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Abstract 

Ovarian cancer is the deadliest gynecological malignancy affecting women. Diagnosis 

often occurs late due to non-specific symptoms, but if detected early, there is excellent 

chance for survival. One of the most important risk factors is family history. Up to 24% 

of cases are due to inherited loss-of-function mutations in genes involved in the DNA 

damage response. The theory underlying hereditary cancers is Knudson’s two-hit theory 

of cancer causation, where two hits are necessary for cancer to occur in an individual: one 

in the germline and one in the tissue. The genes, CHEK1 and CHEK2, are modulators of 

the DNA damage response, and could be susceptible to a first hit. There is little to no 

evidence about whether loss-of-function mutations in either of these two genes can lead 

to ovarian cancer. Using a cohort of 587 ovarian cancer cases and 557 controls, this study 

sought to determine if CHEK1 and CHEK2 are associated with ovarian cancer. Applying 

Fisher’s exact test to compare mutation rates and the t test to compare age at time of 

diagnosis, the alternative hypothesis about an association between disease and mutations 

in CHEK1 and CHEK2 was rejected, but an association between younger age at diagnosis 

in cases and mutations in either gene was confirmed. The association between age and 

mutations in either of these genes suggests that there is some influence of age on disease, 

but a clear association between development of disease and mutations cannot yet be 

established. This research has implications for social change: By recognizing the need to 

test earlier in women with mutations in CHEK1 and/or CHEK2, they will have a higher 

chance of survival and better health outcomes, not only for ovarian cancer but for related 

cancers as well.   
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Chapter 1: Introduction to the Study  

Introduction 

Inherited mutations are a strong causative component for ovarian cancer, one of 

the deadliest cancers affecting women. Genes such as BRCA1 (BRreast CAncer), BRCA2, 

and other genes involved in DNA repair have been associated with increasing ovarian 

cancer risk (Pennington & Swisher, 2012). Two genes that are involved in the DNA 

repair response are the genes CHEK1 and CHEK2. It is unclear whether these genes 

could be associated with increased risk for ovarian cancer. This study aimed to 

understand whether there is a possible association between mutations in these genes and 

ovarian cancer susceptibility. If these two genes are identified as such, then they can be 

included in the genetic testing panels to determine risk of disease in women with known 

family history of ovarian carcinoma. If women know they are at risk, they can pursue 

prophylactic strategies, as well as improved surveillance techniques, to either prevent 

cancer or identify cancer early. Improving cancer survival rates is a positive social 

change that in turn leads to prevention and improved surveillance.  

The current chapter provides  background for the current study, information on 

why this study was pursued, and  the questions this study sought to answer. It also gives 

an introduction to the conceptual framework of the study and presents the limitations, 

assumptions, scope and delimitations, and significance of the study. 

Background of the Study 

The term ovarian cancer refers to tumors in ovaries, fallopian tubes, and/or 

peritoneum (Chen & Berek, 2015). It is the deadliest gynecological cancer that affects 
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women; it represents 3% of cancers that occur in women; and  ranks as the ninth most 

common cancer overall (Surveillance, Epidemiology and End Results, 2012). Five-year 

survival rates are low (46%) compared to breast cancer (89%) and cervical cancer (70%), 

as reported by Weissman, Weiss, and Newlin (2012). Survival rate is highly dependent 

on the stage of the cancer at diagnosis. Early diagnosis corresponds with better outcomes. 

Yet only 15% of ovarian cancers are diagnosed early because the disease tends to present 

with non specific and non gynecological symptoms at later stages of the disease (Goff, 

Mandel, Muntz, & Melancon, 2000; Weissman et al., 2012).  

 One of the most important risk factors for ovarian cancer is family history 

(Pennington & Swisher, 2012). Hereditary ovarian cancer is due to inherited mutations in 

different genes and accounts for 25% of newly diagnosed cases (Pennington & Swisher, 

2012). The most common causes of inherited ovarian cancers are loss-of-function 

germline mutations in BRCA1 and BRCA2 (BReast CAncer), which account for 48% and 

27% of cases, respectively. However, at least 25% of hereditary ovarian cancer cases are 

due to mutations in other genes (Pennington & Swisher, 2012).  

  In the early 1990s, researchers identified the genes BRCA1 and BRCA2 as 

genetic elements that are responsible for inherited breast and ovarian cancer (Check, 

2006). This led breast cancer researchers to acknowledge that complex traits and diseases 

can be linked to mutations in certain genes. Genetic mutations are not just confined to 

diseases that are of Mendelian inheritance, such as cystic fibrosis or Huntington’s disease 

(Check, 2006). Genetic testing for mutations in these two genes has been performed since 

the mid-90s. Women found to have mutations in BRCA1 and BRCA2 have an increased 
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lifetime risk of breast and ovarian cancer and may elect to undergo preventative measures 

to avoid disease. Not only were women who had mutations in BRCA1 and BRCA2 found 

to have an increased risk of disease (Check, 2006), but they were also more likely to 

develop disease earlier than women without mutations in these genes (Malone et al., 

2006).  This suggests that age of diagnosis could also be correlated with mutations in 

these susceptibility genes.  

Other genes found in a DNA repair pathway, named the Fanconi Anemia-BRCA 

pathway (FA-BRCA), have been associated with hereditary ovarian cancer (Pennington 

& Swisher, 2012). The FA-BRCA DNA repair pathway is involved in the repair of DNA 

by homologous recombination (HR, Pennington & Swisher, 2012). PALB2, RAD51C, 

and RAD51D are genes that function in the FA-BRCA DNA pathway along with BRCA1 

and BRCA2. Mutations in the afore mentioned genes have been correlated with ovarian 

cancer cases (Casadei et al., 2011; Loveday et al., 2011; Vaz et al., 2010). With the 

advent of new, highly efficient techniques for sequencing, such as targeted capture and 

massively parallel sequencing, gene mutations can be investigated for correlation with 

ovarian cancer and other diseases. These techniques also may identify previously 

unknown genes that could impact disease (Walsh et al., 2011).  

Walsh et al. (2011) performed a study using a massively parallel sequencing 

approach (called BROCA) to sequence 21 tumor-suppressor genes on DNA from ovarian 

cancer patients (Walsh et al., 2011). They found mutations in 12 genes, including BRCA1 

and BRCA2, and new candidate genes such as BARD1, BRIP1, and CHEK2, all of which 

had been suspected of conferring risk for ovarian cancer (Pennington & Swisher, 2012). 
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In addition, Walsh et al. (2011) found that the average age in mutation carriers was lower 

than in non-carriers. Inherited mutations are present in a larger number of genes than 

previously thought, so identifying candidate genes involved in inherited ovarian cancer is 

important (Walsh et al., 2011). CHEK1 and CHEK2 are appropriate genes to investigate 

given the known involvement of other FA pathway genes in ovarian cancer (Chen & 

Sanchez, 2004; Cybulski et al., 2004; Shaag et al., 2005). They are both part of the FA-

BRCA DNA repair pathway and important effectors of the DNA damage response. 

Identifying new candidate genes and including these genes in genetic testing can improve 

the outcomes for women with a family history of ovarian and breast cancer. There is 

support in the literature for including these variables in this study, which is discussed 

further in Chapter 2. 

Problem Statement 

Ovarian cancer is among the top five causes of cancer death in American women 

(SEER, 2012). Survival rates for ovarian cancer patients are low since most women are 

diagnosed with advanced stages of the disease (Pennington & Swisher, 2012). When 

detected early, there is an excellent chance for cure, but current methods of early 

detection are largely ineffective. One of the most important risk factors for the 

development of ovarian cancer is family history. Inherited mutations in genes (such as 

BRCA1, BRCA2, PALB2, BARD1, and RAD51C) involved in DNA repair by HR 

(Pennington & Swisher, 2012) may contribute to the risk of a woman’s chance of 

developing the disease. Genetic testing for mutations in these genes has been helpful in 

identifying potential mutation carriers. Many women with a family history of the disease 
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and with loss of function mutations, especially in BRCA1 and BRCA2, have undergone 

prophylactic salpingo oophorectomies, which in turn have led to reduced incidence of 

disease and mortality (Pennington & Swisher, 2012).  

Yet there are many women with family history of ovarian cancer but no loss of 

function mutations in the known genes. This suggests that there may be other genes that 

can harbor inherited mutations and lead to susceptibility to ovarian cancer. Two genes 

that have been largely overlooked to date are CHEK2 and CHEK1. Both genes encode for 

serine/threonine kinases and are important regulators of the cell cycle and mediators of 

the DNA damage response (Shaag et al., 2005). Mutations in CHEK2 have previously 

been associated with breast cancer and other types of cancer, such as prostate, lung, and 

thyroid (Cybulski et al., 2004). Mutations within these genes can lead to truncated 

proteins and promote errors in DNA repair. Since both CHEK1 and CHEK2 are important 

players in the DNA damage response and are putative tumor suppressor genes, it is 

important to determine whether they are likely candidates for mutations in ovarian cancer 

patients. To date, only one publication has reported a mutation in CHEK1 in an ovarian 

cancer patient (Pennington et al., 2013a), but no other publication has identified CHEK1 

as a candidate gene for ovarian cancer; the research on CHEK2 and ovarian cancer is not 

extensive and has not established a clear association. The literature reviewed in Chapter 2 

demonstrates that these are appropriate candidate genes to study.  

Purpose of the Study 

The purpose of this quantitative study was to use data obtained at the University 

of Washington to compare the rates of mutations in the genes CHEK1 and CHEK2 in 
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ovarian cancer cases and healthy controls. Mutations were ascertained by a next-

generation sequencing approach. Once the mutations were identified in the cohort, I 

determined whether mutations in these genes were correlated with younger age at time of 

diagnosis in the cases. Determining these rates and comparing cases contributes to the 

growing evidence in favor of including CHEK1 and CHEK2 as candidate genes for 

ovarian cancer. The results of this study are expected to allow researchers to investigate 

whether these genes are susceptible to mutations and whether they can be designated as 

ovarian cancer susceptibility genes. 

Research Questions 

 The following four research questions guided this study: 

H1:  Are CHEK2 mutated alleles associated with ovarian cancer? 

H0
1:  There are no CHEK2 mutated alleles associated with ovarian cancer.  

Ha
1:  CHEK2 mutated alleles are associated with ovarian cancer.  

H2:  Are CHEK1 mutated alleles associated with ovarian cancer?  

 H0
2:  There are no CHEK1 mutated alleles associated with ovarian cancer. 

 Ha
2:  CHEK1 mutated alleles are associated with ovarian cancer.  

H3: Are CHEK1 mutated alleles associated with younger age (<60 years of age) at 

diagnosis in ovarian cancer cases? 

 H0
3:  There is no association between younger age at diagnosis and CHEK1 

mutations in ovarian cancer cases. 

 Ha
3:  Mutated alleles in CHEK1 are associated with younger age (<60 years of 

age) at diagnosis in ovarian cancer cases. 
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H4: Are CHEK2 mutated alleles associated with younger age (<60 years of age) at 

diagnosis in ovarian cancer cases? 

 H0
4:  There is no association between younger age at diagnosis and CHEK2 

mutations in ovarian cancer cases. 

 Ha
4:  Mutated alleles in CHEK2 are associated with younger age (<60 years of 

age) at diagnosis in ovarian cancer cases. 

Conceptual Framework 

 In 1971, during his work on retinoblastoma, Alfred G. Knudson proposed that 

germline mutations can lead to cancer (Knudson, 1971). This theory is referred to as the 

two mutation theory of cancer causation.  Knudson also proposed that all cancers were 

either hereditary or sporadic (Knudson, 1971; Ormiston, 1996). In the case of hereditary 

cancers, a germline mutation occurs pre-fertilization and is replicated in all cells created 

post-fertilization (Ormiston, 1996). Knudson also proposed that, for cancer to occur in 

these individuals, there needs to be another mutation that occurs as an error within one of 

the many mitotic divisions that occur over a lifetime (Ormiston, 1996). He also 

postulated that hereditary cancers occur at a younger age and that there is a higher 

likelihood of recurrence as well as the occurrence of tumors at multiple sites (Knudson, 

2002; Ormiston, 1996). In comparison, sporadic tumors occur much later in life and, 

usually, there is only a single tumor site with very low likelihood of recurrence 

(Knudson, 2002; Ormiston, 1996).  

Individuals with germline mutations in BRCA1 and BRCA2 are diagnosed with 

cancer at a younger age and often have multiple tumor sites (breast, ovaries, fallopian 
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tubes, peritoneum, pancreas, etc.) compared with women who are diagnosed with breast 

cancer due to somatic mutations but not germline mutations (Check, 2006; Ormiston, 

1996). Additionally, in accordance with Knudson’s hypothesis, many tumors from cancer 

patients with inherited breast and ovarian cancer syndrome have been found to have 

mutations in genes such as TP53, a tumor suppressor protein involved in a number of 

cellular processes (Greenblatt, Chappuis, Bond, Hamel, & Foulkes, 2001). Based on this 

evidence, Knudson’s two mutation theory of cancer causation is an appropriate 

framework for this study. 

Definition of Terms 

Mutation or variant: Change in the DNA sequence of a gene, it can range from a 

single base to a large segment of a chromosome (Mutation, 2013). 

Wildtype allele: The natural state of the DNA as it occurs in the majority of the 

population; the opposite of being mutant (Wildtype allele, 2013) 

Susceptibility genes: genes that if they contain mutations can predispose to a 

particular disease such as cancer (Genetic susceptibility, 2015) 

Salpingo-oophorectomy: surgery to remove fallopian tubes and ovaries (Mayo 

Clinic, 2015) 

Debulking sugery: complete or near complete removal of the tumor by surgical 

means (American Cancer Society, 2015a) 

Germline mutation: a mutation that is present in every cell of the body, because it 

originated in a germ cell (Germline mutation, 2015) 
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Loss-of-function mutation: mutation that results in the loss of function of a protein 

(Loss of function, 2015) 

Sequencing: Process by which the order of the nucleotides in a given DNA 

fragment is determined (Sequencing, 2013). 

Sanger Sequencing: Method developed by Fred Sanger to determine the order of 

specific bases in a DNA fragment (Obenrader, n.d.). 

Massive parallel sequencing approach: Also known as next-generation 

sequencing (NGS) is a high throughput approach to DNA sequencing where several 

sequencing reactions are occurring in parallel (Tucker, Marra, & Friedman, 2009). 

Proband: A subject that is enrolled in genetic testing and affected by a condition 

that is being studied. Often the first person tested within a family (Proband, 2015). 

Occult cancer: Cancers that are hidden, and not clinically apparent. Most often 

they are found through serial sectioning of ovaries and fallopian tubes in women who 

underwent risk reducing salpingo-oopherectomy (Brown & Palmer, 2009). 

Limitations 

This study used secondary data (collected by the Swisher laboratory at the 

University of Washington in Seattle), which limited my ability of to control the data 

gathering process (Sorensen, Sabroe, & Olsen, 1996). Therefore, I was not able to 

validate the data to confirm that the mutations were reported accurately nor to confirm 

whether there were errors in the reporting of cancer status or age.  
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Assumptions 

This research was based on five assumptions:  (a) the controls were cancer free at 

the time of blood sample collection; (b) all proper protocols for DNA extraction and 

analysis were performed according to standards set forth by the Clinical Laboratory 

Improvement Amendments (CLIA); (c) measures were taken to prevent contamination 

and mishandling of samples (Centers for Medicaid and Medicare Services, 2014);  (d) 

age was reported accurately at time of sample collection;  (e) CHEK1 and CHEK2 

influence the mechanisms of ovarian cancer development in the same way due to their 

similarity of function within the DNA repair pathway.  

Scope and Delimitations 

This work is part of a genetic association study in which two candidate genes 

were evaluated regarding their association with ovarian cancer. This study was a case-

control study with available sequence data to determine whether the genes CHEK1 and 

CHEK2, which functioned as the variables, harbored mutations more often in cases than 

in controls. Cases were defined as women undergoing primary surgery for ovarian cancer 

at the University of Washington (UW) between 2001 and present. Controls were defined 

as healthy women over the age of 50. The age of the controls was a limitation of the 

dataset given to me. It was assumed that the women treated at the University of 

Washington were  residents of the Pacific Northwest and that they represented the 

population of that area, a population that may differ in race and ethnicity from women 

living in other areas of the country. Information on where the participants lived was not 

available; thus,  I could not ascertain whether they represent only one area of the country. 
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Data to determine CHEK1 and CHEK2 mutation was generated by next-generation 

sequencing and provided in form of an Excel database. Statistical association analysis 

was performed by chi-square (tests or Fisher’s exact tests, as appropriate, to 

determine probability of disease association with mutations (Casadei et al., 2011). 

This study was delimited to determining the type of mutation within each sample 

that showed a mutation in CHEK1 and CHEK2. It did not (a) determine the mutation 

rates in other genes (b) establish how mutations in CHEK1 and CHEK2 may or may not 

contribute to ovarian cancer nor whether mutations in these genes were causative. The 

data were correlated only to the study population . 

Significance of the Study 

The role of genes in addition to BRCA1 and BRCA2 in inherited ovarian cancer 

have been investigated and confirmed, especially for genes involved in DNA repair 

pathways (Pennington & Swisher, 2012; Walsh et al., 2011). Identifying genes in the 

DNA repair pathway that may be susceptible to mutations associated with ovarian cancer 

may help improve prevention and could lead to the development of new therapeutic 

agents. Women at risk for hereditary ovarian cancer who carry mutations in certain genes 

may choose a proactive approach to surveillance and treatment (Weissman et al., 2012). 

Genetic counseling and testing may also include these genes to help improve disease 

prevention, reduce incidence, and increase survival rates.  

The improved medical knowledge from  this research includes identification of 

CHEK1 and CHEK2 as candidates for association with ovarian cancer and their inclusion 

on genetic testing panels for hereditary ovarian cancer. It brings about social change 
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because testing for these genes in addition to BRCA1 and BRCA2 and other genes may 

result in reduced ovarian cancer incidence and increased survival rates. It may also be 

cost-effective,  because prophylactic efforts, such as surveillance and prophylactic 

surgery, incur less cost than current medical treatments and tumor removal and debulking 

surgery (Grann, Panageas, Whang, Antman, & Neugut, 1998). Additionally, genetic 

testing can be expanded to include various family members and improve outcomes within 

that family unit.  

Summary  

One of the most important risk factors for ovarian cancer is family history and 

several genes can acquire mutations that increase an individual’s lifetime risk of disease 

(Check, 2006; Pennington & Swisher, 2012). Many of these genes have been found to be 

important players in the DNA damage response pathway (D’Andrea, 2013). CHEK1 and 

CHEK2 are important mediators for the DNA damage response pathway and, if mutated, 

could contribute to the development of ovarian cancer (Cybulski et al., 2004; Huang et 

al., 2008; Kumar et al., 2013). Little is known about their involvement in ovarian cancer 

risk. Novel sequencing techniques allow researchers to identify mutations in several 

genes in tandem at lower costs and much more quickly, too (Walsh et al., 2011). These 

techniques can provide sequencing information to determine whether CHEK1 and 

CHEK2 can harbor mutations and become ovarian cancer susceptibility genes. This study 

is a case control study that sought to determine whether there is an association between 

mutations in those genes and disease and whether disease occurs earlier if mutations are 

present. 
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Chapter 2 reviews the literature on  ovarian cancer genetics, current knowledge of 

hereditary cancer syndromes, and how mutations in certain genes can lead to an increase 

in cancer risk. Chapter 2 also discusses why CHEK1 and CHEK2 are suitable as potential 

candidates for association with ovarian cancer. Chapter 3 presents the research methods 

and research questions. Chapter 4 provides the results of this study and Chapter 5 

discusses them. It also offers recommendations for future study. 
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Chapter 2: Literature Review 

Introduction 

Ovarian cancer is the deadliest of all gynecological cancers and among the top 

five causes of cancer-related death among American women (Surveillance, Epidemiology 

and End Results, 2013). The strongest risk factor for development of disease is family 

history correlated with the presence of mutations in different genes of the HR DNA repair 

pathway, such as BRCA1 and BRCA2 (Pennington & Swisher, 2012). The purpose of this 

study was to determine whether two genes involved in the HR repair pathway, CHEK1 

and CHEK2, are associated with the development of ovarian cancer and whether they are 

suitable candidates for ovarian cancer susceptibility.  

 In this chapter, the literature on the role of genetics in ovarian cancer, and the 

known ovarian cancer susceptibility genes within the DNA repair pathway was 

reviewed.It provides a basic introduction to the function of CHEK1 and CHEK2, the 

known mutations in these genes, which are linked to different cancers, and the likelihood 

that they could be candidate genes for ovarian cancer susceptibility. 

 To identify peer-reviewed articles, the following databases—PubMed, CINAHL,  

Web of Science, SCOPUS, and Embase—were searched, without regard to year, using 

these keywords: ovarian cancer, ovarian cancer genetics, hereditary breast and ovarian 

cancer syndrome, hereditary cancer syndromes, BRCA1, BRCA2, Fanconi Anemia-BRCA 

pathway, massively parallel sequencing, Next-Generation sequencing,  BROCA, two hit 

theory of cancer causation, Knudson’s two hit theory, CHEK1, and CHEK2. The Boolean 

operators, AND and OR, were applied to optimize the results. . No limits other than 
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language—English, Spanish or German—were set on the searches. Abstracts were used 

to judge an article’s relevancy to the research questions.  

Hereditary Ovarian Cancer 

Ovarian cancer is the deadliest of all gynecological cancers and is among the top 

five causes of cancer-related death in American women, with an estimated 14,030 deaths 

in 2013 (National Cancer Institute, 2013). It is the ninth most common occurring cancer 

with an estimated 22,240 new cases in 2013 in the U.S. (NCI, 2013). The survival rates 

for ovarian cancer patients are low since most women present with symptoms at 

advanced stages of the disease (Hunn & Rodriguez, 2012). The overall survival rate for 

all types of ovarian cancer is 44%. When women are diagnosed at stage one of the 

disease, their survival rate is 98%. However, those diagnosed at stage four have a 

survival rate of only 18% (American Cancer Society, 2014). Only 15% of ovarian 

cancers are identified early but when detected early, women have better recovery odds. 

Attempts to improve early detection have been ineffective (Hunn & Rodriguez, 2012). 

Most patients present symptoms late in the disease’s lifecycle and therefore identification 

of molecular biomarkers that appear early in cancer development has been a challenge 

(Hunn & Rodriguez, 2012). In addition, changes in tissue organization are hard to 

determine due to the lack of accessibility to the ovaries (Hunn & Rodriguez, 2012). This 

makes ovarian cancer risk very difficult to identify. Identification is, therefore, highly 

dependent on epidemiological factors.  

 One of the most important risk factors for ovarian cancer is family history. 

According to Jervis et al. (2015) the risk for first degree relatives of ovarian cancer 
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patients is three fold higher than that of women without any known breast or ovarian 

cancer in their families. Initial evidence for a familial link for ovarian cancer was 

provided by case control studies performed in the late 1980s and 1990s. In a case control 

study performed by Koch et al. (1989), there was a higher number of first and second 

degree relatives with ovarian cancer in the families of cases compared to families of 

controls.  

Schildkraut et al. (1989) also investigated the genetic relationship between breast, 

ovarian, and endometrial cancer and found that there was a strong genetic component to 

these cancers. These researchers were part of the Cancer and Steroid Hormone Study 

(CASH) led by the Centers for Disease Control and Prevention (CDC). The study 

included information from multiple centers, and the investigators found elevated relative 

risks for mothers and sisters of ovarian cancer cases (RR = 2.8) as well as for breast 

cancer cases (RR = 1.6) (Schildkraut, Risch, & Thompson, 1989). They also found an 

elevated risk for ovarian and breast cancer among other relatives of cases with these 

cancers (RR = 2.1) (Schildkraut et al., 1989). They applied a multivariate polygenic 

threshold model to establish that there was a strong genetic component of ovarian cancer. 

Estimated hereditability of ovarian cancer was approximately 40% and 56% for breast 

cancer (Schildkraut et al., 1989). With these results, the researchers established the first 

link between ovarian cancer as a possible hereditary syndrome. 

Using the same data from the CASH study, Claus et al. (1993) determined that 

there was an increased lifetime risk (13–31%) for a woman to develop breast cancer 

when a first or second degree relative had ovarian cancer, suggesting a genetic link not 
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only for ovarian cancer itself but also with breast cancer. The likelihood of developing 

one of these cancers within a family with a member suffering from either breast or 

ovarian cancer is quite high (Claus, Risch, & Thompson, 1993). These studies therefore 

support the notion that ovarian cancer is part of a number of cancers that can be dubbed 

“hereditary cancer syndromes,” where mutations in specific genes are passed on from one 

family member to another and can lead to cancer. 

Hereditary Cancer Syndromes 

Approximately 5-10% of all cancers are due to hereditary cancer syndromes, 

where individuals in the family may pass on mutations in specific genes (Banks, Moline, 

Marvin, Newlin, & Vogel, 2013). One important example for inherited cancer syndrome 

is hereditary breast and ovarian cancer due to mutations in the BRCA1 and BRCA2 genes 

(Banks et al., 2013; Garber & Offit, 2005). Men and women with inherited mutations in 

either of these genes have increased risks of ovarian and breast cancer; the estimated risk 

for breast cancer and mutations in BRCA1 is between 50% to 80% and in BRCA2 is 

between 40% and 70%, while the lifetime risk for ovarian cancer with BRCA1 mutations 

is about 40%. With mutations in BRCA2 it is about 20% (Garber & Offit, 2005). 

Mutations in BRCA2 can also lead to higher incidences of prostate cancer, pancreatic 

cancer, and melanoma (Garber & Offit, 2005). These genes are not the only ones that 

contribute to a hereditary cancer syndrome. 

 Just like the BRCA genes have an influence on developing hereditary breast and 

ovarian cancer, other genes can be involved in predisposition to cancer syndromes. One 

such syndrome, hereditary non-polyposis colorectal cancer (HNPCC) or Lynch 
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syndrome, also increases the lifetime risk of ovarian and other cancers (Hunn & 

Rodriguez, 2012; Pennington & Swisher, 2012). Lynch syndrome is an autosomal 

dominant disorder, which can increase the risk of developing colon cancer, endometrial 

cancer, gastric cancer, skin, and nervous system cancers (Hunn & Rodriguez, 2012; 

Pennington & Swisher, 2012). In women it most often increases the risk of ovarian 

cancer by 12% and patients are usually diagnosed at an early age (Pennington & Swisher, 

2012). According to Watson et al. (2001), the mean age of 80 cases with HNPCC that 

developed ovarian cancer was 42 years of age and, interestingly, they are more often of 

epithelial histology, quite different from those found in BRCA1/2 mutation carriers. The 

genes that are affected in people with Lynch syndrome are MLH1, MSH2, MSH6, PMS2 

and EPCAM. The first four genes are involved in the mismatch repair system, which is 

tasked with repairing errors that occur during DNA replication (Pennington & Swisher, 

2012). About 70% of families with Lynch syndrome have mutations in MSH2 or MLH1, 

with the rest of families having mutations in PMS2 or MSH6 (Pennington & Swisher, 

2012). This syndrome is an example of the important role DNA repair mechanisms can 

have on predisposing to cancer. 

 There are a number of other hereditary cancer syndromes that feature mutations in 

different genes. Families with these syndromes can benefit from genetic screening to 

identify their risk of cancer, and physicians can be aided by genetic screening to help 

them diagnose these syndromes. Examples of such hereditary cancer syndromes include 

Cowden syndrome, Li-Fraumeni syndrome, Ataxia telangiectasia, Puetz-Juergens 

syndrome, and several others. A table of common hereditary cancer syndromes adapted 
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from Garber and Offit (2005), with permission of the American Society of Clinical 

Oncology, License 3673710531158, can be found in Appendix A. Briefly, Cowden 

syndrome can lead to breast cancer, thyroid cancer, and endometrial cancer among others 

and is associated with mutations in the PTEN gene (Garber & Offit, 2005). Li-Fraumeni 

syndrome is associated with soft tissue sarcoma, brain tumors, leukemia, and breast 

cancer. It is most often correlated with mutations in TP53, BRCA2, and CHEK2 (Garber 

& Offit, 2005). Ataxia Telangiectasia is a syndrome that can result in leukemia and 

lymphoma and the gene identified to have mutations in these cases is ATM (Garber & 

Offit, 2005). There are a number of other hereditary cancer syndromes that support the 

framework for this study in that there is a genetic component to cancer.  

Conceptual Framework 

 The first known example of a hereditary cancer syndrome where mutations in a 

gene were correlated with cancer susceptibility was hereditary retinoblastoma. 

Retinoblastoma is a rare pediatric primary malignant tumor of the eye and accounts for 

about 1% of cancers in children (Knudson, 1997). In hereditary retinoblastoma, the 

tumors are usually bilateral and if caught early eyesight can be saved in affected children. 

Knudson (1971), observed that about 40% of cases occurred in younger children who 

often reported a family history of the disease. He suggested that the mutations were to be 

found on a gene now known as RB1, for retinoblastoma (Knudson, 1971). Once the gene 

was cloned, it was identified that people affected with the disease had germline mutations 

in RB1 and many had additional RB1 mutations present in the tumor (Knudson, 1997). 

Many people were tested for the presence of mutations in the RB1 gene and treatment 
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was undertaken so as to preserve vision. His findings on retinoblastoma led him to derive 

the two hit model for cancer causation and presented a paradigm shift in the theory that 

mutations in genes can lead to cancer. 

 The conceptual framework this research is based on is Alfred G. Knudson’s two 

mutation theory of cancer causation, which was developed during his work on 

retinoblastoma (Knudson, 1971). This theory postulates that there are two types of 

cancers, either somatic or hereditary (Knudson, 2002; Ormiston, 1996). In somatic 

cancers, or those that arise spontaneously, the mutations occur later in life after some of 

the many mitotic divisions introduce errors into the genetic material of cells (Ormiston, 

1996). He believed that two mutations would lead to cancer causation and that both 

mutations would be a consequence of errors during cell cycle divisions (Knudson, 1971, 

2002; Ormiston, 1996). In hereditary cancers, one of the mutations occurs at the time of 

fertilization and so every cell in the new fetus will have this mutation. These are referred 

to as germline mutations. Once one mutation is present, it is easy for another one to occur 

somatically during cell division, leading to cancer (Knudson, 1971, 2002; Ormiston, 

1996). The presence of a germline mutation and a somatic mutation represent the two hits 

Knudson refers to in his theory. 

 Most cancers are sporadic and occur due to the influence of environmental factors 

(Ormiston, 1996). But hereditary cancers have become an important factor in current 

cancer syndromes. It is important to identify individuals who may harbor germline 

mutations so that prophylaxis can be implemented for the second mutation to possibly be 

prevented. 
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 The two-mutation theory of cancer causation is a valid conceptual framework for 

this study. Many ovarian cancer cases arise from germline mutations in genes such as 

BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, and so on (Pennington & Swisher, 2012). 

Many of the patients identified with these mutations are diagnosed with ovarian cancer at 

younger ages than their sporadic counterparts and have tumors at different sites 

(Ormiston, 1996). Many women with germline mutations who develop ovarian cancer 

have a high likelihood of developing tumors in breasts, the pancreas, and other sites, or 

develop recurrent tumors (Pennington & Swisher, 2012). Additionally, when analyzing 

the tumors for somatic mutations, many tumors appear to have mutations in other genes 

such as TP53, a tumor suppressor gene (Greenblatt, Chappuis, Bond, Hamel, & Foulkes, 

2001; Pennington et al., 2013b). Many ovarian tumors have mutations in the same gene 

as their germline mutations and they have been found to have loss of heterozygosity 

(LOH) where the wildtype allele is no longer present and only two mutant alleles are left 

(Walsh et al., 2011; Pennington et al., 2013b). This conceptual framework is the basis for 

this search for mutations in CHEK1 and CHEK2 in ovarian cancer cases since possible 

germline mutations in these activators of DNA damage responses could represent the first 

hit of two for cancer causation. 

BRCA1 and BRCA2 

 In the 1990s, two genes were sequenced and identified as breast cancer 

susceptibility genes: BRCA1 in 1990 located on chromosome 17q and BRCA2 in 1994 

located on chromosome 13q (Ormiston, 1996). These two genes were further identified as 

tumor suppressor genes. It was determined that mutations in these genes were responsible 
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for about 5% of all yearly breast cancer cases in the United States and for approximately 

two thirds of breast cancer cases with a family history of the disease (O'Donovan & 

Livingston, 2010; Ormiston, 1996). Additional studies have shown that these genes have 

not only been associated with breast cancer but also ovarian cancer. It is thought that 

women with mutations in these genes have an increased life time risk of acquiring 

ovarian cancer;40% risk for BRCA1 mutation carriers and 20% increased risk for BRCA2 

(Ormiston, 1996).  BRCA1 and BRCA2 are responsible for most of the cases of hereditary 

ovarian carcinoma (Pennington & Swisher, 2012) and according to Jervis et al. (2015), 

current estimates for the burden of BRCA1 and BRCA2 mutations in ovarian cancer 

patients is 27%. 

 In a study by Pal et al. (2005), the authors performed genetic testing on 209 

women with ovarian cancer and found that 32 women (15.3%) had mutations in either 

BRCA1 (20) or BRCA2 (12). Most of the women with BRCA1 or BRCA2 mutations had 

previous family history of ovarian or breast cancer, but a small percentage had no known 

family history, suggesting another mechanism for mutation. 

 Another study by Zhang et al. (2011) showed a relatively high frequency of 

BRCA1 and BRCA2 mutations similar to those found by Pal et al. (2005). The researchers 

screened 1342 women with invasive ovarian cancer for BRCA1 and BRCA2 mutations. 

They found that 176 of the samples had mutations in BRCA1 and BRCA2, with 107 

women harboring mutations in BRCA1, 67 with mutations in BRCA2, and 2 women with 

mutations in both genes (Zhang et al., 2011). The researchers also suggested that different 

populations vary in susceptibility to mutations in these genes, and the proportions of 
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hereditary ovarian cancer depend on the presence of founder mutations in these genes in 

people of a specific ancestry (Zhang et al., 2011). They showed a very high prevalence of 

mutations in these two genes in women of Ashkenazi Jewish descent.  

  The three specific founder mutations in the Ashkenazi Jewish population that are 

associated with breast and ovarian cancer are: BRCA1.187del AG, BRCA1.5382insC, and 

BRCA2.6174delT, and were previously reported by Roa et al. (1996). These studies 

indicate that the prevalence of mutations in these two genes account for a large number of 

ovarian cancer cases and that ancestry is a factor given the hereditary nature of these 

cancers. 

 Additionally, besides elevated risk of disease, there are other characteristics 

within the disease that are affected by mutations in these genes such as survival, 

sensitivity to chemotherapy, and the clinical phenotype of the carcinoma. In a review of 

ovarian tumors from 178 BRCA1 mutation carriers and 29 BRCA2 mutation carriers 

compared to 235 controls, researchers found that the predominant histology for BRCA1/2 

mutation carriers was high grade serous adenocarcinomas, which are most often 

associated with poorer outcomes (Lakhani et al., 2004). They also found higher solid 

components, which is correlated with necrosis, and also strong staining for P53 protein, a 

mediator of apoptosis (Lakhani et al., 2004). Overall they found that these characteristics 

were a hallmark of BRCA1 and BRCA2 mutation carriers and resulted in poorer 

prognoses.  

 On the other hand, despite the poorer prognosis when treated early and identified 

early,  the overall survival of BRCA1/2 mutation carriers is longer than in non-carriers 
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because they have better responses to platinum-based chemotherapy and their tumors are 

more sensitive to poly-ADP-ribose polymerase (PARP) inhibitors (Yang, Khan, Sun, & 

et al., 2011). Yang et al. (2011) found a higher number of cases who had higher 

chemotherapy sensitivity rates (100% for mutation carriers and 80% for wildtype) and 

higher progression-free, 5-year survival rates (61% vs 25%) than wildtype cases (Yang et 

al., 2011). A study by Pennington et al. (2013a) concluded that women with germline 

mutations in BRCA1 and BRCA2 as well as other homologous repair pathway genes had 

improved survival and response to platinum-based chemotherapy. These data show better 

outcomes for mutation carriers. 

 Many BRCA1/2 mutation carriers can undergo risk-reducing salpingo-

oophorectomy (RRSO) which has proven to reduce mortality in high risk women and has 

become the standard of care for women with high risk mutations. A study by Domchek et 

al. (2010), found that in women who underwent RRSO compared to women who did not, 

the all-cause mortality was reduced from 10% to 3%, the breast cancer specific mortality 

was reduced from 6% to 2%, and the ovarian cancer specific mortality was reduced from 

3% to 0.4%. Most recently a study by the Gynecologic Oncology Group (GOG) from a 

trial in which women with BRCA1 and BRCA2 mutations underwent RRSO, found that 

occult cancers were present in 2.6% of high risk women (Sherman et al., 2014). This 

emphasizes the importance of knowing your mutation status to pursue risk reduction 

efforts. These studies, and the contribution of BRCA1 and BRCA2 mutations to ovarian 

cancer, highlight the strong genetic component and familial risk of this disease as well as 

the opportunities that genetic testing may give patients and their families.  
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Age at Diagnosis 

 Researchers have demonstrated that ovarian carcinoma diagnosis in mutation 

carriers occurs at a younger age than those who are not mutation carriers. Pal et al. (2005) 

found that mutation carriers present with disease at a younger age than wildtype cases. 

The findings of Pal et al. (2005) regarding age reiterated the results of a previous study 

by Risch et al. (2001). In that study, researchers studied BRCA1 and BRCA2 mutation 

rates in 515 unselected cases and found a mutation rate of 11.7% (Risch et al., 2001). For 

those women with BRCA1 mutations, 80% were younger than 50 at time of diagnosis 

(Risch et al., 2001). For BRCA2 only, about 40% of the women with mutations were 

younger than 50 at time of diagnosis (Risch et al., 2001). These studies suggest women 

are younger when diagnosed with the disease if they are BRCA1 mutation carriers. 

 Age at diagnosis was also a distinction found when researching specific 

populations such as the Ashkenazi Jewish population. Boyd et al., (2000) reported that 

women of Jewish origin with ovarian cancer who participated in a retrospective cohort 

for BRCA1/2 mutations were significantly younger than women without mutations. The 

authors suggested that age at diagnosis could be a predictor for carrying a mutation in the 

aforementioned genes. 

 More recently Alsop et al. (2012) supported Boyd’s suggestion with their 

population-based study to determine BRCA1/2 mutation frequencies in ovarian carcinoma 

patients. They too found that age of ovarian cancer onset is a strong predictor for carrying 

a BRCA1 or BRCA2 mutation. In this study, 22.2% women who carried a mutation in 

either gene were 50 years or younger, while only 12.1% were older than 50 (Alsop et al., 
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2012). These results add to the evidence that mutation carriers are usually younger when 

they are diagnosed with the disease. 

 These findings not only apply to mutations in BRCA1 and BRCA2. In a very 

recent study by Cunningham et al. (2014), the authors looked at the rate of germline 

mutations, somatic mutations, and methylation status in BRCA1 and RAD51C. 

Hypermethylation of the promoter region genes resulted in abrogation of their expression 

in a similar manner as a loss of function mutation would result in a lack of expression of 

a functional gene. These alterations result in a HR deficient (HRD) phenotype, where the 

DNA repair by HR is defective. Those women who had an HRD phenotype were of 

younger age at time of diagnosis than those without abnormality, demonstrating that 

defects in HR repair can result in disease earlier in life. 

 In addition, women with mutations in mismatch repair genes are generally 

younger when they develop ovarian cancer than women without mutations. Pal et al. 

(2012) presented their population-based study to determine the frequency of mutations in 

mismatch repair genes. Among other findings, they identified a difference in age at 

diagnosis of ovarian cancer in three subsets: women with clearly pathogenic mutations, 

those with mutations that are predicted to be pathogenic, and those with no mutations in 

these genes. The average age of diagnosis of women with pathogenic mutations was of 

47.1 years, the age for those with predicted pathogenic mutations was of 53.2 years, and 

age of diagnosis for those women with no mutations was 56.1 years (Pal et al., 2012). 

Since they identified a range of age at time of diagnosis between 40 and 59 years, they 
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recommended that women with mutations and susceptible to HNPCC associated ovarian 

cancer should undergo prophylactic salpingo oophorectomy prior to the age of 40.  

 Overall, these results show that mutation carriers are more likely to be younger at 

age of diagnosis regardless of what gene and that determining if mutations in CHEK1 and 

CHEK2 are associated with younger age can lead to recommendations for testing at 

earlier ages rather than later ages. 

Fanconi Anemia-BRCA Pathway and Ovarian Cancer 

 Fanconi anemia (FA) is a rare inherited disorder that can lead to bone marrow 

failure, developmental abnormalities, and childhood cancers such as leukemia (D'Andrea 

& Grompe, 2003). It is characterized by increased chromosomal breakage in the presence 

of DNA interstrand crosslinking reagents such as diepoxybutane (DEB) (D'Andrea & 

Grompe, 2003). Research in the field of FA identified 14 genes that may be responsible 

in the inheritance of this disease, and the characteristic of increased chromosomal 

breakage, increased sensitivity to interstrand crosslinking reagents, and susceptibility to 

cancers suggested that the proteins encoded by these genes may be involved in DNA 

repair (Mathew, 2006). Overall, there are 13 genes that have been identified as being part 

of the FA pathway that are involved in the disease; among them is the Breast Cancer 

Susceptibility gene BRCA2 (D'Andrea & Grompe, 2003; Mathew, 2006). In fact, the first 

big correlation between DNA repair and the FA proteins came when the gene known as 

FANCD1 was identified to be identical to the tumor suppressor gene BRCA2 (Howlett et 

al., 2002). Since that study FANCD1 is mostly referred to as BRCA2 and hardly ever as 

FANCD1 (Mathew, 2006). This also led to renaming the pathway from FA pathway to 
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FA-BRCA pathway to emphasize the relationship between Fanconi anemia and breast 

cancer. 

 In 2002, scientists in Dr. D’Andrea’s laboratory were able to show that cells 

derived from patients with two different types of FA groups, FA-B and FA-D1, had 

biallelic mutations in BRCA2, which led to shortened BRCA2 proteins and faulty DNA 

repair as determined by Mytomycin C (MMC) sensitivity (Howlett et al., 2002). They 

complemented the FA-D1 cells with an unmutated copy of BRCA2 and were able to 

restore the wild-type phenotype in those cells (Howlett et al., 2002). Additionally they 

were able to determine that the BRCA2 mutations they found in those cells were present 

in the patients from which the cells originated and also segregated well within the family 

of the patient leading to the conclusion that BRCA2 was responsible for the FA in these 

patients (Howlett et al., 2002). Howlett et al. (2002) therefore established that biallelic 

mutations in BRCA2 cause FA and monoallelic mutations can lead to breast and ovarian 

cancer.  

 Because biallelic mutations had not been found in BRCA1 that would lead to FA, 

it is not considered a FA gene, but it is thought to be a very important player within the 

FA-BRCA pathway (D'Andrea & Grompe, 2003). This pathway is involved in DNA 

repair through HR, one of the main mechanisms to repair double stranded breaks (DSB) 

in DNA with very few errors (D'Andrea & Grompe, 2003; Mathew, 2006). When DNA 

becomes damaged, the proteins ATR and ATM kinases activate the FA core proteins to 

form a complex of 8 proteins which then monoubiquitinates FANCD2 and FANCI 

(D'Andrea & Grompe, 2003; Mathew, 2006). This complex is then recruited to the site of 
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DNA damage and recruits 3 other FA proteins (FANCD1, aka BRCA2, FANCN, and 

FANCJ). These proteins then form a complex with BRCA1 and interact with a number of 

proteins that have been identified as DNA repair associates and repair the damaged DNA 

via HR (Mathew, 2006). In HR, the DNA is repaired by aligning homologous sequences 

of DNA (D'Andrea & Grompe, 2003). The figure in Appendix B shows a schematic of 

the FA-BRCA pathway and the genes associated with this pathway in DNA repair. More 

recently it has been shown that the FA pathway interacts with other DNA repair pathways 

since there is formation of complexes with numerous other proteins such as NBN, BLM, 

and ATR (Thompson, Hinz, Yamada, & Jones, 2005). 

 As mentioned previously, BRCA1 was not considered a FA pathway gene per se, 

since no biallelic mutations in the gene were found in any FA patients. But a recent case 

report by Domcheck et al. (2013), identified a woman with ovarian cancer who had 

biallelic mutations in BRCA1. The mutations were a known deleterious mutation, 

BRCA1.c2457delC, and a variant of unknown significance (VUS), BRCA1.V1736A, 

which the authors suggested to be deleterious (Domchek et al., 2013). They showed that 

this suspected VUS resulted in a BRCA1 protein with a mutated BRCT (BRCA1 C-

terminus) domain, which had a lower affinity of binding to DNA damage response 

associated proteins and reduced localization to damaged DNA (Domchek et al., 2013). 

This patient was found to have a FA-like syndrome in addition to ovarian cancer, but 

passed away before the researchers could do specific FA testing (Domchek et al., 2013). 

These findings show the importance of BRCA1 in the FA pathway and also that biallelic 
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mutations could lead to a genetic syndrome that encompasses hereditary ovarian cancer 

with developmental defects and FA like symptoms.  

 A number of genes other than BRCA1 and BRCA2 involved in the FA-BRCA 

pathway or are known associates of this pathway have been associated with increased 

susceptibility to breast cancer and ovarian cancer. ATM encodes for a protein kinase, 

involved in the DNA damage response, and it activates checkpoint signaling in response 

to damage. Just like for BRCA2 and FA, people with biallelic mutations in ATM suffer 

from ataxia telangiectasia, a disease characterized by ataxias in the brain, 

immunodeficiency, and an increased risk of leukemia and lymphoma (Pennington & 

Swisher, 2012). In addition, these patients are also at increased risk of ovarian, breast, 

and gastric cancers (Pennington & Swisher, 2012).  

 Most recently, a group led by Dr. Rahman found that ATM was a breast cancer 

susceptibility gene in people who carry one mutation in the gene (Renwick et al., 2006). 

They sequenced 443 familial breast cancer cases and 521 controls and they found 2.04% 

of cases carrying deleterious mutations that could result in premature shortening of the 

protein or in exon skipping (Renwick et al., 2006). The rate of ATM mutations in controls 

was only 0.4% (Renwick et al., 2006). This provided strong evidence for a role of ATM in 

breast cancer.  

 Other genes identified as breast cancer susceptibility genes include CHEK2, 

BARD1, MRE11A, NBN, RAD50, RAD51C, BRIP1, and PALB2 (Pennington & Swisher, 

2012). It was thought that only breast cancer would be affected by mutations in non 

BRCA genes and that increased risk of ovarian cancer was only due to mutation in the 
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two BRCA genes. But this notion has changed and several other genes in the DNA 

damage response pathway or associated with it have been identified as increasing the 

susceptibility to ovarian cancer. 

 PALB2 was recently identified as harboring mutations in ovarian cancer patients. 

This gene is also known as FANCN and is an important contributor of the FA pathway. A 

study by Casadei et al. (2011), which initially just investigated breast cancer cases, 

showed that in 18 families of the 33 studied, family members with ovarian cancer had 

PALB2 mutations. They found that people with a PALB2 mutation had a 1.3 fold higher 

chance of having a relative with ovarian cancer (Casadei et al., 2011). While the number 

was not statistically significant due to the small sample size, it still showed that PALB2 

could be a susceptibility gene for ovarian cancer. 

 Further support for PALB2 as an ovarian cancer susceptibility gene was provided 

by Dansonka-Mieszkowska et al. (2010)in Poland, who found that truncating mutations 

in PALB2 were present 7 times more often in ovarian cancer cases (2/339) than in 

controls (1/1310). These studies present a strong case for PALB2 mutations as possible 

hits for ovarian cancer. 

 Another FA main complex gene, BRIP1 (also known as FANCJ), was also 

identified as a susceptibility gene for ovarian cancer. Rafnar et al. (2011) performed two 

studies in two different populations. They started with a whole genome sequencing 

project in Iceland, where they assessed 457 Icelanders (Rafnar et al., 2011). They found a 

rare mutation in BRIP1, c.2040_2041insTT, that was associated with an increased risk of 

ovarian cancer, with an OR = 8.13 (Rafnar et al., 2011). They performed further research 
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and sequenced BRIP1 in a Spanish cohort of 144 cases and 1,780 controls (Rafnar et al., 

2011). They found another rare frameshift in BRIP1 (BRIP.c1702_1703del) in two of the 

cases and in only one control, resulting in an OR = 25 (Rafnar et al., 2011). These results 

suggest that BRIP1 can play a role in susceptibility to ovarian cancer.   

 More recently, RAD51C and RAD51D, two important genes in DNA damage 

repair and HR, have been implicated in contributing to ovarian cancer. Meindl et al. 

(2010), initially described a link between RAD51C and ovarian cancer; they found 

mutations in RAD51C in 6 families out of 480 that had breast and ovarian cancer and 

were screened for that gene, while in other 620 families with only breast cancer and 

2,912 healthy controls there were no mutations in RAD51C (Meindl et al., 2010). This 

made for a strong point for this gene’s role in ovarian cancer.  

 In a Finnish study where they screened breast and/or ovarian cancer patients and 

families for RAD51C, they found that mutations in RAD51C were most often associated 

with “an increased risk of familial breast and ovarian cancer (OR 13.59, 95% CI 1.89–

97.6, P =0.026 compared with controls), but especially with familial ovarian cancer in the 

absence of breast cancer (OR 213, 95% CI 25.6–1769, P = 0.0002) and also with 

unselected ovarian cancer (OR 6.31, 95% CI 1.15–34.6, P = 0.033), with a significantly 

higher mutation rate among the familial cases (two out of eight, 25%) than the unselected 

ovarian cancer cases (4 out of 409, 1%) (OR 33.8, 95% CI 5.15–221, P = 0.005)” 

(Pelttari et al., 2011, p. 3278). They also found that all ovarian cancer cases occurred in 

those who were less than 60 years old, suggesting that ovarian cancer cases with 

mutations in this gene are younger than patients with ovarian cancer that do not have 
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mutations (Pelttari et al., 2011). These results presented further evidence for RAD51C’s 

involvement in ovarian cancer. 

 Loveday et al. (2012) also reported a study in which they sequenced RAD51C in 

272 ovarian cancer cases and 1,156 population controls and found that about 1% of 

ovarian cancer cases harbored germline mutations in that gene. In addition they also 

found that ovarian cancer cases with mutations in RAD51C were diagnosed at younger 

ages, one of the patients as young as 43 (Loveday et al., 2012). RAD51C is currently 

considered a gene for ovarian cancer susceptibility. 

 RAD51D was also implicated as an ovarian cancer gene by the same group that 

investigated the relationship of ovarian cancer with RAD51C. Loveday and colleagues 

(2011) investigated RAD51D, another paralog for RAD51, prior to their findings with 

RAD51C. They found 8 damaging mutations in 911 individuals from breast and ovarian 

cancer families, and only 1 in 1,060 controls (Loveday et al., 2011). They found the 

association to be stronger in ovarian cancer since 3 of the mutations were found in the 59 

families that had 3 or more individuals with ovarian cancer most of which were under 60 

years of age (Loveday et al., 2011). The study led by Loveday (2011) established a 

relative risk for ovarian cancer for those people with RAD51D mutations to be 6.3, while 

for breast cancer the relative risk was only 1.32, leading them to the conclusion that 

RAD51D is predominantly an ovarian cancer risk gene.  

 Another study led by Wickramanyake, found that out of 360 ovarian, fallopian 

tube, and peritoneal cancer patients, three carried loss of function (LOF) mutations in 

RAD51D (Wickramanyake et al., 2012). When the researchers sequenced 449 women and 
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10 men with breast cancer for RAD51D mutations, they were not able to find any, leading 

to the conclusion that RAD51D is a gene that, if mutated, can confer risk for ovarian 

cancer (Wickramanyake et al., 2012).  

 Taken together, this research shows that BRCA1 and BRCA2 are not the only 

genes conferring risk for ovarian cancer but other genes involved within the FA-BRCA 

pathway or associated with it or with DNA repair can confer risk for ovarian cancer. 

Jervis et al. (2015) reported that approximately 10% of ovarian cancer cases can be 

attributed to rare variants in other genes such as the MMR genes, RAD51C, RAD51D, 

and BRIP1. In addition, like it is the case for people with mutations in BRCA1 and 

BRCA2, the age of diagnosis for ovarian cancer cases with mutations in some FA genes 

are younger than patients without mutations (Loveday et al, 2012, Norquist et al., 2013, 

Pelttari et al., 2011). Continued research in genes associated with DNA repair is of great 

importance to determine their possible association with ovarian cancer. 

CHEK1 and CHEK2 

 The following discussion will include mention of genes CHEK1 and CHEK2 and 

the proteins CHEK1 and CHEK2. Per HGNC ( Human Genome OrganizationGene 

Nomenclature Committee) guidelines, the gene names will be italicized and protein 

names will be set in the standard font (Gray, Gordon, Seal, Wright & Bruford, 2013).  

 The genes CHEK1 and CHEK2 encode the proteins CHEK1 and CHEK2, two 

serine threonine kinases that are required for cell cycle arrest in response to DNA damage 

and modulate the activation of different DNA repair pathways (National Center for 

Biotechnology Information , 2014a, 2014b; Reinhardt & Yaffe, 2009). They are 
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structurally unrelated but perform similar functions. These kinases receive signals from 

two other kinases, ATM and ATR, which are activated in response to DNA damage 

(Reinhardt & Yaffe, 2009). It is thought that for the most part the protein ATM activates 

CHEK2 in response to double-stranded breaks (DBS) and ATR activates CHEK1 in 

response to single stranded breaks (Reinhardt & Yaffe, 2009), but ATM can also interact 

with CHEK1, and CHEK1 can also be involved in DBS repairs. The activation of these 

checkpoint kinases represents a DNA surveillance program, which ensures that there is 

faithful transmission of the DNA and that the integrity of the DNA is conserved during 

different cell cycles (Reinhardt & Yaffe, 2009). These checkpoint kinases prevent the 

progression of damaged DNA further into the cell cycle and even activate apoptosis or 

programed cell death if the damage is beyond repair (Reinhardt & Yaffe, 2009). 

CHEK2 

 CHEK2 is activated by ATM, which phosphorylates CHEK2 at threonine residue 

68 (Dai & Grant, 2010). Upon phosphorylation by ATM, CHEK2 homodimerizes and 

finally fully activates by the “trans-phosphorylation” of two of its threonine residues, 383 

and 387 (Dai & Grant, 2010). It then phosphorylates the protein Cdc25C and confines it 

to the cytoplasm where it cannot activate other proteins to move ahead through the 

different phases of mitosis, in this case from M (mitotic) phase to G2 (interphase second 

gap) phase (Stolz, Ertych, & Bastians, 2011). Hence, CHEK2 leads to cell cycle arrest 

prior to G2. It is also able to promote cell cycle arrest at G1 (interphase first gap) phase 

by interacting with p53, a tumor suppressor gene (NCBI, 2014b). It also interacts with 

p53 to initiate apoptosis when the DNA is beyond repair (Stolz et al., 2011). CHEK2 also 
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phosphorylates BRCA1 on serine residue 988, which in turn allows BRCA1 to become 

soluble and proceed to become involved in the FA-BRCA pathway mediated HR repair 

(Stolz et al., 2011).  

 The implication of CHEK2 as a cancer susceptibility gene has been reported by 

several groups especially in the field of breast cancer research. Several specific alleles 

have been associated with specific populations and with specific cancers. In a study by 

Cybulski et al. (2004),  the authors reported an analysis they performed on 4,000 controls 

and 4,008 cancer cases, for which many different cancer sites were represented (Cybulski 

et al., 2004). They looked for three specific founder alleles for CHEK2: 

CHEK2.1100delC, CHEK2.IVS2+1G->A and CHEK2.I157T (Cybulski et al., 2004). 

They established positive associations with thyroid (OR = 4.9), breast (OR = 2.2), and 

prostate cancer (OR = 2.2) and the two truncating alleles (CHEK2.1100delC and 

CHEK2.IVS2+1G->A) (Cybulski et al., 2004). For the specific missense, they found 

strong associations for increased risks of breast (OR = 1.4), colon (OR = 2.0), kidney 

(OR = 2.1), prostrate (OR = 1.7), and thyroid cancer (OR = 1.9) (Cybulski et al., 2004). 

The odds ratio for that specific allele in ovarian cancer was 1 (Cybulski et al., 2004), 

which doesn’t support a possible connection to ovarian cancer. The authors believe that 

this gene is a multiorgan susceptibility gene, but because they only tested three alleles 

their study is not robust in regard to a possible association to ovarian cancer.  

 Further research from this group analyzed the presence of these alleles in Polish 

ovarian cancer patients compared to controls. What they found was that the same 

missense, CHEK2.I157T, resulted in a positive association with ovarian cancer patients 
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that had low grade invasive tumors (OR = 2.5) (Szymanska-Pasternak et al., 2006). They 

followed up with a small sample of Russian patients and had similar findings, (OR = 2.7), 

for that specific missense in patients with borderline ovarian tumors, which are non-

invasive ovarian tumors (Szymanska-Pasternak et al., 2006). This study shows a small 

association between CHEK2 and borderline ovarian tumors but they only focused on one 

specific mutation in the gene as opposed to looking at mutations within the whole gene.  

 One particular allele that has been reproducibly associated with breast cancer is 

CHEK2.1100delC. It was positively associated with breast cancer in the study by 

Cybulski et al. (2004). It was also the focus of a meta-analysis performed by a group in 

Denmark that reviewed the literature to identify 26,000 patients and 27,000 controls 

analyzed for this allele. They found that there was an “aggregated odds ratios of 2.7 (95% 

CI, 2.1 to 3.4) for unselected breast cancer, 2.6 (95% CI, 1.3 to 5.5) for early-onset breast 

cancer, and 4.8 (95% CI, 3.3 to 7.2) for familial breast cancer” (Weischer, Bojesen, 

Ellervik, Tybjærg-Hansen, & Nordestgaard, 2008, p.542). This led them to calculate a 

cumulative risk for breast cancer for people with this mutation to be 37%, with a 95% CI 

of 26% to 56% (Weischer et al., 2008). Furthermore, individuals who carry this specific 

mutation, CHEK2.1100delC, are at higher risk for bilateral breast cancer and male breast 

cancer (Mellemkjær et al., 2008). A similar risk for ovarian cancer has not been 

calculated.  

 There are other alleles that have been found to confer susceptibility to breast 

cancer, such as a CHEK2.S428F variant found to increase breast cancer risk by 2 fold in 

women of Ashkenazi Jewish descent, two other variants in women of Italian descent, and 
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one new variant in a high risk breast cancer family from France (Escudie et al., 2010; 

Manoukian et al., 2011; Shaag et al., 2005). One study analyzed whether the variant 

CHEK2.1100delC was associated with ovarian cancer in 486 cases and 323 controls, but 

found no correlation, possibly because they only looked at this specific mutation and not 

at the entire gene (Baysal et al., 2004). Based on the evidence from these previous 

studies, it is important to find out if CHEK2 is an ovarian cancer susceptibility gene like 

it is for breast cancer.  

 Ovarian cancer susceptibility has not been clearly established, but there have been 

reports of rare variants in CHEK2 in ovarian cancer patients. In a Next-Generation 

sequencing study, Minion et al. (2015), sequenced 19 genes in women with a personal 

history of breast cancer (353 women), ovarian cancer (466 women), and breast and 

ovarian cancer (92 women). Mutations in CHEK2 were found in 7% of women with a 

history of ovarian cancer and in 5% of women with both a history of ovarian and breast 

cancer (Minion et al, 2015). The authors only reported rates and did not compare cases 

versus controls. This study supports the necessity to clearly determine whether there is an 

association between CHEK2 mutations and ovarian cancer.  

 Of especial interest is research by Ow et al. (2014), who performed analysis on 

clinical data from The Cancer Genome Atlas (TCGA), and found that in patients 

diagnosed with High Grade Serous Ovarian Cancer (HG-SOC) with CHEK2 mutations, 

the survival prognosis was poor. These mutations may be associated with resistance to 

existing chemotherapy (Ow et al., 2014). This research contrasts the Pennington et al. 

(2013a) research that in 3 out of 367 women with ovarian cancer with mutations in 
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CHEK2, there was an association with improved survival and response to platinum-based 

chemotherapy in women with mutations in homologous repair (HR) genes (Pennington et 

al., 2013a). These differences may be related to the grade and histology of the ovarian 

cancer, but it certainly supports the notion that in order to appropriately manage treatment 

for ovarian cancer it is important to know if mutations in CHEK2 are present. 

 CHEK2 is activated by ATM and interacts directly with BRCA1. It is an integral 

part of activating the DNA damage repair pathway and therefore the lack of a functioning 

CHEK2 protein due to mutations in the gene would result in a lagging DNA damage 

response. The research in this study may lead to the analysis of the entire gene in ovarian 

cancer patients, rather than just looking at specific mutations as in previous published 

papers. Such a global view of possible candidate variants would give a clearer picture of 

whether CHEK2 is truly an ovarian cancer susceptibility gene or not. 

CHEK1 

 The protein CHEK1 is activated by ATR and to a lesser extent by ATM (Dai & 

Grant, 2010). ATR phosphorylates CHEK1 at either the serine residue 317 or 345, 

activating CHEK1 and allowing it to phosphorylate Cdc25A/C, leading to cell cycle 

arrest in S or G2 phases of the cell cycle (Dai & Grant, 2010). CHEK1 plays a dominant 

role in replication initiation during S phase and is an amplifier of the DSB response 

signaling mediated by ATM and CHEK2 (Dai & Grant, 2010). CHEK1 is also an 

important protein in the delaying of anaphase in cells with spindle defects, and during 

G2/M phase it helps with stabilization and proteasomal degradation (Dai & Grant, 2010). 

In addition, during DNA damage and repair, CHEK1 targets kinases important for DNA 
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repair. CHEK1 dependent phosphorylation of RAD51 induces HR and its 

phosphorylation of FANCE (one of the FA proteins) is also critical for FA-BRCA 

mediated repair (Dai & Grant, 2010).  

 In order to show that the protein CHEK1, encoded by CHEK1, is required for HR 

repair, Sorensen et al. (2005), were able to inhibit the function of the CHEK1 protein in 

Chinese Hamster cells (CHO cells), by way of using small interfering RNAs that inhibit 

the translation of CHEK1 message into protein. They then induced replication associated 

Double Strand Breaks (DSB), which normally initiates HR repair, by adding hydroxyurea 

and camptothecin to the media (Sorensen et al., 2005). They determined the survival of 

cells after DNA damage and replication arrest. They saw that cells proficient in HR repair 

had poor survival when CHEK1 was inhibited and they also found and increase in DSB 

(Sorensen et al., 2005). They were also able to show that CHEK1 interacts with RAD51 

in order to induce HR repair. Cells where the threonine residue 309 was mutated on 

RAD51, the site of CHEK1 phosphorylation, had increased sensitivity to hydroxyurea 

due to the inability to initiate HR repair (Sorensen et al., 2005). This paper highlights the 

importance of CHEK1 protein in the pathway for DNA repair, because cell survivability 

was reduced and there was an increase in double strand breaks when CHEK1 function 

was abrogated.  

 Another study by Guervilly et al. (2008) showed that inhibition of CHEK1 can 

lead to reduced monubiquitination of FANCD2, an important step within the FA-BRCA 

damage repair pathway (Guervilly, Macé-Aimé, & Rosselli, 2008). They demonstrated 

that mitomycin C (a DNA crosslinker) sensitivity was reduced in cells where the 
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ATR/CHEK1 activation was inhibited, suggestive of a central role of CHEK1 in the 

arrest of the G2 cell cycle (Guervilly et al., 2008). These functions of the protein encoded 

by the gene CHEK1 show the gene’s importance within the DNA repair pathways and 

that any mutations could lead to a shortened protein with loss of function.  

 Finally, there have also been suggestions that the protein BRCA1, one of the 

important modulators of the FA-BRCA pathway, interacts with CHEK1 protein. A report 

by Yarden et al. (2002), showed that activation of CHEK1 in response to ionizing 

radiation was only possible when the BRCA1 protein was being expressed by measuring 

CHEK1 kinase activity in cells that were expressing BRCA1 or not. They were also able 

to show that BRCA1 interactions with CHEK1 affect G2/M cell cycle arrest by showing 

that cells expressing BRCA1 and CHEK1 proteins move from G2 to M after radiation 

damage, compared to cells that have these proteins inhibited (Yarden, Pardo-Reoyo, 

Sgagias, Cowan, & Brody, 2002). Their results suggested that BRCA1 involvement in 

cell cycle arrest is mediated by its interaction with CHEK1 (Yarden et al., 2002). The 

research above shows clearly the importance of CHEK1 to the DNA damage response in 

cells; cells lacking a proper functioning CHEK1 protein are deficient in fixing double 

strand breaks and don’t survive well those insults. Clearly CHEK1 plays an important 

role in damage repair and interacts with proteins in the FA-BRCA pathway, therefore 

CHEK1 gene is a good candidate as a cancer susceptibility gene, like some of the 

members involved in that pathway such as ATM, RAD51D, RAD51C, PALB2, and BRIP1 

(see Appendix B), many of which interact directly with BRCA1 as CHEK1 does.  
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 There is little evidence to associate CHEK1 with cancer because not too many 

studies have looked at CHEK1 specifically. A few studies have used genome wide 

association studies (GWAS) where they looked at common single nucleotide 

polymorphisms (SNPs) over a span of several genes including CHEK1 in breast cancer 

cases but these were inconclusive (Haiman et al., 2008; Pooley et al., 2008). Because 

GWAS only identify common SNPs and not the whole gene, they cannot detect rare 

mutations or deletions that are potentially associated with disease.  

 Another study by Lin et al. (2013) also investigated common SNPs in ATR and 

CHEK1 in breast cancer patients and found that these common alleles were not 

implicated in conferring risk to breast cancer, but since they looked at only common 

alleles they could not determine whether rare alleles could be involved (Lin et al., 2013). 

This underscores the need for an approach that targets the whole gene rather than 

common SNPs that are found in many people. 

 A Finnish study investigating national breast cancer families took the approach of 

looking at large genomic rearrangements in the genes BRIP1 and CHEK1 and were 

unable to uncover any large insertions or deletions (Solyom, Pylkäs, & Winqvist, 2010). 

The lack of findings could be due to the fact that they had a small cohort of only 111 

cases. 

 These reports are suggestive of a low chance of the CHEK1 gene being a possible 

cancer associated gene at least in breast cancer, but there is some evidence that mutations 

in this gene are present at least in colorectal and endometrial cancers. Researchers in Italy 

performed a small study in which they analyzed colon cancers and endometrial cancers 



43 

 

 

for the presence of CHEK1 mutations and found frameshift mutations in 1 out of 10 

colon cancers and in 2 of 17 endometrial cancers (Bertoni et al., 1999). They did not go 

any further than that and unfortunately did not analyze whether these mutations were also 

present in the germline or whether they were only somatic mutations. Yet this data 

presents initial evidence for a possible implication of CHEK1 in cancer.  

 Pennington et al. (2013a) reported that they found a germline mutation in CHEK1 

in 1 of 367 subjects, in addition to 87 other mutations in HR genes tested by Next-

Generation sequencing. They did not compare the rates to controls and therefore where 

not able to associate this rare variant in CHEK1 with ovarian cancer within their cohort 

(Pennington et al, 2013a). Women with mutations in HR genes had significantly better 

survival than those without mutations in and had better response to platinum-based 

chemotherapy (Pennington et al., 2013a). Therefore, establishing whether mutations in 

CHEK1 are associated with ovarian cancer still remains to be elucidated. Knowing 

whether mutations are present in CHEK1 or any of the HR genes can not only inform for 

risk reduction but also help manage therapy. 

 Kumar et al. (2013), performed a “Boolean logic framework” to rank genes for 

association with ovarian cancer (Kumar, Breen, & Ranganathan, 2013). They mined the 

literature and relied on functional characteristics of other cancer susceptibility genes and 

CHEK1 is among the genes they found to possibly have an important role in ovarian 

cancer (Kumar et al., 2013).  

 Most recent studies have looked at CHEK1 protein inhibitors as potential 

adjuvants and single agents for cancer chemotherapy (Kim, Min, Wright, Goldlust & 
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Annunziata, 2014; Kim, James & Annunziata, 2015). The addition of CHEK1 protein 

inhibitor increases the response of BRCA1/2 or TP53 mutation positive ovarian 

carcinoma cells to chemotherapeutic compounds, such as Topotecan and others (Kim, 

Min, Wright, Goldlust & Annunziata, 2014; Kim, James & Annunziata, 2015). Results 

like this have led to the implementation of a phase 2 clinical trial to determine the effects 

of CHEK1 protein inhibitors in women with ovarian cancer (Kim, James & Annunziata, 

2015). These results add to the question of the role of genetic mutations in CHEK1 and 

the development of ovarian cancer. A non-functioning CHEK1 protein, resulting from a 

mutation in the CHEK1 gene could be protective if indeed CHEK1 protein inhibitors 

result in a better response to chemotherapeutic agents. A better understanding of the 

association between a mutated CHEK1 and ovarian cancer, whether positive or negative, 

can not only have implications for reduction of disease risk but also management of 

chemotherapy during disease. Further research with a whole gene approach to determine 

whether CHEK1 is an ovarian cancer susceptibility gene still needs to be undertaken. The 

research proposed will elucidate the effect of mutations in CHEK1 (with a whole gene 

approach) on ovarian cancer. 

Next-Generation Sequencing and BROCA 

 Most of the studies that have identified susceptibility genes to date were done by 

Sanger sequencing specific genes or by identifying susceptibility loci by genome wide 

association studies (Manoukian et al., 2011; Walsh et al., 2006). But with the advent of 

new, highly efficient technologies, the trend has shifted toward next-generation 

sequencing approaches involving targeted capture and massively parallel sequencing 
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approaches of several genes at once (Walsh et al., 2011). These techniques allow the 

users to sequence a large number of different genes at once in a large cohort of people in 

a very quick time period (Walsh et al., 2011). It also allows for a lower cost method that 

enables people to get a deep coverage within the genome and accurate mutation calls.  

Walsh et al. (2010), developed a genomic capture and massively parallel 

sequencing approach, they called BROCA, that allowed them to sequence 21 genes in 

tandem in 20 women that were diagnosed with breast and ovarian cancer and who had 

previously been identified as mutation carriers by Sanger sequencing (Walsh et al., 

2010). The genomic DNA is hybridized to capture oligonucleotides that span the genes or 

regions of interest and then sequenced on a next-generation sequence analyzer (Walsh et 

al., 2010). They were able to find all mutations that were present in the samples and 

demonstrate that this method can be applied to comprehensively test for mutations in 

several genes and several patients at once (Walsh et al., 2010). 

 In a follow up study, the group used BROCA to analyze germline DNA from 360 

ovarian cancer cases and sequenced 21 genes concurrently (Walsh et al., 2011). They 

found that about 24% of these ovarian cancer patients had mutations in different genes 

(Walsh et al., 2011). The mutations identified were in BRCA1 and BRCA2, about 18% of 

cases had mutations in these two genes (Walsh et al., 2011). But, interestingly, 6% of 

cases carried mutations in other genes including BARD1, BRIP1, CHEK2, MRE11A, 

MSH6, NBN, PALB2, RAD50, RAD51C, and TP53 (Walsh et al., 2011). While BRIP1, 

PALB2, MSH6, and RAD51C had previously been associated as risk conferring genes for 
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ovarian cancer, the other 6 had not (Walsh et al., 2011). Most of these genes are involved 

in the DNA damage response.  

 Most recently Harrell et al. (2013) reported at the 63rd annual Meeting of The 

American Society of Human Genetics in Boston that researchers in Dr. Elizabeth 

Swisher’s lab at the University of Washington expanded the study initially undertaken by 

Walsh et al. in 2011. The BROCA gene panel was extended to include 52 genes, some 

within the FA-BRCA pathway or associated genes and genes in related damage response 

pathways (Harrell et al., 2013). The researchers tested 1,418 cases with ovarian, fallopian 

tube, or peritoneal carcinoma. They found that 15.7% of patients carried mutations in 

BRCA1 and BRCA2, 10.3% in BRCA1, and 5.4% in BRCA2. 6.3% of cases were 

harboring mutations in other DNA repair genes which are known or suspected to cause 

ovarian cancer (Harrell et al., 2013). Overall, they found 313 mutations in 1,418 

individuals, which represented 22% of the cohort (Harrell et al., 2013). BRCA1 and 

BRCA2 accounted for about 73% of all mutations while 27% of mutations were found in 

other genes (Harrell et al., 2013). The next most commonly mutated gene was BRIP1 

with 6% of mutations, followed by RAD51C, RAD51D, PALB2, and ATM, each gene 

harboring almost 3% of mutations within the cohort (Harrell et al., 2013). Mutations in 

the Lynch syndrome genes (MSH6, MSH2, MLH1, PMS2), all taken together accounted 

for 1.6% of mutations (Harrell et al., 2013). There were also a number of truncating 

mutations in some genes that had not been previously associated with breast or ovarian 

cancer, which may be good candidates for association with ovarian cancer. These 

included ATR and RBBP8, also known as CTIP (Harrell et al., 2013). These genes are 
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attractive candidates for ovarian cancer susceptibility because of their central roles within 

the FA-BRCA pathway and the minimal number of loss of function mutations reported in 

public databases (Harrell et al., 2013).  

 This research was also supported by a recent study by Minion et al., (2015) where 

they performed next-generation sequencing on 19 genes on DNA from ovarian cancer 

patients, breast cancer patients, and patients with a history of both. Their findings looked 

beyond BRCA1 and BRCA2 at rates in genes that have previously been identified as 

ovarian and breast cancer susceptibility genes such as BRIP1 (15%), NBN (6%), PALB2 

(6%), BARD1 (3%) and others (Minion et al., 2015). This research brings to light how 

novel sequencing techniques can aid in researching novel cancer susceptibility genes and 

that identification of hereditary risk for ovarian cancer requires assessment of many genes 

in all cases, which can be done effectively with cancer gene panels such as BROCA. This 

new technology was used to assess mutations in CHEK1 and CHEK2 and helped identify 

whether these genes can also be considered candidate genes for ovarian cancer. 

Summary 

It has been shown that one of the most important risk factors for ovarian cancer is 

familial risk (Check, 2006; Goff, Mandel, Muntz, & Melancon, 2000; Pennington & 

Swisher, 2012). Certain genes will acquire mutations that will increase a person’s 

likelihood of developing ovarian cancer (Dansonka-Mieszkowska et al., 2010; Susan M. 

Domchek et al., 2013; Loveday et al., 2011; C. Loveday et al., 2012; Renwick et al., 

2006; Walsh et al., 2011). Many of these genes are found to be important players in DNA 

repair pathways and are considered tumor suppressor genes (D'Andrea, 2013; D'Andrea 
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& Grompe, 2003; Pennington & Swisher, 2012). Novel sequencing techniques have made 

it easier to identify mutations in cases and controls in many genes at once, rather than just 

one gene at a time (Harrell et al., 2013; Walsh et al., 2011; Walsh et al., 2010). These 

techniques will allow for the identification of other candidate genes that may increase the 

risk for ovarian cancer. CHEK1 and CHEK2 are two genes that, due to their function and 

associated with known risk genes and DNA repair pathways, are considered good 

candidates for ovarian cancer susceptibility (Cybulski et al., 2004; Huang et al., 2008; 

Kumar et al., 2013). The evidence to date for an association between these two genes and 

ovarian cancer is sparse and additional research elucidated their roles in cancer risk.  

Chapter 3 contains information about the study design, including a description of 

the variables, the sample size, and data generation techniques, as well as a summary of 

the chapter and plans for how this research will be disseminated.  
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Chapter 3: Research Method 

Introduction 

This research investigated whether mutations in the genes CHEK1 and CHEK2 

are associated with ovarian cancer and identifiable as candidate genes for this disease 

within this cohort. It also investigated whether there was an association between age at 

diagnosis and mutations in these genes. This chapter describes the participants in this 

study, the tools used to ascertain mutations in the probands and controls, as well as the 

statistical analysis that was used to establish a correlation between disease and mutations 

in each gene. Finally, it describes the ethical protections for participants and how the 

resulting data will be disseminated to the public. 

 Previous genetic studies have shown that a myriad of genes are associated with 

cancer when they harbor loss of function mutations (Loveday et al., 2012; O'Donovan & 

Livingston, 2010; Pelttari et al., 2011; Szymanska-Pasternak et al., 2006; 

Wickramanyake et al., 2012). There is some published research correlating CHEK1 and 

CHEK2 genes to ovarian cancer, but clear evidence has not been presented to date 

(Cybulski et al., 2004; Szymanska-Pasternak et al., 2006; Vahteristo et al., 2001; Walsh 

et al., 2011;Pennington et al., 2013a; Minion et al. 2015). This research helped elucidate 

the role of CHEK1 and CHEK2 in predisposition to cancer and whether this phenomenon 

corroborates Knudson’s two hit theory of cancer causation. The framework of this study 

was based on Knudson’s (2002) two-hit theory of cancer causation, which states that for 

cancer to occur there must be a germline mutation in a gene and then another somatic 
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mutation within the tumor cells. This research exposed CHEK1 and CHEK2 as potential 

first-hit mutation bearers.  

 This research constituted a secondary data analysis using data provided by Dr. 

Elizabeth Swisher at the University of Washington, Seattle, WA as well as publicly 

available data from the Exome Variant Server and from a paper by Kanchi et al. (2014). 

No original data were collected for this study. Patients of Dr. Swisher and other 

gynecologic oncologists at the University of Washington consented to be included in a 

number of different studies to support the university’s gynecologic oncology tissue bank. 

DNA from these probands underwent BROCA, a massively parallel targeted sequencing 

approach. Identified mutations by Next-generation sequencing were validated by Sanger 

sequencing. Data for mutations in controls was also available from previous studies that 

were part of the Women’s Health Initiative and the Exome Variant Server and acquired 

by whole-exome sequencing. Data from controls have also been published by Kanchi et 

al. (2014). The data included information on mutations identified in the cohort, which in 

turn allowed for ascertaining mutation rates in cases versus controls. The comparison of 

mutation rates helped determine whether there was an association between ovarian cancer 

and mutations in each gene. This research also determined whether there was any 

correlation between CHEK1or CHEK2 mutations and ovarian cancer diagnosis as well as 

age at diagnosis. 

Research Questions 

 The research questions evaluated in this study are as follows: 
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H1:  Are CHEK2 mutated alleles associated with ovarian cancer? 

H0
1:  There are no CHEK2 mutated alleles associated with ovarian cancer.  

Ha
1:  CHEK2 mutated alleles are associated with ovarian cancer.  

H2:  Are CHEK1 mutated alleles associated with ovarian cancer?  

 H0
2:  There are no CHEK1 mutated alleles associated with ovarian cancer. 

 Ha
2:  CHEK1 mutated alleles are associated with ovarian cancer.  

H3: Are CHEK1 mutated alleles associated with younger age (<60 years of age) at 

diagnosis in ovarian cancer cases? 

 H0
3:  There is no association between younger age at diagnosis and CHEK1 

mutations in ovarian cancer cases. 

 Ha
3:  Mutated alleles in CHEK1 are associated with younger age (<60 years of 

age) at diagnosis in ovarian cancer cases. 

H4: Are CHEK2 mutated alleles associated with younger age (<60 years of age) at 

diagnosis in ovarian cancer cases? 

 H0
4:  There is no association between younger age at diagnosis and CHEK2 

mutations in ovarian cancer cases. 

 Ha
4:  Mutated alleles in CHEK2 are associated with younger age (<60 years of 

age) at diagnosis in ovarian cancer cases. 

Participants 

 The cases included 587 prospectively enrolled women who underwent primary 

surgery for ovarian, fallopian tube, or peritoneal carcinoma at the University of 

Washington, between 1998 and 2013 and had no known familial risk for ovarian cancer 
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or had not undergone any genetic testing to date. All cases provided informed consent to 

participate in the University of Washington institutional gynecologic oncology tissue 

bank and related genetic study and donated about 9 ml of blood for genetic analysis. Age 

at diagnosis for these women ranged from 30 through 70 years of age. All cases have 

been analyzed using a BROCA assay for 52 genes including CHEK1 and CHEK2. 

 Controls included 557 females older than age 50, with no personal history of 

breast or ovarian cancer, who gave permission for their genomic DNA to be used 

anonymously for research. Healthy individuals are part of the Women’s Health Initiative 

and data on controls was previously published by Kanchi et al (2014). The age of the 

controls was a limitation of the dataset used for this study. The data on mutations in these 

controls were generated using whole exome sequencing, which expands the genes in the 

BROCA panel to all genes in the human genome and is also available online (Kanchi el 

al., 2014). All participants provided informed consent for genetic studies. 

Laboratory Component 

 Data collection in the Swisher laboratory followed laboratory testing procedures 

as set forth under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) 

regulations and followed the general CLIA quality systems requirements for non-waived 

testing and the CLIA personnel requirements for tests of high complexity. 

DNA Extraction 

 DNA from patients was obtained from blood collected at their pre-surgery 

appointments. About 9 milliliters (mls) of blood was placed in an Acid Citrate Dextrose 

(ACD) containing BD vacutainer blood collection tube (Becton, Dickinson and 
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Company, New Jersey) by a phlebotomist or nurse. Blood tubes were then provided to 

Dr. Swisher’s laboratory, free of any personal identifiable information, where the DNA 

was extracted from blood. 

 DNA was extracted from blood or lymphoblast cell lines by desalting method 

(Walsh et al., 2011; Wickramanyake et al., 2012). The blood was centrifuged down to 

separate the plasma, buffy coat and Red Blood Cells (RBC). The buffy coat was then 

isolated and placed in RBC lysis buffer at a 1 to 3 ratio, incubated for 30 minutes, then 

centrifuged. The pellet was resuspended in cell lysis buffer and incubated with 20% SDS 

and Proteinase K (Promega) at 37oC overnight. Saturated 6M NaCl was added and then 

the solution centrifuged. The supernatant was collected and mixed with 3 volumes of 

pure 100% ethanol at which point the DNA precipitated out of solution, was collected, 

then resuspended in Tris-EDTA solution.  

Sequencing 

 Sequencing data for cases has been obtained from samples by undergoing 

BROCA, a massively parallel sequencing approach, which allows for the sequencing of 

multiple genes. To prepare the DNA for BROCA, 3ug of DNA, paired-end libraries with 

150 base pair inserts were prepared and hybridized to a custom pool of oligonucleotides 

targeting 52 exomic regions (Walsh et al., 2011), using SureSelectXTTM (Agilent, Santa 

Clara, CA) enrichment system on a Bravo liquid handling instrument (Agilent, Santa 

Clara, CA). Following capture, samples were barcoded with 96 different indexed primers, 

pooled 96 per lane, and sequenced on a 2500HiSeq (Illumina, San Diego, CA) (Walsh et 

al., 2011). Sequence alignment and variant calling were done against the reference human 
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genome (UCSC hg19) (Walsh et al., 2010). All suspected deleterious mutations were 

verified by Sanger sequencing. Polymerase chain reaction (PCR) was performed using 

specific PCR primers to amplify the region where the mutations were found. PCR 

amplicons were sequenced bidirectionally using the Applied Biosystems BigDye 

Terminator v3.1 sequencing kit (Applied Biosystems, and analyzed on an ABI 3130xl 

genetic analyzer (Wickramanyake et al., 2012). Trace sequences were analyzed using 

Sequencher 4.9 software. Information on validated mutations and which samples have the 

mutation will be provided to me in the form of an excel database. Controls were 

sequenced by whole exome sequencing as previously described (Kanchi et al., 2014). 

Research Approach 

Mutations 

 The data provided  for this study was in the form of an excel spreadsheet that 

contained the code for the patient, age at diagnosis, which mutation a certain patient was 

found to have (CHEK1 or CHEK2, if any), the coordinates of the mutation in the genome 

as well as in the coding sequence and effect in the coding region or protein, and whether 

this is a frameshift, a premature truncation (e.g. a base pair change results in a stop 

codon), a splice site variation or a copy number variation, or a missense. For example, 

patient X, with age at diagnosis Y, may have a CHEK2.c1100delC, which is a frameshift 

deletion, which in turn results in a premature stop codon and with it a loss of a functional 

protein. The BROCA approach identifies many types of mutations. Specific mutation 

identification was a part of this study for any mutations within the cases or controls. This 
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research only included clear loss of function mutations: frameshifts, splice site variations, 

premature truncations, and copy number variations.  

Missenses in CHEK2 only were counted if there was clear evidence of loss of 

function of the protein. This was determined via literature review and whether functional 

studies had been performed to determine if that mutation results in a loss of gene 

function. Several CHEK2 missense mutations have already been identified in breast 

cancer (Le Calvez-Kelm et al, 2011; Roeb, Higgings, & King, 2012; Shaag et al., 2005). 

Roeb et al. (2012) published a seminal paper where functional studies have been done to 

identify whether known missense mutations led to loss of function. Therefore, the 

missenses reported as damaging in previously published studies and the Roeb et al. 

(2012) study were included as clearly damaging mutations if present. Appendix C 

includes a list of CHEK2 missenses that were considered as loss of function mutations 

based on the literature. CHEK1 missense mutations were not included since none have 

been reported in the literature to date.  

Statistical Analysis 

 Data for mutations in CHEK1 and CHEK2 included how many mutations there 

were in this data set and which specific mutations were identified. Cancer status was set 

as the dependent variable. Independent variables included CHEK1 and CHEK2 variants 

and age at diagnosis.  

 In order to determine the strength of the association in this study, a power analysis 

was performed with PS Power and Sample Size Calculations, a freely available program 

on the web (Dupont & Plummer, 1998). For this study with 587 cases and 557 controls, 
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and prior research supporting a 0.5 probability of CHEK2 mutations among controls 

(Cybulski et al.,2004), a true odds ratio for mutations of 0.704 or 1.420 in cases relative 

to controls with probability (power) of 0.8 should be obtainable. The type I error 

probability associated with an OR=1 for this hypothesis testing was 0.05 and was based 

on using -squared statistic or Fisher’s exact test to evaluate this null hypothesis. This 

calculation was limited to CHEK2 since previous research has already been conducted by 

other researchers to estimate percentage of mutations in controls. No such research is 

available for CHEK1 and so power was not predicted prior to the analysis for CHEK1. I 

also performed post-hoc power analysis to determine the level of power for my analysis. 

This was calculated using PS Power and Sample Size Calculations as above and also 

using the website ClinCalc.com and using their Post-hoc power calculator 

(http://clincalc.com/Stats/Power.aspx). 

  Initial analysis determined how many mutations were identified in the cohort. I 

compared the proportions of prevalence of all the alleles in CHEK1 and CHEK2 in cases 

versus controls. Each gene was analyzed separately. Any mutations that resulted in a 

truncated protein, which may include frameshifts, copy number variations, splice 

alterations and stop gains, and functionally tested missenses in CHEK2 (see Appendix C),  

were counted as a damaging mutation for each gene. Then, the sum total of damaging 

mutations was compared between cases and controls, for each gene independently, to 

answer the research questions as to whether CHEK1 is associated with disease or whether 

CHEK2 is associated with disease. Odds ratios for mutations in either CHEK1 and/or 

CHEK2 were generated using two by two tables and statistical significance was 
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determined between cases and controls using Fisher’s exact test. Odds ratios were 

calculated at 95% confidence intervals. Overall, this analysis investigated whether there 

was a correlation between variants in these genes and disease, and presents evidence as to 

whether CHEK1 and/or CHEK2 can be nominated as candidate genes for ovarian cancer.  

Age at Time of Diagnosis 

  Age at diagnosis was asked for each study participant. For the purposes of this 

research, age was analyzed within cases in ten-year increments: under 40, 40-49, 50-59, 

60-69, 70-79, and 80 and over. This is supported in similar studies where the age variable 

was grouped using the same increments (Shaag et al., 2005; Walsh et al., 2011) 

comparing non-mutation versus mutation cases. Since controls do not have an age of 

diagnosis, due to their cancer free status, it is not feasible to compare their age at time of 

diagnosis with cases. Therefore, for this question I determined whether any mutation 

found in either of the genes under investigation correlated with age at diagnosis. Age at 

diagnosis in mutation carriers versus non-mutation cases for each gene was listed in 

columns and statistical significance was determined by t test.  

Protection of Human Participants 

 Cases provided informed consent for genetic analysis to participate in the 

institutional gynecologic oncology tissue bank as approved by the human subjects 

division of the institutional review board of the University of Washington (University of 

Washington Protocol 34173). Data from controls was from Kanchi et al., 2014 

(Lic#3695490410900).  No original data was collected on either cases or controls. No 

personal identifiers are connected with any of the existing data I obtained from cases and 
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controls. This study obtained approval and sought out protection from Walden 

University’s Institutional Review Board, IRB approval #12-09-14-0059711. 

Dissemination of Findings 

Findings from this study will be presented at professional conferences and 

submitted for publication to a peer-reviewed journal. 

Summary 

This study is a case-control quantitative study that aimed to determine whether 

mutations in CHEK1 and CHEK2, two genes involved in promoting DNA repair, are 

associated with development of ovarian cancer and whether age at diagnosis is different 

for those people with mutations in these genes.  

Chapter 4 presents the results for this study. 
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Chapter 4: Results 

Introduction 

The purpose of this study was to compare the rates of mutations in CHEK1 and 

CHEK2 for ovarian cancer cases to healthy controls.If mutations were identified in the 

cases and/or controls, the plan was to determine whether there was an association 

between mutations in these genes and ovarian cancer. The plan also sought to establish 

whether age at diagnosis was lower in cases with mutations than in those without 

mutations, since it has previously been shown that women with mutations have a lower 

age of diagnosis than those without mutations (Boyd et al., 2000; Rish et al., 2001; Pal et 

al., 2005; Alsop et al., 2012). 

This chapter introduces descriptive statistics for the study population and provides 

inferential statistics for each research hypothesis. It concludes with a summary and 

interpretation of the data for each hypothesis.  

Study Population 

Cases included in this study (n = 587) were women with fallopian tube, primary 

peritoneal, and/or ovarian cancer whose DNA were sequenced by Dr. Swisher’s 

laboratory cases. Controls (n = 557) were healthy women with detailed sequencing 

information . The total population size for this study was N = 1144. 

Descriptive Statistics  

Demographic information available for this cohort included sequencing 

information as well as gene and chromosomal coordinates. More specifically for controls, 

there was also age at time of enrollment. More detailed information was available for 
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cases, which included age at diagnosis and type of cancer patient was diagnosed with, 

and whether it was primary peritoneal, fallopian tube, or ovarian cancer. The following 

table summarizes the age at diagnosis for all cases and type of cancer they were 

diagnosed with. Table 2 shows the age of controls at time of enrollment. All are above 50 

years of age and assumed to be cancer free at time of enrollment. No other demographic 

information was available for this study. 

 

Table 1 

Age at Diagnosis and Cancer Site for Cases 

 Number of cases (%) 

Age at diagnosis  
<40 31 (5.3) 

40-49 84 (14.3) 

50-59 153 (26.1) 

60-69 172 (29.3) 

70-79 81 (13.8) 

80 and up 29 (4.9) 

No age available 37 (6.3) 

Mean age 59.45 

Cancer site  

Fallopian tube 93 (15.9) 

Primary peritoneal 57 (9.7) 

Ovarian 437 (74.4) 
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Table 2 

Age at Enrollment for Controls 

Age at baseline Number of controls (%) 

<40 0 
40-49 0 

50-59 209 (37.5) 

60-69 206 (36.9) 

70-79 142 (25.4) 

80 and up 0 

Mean age 63.3 

 

Mutation Status Summary 

Sequencing for mutations in a large number of genes was performed for cases and 

controls, and all available information was provided for this study. The genes that were 

queried and where mutations were found were ATM, ATR, BARD1, BRCA1, BRCA2, 

BRIP1, CHEK1, CHEK2, FAM175A, MSH2, MSH6, NBN, PALB2, RAD50, RAD51C, 

and RAD51D. Deleterious loss of function mutations were found in 141 cases, which 

represented 24.02% of all cases. Deleterious loss of function mutations were found in 23 

controls, which represented 4.28% of all controls. Fisher’s exact test was used to 

determine the association between cases, controls, and mutations. There was statistical 

significance with mutations being more strongly associated with cases than controls (p < 

0.0001). The odds ratio for this association was found to be OR = 8.5 (95% CI = 5.3 to 

13.8). Table 3 shows the distribution of mutations in cases and controls and in which 

genes these mutations were found. Of those cases with mutations, 24 (17%)  had been 
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diagnosed with fallopian tube carcinoma, 103 (73%) with ovarian carcinoma, and 14 

(10%) with primary peritoneal carcinoma. 

Table 3  

Distribution of Mutations in Cases and Controls 

Genes in which mutations  

were identified 
Cases Controls 

 

ATM 3 1  

ATR 1 1  

BARD1 1 0  

BRCA1 67 6  

BRCA2 32 4  

BRIP1 6 1  

CHEK1 2 1  

CHEK2 7 2  

FAM175A 1 2  

MSH2 1 2  

MSH6 2 2  

NBN 3 0  

PALB2 4 0  

RAD50 1 1  

RAD51C 6 0  

RAD51D 4 0  

    

Total individuals  

with mutations 
141 23 

p<0.0001 (Fisher’s exact test) 

No mutations 
446 534 

OR=8.5 (95%CI=5.2-13.8) 

 

There were 2 cases and 1 control with CHEK1 mutations as well as 7 cases and 2 

controls with CHEK2 mutations. The description of the CHEK1 and CHEK2 mutations 

are listed in Table 4 (CHEK2 mutations) and Table 6 (CHEK1 mutations). All cases with 

CHEK1 and CHEK2 mutations were diagnosed with Stage 3 ovarian cancer, rather than 

primary peritoneal or fallopian tube carcinoma. 
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Analysis of Hypothesis 1 

All analyses were completed using Graphpad PRISM software v6.05 (San Diego, 

CA). The following hypothesis was analyzed:  

H1:  Are CHEK2 mutated alleles associated with ovarian cancer? 

H0
1:  There are no CHEK2 mutated alleles associated with ovarian cancer.  

Ha
1:  CHEK2 mutated alleles are associated with ovarian cancer.  

The following Table 4 lists the CHEK2 case and control mutations, which is 

written to describe the base pair in the cDNA coordinate that has been altered. This is 

standard nomenclature for reporting mutations. Also included in the table are information 

of type of mutation, effect at the protein level, and chromosomal coordinates, e.g. where 

they are located in the genome. For instance CHEK2.c1100delC refers to the deletion of 

base C (cytosine) at the 1100 base pair of the cDNA sequence. This mutation is located at 

chromosome 22, position 29091857. The effect at the protein level is a stop at codon 381. 

Finally, the type refers to whether it is a deletion, a missense, an insertion, or a nonsense. 

In the case of CHEK2.c1100delC it is a deletion.  

The effect at protein level for missenses (if identified as a damaging alteration) is 

based on functional test and previous reports (Shaag et al., 2005; Le Calvez-Kelm et al, 

2011; Roeb, Higgings, & King, 2012). For a list of damaging missense in CHEK2, see 

Appendix C. All mutations result in a truncated protein that will result in a loss of 

function. 
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Table 4 

CHEK2 Mutations in Cases and Controls 

CHEK2 mutations Genomic coordinates Effect at protein level Type 

Cases    

CHEK2.c1100delC chr22:29091857 381 stop deletion 

    

CHEK2.c1100delC chr22:29091857 381 stop deletion 

    

CHEK2.c1100delC chr22:29091857 381 stop deletion 

    

CHEK2.c758_761delACTG chr22:29107931 252 stop deletion 

    

CHEK2.c428A>G chr22:29121247 H143R,damaging 

alteration 

missense 

    

CHEK2.c1283C>T chr22:29091207 S428F, damaging 

alteration 

missense 

    

CHEK2.c1283C>T chr22:29091207 S428F, damaging 

alteration 

missense 

    

Controls    

CHEK2.c1229delG chr22:29091857 367 stop deletion 

    

CHEK2.c499G>A chr22:29121057 G167R, damaging 

alteration 

missense 

 

For this hypothesis, CHEK2 mutation rates were first established. For the cases, 

the CHEK2 mutation rate was 1.1%, whereas for controls it was 0.35%. In order to test 

the hypothesis and determine an association between mutation carrier and cancer status, a 

contingency table was built (Table 5) with the number of mutations in CHEK2 in cases 

and controls and those participants without mutations. There were seven cases found to 

have deleterious CHEK2 mutations as outlined in Table 4, and two controls with CHEK2 
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mutations. This is in contrast to 446 cases and 537 controls that did not have any 

mutations, either in the CHEK genes or any other genes queried by the next-generation 

sequencing approach. 

Table 5 

Contingency Table for CHEK2 Mutations 

Data analyzed Cases Controls Total 

CHEK2 7 2 9 

No mutations 446 535 981 

Total 453 537 990 

 

 The resulting odds ratio was 4.191 (95% CI = 0.87 to 20.28). The statistical 

significance as calculated by a Fisher’s exact test is p = 0.0884. Based on these results, an 

individual with CHEK2 mutations has a 4-fold higher likelihood of developing ovarian 

cancer, but the association is weak since this analysis is not statistically significant at the 

0.05 level. The confidence interval for this odds ratio crosses 1, and therefore the 

association is not significant at the 0.05 level. Therefore, the alternative hypothesis is 

rejected. 

I performed a post-hoc power analysis and found the power to be at 30.1%, which 

indicated that the alternative hypothesis was rejected 70% of the time. In this case, I 

reject the alternative hypothesis. 

 

Analysis of Hypothesis 2 

The following hypothesis was analyzed: 

 H2:  Are CHEK1 mutated alleles associated with ovarian cancer?  
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  H0
2:  There are no CHEK1 mutated alleles associated with ovarian cancer. 

  Ha
2:  CHEK1 mutated alleles are associated with ovarian cancer.  

The table that follows indicates CHEK1 mutations identified, their location, and 

effect as explained above for Table 4. All of these mutations are loss of function 

mutations that result in a truncated protein. 

 

Table 6 

CHEK1 Mutation in Cases and Controls 

CHEK1 mutations genomic coordinates effect at protein level type 

Cases    

CHEK1.c1036C>T chr11:125,513,598 Q346 stop stop gained 

CHEK1.c1036C>T chr11:125,513,598 Q346 stop stop gained 

    

Controls    

    

CHEK1.c1044_1045delAT chr11:125,513,598 C349fs deletion 

 

The rate of mutations for CHEK1 in cases was 0.34% and in controls was 0.18%. 

Table 7 shows the contingency table used to calculate the odds ratio and p-value for this 

analysis. CHEK1 mutations were found in 2 cases and 1 control, whereas 446 cases and 

535 controls had no mutations in either CHEK1, CHEK2, or any other genes queried.  

Table 7 

Contingency Table for CHEK1 

Data analyzed Cases Controls Total 

CHEK1 2 1 3 

No mutations 446 534 980 

Total 448 535 983 
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The odds ratio for the likelihood of developing ovarian cancer if there is a CHEK1 

mutation present is OR = 2.4 (95% CI = 0.22 to 26.66). The statistical significance as 

calculated by a Fisher’s exact test is p = 0.59, which indicates that this association is not 

significant. Moreover the confidence interval crosses 1, therefore the association is not 

significant at the 0.05 level. I also performed a post-hoc power analysis for this question, 

and found the power to be 7.7%. Therefore, the alternative hypothesis was rejected. 

Analysis of Hypothesis 3 

Literature indicates that ovarian cancer cases with mutations are diagnosed with 

the disease at a younger age (Boyd et al., 2000; Rish et al, 2001; Pal et al., 2005; Alsop et 

al., 2012). When comparing the mean age at diagnosis between those cases with 

mutations and those without mutations, age is lower for those with mutations (54) than 

those without (61) [Table 8]. This difference is statistically significant at p < 0.0001. The 

following hypothesis was analyzed: 

 H3: Are CHEK1 mutated alleles associated with younger age (<60 years of age) 

at diagnosis in ovarian cancer cases? 

  H0
3:  There is no association between younger age at diagnosis and 

CHEK1 mutations in ovarian cancer cases. 

  Ha
3:  Mutated alleles in CHEK1 are associated with younger age (<60 

years of age) at diagnosis in ovarian cancer cases. 

Table 8 shows age for all cases with mutations and without mutations. The first 

column indicates age at diagnosis. There was no age at time of diagnosis available for 29 

wildtype cases and 8 mutation carrier cases, indicated by NA. The second column 
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indicates the number of cases with no mutations for each age group. The third column 

shows number of cases with mutations in any of the genes queried for each age group. 

Genes queried were: ATM, ATR, BARD1, BRCA1, BRCA2, BRIP1, CHEK1, CHEK2, 

FAM175A, MSH2, MSH6, NBN, PALB2, RAD50, RAD51C, and RAD51D. The fourth 

column shows CHEK1 mutation carriers at time of diagnosis in cases whereas the fifth 

column shows CHEK2 mutation carriers at time of diagnosis. The ages at diagnosis for 

those with CHEK1 mutations carriers were 42 and 43. The ages at diagnosis for CHEK2 

mutations carriers were 31, 40, 45, 59, 60, and 68. There was no age at time of diagnosis 

reported for one of the CHEK2 mutation carriers. The final column shows the number of 

cases with either CHEK1 or CHEK2 mutations.  

 

 

 

 

Table 8 

Age at Time of Diagnosis for all Mutation carriers, CHEK1 only, and CHEK2 only 

Mutation Carriers Versus non Carriers Among Cases 

Age group at 

time of 

diagnosis 

No 

mutations 

Cases with a 

mutation in 

any of genes 

queried  

CHEK1 

only  

CHEK2 

only  

CHEK1 

and 

CHEK2 

combined 

less than 40 21 10  0  1  1 

40-49 52 32  2  2  4 

50-59 106 47  0  1  1 

60-69 138 34  0  2  2 

70-79 72 9  0  0  0 

80+ 28 1  0  0  0 

NA 29 8  0  1  1 
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Table 9 shows the median age for all cases without mutations, the median age for 

all cases with mutations, and the p-value comparing median age for cases with mutations 

versus no mutations. It also shows the median age for CHEK1 and CHEK2 mutations 

determined at diagnosis and the corresponding p-values versus cases without any 

mutations. Because CHEK1 and CHEK2 genes encode for protein kinases with similar 

function, I also combined the age at time of diagnosis for all CHEK1 and CHEK2 

mutations carriers, see Table 8, last column, and determined the median age as well as the 

p-value versus non mutation carriers, as shown on Table 9, last row. 

Table 9 

 

Average Median Age and p-Values for Age at Time of Diagnosis in Cases With and 

Without Mutations  

 Median Age p-value vs. cases with no 

mutations 

No mutations 61  

All mutation carriers  54 <0.0001 

CHEK1  42.5 0.0398 

CHEK2  50.5 0.0456 

CHEK1 and CHEK2 48.5 0.0061 

 

In order to determine whether ovarian cancer patients with mutations in CHEK1 

are diagnosed at a younger age than those with no mutations, an unpaired t test was 

performed between the ages of the 2 mutation carriers and the ages of the 417 that did not 

carry any mutation. A contingency table and  square analysis was not possible since 

more than 20% of values were below 5 and there were many values of 0 for CHEK1 

mutation carriers. The unpaired t test resulted in a p-value of p = 0.04 (p < 0.05, 95% CI 
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= 0.8617-35.96), indicating that there is statistical significance between the ages of the 

cases with CHEK1 mutations and those with no mutations. The mean age for cases with 

CHEK1 mutations was 42.5 versus 61 for cases without mutations. Therefore, the 

alternative hypothesis is accepted and the null hypothesis is rejected. I performed a post-

hoc power analysis for this question  and obtained a power of 82.9%. 

 

Analysis of Hypothesis 4 

The following hypothesis was analyzed: 

  H4: Are CHEK2 mutated alleles associated with younger age (<60 years of age) 

at diagnosis in ovarian cancer cases? 

  H0
4:  There is no association between younger age at diagnosis and 

CHEK2 mutations in ovarian cancer cases. 

  Ha
4:  Mutated alleles in CHEK2 are associated with younger age (<60 

years of age) at diagnosis in ovarian cancer cases. 

Table 8 shows ages for those cases with CHEK2 mutations compared to those 

without mutations. Once again an unpaired t test was performed to determine statistical 

significance. Table 9 shows the median age as well as the p-value obtained when 

comparing the age at diagnosis of CHEK2 mutations carriers versus those cases with no 

mutations. This test indicated that the difference between the two groups was statistically 

significant at a 95% confidence level, with p = 0.045 (p < 0.05, 95% CI = 0.203-20.61). 

The mean age for those cases with CHEK2 mutations was 50.5, while the mean age for 

those without mutations was 61. Therefore, the alternative hypothesis is accepted and the 
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null hypothesis is rejected. The post-hoc power calculated for this analysis was at 99%, 

which allows me to reject the null hypothesis.  

In addition to determining the individual significance of the mutations carrier’s 

age at diagnosis for each of the CHEK genes, I sought to determine whether mutation 

carriers in either of both genes combined have a lower age at time of diagnosis than those 

cases without mutations. There were nine cases with either CHEK1 or CHEK2 mutations, 

but for one of the CHEK2 mutations carriers there was no age at diagnosis available. The 

median age for all CHEK1/2 mutation carriers was 48.5 and the p-value = 0.0061 (p < 

0.05, 95% CI = 3.564-21.25) (Table 9). Combined, the association of younger age at 

diagnosis and harboring a mutation is lower than in each gene individually. The post-hoc 

power analysis provided a power of 100%, showing that there will not be a type II error 

(known also as a false negative). 

Summary 

There is no clear association between CHEK1 and CHEK2 mutations and ovarian 

cancer within this cohort. Yet the data supports an association between age at diagnosis 

and CHEK1 and CHEK2 mutations. There is a clear association between diagnosis at a 

younger age (less than 60) when harboring a mutation in CHEK1 and CHEK2 compared 

to those cases without any mutations found.  

Chapter 5 presents an overview and summary of the research, limitations of the 

study, an interpretation of the findings, implications for social change, recommendations 

for action, and suggestions for further studies. 
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Chapter 5: Discussion 

Research Overview 

Ovarian cancer is the most deadly gynecological cancer, and it is among the top 

five causes of cancer-related death in American women (Surveillance, Epidemiology and 

End Results, 2012). Survival rates for ovarian cancer patients are low since most women 

are diagnosed at advanced stages of the disease (Goff, Mandel, Muntz & Melancon, 

2000; Weissman, Weiss, & Newlin, 2012). When detected early, though, there is an 

excellent chance for survival, but current methods of detection are ineffective (Goff et al, 

2000). Among the most important risk factors for ovarian cancer is family history; 25% 

of all new ovarian cancer cases are due to hereditary breast and ovarian cancer from 

mutations in cancer-associated genes (Pennington & Swisher, 2012). The genes that are 

most often affected are genes involved in DNA repair pathways (Pennington & Swisher, 

2012).  

Two very important genes have been identified as contributors to ovarian cancer: 

BRCA1 and BRCA2 (Check, 2006). Mutations in BRCA1 contribute to about 48% of 

cases with inherited ovarian cancer, while BRCA2 accounts for about 27% (Pennington & 

Swisher, 2012). Other genes in the DNA repair pathways account for about 25% 

(Pennington & Swisher, 2012). Yet there are many women with inherited ovarian cancer 

where no mutations are identified in the known cancer-associated genes. Therefore, other 

genes in the DNA repair pathway may harbor mutations that could be responsible for the 

disease .  
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The purpose of this study was to determine if two genes previously not identified 

as ovarian cancer-associated genes could be included this grouping. These two genes, 

CHEK1 and CHEK2, which encode for proteins that function similarly, are both 

mediators of the DNA damage response (Reinhardt & Yaffe, 2009; NCBI, 2014a; NCBI, 

2014b). CHEK2 has previously been associated with breast cancer susceptibility 

(Cybulski et al., 2004; Shaag et al., 2005; Reinhardt & Yaffe, 2009). But not much is 

known about CHEK1 and its association with cancer. Previous reports  found CHEK1 

mutations in an ovarian cancer cohort; the authors reported the rates but did not pursue a 

case control study (Pennington et al. 2013a). Thus,  to date, no association study has been 

undertaken for mutated CHEK1 and ovarian cancer to look at cases and controls. 

This study aimed to compare the rates of mutations of CHEK1 and CHEK2 in an 

ovarian cancer cohort to rates in controls. It also sought to establish whether women with 

mutations in these genes were diagnosed at a younger age than cases with no mutations at 

all. Many studies have reported that women with mutations in cancer-associated genes 

present with disease at a younger age (Boyd et al., 2000; Risch et al., 2001; Pal et al., 

2005; Alsop et al., 2012).  

In order to perform this study, sequencing data were obtained from a cohort of 

1,144 women: 587 cases with ovarian cancer and 557 controls. This secondary data 

analysis  assessed the mutations identified by next-generation sequencing techniques in 

known cancer genes, as well as the CHEK1 and CHEK2 genes of interest. The mutations 

were compared in the two cohorts and contingency tables were built to ascertain the odds 

ratio for association of mutation with disease. In addition, t tests were used to determine 
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whether there was an association between the age at time of diagnosis and mutation status 

in cancer cases. The rates of mutations in CHEK2 and CHEK1 were higher in cases than 

in controls. Once the analysis was completed, Ha
1 and Ha

2 were rejected, indicating there 

was no clear association between mutation in either CHEK1 or CHEK2 and ovarian 

cancer. T tests of age at diagnosis of cases with mutations compared to those without 

mutations resulted in rejecting the null hypothesis three and null hypothesis four, 

resulting in an association between age at time of diagnosis in CHEK1 and CHEK2 

mutations carriers than in cases with no mutations at all. 

Interpretations of the Findings 

I found that the overall rate of mutation in cases was higher than in controls, with 

24% of cases harboring mutations in the genes queried versus only 4.3% of controls with 

mutations. These results are in agreement with previous studies that have shown that 

ovarian cancer cases harbor mutations in genes at a rate of 25 - 30% (Walsh et al., 2011; 

Minion et al., 2015). I also found that those cases with mutations in any related gene 

analyzed were younger at diagnosis than cases that were wildtype for any mutations (Pal 

et al., 2012; Cunningham et al., 2014). Overall, the mutation rates and age at diagnosis 

for mutation found in cases all mirror previous studies. 

Regarding the CHEK1 and CHEK2 mutation rates, they were higher in cases than 

controls. But despite those observations the findings of this study do not support an 

association between mutations in either CHEK1 or CHEK2 and development of ovarian 

cancer due to the lack of statistical significance and lack of power. It was, however, able 

to support the hypothesis that women with mutations in either gene would present with a 



75 

 

 

diagnosis of cancer at an earlier age than women without a mutation in either of these 

genes. Not only are mutations in each individual gene associated with younger age at 

diagnosis in cases but both genes combined make a stronger point that mutations in those 

genes are associated with diagnosis at a younger age.  

The rate of CHEK2 mutation in this cohort of cases was 1.1%, which was lower 

than previously reported (Pennington et al, 2013a; Minion et al., 2015). The odds ratio for 

women with cancer harboring CHEK2 mutations versus controls, was OR = 4.191 with a 

95% CI between 0.87 and 20.28. While the odds ratio is above 1 and would suggest a 

relationship between ovarian cancer and CHEK2 mutations, the confidence interval 

crosses the null value of 1 and therefore makes this result not statistically significant and 

therefore I have to reject the alternative hypothesis. In addition to the confidence interval 

crossing the null value, a post hoc power analysis resulted in a power of 30.1%, 

suggesting that the possibility for a type II error was large and would deem this analysis 

not significant. While the statistical significance is not there, it would be inappropriate to 

conclude completely that there is no association and the interpretation of the OR crossing 

the null value would suggest that more studies are needed (Young & Lewis, 1997). These 

results, along with a low power, are most likely due to the small sample size in this 

cohort and the rarity of the variants identified. A larger sample size may result in a more 

statistically significant result.  

CHEK2 has previously been associated with development of breast cancer, 

thyroid cancer, and prostate cancer (Cybulski et al., 2004). The allele that Cybulski et al. 

(2004) analyzed in those three type of cancers as well as in ovarian cancer is 
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CHEK2.1100delC, and is one of the ones found within this cohort in three cases. Their 

findings were also negative for an association with ovarian cancer with their odds ratio 

being OR=1 for that specific allele (Cybulski et al., 2004).  

A second allele found among ovarian cancer cases in this dissertation study was 

CHEK2.S428F (CHEK2.c1283C>T), a variant found to increase breast cancer risk by 

two-fold in women of Ashkenazi descent, Italian descent, and a high risk breast cancer 

family from France (Escudie et al., 2010; Manoukian et al. 2011; Shaag et al., 2005). 

This allele was the second most common one found among ovarian cancer cases in this 

study. The lack of association in this study does not allow me to infer that these cases 

have an increased risk for ovarian cancer but based on other studies it suggests that these 

women have an increased risk for breast cancer and HBOC in addition to having suffered 

from ovarian cancer. 

This study could not establish a statistically significant association between 

ovarian cancer and mutations in CHEK2, and the alternative hypothesis was rejected due 

to the fact that the OR crosses the null value and the lack of power. In addition I found an 

association between development of cancer at younger age when having mutations in this 

gene and therefore, I believe that there may be some implications for cancer development 

when harboring mutations in this gene. The inclusion of CHEK2 in a panel of genes for 

diagnostic sequencing should not be rejected and it would still be an important asset for 

ovarian cancer and breast cancer pre-screening. 

CHEK1mutations showed at a rate of 0.34% in cases and 0.18% in controls. This 

CHEK1 mutation rate was lower than the only other time there was an observation of a 
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CHEK1 mutation in an ovarian cancer cohort (Pennington et al, 2013a). There was also 

no clear association between disease and mutation. The odds ratio was OR = 2.4, with 

95% CI = 0.22 to 26.66. Once again while the odds ratio is higher than 1, which would 

indicate that there could be a positive association between disease and mutation in 

CHEK1, the confidence interval crosses the null value which makes this OR not 

statistically significant. I also performed a post-hoc power analysis for these events and 

found the power to be 7.7%, which suggests a lack of power overall. This is most likely 

due to the fact that the mutations were rare variants in a relatively small cohort.  

Previous research on association with CHEK1 and cancer is limited. A study by 

Lin et al. (2013) addressed the association between common alleles in CHEK1 and breast 

cancer and found no association. A group of Finnish researchers who looked at genomic 

rearrangements did not find any large insertions or deletions in CHEK1 in breast cancer 

patients (Solyom, Pylkas, & Winqvist, 2010). However, their sample size was also small 

and these large genomic rearrangements are also very rare events (Solyom, Pylkas, & 

Winqvist, 2010). It seems therefore that this dissertation research only adds more 

questions as to whether CHEK1 could be a gene associated with ovarian cancer. The 

results were not statistically significant, so further studies with a larger cohort may be 

needed to clarify an association. Further research into the association of CHEK1 mutation 

and ovarian cancer may shed more light on how protein CHEK1 inhibitors can be used 

for treatment (Kim, Min, Wright, Goldlust & Annunziata, 2014; Kim, James & 

Annunziata, 2015). This study failed to make an association and therefore did not provide 

any more insight into that aspect of CHEK1 physiology. 
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While this study rejects the alternative hypothesis due to the low power and that 

the OR’s 95% CI spans the null value, I cannot say (based on Young and Lewis (1997)) 

that it provides a lack of evidence of association between mutations in these genes and 

disease. I see a decrease in the p-value when comparing ages in cases, which indicates 

that these mutations most likely have an effect on disease development. When there is an 

association between mutation and disease where the confidence interval is wide and not 

very precise, this is due to the small sample size (Young & Lewis, 1997). The same is 

true for the almost non-existent power in this analysis, that it is a result of a small sample 

size and the rarity of the variants. A larger sample size would narrow the point estimate, 

increase power, and clarify the results. Overall, this result indicates that the sample size is 

too small, yet does not rule out an association (Young & Lewis, 1997). This 

interpretation is supported when I compared my findings for CHEK1 with a population 

database readily available on the internet. This publicly available database, the ExAC 

browser, offered by the Broad Institute reports on variants found in 60,706 unrelated 

individuals sequenced in population genetic studies (Exome Aggregation Consortium 

(ExAC), 2015). When I searched for variants in CHEK1, they reported only 44 found 

among 60,706. When I proceeded to calculate the odds ratio comparing my data to the 

ExAC data, I obtained an odds ratio of 4.7, with a 95% CI of 1.14-19.5. Just looking at 

the mutation found among the cases in this study, CHEK1.Q346X, the ExAC browser 

only reports 2 individuals having that variant. This comparison resulted in an odds ratio 

of 103.8 and a 95% CI of 14.59-738.3. My interpretation is that I cannot rule out an 
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association between CHEK1 and ovarian cancer and that a larger study is needed due to 

the complexities of analyzing the association of disease with rare variants and mutations.  

Lee, Abecasis, Boehnke & Lin, (2014), highlighted the issues that rare gene 

variant association studies face statistically. According to Lee et al. (2014), single variant 

testing to identify associations with low frequency and rare variants are difficult if 

samples sizes are not large enough, because the power is not quite there. This was 

evidenced in this study. Sample size was not high enough to provide enough power for 

such rare events (Walsh et al., 2011; Pennington et al., 2013a; Minion et al., 2015). 

This study also found that if cases have a mutation in either CHEK1 or CHEK2, 

the likelihood of the cancer occurring earlier is higher than in cases without any 

mutations. The difference in age at diagnosis between the cases harboring mutations in 

either gene or both genes combined is statistically significant. The average age at time of 

diagnosis of cases with CHEK2 mutations from this study is about 10 years younger than 

those with no mutation. Cases with mutations are usually under age 60 (Risch et al., 

2001). The average age at time of diagnosis of cases with CHEK1 mutation was 42.5 in 

this study and was also much younger than the average for the cases without mutations, 

which was 61 in this study. For all instances of CHEK1 and CHEK2 mutation combined, 

the median age at time of diagnosis was 48.5 years versus 61 for those cases without 

mutations, as shown on Table 9, last row (p.69). This was statistically significant and 

post-hoc power analysis confirmed that the power was sufficient to avoid a type II error. 

These results are in line with previously reported studies where women with mutations 

are usually diagnosed with disease at younger ages than cases without mutations (Risch 
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et al., 2001; Pal et al., 2005; Alsop et al., 2012). In addition, when looking at all the cases 

with mutations in this cohort, the median age for diagnosis for women with any 

mutations in any of the genes was 54,  statistically significantly younger ( p<0.0001) than 

those with no mutations. These results suggest that for ovarian cancer patients harboring 

mutations in any of the genes tested, including CHEK1 and CHEK2, the age that the 

disease will develop is lower than in those patients without any inherited mutations 

identified. This suggests testing people for inherited mutations in genes such as CHEK1 

and CHEK2 as well as BRCA1 and BRCA2, may allow them to find out that these 

alterations may predispose them to developing cancer at a younger age than people 

without these mutations.  

In summary, the study failed to establish a clear association between mutations in 

the genes CHEK1 and CHEK2 most likely due to the small cohort investigated and the 

rarity of the variants. Yet the age of diagnosis of cases with mutations in either of these 

genes was found to be statistically significantly younger for those with mutations 

compared to those without mutations. These results taken together do not rule out a 

possible role for CHEK1 and CHEK2 in ovarian cancer.  

Limitations of the Study 

 During the analysis of the secondary data available it became obvious that 

this study had a very big limitation.  Given the rarity of the variants analyzed, the size of 

the cohort was too small to establish any significant association regarding the existence 

of mutations in CHEK1 and CHEK2 and ovarian cancer. While the overall rates of 

mutations were comparable to other studies published, the rates for CHEK1 and CHEK2 
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were lower than previously reported. Gene sequence analysis may have missed mutations 

due to incorrect reporting or using the wrong variant of the gene nomenclature. Also 

there may have been mutations that could have been reported as germline mutations but 

they could have been somatic mutations of tumor circulating in the blood. If the 

percentage of the variant reads are low, many times it is due to circulating tumor in the 

blood and the sequencing will pick it up in the germline DNA. If this is not identified 

accurately, a somatic mutation could be interpreted as a germline mutation, and with it 

provide a false information. It is assumed that there was accurate reporting of the 

sequencing information, but this could not be verified personally as I did not have access 

to that more specific information and was beyond the scope of this study. 

 In addition, there was limited data available for the cohort in general, and this 

limited the analysis to sequencing data, cancer site, and age. Additional information on 

other cancers was not available either, which would have been helpful to evaluate 

whether some of these women have had breast cancer prior to their ovarian cancer. Some 

of these mutations have been found to be present in breast cancer patients in other studies 

and so it could have informed me of whether this cancer was a recurrence of cancer at 

another site or a primary event. 

It would have been helpful to have familial information on these cancer cases to 

determine whether these ovarian cancers were inherited or sporadic. Having segregation 

data on the family as well as family history could have informed me more thoroughly of 

the effect of these mutations on cancer development. 
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This sample set represented a relatively small cohort that was enrolled within this 

region of the Pacific Northwest. I am unsure of how the makeup of this cohort represents 

the diversity of the U.S. and how these mutations were at all related to ethnicity. We 

know that in breast cancer certain CHEK2 mutations are prevalent in women of 

Ashkenazy Jewish descent or Czechoslovakian descent (Cybulski et al, 2004; Shaag et al, 

2005), and so not knowing this aspect of the patients could not allow for an association 

based on ethnicity or race.  

One of the bigger limitations of this study that came to light in the analysis stage 

was cohort size. While a priori power analysis indicated that the size would be sufficient, 

the rate of mutations found and the rarity of the alleles resulted in an underpowered study 

that could not establish a clear association between disease and variants. This could be 

remedied by proceeding with larger studies. 

 Recommendations 

 As an approach to improve this study and to obtain statistically significant values, 

there is a need to obtain a larger number of cases and many more controls known to be 

cancer free. As Lee et al., (2014) state, rare variants can be found to have associations 

with disease if the effect and the sample size is large. They also suggest that research in 

rare variant analysis may have to evolve from current methods and “will require more 

methodological development” (Lee, Abecasis, Boehnke, & Lin, 2014, p. 9). In order to 

have larger sample sizes and more of a representative sample of the U.S. population, 

several institutions should join together into a multi-center study that will allow testing of 

many individuals that have ovarian cancer. In addition, the number of controls should be 
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higher than that of the cases in order to be able to reach strong predictive values for odds 

ratios (Young & Lewis, 1997). Organizations like the Gynecologic Oncology Group 

(GOG), the Ovarian Cancer Association Consortium (OCAC), and the Australian 

Ovarian Cancer Study (AOCS), are beginning to undertake such studies that will 

sequence a large number of probands and will help answer the question as to whether 

some candidate genes such as CHEK1 and CHEK2 can be upgraded to cancer-associated 

genes. 

In the meantime, women should continue to enroll in genetic testing studies such 

as the one that these data were obtained from. Ovarian cancer patients and their families 

should continue to be tested on next-generation sequencing panels, which contain many 

cancer-associated genes as well as candidate genes such as CHEK1 and CHEK2. This 

study failed to show a positive association between ovarian cancer and CHEK1 and 

CHEK2 due to the lack of power and the 95% CI crossing the null value, despite the odds 

ratio being above 1. This leads to no definite conclusions, but being that the odds ratios 

obtained are above 1 and the fact that there was an association between mutations in 

these genes and younger age at time of diagnosis, the results suggest the possibility that 

these genes may be associated with ovarian cancer. Continued testing will increase the 

number of individuals tested for mutations in those genes and the accumulation of results 

from the sequencing studies will add to the knowledge regarding these genes and others. 

In addition, in order to have a better understanding as to whether these genes can 

be upgraded to ovarian cancer associated genes, I need to determine the segregation 

among affected families. Establishing whether this mutation is inherited in cancer cases 
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within a family is a hallmark of establishing whether a gene can be associated with the 

cancer in that family (Newman, Millikan, & King, 1997). This information was not 

available for this study and was beyond the scope of the IRB approval, but another study 

which provides information on familial segregation and pedigrees could be undertaken.  

Further information on the cases could also provide insight into their risk for 

breast cancer. Several of the alleles in CHEK2 had previously been associated with breast 

cancer by Cybulski (2004) and others (Mellemkjaer et al., 2008; Weischer, Bojesen, 

Ellervik, Tybjaerg-Hansen, & Nordestgaard, 2008). Research on whether these ovarian 

cancer patients have a history of breast cancer or have taken precautionary methods to 

prevent breast cancer or are under surveillance for developing breast cancer is needed.  

Additional information can also be gleaned from functional studies to determine 

how mutations in these genes affect the proper functioning of the protein. If functionality 

of the protein is affected, this can be established experimentally in cells and other model 

systems, such as yeast, mammalian cells, and mice. Segregation in families, functional 

studies, and larger case control studies will help me determine whether candidate genes 

can be considered cancer associated genes. 

Implications for Social Change 

Recognizing potential causes for ovarian cancer is an important tool for early 

detection. Ovarian cancer is many times referred to as the silent killer, because many 

patients go undiagnosed until late in the stage of disease when treatment is often too late 

and survival is marginal (Goff et al, 2000). Since inherited ovarian cancer is responsible 

for about 25% of cases, a better knowledge of genes associated with a diagnosis would 
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help in identifying potential cases. Genetic testing is becoming more available and 

affordable for the general public. This is a helpful tool to pre-screen for potential ovarian 

cancer or allow for early detection. Currently researchers and many doctors know that 

BRCA1, BRCA2, PALB2, BRIP1, RAD51C, and RAD51D are genes that contribute to 

cases of inherited ovarian cancer (Pennington & Swisher, 2012). All of these genes are in 

the DNA repair pathway. But there are other inherited ovarian cancer cases where these 

genes are not mutated. Other mutated genes in this pathway may, instead, be contributing 

to the cancer development. Therefore research identifying these genes could provide 

information for family members with a strong history of familial cancers.  

This knowledge would allow women to undergo increased surveillance and 

prophylactic efforts to prevent cancer. Most recently a paper by Easton et al. (2015), 

called out for the need of well-designed population- and family-based studies in 

populations that are highly diverse so that practitioners can provide accurate counseling 

of disease risks. Not only will it help patients understand their risk but will also help to 

inform researchers with this broad and systematic collection of data that would link 

clinical and epidemiological data to outcomes and risk (Easton et al., 2015). Access to 

such data and new level of understanding not only contributes to a positive outcome for 

ovarian and breast cancer patients or those at risk but also for people facing other 

complex inherited diseases as prostate cancer, colon cancer, etc. 

Doctors who are dealing with patients with a family history of ovarian cancer 

need to be aware of the hereditary aspect of this disease. It is important they also 

understand that testing is important and to approach their patients about genetic testing so 
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that they can work on a prophylactic plan not only for the patients but also for the rest of 

the family, especially if the patient has children (American Cancer Society, 2015).  

Insurance companies are coming around to paying for these services when the 

family history warrants a test (American Cancer Society, 2015). It is in their own interest 

to invest in knowledge and prophylaxis rather than having to pay for treatment. The cost 

of treatment for the disease is much larger than that for prophylactic approaches and risk 

reducing surgery than for prolonged therapy and treatments (Grann, Panageas, Whang, 

Antman, & Neugut, 1998). 

The more genes researchers and doctors as well as patients are aware of with a 

role in ovarian cancer development, the more information all have in the arsenal against 

ovarian cancer. While this study did not establish a clear association between CHEK1 and 

CHEK2 mutations with ovarian cancer, it showed that women with mutations in these 

genes are diagnosed at younger age. Knowing this provides information that will help 

people take action earlier. Patients with known mutations can then develop a plan with 

their physician to undergo half yearly exams with transvaginal ultrasounds and CA-125 

testing that will hopefully help with early detection (ACOG, 2002). Following this the 

plan can be expanded to include risk reducing surgery when the patient is ready (ACOG, 

2002). These approaches that are based on knowing your family history and mutational 

status can lead to reduced mortality rates.  

Conclusion 

The aim of this study was to determine whether mutations in CHEK1 and 

CHEK2, two genes within the DNA repair pathway, were associated with ovarian cancer 
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and whether mutations in these genes were associated with a younger age at diagnosis. 

While the odds ratios for association between ovarian cancer and mutations in both genes 

were above the null value of 1, the 95% confidence interval crossed the null value in both 

cases indicating a lack of statistical significance. This statistical outcome resulted in the 

alternative hypothesis being rejected. Results suggest that the sample size was too small 

to establish a clear association for such rare events. This, paired with the statistical 

significance for younger age at diagnosis in cases with mutations in CHEK1 and CHEK2 

makes a strong point against completely dismissing a lack of association between 

mutations in these genes and ovarian cancer. 

Larger studies with more cases and more controls and cooperation between 

multiple centers would be needed to further study these potential genes as candidate 

genes. Also, studies that include segregation in cancer families as well as functional 

studies into the effect of these mutations on the protein function would support 

conclusions gleaned from case-control studies. What is certain is that with the advent of 

next-Generation sequencing, the lower cost and the increasing availability of panel 

testing will allow patients to get diagnostic testing that may help with earlier detection or 

preventative measures. Such testing supports social change by allowing patients to take 

an active role in prevention, including prophylaxis and surveillance, and reducing 

mortality from ovarian cancer due to delayed detection.  
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Appendix A: Syndromes of Inherited Cancer Predisposition  

 

Syndrome (OMIM 

entry) 

Component Tumors Mode of 

Inheritance 

Genes 

Hereditary breast cancer 

syndromes 

   

Hereditary breast cancer 

and ovarian cancer 

syndrome (113705, 

600185)  

Breast cancer Dominant BRCA1 

Ovarian cancer  BRCA2 

Prostate cancer   

Pancreatic cancer   

Fanconi 

anemia/medulloblastoma 

Recessive BRCA2 

Li-Fraumeni Syndrome 

(151623) 

Soft tissue sarcoma Dominant p53 

 Breast cancer  CHEK2 

 Osteosarcoma   

 Leukemia   

 Brain tumors   

 Adrenocortical carcinoma   

Cowden Syndrome 

(158350) 

Breast cancer Dominant PTEN 

 Thyroid cancer   

 Endometrial and other 

cancers 

  

Bannayan-Riley-

Ruvalcaba syndrome 

(153480) 

Breast cancer Dominant PTEN 

 Meningioma   

 Thyroid follicular cell 

tumors 

  

Ataxia telangiectasia 

(208900) 

Leukemia Recessive ATM 

 Lymphoma   

Hereditary 

gastrointestinal 

malignancies 

   

HNPCC, including 

“Lynch II” syndrome 

(120435, 120436, 

114500, 114400) 

Colon cancer Dominant MLH1 

Endometrial cancer  MSH2 

Ovarian cancer  MSH6 

Renal pelvis cancers   
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Ureteral cancers   

Pancreatic cancer   

Stomach and small bowel 

cancers 

  

Hepatobiliary cancers   

Familial polyposis, 

including attenuated 

phenotype (175100) 

 Dominant APC 

Familial attenuated 

polyposis (175100) 

Colon cancer Dominant APC 

Hereditary gastric 

cancer (137215) 

Stomach cancers Dominant CDH1 

Juvenile polyposis 

(174900) 

Gastrointestinal cancers Dominant SMAD4/DPC4 

 Pancreatic cancer  BMPR1A 

Peutz-Jeghers syndrome 

(175200) 

Colon cancer Dominant STK11 

 Small bowel cancer   

 Breast cancer   

 Ovarian cancer   

 Pancreatic cancer   

Hereditary melanoma 

pancreatic cancer 

syndrome (606719) 

Pancreatic cancer Dominant CDKN2A/p16 

Melanoma   

Hereditary pancreatitis 

(167800) 

Pancreatic cancer Dominant PRSS1 

Turcot Syndrome 

(276300) 

Colon cancer Dominant APC 

 Basal cell carcinoma  MLH1 

 Ependymoma  PMS2 

 Medulloblastoma   

 Glioblastoma   

Familial gastrointestinal 

stromal tumor (606764) 

Gastrointestinal stromal 

tumors 

Dominant KIT 

Genodermatoses with 

cancer predisposition 

   

Melanoma syndromes 

(155600, 155601, 

609048, 608035) 

Malignant melanoma Dominant CDKN2 (p16) 

  CDK4 

  CMM 

Basal cell cancers, 

Gorlin syndrome 

(109400) 

Basal cell cancers Dominant PTCH 



108 

 

 

 Brain tumors   

Cowden Syndrome See above Dominant PTEN 

Neurofibromatosis 1 

(162200) 

Neurofibrosarcomas Dominant NF1 

 Pheochromocytomas   

 Optic gliomas   

 Meningiomas   

Neurofibromatosis 2 

(101000) 

Vestibular schwannomas Dominant NF2 

Tuberous sclerosis 

(191100) 

Myocardial 

rhabdomyoma 

Dominant TSC1 

 Multiple bilateral renal 

angiomyolipoma 

 TSC2 

 Ependymoma   

 Renal cancer   

 Giant cell astrocytoma   

Carney Complex 

(160980, 605244) 

Myxoid subcutaneous 

tumors 

Dominant PRKAR1A 

 Primary adrenocortical 

nodular hyperplasia 

  

 Testicular Sertoli cell 

tumor 

  

 Atrial myxoma   

 Pituitary adenoma   

 Mammary fibroadenoma   

 Thyroid carcinoma   

 Schwannoma   

Muir Torre syndrome 

(158320) 

Sebaceous carcinoma Dominant MLH1 

 Sebaceous epitheliomas  MSH2 

 Sebaceous adenomas   

 Keratoacanthomas   

 Colon cancer   

 Laryngeal carcinoma   

 Malignant gastrointestinal 

tract tumors 

  

 Malignant genitourinary 

tract tumors 

  

Xeroderma 

pigmentosum (278730, 

278700, 278720, 

Skin cancer Recessive XPA,B,C,D,E,F,G 

Melanoma  POLH 

Leukemia   
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278760, 74740, 278780, 

278750, 133510) 

Rothmund Thomson 

syndrome (268400) 

Basal cell carcinoma Recessive RECQL4 

 Squamous cell carcinoma   

 Osteogenic sarcoma   

Leukemia/lymphoma 

predisposition 

syndromes 

   

Bloom syndrome 

(210900) 

Leukemia Recessive BLM 

 Carcinoma of the tongue   

 Squamous cancers   

 Wilms' tumor   

 Colon cancer   

Fanconi anemia 

(227650) 

Leukemia Recessive FANCA,B,C 

 Squamous cancers  FANCA,D2 

 Skin carcinoma  FANCE,F,G 

 Hepatoma  FANCL 

Shwachman-Diamond 

syndrome (260400) 

Myelodysplasia Recessive SBDS 

 Acute myelogenous 

leukemia 

  

Nijmegen breakage 

syndrome (251260) 

Lymphoma Recessive NBS1 

 Glioma   

 Medulloblastoma   

 Rhabdomyosarcoma   

Canale-Smith syndrome 

(601859) 

Lymphoma Dominant FAS 

   FASL 

Immunodeficiency 

syndromes 

   

Wiskott-Aldrich 

(301000) 

Hematopoietic 

malignancies 

X-linked 

recessive 

WAS 

Common variable 

immune deficiency 

(240500) 

Lymphomas Recessive Unknown 

 Dominant Unknown 

Severe combined 

immune deficiency 

(102700, 300400, 

B-cell lymphoma X-linked 

recessive 

IL2RG 

 Recessive ADA 
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312863, 601457, 

600802, 602450) 

  JAK3 

  RAG1 

  RAG2 

  IL7R 

  CD45 

  Artemis 

X-linked 

lymphoproliferative 

syndrome (308240) 

Lymphoma X-linked 

recessive 

SH2D1A 

Genitourinary cancer 

predisposition 

syndromes 

   

Hereditary prostate 

cancer (176807, 

601518) 

Prostate cancer Dominant HPC1 

   HPCX 

   HPC2/ELAC2 

   PCAP 

   PCBC 

   PRCA 

Simpson-Golabi-

Behmel syndrome 

(312870) 

Embryonal tumors X-linked 

recessive 

GPC3 

 Wilms' tumor   

von Hippel-Lindau 

syndrome (193300) 

Hemangioblastomas of 

retina and central nervous 

system 

Dominant VHL 

 Renal cell cancer   

 Pheochromocytomas   

Beckwith-Wiedemann 

syndrome (130650) 

Wilms' tumor Dominant CDKN1C 

 Hepatoblastoma  NSD1 

 Adrenal carcinoma   

 Gonadoblastoma   

Wilms' tumor syndrome 

(194070) 

Wilms' tumor Dominant WT1 

WAGR: Wilms' tumor, 

aniridia, genitourinary 

abnormalities, mental 

retardation (194072) 

Wilms' tumor Dominant WT1 

Gonadoblastoma   

Birt-Hogg-Dubé 

syndrome (135150) 

Renal tumors Dominant FLCL 
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Papillary renal cancer 

syndrome (605074) 

Papillary renal cancer Dominant MET, PRCC 

Constitutional t(3;8) 

translocation (603046) 

Renal cell cancer Dominant TRC8 

Hereditary bladder 

cancer (109800) 

Bladder cancer Sporadic Unknown 

  Unknown  

Hereditary testicular 

cancer (273300) 

Testicular cancer Possibly x-

linked 

Unknown 

  Possibly 

recessive 

Unknown 

Rhabdoid predisposition 

syndrome (601607) 

Rhabdoid tumors (see 

below) 

Dominant SNF5/INI1 

Central nervous 

system/vascular cancer 

predisposition 

syndromes 

   

Hereditary 

paraganglioma (185470, 

115310, 16800) 

Paraganglioma Dominant SDHD 

Pheochromocytoma  SDHC 

  SDHB 

Retinoblastoma 

(180200) 

Retinoblastoma Dominant RB1 

 Osteosarcoma   

Rhabdoid predisposition 

syndrome (601607) 

Rhabdoid tumors Dominant SNF5/INI1 

 Medulloblastoma   

 Choroid plexus tumors   

 Primitive 

neuroectodermal tumors 

  

Sarcoma/bone cancer 

predisposition 

syndromes 

   

Multiple exostoses 

(133700, 133701) 

Chondrosarcoma Dominant EXT1 

   EXT2 

Leiomyoma/renal 

cancer syndrome 

(605839) 

Papillary renal cell 

carcinoma 

Dominant FH 

 Uterine leiomyosarcomas   

Carney complex See above Dominant PRKAR1A 

Werner syndrome 

(277700) 

Sarcoma/osteosarcoma Recessive WRN 

 Meningioma   
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Endocrine cancer 

predisposition 

syndromes 

   

MEN1 (131100) Pancreatic islet cell 

tumors 

Dominant MEN1 

 Pituitary adenomas   

 Parathyroid adenomas   

MEN2 (171400) Medullary thyroid cancers Dominant RET 

 Pheochromocytoma   

 Parathyroid hyperplasia   

Familial papillary 

thyroid cancer (188500) 

Papillary thyroid cancer Dominant Multiple loci 

Syndromes of Inherited Cancer Predisposition in Clinical Oncology Syndrome.  

From“Hereditary Cancer Predisposition Syndromes”, by J. Garber and K. Offit, 2005, 

Journal of Clinical Oncology, 23(2), p. 278. Copyright 2005 by American Society of 

Clinical Oncology. Adapted with permission of the American Society of Clinical 

Oncology, license number 3673710531158. 

Abbreviations: OMIM, On-Line Mendelian Inheritance in Man; HNPCC, hereditary 

nonpolyposis colorectal cancer; MEN, multiple endocrine neoplasia.  
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Appendix B: The FA-BRCA DNA Damage Response 

 

 
 

Figure B. Schematic of some of the FA genes and other interacting proteins in the 

DNA damage response. (Adapted from Harrell et al. (2013)). Germline loss of 

function mutations in DNA repair genes in 1418 patients with ovarian, peritoneal or 

fallopian tube cancers not selected for age at diagnosis or family history. In M. 

Southey (Chair), Hereditary Cancer Syndromes. Platform session conducted at the 

Annual meeting of the American Society for Human Genetics, Boston, MA.) 
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Appendix C: CHEK2 damaging missenses resulting in loss of function as reported by the 

literature 

 

Chr Position (hg19) NT cDNAa Proteina Prediction 

22 29,121,326 C>T c.349A>G R117G Damaging 

22 29,121,247 T>C c.428A>G H143R Damaging 

22 29,121,242 G>A c.433C>T R145W Damaging 

22 29,121,077 T>C c.480A>G I160M Damaging 

22 29,121,058 C>T c.499G>A G167R Damaging 

22 29,121,019 G>A c.538C>T R180C Damaging 

22 29,095,917 C>G c.917G>C G306A Tolerated 

22 29,092,914 G>A c.1070C>T S357F Damaging 

22 29,091,220 A>G c.1270T>C Y424H Damaging 

22 29,091,207 G>A c.1283C>T S428F Damaging 

22 29,090,054 G>T c.1427C>A T476K Damaging 

22 29,090,054 G>A c.1427C>T T476M Damaging 
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