statistically analyzed. If this can

be done early, before implementing and deploying the proposed product or service into

production, it may save software engineers time over the long run, prevent customer

frustration due to poor performance, and help avoid costly future rework.

205

References

Algfoor, Z. A., Sunar, M. S., & Abdullah, A. (2017). A new weighted pathfinding

algorithms to reduce the search time on grid maps. Expert Systems with

Applications, 71, 319-331. doi:10.1016/j.eswa.2016.12.003

Algfoor, Z. A., Sunar, M. S., & Kolivand, H. (2015). A Comprehensive Study on

Pathfinding Techniques for Robotics and Video Games. International Journal of

Computer Games Technology, 2015. doi:10.1155/2015/736138

Abdulkadir, S. I., Fadzli, S. A., Jamal, A. A., Makhtar, M., Awang, M. K., Mohamad, M.,

& Susilawati, F. (2015). Indoor Global Path Planning Based on Critical Cells

Using Dijkstra Algorithm. Journal of Theoretical and Applied Information

Technology, 79(1). Retrieved from http://www.jatit.org

Adewumi, A., Kagamba, J., & Alochukwu, A. (2016). Application of Chaos Theory in

the Prediction of Motorized Traffic Flows on Urban Networks. Mathematical

Problems in Engineering, 2016. doi:10.1155/2016/5656734

Afuah, A. (2013). Are network effects really all about size? The role of structure and

conduct. Strategic Management Journal, 34(3), 257-273. doi:10.1002/smj.2013

Akeret, J., Gamper, L., Amara, A., & Refregier, A. (2015). HOPE: A Python just-in-time

compiler for astrophysical computations. Astronomy and Computing, 10, 1-8.

doi:10.1016/j.ascom.2014.12.001

Albert, R., & Barabási, A. L. (2002). Statistical Mechanics of Complex Networks.

Reviews of Modern Physics, 74(1), 47. doi:10.1103/RevModPhys.74.47

Albert, R., Jeong, H., & Barabási, A. L. (1999). Internet: Diameter of the World-Wide

206

Web. Nature, 401(6749), 130-131. doi:10.1038/43601

Almaghairbe, R., & Roper, M. (2016). Separating passing and failing test executions by

clustering anomalies. Software Quality Journal, 1-38. doi:10.1007/s11219-016-

9339-1

Alotaibi, E. T. S., & Al-Rawi, H. (2016). MRPPSim: A Multi-Robot Path Planning

Simulation. International Journal of Advanced Computer Science and

Applications, 7(8). Retrieved from http://thesai.org/Publications

Amin, H. U., Malik, A. S., Kamel, N., Chooi, W. T., & Hussain, M. (2015). P300

correlates with learning & memory abilities and fluid intelligence. Journal of

Neuroengineering and Rehabilitation, 12(1), 87. doi:10.1186/s12984-015-0077-6

Ammar, A., Bennaceur, H., Châari, I., Koubâa, A., & Alajlan, M. (2015). Relaxed

Dijkstra and A* with Linear Complexity for Robot Path Planning Problems in

Large-Scale Grid Environments. Soft Computing, 1-23. doi:10.1007/s00500-015-

1750-1

Arcuri, A., & Briand, L. (2014). A hitchhiker's guide to statistical tests for assessing

randomized algorithms in software engineering. Software Testing, Verification

and Reliability, 24(3), 219-250. doi:10.1002/stvr.1486

Ariel, B., Sutherland, A., Henstock, D., Young, J., Drover, P., Sykes, J., ... & Henderson,

R. (2016). “Contagious Accountability” A Global Multisite Randomized

Controlled Trial on the Effect of Police Body-Worn Cameras on Citizens’

Complaints Against the Police. Criminal Justice and Behavior,

0093854816668218. doi:10.1177/0093854816668218

207

Baingana, B., & Giannakis, G. B. (2017). Tracking Switched Dynamic Network

Topologies From Information Cascades. IEEE Transactions on Signal

Processing, 65(4), 985-997. doi:10.1109/TSP.2016.2628354

Balaguru, S., Nallathamby, R., & Robin, C. R. (2015). A Novel Approach for Analyzing

the Social Network. Procedia Computer Science, 48, 687-692.

doi:10.1016/j.procs.2015.04.202

Balakrishnan, R., & Penno, M. (2014). Causality in the Context of Analytical Models and

Numerical Experiments. Accounting, Organizations and Society, 39(7), 531-534.

doi:10.1016/j.aos.2013.09.004

Barabási, A. L. (2016). Network science. Cambridge, United Kingdom: Cambridge

University Press.

Barabási, A. L., & Albert, R. (1999). Emergence of Scaling in Random Networks.

Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509

Barnes, J. A. (1954). Class and Committees in a Norwegian Island Parish. Human

Relations, 7(1), 39-58. doi:10.1177/001872675400700102

Barnes-Mauthe, M., Gray, S. A., Arita, S., Lynham, J., & Leung, P. (2015). What

determines social capital in a social–ecological system? Insights from a network

perspective. Environmental Management, 55(2), 392-410. doi:10.1007/s00267-

014-0395-7

Barnham, C. (2015). Quantitative and qualitative research: perceptual foundations.

International Journal of Market Research, 57(6), 837-854. doi:10.2501/IJMR-

2015-070

208

Bazregar, M., Piltan, F., Nabaee, A., & Ebrahimi, M. M. (2013). Parallel Soft Computing

Control Optimization Algorithm for Uncertainty Dynamic Systems. International

Journal of Advanced Science and Technology, 51, 93-106. Retrieved from

http://www.sersc.org/journals/IJAST

Becton, M., & Wang, X. (2015). Grain-size dependence of mechanical properties in

polycrystalline boron-nitride: a computational study. Physical Chemistry

Chemical Physics, 17(34), 21894-21901. doi:10.1039/c5cp03460d

Bettany-Saltikov, J., & Whittaker, V. J. (2014). Selecting the most appropriate inferential

statistical test for your quantitative research study. Journal of Clinical Nursing,

23(11-12), 1520-1531. doi:10.1111/jocn.12343

Bezerra, L. C., Goldbarg, E. F., Goldbarg, M. C., & Buriol, L. S. (2013). Analyzing the

impact of MOACO components: An algorithmic study on the multi-objective

shortest path problem. Expert Systems with Applications, 40(1), 345-355.

doi:10.1016/j.eswa.2012.07.052

Bird, K. D., & Hadzi-Pavlovic, D. (2014). Controlling the maximum familywise Type I

error rate in analyses of multivariate experiments. Psychological Methods, 19(2),

265. doi:10.1037/a0033806

Blasco-Arcas, L., Hernandez-Ortega, B., & Jimenez-Martinez, J. (2013). Adopting

television as a new channel for e-commerce. The influence of interactive

technologies on consumer behavior. Electronic Commerce Research, 13(4), 457-

475. doi:10.1007/s10660-013-9132-1

Boguchwal, L. (2015). Shortest Path Algorithms for Functional Environments. Discrete

209

Optimization, 18, 217-251. doi:10.1016/j.disopt.2015.09.006

Bohács, G., Gyimesi, A., & Rózsa, Z. (2015). Development of an Intelligent Path

Planning Method for Materials Handling Machinery at Construction Sites.

Periodica Polytechnica Transportation Engineering, 44(1), 13-22.

doi:10.3311/PPtr.8035

Brodnik, A., & Grgurovič, M. (2017). Solving all-pairs shortest path by single-source

computations: Theory and practice. Discrete Applied Mathematics.

doi:10.1016/j.dam.2017.03.008

Brooks, B., Hogan, B., Ellison, N., Lampe, C., & Vitak, J. (2014). Assessing Structural

Correlates to Social Capital in Facebook Ego Networks. Social Networks, 38, 1-

15. doi:10.1016/j.socnet.2014.01.002

Buliung, R. N., Larsen, K., Faulkner, G. E., & Stone, M. R. (2013). The “path” not taken:

Exploring structural differences in mapped-versus shortest-network-path school

travel routes. American journal of public health, 103(9), 1589-1596.

doi:10.2105/AJPH.2012.301172

Capaldo, A., & Giannoccaro, I. (2015). Interdependence and Network-Level Trust in

Supply Chain Networks: A Computational Study. Industrial Marketing

Management, 44, 180-195. doi:10.1016/j.indmarman.2014.10.001

Cavazza, M., Aranyi, G., & Charles, F. (2017). BCI Control of Heuristic Search

Algorithms. Frontiers in Neuroinformatics, 11. doi:10.3389/fninf.2017.00006

Chakaravarthy, V., Checconi, F., Murali, P., Petrini, F., & Sabharwal, Y. (2016). Scalable

single source shortest path algorithms for massively parallel systems. IEEE

210

Transactions on Parallel and Distributed Systems.

doi:10.1109/TPDS.2016.2634535

Chewning, L. V., & Doerfel, M. L. (2013). Integrating crisis into the organizational

lifecycle through transitional networks. International Journal of Humanities and

Social Science, 3, 39-52. Retrieved from http://www.ijhssnet.com/journals

Clair, T. S., Cook, T. D., & Hallberg, K. (2014). Examining the internal validity and

statistical precision of the comparative interrupted time series design by

comparison with a randomized experiment. American Journal of Evaluation,

35(3), 311-327. doi:10.1177/1098214014527337

Cohen, J. (1992). A Power Primer. Psychological Bulletin, 112(1), 155. Retrieved from

http://www2.psych.ubc.ca

Cokley, K. O., & Awad, G. H. (2013). In defense of quantitative methods: Using the

“master’s tools” to promote social justice. Journal for Social Action in Counseling

and Psychology, 5(2), 26-41. Retrieved from http://jsacp.tumblr.com

Collins, C. S., & Cooper, J. E. (2014). Emotional intelligence and the qualitative

researcher. International Journal of Qualitative Methods, 13(1), 88-103.

Retrieved from https://ejournals.library.ualberta.ca

Cormen, T. (2013). Algorithms Unlocked. Cambridge, MA: Massachusetts Institute of

Technology

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to Algorithms (3rd

ed.). Cambridge, MA: Massachusetts Institute of Technology

Csardi, G., & Nepusz, T. (2006). The iGraph software package for complex network

211

research. InterJournal, Complex Systems, 1695(5), 1-9. Retrieved from

http://www.interjournal.org

DʼAngelo, G., DʼEmidio, M., & Frigioni, D. (2014). A loop-free shortest-path routing

algorithm for dynamic networks. Theoretical Computer Science, 516, 1-19.

doi:10.1016/j.tcs.2013.11.001

Daigneault, P. M., & Jacob, S. (2014). Unexpected but Most Welcome Mixed Methods

for the Validation and Revision of the Participatory Evaluation Measurement

Instrument. Journal of Mixed Methods Research, 8(1), 6-24.

doi:10.1177/1558689813486190

Dantas-Torres, F. (2015). Climate change, biodiversity, ticks and tick-borne diseases: the

butterfly effect. International Journal for Parasitology: Parasites and Wildlife,

4(3), 452-461. doi:10.1016/j.ijppaw.2015.07.001

Dawson, J. Q., Munzner, T., & McGrenere, J. (2015). A search-set model of path tracing

in graphs. Information Visualization, 14(4), 308-338.

doi:10.1177/1473871614550536

Day, C. (2014). Python Power. Computing in Science and Engineering, 16(1), 88.

doi:10.1109/MCSE.2014.26

De Sola Pool, I., & Kochen, M. (1979). Contacts and Influence. Social Networks, 1(1), 5-

51. doi:10.1016/0378-8733(78)90011-4

Dean, D. J. (2013). Finding Optimal Travel Routes with Uncertain Cost Data.

Transactions in GIS, 17(2), 159-181. doi:10.1111/j.1467-9671.2012.01360.x

Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial

212

ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970-

3983. doi:10.1016/j.eswa.2013.01.012

Dierbach, C. (2014). Python as a First Programming Language. Journal of Computing

Sciences in Colleges, 29(6), 153-154. Retrieved from http://dl.acm.org

do Carmo Machado, I., McGregor, J. D., Cavalcanti, Y. C., & De Almeida, E. S. (2014).

On strategies for testing software product lines: A systematic literature review.

Information and Software Technology, 56(10), 1183-1199.

doi:10.1016/j.infsof.2014.04.002

Donaldson, L., Qiu, J., & Luo, B. N. (2013). For rigour in organizational management

theory research. Journal of Management Studies, 50(1), 153-172.

doi:10.1111/j.1467-6486.2012.01069.x

Donofrio, B., Class, Q., Lahey, B., & Larsson, H. (2014). Testing the Developmental

Origins of Health and Disease Hypothesis for Psychopathology Using

Family-Based, Quasi-Experimental Designs. Child Development Perspectives,

8(3), 151-157. doi:10.1111/cdep.12078

Drislane, L. E., Patrick, C. J., Sourander, A., Sillanmäki, L., Aggen, S. H., Elonheimo,

H., ... & Kendler, K. S. (2014). Distinct variants of extreme psychopathic

individuals in society at large: Evidence from a population-based sample.

Personality Disorders: Theory, Research, and Treatment, 5(2), 154.

doi:10.1037/per0000060

Drost, R. (2013). Memory and decision making: determining action when the sirens

sound. Weather, Climate, and Society, 5(1), 43-54. doi:10.1175/WCAS-D-11-

213

00042.1

du Plessis, H., & Van Niekerk, A. (2014). A new GISc framework and competency set

for curricula development at South African universities. South African Journal of

Geomatics, 3(1), 1-12. Retrieved from http://www.ajol.info

Dunn, J. G., & Weissman, J. S. (2016). Plastid: nucleotide-resolution analysis of next-

generation sequencing and genomics data. BMC Genomics, 17(1), 958.

doi:10.1186/s12864-016-3278-x

Dunn, S. L., Arslanian-Engoren, C., DeKoekkoek, T., Jadack, R., & Scott, L. D. (2015).

Secondary data analysis as an efficient and effective approach to nursing research.

Western Journal of Nursing Research, 37(10), 1295-1307.

doi:10.1177/0193945915570042

Dybå, T., Kampenes, V. B., & Sjøberg, D. I. (2006). A systematic review of statistical

power in software engineering experiments. Information and Software

Technology, 48(8), 745-755. doi:10.1016/j.infsof.2005.08.009

Ediger, D., Jiang, K., Riedy, E. J., & Bader, D. A. (2013). GraphCT: Multithreaded

algorithms for massive graph analysis. IEEE Transactions on Parallel and

Distributed Systems, 24(11), 2220-2229. doi:10.1109/TPDS.2012.323

Eiselt, H. A., & Bhadury, J. (2015). The Use of Structures in Communication Networks

to Track Membership in Terrorist Groups. Journal of Terrorism Research, 6(1).

doi:10.15664/jtr.1073

Erdős, P., & Rényi, A. (1961). On the strength of connectedness of a random graph. Acta

Mathematica Hungarica, 12(1-2), 261-267. doi:10.1007/BF02066689

214

Erikson, E. (2013). Formalist and Relationalist Theory in Social Network Analysis.

Sociological Theory, 31(3), 219-242. doi:10.1177/0735275113501998

Ersoy, M., & Akbulut, Y. (2014). Cognitive and affective implications of persuasive

technology use on mathematics instruction. Computers & Education, 75, 253-262.

doi:10.1016/j.compedu.2014.03.009

Farooq, M. S., Khan, S. A., Ahmad, F., Islam, S., & Abid, A. (2014). An Evaluation

Framework and Comparative Analysis of the Widely Used First Programming

Languages. PLoS One, 9(2), 02. doi:10.1371/journal.pone.0088941

Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses

using G* Power 3.1: Tests for correlation and regression analyses. Behavior

Research Methods, 41(4), 1149-1160. doi:10.3758/brm.41.4.1149

Fernández-Berrocal, P., Cabello, R., Castillo, R., & Extremera, N. (2012). Gender

differences in emotional intelligence: The mediating effect of age. Psicología

Conductual, 20(1), 77. Retrieved from https://www.researchgate.net

Field, A. (2013). Discovering Statistics using IBM SPSS Statistics (4th ed.). London:

United Kingdom. SAGE Publications Ltd.

Fraigniaud, P., & Giakkoupis, G. (2014). Greedy Routing in Small-World Networks with

Power-Law Degrees. Distributed Computing, 27(4), 231-253.

doi:10.1007/s00446-014-0210-y

Franke, R., & Ivanova, G. (2014). FALCON or How to Compute Measures Time

Efficiently on Dynamically Evolving Dense Complex Networks? Journal of

Biomedical Informatics, 47, 62-70. doi:10.1016/j.jbi.2013.09.005

215

Freeman, J. (2015). Open source tools for large-scale neuroscience. Current Opinion in

Neurobiology, 32, 156-163. doi:10.1016/j.conb.2015.04.002

Fritz, M. S., Cox, M. G., & MacKinnon, D. P. (2015). Increasing statistical power in

mediation models without increasing sample size. Evaluation & the health

Professions, 38(3) 343-366. doi:10.1177/0163278713514250

Gass, O., Meth, H., & Maedche, A. (2014). PaaS Characteristics for Productive Software

Development: An Evaluation Framework. IEEE Internet Computing, 18(1), 56-

64. doi:10.1109/MIC.2014.12

Gassen, J. (2014). Causal Inference in Empirical Archival Financial Accounting

Research. Accounting, Organizations and Society, 39(7), 535-544.

doi:10.1016/j.aos.2013.10.004

Gaston, A., Wilson, P. M., Mack, D. E., Elliot, S., & Prapavessis, H. (2013).

Understanding physical activity behavior and cognitions in pregnant women: An

application of self-determination theory. Psychology of Sport and Exercise, 14(3),

405-412. doi:10.1016/j.psychsport.2012.12.009

Gerber, N., Bell, B., Gavaghan, K., Weisstanner, C., Caversaccio, M., & Weber, S.

(2014). Surgical planning tool for robotically assisted hearing aid implantation.

International Journal of Computer Assisted Radiology and Surgery, 9(1), 11-20.

doi:10.1007/s11548-013-0908-5

Gibson, H., & Vickers, P. (2016). Using adjacency matrices to lay out larger small-world

networks. Applied Soft Computing, 42, 80-92. doi:10.1016/j.asoc.2016.01.036

González-Bailón, S. (2013). Social Science in the Era of Big Data. Policy & Internet,

216

5(2), 147-160. doi:10.1002/1944-2866.POI328

Gorelick, M., & Ozsvald, I. (2014). High Performance Python: Practical Performant

Programming for Humans. Sebastopol, CA: O'Reilly Media, Inc.

Granato, D., de Araújo Calado, V. M., & Jarvis, B. (2014). Observations on the use of

statistical methods in food science and technology. Food Research International,

55, 137-149. doi:10.1016/j.foodres.2013.10.024

Groeneveld, S., Tummers, L., Bronkhorst, B., Ashikali, T., & Van Thiel, S. (2015).

Quantitative methods in public administration: Their use and development

through time. International Public Management Journal, 18(1), 61-86.

doi:10.1080/10967494.2014.972484

Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate Data

Analysis (7th ed.). Upper Saddle River, NJ: Pearson.

Hancox, J. E., Quested, E., Thøgersen-Ntoumani, C., & Ntoumanis, N. (2015). An

intervention to train group exercise class instructors to adopt a motivationally

adaptive communication style: a quasi-experimental study protocol. Health

Psychology and Behavioral Medicine, 3(1), 190-203.

doi:10.1080/21642850.2015.1074075

Harenberg, S., Bello, G., Gjeltema, L., Ranshous, S., Harlalka, J., Seay, R., ... &

Samatova, N. (2014). Community detection in large-scale networks: a survey and

empirical evaluation. Wiley Interdisciplinary Reviews: Computational Statistics,

6(6), 426-439. doi:10.1002/wics.1319

Hayes, A. F., & Preacher, K. J. (2014). Statistical mediation analysis with a

217

multicategorical independent variable. British Journal of Mathematical and

Statistical Psychology, 67(3), 451-470. doi:10.1111/bmsp.12028

Hearnshaw, E. J., & Wilson, M. M. (2013). A Complex Network Approach to Supply

Chain Network Theory. International Journal of Operations & Production

Management, 33(4), 442-469. doi:10.1108/01443571311307343

Henderson, V. C., Kimmelman, J., Fergusson, D., Grimshaw, J. M., & Hackam, D. G.

(2013). Threats to validity in the design and conduct of preclinical efficacy

studies: a systematic review of guidelines for in vivo animal experiments. PLoS

Med, 10(7), e1001489. doi:10.1371/journal.pmed.1001489

Hoare, Z., & Hoe, J. (2013). Understanding Quantitative Research: Part 2. Nursing

Standard, 27(18), 48-55. doi:10.7748/ns2013.01.27.18.48.c9488

Horga, G., Kaur, T., & Peterson, B. S. (2014). Annual Research Review: Current

limitations and future directions in MRI studies of child-and adult-onset

developmental psychopathologies. Journal of Child Psychology and Psychiatry,

55(6), 659-680. doi:10.1111/jcpp.12185

Howitt, D., & Cramer, D. (2014). Introduction to SPSS Statistics in Psychology (6th ed.).

Edinburgh Gate, UK: Pearson Education Ltd.

Hric, D., Peixoto, T. P., & Fortunato, S. (2016). Network structure, metadata, and the

prediction of missing nodes and annotations. Physical Review X, 6(3), 031038.

doi:10.1103/PhysRevX.6.031038

Huang, L., Zhang, B., Yuan, X., Zhang, C., & Ma, A. (2016). A novel Bi-Ant colony

optimization algorithm for solving multi-objective service selection problem.

218

Journal of Intelligent & Fuzzy Systems, 31(2), 873-884. doi:10.3233/JIFS-169018

Hung, S. C., & Tu, M. F. (2014). Is small actually big? The chaos of technological

change. Research Policy, 43(7), 1227-1238. doi:10.1016/j.respol.2014.03.003

Hunt, J. M. (2015). Python in CS1 - Not. Journal of Computing Sciences in Colleges,

31(2), 172-179. Retrieved from http://dl.acm.org

Hwang, K., Hallquist, M. N., & Luna, B. (2013). The development of hub architecture in

the human functional brain network. Cerebral Cortex, 23(10), 2380-2393.

doi:10.1093/cercor/bhs227

Ionel-Alin, L., & Irimie Emil, P. (2013). Conceptual delimitations on sustainable

development. Annals of the University of Oradea Economic Science Series, 22(1),

252-261. Retrieved from http://anale.steconomiceuoradea.ro/en/journal-archive

Ittner, C. D. (2014). Strengthening Causal Inferences in Positivist Field Studies.

Accounting, Organizations and Society, 39(7), 545-549.

doi:10.1016/j.aos.2013.10.003

Jackson, M. R. (2015). Resistance to qual/quant parity: Why the “paradigm” discussion

can’t be avoided. Qualitative Psychology, 2(2), 181. doi:10.1037/qup0000031

Johnston, K., Tanner, M., Lalla, N., & Kawalski, D. (2013). Social Capital: The Benefit

of Facebook ‘Friends’. Behaviour & Information Technology, 32(1), 24-36.

doi:10.1080/0144929X.2010.550063

Jukna, S., & Schnitger, G. (2016). On the optimality of Bellman–Ford–Moore shortest

path algorithm. Theoretical Computer Science, 628, 101-109.

doi:10.1016/j.tcs.2016.03.014

219

Kang, B., & Choo, H. (2016). Network-based Algorithms for Evacuation: A Survey.

International Journal of Disaster Risk Reduction. doi:10.1016/j.ijdrr.2016.10.004

Kang, J. Y., & Lee, B. S. (2017). Optimisation of pipeline route in the presence of

obstacles based on a least cost path algorithm and laplacian smoothing.

International Journal of Naval Architecture and Ocean Engineering.

doi:10.1016/j.ijnaoe.2017.02.001

Kapanowski, A., & Gałuszka, Ł. (2016). Weighted Graph Algorithms with Python. The

Python Papers, 11(3). Retrieved from

http://ojs.pythonpapers.org/index.php/tpp/issue/view/37

Katz, J. (2015). A theory of qualitative methodology: The social system of analytic

fieldwork. Méthod (e) s: African Review of Social Sciences Methodology, 1(1-2),

131-146. doi:10.1080/23754745.2015.1017282

Kaur, M., & Gangal, A. (2015). Comparative Analysis of Various Routing Protocol in

MANET. International Journal of Computer Applications, 118(8).

doi:10.5120/20766-3207

Kaye, J., Whitley, E. A., Lund, D., Morrison, M., Teare, H., & Melham, K. (2015).

Dynamic consent: a patient interface for twenty-first century research networks.

European Journal of Human Genetics, 23(2), 141-146. doi:10.1038/ejhg.2014.71

Kepner, J., Bade, D., Buluç, A., Gilbert, J., Mattson, T., & Meyerhenke, H. (2015).

Graphs, Matrices, and the GraphBLAS: Seven Good Reasons. Procedia

Computer Science, 51, 2453–2462. doi:10.1016/j.procs.2015.05.353

Kirkwood, A., & Price, L. (2013). Examining some assumptions and limitations of

220

research on the effects of emerging technologies for teaching and learning in

higher education. British Journal of Educational Technology, 44(4), 536-543.

doi:10.1111/bjet.12049

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El

Emam, K., & Rosenberg, J. (2002). Preliminary guidelines for empirical research

in software engineering. IEEE Transactions on Software Engineering, 28(8), 721-

734. doi:10.1109/TSE.2002.1027796

Kleinberg, J. (2000). The Small-World Phenomenon: An Algorithmic Perspective. In

ACM Symposium on the Theory of Computing, Thirty-Second Annual Proceedings

(pp. 163-170). ACM. doi:10.1145/335305.335325

Klimaszewski, J. (2014). The efficiency of the A* algorithm’s implementations in

selected programming languages. Journal of Theoretical and Applied Computer

Science, 8(2), 63-71. Retrieved from http://www.jtacs.org

Koç, Ç., Bektaş, T., Jabali, O., & Laporte, G. (2016). Thirty years of heterogeneous

vehicle routing. European Journal of Operational Research, 249(1), 1-21.

doi:10.1016/j.ejor.2015.07.020

Korkmaz, S., Goksuluk, D., & Zararsiz, G. (2014). MVN: an R package for assessing

multivariate normality. The R Journal, 6(2), 151-162. Retrieved from

https://journal.r-project.org/archive/2014-2/

Korte, C., & Milgram, S. (1970). Acquaintance Networks Between Racial Groups:

Application of the Small World Method. Journal of Personality and Social

Psychology, 15(2), 101-108. Retrieved from http://www.apa.org

221

Koujaku, S., Takigawa, I., Kudo, M., & Imai, H. (2016). Dense Core Model for Cohesive

Subgraph Discovery. Social Networks, 44, 143-152.

doi:10.1016/j.socnet.2015.06.003

Krause, J., Croft, D. P., & James, R. (2007). Social network theory in the behavioral

sciences: potential applications. Behavioral Ecology and Sociobiology, 62(1), 15-

27. doi:10.1007/s00265-007-0445-8

Krauss, M., Burghaus, R., Lippert, J., Niemi, M., Neuvonen, P., Schuppert, A., ... &

Görlitz, L. (2013). Using Bayesian-PBPK modeling for assessment of inter-

individual variability and subgroup stratification. In Silico Pharmacology, 1(1).

doi:10.1186/2193-9616-1-6

Krishnan, S. S., & Sitaraman, R. K. (2013). Video stream quality impacts viewer

behavior: inferring causality using quasi-experimental designs. IEEE/ACM

Transactions on Networking, 21(6), 2001-2014.

doi:10.1109/TNET.2013.2281542

Kuipers, B., Feigenbaum, E. A., Hart, P. E., & Nilsson, N. J. (2017). Shakey: From

Conception to History. AI Magazine, 38(1), 88-103. Retrieved from

http://ai.stanford.edu/%7Enilsson/publications.html#essays

Kumar, S., Nilsen, W. J., Abernethy, A., Atienza, A., Patrick, K., Pavel, M., ... &

Hedeker, D. (2013). Mobile health technology evaluation: the mHealth evidence

workshop. American Journal of Preventive Medicine, 45(2), 228-236.

doi:10.1016/j.amepre.2013.03.017

Lakshmi, S., & Mohideen, M. A. (2013). Issues in Reliablity and Validty of Research.

222

International Journal of Management Research and Reviews, 3(4), 2752.

Retrieved from http://ijmrr.com

Lampis, F., Díaz-Emparanza, I., & Banerjee, A. (2015). How to use SETAR models in

gretl. Computational Economics, 46(2), 231-241. doi:10.1007/s10614-014-9445-8

Lamprecht, D., Strohmaier, M., Helic, D., Nyulas, C., Tudorache, T., Noy, N. F., &

Musen, M. A. (2015). Using ontologies to model human navigation behavior in

information networks: A study based on wikipedia. Semantic Web, 6(4), 403-422.

doi:10.3233/SW-140143

Landrum, B., & Garza, G. (2015). Mending fences: Defining the domains and approaches

of quantitative and qualitative research. Qualitative Psychology, 2(2), 199.

doi:10.1037/qup0000030

Largeron, C., Mougel, P. N., Rabbany, R., & Zaïane, O. R. (2015). Generating Attributed

Networks with Communities. PLoS One, 10(4): e0122777.

doi:10.1371/journal.pone.0122777

Lenharth, A., Nguyen, D., & Pingali, K. (2016). Parallel graph analytics.

Communications of the ACM, 59(5), 78-87. doi:10.1145/2901919

Lewis, T. G. (2013). Cognitive stigmergy: A study of emergence in small-group social

networks. Cognitive Systems Research, 21, 7-21.

doi:10.1016/j.cogsys.2012.06.002

Li, D., Chen, J., Guo, C., Liu, Y., Zhang, J., Zhang, Z., & Zhang, Y. (2013). IP-

geolocation mapping for moderately connected Internet regions. IEEE

Transactions on Parallel and Distributed Systems, 24(2), 381-391.

223

doi:10.1109/TPDS.2012.136

Li, X., Zhou, W., & Liu, D. (2012). Application Source Codes Profiling for ASIP

Memory Subsystem Design. Procedia Engineering, 29, 3160-3164.

doi:10.1016/j.proeng.2012.01.458

Liapis, A., Yannakakis, G. N., & Togelius, J. (2015). Constrained novelty search: A

study on game content generation. Evolutionary Computation, 23(1), 101-129.

doi:10.1162/EVCO_a_00123

Lim, K. L., Seng, K. P., Yeong, L. S., Ang, L. M., & Ch’ng, S. I. (2015). Uninformed

pathfinding: A new approach. Expert Systems with Applications, 42(5), 2722-

2730. doi:10.1016/j.eswa.2014.10.046

Liu, M., Egan, G. K., & Santoso, F. (2015). Modeling, autopilot design, and field tuning

of a UAV with minimum control surfaces. IEEE Transactions on Control Systems

Technology, 23(6), 2353-2360. doi:10.1109/TCST.2015.2398316

Liu, T. M., & Lyons, D. M. (2015). Leveraging Area Bounds Information for

Autonomous Decentralized Multi-Robot Exploration. Robotics and Autonomous

Systems, 74, 66-78. doi:10.1016/j.robot.2015.07.002

Liyanagunawardena, T. R., Adams, A. A., & Williams, S. A. (2013). MOOCs: A

systematic study of the published literature 2008-2012. The International Review

of Research in Open and Distributed Learning, 14(3), 202-227. Retrieved from

http://www.irrodl.org

Lordan, O., Sallan, J. M., & Simo, P. (2014). Study of the topology and robustness of

airline route networks from the complex network approach: a survey and research

224

agenda. Journal of Transport Geography, 37, 112-120.

doi:10.1016/j.jtrangeo.2014.04.015

Luft, J., & Shields, M. D. (2014). Subjectivity in Developing and Validating Causal

Explanations in Positivist Accounting Research. Accounting, Organizations and

Society, 39(7), 550-558. doi:10.1016/j.aos.2013.09.001

Lunde, Å., Heggen, K., & Strand, R. (2013). Knowledge and Power Exploring

Unproductive Interplay Between Quantitative and Qualitative Researchers.

Journal of Mixed Methods Research, 7(2), 197-210.

doi:10.1177/1558689812471087

Ma, J., Fukuda, D., & Schmöcker, J. D. (2013). Faster hyperpath generating algorithms

for vehicle navigation. Transportmetrica A: Transport Science, 9(10), 925-948.

doi:10.1080/18128602.2012.719165

Maciejewski, W., & Puleo, G. J. (2014). Environmental evolutionary graph theory.

Journal of Theoretical Biology, 360, 117-128. doi:10.1016/j.jtbi.2014.06.040

Madill, A. (2015). Qualitative research is not a paradigm: Commentary on Jackson

(2015) and Landrum and Garza (2015). Qualitative Psychology, 2, 214-220.

doi:10.1037/qup0000032

Maertens, A., & Barrett, C. B. (2013). Measuring social networks' effects on agricultural

technology adoption. American Journal of Agricultural Economics, 95(2), 353-

359. doi:10.1093/ajae/aas049

Majeed, F., & Rahman, S. (2015). Graph Visualization Tools: A Comparative Analysis.

Journal of Independent Studies and Research: Computing, 13(1), 20-26.

225

Retrieved from http://jisr.szabist.edu.pk/JISR-C

Malliaros, F. D., & Vazirgiannis, M. (2013). Clustering and Community Detection in

Directed Networks: A Survey. Physics Reports, 533(4), 95-142.

doi:10.1016/j.physrep.2013.08.002

Marozzi, M. (2016). Inter-industry financial ratio comparison with application to

Japanese and Chinese firms. Electronic Journal of Applied Statistical Analysis,

9(1), 40-57. doi:10.1285/i20705948v9n1p40

Marsh-Hunkin, K. E., Gochfeld, D. J., & Slattery, M. (2013). Antipredator responses to

invasive lionfish, Pterois volitans: interspecific differences in cue utilization by

two coral reef gobies. Marine Biology, 160(4), 1029-1040. doi:10.1007/s00227-

012-2156-6

Mayorga, A., & Gleicher, M. (2013). Splatterplots: Overcoming overdraw in scatter

plots. IEEE Transactions on Visualization and Computer Graphics, 19(9), 1526-

1538. doi:10.1109/TVCG.2013.65

McBride, M., & Hewitt, D. (2013). The Enemy you can’t see: An Investigation of the

Disruption of Dark Networks. Journal of Economic Behavior & Organization, 93,

32-50. doi:10.1016/j.jebo.2013.07.004

McClymont, K., Keedwell, E., & Savic, D. (2015). An analysis of the interface between

evolutionary algorithm operators and problem features for water resources

problems. A case study in water distribution network design. Environmental

Modelling & Software, 69, 414-424. doi:10.1016/j.envsoft.2014.12.023

Mears, D., & Pollard, H. B. (2016). Network science and the human brain: Using graph

226

theory to understand the brain and one of its hubs, the amygdala, in health and

disease. Journal of Neuroscience Research, 94(6), 590-605.

doi:10.1002/jnr.23705

Medina, R. M. (2014). Social Network Analysis: A Case Study of the Islamist Terrorist

Network. Security Journal, 27(1), 97-121. doi:10.1057/sj.2012.21

Merchant, G. (2012). Unravelling the social network: theory and research. Learning,

Media and Technology, 37(1), 4-19. doi:10.1080/17439884.2011.567992

Mertler, C. A., & Reinhart, R. A. (2017). Advanced and Multivariate Statistical Methods:

Practical Application and Interpretation (6th ed.). New York, NY: Routledge.

Mills, B. J., Clark, J. J., Peeples, M. A., Haas, W. R., Roberts, J. M., Hill, J. B., . . . &

Shackley, M. S. (2013). Transformation of Social Networks in the Late Pre-

Hispanic US Southwest. Proceedings of the National Academy of Sciences,

110(15), 5785-5790. doi:10.1073/pnas.1219966110

Milner, G. (2016). What is GPS?. Journal of Technology in Human Services, 34(1), 9-12.

doi:10.1080/15228835.2016.1140110

Mitzenmacher, M. (2015). Theory Without Experiments: Have We Gone Too Far?

Communications of the ACM, 58(9), 40-42. doi:10.1145/2699413

Mora, A. M., Merelo, J. J., Castillo, P. A., & Arenas, M. G. (2013). hCHAC: A family of

MOACO algorithms for the resolution of the bi-criteria military unit pathfinding

problem. Computers & Operations Research, 40(6), 1524-1551.

doi:10.1016/j.cor.2011.11.015

Muller, E., Bednar, J. A., Diesmann, M., Gewaltig, M. O., Hines, M., & Davison, A. P.

227

(2015). Python in Neuroscience. Frontiers in Neuroinformatics, 9.

doi:10.3389/fninf.2015.00011

Murphy, R. R., O’Connell, J., Cox, A. J., & Schulz-Trieglaff, O. (2015). NxRepair: error

correction in de novo sequence assembly using Nextera mate pairs. PeerJ, 3,

e996. doi:10.7717/peerj.996

Nanongkai, D. (2014). Distributed approximation algorithms for weighted shortest paths.

Proceedings of the 46th Annual ACM Symposium on Theory of Computing,

(2014), 565-573. doi:10.1145/2591796.2591850

NASA (n.d.). In-situ Exploration and Sample Return: Autonomous Planetary Mobility

[Online digital image]. Retrieved January 27, 2017 from

http://mars.nasa.gov/mer/technology/is_autonomous_mobility-02.html

Nash, A., & Koenig, S. (2013). Any-Angle Path Planning. AI Magazine, 34(4), 85-107.

doi:10.1609/aimag.v34i4.2512

Neall, A. M., & Tuckey, M. R. (2014). A methodological review of research on the

antecedents and consequences of workplace harassment. Journal of Occupational

and Organizational Psychology, 87(2), 225-257. doi:10.1111/joop.12059

Newman, M. E., Watts, D. J., & Strogatz, S. H. (2002). Random Graph Models of Social

Networks. Proceedings of the National Academy of Sciences, 99(Suppl. 1), 2566-

2572. doi:10.1073/pnas.012582999

Nilsen, J. K. (2007). Montepython: Implementing quantum monte carlo using python.

Computer Physics Communications, 177(10), 799-814.

doi:10.1016/j.cpc.2007.06.013

228

Nocke, T., Buschmann, S., Donges, J. F., Marwan, N., Schulz, H. J., & Tominski, C.

(2015). Review: visual analytics of climate networks. Nonlinear Processes in

Geophysics, 22(5), 545. doi:10.5194/npg-22-545-2015

Nunn, C. L., Jordán, F., McCabe, C. M., Verdolin, J. L., & Fewell, J. H. (2015).

Infectious disease and group size: more than just a numbers game. Phil. Trans. R.

Soc. B, 370(1669), 20140111. doi:10.1098/rstb.2014.0111

Opsahl, T., Vernet, A., Alnuaimi, T., & George, G. (2017). Revisiting the Small-World

Phenomenon: Efficiency Variation and Classification of Small-World Networks.

Organizational Research Methods, 20(1), 149-173.

doi:10.1177/1094428116675032

Orchard, D., & Rice, A. (2014). A Computational Science Agenda for Programming

Language Research. Procedia Computer Science, 29, 713-727.

doi:10.1016/j.procs.2014.05.064

Öztürk, S., & Kuzucuoğlu, A. E. (2016). A Multi-Robot Coordination Approach for

Autonomous Runway Foreign Object Debris (FOD) Clearance. Robotics and

Autonomous Systems, 75, 244-259. doi:10.1016/j.robot.2015.09.022

Paiva, C. E., Barroso, E. M., Carneseca, E. C., de Pádua Souza, C., dos Santos, F. T.,

López, R. V. M., & Paiva, S. B. R. (2014). A critical analysis of test-retest

reliability in instrument validation studies of cancer patients under palliative care:

a systematic review. BMC Medical Research Methodology, 14(1), 1.

doi:10.1186/1471-2288-14-8

Papaneophytou, C. P., & Kontopidis, G. (2014). Statistical Approaches to Maximize

229

Recombinant Protein Expression in Escherichia Coli: A General Review. Protein

Expression and Purification, 94, 22-32. doi:10.1016/j.pep.2013.10.016

Peters, D. H. (2014). The Application of Systems Thinking in Health: Why Use Systems

Thinking. Health Research Policy and Systems, 12, 51. doi:10.1186/1478-4505-

12-51

Pettengill, J. B., Pightling, A. W., Baugher, J. D., Rand, H., & Strain, E. (2016). Real-

Time Pathogen Detection in the Era of Whole-Genome Sequencing and Big Data:

Comparison of k-mer and Site-Based Methods for Inferring the Genetic Distances

among Tens of Thousands of Salmonella Samples. PLoS One, 11(11), e0166162.

doi:10.1371/journal.pone.0166162

Phillips, J. D., Schwanghart, W., & Heckmann, T. (2015). Graph Theory in the

Geosciences. Earth-Science Reviews, 143, 147-160.

doi:10.1016/j.earscirev.2015.02.002

Pluye, P., & Hong, Q. N. (2014). Combining the power of stories and the power of

numbers: mixed methods research and mixed studies reviews. Annual Review of

Public Health, 35(1), 29. doi:10.1146/annurev-publhealth-032013-182440

Poisot, T. (2013). An a posteriori measure of network modularity. F1000Research, 2.

doi:10.12688/f1000research.2-130.v3

Puckett, B. J., Eggleston, D. B., Kerr, P. C., & Luettich, R. A. (2014). Larval dispersal

and population connectivity among a network of marine reserves. Fisheries

Oceanography, 23(4), 342-361. doi:10.1111/fog.12067

Qasem, A. A. A.,& Viswanathappa, G. (2016). Teacher perceptions towards ICT

230

integration: Professional development through blended learning. Journal of

Information Technology Education: Research, 15, 561-575. Retrieved from

http://www.informingscience.org

Quick, J., & Hall, S. (2015). Part Three: The quantitative approach. Journal of

Perioperative Practice, 25(10), 192-196. Retrieved from

http://www.afpp.org.uk/books-journals/Journal-of-Perioperative-Practice

Quinn, S. C., Kass, N. E., & Thomas, S. B. (2013). Building trust for engagement of

minorities in human subjects research: is the glass half full, half empty, or the

wrong size?. American Journal of Public Health, 103(12), 2119-2121.

doi:10.2105/AJPH.2013.301685

Raich, M., Müller, J., & Abfalter, D. (2014). Hybrid analysis of textual data: Grounding

managerial decisions on intertwined qualitative and quantitative analysis.

Management Decision, 52(4), 737-754. doi:10.1108/MD-03-2012-0247

Raz, S., Bar-Haim, Y., Sadeh, A., & Dan, O. (2014). Reliability and validity of the online

continuous performance test among young adults. Assessment, 21(1), 108-118.

doi:10.1177/1073191112443409

Redondo, J. M., & Ortin, F. (2015). A Comprehensive Evaluation of Common Python

Implementations. IEEE Software, 32(4), 76-84. doi:10.1109/MS.2014.104

Rezvanian, A., & Meybodi, M. R. (2015). Sampling Social Networks Using Shortest

Paths. Physica A: Statistical Mechanics and its Applications, 424, 254-268.

doi:10.1016/j.physa.2015.01.030

Riazi, A. M., & Candlin, C. N. (2014). Mixed-methods research in language teaching and

231

learning: Opportunities, issues and challenges. Language Teaching, 47(02), 135-

173. doi:10.1017/S0261444813000505

Rodeh, O., Bacik, J., & Mason, C. (2013). BTRFS: The Linux B-tree filesystem. ACM

Transactions on Storage (TOS), 9(3), 9. doi:10.1145/2501620.2501623

Rohden, M., Witthaut, D., Timme, M., & Meyer-Ortmanns, H. (2017). Curing critical

links in oscillator networks as power flow models. New Journal of Physics, 19(1),

013002. doi:10.1088/1367-2630/aa5597

Rooney, A. A., Cooper, G. S., Jahnke, G. D., Lam, J., Morgan, R. L., Boyles, A. L., ... &

Walker, T. D. (2016). How credible are the study results? Evaluating and

applying internal validity tools to literature-based assessments of environmental

health hazards. Environment International, 92, 617-629.

doi:10.1016/j.envint.2016.01.005

Rosa, I. C., Rocha, R. J., Lopes, A., Cruz, I. C., Calado, R., Bandarra, N., ... & Rosa, R.

(2016). Impact of air exposure on the photobiology and biochemical profile of an

aggressive intertidal competitor, the zoanthid Palythoa caribaeorum. Marine

Biology, 163(11), 222. doi:10.1007/s00227-016-3002-z

Rossant, C., & Harris, K. D. (2013). Hardware-accelerated interactive data visualization

for neuroscience in Python. Frontiers in Neuroinformatics, 7.

doi:10.3389/fninf.2013.00036

Rutledge, B. L., Jones, E. S., Bailey, J. H., & Stewart, J. H. (2014). Evolution of Medical

Students' Understanding of Systems-Based Practice: A Qualitative Account. The

Qualitative Report, 19(27), 1. Retrieved from http://nsuworks.nova.edu

232

Salmela, L., & Rivals, E. (2014). LoRDEC: accurate and efficient long read error

correction. Bioinformatics, btu538. doi:10.1093/bioinformatics/btu538

Sayama, H., Pestov, I., Schmidt, J., Bush, B. J., Wong, C., Yamanoi, J., & Gross, T.

(2013). Modeling complex systems with adaptive networks. Computers &

Mathematics with Applications, 65(10), 1645-1664.

doi:10.1016/j.camwa.2012.12.005

Schreier, F. (2017). Computational aspects of speed-dependent Voigt profiles. Journal of

Quantitative Spectroscopy and Radiative Transfer, 187, 44-53.

doi:10.1016/j.jqsrt.2016.08.009

Sedgewick, R, & Wayne, K. (2011). Algorithms (4th ed.). Upper Saddle River, NJ:

Pearson Education, Inc.

Severance, C. (2015). Guido van Rossum: The Modern Era of Python. Computer, 48(3),

8-10. doi:10.1109/MC.2015.73

Sharon, G., Stern, R., Goldenberg, M., & Felner, A. (2013). The increasing cost tree

search for optimal multi-agent pathfinding. Artificial Intelligence, 195, 470-495.

doi:10.1016/j.artint.2012.11.006

Shi, B., & Weninger, T. (2016). Discriminative predicate path mining for fact checking in

knowledge graphs. Knowledge-Based Systems, 104, 123-133.

doi:10.1016/j.knosys.2016.04.015

Singh, A., & Mishra, P. K. (2014). Performance Analysis of Floyd Warshall Algorithm

vs Rectangular Algorithm. International Journal of Computer Applications,

107(16). doi:10.5120/18837-0372

233

Singh, N., Browne, L. M., & Butler, R. (2013). Parallel astronomical data processing

with Python: Recipes for multicore machines. Astronomy and Computing, 2, 1-10.

doi:10.1016/j.ascom.2013.04.002

Slade, S., & Prinsloo, P. (2013). Learning analytics ethical issues and dilemmas.

American Behavioral Scientist, 57(10), 1510-1529.

doi:10.1177/0002764213479366

Steininger, T., Greiner, M., Beaujean, F., & Enßlin, T. (2016). d2o: a distributed data

object for parallel high-performance computing in Python. Journal of Big Data,

3(1), 17. doi:10.1186/s40537-016-0052-5

Stern, R., Felner, A., van den Berg, J., Puzis, R., Shah, R., & Goldberg, K. (2014).

Potential-Based Bounded-Cost Search and Anytime Non-Parametric A*. Artificial

Intelligence, 214, 1-25. doi:10.1016/j.artint.2014.05.002

Stevenson, A., & Cordy, J. R. (2014). A survey of grammatical inference in software

engineering. Science of Computer Programming, 96, 444-459.

doi:10.1016/j.scico.2014.05.008

Subarno, T., Siregar, V. P., Agus, S. B., & Sunuddin, A. (2016). Modelling Complex

Terrain of Reef Geomorphological Structures in Harapan-kelapa Island,

Kepulauan Seribu. Procedia Environmental Sciences, 33, 478-486.

doi:10.1016/j.proenv.2016.03.100

Sun, H., Ha, W., Teh, P. L., & Huang, J. (2016). A Case Study on Implementing

Modularity in Software Development. Journal of Computer Information Systems,

1-9. doi:10.1080/08874417.2016.1183430

234

Sung, Y., Kwak, J., & Park, J. H. (2015). Graph-based motor primitive generation

framework. Human-centric Computing and Information Sciences, 5(1), 35.

doi:10.1186/s13673-015-0051-0

Tabachnick, B. G., & Fidell, L. S. (2014). Using Multivariate Statistics: Pearson New

International Edition (6th ed.). Essex, United Kingdom. Pearson Publishing.

Taylor, T. E., O'Dell, C. W., Partain, P. T., Cronk, H. Q., Nelson, R. R., Rosenthal, E. J.,

... & Gunson, M. R. (2016). Orbiting Carbon Observatory-2 (OCO-2) cloud

screening algorithms: validation against collocated MODIS and CALIOP data.

Atmospheric Measurement Techniques, 9(3), 973. doi:10.5194/amt-9-973-2016

Thakur, S., & Guttman, D. S. (2016). A De-Novo Genome Analysis Pipeline

(DeNoGAP) for large-scale comparative prokaryotic genomics studies. BMC

Bioinformatics, 17(1), 260. doi:10.1186/s12859-016-1142-2

Thomas, D. B., Luk, W., Leong, P. H., & Villasenor, J. D. (2007). Gaussian random

number generators. ACM Computing Surveys (CSUR), 39(4), 11.

doi:10.1145/1287620.1287622

Tonidandel, S., & LeBreton, J. M. (2013). Beyond step-down analysis: A new test for

decomposing the importance of dependent variables in MANOVA. Journal of

Applied Psychology, 98(3), 469. doi:10.1037/a0032001

Traag, V. A., Krings, G., & Van Dooren, P. (2013). Significant scales in community

structure. Scientific Reports, 3. doi:10.1038/srep02930

Tsang, E. W. (2014). Case Studies and Generalization in Information Systems Research:

A Critical Realist Perspective. The Journal of Strategic Information Systems,

235

23(2), 174-186. doi:10.1016/j.jsis.2013.09.002

Turner, T. L., Balmer, D. F., & Coverdale, J. H. (2013). Methodologies and Study

Designs Relevant to Medical Education Research. International Review of

Psychiatry, 25(3), 301-310. doi:10.3109/09540261.2013.790310

Vegas, S., Apa, C., & Juristo, N. (2016). Crossover Designs in Software Engineering

Experiments: Benefits and Perils. IEEE Transactions on Software Engineering,

42(2), 120-135. doi:10.1109/TSE.2015.2467378

Veletsianos, G., & Kimmons, R. (2016). Scholars in an increasingly open and digital

world: How do education professors and students use Twitter?. The Internet and

Higher Education, 30, 1-10. doi:10.1016/j.iheduc.2016.02.002

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative

divide: Guidelines for conducting mixed methods research in information

systems. MIS Quarterly, 37(1), 21-54. Retrieved from http://misq.org

Vesović, M., Smiljanić, A., & Kostić, D. (2016). Performance of shortest path algorithm

based on parallel vertex traversal. Serbian Journal of Electrical Engineering,

13(1), 31-43. doi:10.2298/SJEE1601031V

Wang, X. G. (2015). A Network Evolution Model Based on Community Structure.

Neurocomputing, 168, 1037–1043. doi:10.1016/j.neucom.2015.05.021

Wang, Z., Zlatanova, S., Moreno, A., Van Oosterom, P., & Toro, C. (2014). A data

model for route planning in the case of forest fires. Computers & Geosciences, 68,

1-10. doi:10.1016/j.cageo.2014.03.013

Warne, R. T. (2014). A Primer on Multivariate Analysis of Variance (MANOVA) for

236

Behavioral Scientists. Practical Assessment, Research & Evaluation, 19(17), 1-

10. Retrieved from http://pareonline.net

Wasserman, S., & Faust, K. (1994). Social Network Analysis: Methods and Applications

(Vol. 8). New York, NY: Cambridge University Press.

Watts, D. J., & Strogatz, S. H. (1998). Collective Dynamics of ‘Small-World’ Networks.

Nature, 393(6684), 440-442. doi:10.1038/30918

Wen, L., Çatay, B., & Eglese, R. (2014). Finding a minimum cost path between a pair of

nodes in a time-varying road network with a congestion charge. European

Journal of Operational Research, 236(3), 915-923.

doi:10.1016/j.ejor.2013.10.044

White, A. V., & Perrone-McGovern, K. (2017). Influence of Generational Status and

Financial Stress on Academic and Career Self-Efficacy. Journal of Employment

Counseling, 54(1), 38-46. doi:10.1002/joec.12049

Wildiers, H., Mauer, M., Pallis, A., Hurria, A., Mohile, S. G., Luciani, A., ... & Cohen, H.

J. (2013). End points and trial design in geriatric oncology research: a joint

European organisation for research and treatment of cancer–Alliance for Clinical

Trials in Oncology–International Society of Geriatric Oncology position article.

Journal of Clinical Oncology, 31(29), 3711-3718. doi:10.1200/JCO.2013.49.6125

Williamson, T., & Olsson, R. A. (2014). PySy: A Python Package for Enhanced

Concurrent Programming. Concurrency and Computation: Practice and

Experience, 26(2), 309-335. doi:10.1002/cpe.2981

Wohlin, C., & Aurum, A. (2015). Towards a decision-making structure for selecting a

237

research design in empirical software engineering. Empirical Software

Engineering, 20(6), 1427-1455. doi:10.1007/s10664-014-9319-7

Xu, J., & Chen, H. (2008). The Topology of Dark Networks. Communications of the

ACM, 51(10), 58-65. doi:10.1145/1400181.1400198

Xu, Y., Liu, P., Li, X., & Ren, W. (2014). Discovering the Influences of Complex

Network Effects on Recovering Large Scale Multiagent Systems. The Scientific

World Journal, 2014. doi:10.1155/2014/407639

Yamamoto, M., Ono, M., Nakashima, K., & Hirai, A. (2016). Unified performance

profiling of an entire virtualized environment. International Journal of

Networking and Computing, 6(1), 124-147. Retrieved from http://www.ijnc.org

Yang, L., Qi, J., Song, D., Xiao, J., Han, J., & Xia, Y. (2016). Survey of Robot 3D Path

Planning Algorithms. Journal of Control Science and Engineering, 2016.

doi:10.1155/2016/7426913

Yang, Y., Poon, J. P., Liu, Y., & Bagchi-Sen, S. (2015). Small and Flat Worlds: A

Complex Network Analysis of International Trade in Crude Oil. Energy, 93, 534-

543. doi:10.1016/j.energy.2015.09.079

Yang, Z., Algesheimer, R., & Tessone, C. J. (2016). A Comparative Analysis of

Community Detection Algorithms on Artificial Networks. Scientific Reports, 6.

doi:10.1038/srep30750

Yoon, S., Yoon, S. E., Lee, U., & Shim, D. H. (2015). Recursive Path Planning Using

Reduced States for Car-Like Vehicles on Grid Maps. IEEE Transactions on

Intelligent Transportation Systems, 16(5), 2797-2813.

238

doi:10.1109/TITS.2015.2422991

Zaglia, M. E. (2013). Brand communities embedded in social networks. Journal of

Business Research, 66(2), 216-223. doi:10.1016/j.jbusres.2012.07.015

Zhang, A., Li, C., & Bi, W. (2016). Rectangle expansion A∗ pathfinding for grid maps.

Chinese Journal of Aeronautics, 29(5), 1385-1396. doi:10.1016/j.cja.2016.04.023

Zhang, C., Anzalone, N. C., Faria, R. P., & Pearce, J. M. (2013). Open-source 3D-

printable optics equipment. PloS One, 8(3), e59840.

doi:10.1371/journal.pone.0059840

Zhang, M., Su, C., Liu, Y., Hu, M., & Zhu, Y. (2016). Unmanned Aerial Vehicle Route

Planning in the Presence of a Threat Environment Based on a Virtual Globe

Platform. ISPRS International Journal of Geo-Information, 5(10), 184.

doi:10.3390/ijgi5100184

Zhang, X., Chan, F. T., Yang, H., & Deng, Y. (2017). An adaptive amoeba algorithm for

shortest path tree computation in dynamic graphs. Information Sciences, 405,

123-140. doi:10.1016/j.ins.2017.04.021

Zhang, Z., & Wang, K. (2013). A trust model for multimedia social networks. Social

Network Analysis and Mining, 3(4), 969-979. doi:10.1007/s13278-012-0078-4

Zhu, L., & Chiu, Y. C. (2015). Transportation Routing Map Abstraction Approach:

Algorithm and Numerical Analysis. Transportation Research Record: Journal of

the Transportation Research Board, (2528), 78-85. doi:10.3141/2528-09.

Zohrabi, M. (2013). Mixed method research: Instruments, validity, reliability and

reporting findings. Theory and Practice in Language Studies, 3(2), 254. Retrieved

239

from http://www.academypublication.com/issues

Zou, Z., Wu, J., Gao, J., & Xu, X. (2014). Cascade defense in urban road network by

inserting modular topologies. Kybernetes, 43(5), 750-763. doi:10.1108/K-11-

2013-0250

Zou, Z., Xiao, Y., & Gao, J. (2013). Robustness analysis of urban transit network based

on complex networks theory. Kybernetes, 42(3), 383-399.

doi:10.1108/03684921311323644

240

Appendix A: Graph-Tool A* Algorithm Instrument

 Instrument Background: Graph-Tool is an open source graph analysis framework,

available as a Python module, and freely available from the following website:

https://graph-tool.skewed.de

 Graph-Tool supports several pathfinding algorithms through its extensive

application programmer interface (API). Official documentation of the complete Graph-

Tool API can be found at the following website:

https://graph-tool.skewed.de/static/doc/index.html

 Graph-Tool's A* pathfinding algorithm is supported in a Python function named

astar_search and is fully described in the Graph-Tool online documentation here:

https://graph-tool.skewed.de/static/doc/ search_module.html?highlight=astar#graph_tool.

search.astar_search

 Versioning: The Graph-Tool version used in this study: 2.18

 Instructions: The A* (pronounced "A star") algorithm is supported by a Graph-

Tool Python function named: astar_search

 Software engineers writing Python source code to utilize Graph-Tool's A*

pathfinding algorithm, may call the aforementioned function using Python. This is the

primary method my quantitative study utilizes Graph-Tool's A* algorithm.

In summary, these are the steps to use the Graph-Tool A* API function:

1. Load the 2D terrain map file

2. Assign the start and destination nodes.

241

3. Call the A* function: astar_search

4. Two result parameters are returned, one of which is the list of

predecessors from the destination node, back to the start node. This

contains the shortest path.

5. Iterate through the list of predecessor nodes until the complete path is

generated.

6. Count the number of nodes in that list to obtain the final path length.

An example how to use the API is depicted next in Figure A1.

Figure 48. Abbreviated Graph-Tool A* (a-star) algorithm API demonstration.

 Results Interpretation: As shown in the Python source code snippet above, the

variable 'astarPath', used in the penultimate line, contains a string with the full path from

242

start node, to destination node. The length of this node list contains the path length, as

shown above in the last line of Python code.

 Statistical Validity and Reliability: The validity and reliability of the algorithm

instrument were successfully verified in a pilot test, as described theoretically in Section

2, and statistically in Section 3, using the Wilcoxon Signed Ranks statistic in a repeated-

measures design with no intervention. See Section 3 for the statistical details.

 Doctoral study source code location: A full, working version of my source code,

which uses the aforementioned graph analysis framework and pathfinding API, is freely

available for review at this URL: https://github.com/professor-moran/graph-theory

243

Appendix B: Graph-Tool Bellman-Ford Algorithm Instrument

 Instrument Background: Graph-Tool is an open source graph analysis framework,

available as a Python module, and freely available from the following website:

https://graph-tool.skewed.de

Graph-Tool supports several pathfinding algorithms through its extensive

application programmer interface (API). Official documentation of the complete Graph-

Tool API can be found at the following website:

https://graph-tool.skewed.de/static/doc/index.html

 Graph-Tool's Bellman-Ford pathfinding algorithm is supported in a Python

function named shortest_path and is fully described in the Graph-Tool online

documentation here: https://graph-tool.skewed.de/static/doc/topology.

html?highlight=shortest_path#graph_tool.topology.shortest_path

 Versioning: The Graph-Tool version used in this study: 2.18

 Instructions: The Bellman-Ford algorithm is supported by a Graph-Tool Python

function named: shortest_path but requires that the negative_weights parameter is set to

Boolean True, in order for Bellman-Ford to function to be activated, as discussed in the

aforementioned documentation URL.

 Software engineers writing Python source code to utilize Graph-Tool's Bellman-

Ford pathfinding algorithm, may call the aforementioned function using Python. This is

the primary method my quantitative study utilizes Graph-Tool's Bellman-Ford algorithm.

In summary, these are the steps to use the Graph-Tool Bellman-Ford API

function:

244

1. Load the 2D terrain map file

2. Assign the start and destination nodes.

3. Call the Bellman-Ford function: shortest_path, and with the

negative_weights parameter is set to Boolean True.

4. Two result parameters are returned, one of which is the list of vertices

from the destination node, back to the start node. This contains the shortest

path.

5. Iterate through the list of nodes until the complete path is generated.

6. Count the number of nodes in that list to obtain the final path length.

An example how to use the API is depicted next in Figure B1.

Figure 49. Abbreviated Graph-Tool Bellman-Ford algorithm API demonstration.

 Results Interpretation: As shown in the Python source code snippet above, the

variable 'bellmanFordPath', used in the penultimate line, contains a string with the full

245

path from start node, to destination node. The length of this node list contains the path

length, as shown above in the last line of Python code.

 Statistical Validity and Reliability: The validity and reliability of the algorithm

instrument were successfully verified in a pilot test, as described theoretically in Section

2, and statistically in Section 3, using the Wilcoxon Signed Ranks statistic in a repeated-

measures design with no intervention. See Section 3 for the statistical details.

 Doctoral study source code location: A full, working version of my source code,

which uses the aforementioned graph analysis framework and pathfinding API, is freely

available for review at this URL: https://github.com/professor-moran/graph-theory

246

Appendix C: Graph-Tool Dijkstra Algorithm Instrument

 Instrument Background: Graph-Tool is an open source graph analysis framework,

available as a Python module, and freely available from the following website:

https://graph-tool.skewed.de

 Graph-Tool supports several pathfinding algorithms through its extensive

application programmer interface (API). Official documentation of the complete Graph-

Tool API can be found at the following website:

https://graph-tool.skewed.de/static/doc/index.html

 Graph-Tool's Dijkstra pathfinding algorithm is supported in a Python function

named dijkstra_search and is fully described in the Graph-Tool online documentation

here: https://graph-tool.skewed.de/static/doc/search_module.html?highlight=

dijkstra_search#graph_tool.search.dijkstra_search

 Versioning: The Graph-Tool version used in this study: 2.18

 Instructions: The Dijkstra algorithm is supported by a Graph-Tool Python

function named: dijkstra_search

 Software engineers writing Python source code to utilize Graph-Tool's Dijkstra

pathfinding algorithm, may call the aforementioned function using Python. This is the

primary method my quantitative study utilizes Graph-Tool's Dijkstra algorithm.

In summary, these are the steps to use the Graph-Tool Dijkstra API function:

1. Load the 2D terrain map file

2. Assign the start and destination nodes.

3. Call the Dijkstra function: dijkstra_search

247

4. Two result parameters are returned, one of which is the list of

predecessors from the destination node, back to the start node. This

contains the shortest path.

5. Iterate through the list of predecessor nodes until the complete path is

generated.

6. Count the number of nodes in that list to obtain the final path length.

An example how to use the API is depicted next in Figure C1.

Figure 50. Abbreviated Graph-Tool Dijkstra algorithm API demonstration.

 Results Interpretation: As shown in the Python source code snippet above, the

variable 'dijkPath', used in the penultimate line, contains a string with the full path from

248

start node, to destination node. The length of this node list contains the path length, as

shown above in the last line of Python code.

 Statistical Validity and Reliability: The validity and reliability of the algorithm

instrument were successfully verified in a pilot test, as described theoretically in Section

2, and statistically in Section 3, using the Wilcoxon Signed Ranks statistic in a repeated-

measures design with no intervention. See Section 3 for the statistical details.

 Doctoral study source code location: A full, working version of my source code,

which uses the aforementioned graph analysis framework and pathfinding API, is freely

available for review at this URL: https://github.com/professor-moran/graph-theory

249

Appendix D: Network-X A* Algorithm Instrument

 Instrument Background: Network-X is an open source graph analysis framework,

available as a Python module, and freely available from the following website:

http://Network-X.readthedocs.io/en/stable/index.html

 Network-X supports several pathfinding algorithms through its extensive

application programmer interface (API). Official documentation of the complete

Network-X API can be found here: http://Network-

X.readthedocs.io/en/stable/reference/index.html

 Network-X's A* (pronounced "A star") pathfinding algorithm is supported in a

Python function named astar_path and is fully described in the Network-X online

documentation here: http://Network-

X.readthedocs.io/en/stable/reference/generated/networkx.algorithms.shortest_paths.astar.

astar_path.html?highlight=astar_path

 Versioning: The Network-X version used in this study: 1.11

 Instructions: The A* algorithm is supported by a Network-X function named:

astar_path

 Software engineers writing Python source code to utilize Network-X's A*

pathfinding algorithm, may call the aforementioned function using Python. This is the

primary method my quantitative study utilizes Network-X's A* algorithm.

In summary, these are the steps to use the Network-X A* API function:

1. Load the 2D terrain map file

2. Assign the start and destination nodes.

250

3. Call the A* function: astar_path

4. A list of nodes, from the start to destination node, is returned. This

contains the shortest path.

5. Print the node list to display the path from start to destination.

6. Count the number of nodes in that list to obtain the final path length.

An example how to use the API is depicted next in Figure D1.

Figure 51. Abbreviated Network-X A* (a-star) algorithm API demonstration.

 Results Interpretation: As shown in the Python source code snippet above, the

variable 'aStarPath', used in the penultimate line, contains a string with the full path from

start node, to destination node. The length of this node list contains the path length, as

shown above in the last line of Python code.

 Statistical Validity and Reliability: The validity and reliability of the algorithm

instrument were successfully verified in a pilot test, as described theoretically in Section

2, and statistically in Section 3, using the Wilcoxon Signed Ranks statistic in a repeated-

measures design with no intervention. See Section 3 for the statistical details.

 Doctoral study source code location: A full, working version of my source code,

which uses the aforementioned graph analysis framework and pathfinding API, is freely

available for review at this URL: https://github.com/professor-moran/graph-theory

251

Appendix E: Network-X Bellman-Ford Algorithm Instrument

 Instrument Background: Network-X is an open source graph analysis framework,

available as a Python module, and freely available from the following website:

http://networkx.readthedocs.io/en/stable/index.html

 Network-X supports several pathfinding algorithms through its extensive

application programmer interface (API). Official documentation of the complete

Network-X API can be found here:

http://networkx.readthedocs.io/en/stable/reference/index.html

 Network-X's Bellman-Ford pathfinding algorithm is supported in a Python

function named bellman_ford and is fully described in the Network-X online

documentation here:

http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.shortes

t_paths.weighted.bellman_ford.html?highlight=bellman_ford

 Versioning: The Network-X version used in this study: 1.11

 Instructions: The Bellman-Ford algorithm is supported by a Network-X function

named: bellman_ford

 Software engineers writing Python source code to utilize Network-X's Bellman-

Ford pathfinding algorithm, may call the aforementioned function using Python. This is

the primary method my quantitative study utilizes Network-X's Bellman-Ford algorithm.

In summary, these are the steps to use the Network-X Bellman-Ford API

function:

1. Load the 2D terrain map file

252

2. Assign the start and destination nodes.

3. Call the Bellman-Ford function: bellman_ford

4. Two result parameters are returned, one of which is the list of

predecessors from the destination node, back to the start node. This

contains the shortest path.

5. Iterate through the list of predecessor nodes until the complete path is

generated.

6. Count the number of nodes in that list to obtain the final path length.

An example how to use the API is depicted next in Figure E1.

Figure 52. Abbreviated Network-X Bellman-Ford algorithm API demonstration.

 Results Interpretation: As shown in the Python source code snippet above, the

variable 'bfPath', used in the penultimate line, contains a string with the full path from

start node, to destination node. The length of this node list contains the path length, as

shown above in the last line of Python code.

253

 Statistical Validity and Reliability: The validity and reliability of the algorithm

instrument were successfully verified in a pilot test, as described theoretically in Section

2, and statistically in Section 3, using the Wilcoxon Signed Ranks statistic in a repeated-

measures design with no intervention. See Section 3 for the statistical details.

 Doctoral study source code location: A full, working version of my source code,

which uses the aforementioned graph analysis framework and pathfinding API, is freely

available for review at this URL: https://github.com/professor-moran/graph-theory

254

Appendix F: Network-X Dijkstra Algorithm Instrument

 Instrument Background: Network-X is an open source graph analysis framework,

available as a Python module, and freely available from the following website:

http://networkx.readthedocs.io/en/stable/index.html

 Network-X supports several pathfinding algorithms through its extensive

application programmer interface (API). Official documentation of the complete

Network-X API can be found here:

http://networkx.readthedocs.io/en/stable/reference/index.html

 Network-X's Dijkstra pathfinding algorithm is supported in a Python function

named dijkstra_path and is fully described in the Network-X online documentation here:

http://networkx.readthedocs.io/en/stable/reference/generated/networkx.algorithms.shortes

t_paths.weighted.dijkstra_path.html?highlight=dijkstra_path

 Versioning: The Network-X version used in this study: 1.11

 Instructions: The Dijkstra algorithm is supported by a Network-X function

named: dijkstra_path

 Software engineers writing Python source code to utilize Network-X's Dijkstra

pathfinding algorithm, may call the aforementioned function using Python. This is the

primary method my quantitative study utilizes Network-X's Dijkstra algorithm.

In summary, these are the steps to use the Network-X Dijkstra API function:

1. Load the 2D terrain map file

2. Assign the start and destination nodes.

3. Call the Dijkstra function: dijkstra_path

255

4. A list of nodes, from the start to destination node, is returned. This

contains the shortest path.

5. Print the node list to display the path from start to destination.

6. Count the number of nodes in that list to obtain the final path length.

An example how to use the API is depicted next in Figure F1.

Figure 53. Abbreviated Network-X Dijkstra algorithm API demonstration.

 Results Interpretation: As shown in the Python source code snippet above, the

variable 'dijkstraPath', used in the penultimate line, contains a string with the full path

from start node, to destination node. The length of this node list contains the path length,

as shown above in the last line of Python code.

 Statistical Validity and Reliability: The validity and reliability of the algorithm

instrument were successfully verified in a pilot test, as described theoretically in Section

2, and statistically in Section 3, using the Wilcoxon Signed Ranks statistic in a repeated-

measures design with no intervention. See Section 3 for the statistical details.

 Doctoral study source code location: A full, working version of my source code,

which uses the aforementioned graph analysis framework and pathfinding API, is freely

available for review at this URL: https://github.com/professor-moran/graph-theory

256

Appendix G: Python TimeIt Instrument

 Instrument Background: Like other mature computer programming languages,

Python has many built-in utility functions, and supports an extensive application

programmer interface (API).

 To measure execution time of small code snippets, Python has the timeit module.

Official documentation of the timeit module can be found here:

https://docs.python.org/2/library/timeit.html

 Versioning: The Python (and timeit) version used in this study: 2.7.11

 Instructions: Software engineers writing Python source code to utilize Python's

built-in timeit function can do so with either the command-line interface (CLI), or the

callable interface. This study uses the timeit callable interface.

In summary, these are the steps to use the Python's timeit function:

1. Create a variable to hold the start time, using timeit.

2. Call the Python function whose elapsed time is to be measured.

3. Create a variable to hold the end time, using timeit.

4. Subtract the end time from the start time to calculate the elapsed time.

5. Repeat, if or as needed.

An example how to use the API is depicted next in Figure G1.

257

Figure 54. Abbreviated python TimeIt API demonstration

 Results Interpretation: As shown in the Python source code above, the variable

'elapsed_time', used in the last line, contains the number of seconds elapsed between the

start time and ending time.

 Statistical Validity and Reliability: The validity and reliability of the timeit

module were discussed earlier in Section 2, with corroborated scholarly support listed in

Table 11. For ease of reference, the scholarly articles supporting the validity and

reliability of the timeit Python module, are as follows: (a) Akeret, Gamper, Amara, and

Refregier (2015); (b) Gorelick and Ozsvald (2014); (c) Pettengill et al. (2016); (d)

Schreier (2017); and (e) Steininger, Greiner, Beaujean, and Enßlin (2016).

 Doctoral study source code location: A full, working version of my source code,

which uses the aforementioned API, is freely available for review at this URL:

https://github.com/professor-moran/graph-theory

258

Appendix H: Python Memory_Profiler Instrument

 Instrument Background: Like other mature computer programming languages,

Python has many built-in utility functions, and supports an extensive application

programmer interface (API). Additionally, the Python Software Foundation has many

other libraries, modules and source code freely available for download at the Python

Package Index (PyPI) site: https://pypi.python.org/pypi

 To measure execution time of small code snippets, Python has the

memory_profiler module, provided and supported by PyPI. Official documentation of the

memory_profiler module can be found here:

https://pypi.python.org/pypi/memory_profiler

 Versioning: The memory_profiler version used in this study: 0.41

 Instructions: Software engineers writing Python source code may utilize Python's

memory_profiler functionality to monitor the amount of memory used in Python

programs, on a line-by-line basis.

 However, users of memory_profiler should be informed in advance that, as

discussed in Gorelick and Ozsvald (2014), memory_profiler results may vary between

experimental test runs, due to (a) the nondeterministic way memory is handled between

the Python memory manager and the operating system memory manager; and (b) Python

garbage collection is not instantaneous, so recently deleted memory objects may be

unavailable to the programmer, yet still take up memory because they are not yet garbage

collected, thereby affecting the memory_profiler results (p. 43).

259

 This suggests that, depending on the target operating system and environment,

repeat runs of memory_profiler may be recommended to establish baseline statistics

which may help to identify data outliers (to be transformed, or removed, prior to

subsequent statistical analyses), in the event recently deleted memory objects are still

cached in memory between sequential uses of memory_profiler (p. 289).

In summary, these are the steps to use the Python's memory_profiler function:

1. Decorate the Python function to be profiled, with the "@profile" special

script.

2. [OPTIONAL] In the decorator, indicated the level of precision desired.

E.g., "@profile(precision = 4)" provides accuracy up to the ten-

thousandths place.

3. Call the Python function whose memory use is to be monitored, from a

Python program (script).

4. Output from memory_profiler displays (i.e., prints) to the console window.

Redirect this output to a text file for later parsing, so as to extract the

memory consumption results for the function that was decorated with the

"@profile" decorator (as described above in step 1).

An example how to use the API is depicted next in Figure H1.

260

Figure 55. Abbreviated python memory_profiler API demonstration.

 Results Interpretation: As shown in the Python source code above, and in the

subsequent console output, the increment value next to the line that does the pathfinding

(in this abbreviated example, "aStarPath = nx.astar_path(G)") contains the memory

consumed by that line of code, in this case, 0.2586 MB, as determined by

memory_profiler. This value is saved and analyzed later during my statistical analyses.

261

 Statistical Validity and Reliability: The validity and reliability of the

memory_profiler module were discussed earlier in Section 2, with corroborated scholarly

support listed in Table 11. For ease of reference, the scholarly articles supporting the

validity and reliability of the memory_profiler Python module, are as follows: (a) Dunn

and Weissman (2016); (b) Gorelick and Ozsvald (2014); (c) Li, Zhou, and Liu (2012); (d)

Rossant and Harris (2013); and (e) Murphy, O’Connell, Cox, and Schulz-Trieglaff

(2015).

Doctoral study source code location: A full, working version of my source code,

which uses the aforementioned API, is freely available for review at this URL:

https://github.com/professor-moran/graph-theory.

	Walden University
	ScholarWorks
	2017

	On Comparative Algorithmic Pathfinding in Complex Networks for Resource-Constrained Software Agents
	Michael Moran

	Microsoft Word - DIT_Doctoral_Study_Moran_M__2017-07-16.doc

