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Abstract 

Dengue fever is a debilitating, viral, mosquito-borne disease occurring in tropical and 

subtropical areas in the world. The majority of dengue cases in the United States were 

acquired in endemic areas by travelers or immigrants. However, in recent years, 

autochthonous (locally acquired) dengue cases have been diagnosed in Florida. The 

purpose of this study was to find an association between potential risk factors and the 

expansion of dengue fever in the United States. Guided by the eco-bio-social framework, 

which offers a broad assessment of risk factors for the illness, a retrospective design was 

used with archival data to correlate changes in climatic variables and imported dengue 

cases with autochthonous dengue cases in Southeast Florida from 1980 to 2013. A 

Spearman correlation indicated weak correlations between temperature and 

autochthonous dengue cases (rs = .099, p = 000) and imported dengue cases with 

autochthonous dengue cases (rs = .162, p = 000). A negative binomial multivariate 

regression was used to analyze the expansion of dengue to each monthly unit of 

temperature, rainfall, and imported dengue cases over 34 years. The results indicated that 

temperature (IRR = 2.198; 95% CI [1.903, 2.538]) and precipitation (IRR = .991; 95% CI 

[.988, .994]) were predictors for the geographic expansion of dengue fever in Southeast 

Florida. The positive social changes include the use of the results to develop an 

understanding of how climatic variables and migration may influence the expansion of 

dengue fever to nonendemic regions. The results can be used by public health authorities 

to address risk factors and to formulate evidence-based decisions in regard to prevention 

and education concerning dengue fever.  
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Chapter 1: Introduction to the Study  

Dengue is a systemic viral infection transmitted by its primary vector, the Aedes 

aegypti mosquito. According to Centers for Disease Control and Prevention (CDC, 

2013), the burden of dengue is extensive, with more than 50 million cases recorded 

worldwide and 2.5 billion people living in areas at risk. The burden of this disease covers 

more than 100 countries, making it one of the world’s most important vector-borne 

diseases (Racloz, 2012). Dengue is endemic in tropical and subtropical regions; therefore, 

countries in the regions of the Asia-Pacific, the Americas, the Middle East, and Africa are 

affected by this disease (Guzman & Isturiz, 2010).  

In the Americas, the dengue incidence rate has experienced a 4.6-fold increase 

during the last three decades (San Martin et al., 2010). During the 1980s, the total number 

of dengue cases reported was 1,033,417 (16.4/100,000); in the 1990s, this number was 

2,725,405 (35.9/100,000), and from 2000-2007, it was 4,759,007 (71.5/100,000). During 

this same period, cases of dengue hemorrhagic fever also increased from 1.3% to 2.1% to 

2.4% (San Martin et al., 2010). 

According to CDC (2013), the case fatality of dengue hemorrhagic fever (a 

complication of dengue fever) can be as high as 10%; however, it can be reduced to 1% 

with early recognition and primary treatment. The morbidity and mortality of dengue 

vary by region, and in the majority of countries where dengue occurs, children are most 

often affected (Murray, Quam, & Wilder-Smith, 2013). 

The mosquito A. aegypti is the primary vector of the dengue virus (Eisen & 

Moore, 2013). In tropical and subtropical regions where dengue is endemic, cases occur 
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every year (CDC, 2012). Several conditions need to be met for dengue cases to appear: 

enough precipitation for breeding grounds, warm temperature, a large number of vectors, 

and large numbers of people with no immunity to the four virus serotypes, and contact 

between vector and host (CDC, 2013).  

The interaction of the factors mentioned above can be affected by climate 

changes, which can favorably influence the population of the vector and increase the 

transmission of dengue significantly (Herrera-Martinez & Rodriguez-Morales, 2010). 

Ferreira (2012) indicated that the spread of the mosquito and the virus has led to a global 

resurgence of epidemic dengue fever and of the most severe forms of dengue. 

There has been increasing interest in climate variation and its effects on vector-

borne diseases, mostly concerning dengue. During the 1950s, only nine countries had 

reported dengue cases; today, it is a public concern in more than 100 countries (Adelman, 

2013). Although there is uncertainty about how climate change will affect the distribution 

and incidence of this disease, predictions have been made of increased vector-borne 

diseases and changing climatic variables (Adelman, 2013).  

There is a need for more quantitative studies to elucidate the relationship among 

climate change, migration/imported dengue cases, and the spread of dengue fever. This 

information can be used to add to the body of knowledge on climate change and its 

impact on vector-borne infectious diseases. The study may also provide evidence to 

support the implementation of policies to prevent or mitigate the effects of the expansion 

of dengue to nonendemic regions. This chapter includes an introduction of the topic of 

the study, the epidemiology of dengue, and the factors that have influenced the 
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emergence of dengue as the most common and fastest spreading vector-borne virus 

worldwide (Bouri, 2012). The background section has information about the association 

between climate change and dengue fever, as well as some background on research about 

precipitation, rainfall, migration, and dengue fever. The problem statement establishes the 

gap in literature that makes this study necessary. The purpose of the study, the research 

questions, and the hypotheses are included and explained, as are the conceptual 

framework, the course of action necessary to approach the study, and the nature of the 

study. This chapter also addresses the key concepts, assumptions, scope, delimitations, 

and limitations of the study. The chapter ends with the significance of the study and a 

summary.  

Background 

The National Oceanic Atmospheric Agency (NOAA, 2007) defined climate 

change as a long-term shift in the statistics of the weather indicating a change in climate 

normals for a given place and time of year from one decade to the next. The agency 

argued that global climate is presently changing, as evidenced in the data for the last 

decade of the 20th century and the beginning of the 21st, which was the warmest period in 

the entire global instrumental temperature record since the mid-19th century (NOAA, 

2007). Thus, according to Costello (2009), climate change is the global health threat of 

the 21st century, and potential health threats related to climate change extend to food 

resources, ecosystems, and certain diseases.  

Climate change was forecast to have diverse impacts on human health, including 

some infectious diseases, especially vector-borne infectious diseases (Mills, Gage, & 
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Khan, 2010). Dengue fever is one of the infectious diseases that are strongly influenced 

by climate change (Herrera-Martinez & Rodriguez-Morales, 2010). An increase in 

temperature and precipitation can increase the population of the vector of dengue fever, 

Aedes aegypti, and dengue incidence (Hsieh & Chen, 2009). Morin, Comrie, and Ernst 

(2013) stressed that climatic changes influence vector dynamics, virus development, and 

the interaction between vector and host. Increased precipitation (e.g., rainfall) and more 

containers that collect water produce more breeding grounds for mosquitoes; warmer 

temperature enhances breeding and accelerates the maturation phase of the virus inside 

the vector (Yang, Macoris, Galvani, Andrighetti, & Wanderley, 2009). 

Saker, Lee, Cannito, Gilmore, and Campbell-Lendrum (2004) stated that dengue 

was limited to tropical and subtropical regions; however, climate change can favor the 

geographic expansion and increase transmission of this disease. Scientists on the 

Intergovernmental Panel on Climate Change (IPCC) anticipated that vector-borne 

diseases, including dengue fever, would expand their geographic distribution to higher 

latitudes and higher altitudes, with an extension of the transmission season (Saker et al., 

2004). 

Thai and Anders (2011) reported that the geographic range of dengue expanded 

from 15,000 cases reported annually in 10 countries in 2000 to 1 million cases annually 

in more than 60 countries during 2005. The authors stressed that many countries in the 

Americas were experiencing a re-emergence of dengue and the geographic expansion of 

dengue fever, which represented a challenge for national and regional health. They also 

indicated that warmer temperature and increased rainfall and humidity were important 
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determinates for the geographic expansion of dengue fever into new regions (Thai & 

Anders, 2011). 

Canyon, Muller, and Hii (2013) disregarded humidity as an important factor for 

dengue fever transmission. They argued that mosquitos survive and continue biting when 

hosts are available, even in the presence of low humidity. 

Few quantitative studies have been conducted to associate climatic variables with 

the incidence of vector-borne infectious disease. Pecoraro et al. (2007) found that a 

correlation existed between the abundance of several species of West Nile virus mosquito 

vectors and mild climate in western Washington State, United States. Colon-Gonzalez, 

Lake, and Bentham (2011) found that the incidence of dengue fever was positively 

associated with the strength of El Nino in dengue endemic Mexico; they also found that 

warm temperature increases the number of infected mosquitos and the transmission rates. 

However, Colon-Gonzalez et al. found no statistical association between precipitation 

and dengue fever. The authors admitted that other factors may have impacted this 

finding; they indicated that, in the period of El Nino, enough rainfall was available to 

create ample breeding sites. 

Huang, Clements, Williams, Milinovich, and Hu (2013) found that dengue fever 

was strongly associated with temperature, rain, and relative humidity; these weather 

variables have been shown to have different effects depending on the tropical or 

subtropical area. Colon-Gonzalez et al. (2011) argued that some studies had related 

climate variability to dengue fever during short periods, but few had analyzed this 

association during a 10-year period. The authors understood that analyzing short periods 
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poses a problem of understanding overall associations between climate variability and 

dengue fever. 

Few quantitative studies have focused on climate change and dengue fever in 

relation to geographic expansion due to migration. Lee et al. (2013) conducted a study of 

the effects of climate change on Aedes albopictus in Jeju Island, South Korea. The results 

suggested that the virus-bearing vector expanded its geographic distribution from 

Vietnam to Jeju Island due to the effects of migration and climate change. Studies 

revealed that the impact of climatic variables and other factors on dengue fever depended 

on the region (Morin et al., 2013); therefore, there was a need to study these factors in the 

areas where dengue fever was expanding. 

Researchers have not conducted quantitative studies of climate variability and 

migration in relation to dengue fever in Southeast Florida, United States, where recent 

autochthonous dengue fever cases have been found. Therefore, there was a need to 

determine whether climate changes and migration were the primary factors for the 

expansion of dengue fever in this particular region.  

Problem Statement 

Dengue fever is a disease that is transmitted by a mosquito that continues to 

spread to other regions to become a risk for additional populations, making this disease a 

major public health problem (Madoff, Fisman, & Kass-Hout, 2011). Usually, patients 

with the disease manifest classic dengue fever symptoms similar to influenza symptoms 

including severe headaches; aching joints, muscles, and bones; and sometimes a rash 

(Schmidt, 2010). A portion of patients develop potentially lethal forms of dengue known 
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as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS; Schmidt, 2010). 

Dengue hemorrhagic fever (DHF) can occur when a patient is infected with a second 

dengue serotype; about 20-30% of patients with DHF will progress to DSS, which is the 

most severe form of dengue (Bouri et al., 2012). Intense supportive treatment can lower 

the fatality rate to 1%; nevertheless, if the disease is not treated, the fatality rate can be as 

high as 10% (CDC, 2012).  

Prevention programs, which include vector control and removal of breeding sites, 

have been unsuccessful for most endemic countries (Simmons et al., 2012), and dengue 

vaccines are not yet available (Bouri et al., 2012). Additional data have convinced 

scientists that human activity is the leading cause of temperature increases in the earth’s 

troposphere resulting in global climate change (Shuman, 2011). Because climate change 

may alter patterns of precipitation and temperature, scientists expect a significant impact 

on human health, mostly from vector-borne infectious diseases such as dengue (Shuman, 

2011).  

The global burden of dengue resulting from climate change is contemplated to 

affect 5 to 6 billion people (about 50% of the world population) by 2085, based on 

projections on the expected effect of climate change on humidity (Hales et al., 2010). As 

a result of climate change, combined factors such as higher temperature, increased 

precipitation, and migration may make dengue fever and its complications a major public 

health threat (Shuman, 2011). The threat will affect not only endemic areas, but also 

nonendemic areas where the vectors (e.g., A. aegypti) will be able to survive and 

proliferate (Shuman, 2011). 
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Recently, several quantitative studies have been performed to correlate climate 

change and other variables with dengue fever within endemic regions such as Mexico, 

Puerto Rico, Vietnam, Singapore, and South Korea (Colon-Gonzalez, Fezzi, Lake, & 

Hunter, 2013; Hii et al., 2009; Johansson, Cummings, & Glass, 2009; Lee et al., 2013). 

Few quantitative studies have been conducted on the correlation among climate change, 

imported dengue fever cases, and dengue fever in nonendemic regions.  

One study was conducted in the subtropical regions of Taiwan (Shang et al., 

2010), in which results indicated that imported dengue cases can trigger autochthonous 

cases when weather conditions are met. At present, no study has been conducted in 

southern nonendemic areas of the United States such as the Treasure Coast of Florida 

(including Palm Beach, Martin, St. Lucie, and Indian River Counties). According to Mills 

et al. (2010), reliable data on the effects of climate change on vector-borne zoonotic 

disease are scant; therefore, the author stressed that, while preliminary studies have 

accumulated some data, conclusions remain speculative until more studies are conducted.  

Dengue has the potential of emerging as a public health threat in the United States 

as more regions experience outbreaks of this disease, which can have serious health and 

economic consequences (Bouri et al., 2012). Several positive social change implications 

may arise from this study, including increased scientific knowledge concerning the 

effects of climate change and other variables in relation to vector-borne infectious 

diseases such as dengue. Knowledge gained from the study may justify the development 

of preventive environmental management programs to control the expansion of the 

vectors and virus into nonendemic areas. 
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The evidence from this study and other studies may help policy makers to develop 

policies for communicating to the public how to prevent or mitigate the effects of dengue 

fever in regions at risk. 

Purpose of Study 

The purpose of this quantitative ecological study was to determine whether 

changes of local climate (precipitation and temperature) and migration in Southeast 

Florida are related to the expansion of the ranges of dengue fever within that area. This 

study used secondary data from the National Climatic Data Center (NCDC)/National 

Oceanic and Atmospheric Administration (NOAA) in Asheville, NC, as well as data from 

Florida’s public health system, the CDC, and the U.S. Census Bureau for migration 

trends over 34 years (1980-2013). 

The study’s intent was to correlate temperature, precipitation, and migration with 

autochthonous (locally acquired) dengue fever cases in a specific region. The 

independent variables were temperature, precipitation, and migration, which may be 

important agents driving the geographic limits of dengue transmission to nonendemic 

regions. The dependent variable was the geographic expansion of the ranges of dengue 

fever, which was defined as the appearance of autochthonous dengue cases in 

nonendemic areas. 
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Research Questions and Hypotheses 

Research Question 1: Was there a significant relationship between temperatures 

during 34 years in Southeast Florida and the geographic expansion of dengue fever 

within the region? 

H0: There was no significant relationship of temperature during 34 years in 

Southeast Florida with the geographic expansion of dengue fever within the region. 

H1: There was a significant relationship in temperature during 34 years in 

Southeast Florida with the geographic expansion of dengue fever within the region. 

Research Question 2: Was there a significant relationship between precipitation 

during 34 years in Southeast Florida and the geographic expansion of dengue fever 

within the region? 

H0: There was no significant relationship between precipitation during 34 years in 

Southeast Florida and the geographic expansion of dengue fever within the region. 

H1: There was a significant relationship between precipitation during 34 years in 

Southeast Florida and the geographic expansion of dengue fever within the region. 

Research Question 3: Was there a relationship between human migration from 

dengue endemic areas to nonendemic areas during 34 years and the geographic expansion 

of dengue fever to Southeast Florida? 

H0: There was no relationship between human migration from dengue endemic 

areas to nonendemic areas during 34 years and the geographic expansion of dengue fever 

to Southeast Florida. 
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H1: There was a relationship between human migration from dengue endemic 

areas to nonendemic areas during 34 years and the geographic expansion of dengue fever 

to Southeast Florida. 

The independent variables were climatic variables, temperature and precipitation, 

and migration, which were continuous variables. The dependent variable was the 

expansion of dengue fever using the number of autochthonous dengue cases in the region, 

which also was a continuous variable  

Conceptual Foundation 

Arunachalam et al. (2010) developed a conceptual framework to explore the 

ecological, biological, and social factors involved in the breeding of the Aedes mosquito 

and dengue virus transmission. Arunachalam et al. constructed the framework based on a 

comprehensive field study in four cities and two provincial towns in Asia. The authors 

developed the protocol to answer one research question: What ecological, biological, and 

social factors determine dengue vector densities and contribute to viral transmission? 

Arunachalam et al. (2010) conducted their field study during a 2-year period in 

regions endemic to dengue fever, carrying out household surveys, background surveys, 

and entomological surveys. The authors understood that the variables influencing vector 

breeding were many and complex. According to their framework, rain and temperature 

influence vector ecology, including feeding opportunities and breeding sites, and dengue 

transmission is directly influenced by temperature. Migration is part of the social and 

ecological context, including urbanization, habits, and water supplies.  
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Eco-bio-social research on dengue was an appropriate framework for the study 

because it included the specific variables of interest and determined how these variables 

interacted with each other. In Chapter 2, the reader will find a more detailed explanation 

of the connection between the framework and the research questions.  

Nature of Study 

The study was a quantitative ecological study using secondary data in a 

retrospective approach. The ecological study design may be used to evaluate the 

relationship between exposure and disease at the population level instead of the 

individual level (Aschengrau & Seage, 2008). Ecological study design was suitable for 

important questions that could not be easily answered by other study designs, and 

ecological studies involve research where some or all of the variables are ecological in 

nature (Tu & Ko, 2008). 

The objective of the study was to investigate the relationship of climatic variables 

(temperature and precipitation) and the migration of imported dengue cases on the 

geographic expansion of dengue fever in Southeast Florida. Because an ecological study 

focuses on the population level and its exposure to the disease, the population level for 

my specific study was the population of the Treasure Coast of Florida (e.g., Palm Beach, 

Martin, St. Lucie, and Indian River), which has more than doubled during the last 30 

years from 787,904 to 1,886,235 (U.S. Census, 2014). 

In this study, I used secondary data on climatic variables (temperature and 

precipitation) from land-based stations located in specific regions in Southeast Florida. 

The climatic independent variables, temperature and precipitation, were continuous 
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variables that included 34 years of data. The data were collected from the National 

Climatic Data Center (NCDC), a branch of the National Oceanic and Atmospheric 

Administration (NOAA) located in Asheville, NC. The data on migration (independent 

variable) were retrieved from the U.S. Census and covered 34 years. The data on dengue 

cases were accessed through the websites of the Florida Department of Health and the 

Centers for Disease Control and Prevention (CDC); the data set included the years 1980 

to 2013.  

The goal of the study was to determine whether a correlation existed between the 

climatic variables and migration, and the variable geographic expansion of dengue fever 

in the subtropical region of Southeast Florida. Chapter 3 contains a detailed explanation 

of the methodology of the study.  

Operational Definitions 

The following operational definitions are important in this study. 

Aedes aegypti: Scientific name of the primary mosquito that transmits viral 

diseases, mostly dengue fever, also known as the yellow fever mosquito (CDC, 2014a). 

Autochthonous disease: A disease originating in the place in which it was found; 

in the study, it may be referred to as locally acquired disease (Bauman, 2013). 

Baseline temperature/precipitation: Computed by averaging 30 or more years of 

temperature/precipitation data (NOAA, n.d.b). 

 Climate: The long-term trend of temperature and precipitation averages, including 

extremes, for specific regions. The climate definition includes different time intervals—
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months, years, seasons, decades, or given dates of the year—and includes local regions 

and may be global in extent (NOAA, n.d.). 

 Climate normals: The latest three-decade averages of climatological variables, 

which include temperature and precipitation (NOAA, 2011). 

 Extrinsic incubation period: The time taken by an organism to complete its 

development in an intermediate host. In the mosquito, the term refers to the time span in 

which the mosquito takes a viremic blood meal and becomes infected (Tjaden, Thomas, 

Fischer, & Beierkuhnlein, 2013). 

Geographic expansion of dengue: The appearance of autochthonous dengue cases 

(locally acquired) in areas where it was previously absent. 

Hyperendemicity: Refers to multiple serotypes of dengue virus existing in an area 

(Oki &Yamamoto, 2012); these include the four serotypes of the dengue virus, Den 1, 

Den 2, Den 3, and Den 4. 

Intrinsic incubation period: The time taken by an organism to complete its 

development in the definitive host. In humans, the term refers to the time span in which 

the human becomes infected and the onset of symptoms occurs (Tjaden et al., 2013). 

Migration: Refers to the migration of imported dengue cases to nonendemic 

regions. 

Precipitation: Precipitation normals that include rainfall and liquid water 

equivalent of freezing precipitation. Precipitation was measured by tenths of millimeter 

(mm) units (NOAA, n.d.).  
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Temperature: The numerical measure of detection of heat. Temperature was 

reported in degrees and tenths in Celsius (°C) units (NOAA, n.d.). 

Temperature/precipitation anomaly: The difference from the average or baseline 

temperature/precipitation (NOAAb, n.d.).  

 Vector: In epidemiology, an animal (typically an arthropod) that transmits a 

disease from one host to another (Bauman, 2013). 

Vector-borne disease: An illness caused by an infectious virus or other microbe 

transmitted by blood-sucking arthropods to a host (Bauman, 2013). 

Zoonotic disease: Disease naturally spread from usual animal host to humans 

(Bauman, 2013). 

Assumptions 

The study used secondary data on dengue cases from the Public Health 

Department of Florida and the CDC; therefore, assumptions were made related to the 

data. First, the assumption was made that the cases of dengue reported followed the case 

definition and that the physicians had completed all the necessary documentation. This 

assumption was necessary because the analysis were based on this secondary data, so I 

assumed that all of the dengue cases were properly diagnosed. 

A second assumption was made related to the immunity of the population of 

Southeast Florida. I assumed that the immunity of this population for all the serotypes 

was susceptible to the dengue virus; therefore, I assumed that the number of susceptible 

individuals in this region was high. This assumption was necessary to help explain the 

autochthonous (locally acquired) dengue cases in a nonendemic region.  
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Damal, Murrell, Juliano, Conn, and Loew (2013) researched the phylogeography 

of the dengue vector A. aegypti and found that Florida’s landscape was not a barrier for 

the human-aided dispersal of the mosquito. The researchers found A. aegypti in various 

locations of Florida such as West Palm Beach, Ft. Lauderdale, and Jensen Beach (part of 

the Treasure Coast) in 2006. Based on these findings, I had a third assumption: 

Mosquitos gradually spread from the Florida Keys, located in the extreme southern 

portion of Florida, northward to the Treasure Coast. This assumption was necessary to 

help explain that the landscape did not interfere with the expansion of A. aegypti. 

Scope and Delimitations 

According to FDH (2012), a dengue outbreak was reported in Martin County with 

a mixture of imported and autochthonous (locally acquired) dengue cases. The report was 

interesting because that region of Florida was a nonendemic area for dengue fever. The 

outbreak was one of several during recent years, potentially indicating the spread of 

dengue to this region; therefore, the scope of the study included the counties of Southeast 

Florida.  

The Southeast Florida region, the Treasure Coast, has four counties: Palm Beach, 

Martin, St. Lucie, and Indian River Counties. During the last 10 years, these four counties 

have increased in population; resident growth from 2000 to 2010 in Palm Beach County 

was 16.7%, in Martin County was 15.5%, in St. Lucie County was 44.2%, and in Indian 

River County was 22.2%. The increase of population in these regions was due to natural 

increase (22%), international migration (41%), and domestic migration (37%). These 
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numbers showed that the population was a mix of natural residents (American born) and 

foreign-born residents (SFRPC, 2012). 

According to the South Florida Regional Planning Council (SFRPC, 2012), the 

foreign-born residents came from Latin America, mostly from the Caribbean (Cuba, 

Dominican Republic, Haiti, Jamaica, and Puerto Rico), Central America (Mexico and 

Nicaragua), and South America (Colombia, Honduras, Peru, and Venezuela). These 

demographic data gave an idea of the overall characteristics of the population in 

Southeast Florida, and these immigrants came from countries that were endemic for 

dengue fever. Groups not included were populations to the north, center, and east of 

Indian River County.  

Several studies have researched the relationship among climatic variables, 

imported dengue cases, and dengue fever (Colon-Gonzalez et al., 2013; Huang et al., 

2013; Shang et al., 2010). The findings indicate relationships among climatic variables, 

imported dengue cases, and dengue fever in different parts of the world. The findings 

from this study can be generalized to similar populations and geographies where dengue 

fever may have a high risk of spreading. 

Limitations 

The study had several limitations; the primary limitation was the lack of 

individual-level information that can lead to a bias known as ecological fallacy. Bias can 

occur when the relationship that exists between the variables at an aggregated level may 

not represent the real relationship that exists at the individual level (Tu & Ko, 2008). In 

other words, the inference of the population having the same characteristics in the region 
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as the individual level may not necessarily be accurate. To avoid the ecological fallacy, 

the findings were analyzed and interpreted only at the levels at which they were 

measured; this meant that the findings were limited to the region of the Treasure Coast in 

Florida. These findings cannot be generalized to other areas where the climatic variables 

and the characteristics of the populations are different. 

Another limitation was the possibility of underreporting or overreporting dengue 

fever cases in the area by the surveillance systems, in which case the estimation of the 

disease rate and mortality might be affected. The data reported were based on passive 

reporting by physicians, other health care staff, and laboratories in Florida (FDOH, 

2012). The reporting was mostly dependent on when a person becoming ill sought 

medical attention, in which case the physician or authorized personnel reported the case 

after receiving a positive diagnosis of dengue fever from the laboratory (FDOH, 2012). 

Sometimes, steps were omitted in this process, so the number of reported cases may 

represent only a portion of the real number of cases of notifiable diseases occurring each 

year in Florida (FDOH, 2012). 

Evaluations of reporting systems for notifiable diseases indicate that completeness 

can vary by disease (Doyle, Glynn, & Groseclose, 2002). These differences in report 

completeness for diseases’ occurrence at the local level may indicate, with certain 

variations, differences in the real occurrence of disease and in the rigor with which 

surveillance was executed (Doyle et al., 2002). Also, there was the possibility of large 

numbers of undetected asymptomatic cases; such cases might have been carriers that 

facilitated dengue transmission. In January 2010, dengue fever and viral hemorrhagic 
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fever were added to the list of nationally notifiable infectious diseases (CDC, 2010); 

however, in Florida, dengue fever became a reportable disease around 2008 (FDOH, 

2012). 

A limitation to be considered is that the results of studies should not be assumed 

to be applicable to other nonendemic regions where outbreaks of dengue fever were 

observed. Application of the results may not be appropriate because of differences in 

local climate, human interactions with the environment, socioeconomic factors, and local 

geography or landscape. Finally, there was limited information about the presence of the 

dengue fever vector, A. aegypti, in Southeast Florida (e.g., Treasure Coast) before 2013. 

Information about autochthonous dengue fever in this area in 2013 is available, and some 

recent articles have addressed the situation.  

Significance 

In providing information on the impact of climatic variables (temperature and 

precipitation) and migration on infectious diseases, especially on vector-borne diseases, 

this study contributes to the body of knowledge for policy makers and scientists. This 

study may increase awareness of the effects of climate change and how it will affect the 

health of communities on a regional, national, and global scale. Changes in vector-borne 

diseases are being seen around the world, and more populations are vulnerable to these 

diseases (Shuman, 2011). Studies of this nature are needed to increase the evidence of 

climate change to prompt countries to join in an effort to minimize the factors that are 

affecting the world.  
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The social change implications of this study include not only adding to the body 

of knowledge about climate change and infectious diseases, but also contributing to a 

better understanding of the complexities of the transmission of the dengue virus and how 

it relates to climate change and migration. At the community level, this study may be 

useful for local policy makers seeking to develop programs to educate the community 

and to help prevent and mitigate the effects of dengue, especially in regions where this 

disease is not endemic. At the national level, the study contributes additional data about 

climate change and its effects on health for policy makers to use in developing programs 

that will benefit the environment and populations. At the global level, studies like this 

one offer data about the impact of climate change on the distribution of infectious 

diseases. 

Summary 

Scientists have formulated hypotheses concerning the effects of climate change on 

infectious diseases; their predictions include that vector-borne diseases such as dengue 

and malaria will re-emerge due to changes in temperature and precipitation. Many 

quantitative studies focus attention on these climatic variables in particular regions, based 

on studies that show that local or regional variation in climate and geographic factors 

affects the rate of disease. These variations limit the scientist to researching local regions 

and investigating how the variables impact certain diseases, mostly vector-borne 

infectious diseases, which are susceptible to temperature and precipitation. 

No quantitative study has been conducted to research the effects of temperature, 

precipitation, and migration on the expansion of dengue fever in Southeast Florida. These 
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regions, composed of four counties—Palm Beach, Martin, St. Lucie, and Indian River—

were nonendemic regions for dengue fever; however, cases of autochthonous dengue 

fever had been observed during the past year. Therefore, the purpose of this quantitative 

ecological study was to determine if a correlation existed among temperature, 

precipitation, and migration with the expansion of dengue fever in nonendemic regions of 

Southeast Florida. 

I used the conceptual framework of eco-bio-social research on dengue. 

Arunachalam et al. (2010) described links between ecological, biological, and social 

factors in the population of the Aedes vector and the dengue virus. For this study, I used 

secondary data from the NCDC, the Florida Health Department, and several studies about 

the expansion of dengue fever. This study has implications for positive social change in 

that it may promote a better understanding of the influence of climatic variables in 

vector-borne infectious diseases in nonendemic areas.  

The evidence from this study adds to the body of knowledge about the impact of 

climatic variables and social factors on the population of vectors and vector-borne 

diseases. This study and other studies of this nature may help scientists to understand 

how these factors interact to result in the expansion of dengue fever to nonendemic 

regions.  

Chapter 2 of this study provides more detailed information on the characteristics 

of the vectors, the dengue fever virus, and how the vector is affected by temperature and 

precipitation. Included are the search strategies used to conduct the literature review and 

more details about the theoretical base of the study. Additionally, I address quantitative 
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research about dengue fever and the study designs and methodology used by other 

researchers. 
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Chapter 2: Literature Review 

Introduction 

Until recently, dengue fever was considered a disease that mostly affected 

populations from countries in the Caribbean, Central and South America, the Eastern 

Mediterranean, South-East Asia, and the Western Pacific (WHO, 2014). Dengue fever 

was not considered endemic to the continental United States; the dengue cases of U.S. 

citizens occurred in Puerto Rico, the U.S. Virgin Islands, Samoa, or Guam and were 

imported to the United States (Gentry, 2012). Dengue cases were also reported in 

travelers from dengue-endemic regions visiting the United States. (CDC, 2013). The 

disease was viewed as a neglected tropical disease affecting populations in developing 

countries and not typically affecting populations in the United States (Bouri et al., 2012). 

However, after more than 50 years without local dengue occurrences, numerous 

autochthonous cases emerged on the Texas-Mexico border (2005-2006) and in Key West, 

Florida (2009-2011; Eisen, 2013). These outbreaks demonstrated the potential for the 

emergence of dengue fever in nonendemic regions of the United States (Radke, Gregory, 

& Carina, 2012). The cause of the reemergence of dengue in Florida is unknown (CDC, 

2010); possibilities include the following: (a) the disease had been present and had started 

being detected, (b) environmental conditions were favorable, (c) there was an abundant 

presence of the mosquito, and (d) there was more opportunity for the mosquito to bite 

humans (CDC, 2010). 

The vector of dengue, the Aedes mosquito, has been established in more than 100 

tropical and subtropical countries (Hii, Zhu, Ng, Ng, & Rocklov, 2012). The mosquito 
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has facilitated the reemergence or expansion of dengue fever in developed countries 

around the world in tropical and subtropical areas, and it is now a threat for the United 

States (Bouri et al., 2012). 

The purpose of this study was to correlate the relationship between climatic 

variables and migration with the geographic expansion of dengue fever into the southeast 

region of Florida. The climatic variables used for the study were precipitation and 

temperature. Several studies have suggested that climate change may promote the 

geographic expansion of many vector-borne diseases such as yellow fever and dengue 

(Foley, 2001; Jetten & Focks, 1997; Johansson, Dominici, & Glass, 2009; Lee et al., 

2013; Patz, Martens, Focks, & Jetten, 1998).  

Several studies have suggested the influence of imported dengue cases and 

climatic variables as factors that may promote the expansion of this disease to 

nonendemic regions (Huang et al., 2013; Shang et al., 2010). During the last 50 years, 

studies have revealed unprecedented expansion in the geographic distribution of dengue 

fever globally, with nearly 400 million people infected and a quarter of these presenting 

the acute illness (Low & Ooi, 2013).  

As mentioned before, multiple factors have been assumed to contribute to the 

demographic expansion of dengue fever. Some researchers have argued that factors such 

as increase in the global population, immigration of population from endemic areas, 

poverty, and lack of sustained pest control programs are important reasons for the 

expansion (Guzman & Isturiz, 2010). They have argued that the specific contribution of 

these factors is difficult to measure, but many researchers have agreed that temperature 
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and precipitation are the most important factors (Alto & Bettinardi, 2013; Couret, 

Dobson, & Benedict, 2014; Morin et al., 2013; Yang et al., 2009). Gubler et al. (2002) 

explained the relationship between climatic variables and vector-borne diseases, stressing 

the importance of temperature, rainfall, and other climatic variables on the survival rate 

and behavior of the vector, and the decrease or increase of the probability of transmission 

of the virus. Shang et al. (2010) addressed the unknown role of imported cases in dengue 

epidemics in nonendemic areas; their study revealed that imported cases have a role in 

initiating autochthonous dengue cases once the meteorological conditions are favorable 

and the mosquito is present (Shang et al., 2010). 

Although researchers have identified the primary climatic factors and some 

studies have identified migration or imported cases as facilitators of the expansion of 

dengue fever in endemic regions, there is a need to correlate the climatic variables, 

migration, and the expansion of dengue in nonendemic regions in the United States. 

Chapter 2 contains information regarding the literature review search strategy, 

details of the theoretical foundation of the study, and reviews of the current literature on 

climate change, migration/imported cases, and dengue fever. The review section includes 

some of the categories of the conceptual framework: environment (temperature, 

precipitation); vector ecology; virus (replication, transmission); and social context 

(migration). 

The study used current literature from Carrington, Armijos, Lambrechts, Barker, 

and Scott (2013); Chan and Johansson (2012); Hii et al. (2012); Morin et al. (2013); 

Tjaden et al. (2013); and Yang et al. (2009). Also seminal articles were used from 
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Christopher (1960); Gubler et al. (2002); Hanson (1936); Jetten and Focks (1997); Patz et 

al. (1998); and Watts, Burke, Harrison, Whitmire, and Nisalak (1987). These studies were 

related to climatic variables and migration and their effects on dengue fever, the vector, 

and the virus. A summary and conclusion is presented at the end of the chapter.  

Literature Search Strategy 

The search strategy for the literature review mostly involve use of Walden 

University Library’s multiple database search tool, Thoreau, as well as Google Scholar, 

PubMed, and Science Direct. Google Scholar was linked with Walden’s library, and the 

Document Delivery Service was used to request several articles not available in the 

library. “Related articles” in PubMed and Google Scholar and the “cited by” feature were 

used to search using the articles cited in both search engines.  

Multiple open-access peer-reviewed articles were retrieved from PLOS Neglected 

Tropical Diseases, PLOS One, and Infection Ecology and Epidemiology. The program 

Mendeley was used to store articles and to search for articles using key words.  

The search included traditional terms for climatic changes and dengue fever, 

terms used in articles related to these topics, and MESH terms found in some articles. 

The terms for climate changes included temperature, precipitation, rainfall, relative 

humidity, and ENSO. For dengue fever, the terms used included vector-borne infectious 

diseases, dengue, Aedes species, Aedes aegypti, autochthonous dengue, imported dengue 

cases dengue serotypes, re-emerging diseases, geographic expansion, dengue 

epidemiology, and dengue transmission. In addition to the terms mentioned, the search 

included combined terms such as tropical and subtropical countries, dengue fever and 
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Puerto Rico, dengue fever and United States, dengue fever and climatic changes, and 

Florida and dengue fever. 

The primary sources for the literature review were peer-reviewed articles whose 

publication dates were between 2009 and 2013. There were some articles with 

publication dates prior to 2009, but these were kept to a minimum. The reason the search 

and literature review included articles older than 2009 was because such articles offered 

important context relevant to the conceptual framework, seminal work, and historical 

background. The search also included review articles and references from specialized 

websites such as the National Oceanic and Atmospheric Agency (NOAA) and the 

Centers for Disease Control and Prevention (CDC).  

Conceptual Foundation 

Arunachalam et al. (2010) developed a conceptual framework indicating a 

relationship among the ecological, biological, and social factors in dengue fever. The 

framework was developed based on a field study that the authors conducted in several 

countries in Asia. The objective of the framework was to answer several research 

questions, including questions concerning the identification of the ecological, biological, 

and social determinants of dengue vector density and its contribution to viral 

transmission. The study was conducted in several large cities, provincial areas, and peri-

urban regions in dengue-endemic locations in Asia.  

The authors researched the direct and indirect relationships among social and 

ecological context, vector ecology, and vector control in relation to A. aegypti population 

density and its relationship with dengue transmission. They emphasized the complexity 
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of these relationships and how interaction and changes can affect each part of the system 

by either decreasing or increasing dengue transmission (Arunachalam et al., 2010).  

The framework was the result of the following information: 

• findings from field study conducted in six Asian cities or periurban areas; 

• collection of information from household surveys, neighborhood background 

surveys, and entomological surveys; 

• review of studies of climate variables, temperature, and rain, and their effects 

on dengue transmission and vector density; 

• assessment of vector breeding sites; people’s knowledge, attitudes, and 

practices related to dengue; and the characteristics of the study areas 

(Arunachalam et al., 2010). 

The result was ecological, biological, and social research on dengue, a conceptual 

framework (Figure 1) that illustrates the factors influencing vector density that will 

influence dengue transmission.  
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Figure 1. Eco-bio-social research on dengue, a conceptual framework. Adapted from 

“Eco-Bio-Social Determinates of Dengue Vector Breeding: A Multicountry Study in 

Urban and Periurban Asia,” by N. Arunachalam et al., 2010, Bulletin of the World Health 

Organization 2010, 88, 173-184. Reprinted with permission (see Appendix B). 

 

This model shows how the social and ecological context, which includes human 

population density by immigration and urbanization, directly influences vector density. 

Also, vector ecology, which includes climate, rain, temperature, breeding sites, vector 

capacity, and feeding opportunities, directly influences vector density. Vector control 

influences the population and density of mosquitos if these procedures are used in the 

areas of study.  

Ecological, biological, and social variables are interdependent factors for dengue 

vector production with a direct impact on dengue transmission and dengue transmission 

are influenced by temperature. Ecological factors are related to climatic variables 
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(temperature, precipitation) and natural and manmade ecological conditions (Quintero et 

al., 2014). Biological factors include the behavior of the mosquito A. aegypti and the 

transmission dynamic of the dengue virus (Quintero et al., 2014). 

The framework includes a climate variable, temperature, which has a direct 

influence on viral transmission and vector ecology. The other climate variable, 

precipitation, has a direct influence on vector ecology. In relation to vector ecology 

(Figure 2), according to Morin et al. (2013), an increase in temperature will increase the 

development and increase survival of the vector; an increase in temperature will also 

accelerate the reproductive rate of the vector (mosquitos). The accelerated reproduction 

of the mosquitos will increase the likelihood of transmission by increasing the number of 

blood feedings (Morin et al., 2013).  

 

 

 

 

 

 

 

Figure 2.Effects of temperature on vector ecology. Adapted from “Climate and Dengue 

Transmission: Evidence and Implications,” by C. W. Morin, A.C. Comrie, and K. Ernst, 

2013, Environmental Health Perspectives, 121, p. 1265. Reprinted with permission. 
 

In relation to viral transmission, an increase in temperature will increase 

transmission by reducing the length of the extrinsic incubation period (EIP). Finally, 

Increase 

development 

of mosquitos 
Increase 

survival of 

mosquitos 

Accelerate 

reproduction 

of mosquitos 

Increase 

number 

of blood 

feeds 

    Increase   

   temperature  



31 

 

increased temperature will increase the probability of survival of the adult mosquito and 

will raise the amount of viral replication inside the mosquito (Morin et al., 2013). 

The effects of temperature on viral replication and transmission were documented 

in several studies. Watts et al. (1987) suggested that temperature influenced the 

replication rate of the dengue virus in Aedes vectors; however, the results also suggested 

that temperature has no effect on the establishment of infections in these vectors. 

A more recent study indicated a shorter viral extrinsic incubation period (EIP) 

when the temperature increases. The data showed that at a temperature of 25°C, the EIPs 

ranged from 5 to 33 days, and at 30°C, the EIPs ranged from 2 to 15 days (Chan & 

Johansson, 2012). This means that an increase of 5°C in temperature will decrease the 

development time of the virus by one half. Patz et al. (1998) found that dengue 

transmission increased with a small increase in temperature. The authors explained that 

the findings indicated that fewer Aedes vectors would be necessary to spread and 

maintain dengue fever within a susceptible population. 

Members of the genus Aedes, vectors for the dengue fever virus, are susceptible to 

temperature. Studies have shown that higher temperature increases the larval 

development rate, shortens the time span before the adult mosquito emerges, and 

increases the vector biting rate (Thai & Anders, 2011). Jansen and Beebe (2010) 

suggested that temperature and rainfall influenced larval abundance and development. 

Nevertheless, the association between rainfall and larval abundance and development 

varied greatly between regions and habitats. 
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Morin et al. (2013) suggested that the dengue virus can be found in A. aegypti’s 

competitor, Aedes albopictus. Most of the research reviewed involved the assumption 

that A. aegypti was the primary vector for dengue fever (Akbari et al., 2013); Morin et al. 

understood that A. albopictus also has the potential to be a vector for the virus. 

Nevertheless, some studies have found evidence that A. albopictus is less susceptible to 

dengue fever infections and less susceptible to the virus disseminating to the salivary 

glands (Lambrechts, Scott, & Gubler, 2010).  

The broad eco-bio-social conceptual framework was a tool developed by a 

research partnership between the Special Programme for Research and Training for 

Tropical Diseases at the World Health Organization and the Ecosystem and Human 

Health (EcoHealth) program of Canada’s International Development Research Center 

(IDRC; Quintero et al., 2014).  

The eco-bio-social framework has been used in several studies. Quintero et al. 

(2014) used the framework to identify the key factors associated with vector breeding in 

several countries in Latin America. Kittayapong et al. (2012) researched the application 

of eco-bio-social tools to control dengue vectors in Thailand. Quintero et al. argued that 

this tool has been used to understand the factors influencing the vector population; the 

author also stressed that areas or regions under study are different from each other. 

Differences include community dynamics, the ecology, geography of regions, 

urbanization, and vector control practices (Quintero et al., 2014).  

The framework developed by Arunachalam et al. (2010) was suitable for the 

study because it includes the principal variables of research: temperature, precipitation, 
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and migration. For this study, the social factor researched was the migration aspect of the 

framework. 

Aedes aegypti, Vector of Dengue Fever 

Aedes aegypti is a small to medium sized mosquito, 4-7 mm long with a life span 

of a couple of weeks to months, depending on environmental conditions (Dengue Virus 

Net, 2014). According to Zettel and Kaufman (2012), A. aegypti is a polytypic organism 

with three different subspecies, domestic, sylvan, and peridomestic. Powell, and 

Tabachnick (2013) considered the mosquito as a monophyletic group, with the domestic 

form of the A. aegypti dominating tropical and subtropical regions of the world.  

The domestic variety of the mosquito has evolved to live in close proximity with 

humans and their dwellings; they are active in the daytime and can bite indoors as well as 

outdoors (CDC, 2012). The close association with humans has provided opportunities for 

the mosquito to adapt and exploit a variety of sites for the oviposition of eggs and the 

development of the larvae (Eisen & Moore, 2013).  

The mosquito is a holometabolous insect; in other words, it undergoes a complete 

metamorphosis with an egg, larval, pupal, and adult stage (Zettel & Kaufman, 2012). The 

female mosquito is larger than the male mosquito and the female requires a blood meal to 

produce eggs. The female mosquito will produce from 100 to 200 eggs, depending on the 

size of the blood meal, and can produce five batches of eggs during its lifetime (Zettel & 

Kaufman, 2012). According to Eisen and Moore (2013), the female can take multiple 

partial blood meals from different humans: this practice increases the probability of 
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feeding on infected individuals with dengue and increases the probability of infecting 

many individuals during a short time.  

The capacity of the mosquito to disperse over long distances was crucial for the 

geographic extension of dengue fever (Harrington et al., 2005). Liew and Curtis (2004) 

concluded that female Aedes species could disperse horizontally quickly and easily 

throughout areas with a radius of 320 m in search of sites to lay eggs. Harrington et al. 

(2005) found that A. aegypti moved from 50 to 100 m after release. 

 Liew and Curtis (2004) found that mosquitoes disperse horizontally and 

vertically. Mosquitoes ranged in apartment blocks from the 12th floor to the 21st floor and 

laid eggs on each floor. The ability of A. aegypti to disperse extensively horizontally and 

vertically allows the mosquito to lay eggs in apartments and neighboring communities 

(Hii, 2013).  

Aedes aegypti Lifecycle 

The A. aegypti lifecycle has two phases which consist of terrestrial and aquatic 

phases (Figure 3; CDC, 2012). In the terrestrial phase, the female mosquito will bite 

humans several times when seeking to lay eggs (Padmanabda, Durham, Correa, Diuk-

Wasser, & Galvani, 2012). The female mosquito will feed twice a day, in the morning, 

and late afternoons (Hii, 2013). An important characteristic of the female A. aegypti, 

contrary to other mosquito-human systems, is that it feeds, rests, and lays eggs indoors or 

outdoors in proximity to humans and has adapted to prefer human blood for its energy 

source for reproduction (Padmanabha et al., 2012).  
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After the blood meal, the female will lay eggs on surfaces or containers that will 

likely be temporarily wet (Zettel & Kaufman, 2012) or just above the waterline (CDC, 

2012). The female can lay a batch of around 100-200 eggs, and in her lifetime she can 

produce up to five batches (Denguenet, 2014).  

The eggs resist desiccation for six or more months (CDC, 2012), are not laid all at 

once and are laid separately (CDC, 2012). The aquatic phase starts when the rain or water 

in natural or artificial containers floods the eggs; the larvae hatch and will feed on 

bacteria, algae or small particles of plants (CDC, 2012). 

The larvae have various developmental stages three molts; these stages are called 

first to fourth instars (Nature Education, 2014a). When the larvae reach full growth 

(fourth instar) it goes through metamorphosis to form a pupae. The pupae will take two 

days to develop into an adult mosquito, which will break the exoskeleton of the pupa and 

will be able to fly to search for a terrestrial habitat (Nature Education, 2014a). 
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Figure 3. Aedes aegypti lifecycle. Female mosquito (4) after blood meal. Eggs (1) can 

withstand no water for more than 6 months. Larvae (2) hatch when in contact with water, 

and undergo a metamorphosis to form a pupa (3). Two days later, a mosquito emerges. 

The entire lifecycle lasts 8 to 10 days, depending on the environment.  

 

Climate and Aedes aegypti  

The entire A. aegypti mosquito lifecycle takes approximately 1 or 2 weeks to 

complete; it may be shorter or longer, depending on the temperature, water, and nutrients 

in the aquatic phase. Higher temperatures will shorten the duration of the lifecycle (Hii, 

2013). Yang et al. (2009) researched and estimated the rates of mortality of the aquatic 

phase and the adult mosquito in relation to temperature. The results indicated the optimal 

range of temperature for development of the larva and pupa was 15 °C< T< 35 °C, and 

the optimal range for the survival of the adult mosquito was 15 °C < T < 30 °C.  

At 26 °C, a quick transition occurs within the aquatic stage. These differences in 

temperature in the phases of the lifecycle may indicate that the effects of temperature on 

the mosquito’s lifecycle are different for distinct stages (Yang et al., 2009). The authors 
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also found that at lower temperatures the development of the larva to pupa to adult does 

not occur, nor does the female mosquito increase its oviposition. The optimal temperature 

which will yield the highest number of offspring was 29.2 °C. 

Carrington et al. (2013) conducted laboratory studies that indicated immature 

development times were highly dependent and inversely related to temperature to a 

maximum of 35 °C. The researchers found that large diurnal temperature ranges will 

accelerate the development of the larva, but beyond the threshold of 35 °C, the 

development will begin to decline. An earlier study on the effects of temperature and 

larval development rates and survival found that the development from egg to adult 

inversely related to temperature, from 7.2 ± 0.2 days at 35 °C to 39.7 ± 2.3 days at 15 °C  

(Tun-Lin, Burkot, & Kay, 2000). The authors found the minimum temperature threshold 

for development was 8.3 ± 3.6 °C with a maximum survival rate (88% to 93%) at 20 °C 

to 30 °C.  

Carrington et al. (2013) and Tun-Lin et al. (2000) researched and agreed on the 

maximum temperature threshold of 35 °C for the development of larvae; however, Tun-

Li et al. (2001) conducted field studies and found greater variability for the development 

rates, when compared to the research done in laboratories. Both authors cautioned on the 

results of these studies because of unique circumstances of temperature and mosquito 

populations for the different regions where studies were conducted. 

Couret et al. (2014) conducted a study where three different factors were 

analyzed: temperature, density of larvae, and diet. The findings showed that the 

temperature was the most significant factor impacting the immature cycle and the 
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survival rate of larvae. However, the authors recommended that the larval density should 

be taken in account when predicting development rate and survival, but never excluding 

temperature. 

Hii (2013) summarized the impact of temperature and rainfall on the rates of the 

development, feeding, and the population density. The author stressed that at higher 

temperatures, the lifecycle will decrease, and it will affect the size of the mosquito; if the 

lifecycle was reduced, the mosquito will be smaller and the feeding will increase. Dengue 

transmission rate will increase with increased feeding (Hii, 2013). Rainfall will provide 

for numerous natural and artificial breeding habitats, if the containers can hold at least 10 

ml (20mm) of water the population density will increase rapidly (Hii, 2013). However, 

high temperatures above 35 °C or/and heavy rainfall can lower dengue transmission by 

reducing the survival rate of Aedes (Yang et al., 2009). 

 Aedes aegypti, as an adult, is considered the primary vector of dengue fever 

(Colon-Gonzalez, 2013). The mosquito lives in tropical and subtropical regions, mostly 

because the highest survival rate of the mosquito occurs in temperatures from 20°C to 30 

°C. Aedes aegypti is considered as a poikilothermic organism (Brady et al., 2013); 

therefore, this mosquito is notably susceptible to changes in temperature, climate 

changes, and climate variability (Hopp & Foley, 2003). Distribution of A. aegypti 

historically has been limited by the 10 °C January and July isotherms (Christopher, 

1960); although small variations in climate may not have a significant effect, temperature 

variations may result in detectable consequences at the local level (Canyon, Muller, & 

Hii, 2013).  
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Many articles have reported the influence of temperature and rainfall on the 

dengue distribution (Hii et al., 2009; Huang et al., 2013; Johansson et al., 2009), and on 

the development of the lifecycle, survival rates of vectors, biting rates, infective rates, 

and the incubation period of dengue virus (Hii et al., 2012; Maciel-de- Freitas, Torres 

Coceco, & Lourenco-de Oliveira, 2007; Tjaden et al., 2013; Tun-Lin et al., 2000; Yasuno 

& Tonn, 1970;). When temperature increases, Aedes mosquitos exhibit shorter periods of 

development in all stages of the life cycle, not only increasing population growth, but 

also increasing the mosquito feeding rate. The dengue viruses inside Aedes adult 

mosquitos require shorter incubation periods to migrate to salivary glands (Oki & 

Yamamoto, 2012; Yang et al., 2009). 

Brady et al. (2013) found that the female adult A. aegypti will experience a 

reduction in mobility and decrease in capability to take a blood meal at a temperature 

below 14 °C to 15 °C; without a blood meal the mosquito will not survive longer than 3 

days. Canyon et al. (2013) conducted a study that investigated if low and high relative 

humidity affected the biting rates of A. aegypti. The researchers found that host-biting did 

not decrease in low humidity; biting increased six times more than expected. The results 

were observed in a domestic arid strain of A. aegypti which will seek a host to bite 

multiple times to replenish its fluids and energy to lay eggs. Nevertheless, in high 

humidity and high precipitation where sugar was available, the host-biting rate decreased 

by half (Canyon et al., 2013). 

The gonotrophic cycle, the time interval between two consecutive blood-meal 

feedings was temperature dependent (Lardeux, Tejerina, Quispe, & Chavez, 2008). 
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According to Hii (2013), higher temperature will reduce the gonotrophic cycle duration, 

increasing the feedings. Multiple feedings in the cycle will increase the risk of disease 

transmission by increasing the frequency of contact with the host (Farjana & Tuno, 

2013). Eisen and Moore (2013) reported that a warmer climate could increase the 

propagation of the mosquito A. aegypti; however, the authors argued that this variable 

was not the only factor in the proliferation of the mosquito. The reproduction rates of the 

female mosquito will decline at temperatures over 35 °C and at temperatures of 16 °C or 

less. At these temperatures the mosquito will not reproduce; even though the mosquito 

will continue to bite, it will not lay eggs (Carrington et al., 2013).  

The effect of rainfall was complex. Rainfall events can increment vector 

abundance by increasing the availability of immature stage habitat (Stewart-Ibarra, Ryan, 

Beltran, Mejia, Silva, & Munoz, 2013). However, heavy rainfall episodes can reduce 

mosquito abundance by washing out the larvae from breeding sites, and drought events 

can increase mosquito abundance by using more household water storage (Stewart-Ibarra 

et al., 2013). Rainfall and temperature were factors in influencing the incidence of dengue 

fever virus transmission. Huang et al. (2013) found thresholds for rainfall of 27 mm to be 

important in determining the rate of autochthonous dengue fever; if it was below this 

threshold the dengue fever cases will be restricted.  

Barrera, Amador, and MacKay (2011) found that the number of adult mosquitoes 

were positively associated with the rainfall and temperature in Puerto Rico. Yasuno and 

Tonn (1970) correlated the rainy season in Thailand with the highest rate of dengue 

hemorrhagic fever. The authors also found that in the rainy season, there was an increase 
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in the total time of biting during the day, and the biting was more spread out. During the 

cool months, the biting rate (number of female mosquitoes caught per man per hour) 

decreased to 1.48 and during the rainy season increased to 4.77. Temperature and rainfall 

were the most important predictors for A. aegypti abundance and oviposition activity, the 

rainfall factor depends on the region and the collection of rainfall (natural or artificial) 

(Stewart Ibarra et al., 2013). 

Causative Agent: Dengue Virus 

Dengue fever is caused by a virus that belongs to a larger designation known as 

the arboviruses, viruses transmitted by arthropods (e.g., mosquitoes, ticks, flies, mites, 

and lice; CDC, 2012). Specifically, the dengue virus belongs to the Flaviviridae family 

which are enveloped, icosahedral, positive, and single stranded RNA, and is the 

Flavivirus genus, dengue virus species (Bauman, 2013). An important characteristic of 

the RNA genome is that these were dynamic molecules; their structures change 

throughout the viral lifecycle, responding to the environment of the host cell (Iglesias & 

Gamarnik, 2011).  

The Flavivirus genus includes other pathogens: West Nile virus (WNV), Japanese 

encephalitis virus (JEV), yellow fever virus (YFV), and tick borne encephalitis virus 

(TBEV). These viruses were transmitted by vectors and were classified as zoonosis; the 

JEV, WNV, and Saint Louis encephalitis virus (SLEV) have a cycle that includes the 

Culex mosquito and birds. The transmission stops with the human hosts, as dead-end 

hosts (Endy, Weaver, & Hanley, 2010). Yellow fever virus (YFV) has a cycle of 

transmission maintained in a sylvatic cycle that includes nonhuman primates and the 
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Aedes mosquito, but the virus has adapted to transmission in urban regions through the A. 

aegypti mosquito (Endy et al., 2010). The author explained that the virus no longer needs 

a nonhuman host, not like the other Flavivirus pathogenic viruses; therefore, the dengue 

virus is not classified as a zoonotic virus. 

Phylogenetic studies of the dengue virus suggested that the dengue virus adapted 

differently from the other Flavivirus; the virus evolved into four antigenically and 

phylogenetically distinct serotypes: DENV-1, DENV-2, DENV-3, and DENV-4 which 

was unique in the Flaviviridae family (Gubler, 2002). Each of the serotypes interact 

differently with the antibodies in the blood serum of humans; even though the four 

serotypes share 65% of the genome, there were still genetic differences among them 

(Nature Education, 2014b). Each serotype has emerged in an endemic cycle of 

transmission between the A. aegypti mosquito and humans.  

Climatic Variables and Dengue Fever Virus 

To determine the risk of dengue fever occurring in a specific region, the extrinsic 

incubation period (EIP) played a vital role (Tjaden et al., 2013). The EIP was the viral 

incubation period between the time when the mosquito takes a blood meal contaminated 

with dengue virus and the time when the mosquito became infectious (Chan & 

Johansson, 2012). The virus was ingested by a female mosquito, and time was required 

for the virus to replicate, move to the midgut, and spread through the mosquito’s body 

until the virus reached the salivary glands. 

 In the salivary glands, the virus will pass to a host during the next blood meal of 

the infected female mosquito (Tjaden et al., 2013). The authors argued that the duration 
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of the pathogen EIP was temperature dependent. Studies have shown that warmer air and 

water temperatures decrease the extrinsic incubation period, therefore increasing dengue 

virus titers in mosquitoes (Stewart Ibarra et al., 2013). 

Rohani, Wong, Zamre, Lee, and Zurainee (2009) found that the EIP decreased, 

from nine to five days when the temperature increased from 26 °C to 30 °C. Higher 

temperatures facilitated a faster replication of the virus inside the mosquito Aedes and 

these were better able to transmit the virus. Campbell, Lin, Iamsirithaworn, and Scott 

(2013) agreed that the optimal temperature for transmission was 28 °C to 30 °C with a 

humidity of 80%, and with a humidity of 62% the optimal temperature was 24.5 °C to 

26.5 °C; the maximum temperature for the highest transmission was 32.5 °C with the 

maximum humidity of 92%. The temperature has a regulatory role to trigger the viral 

transmission on or off, with a key threshold of 28 °C. Campbell et al. (2013) stressed that 

no dengue cases were found when the mean temperature was below 21 °C or minimum 

temperature of 14.5 °C.  

These were important threshold temperatures because no virus was found in the 

salivary glands of the mosquito at 20 °C, and no larva reached the adult stage at 14 °C; 

these temperatures may represent barriers in weather for sustained transmission. Phillips 

(2008) suggested that in a cool climate, the virus will take a longer time to replicate 

inside the mosquito A. aegypti; therefore, the mosquito will die before it is capable of 

transmitting the virus to the host. 
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Clinical Overview of Dengue Fever 

Dengue fever (DF), an acute febrile disease, was the most common arthropod-

borne disease worldwide (Pye, 2012). An infective female mosquito transmitted the 

dengue virus which can be either A. aegypti (primary vector) or A. albopictus (secondary 

vector; CDC, 2014a). The disease was caused by any of the four closely related RNA 

virus serotypes classified as DENV 1, DENV 2, DENV 3, and DENV 4 (CDC, 2013). 

Each serotype can cause the classic dengue fever; nevertheless, if a recurrent infection 

occurred with a different serotype, the outcome could be the most severe form of dengue 

fever, dengue hemorrhagic fever (Khan et al., 2013). Even though an infection with one 

of the serotypes can produce lifelong immunity, no immunity was produced for the rest 

of the serotypes, although some studies have suggested short-term immunity (Pye, 2012).  

The classical dengue fever symptoms are high fever, severe headache, severe 

joint, and bone pain, severe muscle pain, and sometimes a rash. According to the CDC 

(2012), in younger children and patients with first time dengue fever, these symptoms are 

milder in comparison with older children and adults. The symptoms usually are self-

limiting and the duration of the primary infection is about seven days (Khan et al., 2013).  

A reinfection with any dengue fever serotypes will cause dengue hemorrhagic 

fever which was the leading cause of viral hemorrhagic fever worldwide (Srikiatkhachorn 

et al., 2010). Dengue hemorrhagic fever (DHF) symptoms include high fever, 

hemorrhagic manifestations, skin bleeding, mucosa bleeding, gastrointestinal bleeding, 

plasma leakage, and thrombocytopenia associated with abnormal bleeding 
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(Srikiatkhachorn et al., 2010). Another clinical manifestation known as dengue shock 

syndrome (DSS) was defined as dengue hemorrhagic fever with circulatory failure. 

The case definition of dengue fever has been changed since 1997 to accommodate 

a more complex classification for dengue severity (CDC, 2012). The classification was 

divided into dengue with no warning signs, dengue with warning signs, and severe 

dengue (CDC, 2012). The case definition for dengue with no warning signs was fever and 

two of the following: nausea, vomiting, rash, aches, pains, leukopenia (low white blood 

cell count), or positive tourniquet test (determines capillary fragility) (CDC, 2012).  

Dengue with warning signs requires strict monitoring and medical mediation. 

Signs includes fever and any of the following: abdominal pain, persistent vomiting, 

clinical fluid accumulation, mucosal bleeding, lethargy, liver enlargement, or 

thrombocytopenia (CDC, 2012). Severe dengue will require hospitalization and the signs 

and symptoms include: one of the following: severe plasma leakage, shock, fluid 

accumulation with respiratory distress, severe bleeding, or organ involvement such as 

enlarged liver, impaired consciousness, and failure of the heart and other organs (CDC, 

2012).  

No vaccine was available for any of the serotypes of dengue fever; no preventive 

treatment and no antiviral drug treatment existed for dengue fever. Patients were treated 

for their symptoms with appropriate management regimes (Hii, 2013). Patients who 

showed signs of dengue hemorrhagic fever were treated not only for the fever, but 

required intravenous or oral fluid replacement or blood transfusions (Srikiatkhachorn, 

2010). 
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Nevertheless, treatments depend on the age and underlying conditions of the 

patient; usually children are vulnerable for plasma leakage than adults and adults that 

have pre-existing conditions are more vulnerable than healthier adults (Low & Ooi, 

2013). Management of dengue hemorrhagic fever requires hospitalization and treatments 

are more effective with an early clinical diagnosis (CDC, 2012). 

Epidemiology of Dengue fever 

Dengue fever has a large burden on a global scale; it was estimated that 50 to 100 

million infections occurred every year in more than 100 countries (Simmons, Farrar, 

Vinh Chau, & Wills, 2012). More than 100 countries were endemic for dengue fever, and 

2.5 billion inhabitants in tropical and subtropical region were at risk for this disease, 

including the 120 million people that travel to these regions every year (Tuiskunen, Back, 

& Lundkvist, 2013).  

The approximately 100 million annual infections include an estimate of 500,000 

people with dengue hemorrhagic fever that required hospitalization, most of these patient 

being children (Tuiskunen et al., 2013) and 25,000 deaths every year (Hynes, 2012). 

Nevertheless, according to Murray et al. (2013), the real impact of dengue was difficult to 

ascertain because some countries have inadequate disease surveillance, inadequate 

reporting levels, and misdiagnosis. Some articles report a global burden of close to 400 

million cases of dengue fever.  

Dengue fatality rate has been reported from 0.5% to 5.0% (Lee, Liu, & Yang, 

2012), although if dengue shock syndrome developed, the fatality rate increased 12% to 

44% (Lee et al., 2012). However, effective and prompt case detection, appropriate 
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management, which can include hospitalization and intravenous rehydration, will lower 

the case fatality of severe dengue to less than 1% (Murray et al., 2013).  

Migration/Imported Dengue Cases 

Shang et al. (2010) explained that several studies have established the link 

between imported dengue cases and autochthonous (e.g., locally acquired) dengue cases 

by phylogenetical analysis and viral sequence comparisons. However, the relationship 

among the imported dengue cases, the transmission dynamics, the local climatic 

variables, and autochthonous dengue cases needs to be quantitatively assessed (Shang et 

al., 2010). Huang, Clements, and Hu (2013) studied the relationship of imported dengue 

cases, weather variability, and the incidence of autochthonous dengue cases in 

nonendemic Cairns, Australia. The study revealed a positive association between 

imported dengue cases and autochthonous cases, but the occurrence of autochthonous 

cases were more associated with monthly temperature than imported cases. 

Sang et al. (2014) studied the association between dengue occurrence and possible 

risk factors. The authors found that imported dengue cases play a critical role in local 

dengue fever transmission with influence of climatic variables. Shang et al. (2010) found 

that imported dengue cases may trigger autochthonous dengue cases when the 

appropriate weather conditions were met. 

 Imported dengue cases have been recorded in Florida and the reemergence of the 

disease have been accompanied by a continuous flow of human migration to the state 

(Rey, 2014). The last dengue epidemic was in 1934; this epidemic affected a large 

portion of the state (Rey, 2014). Hanson (1936) described the epidemic of 1934 as the 
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State Health Officer and admitted that an announcement of an unusual disease may result 

in enough reported cases to simulate an epidemic. The author also expressed doubts about 

the correct diagnosis of dengue when it could have been another disease and admitted to 

the inadequate medical force to investigate each case. Hanson (1936), who led the 

antimosquito campaign in 1934, did not specify if the cases were autochthonous or 

imported dengue cases.  

In 2009, about 3.5 million Caribbean immigrants resided in the United States; of 

these, 69% reside in Florida and New York. The number of immigrants from endemic 

dengue region has increased more than 17-fold during the past 50 years and nearly four 

of every ten immigrants in Florida were born in the Caribbean (McCabe, 2011). 

According to Naish et al. (2014), climatic factors may contribute to changes in dengue 

incidence, however migration and human travel were among the important factors which 

can potentially influence dengue expansion. 

Global Situation of Dengue Fever 

Dengue fever (DF) has been present for centuries; this disease has been endemic 

in the tropical and subtropical regions of the world. Messina et al. (2014) explained that 

the transmission of the dengue virus to humans could have occurred hundreds of years 

ago; nevertheless, the isolation of the some serotypes of the dengue virus only occurred 

in 1943 in Japan and 1945 in Hawaii. According to Thai et al. (2011), this disease has 

spread over the last 50 years from an estimate of 15,000 cases, reported annually to the 

World Health Organization (WHO) from less than 10 countries in the 1960, to 50 to 100 

million cases in more than 100 countries. 
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Figure 4. Geographic spread of dengue fever. From “Impact of Dengue,” by the World 

Health Organization, 2015, retrieved from http://www.who.int/csr/disease/dengue/impact 

/en 

 

Dengue in the Americas has been documented with data sets from southern Brazil 

to the Mexico-United States border (Brady et al., 2012). In Central and South America, 

efforts from the Pan American Health Organization (PAHO) restricted the expansion of 

dengue fever (DF) throughout the American continent; nevertheless, the control of the 

vector A. aegypti was discontinued by the 1970’s. Estimates indicate that by 1995, the 

incidence levels of DF reached the levels that were found before the PAHO vector 

control campaign (Murray et al., 2013). In the United States, from 1946 to 1980, no 

dengue fever cases were autochthonous; the cases were imported from either U.S. 

territories or former U.S. territories, such as Puerto Rico, US Virgin Islands, American 

Samoa, and other regions endemic for dengue fever (Hynes, 2012). The author explained 

that a total of 1 million imported cases were reported during a ten year period from 1980 
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to 1989; however, a total of 4.5 million imported dengue cases were reported from 2000 

to 2007. 

In Asia, epidemic outbreaks of dengue fever and dengue hemorrhagic fever have 

been reported from Philippines and Thailand since the 1950s (Guzman & Isturiz, 2010). 

These countries and Vietnam were the ones with the highest number of dengue cases in 

Asia. India has reported dengue fever and dengue hemorrhagic fever cases since 1945. 

China had reported cases of dengue fever in the 1980s and 1990s, although the country 

had stopped reporting case of dengue fever to the World Health Organization (WHO) 

since 2003 (Guzman & Isturiz, 2010).  

In Europe, most of the dengue cases were imported; a dengue fever outbreak was 

reported in Madeira, Portugal, in 2012, transmitted by the A. aegypti mosquito which 

involved around 2000 cases (Rogers, Suk, & Semenza, 2014). Finally, a handful of 

countries in Africa had reported some outbreaks of dengue fever, and it was known that 

the virus was circulating within this continent. Even though the surveillance system in 

Africa was lacking or inadequate, outbreaks were rare in comparison with Asia and the 

Americas (Guzman & Isturiz, 2010). 

Geographic Extension of Dengue Fever 

The Global Strategy and Public Health Advances in Dengue estimated that since 

2000 to 2005, an increase of 110 million persons were at risk of dengue fever; the cases 

of dengue fever have grown exponentially by decade (Nathan & Dayal-Drager, 2006). 

According to Eisen and Moore (2013), established vector species had expanded their 
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geographic ranges, potentially driven by climate changes and because of the introduction 

of vector species in new geographic areas.  

Christopher (1960) established the broad geographic distribution of A. aegypti, 

mostly limited by cold temperatures, in the northern and southern hemispheres on the 

low-latitude areas of the equator of the average 10 °C winter isotherms (Figure 5). Eisen 

and Moore (2013) argued that the mosquito, A. aegypti, may expand its geographic range 

when conditions were favorable. The authors stated that the potential for expansion was 

demonstrated when A. aegypti recuperated lost territory after the Pan American Health 

Organization ceased the campaign to eliminate the mosquito.  

Liew and Curtis (2004) found that the mosquito can fly vertically to buildings 21 

stories high, indicating the potential of the mosquito to expand to higher altitudes. Lee et 

al. (2013) found a relationship between mean temperature and the quantity of 

precipitation on the distribution of mosquitos from endemic regions of Southeast Asia to 

Jeju Island (South Korea). Rohani et al. (2009) argued that climate variations and 

potential climate changes such as shifts in temperature, total precipitation, and rainfall 

patterns will alter the geographic range of mosquitos, their fecundity, biting rates, and 

longevity. 

The expansion of dengue fever can be observed with several maps (Figures 5 to 

7), indicating the advance of dengue in countries where this disease was absent. Figure 4 

shows the geographic extension of dengue fever until 2006. World Health Organization 

(WHO, 2009) added Bhutan, Hawaii (United States), Galapagos Islands (Ecuador), 

Easter Island (Chile), Hong Kong (SAR, China), and Macao (SAR, China). In 2003, eight 



52 

 

countries reported dengue cases, Bangladesh, India, Maldives, Myanmar, Sri Lanka, 

Thailand, Indonesia, and Timor-Leste, and in late 2006 Nepal reported the first 

autochthonous cases (WHO, 2009). During 2005 and 2006, outbreaks of dengue were 

been reported in Madagascar, Pakistan, Saudi Arabia, Sudan, and Yemen (Nathan & 

Dayal-Drager, 2006). 

 
Figure 5. Geographic extension of dengue fever for 2006. From “Impact of Dengue,” by 

the World Health Organization, 2015, retrieved from http://www.who.int/csr/disease 

/dengue/impact/en 

 

Figure 6 demonstrates the geographical extension of dengue fever until 2008. This 

map indicated the spread of dengue fever to areas where in 2006, no cases were reported, 
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Madagascar reported an outbreak in 2006 and in 2008 the entire island was at risk for 

dengue fever.  

By 2008, dengue fever cases were reported in Cambodia, Malaysia, Vietnam and 

Philippines; these four countries have the highest number of cases (1,020,333) and deaths 

(4,798) in the Western Pacific Region, The disease had also spread to Pacific island 

countries such as French Polynesia, New Caledonia, Cook Islands, American Samoa, 

Palau, and the Federal States of Micronesia (WHO, 2009).  

In the Americas region, more than 30 countries reported dengue fever. Argentina, 

Brazil, Chile, and Paraguay reported dengue fever cases; Brazil had the highest fatality 

rate of these four countries. Bolivia, Colombia, Ecuador, Peru, and Venezuela also 

reported with Colombia having the highest fatality rate. In Central America, Mexico, 

Costa Rica, Honduras, and Nicaragua reported dengue cases; however, all countries in 

this region were at risk for dengue fever (WHO, 2009).  

The Caribbean countries were considered at risk for dengue fever and were 

endemic for this disease; however, the Dominican Republic has the highest mortality rate. 

Finally, in North America, from 2001 to 2007, cases of dengue fever were reported, but 

most were in persons that had travelled from endemic areas (WHO, 2009).  
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Figure 6. Geographic extension of dengue fever for 2008. From “Comprehensive 

Guidelines for prevention and Control of Dengue and Dengue Haemorrhagic Fever” by 

the World Health Organization, 2011, retrieved from 

www.abc.net.au/rn/backgroundbriefing/document/20100221_map.pdf 

 

As shown in Figure 6, dengue fever was prevalent in the tropics and some 

subtropical regions of the world; nevertheless, the number of cases were increasing as the 

disease spreads to new regions. In the Americas, the Western Pacific, and Southeast Asia, 

the cases exceeded 1.2 million in 2008 and over 2.3 million in 2010 (WHO, 2014). 

Europe was threatened for possible outbreaks of dengue, although this possibility did not 

exist in years beforehand, and for the first time autochthonous cases appeared in France 

and Croatia in 2010. Madeira, Portugal experienced an outbreak of dengue in 2012 of 

autochthonous cases, and imported cases were reported in other 10 countries in Europe 

(WHO, 2014). In the United States, cases of dengue fever were reported in 2009 and 

2013 in Key West Florida, even though dengue continued to impact South American 
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countries mostly in Honduras, Mexico, and Costa Rica (WHO, 2014). Figure 7 indicates 

the expansion of dengue fever to Florida, United States and France. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Overall, the areas where dengue fever is the most prevalent and endemic are  

Figure 7. Geographic extension of dengue fever for 2011. From “Public Health 

Information and Geographic Information Systems Organization” by World Health 

Organization, 2012, retrieved from http://www.who.int./mapLibrary/Files/Maps/ 

Global_DengueTransmission_ITHRiskMap.pn 
 

Overall, the areas where dengue fever was most prevalent and endemic were 

Africa, Australia, the Caribbean, Central and South America, Hawaii, Mexico, the Pacific 

Islands, and Southeast Asia (WHO, 2014). 

Summary and Conclusion 

Dengue fever in its endemic areas was a major public health problem and was 

among the most threatening emerging infectious disease that may expand its geographic 
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range (Madoff, Fisman, & Kass-Hout, 2011). Even though the historical range of dengue 

fever was limited by the 10°C January and July isotherms (to 15° in South America) 

(Christopher, 1960), dengue fever has been re-emerged globally with intensified 

epidemic and geographic expansion since the 1980s (Hii, 2013). Recently, the frequency 

of dengue epidemics has increased and dengue cases were being reported for the first 

time in regions such as Nepal, France, and Madeira, Spain (Hii, 2013). 

This disease was transmitted by a highly domesticated vector, A. aegypti. The A. 

aegypti mosquito was the principal vector of dengue fever; it has evolved to feed mostly 

on human blood and has adapted to the urban environment using artificial containers for 

larval habitat (Gubler & Clark, 1996). Aedes aegypti was strongly influenced by 

temperature; for example, an increase of temperature increases the competence of the 

mosquito for propagation and viral replication (Oki & Yamamoto, 2012). An increase of 

temperature can shorten the duration of the lifecycle, the adult will emerge in less time 

(Hii, 2013), can increase the population growth, and the mosquito’s feeding rate (Yang et 

al., 2009). 

Precipitation (e.g., rainfall) also influenced A. aegypti; rainfall can increase the 

mosquito population by increasing the accessibility of immature stage habitat (Huang et 

al., 2013). For female mosquitos, precipitation can increase the total time of biting during 

the day and the biting was more spread out (Yasuno & Tonn, 1970). Numerous 

researchers argued that the most important climatic factors for the re-emerging of the 

vector of dengue fever were temperature and precipitation (Alto & Bettinardi, 2013; 

Couret et al., 2014; Morin et al., 2013; Yang et al., 2009).  
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The conceptual framework eco-bio-social research on dengue will be used to 

guide the study focused on the principal climatic variables, temperature and precipitation, 

and the social factor of migration. Researchers found that temperature was the primary 

factor that directly impacts the vector of dengue, A. aegypti (Carrington et al., 2013; 

Couret et al., 2014; Lambrechts et al., 2010; Watts et al., 1987); many agreed that rainfall 

influences the vector as well (Hii et al., 2012; Hii, 2013; Huang, 2013). However, there 

was disagreement concerning other variables and their impact on the vector. Some 

researchers suggested that humidity was more important than rainfall (Canyon et al., 

2013; Chakravarti & Kumaria, 2005) and others such as Campbell et al. (2013) suggested 

that humidity does not have a direct or indirect impact on A. aegypti.  

Depradine and Lowell (2004) disagreed that precipitation was an important factor 

for the vector. Other factors that researchers have studied were socio-ecological (Stewart 

Ibarra, 2013), vector competition, A. albopictus (Lambrechts et al., 2010), El Niño-

Southern oscillation (ENSO) events (Foley & Hopp, 2001; Johansson et al., 2009), 

imported dengue by migration (Huang et al., 2013), and population density (Schmidt et 

al., 2010).  

Numerous studies have been conducted on the climatic variables and the vector of 

dengue fever, A. aegypti; most of the studies concentrate on dengue fever endemic 

regions such as Puerto Rico, Thailand, South Korea, and Vietnam (Barrera et al., 2011; 

Campbell et al., 2013; Lee et al., 2013; Schmidt et al., 2010). However, few studies were 

conducted in nonendemic areas, such as the study relating temperature and dengue fever 

in Argentina (Carabajo, Cardo, & Vezzani, 2012). Presently, no recent study has been 



58 

 

conducted correlating temperature, precipitation, and migration with autochthonous 

dengue fever cases in nonendemic area of southeast Florida, United States  

Given the clear gap in the literature and the importance on understanding climate 

change and its impact on vector-borne infectious diseases, I will contribute to the existing 

body of knowledge by providing updated information on climatic variables and dengue 

fever in the United States. In the study, Arunachalam (2010) conceptual framework 

focused the study by mapping the climatic variables in the specific region of southeast 

Florida and evaluating how migration will influence the vector, A. aegypti. Chapter 3 had 

information related to the methods that will guide the analysis of the study. Chapter 3 

identified the target population, access data, explained operationalization of variables, 

determined threats to validity, and discussed ethical problems if any.  
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Chapter 3: Research Method 

Introduction 

The purpose of this quantitative ecological study was to find an association 

among migration (imported dengue fever cases), climatic variables (temperature and 

precipitation), and autochthonous dengue cases in the nonendemic southeast region of 

Florida. Climatic data were collected from NOAA from land-based stations in specific 

regions in Southeast Florida. Data on dengue cases (imported and autochthonous) were 

retrieved from the Florida Morbidity Reports from the Florida Health Department (FHD) 

and the CDC. The data used ranged from 1980 to 2013, a total of 34 years. This amount 

of time and data were chosen in keeping with NOAA’s recommendation to study a period 

of at least 30 years because this is the standard time period used to ensure that a 

researcher covers climatic variability (NCDC, 2014). 

The main sections of this chapter address the study’s research design and 

rationale, methodology, and threats to validity; the chapter concludes with a summary. 

The section on the research design and rationale presents information regarding the study 

design and the dependent and independent variables. The methodology section includes 

information about archival data, the data analysis plan, the target population, sampling, 

sampling procedures, instrumentation, and operationalization of variables. The section 

regarding threats to validity includes the ethical considerations of the study. At the end of 

the chapter, a summary provides an abbreviated version of Chapter 3. 
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Research Design and Rational 

The dependent variable of the study was the geographic expansion of dengue 

fever, defined as the appearance of autochthonous dengue fever (locally acquired) in 

areas where this disease was previously absent. The three independent variables were two 

climatic factors—temperature and precipitation (e.g., rainfall)—and a third independent 

variable of social context—human migration, defined as imported dengue cases in 

specific areas of Southeast Florida.  

The study used an ecological design, which is an observational or 

nonexperimental design like most epidemiological study designs (Aschengrau & Seage, 

2008). The ecological study design made it possible to understand of the effects of 

ecological variables for which there was no correlation at the individual level; with this 

design, I examined rates of disease at the population level (Lengerich, 2015). Three types 

of ecological variables were recognized: aggregate, environmental, and global; this study 

used the environmental and global variables. The environmental variable was defined as 

a “measure of the physical characteristics of the environment in which people reside, 

work, recreate or attend school” (Lengerich, 2015, para. 6.2). This design allowed the 

analysis of environmental measures or environmental variables such as temperature and 

precipitation and allowed the description of the geographic location where the population 

lives or works (Aschengrau & Seage, 2008).  

The global variable, which was one of the ecological variables, was defined as “a 

measure of the attributes of groups, organizations, or places for which there was no 
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analogue at the individual level” (Lengerich, 2015, para. 6.2). The study included the 

variable of human migration, which fit the definition of global variable.  

This study involved analysis of data on climatic variables and human migration 

for a period of 34 years because time was an important component of this study; a time-

trend design was included. This type of design is a form of longitudinal ecological study 

that can provide a dynamic view of a target population’s health status when exposed to 

climatic variables such as temperature and precipitation and imported dengue cases. 

According to Coggon (2009), a common approach in ecological-design studies is 

geographical correlation between the prevalence of risk factors and disease incidence. In 

this study, I attempted to correlate the risk factors of changing temperature, precipitation, 

and imported dengue cases with the number of autochthonous dengue fever cases in a 

nonendemic region for a period of 34 years. However, Coggon stressed caution 

concerning the interpretation of findings, strongly advising that researchers make 

allowances for potential confounding effects of other variables using appropriate 

standardization.  

Several studies using the ecological study design have found associations between 

climate change and increased dengue fever cases (Colon-Gonzalez et al., 2011; Hii et al., 

2013; Johansson et al., 2009; Patz et al., 1998; Thai & Anders, 2011; Watts et al., 1987). 

Most of these studies have used local meteorological data and confirmed dengue fever 

cases to understand the correlation between these variables. Few ecological studies have 

addressed the relationship among imported dengue cases, climatic variables, and 
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autochthonous dengue cases in nonendemic regions (Shang et al., 2010; Huang et al., 

2013).  

The ecological design seemed the most suitable for the study because the 

variables analyzed were ecological variables (temperature and precipitation) and 

imported dengue cases, with the study designed to determine how these risk factor 

influenced the health of the target population.  

The data sets used were composed of secondary data. Data on the climatic 

variables, temperature and precipitation (e.g., rainfall), were provided by the National 

Climatic Data Center in Asheville, NC. The climate data were downloaded through the 

NCDC website. There were some time constraints on the retrieval of data on dengue 

cases (local and imported) from the Florida Public Health Department and the CDC for 

the years 1980-2013. The data, which contained some confidential information, had to be 

specifically requested. 

Methodology 

The methodology section presents information regarding the population, sampling 

and sampling procedures, archival data, instrumentation, materials, operationalization of 

variables, and data analysis plan.  

Population 

A target population is defined as the entire group on which a researcher seeks to 

draw conclusions. For the study, parameters were established that described the target 

population that was at risk of the disease in question (Crosby, DiClemente, & Salazar, 

2006). In this study, the target population was the communities of Southeast Florida, 
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specifically the region known as the Treasure Coast. This region extends across four 

counties—Palm Beach, Martin, St. Lucie, and Indian River—and 53 municipalities 

totaling more than 1.4 million residents (Treasure Coast Regional Planning Committee 

[TCRPC], 2010). According to the United States Census Bureau (USCB, 2014), of the 

almost 1.5 million residents in the Treasure Coast, 69% are White (nonHispanic), 16% 

are Hispanic, and 14% are Black. Females make up 51% of the population of the 

Treasure Coast, 24% of the residents are under 18 years of age, and 26% are 65 years of 

age or over (USCB, 2014).  

The target population lives in a region where the geography may be suited for 

mosquitos. The Treasure Coast of Florida covers an area of 11,395.95 km2 and has a 

significant number of natural resources such as lakes, rivers, lagoons, savannas, and 

marshes, including the Indian River and Indian River lagoon system (Merritt, 2010). The 

region is shielded from the Atlantic Ocean by barrier islands and sandbars, which protect 

the shallow lagoons, rivers, and bays (Merritt, 2010). Beginning in the north and moving 

southward, Florida’s southeastern Treasure Coast has four counties: Palm Beach, Martin, 

St. Lucie, and Indian River. The lagoon system and the Atlantic coast are the most 

dominant physiographic aspects of the area (Merritt, 2010). The area has nearly 160 km 

of Atlantic coastline, and excluding the southern part of Palm Beach County, the area has 

a coastal barrier island system. The area’s barrier island coastline is composed of beach, 

approximately 25% of which is in the public domain (TCRPC, 2010). 

The Indian River lagoon south to Jupiter inlet lies west of the barrier island 

toward the northern boundary of the area. This estuary is a 32 km-long region positioned 
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in the center along the east coast of Palm Beach County, and it is designated an Estuary 

of National Significance. Lake Worth lagoons, as well as the Indian River, interconnect 

with the Atlantic Intracoastal Waterway, which is an inland navigation passage that along 

the east coast of Florida (TCRPC, 2010)  

The area's estuaries are critical because they contain nutrient-rich ecosystems and 

communities, such as beds containing sea grass, algae, and oysters, in addition to tidal 

marshes with exposed sand and shell bottoms, mud flats, tidal marshes, and mangrove 

swamps. The type of wetland that is most dominant is the mangrove swamp, which has 

exposed vegetation bordering the estuaries of the area (Merritt, 2010). This region also 

provides a nutrient base that is important in supporting the region's commercial and sport 

fish populations. The marine industries, as well as recreational boaters, rely on this region 

(Merritt, 2010). Most of the municipalities are located in Palm Beach County, which has 

38 incorporated municipalities (Palm Beach County, 2014), in comparison to Martin 

County with four municipalities (Martin County, 2011), St. Lucie County with three 

municipalities (St Lucie County, 2015), and Indian River County with five municipalities 

(Indian River County, 2014). Table 1 contains the estimated population of each county 

for the year 2013. 
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Table 1 

Population per County of the Treasure Coast District 

________________________________________________________________________ 

County      Population 

 

Indian River County     141,994 (estimates 2013) 

Martin County     151,263 (estimates 2013) 

St. Lucie County    286,832 (estimates 2013) 

Palm Beach County    1,372,171 (estimates 2013) 

________________________________________________________________________ 

Note. From “Quickfacts: Palm Beach County, Florida,” by U.S. Census Bureau, 2014, 

retrieved from http://quickfacts.census.gov/qfd/states/12/12099.html 

 

Sampling and Sampling Procedures 

The “goal of a sampling technique is to maximize the generalizability of the 

sample of the population” (Crosby et al., 2006, p. 290). The term population can refer to 

the possible elements of a defined group; elements can be people or units that have 

importance in public health (Crosby et al., 2006). In this study, the research question 

involved well-defined units: temperature, precipitation, and human migration during a 

specific period of about 34 years. 

The first step in sampling was selecting land-based stations in areas where 

autochthonous (locally acquired) dengue fever cases were found and where data on 

precipitation and temperature had been collected for more than 30 years. In the United 

States, more than 6,000 observation stations have been recording data for various periods 

of time (Rennie et al., 2014.). However, with the improvement of technology, the land- 

based stations dedicated to measure temperature had been modernized and reduce in 

numbers to around 1,500 stations (NOAA, 2009).  
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In the State of Florida, a total of 844 stations that collect data for different 

elements have been undergoing modernization, and some of these stations are no longer 

accessible in real time (NOAA, 2009). The Treasure Coast and the coastal part of the 

County of Palm Beach have a total of 13 stations that collect data only for temperature 

and precipitation (NCDC, n.d.). Of these 13 stations, four land-based stations are located 

in the area where the autochthonous dengue fever cases were identified, and of these four 

stations, three stations have collected data for more than 30 years. The data from these 

three stations, which contain readings for both temperature and precipitation for more 

than 34 years, were used for the study. 

In this study, a data set was collected containing information on all of the dengue 

fever cases (autochthonous and imported) from the area of study over 34 years. All 

records of dengue cases were included unless there were duplicate records or missing 

important values. The inclusion criteria were as follows: 

• date of onset and date of diagnosis; 

• laboratory results;  

• city and state; 

• determination of imported dengue fever or autochthonous dengue fever. 

Records without all the inclusion criteria were excluded from the analysis. The 

rest of the information on the Florida Department of Health Practitioner Disease Report 

Form was excluded (Appendix A).  

Using the computer software program Minitab® 17, I conducted an estimation of 

sample size and power analysis for Poisson regression. The two-sample Poisson rate was 
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chosen because it was useful to determine whether the rate differed across two groups, to 

determine whether one group had a higher rate of occurrence than another group, and to 

determine whether the difference might be too small to have practical importance (Evans, 

2013). Raw data on dengue cases in Florida were tabulated in the worksheet provided by 

Minitab® 17 (Minitab 17, 2015). The inputs were the baseline = 130, comparison rate = 

135, alpha = .05, and the lengths of observation for Sample 1 and Sample 2 = 1, 1; the 

resulting curve showed three scenarios (Figure 8): 
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Figure 8. Sample size and power analysis for two-sample Poisson rate. 
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Table 2 

Different Scenarios of Sample Size and Power 

_____________________________________________________________________ 

Comparison rate                  Sample size            Target power            Actual power 

_____________________________________________________________________ 

135   29   .5  .503665 

135   66   .8  .802456 

135   91   .9  .900630 

_____________________________________________________________________ 

Note. Minitab output (Minitab® 17.1.0, 2015). 

At a comparison rate of 135 dengue cases (with the highest number of imported 

dengue cases in 5 years estimated at 137), with a target power level of .8, a sample size of 

66 cases per year was appropriate to detect a change between imported dengue cases and 

autochthonous dengue cases. A power level of .5 requires a sample of 29 dengue cases 

per year; therefore, using the power level of .8 would increase the sample size to gain 

more discrimination power (Table 2). In summary, the calculations indicated detection of 

five cases with a target power level of .8 with 66 dengue cases per year.  

Archival Data 

The study used archival or secondary data for the statistical analysis; data of this 

type were collected by others such as organizations or governmental agencies (Jones, 

2010). The data on climatic variables were collected from the National Climatic Data 

Center (NCDC); this government agency is part of the National Oceanic and 

Atmospheric Administration (NOAA) and is “responsible for preserving, monitoring, 

assessing, and providing public access to the Nation’s climate and historical weather 

data” (NCDC, 2014, para.1). The center is the largest climate data archive in the world 
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and provides data and climatological services to the public, government, industries, and 

researchers (NCDC, 2014). 

Global Historical Climatology Network (GHCND) Monthly Summaries was a 

database that addresses the critical need for historical precipitation, temperature, and 

snow records over global land areas (NCDC, n.d.). The GHCND-Monthly Summaries 

database includes 18 meteorological elements such as temperature (means and extremes), 

precipitation (totals, extremes and number of days when parameters were reached), 

snowfall, maximum snow depth, and degree days (NCDC, n.d.). The data was collected 

by land-based observation stations and these stations (e.g., land-based) contained 

observations of the meteorological elements mentioned above in more than 40,000 

stations around the world (NCDC, n.d.).  

The center provides data of several climatic variables such as average 

temperature, maximum temperature, minimum temperature, and precipitation for each 

state or region of the country. Some of the data start as early as the year 1865 to the 

present and offers time scales from months, year to date, annual, and previous 12 months 

(NCDC, 2014). In addition, specific climate variables such as temperature and 

precipitation, can be searched for division or city of specific states. Depending on the 

data, it can be offered in graphs and in tables to search at a glance.  

The data from specific land-based stations was facilitated by the Program 

Manager of Global Observing Systems Information Center (GOSIC), lead of NOAA and 

NCDC Metadata Working groups, and lead of NCDC Master Archive Collection 

Inventory (MACI). Data was also facilitated by the Director World Data Center for 
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Meteorology (NOAA/NCDC). Additional data was downloaded through the NCDC 

website. 

The data for cases of imported dengue cases and autochthonous dengue fever 

cases in Southeast Florida was sourced from the Florida Department of Health (FDH) or 

the Centers for Disease Prevention and Control (CDC). Some of the dengue cases were 

found in the Florida Morbidity Statistics Report from the FDH, which was the official 

record of the incidence and prevalence of reportable disease in Florida. The data 

contained in this report were final, unless otherwise noted (FHD, 2012). A reportable 

disease or condition was “one for which regular, frequent, and timely information 

regarding individual cases is considered necessary for the prevention and control of the 

disease” (CDC, 2014b, p. 2).  

According to Florida Statutes Section 381.003, “The Department shall conduct a 

communicable disease prevention and control program as part of fulfilling its public 

health mission” (FHD, 2012, p. 3). Public health participants’ work together to identify 

and characterize emerging trends of disease. The partners in these surveillance systems 

were physicians, nurses, laboratorians, hospital infection preventionists, and public health 

nurses who collaborate in reporting notifiable diseases (FHD, 2012).  

The Florida Morbidity Statistics Report compiled the following:  

• summary of annual morbidity data from notifiable infectious and  

      environmental diseases in Florida;  

• descriptions of trends of disease surveyed over time, and  

       correlated with patterns from other states, which helps in guiding future 
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       disease prevention and control efforts; and 

•  resources to medical and public health authorities at county, state, and    

national levels available from the summary (FHD, 2012). 

The county and health department obtain the morbidity report data from medical 

staff, hospitals, and laboratories throughout Florida. The agencies received this data by 

passive and active surveillance (FHD, 2012). The state of Florida requires, under Section 

381.0031, Florida Statutes and Florida Administrative Code (FAC), each of these 

participants to report suspicious and confirmed notifiable diseases and conditions (FHD, 

2012). The state also requires from the personnel in charge of laboratories, hospitals, 

medical facilities or other facilities providing health service, for them to inform notifiable 

diseases and conditions, including the confirmed laboratory test results included in the 

Table of Notifiable Diseases or Conditions to be Reported, Chapter 64D-3, FAC.  

Even though the laboratory result was included, the physician was required to 

disclose the disease. “These data are the basis for providing useful information on 

reportable diseases and conditions in Florida to health care workers and policymakers, 

and would not be possible without the cooperation of the extensive network involving 

both private and public sector participants” (FDH, 2012, p. 3).  

Data were obtained in diverse ways:  

• passive surveillance depending on assigned medical staff, laboratories, and 

other health care providers to inform diseases to the Florida Department of 

Health (FDH) confidentially in any of three forms (electronically, telephone, 

or facsimile); 
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• active surveillance involving the assigned health-care providers to frequently 

contact hospitals, laboratories, and medical staff to report cases of a given 

disease or condition; 

• information about cases of notifiable diseases reported from medical staff, 

especially laboratories, to FDH electronically, which is collected 

automatically, without the intervention of medical personnel (FDH, 2012). 

When a disease was identified (i.e., patients were exposed, became ill, diagnosed, 

or hospitalized), the cases were designated by the county of residence. Cases involving 

nonresidents of Florida were not included as a Florida case, even if they were 

hospitalized, diagnosed, or became ill in Florida. These cases were not included in the 

Florida Morbidity Statistic Report. The out-of-state “cases are referred through an 

interstate reciprocal notification system to the state where the person resides” (FDH, 

2012).  

The remaining dengue fever cases were obtained from the Florida Department of 

Health website for mosquito-borne diseases surveillance. Permission for the Walden 

University Institutional Review Board and agreement from the Florida Health 

Department was obtained to collect the necessary data for analysis. 

Instrumentation and Materials 

Dengue fever is a reportable disease; licensed practitioners or physicians must 

report diseases or conditions included in the Table of Notifiable Diseases or Conditions 

(Appendix A), Chapter 64D-3.029, F.A.C., (FDH, 2012). The public health system relies 

on reporting to survey the health of the community and to contribute to the evidence for 



73 

 

preventive action (FDH, 2012). Medical officers are mandated to supply specific 

information with laboratory orders at the time the sample is sent or received by the 

laboratory (FDH, 2012). 

The reporting of these diseases is crucial for prevention and to implement 

programs related to infectious diseases. The Notifiable Infectious Disease Report is the 

archival count of cases, and is approved by the chief epidemiologist of every state or 

territory before sending the reports to the Summary (CDC, 2014b). The surveillance and 

reporting systems connect public health departments to physicians, public health nurses, 

and clinical laboratories. These health-care practitioners report patients with reportable 

infectious diseases, unexplained diseases, and severe problems. Laws and regulations 

mandate every state and territory to report diseases, but some states require reporting 

other diseases that are not nationally notifiable (Silk & Berkelman, 2005). 

NOAA’s National Climatic Data Center collects, maintains, and preserves climate 

data archive to provide climatological services to the public, business, industry, 

government, and researchers (NOAA, n.d.). The precipitation and temperature data are 

collected by land-based observation stations sited at locations nationwide (Menne, 

Williams, & Palecki, 2009). Land-based stations adhere to established monitoring 

principles. These stations are closely monitored and are subject to rigorous calibration 

procedures (NOAA, 2009). The land-based stations have detailed station history which 

helps to identify and correct discrepancies (NOAA, 2009). 

The stations collect data, including temperature, dew point, relative humidity, 

precipitation, and atmospheric pressure. However, not all stations collect all climatic 
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variables; some stations collect only precipitation and others collect temperature and 

precipitation (NOAA, 2009). The specific stations that gathered the data for this study are 

known as cooperative observation stations and the instrumentation is faily simple. These 

stations are calibrated on a regular schedule (H. Diamond, personal communication, 

August 26, 2014). 

 Reliability and validity are the primary indicators of the quality of the measuring 

instruments (Kimberlin & Winterstien, 2008). Reliability estimates evaluates the stability 

of measures, and internal consistency of measurements by instruments over time 

(Kimberlin & Winterstien, 2008). The data used in the study is secondary data; the first 

consideration for reliability is to assure if the secondary data measures the variables 

required to answer the research question (Kimberlin & Winterstien, 2008). Validity is the 

indicator of how findings accurately represent measurements (Kimberlin & Winterstien, 

2008).  

Reliability and validity of the data compiled by FHD. The data of dengue fever 

cases was collected from the Notifiable Infectious Disease Report form of the regions of 

interest. The data reported by the physician and the laboratory complement each other. 

Laboratory reporting must be paired with the practitioner’s report for disease or condition 

(FDH, 2012). Personnel with reporting responsibilities must verify the steps of the 

process to report this data (FDH, 2012). 

The report content is required by Florida Statutes to include the patients’ name, 

complete address, social security, and personal information. The personal information 

includes age, sex, race, and ethnicity. In relation to the disease, the physician or health 
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provider includes the date of onset, symptoms, and diagnosis. The laboratory section 

includes the type of diagnostic test, type of specimen, date, and site of collection. 

Diagnostic test results include information related to quantitative procedures performed, 

and all available results including the characterization of the organism. Finally, the health 

provider reports the treatment given, the provider’s name, and other important 

epidemiological information (Appendix A, FDH, 2014). 

The Table of Notifiable Diseases or Conditions provides the timeframe for 

reporting. If the institution was electronically operational, the report can be sent 

electronically or if by telephone, the notification must be accompanied by a report no 

more than 72 hours in the form of facsimile or another method that was confidential 

(FDH, 2014). For example, dengue fever can be reported the next business day, but if the 

disease was autochthonous it must be reported by phone upon diagnosis (FDH, 2014).  

The reported cases were collected in Merlin, Florida’s web-based reportable 

disease surveillance system and codes were assigned to each disease. Codes can be 

added, old codes can be deleted, and some diseases have more than one code identifying 

different clinical manifestations (FDH, 2014).  

 Completeness, an important reliability factor for disease reports, refers to the 

percentage of the diagnosed patients with a reportable disease disclosed to relevant public 

health jurisdiction (Doyle et al., 2002). The ability to detect outbreaks or epidemics 

depends on the sensitivity of the surveillance systems and on the completeness of the 

reports (Silk & Berkelman, 2005). 
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Completeness was more important for infrequently occurring diseases, which was 

crucial to understanding the occurrence accurately and to generate national and global 

comparisons among public health administrations (Doyle et al., 2002). According to 

Doyle et al., variation in completeness of the reporting of infectious diseases varied in the 

United States from a range of 9% to 99%. The variation seems to be linked or related to 

the severity of the disease (CDC, 2014). For example, reporting completeness seems to 

be higher for sexually transmitted diseases or tuberculosis. The reasons for this were not 

clear, but may be associated with the notion that some of these diseases are more serious 

or there are more resources assigned to treat and preventing them, including sending case 

workers in the community (Doyle et al., 2002).  

 Another reporting problem is that for some reportable diseases, the data is sent 

independently to different CDC programs (CDC, 2014b). This surveillance data might 

differ from data reported in the Summary. The cause of the discrepancies may be because 

(a) differences of the date used to aggregate data such as date of report or date of disease 

occurrence, (b) different timing in reporting, (c) different source of the data, d) different 

case definitions, and (e) policies regarding case ownership (i.e., which state should report 

the case to CDC; CDC, 2014b). Other factors that influence the completeness of data 

includes awareness of a specific disease in the community, state, and local resources, 

control measures implemented, state and local priorities, availability of diagnostic 

facilities and public health surveillance.  

Completeness of data reporting can also be affected when there are changes in 

disease reporting which are independent of the incidence of the disease. Some of these 
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factors can be the discovery of new emerging diseases, introduction of new diagnostic 

test, and changes on the methods for public health surveillance (CDC, 2014b). The lack 

of some demographic data (e.g., socioeconomic levels) affects the estimation on 

demographic-specific rates in the Summary (CDC, 2014b). 

Lazarus, Klompas, and Platt (2009) analyzed studies which suggested that manual 

reporting provide delayed and inaccurate data, accompanied with many errors and 

omissions. The authors stressed that an automated system, based on a comprehensive 

source of electronic data, can contribute available details from the source. The system can 

make the job easier for the provider and minimize transcription errors. To maintain 

reliability and validity, surveillance and measurements activities periodically should be 

evaluated (CDC, 2001). 

Guidelines have been established to increase the susceptibility of the systems, 

which includes diagnosis, disease-reporting, and case elements (CDC, 2001). The secure 

web-based disease surveillance system, Merlin, was used by 67 county health 

departments in Florida. The large amount of users and thousands of cases, which were 

not reviewed individually, brings a challenging task to maintain data quality (Eisenstein, 

2014). The system was programed for automated logic checks to prevent unreasonable 

data from being entered; however, improbable scenarios were not addressed such as 

patients older than 100 years of age (Eisenstein, 2014). 

 In 2013, these concerns were addressed and, data quality checks were added to 

Merlin. The results were a reduction in the number of data errors in submitted cases, 

improvement in data quality, decreased time spent on cases review, and a reduction of 
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time of county health department spent updating cases (Eisenstein, 2014). By 

implementing early checks, improvements to Merlin yielded a 92% reduction in selected 

data quality errors (Eisenstein, 2014).  

Reliability and validity of the data compiled by NOAA/NDCD. NOAA issued 

an administrative order (202-735D) for continuation of scientific excellence and integrity 

and to strengthen the confidence of researchers, policy makers, and public in general in 

the reliability, quality, and validity of NOAA science (NOAA, 2011). The scope of the 

order is to established NOAA’s principle of scientific integrity and the NOAA policy of 

integrity of Scientific Activities (NOAA, 2011).  

The order applies to all employees engaged in supervising, managing, analyzing, 

and communicating information resulting from scientific activities, including contractors. 

The order, which is detailed and specific for scientific integrity, stresses that employees 

preserve the integrity of the data record by adhering to NOAA data management 

standards (NOAA, 2011).  

The Global Historical Climatology Network (GHCN-Monthly) data base contains 

historical precipitation, temperature, and other climatic data collected by hundreds of 

land-based stations nationwide and globally (NOAA, 2014). The period of data collecting 

differs from station to station, with hundreds dating from the 1950s and hundreds being 

updated every month through CLIMAT reports (NCDC, 2002). NCDC land-based 

stations observations supplies a high level of service associated with the data that is 

collected (NCDC n.d.)  
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The data is rigorous scrutinized with quality assurance reviews, both the historic 

and the GHCH near real time data (NOAA, 2014). The quality reviews include time 

series checks which analyze bogus changes in the variance and means, audits on source 

data, spatial comparisons that checks the veracity of the climatological mean, and 

neighbor audits that pinpoints outliers from a spatial and serial viewpoint (NOAA, 2014).  

A peer-reviewed study computed the possible bias in trends caused by inefficient 

station exposure. The findings found only a small subset of stations with this condition 

and these had their exposure corrected at the time of the study. The study found no bias in 

long-trends (Peterson, 2006). Another peer-reviewed study provided an overview of the 

sources of bias and the process of removal which includes urbanization and nonstandard 

exposures (Menne, Williams, & Vose, 2009). The removal of some bias included the 

evaluation of urban bias and once the data was adjusted from these stations they found 

the same trend as the remaining rural stations (NOAA, 2009a).  

NCDC have been leaders in developing methods of detection as well as 

quantifying biases in station time series, since 1980s. The detection and removal of the 

bias is crucial so that the time series are consistent with respect to its actual 

instrumentation and exposure (NOAA, 2009a). NOAA’s field office personnel trained 

volunteers and these volunteers are subject to periodic visits to provide support and 

ensure instrumentation is working correctly. Any inconsistencies or difficulty found by 

the field officer are investigated, corrected, and worked on to ensure that daily and 

monthly measurements are being taken correctly (NOAA, 2009). In addition to the 
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monitoring, the calibration, and the training, the NCDC provides data checks of the 

measurements, in search of discrepancies.  

Study Variables 

The variables selected and presented in the section were based on the research 

questions, literature review, and the availability of the data sets. 

  Dependent variable. The dependent variable of the study was the geographic 

expansion of dengue fever to southeast Florida, United States. Geographic expansion of 

dengue fever refers to the appearance of autochthonous dengue cases (locally acquired) in 

areas where it was previously absent. The variable was a continuous variable with the 

number of autochthonous dengue cases monthly during 34 years in southeast Florida. 

Independent variables. This study had independent variables associated with 

climatic characteristics precipitation, temperature, and a social context variable which 

was migration, as defined below. 

Precipitation: refers to the fall of rain and the liquid water equivalent of frozen 

precipitation (snow, sleet, and hail), on the earth’s surface, measured by tenths of 

millimeters (mm). The precipitation dataset, includes extreme maximum monthly 

precipitation and total precipitation. This variable was used as a continuous variable and 

the dataset included 34 years of monthly values per each element per one station, with a 

total of three stations. 

Temperature: refers to the numerical measure of detection of heat. NOAA land 

based stations measure the temperature by degree and tenths Celsius (°C). Temperature 

readings, with a precision of tenths of degree of Celsius (°C), included extreme minimum 
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temperature, and extreme maximum temperature, monthly mean minimal temperature, 

monthly mean maximum temperature, and monthly mean temperature (NOAA, 2009). 

The variable was a continuous variable and the dataset had 34 years of monthly 

values per each element per one station, with a total of three stations.  

Human migration: For this study, migration referred as imported dengue cases as 

defined as laboratory-confirmed dengue cases with a migration or travel history from 

dengue endemic countries (Shang et al., 2010). These movements may partially explain 

the risk of introducing the dengue virus in nonendemic zones; human migration and 

travel by those infected with dengue may help drive the expansion of the disease (Murray 

et al., 2013).  

This variable, imported dengue cases, was used as a continuous variable with the 

number or counts of imported dengue cases monthly for 34 years in southeast Florida. 

Data Analysis Plan 

General information. In this study, descriptive statistics, bivariate analysis, and a 

Poisson regression were used in the statistical software IBM SPSS, version 21. A Poisson 

regression applied the dependent variable using the number of autochthonous dengue 

cases per month, as a count variable. All statistical test results were evaluated using an 

overall significance level of p < .05 and 95% confidence interval. 

Temperature and precipitation data were downloaded from NOAA/NCDC in 

Microsoft Excel format, from the land-based stations where the autochthonous dengue 

cases were located. The data from NOAA/NCDC was retrieved clean with no missing 
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values, no repetition, and adjusted by NCDC employees (H. Diamond, personal 

communication, August 29, 2014).  

The imported and autochthonous dengue cases were retrieved from the Florida 

Department of Health or the CDC. The data was screened for completeness, missing data, 

unknown values and duplication. Data analysis was performed to address the research 

questions restated as follows: 

Research questions and hypotheses. The research questions and hypotheses of 

the study were the following: 

Research Question 1: Was there a significant relationship between temperature 

during 34 years in southeast Florida and the geographic expansion of dengue fever within 

the region? 

H0: There was no significant relationship of temperature during 34 years in 

southeast Florida with the geographic expansion of dengue fever within the region. 

H1: There was a significant relationship of temperature during 34 years in 

southeast Florida with the geographic expansion of dengue fever within the region. 

Research Question 2: Was there a significant relationship between precipitation 

during 34 years in southeast Florida and the geographic expansion of dengue fever within 

the region? 

H0: There was no significant relationship between precipitation during 34 years in 

southeast Florida and the geographic expansion of dengue fever within the region. 

H1: There was a significant relationship between precipitation during 34 years in 

southeast Florida and the geographic expansion of dengue fever within the region. 
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Research Question 3: Was there a relationship between human migration from 

dengue endemic areas to nonendemic areas during 34 years and the geographic expansion 

of dengue fever to southeast Florida? 

H0: There was no relationship between human migration from dengue endemic 

areas to nonendemic areas during 34 years and the geographic expansion of dengue fever 

to southeast Florida. 

H1: There was a relationship between human migration from dengue endemic 

areas to nonendemic areas during 34 years and the geographic expansion of dengue fever 

to southeast Florida. 
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Table 3 

Variables and Research Questions 

Variable name          Type         Measurement   Research question 

Temperature  Independent     Continuous    RQ1: Was there a significant relationship  

                                                                                                       between temperature during 34         

                                                                                                       years in southeast Florida and the  

                                                                                                       geographic expansion of dengue fever  

                                                                                                       within the region?  

 

Precipitation      Independent     Continuous                               RQ2: Was there a significant relationship 

                                                                                                       between precipitation during 34  

                                                                                                       years in southeast Florida and the  

                                                                                                       geographic expansion of dengue fever  

                                                                                                       within the region? 

 

Migration              Independent--------Continuous------                RQ3: Was there a significant relationship 

                                                                                                       between human migration from dengue 

                                                                                                       endemic areas to nonendemic areas  

                                                                                                       during 34 years and geographic  

                                                                                                       expansion of dengue fever to southeast  

                                                                                                       Florida? 

______________________________________________________________________________________ 

 

Descriptive analysis. Descriptive statistics were used to organize and 

summarized the data in a meaningful and effective manner (Frankfort-Nachmias, & 

Nachmias, 2008). Measures of central tendency and dispersion for each continuous 

variable included mode, median, and mean to determine the distribution of the 

observations (Frankfort-Nachmias, & Nachmias, 2008). Measures of dispersion included 

range, variance, and standard deviation. 

Bivariate analysis. Several correlation test analyses were performed between the 

independent and dependent variables to examine the magnitude of the relationship. Wang 

(2005) performed bivariate correlation between dengue outbreaks (dependent variable) in 

Puerto Rico and each of the climate factors studied were temperature, precipitation, sea 

surface temperature, and relative humidity. The author found positive correlations 
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between sea surface temperature and dengue outbreaks on the endemic island. A Pearson 

correlation was conducted for each climate factor and imported dengue cases against 

autochthonous dengue cases. 

Pearson correlation. Pearson correlation was a parametric measure used to 

measure the strength and direction of linear relationship between two continuous 

variables (Kent State, 2015). The measure produces a sample correlation coefficient, r, 

and can range from -1, indicating a perfect negative linear relationship, and 1, indicating 

a perfect positive linear relationship. An “r” of 0 will indicate no relationship between the 

two continuous variables (Kent State, 2015). 

For Pearson’s correlation, the data should meet the following assumptions: the 

two variables should be continuous, the relationship needs to be linear, there should be no 

significant outliers, there should be no relationship between the variables, and the 

variables should be approximately normally distributed (Laerd Statistics, 2013).  

To verify if there was a linear relationship between the variables, a scatterplot was plotted 

to visually examine for linearity. Pearson’s r was sensitive to outliers; using SPSS, a 

criteria was included to detect the outliers. To detect bivariate normality, a Shapiro-Wilk 

test of normality was conducted using SPSS (Laerd Statistics, 2013). The Spearman rank 

correlation, a nonparametric alternative, was used because the assumptions of Pearson’s 

correlation were not met. 

Multivariate analysis. The multivariate analyses performed were the Poisson 

regression analysis and, in case of overdispersion, the negative binomial regression.  
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Poisson regression analysis. Poisson regression was a parametric test that was 

useful when counting a number the occurrences of an event over time, area, distance, or 

any type of measurement (UMass, 2013). This test was useful when the events were 

independent, this means that one event neither deceases nor increases the chances of 

another event. The average probability of the event for the period was known so it was 

possible to calculate how many events have occurred in a given time frame (UMass, 

2013). 

The Poisson regression analysis was used when the count of occurrences were 

rare events. For example, in this study the rare events were the number of autochthonous 

dengue fever cases in a nonendemic region. Sang et al. (2014) conducted a time-series 

Poisson regression analysis to quantify the relationship among imported dengue fever 

cases, mosquito density, and weather variables to local dengue transmission in 

nonendemic Guangzhou, China. The authors found that imported cases, mosquito 

density, and weather variables play a critical role in the local transmission of dengue.  

Naish et al. (2014) conducted a systematic review focusing on quantitative 

methods for assessing the potential impacts of climate changes on dengue transmission. 

The authors found that several researchers used the Poisson regression for multivariate 

statistical analysis (Chen, Lin, Wu, Wu, Lung, & Su, 2012; Earnest, Tan, & Wilder-

Smith, 2012; Pinto et al., 2011). Chen et al. (2012) utilized the Poisson regression to 

examine the relationship between extreme precipitation (heavy, torrential, extreme 

torrential) and the number of reported cases of eight different climate related diseases, 

including dengue fever. The authors found a statistical significance between extreme 
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precipitation (heavy and torrential) and dengue fever cases (p < 0.0001) in endemic 

Taiwan.  

Earnest et al. (2012) used a Poisson regression model to determine the 

relationship among temperature, relative humidity, rainfall, and dengue activity, 

accounting for the variability of long term climate (El Nino Southern Oscillation Index) 

in endemic Singapore. The authors found interaction effects between climatic variables 

and dengue outbreaks. Periods when El Nino was present did not control the association 

between climatic variables and dengue fever warnings. Pinto et al. (2011) conducted the 

Poisson regression, utilizing the number of dengue cases as the outcome variable and 

rainfall, relative humidity, and temperature as predictor variables. Pinto et al. (2011) 

found a positive correlation between dengue cases and temperature in dengue endemic 

Singapore.  

The authors suggested that Wilder-Smith et al. (2011) used a different statistical 

model than Poisson regression to determine that no significant association was found 

between temperatures and dengue cases. Pinto et al. (2011) argued that a different 

statistical model was used, and not the multivariate model as the Poisson regression 

model, therefore a different result was obtain in the Wilder-Smith study. 

 This statistical analysis assumed the data followed a Poisson distribution. The 

Poisson distribution has several assumptions. The first assumption was that the 

distribution was skewed; traditional regression assumes a symmetrical distribution of 

errors. The second assumption was that the distribution was nonnegative, in contrast with 

other regression that can produce negative values. The third assumption was the variance 
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increases as the mean increases in contrast with other traditional regressions which 

assume a constant variance (Nussbaum, Elsadat, & Khago, 2007). 

The Poisson distribution specified the mean incidence rate of a rare events per 

unit of exposure. The unit of exposure may be time, space, distance, or population size 

(Stat Trek, 2015). When the probability of developing a rare disease (dengue fever in 

southeast Florida) might be low (one in a thousand) and the population quite large, the 

number of people who contract the disease per year (or some other period or space) might 

be described by the Poisson distribution (Nussbaum et al., 2007). 

The distribution was skewed because for several years the dengue cases were zero 

and began to appear later, so the distribution was skewed to the right, and it was 

nonnegative because counts cannot be less than zero and we cannot have 1.5 dengue 

cases. A variable with a skewed distribution can reduce statistical power, compared with 

normally distributed variables, skew can increase standard errors, making it harder to 

achieve statistical significance (Nussbaum et al. 2007). 

The Poisson regression was used to analyze the relationship among the counts or 

rates of autochthonous dengue fever cases, the counts of imported cases, and the 

quantitative data of each climatic variables per month. An assumptions of the Poisson 

model was the equality of the mean and variance function; if the variance exceeds its 

mean, the data may be overdispersed (Rodriguez, 2013). Overdispersion was observed in 

the data, therefore an alternative approach was used in count data known as the negative 

binomial regression. According to Rodriguez (2013), the approach was to start from the 
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Poisson regression and add a multiplicative random effect Ɵ to represent unobserved 

heterogeneity, thus leading to the negative binomial regression model.  

Threats to Validity 

Internal validity of the study refers to the capacity of the design to test the 

hypothesis it was designed to test (Crosby et al., 2006). The threats to internal validity 

jeopardize confidence in interpreting that an association exists between the outcome and 

predictor variables.  

This particular study used secondary data collected by two or three government 

agencies, FDH, CDC, and NOAA/NCDC, therefore some threats to internal validity such 

as maturation, history, attrition, and regression to the mean were not present (Peterson, 

Baker & McGaw, 2010). Selection bias was more likely to occur in case-control and 

retrospective cohort studies (Aschengrau & Seage, 2008).  

Therefore, because this study was an ecological design where the climatological 

variables, imported dengue cases and expansion of dengue fever were compared; 

selection bias will be unlikely to occur. Repeating testing, diffusion, and experimenter 

bias were threats to internal validity that uses subjects and control groups. Because the 

study did not include selective subjects or control groups these were not threats to this 

particular study (Peterson et al., 2010).  

The factual validity threats to the study were instrumentation and temporal 

ambiguity. Temporal ambiguity was formally defined as the inability of the researcher 

(based on the data) to specify if the independent variable really came before the 

dependent variable (Johnson, n.d.). In correlational studies, demonstrating that the cause 
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precedes the effect can be a problem (Long & Hart, n.d.). Two strategies to control the 

threat of temporal ambiguity was to understand the variables of the study and to inspect 

the temporal precedence of data periods (Bergh, Hanke, Balkundi, Brown, & Chen, 

2004). Temporal ambiguity arises when study designs consist of data collected at the 

same exact time (Bergh et al., 2004); however this particular study had reviewed data 

during 34 years to verify if the disease (autochthonous) was not present before the 

climatic changes and migration of imported cases. 

Instrumentation threat was caused by inconsistencies with the testing instrument, 

interviewer, grader, or the test (Bergh et al., 2004). In this particular study, the researcher 

did not control instruments measuring the variables, however verification of the 

reliability of the measurements or reports explained the validity of the instruments.  

External validity threats emerge when researchers describe incorrect inferences 

from a sample population to other populations, times or settings (Creswell, 2009). One 

way to improve external validity was to learn about the procedures used by the people 

who collected the data to assess the generalizability of the results (Smith et al., 2011). 

According to Zinser (2010), NOAA has established procedures to improve the data 

collection by implementing quality control steps and algorithms and having these 

documents peer reviewed. Several experts were contacted to state their professional 

views about the dataset and their opinion about the dataset was excellent. However, the 

experts also agreed that a modernized climate reporting system will terminate the need 

for data modification (Zinser, 2010). 
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The implemented algorithms corrected several concerns from the NCDC 

scientists, such as time of observation issues, documented and undocumented station 

changes, urbanization issues, and missing data (Zinser, 2010). According to NOAA 

(n.d.), the modifications to the historical and current data allows customers to compare 

data for any given period in a land station’s record without external influences, such as 

undocumented station location moves, biasing results.  

Zinser (2010) explained that, before publishing the adjusted dataset, some 

measure of quality control were included such as several steps of quality assurance; daily 

datasets were converted to monthly datasets and another round of quality checks were 

performed. Once all the reviews were in place, the data adjustments from the algorithms 

were applied, resulting in the new reviewed dataset version. NCDC scientists compared 

both versions for the same time period and the results found the old version and the 

adjusted version were similar (Zinser, 2010). According to the procedures followed by 

NOAA/NCDC to ensure a quality dataset for its clients, the results were a high-value 

dataset which can assess the generalizability of the results. 

The dengue cases dataset was obtained from the Florida Department of Health 

(FDH) or the CDC. Because dengue was a notifiable disease, the cases from Florida were 

collected and compiled to the National Notifiable Diseases Surveillance System 

(NNDSS) operated by the CDC (CDC, 2014b). Healthcare providers, laboratories, and 

other designated staff were required to report these diseases by legislation or regulation 

(CDC, 2014b). 
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In Florida, collecting disease data follow the same format with specific 

information for some diseases. For example, autochthonous dengue fever has to be 

reported immediately to authorities. The form that health practitioners fill for the 

notifiable diseases consists of straightforward, standard demographic fields not open to a 

range of interpretations. 

However, Smith (2011) suggested that available measures may not capture 

exactly what the researcher was trying to determine. The “existing dataset are often good 

enough to answer the research question with proper interpretation to account for what the 

measures actually assesses and how they differ from the underlying constructs” (p 927). 

Other threats that must be addressed include the statistical conclusion validity. 

This threat arises when the researcher reach inaccurate inferences from the data because 

of inadequate statistical power or from not observing statistical assumptions (Creswell, 

2009). To follow the statistical assumptions, normality was checked before conducting 

the parametric test, if normality was not met, several alternative statistical testing were 

used. One alternative was either to transform some of the results using SPSS or use 

nonparametric tests. 

Statistical power was calculated using several scenarios with the Minitab software 

(table 2). Finally, ecological study design has limitations. Ecological study designs can 

only find relationships between variables; the study’s result was reported as associations 

using the appropriate statistical analysis. Causation was not reported as a result of the 

study. 
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Ethical Procedures 

The finalized research study was submitted for revision and approval of the 

Institutional Review Board (IRB) of Walden University, approval number for the study 

was 5-29-15-0183973. 

 An advantage of most secondary studies using public access datasets was the 

short time to IRB approval (Smith et al., 2011). Many public access large datasets 

contained unidentified information and were eligible for expedited review or exempt 

status. If the researcher can obtain the dataset from the web, it was probably exempt. The 

IRB made this determination (Smith et al., 2011). NOAA’s NCDC provides services and 

data to the public, government agencies, and researchers. 

 A request for the dengue cases (autochthonous and imported) was submitted to 

the Florida Health Department. After approval, signing a Data User Agreement should 

have proceeded, which may include the following: (a) not use or disclose information 

other than the one permitted by the agreement, (b) use of appropriate safety measures that 

will prevent the disclosure of information, (c) no data sharing, and (d) no attempt to 

identify the individuals (CDC, 2011). According to the HIPAA privacy rule, the data 

provided has to be de-identified data and the data must be stored in a personal computer 

with a password protection. The data must be destroyed upon completion of the 

dissertation. However, after a conference call with the vector-borne diseases surveillance 

coordinators, it was concluded that the data needed was found in the Florida Department 

of Health website, which was a website with public access.  
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Summary 

The study was a retrospective ecological design research which was useful for 

establishing a correlation among climatic variables, social variable, and the expansion of 

dengue fever in a nonendemic area. The region of study was southeast Florida which 

includes the counties of Palm Beach, Martin, St. Lucie, and Indian River. The dependent 

variable was the expansion of the dengue fever in the nonendemic area, defined as the 

appearance of locally-acquired dengue cases in areas where it was previously absent. The 

independent variables were temperature, precipitation, and migration (imported dengue 

cases). 

After receiving the approval of the IRB, the data for the study were downloaded 

from the NCDC and the Florida Health Department websites. The period extended from 

1980 to 2013, a time range of 34 years. IBM SPSS Statistics version 21 was used to 

conduct statistical analyses. Chapter 4 includes information related to the data collection 

procedures and results of the study. Descriptive analysis incorporated measures of central 

tendency and dispersion for continuous variable, bivariate analysis and because counts or 

rates were used, the multivariate analysis was the Poisson regression or the negative 

binomial regression. The findings were reported using the appropriate probability values 

and confidence intervals. The chapter concludes with a summary of the answer to the 

research questions.  
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Chapter 4: Results 

Introduction 

The purpose of this quantitative ecological study was to identify a relationship 

between climatic variables and human migration/imported dengue cases with the 

geographic expansion of dengue fever in nonendemic Southeast Florida. The research 

questions and hypothesis of the study were as follows: 

Research Question 1: Was there a significant relationship between temperatures 

during 34 years in Southeast Florida and the geographic expansion of dengue fever 

within the region? 

H0: There was no significant relationship of temperature during 34 years in 

Southeast Florida and the geographic expansion of dengue fever within the region. 

H1: There was a significant relationship in temperature during 34 years in 

Southeast Florida and the geographic expansion of dengue fever within the region. 

Research Question 2: Was there a significant relationship between precipitation 

during 34 years in Southeast Florida and the geographic expansion of dengue fever 

within the region? 

H0: There was no significant relationship between precipitation during 34 years in 

Southeast Florida and the geographic expansion of dengue fever within the region. 

H1: There was a significant relationship between precipitation during 34 years in 

Southeast Florida and the geographic expansion of dengue fever within the region. 
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Research Question 3: Was there a relationship between human migration from 

dengue endemic areas to nonendemic areas during 34 years and the geographic expansion 

of dengue fever to Southeast Florida? 

H0: There was no relationship between human migration from dengue endemic 

areas to nonendemic areas during 34 years and the geographic expansion of dengue fever 

to Southeast Florida. 

H1: There was a relationship between human migration from dengue endemic 

areas to nonendemic areas during 34 years and the geographic expansion of dengue fever 

to Southeast Florida. 

Information of the data collection process and the results of the study are 

presented in this chapter. The chapter includes descriptive analyses of the variables, 

evaluation of the assumptions of the statistical testing, and the findings of the bivariate 

analysis. For the bivariate analysis, the assumptions for the Pearson correlation were 

tested for the parametric analysis. If the assumptions were not fulfilled, the Spearman 

rank correlation was used for the nonparametric analysis. The findings are reported using 

the appropriate probability values and confidence intervals. The findings of the 

multivariate testing, the negative binomial regression analysis, are included. The chapter 

ends with a summary of the findings of the study.  

Data Collection 

After obtaining Walden’s IRB approval number 5-29-15-0183973, data on dengue 

cases were extracted from a public assess website of the Florida Department of Health. 

These data consisted of the imported and autochthonous dengue cases in the State of 
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Florida for specific counties or regions. The data also included some of the years when 

imported dengue cases began to emerge (1997 to 2013) and years when autochthonous 

dengue cases began to emerge (2009 to 2013). The rest of the information in the dataset 

consisted of the county where the autochthonous dengue cases originated and some of the 

counties where the imported dengue cases originated. All the dengue cases (imported and 

autochthonous) had been diagnosed by a physician with laboratory confirmation. 

The dataset on temperature and precipitation was obtained directly through the 

NCDC website. However, the dataset obtained from the Florida Department of Health 

was needed to localize the appropriate land-based stations. The chosen land-based station 

data included the climatic variables of temperature and precipitation, with a data set of 

more than 30 years and in the counties where the autochthonous dengue cases originated. 

A total of four counties and one region were selected: Monroe County, Miami-Dade 

County, Broward County, Palm Beach County, and Treasure Coast Region. The NCDC 

provided a mechanism to search for the land-based station that fulfilled the requirements 

described above.  

After finding the land-based station that fulfilled the requirements, data on 

temperature and precipitation for 34 years and the data on the dengue cases of the 

targeted counties were imported to IBM SPSS version 21. The NCDC took steps to clean 

the data before releasing the data to me. In total, four counties and one region were 

included; each county had one land-based station, and the Treasure Coast region 

consisted of three small counties with one land-based station. The counties and the land-

based stations were the following: Broward County (Fort Lauderdale GHCND: 
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USC00083163); Miami-Dade County (Miami International Airport GHCND: 

USW00012839); Treasure Coast Region, which includes Martin County, St. Lucie 

County, and Indian River County (Stuart GHCND: USC00088620); Palm Beach County 

(West Palm Beach International Airport GHCND: USW00012844); and Monroe County 

(Key West International Airport GHCND: USW00012836). A land-based station for the 

county of Monroe, even though this county was located in the southwest region of 

Florida, was included because that was where the first autochthonous dengue cases were 

diagnosed in 2009 after more than 75 years of no local dengue cases. 

The climatic variables extracted from the dataset of each land-based station 

included 34 years of temperature, which included the following variables: extreme 

minimum temperature (EMNT), extreme maximum temperature (EMXT), monthly mean 

minimal temperature (MMNT), monthly mean maximum temperature (MMXT), and 

monthly mean temperature (MNTM). The variable used to analyze the data was the 

MNTM (monthly mean temperature) because the mean was calculated using all the 

temperatures of the month. The rest of the variables were a repetition of the same 

temperature for every month. The precipitation dataset came with two variables: extreme 

maximum precipitation (EMXP) and total precipitation (TPCP). The variable used was 

total precipitation because it included the sum of the precipitation that occurred during 

the month. 

The dataset from NCDC was joined with the data of the dengue cases extracted 

from the website of the Florida Health Department. The dengue cases only included the 

laboratory diagnosed dengue cases, autochthonous and imported, from each of the 
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targeted counties. Detailed information was obtained from the years 2009 to 2013; before 

these years, data on imported dengue cases only came as yearly cases per county, and for 

some years, no data were found.  

The population of each target county was collected directly through the Census 

Bureau website; the dataset consisted of the population numbers from the period from 

1980 to 2013 for each of the regions. The data included numbers for the foreign-born 

population of the counties, including the numbers of Hispanics and Asians in the targeted 

regions. All of the data were extracted from public assess websites.  

An offset variable was computed using the total number of years in which the 

imported and autochthonous dengue cases occurred (17 years) and multiplying these by 

the population of the counties throughout the 34 years. Temperature, precipitation, 

autochthonous dengue cases, and imported dengue cases were continuous variables. The 

variables of temperature and precipitation were adjusted using IBM SPSS version 21 to 

show the measure of the units correctly.  

Population of Selected Counties of Southeast Florida 

The areas targeted in this study were Monroe County (Key West, southwest 

Florida), Miami-Dade County, Broward County, Palm Beach County, and the Treasure 

Coast region; these counties and region are located in the southeastern tip of Florida 

(Figure 9). The population of the targeted counties and of the Treasure Coast region, 

which includes Martin County, St. Lucie, and Indian River Counties, increased and 

changed during the 34 years examined (Table 4).  
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Figure 9. Florida counties. Retrieved from www.rillmzks.tk/florida-county-map/ 

 

Table 4 

Population Increase of Southeast Florida 

________________________________________________________________________ 

County   1980  1990  2000  2010        2013 

Broward  1018257 1255488 1631445 1753578    1838844 

Miami-Dade  1625509 1937194 2262902 2505379    2617176 

Treasure Coast 211092 342412 435247 563350      580089 

Monroe  63188  78024  79721  73269      76351 
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The population of Broward County increased 80% during the 34 years examined, 

while Miami-Dade County increased 61%, Palm Beach County increased 58%, the 

Treasure Coast region increased 174%, and Monroe County increased 21%. One reason 

for the increase in population for these counties was migration, and a portion of migration 

consisted of foreign-born immigrants (Table 5). 

Table 5 

Foreign-Born Percentage from Total Population per County 

________________________________________________________________________ 

 

County   1990 (%) 2000 (%) 2009 to 2013 (%) 

Broward  15.8   25.3  31.5 

Miami-Dade  45  50  51.3 

Treasure Coast 6  8.6  17 

Palm Beach  12  17  22.6 

Monroe  10  15  23 

 

The category foreign-born immigrants includes people from all over the world, 

not only dengue endemic regions, but also nonendemic dengue regions. However, a high 

percentage of the foreign-born immigrants came from dengue endemic Latin America 

and Asia. For example, Miami-Dade County has the highest percentage of Latin 

American immigrants; in 2013, the size of this population was 2,617,176 (Table 4), with 

over 50% of foreign-born Latin Americans immigrating to this county (Table 6). 
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Table 6 

Foreign-Born Latin American and Asian Population 

________________________________________________________________________ 

County   2010   2011   2012    2013 

Broward  485,807  488,582  497,492     500,612 

Miami-Dade  1,263,139  1,261,832  1,268,187   1,342,492 

Palm Beach  248,355  237,893  255,863     272,121 

 

These numbers indicate a rapid increase of migrants whose origins were dengue 

endemic countries and U.S. territories (Puerto Rico). These immigrants may carry the 

dengue virus to nonendemic regions such as Florida. Additionally, there is a risk of 

infection among U.S. residents traveling to dengue endemic areas and returning with the 

virus to their homes. All of these cases were classified as imported dengue cases. 

Imported dengue cases have been diagnosed in Florida since 1997; these are individuals 

with a recent history of travel from dengue endemic countries. Several studies have 

linked autochthonous dengue outbreaks with introduction of the dengue virus from the 

imported dengue cases (Huang et al., 2013; Sang et al., 2014). Figure 10 shows the 

increase in population in all targeted counties and regions. 
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Figure 10. Mean of population over time. 
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Aedes aegypti Distribution 

According to the CDC (2015), the approximate distribution of A. aegypti was 

concentrated mostly in the southern counties of the state of Florida and other southern 

U.S. states (Figure 10). 

 

Figure 11. Approximate distribution of Aedes aegypti mosquito for the United States. 

Retrieved from “Chikungunya: Information for Vector Control Programs,” by Centers for 

Disease Control and Prevention, 2015, retrieved from http://www.cdc.gov/chikungunya 

/pdfs/CHIKV_vectorControl.pdf 

 

However, the distribution of the mosquito was developed using current available 

information, and it may not be consistently found in all shaded areas (CDC, 2015). In the 

State of Florida, finding the actual mosquito population is more difficult because the traps 
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that many of the counties use (light traps) do not really target A. aegypti or A. albopictus 

(Eisen & Moore, 2013). 

Results 

This section contains the findings of the study, starting with the descriptive 

statistics and followed by the correlation results for the each of the research questions. 

The multivariate analysis of the negative binomial regression during 34 and 13 years is 

included. 

Descriptive Analyses 

In the year 2009, the first autochthonous dengue cases (locally acquired) were 

diagnosed in Key West, Florida. After those cases, more autochthonous dengue cases 

were diagnosed and these cases were found in counties east and north east from Key 

West such as Broward County and Martin County (Figure 9). These events indicated a 

possible geographic expansion of dengue fever. In total, 113 autochthonous dengue cases 

were found in the five selected counties or regions from 2009 to 2013. The mean of the 

autochthonous dengue cases was .06 with a mode of 0, and a median of 0. More 

autochthonous dengue cases were found in other counties, however these counties were 

not targeted in this study. In those five years a total of 362 imported dengue cases were 

diagnosed in these five counties. The mean of the imported dengue cases was .18 with a 

mode of 0, and a median of 0.  

The total precipitation variable represented the sum of the precipitation during 

each month during 34 years for each of the five counties. The mean for total precipitation 

was 122.95 mm, the mode was 22.60 mm, and the median was 97.40 mm. The 
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temperature variable used was the monthly mean temperature (MNTM). The mean was 

24.58 °C, the mode was 28.4 °C, and the median was 25.10 °C.  

For all the variables, the minimum and maximum number was included, to 

examine any number that were unrealistic. For example, the maximum temperature for all 

the five counties was 30.80 °C, however this number represented the mean per month for 

35 years. There may have been temperatures higher than 30.80 °C but the number that 

was used to calculate was the monthly mean (Table 7). Figures 12 to 16 are plots for each 

variable (MNTM, total precipitation, imported dengue cases, autochthonous dengue 

cases, and yearly rate of autochthonous dengue cases) over time. These plots show the 

trend of each variable over time. 

Table 7 

Descriptive Statistics of Variables and Yearly Rate (Autochthonous) 

 

 Autochtonousdeng

uecases 

Importdenguecases Total precipitation Monthly mean 

temperature 

Yearlyrate 

N 
Valid 2020 2020 2020 2020 2020 

Missing 0 0 0 0 0 

M .06 .18 122.9551 24.5884 .0564 

Mdn .00 .00 97.4000 25.1000 .0000 

Mode 0 0 22.60a 28.40 .00 

SD .700 1.016 102.08416 3.47936 .83887 

Variance .491 1.033 10421.177 12.106 .704 

Skewness 17.128 8.882 1.361 -.453 19.497 

Std. error of skewness .054 .054 .054 .054 .054 

Kurtosis 333.827 102.230 2.521 -.735 437.303 

Std. error of kurtosis .109 .109 .109 .109 .109 

Range 17 17 746.80 18.40 23.20 

Min 0 0 .00 12.40 .00 

Max 17 17 746.80 30.80 23.20 

Sum 113 362 248,369.40 49,668.50 113.96 
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Figure 12. Mean of temperature over time. 
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Figure 13. Mean of total precipitation over time. 
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Figure 14. Mean of imported dengue cases over time. 
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Figure 15. Mean of autochthonous dengue cases over time. 
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Figure 16. Mean of yearly rate of autochthonous dengue cases over time. 
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Research Question 1 

Was there a significant relationship between temperature during 34 years in 

southeast Florida and the geographic expansion of dengue fever within the region? 

Pearson’s correlation. The first step was to test for the assumptions to assure that 

the data could be analyzed using the Pearson’s correlation. The variables were 

continuous, and a scatterplot was made to visualized linearity. The scatterplot showed a 

positive association for cases when autochthonous dengue fever increased as the 

temperature increased, the scatterplot also showed all the zeros as a line across the graph.  

To use the Pearson correlation, another assumption needed to be fulfilled, to 

determine if the data was normally distributed. This assumption was verified using the 

Shapiro-Wilk for normality test (Table 8). The histograms were included to visualize 

normality for the dependent variable (autochthonous dengue cases; Figure 17) and the 

independent variable (monthly mean temperature; Figure 18).  

Table 8 

Shapiro Wilk Results for Monthly Mean Temperature and Dependent Variable 

 Kolmogorov-Smirnova    Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

autochthonousdenguecases .518 2020 .000 .054 2020 .000 

Temperature (mean monthly, 

MNTM) 
.109 2020 .000 .949 2020 .000 

aLilliefors significance correction. 
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Figure 17. Histogram of autochthonous dengue cases. 

 

 

 

 

 



114 

 

 

Figure 18. Histogram of monthly mean temperature. 

For both variables, autochthonous dengue cases and monthly mean temperature, 

the results were statistically significant, p = .000. These results indicated that the data was 

not normally distributed, for this reason a Spearman rank correlation coefficient was 

more appropriate for the data.  

The Spearman’s correlation was used to determine the relationship between 

monthly mean temperature and autochthonous dengue cases. Table 11 shows the results 

of the Spearman’s correlation. There was a statistically significant association between 
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the independent variable (monthly mean temperature) and the dependent variable 

(autochthonous dengue cases), with a weak correlation, rs = .099. 

Research Question 2 

Was there a significant relationship between precipitation during 34 years in 

southeast Florida and the geographic expansion of dengue fever in the region? 

Pearson’s correlation. The first step was to test for the assumption to assure that 

the data could be analyzed using the Pearson’s correlation. The variables were 

continuous, and a scatterplot was made to visualize for linearity. The scatterplot showed 

no linear relationship between the independent variable (monthly total precipitation) and 

the dependent variable (autochthonous dengue cases). 

A Shapiro Wilks test was run to determine normality (Table 9) and a histogram 

was included to visualize normality for total precipitation (Figure 19). 

Table 9 

Shapiro Wilk Results for Total Precipitation and Dependent Variable 

 Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

autochthonous 

denguecases 
.518 2020 .000 .054 2020 .000 

Total precipitation .114 2020 .000 .890 2020 .000 
aLilliefors significance correction. 
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Figure 19. Histogram of total precipitation. 

The results of the Shapiro Wilk test indicated that the data was not normally 

distributed; for this reason, a Spearman correlation test was run to determine correlation. 

Table 11 shows the results of the Spearman correlation between the independent variable 

(monthly total precipitation) and the dependent variable (autochthonous dengue cases),  

p = .306 with rs = .023. These results indicate no correlation between precipitation and 

autochthonous dengue cases. 



117 

 

Research Question 3 

Was there a relationship between human migration from dengue endemic areas to 

nonendemic areas during 34 years and the geographic expansion of dengue fever to 

southeast Florida? 

Pearson correlation. The first step was to test for the assumptions to assure that 

the data could be analyzed using the Pearson’s correlation. The variables were 

continuous, and a scatterplot was made to visualized linearity. The scatterplot showed no 

linear relationship between the independent variable (imported dengue cases) and the 

dependent variable (autochthonous dengue cases). In addition a Shapiro Wilk test was 

run to determine normality (Table 12) and a histogram was included to visualize 

normality for imported dengue cases (Figure 20). 

Table 10 

 Shapiro Wilk Results for Imported Dengue Cases and Dependent Variable 

 Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

autochthonous 

denguecases 
.518 2020 .000 .054 2020 .000 

importdenguecases .514 2020 .000 .173 2020 .000 
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Figure 20. Histogram for imported dengue cases. 

The results of the Shapiro Wilk test indicate that the data was not normally 

distributed, because the assumptions were not met to run a Pearson correlation, a 

Spearman correlation was ran to determine correlation. Table 11 shows the results of the 

Spearman correlation test. There was a statistical significant relationship between the 

independent variable (imported dengue cases) and the dependent variable (autochthonous 

dengue cases) p = .000, with a weak correlation, rs =.162. 
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Table 11 

Spearman Correlation Results  

 
 

Autoch 

dengue 

cases 

Monthly 

mean 

temperature 

Total 

precipitation 

Import 

denguecases 

Spearman's rs 

Autochthonous 

denguecases 

Correlation 

coefficient 
1.000 .099** .023 .162** 

Sig. (2-tailed) . .000 .306 .000 

N 2020 2020 2020 2020 

Monthly mean temperature 

Correlation 

coefficient 
.099** 1.000 .487** .061** 

Sig. (2-tailed) .000 . .000 .006 

N 2020 2020 2020 2020 

Total precipitation 

Correlation 

coefficient 
.023 .487** 1.000 .068** 

Sig. (2-tailed) .306 .000 . .002 

N 2020 2020 2020 2020 

importdenguecases 

Correlation 

coefficient 
.162** .061** .068** 1.000 

Sig. (2-tailed) .000 .006 .002 . 

N 2020 2020 2020 2020 

**Correlation is significant at the 0.01 level (2-tailed). 

 

Multivariate Analysis 

Poisson regression was used to predict which independent variables (imported 

dengue cases, total precipitation, and temperature) had statistically significant effects on 

the dependent variable (autochthonous dengue incidence). To analyze the data using the 

Poisson regression, the data needed to fulfilled several assumptions. The descriptive 

statistics of the data indicated the variance of the dependent variable was greater than the 

means of this variable. This indicated an overdispersion, which violated one of the 
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assumptions of the Poisson distribution. Because this assumption was not fulfilled, a 

negative binomial regression analysis was performed for a better fit of the data to the 

model. 

The data of the imported dengue cases and the autochthonous dengue cases were 

inconsistently reported in the FDOH website. This resulted in an inability to determine 

the exact month for when some imported dengue cases were diagnosed. For some 

imported dengue cases, the data were reported as yearly totals and for other cases some 

were reported as monthly totals. Due to the limitations of the data, an offset variable was 

added to adjust for the different periods. The offset variable was computed as the follows: 

Ln (population x the years of counted dengue cases (imported and autochthonous). The 

offset variable was named Ln_peryacquiredimported. 

A negative binomial regression test was performed for 34 years of observations to 

determine the effects of the independent variables (temperature, total precipitation, and 

imported dengue cases) on the dependent variable (autochthonous dengue incidence). 

Each variable had 2,020 valid observations (N = 2,020). 

Table 12 shows the results of the negative binomial regression test which included 

the coefficients for each predictor variable including standard error. One of the 

independent variables or predictors, imported dengue cases, was not statistically 

significant, p = .429, therefore, we failed to reject the null hypothesis. 

The other two independent variables, temperature (MNTM), and total 

precipitation, were statistically significant for predicting autochthonous dengue 

incidence. Temperature (e.g., MNTM) had a p value of .000, 95% C.I. [1.903, 2.538]; 
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and precipitation (totalprecipitation) had a p value of .000, 95% C.I. [.988, .994]; for 

these two predictors we rejected the null hypothesis 

Table 12 

Results of Negative Binomial Regression for 34 years 
 
Parameter B SE 95% Wald 

confidence interval 

_________________ 

Hypothesis test 
 

 

__________________________ 

Exp(B) 95% Wald confidence 
interval for Exp(B) 

________________________ 

Lower Upper Wald chi-square df Sig. Lower Upper 

(Intercept) 
-

39.242 
2.0174 -43.196 -35.288 378.353 1 .000 

1.000E-

013 
1.000E-013 1.005E-013 

Importdenguec .050 .0636 -.074 .175 .626 1 .429 1.052 .928 1.191 

Totalprecip -.009 .0014 -.012 -.006 41.218 1 .000 .991 .988 .994 

Monthly mean 

temperature 
.787 .0735 .643 .931 114.777 1 .000 2.198 1.903 2.538 

(Scale) 1a 
         

(Negative 

binomial) 
1a 

         

Note. Dependent variable: autochthonousdenguecases. Model: (Intercept), 

importdenguecases, totalprecip, MNTM, offset = Ln_peryacquiredimported. 
aFixed at the displayed value. 

 

The results of this analysis indicated that there was an inverse or negative 

relationship between precipitation (totalprecip) and the outcome variable (autochthonous 

dengue incidence). For each 1 unit (mm) increase in precipitation, the rate of the 

autochthonous dengue incidence decreased by .9%. However, there was a positive 

relationship between temperature (MNTM) and the outcome variable (autochthonous 

dengue incidence). For each 1 unit (°C) increase in temperature, the rate of the outcome 

variable increased by 120%. 
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A negative binomial regression was performed for the last 10 years of observation 

to determine the effects of the independent variables (temperature, precipitation, and 

imported dengue cases) for the dependent variable (autochthonous dengue cases). Each 

variable had 773 valid observations (N = 773).  

Table 13 shows the results of the negative binomial test which included the 

coefficients for each predictor variables along with their standard errors. One of the 

independent variables or predictors, imported dengue cases, was not statistically 

significant, p = .249, therefore, we failed to reject the null hypothesis. The other two 

independent variables, temperature (MNTM), and total precipitation, were statistically 

significant for predicting autochthonous dengue incidence. Temperature (e.g., MNTM) 

had a p value of .000, 95% C.I. [1.158, 1.503]; and precipitation (totalprecipitation) had a 

p value of .000, 95% C.I. [.991, .999]; for these two predictors we rejected the null 

hypothesis. 
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Table 13 

Results of the Negative Binomial Regression for 10 years 
 

 
Parameter B SE 95% Wald confidence 

interval 

Hypothesis test Exp(B) 95% Wald confidence 

interval for Exp(B) 

Lower Upper Wald chi-
square 

df Sig. Lower Upper 

(Intercept) -26.432 1.6842 -29.733 -23.131 246.308 1 .000 
3.417E-

012 

2.222E-

013 
9.011E-011 

Importdenguecas

es 
.074 .0641 -.052 .200 1.331 1 .249 1.077 .950 1.221 

Totalprecip -.005 .0020 -.009 -.001 6.664 1 .010 .995 .991 .999 

 MNTM  .277 .0665 .147 .407 17.344 1 .000 1.319 1.158 1.503 

(Scale) 1a 
         

(Negative 

binomial) 
1a 

         

Note. Dependent variable: autochtonousdenguecases. Model: (Intercept), 

importdenguecases, totalprecip, MNTM, yearlyrate, offset = Ln_peryacquiredimported. 
aFixed at the displayed value. 

 

The results of this analysis indicated that there was an inverse or negative 

relationship between precipitation (totalprecip) and the outcome variable (autochthonous 

dengue incidence). For each 1 unit (mm) increase in precipitation, the rate of the 

autochthonous dengue incidence decreased by .5%. However, there was a positive 

relationship between temperature (MNTM) and the outcome variable (autochthonous 

dengue incidence). For each 1 unit (°C) increase in temperature, the rate of the outcome 

variable increased by 32%. 

Summary 

In Chapter 4, the analysis of the research questions were tested through bivariate 

analysis and multivariate analysis. The bivariate analysis tested the relationship between 
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each independent variable against the dependent variable. The negative binomial 

regression tested the effect of the predictors against the dependent variable to describe the 

relationship between statistically significant predictors and autochthonous dengue 

incidence.  

The results provided in Chapter 4 answered the research questions; there was 

relationships among the temperature, precipitation, and autochthonous dengue incidence 

in the counties under study. The first research question was if there were significant 

relationship between temperature in the past 34 years in southeast Florida and the 

geographic expansion of dengue fever (e.g., autochthonous dengue cases) in the region. 

According to the bivariate analyses, Spearman correlation, there was a weak relationship 

between temperature and geographic expansion of dengue fever (e.g., autochthonous 

dengue cases), thus rejecting the null hypothesis.  

The second research question was if there was a significant relationship between 

precipitation in the last 34 years in southeast Florida and the geographic expansion of 

dengue fever in the region (e.g., autochthonous dengue cases). According to the bivariate 

analyses, Spearman correlation, there was no relationship between precipitation and the 

geographic expansion of dengue fever (e.g., autochthonous dengue cases), thus accepting 

the null hypothesis.  

The third research question was if there was a significant relationship between 

imported dengue cases in the last 34 years in southeast Florida and the geographic 

expansion of dengue fever in the region. According to the bivariate analyses, Spearman 

correlation, there was a weak relationship between imported dengue cases and the 
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geographic expansion of dengue fever (e.g., autochthonous dengue incidence), thus 

rejecting the null hypothesis.  

The multivariate analysis, negative binomial regression, included the effects of 

the covariates temperature, precipitation, and imported dengue fever cases on the 

dependent variable. The variables that contributed significantly in predicting dengue 

incidence rates were temperature and precipitation. The variable that was not statistically 

significant in predicting the dengue incidence rates was imported dengue cases.  

These findings were interpreted in Chapter 5 by comparing them with the findings 

in the literature. Included in Chapter 5 were the limitations of the study, the 

recommendations for future studies, and the implications for positive social change. A 

conclusion is included at the end of the chapter.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

Introduction 

The purpose of this ecological retrospective quantitative study was to identify a 

relationship among climatic variables, human migration/imported dengue cases, and the 

geographic expansion of dengue to nonendemic South Florida. The dependent variable of 

the study was the geographic expansion of dengue fever to nonendemic South Florida. 

The dependent variable was defined as the appearance of autochthonous dengue fever 

cases (locally acquired) in areas where it was previously absent. The independent 

variables were two climatic variables, temperature and precipitation, and a social context 

variable, migration (e.g., imported dengue cases). The dependent variable was coded as a 

continuous variable, specifically as a rate; the independent variables were also continuous 

variables.  

This study was conducted to address the lack of studies regarding the relationship 

among climatic variables, imported dengue cases, and the expansion of dengue fever to 

South Florida, which was a nonendemic dengue fever region.  

Interpretation of the Findings 

To the best of my knowledge, this is the first study that has incorporated 

temperature, precipitation, and imported dengue cases to find an association with the 

expansion of dengue fever in a nonendemic region in the United States. The results 

showed that temperature and precipitation could be used to predict dengue incidence rates 

(autochthonous dengue incidence) in Southeast Florida. The results also showed that 

there could be a geographic expansion of dengue fever in this region of Florida.  
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The independent variables have opposite effects on the outcome variable. The 

independent variable, temperature, showed a positive association with dengue incidence 

rates. Temperature was positively correlated with dengue incidence rates in the bivariate 

analysis as well as the regression analysis. This variable could serve as a predictor for 

dengue incidence rates in Southeast Florida. Temperature has been found to influence 

dengue fever incidence rates in several endemic regions of the world, such as Puerto Rico 

(Johansson, Dominici, & Glass, 2009), Thailand (Johansson, Cummings, & Glass, 2009), 

and Singapore (Pinto et al., 2011). Sang et al. (2014) found a positive association 

between temperature and autochthonous dengue cases in the nonendemic region of 

Guangzhou, China. Huang et al. (2013) found the same association in a similar study in 

Cairns, Australia. The authors mentioned suggested that temperature was the main 

determinant for dengue fever transmission and for the positive influence on the life cycle 

of A. aegypti. Increasing temperature reduces the time of the extrinsic incubation period, 

the gonotrophic cycle, and the mosquito lifecycle (Hii, 2013) and increases the mosquito 

population (Yang et al., 2009).  

According to the descriptive statistics, the minimum (mean) was 23 °C, and the 

maximum (mean) temperature was 30.80 °C. This range fell within the optimal ranges for 

the faster development of the mosquito lifecycle (Hii, 2013), for the faster development 

of the larva and pupa (Yang et al., 2009), for the quick transition of the pupa to adult 

(Yang et al., 2009), and for the highest survival rate of the adult mosquito (Colon-

Gonzalez et al., 2013). In addition, the replication and the transmission of the virus are 

temperature dependent (Adelman et al., 2013). According to Campbell et al. (2013), no 
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dengue cases were found at a mean temperature of 21 °C, and no virus was found in the 

salivary glands of A. aegypti at a temperature of 20 °C. The temperatures of below 14.5 

°C and over 21 °C may represent a weather barrier for the sustainability of dengue 

transmission (Campbell et al., 2013). These extreme temperatures were not observed in 

the data of monthly mean temperature for the length of the study. The results indicated a 

favorable temperature for the proliferation of the adult mosquito as well as the faster 

development of the pupa and for the replication and transmission of the dengue fever 

virus. 

The independent variable, precipitation, has a negative association with 

autochthonous dengue incidence rates. The results indicated that increased precipitation 

decreased autochthonous dengue incidence rates. Precipitation was needed to increase the 

number of larval breeding places. Several studies indicated that increased precipitation 

increased breeding sites, increased the mosquito population, and enhanced the risk of 

dengue fever transmission (Sang et al., 2014). However, other studies reported a negative 

association of precipitation and local dengue incidence, suggesting that an increased 

amount of rainfall affected the larva and the eggs because they were washed away 

(Huang et al., 2013).  

Some studies have discarded the influence of precipitation and local dengue 

incidence because of lack of statistically significant correlation between these two 

variables (Pinto et al., 2011). Precipitation was a predictor for local dengue incidence but 

in an amount that could create breeding grounds without disturbance. An increase of 

rainfall will affect breeding grounds and wash away the larva and eggs, decreasing local 
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dengue incidence. Huang et al. (2013) found that 27 mm of rainfall was an important 

threshold for determining the incidence of local dengue fever. Huang et al. also found 

that rainfall was an important limiting factor mostly in Australia. Local dengue fever 

cases were restricted if rainfall was below a required amount in tropical regions. 

According to the 34 years of data analyzed for Southeast Florida, this threshold (27 mm) 

was reached 87% of the time throughout the counties. However, according to Hii (2013), 

only 21 mm were necessary to create a breeding site for the Aedes eggs to develop, and 

this threshold was reached 90% of the time within 34 years. These results suggest that 

there was enough precipitation for the development of the eggs in Southeast Florida for 

the study period.  

The independent variable, imported dengue cases, had no association with 

autochthonous dengue incidence. The results indicated that this variable was not a 

predictor for local dengue case incidence. Shang et al. (2010) found no significant long-

term effect of the imported dengue cases on local dengue incidence. Shang et al. 

suggested that the imported dengue cases may be the initial facilitator for local dengue 

case outbreaks in regions with low immunity; however, the relationship disappeared once 

the outbreak reached a threshold. Sang et al. (2014) found the same relationship in his 

study in nonendemic Guangzhou, China. The author found an association of local dengue 

cases with imported cases until a certain time frame within favorable weather conditions. 

Huang et al. (2013) found a strong influence of imported dengue cases with local dengue 

cases incidence, but also under favorable weather conditions.  
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The findings indicated that for an onset of dengue epidemic, the imported dengue 

cases had a significant quantitative relationship; the results of the bivariate analysis 

indicated a weak but positive relationship. Once the virus was in the vector ecology, the 

main determinants for spread and more local dengue cases were favorable weather 

conditions—in this study, temperature and precipitation.  

Eco-bio-social research on dengue was the conceptual framework for the 

dissertation. As described in Chapter 2, the eco-bio-social model focuses on finding the 

determinants influencing the ecology of the dengue vector (Arunachalam et al., 2010). 

The framework includes a broad spectrum of factors that influence the A. aegypti 

mosquito. Ecological, biological, and social variables are interdependent factors for 

dengue vector development with a direct and complex impact on prevention and control 

measurements (Quintero et al., 2014). The framework has portions that were used in the 

study: ecological factors included temperature and rainfall; biological factors included 

behavior of the mosquito and transmission of the virus; and social factors included the 

migration of imported dengue cases. The broad conceptual framework guided the study 

of the factors and the complexities influencing the vector ecology and viral transmission 

of dengue fever.  

Limitations of Study 

There were limitations to the study regarding the use of a secondary dataset from 

the Florida Health Department, lack of data, and the study design. One of the limitations 

was the reliability and completeness of secondary data from the Florida Department of 

Health. Dengue fever was considered a neglected tropical disease not seen in Florida 
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since 1934. The first patients with dengue began to be diagnosed in 1997, and these were 

imported dengue cases. Throughout the years, more imported dengue cases were 

diagnosed, but the data found were yearly, with no monthly cases reported. Not until the 

outbreak on Key West in 2009, when autochthonous dengue cases were first diagnosed, 

did the data begin to be reported on a monthly basis and with more detail.  

The second limitation of the study was the lack of data concerning the population 

of the mosquitos responsible of transmitting dengue fever, and several other infectious 

viral diseases. According to Eisen and Moore (2013) the A. aegypti mosquito required a 

unique collection methodology. Current efforts were more focused on mosquitos such as 

Culex (West Nile virus vector), using light traps that did not yield useful surveillance 

data for the Aedes mosquito. The lack of Aedes sp. population data prevented the 

determination of the changes in population throughout the 34 years and impeded 

correlating this variable with the climatic variables of temperature and precipitation.  

The third limitation was the possibility of under-reporting or overreporting of 

dengue fever in a region where the health providers were not familiar with this 

uncommon disease. Under-reporting can be likely if infected people did not seek medical 

attention because of subclinical symptoms of dengue fever. Another limitation could 

have been misclassification of dengue cases for other infectious diseases. These 

limitations were not under the control of the researcher.  

The fourth limitation was other potential confounders such as mosquito 

population and other social factors affecting the assessment of the association among 

incidence of autochthonous dengue cases, climatic variables, and imported dengue cases. 
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However, past studies have found that temperature and precipitation can be predictors for 

autochthonous dengue fever cases. This study examined the relationship between these 

climatic variables and accounted for imported dengue fever cases and excess zeros.  

Although there were benefits to the correlation and regression studies, such as 

convenience and low-cost, there were limitations of the study’s design. The inherent 

weakness of the ecological design was the difficulty to detect complicated exposure-

outcome relationships, so causation cannot be established. To address this limitation in 

this study, the results were reported as associations, not causations. In addition, the use of 

the appropriate statistical analyses helped address this limitation.  

Recommendations 

The results of this study contributed to the limited body of knowledge regarding 

autochthonous dengue fever cases, climatic variables, and imported dengue cases in 

nonendemic southeast Florida. However, there are opportunities for further research in 

this area. 

 More studies are needed to understand the factors influencing the mosquito and 

the dengue virus in the specific region of Southeast Florida. The regions that will benefit 

in future research are not only the vulnerable regions of Florida, but also Texas and 

Hawaii, which have had past outbreaks of dengue fever (Adalja et al., 2012). Utilizing the 

eco-bio-social research on dengue framework, which covers a broader spectrum of 

factors on the ecology of the mosquito and dengue transmission, will help researchers 

create a specific picture in the different vulnerable regions.  
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It is necessary to gather data on the population of the Aedes mosquito. This data 

could help to assess the changes in the population of this vector and be used to assess its 

relationship to the incidence and prevalence of dengue fever. Studies have found that the 

Aedes sp. was a highly adaptable vector for diverse ecological conditions (Bonizzoni et 

al., 2012). The A. aegypti mosquito was not only the vector of dengue fever virus, but 

also the vector of yellow fever virus and chikungunya virus (CDC, 2012). Leaving this 

vector unchecked will place multiple communities at risk. 

An open communication between public health agencies, clinical and laboratory 

personnel, immediately as imported or autochthonous dengue fever are diagnosed, will 

help provide accurate and efficient information. This will provide an early opportunity 

for the community shareholders to be involved in vector control, dengue fever 

identification, and accurate reporting. 

Implications 

The findings of this study have the potential to trigger more studies in vulnerable 

regions of the United States and to encourage research on neglected diseases such as 

dengue fever in Florida, Texas, and Hawaii. This study has provided a better 

understanding of the influence of changing climatic weather on vector-borne infectious 

diseases in nonendemic regions. The implications for positive social changes include the 

use of these results by public health agencies and environmental agencies to formulate 

evidence-based decisions regarding resource allocations for prevention and mitigation of 

dengue fever outbreaks and possible geographic expansion of dengue fever 
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 Another implication for social change is to update the actual knowledge about 

dengue fever in vulnerable regions. The knowledge of the risk factors associated with 

autochthonous dengue fever can promote future public health actions. There is limited 

data on the population of the Aedes mosquito which will be needed for more studies that 

will required this type of data to analyze the changes and behavior of the mosquito 

population in an evolving environment. 

 Another implication for social change is the possible open communication 

between public health agencies and clinical and laboratory facilities which can promote 

early identification of dengue cases for a better management from the health care 

providers and from the public health agencies. An important implication for social 

change is the development of strategies to inform, educate, and empower the community 

about the prevention and elimination of breeding sites and about the signs and symptoms 

of dengue fever in nonendemic regions such as Southeast Florida.  

Since this study may be the first to research dengue fever and some of its risks 

factors in Florida, there may be other factors that can be contributing to the geographic 

expansion of dengue fever in the region. The final implication for social change is the 

promotion of more research regarding the social determinants and how they influence 

autochthonous dengue fever incidence.  

Conclusions 

To the best of my knowledge, this study is the first to correlate and regress the 

relationship between autochthonous dengue incidence with climatic variables and 

imported dengue incidence in nonendemic Southeast Florida. The results of this study 



135 

 

suggest that temperature and precipitation are the principal predictors of the geographic 

expansion of dengue fever in Southeast Florida (e.g., autochthonous dengue incidence). 

The increase of temperature, along with an appropriate amount of precipitation may 

influence the geographic expansion of dengue fever in Florida.  

The data has shown a movement of autochthonous dengue fever incidence from 

Monroe County (southwest Florida) to Miami-Dade County (southeast Florida) to 

Broward County (north of Miami-Dade County) to Palm Beach County (north of 

Broward County) to the Treasure Coast Region (Figure 9). This suggests that a change in 

temperature and adequate precipitation in those counties may have favored the 

proliferation of the A. aegypti mosquito and the rapid replication and transmission of the 

dengue fever virus, hence the appearance of autochthonous dengue fever cases.  

Even though imported dengue fever incidence is not a predictor for autochthonous 

dengue fever cases; the high migration of people from dengue endemic regions to 

Southeast Florida suggests that the virus may have entered the mosquito ecology through 

migration. According to Shang et al. (2014) imported dengue fever cases facilitated the 

initial outbreaks of autochthonous dengue fever outbreaks; however, this influence 

disappeared once the outbreak reached a threshold. These outbreaks only occurred under 

favorable climatic conditions of temperature and precipitation.  

Some studies found precipitation as an important determinant for autochthonous 

dengue incidence (Johansson et al., 2009, Huang et al., 2013). In this study, the 

conclusion is that with high precipitation, the larva, pupa, and eggs will be washed away 
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and the dengue incidence will decrease, the same result was found by Sang et al. (2014) 

and Shang et al. (2013).  

The results of a negative association between precipitation and autochthonous 

dengue incidence and a reverse relationship in other studies may seem inconsistent; 

however, we must take in consideration the amount of precipitation and general climate 

of the region that was being studied. The diversity of the climates and also the habits of 

the population makes it necessary to study each region because of its uniqueness.  

There is a tremendous potential for the geographic expansion of the A. aegypti 

mosquito in areas where the climatic conditions are favorable, including regions of the 

United States. Dengue fever should not be considered a neglected disease anymore, 

especially when the highly adaptable Aedes mosquito has demonstrated resiliency and 

had reclaimed territory where it was considered eradicated.  
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