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Abstract 

The purpose of this experimental research was to determine whether using delta-MELD 

as a criterion for the liver transplant patient selection process could improve the U.S. liver 

allocation system.  This research closed a gap in current literature on the utility of delta-

MELD for liver transplant patient selection.  The frameworks of systems theory, the 

analytic hierarchy process, and the Kalman filter contributed to the development of 2 

simulation models of the liver allocation system: one that used delta-MELD and one that 

did not use delta-MELD.  The research question examined whether using delta-MELD 

could improve the liver allocation system by reducing the number of patients dropping 

off the wait list and lowering the average MELD score.  Statistical t tests of 2 

independent scenarios (allocation with and without delta-MELD), each with 70 runs of 

180 simulated days on the liver allocation wait list, did not indicate a significant 

improvement to the liver allocation system by using delta-MELD for liver allocation.  

However, observations made from the simulation experiment, such as the median patient 

wait time being 11 months and delta-MELD being more variable at the end-stage of liver 

diseases, provided insights into how to improve the model of the liver allocation process.  

In addition, observations made from the status 1 patient subgroup (patients in ICU with 

about 7 days to live), which were excluded from this research, suggested including status 

1 patients and expanding the simulation timespan from 180 to 360 days to better capture 

the delta-MELD variability from patients at the end-stage of liver disease.  This research 

provides empirical evidence on the applicability of the delta-MELD criterion for non-

status 1 patients, and yields recommendations to include status 1 patients in an improved 

simulation of the donor liver system while using delta-MELD as criterion. 
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Chapter 1: Introduction 

Due to dissatisfaction with the existing liver allocation system and to improved 

predictive models, the U.S. liver allocation system was revised in 2000 in an effort to 

better balance the urgency and utility tradeoffs (Freeman, 2009).  Bernardi, Gitto, and 

Biselli (2011) found that the model for end-stage liver disease (MELD) scoring system 

was originally developed by the Mayo Clinic in Rochester, Minnesota to predict the risk 

of death in patients undergoing liver transplant and was validated as a reproducible and 

reasonably accurate predictor of mortality in patients with chronic liver disease.  From an 

urgency point of view, the MELD score offered multiple advantages for prioritizing 

waiting liver transplant candidates.  Freeman (2009) further explained that outside of the 

liver allocation role which the MELD score supports, many liver transplant researchers 

have reported that changes in the MELD score over time (delta-MELD) have been 

associated with increased waiting list mortality.  However, the most significant changes 

tend to occur very late in the course of the disease, which could limit the prognostic 

usefulness of the delta-MELD measurement.  On the other hand, Foxton et al. (2006) and 

Young et al. (2006) suggested that the current system can further be refined by the use of 

delta-MELD, the change in MELD score over time.  However, there have been 

limitations regarding how delta-MELD should be interpreted and computed as a predictor 

of disease progression and waiting list death.     

 In this research, I investigated the utility of the delta-MELD parameter for 

refining the MELD-based allocation system.  Currently, the MELD scores can be used 

consistently across all types of patients with chronic liver diseases regardless of the 
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country or region, and regardless of the biases clinical observers may have in assessing 

liver disease severity.  Hence, any improvement to the existing MELD-based scoring 

system would tend to be MELD-based (Bernardi et al., 2011). 

 Bambha et al. (2004) described the MELD score as a formula of three parameters 

to indicate the level of liver disease severity.  The MELD score is calculated using serum 

creatinine, serum total bilirubin, and the international normalized ratio (INR) according 

to the following formula as is currently used by the United Network for Organ Sharing 

(UNOS) organization.   

 ���� = 9.57 ∗ ��
�  ����������� (�
/��) 

  + 3.78 ∗ ��
�  ����� ��� (�
/��) 

 + 11.20 ∗ ��
�  $%& (�
/��)  + 6.43    (1) 

Bambha et al. (2004) also provided the definition of delta-MELD as the 

difference between the current-MELD score and the lowest of all serial-MELD scores in 

the preceding 30-day window.  Thus, delta-MELD is defined as the maximum change in 

MELD score over a 30-day period.  Current-MELD is defined as the most recent MELD 

score available for each patient.  The timing of the current-MELD score depends upon 

the time lag used in the model.  Bambha et al. concluded that the predictive value of 

delta-MELD is limited, and that further studies based on prospectively collected 

laboratory data in which the frequency of MELD measurements are controlled could 

address this issue more definitively.  However, other researchers have suggested that 

delta-MELD can be beneficial towards the improvement of the MELD system (for 
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example Foxton et al., 2006; Young et al., 2006).  This is the conflict and gap that was 

investigated in this research. 

In Chapter 1, I describe the background, problem statement, purpose, theoretical 

framework, research questions, and nature of study of this research.  The limitations, 

assumptions, and social implication of this research are also provided.  Chapter 1 also 

contains a content description of Chapter 2 and Chapter 3. 

In Chapter 2, I provide the literature review with explanations of the investigation 

of the delta-MELD parameter, background on the objectives of the liver allocation 

system, data collection methods, and decision-making methods that would address the 

research questions.  The literature review contains an evaluation of multiple objectives of 

the liver allocation system, the criteria for each of the objectives, and the statistical and 

decision-making methodologies proposed for the simulation model.   

In Chapter 3, I describe the implementation of the simulation model, the 

simulation experiment, the data to be collected, the computations, and the meaning of the 

output data.  Furthermore, in Chapter 3, I provide details of the analytic hierarchy process 

(AHP) parameters and the AHP decision process, and the functions behind the four 

processes of the research simulation.  I also provide description on the reliability and 

validity of the research data collection, data processing, and data analysis of the 

simulation scenarios with and without delta-MELD as a decision-making criterion.   

Definitions 

ABO: A, B, AB, and O blood types and their subtypes when used for allocation 

(Organ Procurement and Transplantation Network, 2014). 
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Analytic hierarchy process (AHP): A structured technique for organizing and 

analyzing multiple criteria for decision-making based on mathematics and psychology 

(Saaty, 1996). 

Acute liver failure (ALF): Acute liver failure is a medical condition that includes 

the rapid loss of liver function, in a matter of days or weeks, usually in a person with no 

pre-existing liver disease (O’Grady, 2012). 

Cold ischemic time (CIT): Cold ischemic time is the amount of time, usually 

about 12–18 hours, after a donor liver is harvest for transplantation.  Reducing the cold 

ischemia time would improve the quality of the transplanted liver and CIT can be 

lowered by lowering the logistical and transportation time (Burr & Shah, 2010). 

Current-MELD: The most recent MELD score available for each patient (Bambha 

et al., 2004).  

Delta-MELD: The calculated difference between the current-MELD score from 

the lowest of all serial-MELD scores in the preceding 30-day window.  Thus, delta-

MELD is defined as the maximum change in MELD over the 30-day period (Bambha et 

al., 2004). 

Donor risk index (DRI): Donor risk index is a measurement of the donor liver 

quality based on nine factors (Foxton et al., 2010). 

 Expanded criteria donor (ECD): Organ Procurement Organizations consider 

certain conditions of a donor to be expanded criteria donor (ECD) for a liver transplant 

and the patient has to give informed consent to accept the liver.  These conditions may 

include a donor’s age of 70 years or above, a donor who is age 60 years with significant 
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medical history, or a donor with a history of hepatitis B or hepatitis C (Rodrique, Hanto, 

& Curry, 2011). 

 Graphical user interface (GUI): Graphical user interface is the interface that 

provides text-based or graphical information to the user via a computer interface. 

 Hepatocellular carcinoma (HCC): Hepatocellular carcinoma is a liver cancer and 

it is also known as malignant hepatoma. 

Model for end-stage liver disease (MELD): Model for end-stage liver disease 

score is used to quantify the severity of end-stage liver disease for liver transplant 

planning (Bernardi, 2011). 

Organ Procurement Organization (OPO): Organ Procurement Organization is an 

organization accepted as a Member and is authorized by the Centers for Medicare and 

Medicaid Services (CMS) to procure organs for transplantation.  For each OPO, CMS 

defines a geographic procurement territory within which the OPO concentrates its 

procurement efforts.  No OPO is limited to or granted exclusive procurement right to 

procure organs in its territory (Organ Procurement and Transplantation Network, 2014). 

Organ Procurement and Transplantation Network (OPTN): Organ Procurement 

and Transplantation Network is an organization governed by the U.S. Department of 

Health and Human Services and is formed by multiple committees to develop organ 

transplantation policies (Organ Procurement and Transplantation Network, 2014). 

Pediatric end-stage liver disease (PELD): PELD score is the pediatric version of 

the MELD score for the purpose of liver transplant planning (Organ Procurement and 

Transplantation Network, 2014). 
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Scientific Registry of Transplant Recipients (SRTR): Scientific Registry of 

Transplant Recipients is a national database of transplant statistics. (Scientific Registry 

for Transplant Recipients, 2012). 

Serial-MELD: The MELD scores collected over the 30 day window serially 

(Bambha et al., 2004).   

Standard criteria donor (SCD): Standard criteria donor liver comes from a 

decease donor who is brain dead, but still has a beating heart, albeit may be supported by 

a respirator.  Unless the donor liver has been evaluated to have certain risk factors, it is a 

SCD liver for liver transplant (Rodrique et al., 2011). 

Survival outcomes following liver transplantation (SOFT): SOFT score is based 

on the MELD score and other risk factors for assessment of overall survival outcomes in 

order to consider waitlist mortality against posttranplant mortality (Rana, et al., 2008). 

Transplant center: A hospital that is a member in which transplants are 

performed.  It is the responsibility of the transplant surgeon of the transplant center 

receiving the organ to offer the surgeon’s candidate to ensure medical suitability of donor 

organs for transplantation into the potential recipient according to the candidate’s blood 

type and subtype (Organ Procurement and Transplantation Network, 2014).  

Transplant program: A transplant center, or hospital, may have one or more 

transplant programs.  Each program oversees transplantation of one or more organ types 

(Organ Procurement and Transplantation Network, 2014). 
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United Network for Organ Sharing (UNOS): United Network for Organ Sharing 

is a private, non-profit organization that manages the nation’s organ transplant system, 

under contract with the federal government (United Network for Organ Sharing, 2014). 

Waiting list: This list is a computerized list of candidates who are waiting to be 

matched with specific donor organs in hopes of receiving transplants.  Waiting list 

candidates are registered on the Waiting list by member transplant centers.  The 

candidate’s transplant program would be responsible for ensuring the accuracy of 

candidate ABO data on the waiting list (Organ Procurement and Transplantation 

Network, 2014). 

Background 

Malinchoc et al. (2000) from the Mayo Clinic in Rochester, Minnesota, devised a 

mathematical model to prioritize patients for liver transplantation based on medical 

urgency, named the Mayo end-stage liver disease score.  This model was proved to 

accurately predict the probability of death within three months after the procedure.  

Subsequently, the model name was changed from Mayo end-stage liver disease to model 

for end-stage liver disease (MELD) and it was successfully validated in patients with 

different liver disease severity.  Bernardi et al. (2011) explained that because of this, the 

time has come for a sickest-first policy to be reliably fulfilled, and the MELD score 

became the means to allocate donor livers for medical transplant in the United States 

from February 2002.  Bernardi et al. further explained that MELD has several features of 

an ideal prognostic model to predict the probability of survival.  It incorporates objective 

variables readily determined in all laboratories and each of these variables is weighted 
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according to the influence on prognosis.     

 Bernardi et al. (2011) further elaborated that the MELD score is not a time-

dependent model, because it is computed by a single measurement of laboratory 

parameters.  In an attempt to weigh the time-related changes, the delta-MELD which is 

defined as the difference between the MELD score calculated at two time points has been 

proposed.  Bernardi et al. noted that studies showed this new score was able to predict the 

mortality risk of patients more accurately than standard MELD score alone.  However, 

Bernardi et al. also noted that there have also been other studies debating its usefulness in 

predicting survival on the waiting list.   

 Having a time-dependent variable as a criterion could be beneficial to the liver 

allocation system because a time-dependent parameter such as delta-MELD could help 

align the MELD scores more accurately when assessing patients’ status upon an arrival of 

donor liver.  This is because pretransplant patients would not have the same time-stamps 

of their latest MELD scores, and their MELD scores could vary due to liver deterioration 

when an actual donor liver is made available.   

Young et al. (2006) acknowledged that the allocation of donor livers through the 

MELD score, implemented in the United States on February 2002 by United Network for 

Organ Sharing (UNOS), has resulted in a fall in waiting list deaths in the United States.  

In addition, liver transplant centers in the United States are able to transplant a sicker 

population of patients with no deterioration in results.  Foxton et al. (2006) suggested that 

the current system can further be refined by the use of delta-MELD, the change in MELD 

score over time.  However, there have been limitations regarding how delta-MELD 
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should be interpreted as a predictor of disease progression and waiting list death.     

 Young et al. (2006) also concluded that there is value in using delta-MELD score 

for decision-making regarding the allocation of donor livers.  However, there has been a 

problem calculating delta-MELD due to the various collections of MELD data.  Hence, 

the data collected and studied by Young et al. has been considered biased.  Young et al. 

concluded that a study designed to minimize data collection bias was needed to fully 

clarify the role of delta-MELD in liver allocation.  Young et al. also concluded that using 

MELD and delta-MELD in allocation decision-making could possibly improve overall 

outcomes by allocating livers more efficiently to reduce waiting list deaths. 

 Rahman and Hodgson (2001) divided acute hepatic failure (AHF) into three 

categories, which are hyperacute, acute, and subacute.  Hyperacute is when 

encephalopathy is developed within 7 days after the onset of jaundice.  Acute is when 

encephalopathy is developed in 8 to 28 days after the onset of jaundice.  Subacute is 

when encephalopathy is developed in 5 to 26 weeks after the onset of jaundice.  These 

classifications of hepatic failure suggest that not all liver diseases deteriorate at the same 

rate or that the MELD score alone is an indicator of the most urgent patient in need of a 

liver transplant.  In the current donor liver system, when multiple matching recipients 

have the same MELD scores, the patient who waited longest rather than the patient with 

the faster deteriorating disease, will get the transplant.   

Problem Statement 

 While there has been elaborate research on the MELD-based topic, there is a  

gap in scholarly literature clarifying whether the delta-MELD parameter used as a 
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recipient criterion in addition to the MELD score, together as primary criteria, could 

refine the liver allocation system.  Specifically, no research has been conducted in current 

literature to analyze how using the delta-MELD parameter in addition to the MELD score 

as a liver transplant selection criterion would affect the number of liver patients saved by 

liver transplants.  Overcoming a data collection bias of delta-MELD, as described by 

Young et al. (2006), through statistical time series analysis techniques can depict an 

accurate account of disease progression and in predicting patient waiting list outcomes. 

Purpose 

The purpose of this research was to address the lack of scholarly understanding 

about the utility of the delta-MELD criterion by investigating whether using the delta-

MELD criterion can improve and refine the liver transplant patient selection process of 

the U.S. liver donor allocation system.  Cholangitas and Burroughs (2012) stated that an 

ideal donor liver allocation model should not only be able to allocate according to the 

highest probability of dying before liver transplant, but also be able to predict which 

patients have the lowest post-liver transplant mortality in order to improve utility (i.e. a 

survival benefit system).  In this research, I investigated whether the utilization of the 

delta-MELD parameter could help reduce patients from dropping off of the waiting list 

due to being too sick to undergo liver transplant as well as reduce the average MELD 

score among pretransplant patients waiting for liver transplant.   

 O’Grady (2012) noted that patients undergoing liver transplantation with more 

advanced MELD scores are more likely to have acute liver failure and have longer stays 

in intensive care environments.  Although this may not affect the outcome of post liver 
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transplant, O’Grady noted that it is still an important medical transplant practice to 

understand the different patterns of disease progression and to be able to assess prognosis 

based on recognized prognostic models.  For this reason, this research refers to delta-

MELD that is based on the Kalman estimation reflecting MELD progression. 

 There has been a problem in calculating delta-MELD due to the various collection 

methods of MELD data (Foxton et al., 2006; Young et al., 2006).  Overcoming a data 

collection bias of delta-MELD through statistical time series analysis techniques could 

depict a real-life account of disease progression as well as predict patients’ waiting list 

MELD outcomes. 

Framework 

The theoretical frameworks that shaped the simulation model and framed the 

research questions were based on multi-criteria decision-making techniques of the 

operations research discipline, and time series forecasting and estimation methods from 

mathematical statistics.  The research framework also has the objective of the U.S. 

Federal law that mandates a sickest first system that would be employed for ranking 

candidates for liver transplantation based on medical urgency (Freeman et al., 2009).  

These methods, techniques, and objective were the conceptual and theoretical 

frameworks for determining whether the liver allocation system could be improved upon.  

They are mentioned here and discussed in greater detail in Chapter 2 and Chapter 3.    

 A multi-criteria decision-making tool for the selection of the most suited and 

sickest patient was useful because there would be multiple objectives and criteria to 

weigh in the selection consideration among the many patients waiting for a donor liver.  
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Winston (2004) described that multi-criteria decision-making could be a complex process 

because when multiple objectives are important to a decision-maker, it could be difficult 

to choose among the many alternatives.  By using a multi-criteria decision-making tool, 

the AHP, the simulation would be an ideal method for reflecting the selection of the most 

suitable patient.  

 Time series analysis is an arm of mathematical statistics that provides tools useful 

for estimation and forecasting of time series values.  Box, Jenkins, and Reinsel (2008) 

explained that an intrinsic feature of a time series is that, typically, adjacent observations 

can be dependent.  The nature of this dependence among observations of a time series is 

of considerable practical interest.  Time series analysis is concerned with techniques for 

the analysis of this dependence.  This research applies time series analysis techniques to 

determine and predict patients’ MELD and delta-MELD parameters.   

 Kalman filter is a technique for forecasting and estimating time series values and 

it has its strength in the observability and controllability of time series data (Brockwell & 

Davis, 2006).  Asemoto (2010) described the Kalman filter as a statistical algorithm that 

enables certain computations to be carried out for a model cast in state space form.  The 

Kalman filter is also known for its simplicity and straightforwardness of its algorithm.  

This research employed a time series prediction of liver disease progression in order to 

aid in the simulation model in computing the delta-MELD parameter for the selection of 

compatible transplant recipients. 

In summary, the theoretical frameworks that shaped the simulation model and 

framed the research questions were the AHP technique and the Kalman filter.  And the 
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conceptual framework was to meet the objective of the U.S. Federal law that mandates a 

sickest first system that would be employed for ranking candidates for liver 

transplantation based on urgency (Freeman et al., 2009).  These methods contributed to 

the development of a simulation experiment to determine whether the current liver 

allocation system could be improved upon. 

Research Questions 

 Gotthardt et al. (2009) argued that their study was not only an analysis of the 

number of deaths on the waiting list but also an analysis of the number of removals from 

the waiting list due to patients’ poor condition.  These combinations of numbers more 

accurately reflect the natural history of liver diseases.  Gotthardt et al. also stated that 

while their data do not argue against the use of MELD scores to be taken to prioritize 

patients during the initial period on the waiting list, their study showed that for patients 

with longer times on waiting list, additional factors for assessment of patient prognosis 

could assist in the development of a new scoring system for allocation.  Hence, the 

following were the research questions for this research.  

1. Does a simulation model using the additional parameter of delta-MELD as a 

patient selection criterion reduce the number of pretransplant patients who 

dropped off of the waiting list? 

 The null and alternative hypotheses are as follows for the first research question: 

 Ho: There is no difference in the number of patients who dropped off of the 

waiting list between simulation models with and without delta-MELD along with the 

MELD score as primary criteria for patient selection in donor liver allocation. 
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 Ha: There is a difference in the number  of patients who dropped off of the 

waiting list between simulation models with and without delta-MELD along with the 

MELD score as primary criteria for patient selection in donor liver allocation.  

 Quante, Benckert, Thelen, and Jonas (2012) stated that the implementation of the 

MELD score system in Europe affected a change not only by the reduction in waitlist 

mortality among pretransplant patients, but also in the average MELD score that 

increased among pretransplant patients.  This trend is also reflected in the Eurotransplant 

Annual Report 2010, which describes a 24% increase in the number of high-MELD 

recipients within the total population of liver-graft recipients in 2010 compared with 

2009.  Hence, the null and alternative hypotheses are as follows for the second research 

question. 

2. Does a simulation model using the additional parameter of delta-MELD as a 

patient selection criterion lower the average MELD score among pretransplant 

patients?   

Ho: There is no difference in the average MELD score among pretransplant 

patients between simulation models with and without delta-MELD along with the MELD 

score as primary criteria for patient selection in donor liver allocation. 

Ha: There is a difference in the average MELD score among pretransplant patients 

between simulation models with and without delta-MELD along with the MELD score as 

primary criteria for patient selection in donor liver allocation. 
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Nature of Study 

This quantitative simulation experiment investigated the utility of the delta-

MELD parameter for decision-making in liver transplant patient selection.  This research 

used a simulation model that was unlike any previous research on the study of the delta-

MELD parameter because of its unique approach to compute part of the MELD scores 

based on the Kalman estimation.  The Kalman filter was also used to generate and 

simulate the disease progression of patients that are on the waiting list for a donor liver.  

In addition, the technique of AHP was used to simulate the decision-making process of 

the existing and proposed patient selection criteria of the liver allocation according to 

OPO hierarchy of priority. 

 The experiment simulated two scenarios, one that would reflect the current 

system’s utilization of the MELD score as a primary criterion, and another scenario that 

utilized both MELD and delta-MELD scores as primary criteria in determining medical 

urgency.  The two scenarios, utilizing and not utilizing delta-MELD as criterion, counted 

the number of patients who dropped off of the waiting list and computed the average 

MELD over a 180-day period.  This quantitative study generated the values of patients 

removed and average MELD from the two scenarios for statistical comparison. 

 The data used in this simulation model include secondary data from the United 

Network of Organ Sharing Organization’s Standard Transplant Analysis and Research 

(UNOS STAR) database.  The data consisted of both patient and donor liver data.  Patient 

data included age group, gender, race, primary cause of disease, transplant history, blood 

type, MELD scores, date of MELD scores, time on wait list, and status.  Donor liver data 
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included donor age, donor height, donation after cardiac death donors, split liver donors, 

race, donor’s cause of death from cerebrovascular accident, regional sharing, local 

sharing, and cold ischemia time.  Patient data supported the patient and disease 

progression simulation portion of the scenarios.  Multiple and sequential MELD scores 

records taken over time determined the patients’ delta-MELD scores.   

 The simulation model is a software program that is comprised of four components 

or processes.  These four components included patient waitlist entry, donor liver arrival 

which performs scoring processing for liver recipient selection, patient disease 

progression, and waitlist patient management.   

 This quantitative study addressed the research questions by formulating a time 

series estimation of patients’ illness based on known and estimated MELD, and delta-

MELD scores.  This research applied a multi-criteria decision-making process consisting 

of the proposed new criterion, and performed statistical t tests of two independent 

populations for comparison of the system utilizing delta-MELD scenario against the 

existing system’s scenario. 

 The elements crucial to the simulation included MELD and delta-MELD patient 

data.  I performed t tests of two independent populations (with and without delta-MELD 

criterion) to determine whether the delta-MELD parameter is useful for patient selection. 

Significance of Research 

In this research, I investigated the delta-MELD parameter as a transplant patient 

selection criterion.  The delta-MELD parameter was helpful for its predictive attributes 

when assessing pretransplant patients’ prognosis because it helped to align and predict 
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patients’ health statuses upon the arrival of an available donor liver.  Gotthardt et al. 

(2009) stated that an effort that could improve the MELD system would involve 

analyzing the change in MELD scores over time, bearing in mind that this dynamic 

variable would reflect the dynamic of the disease.  Gotthardt et al. further explained that 

several attempts have been made where some studies concluded that the delta-MELD 

score had better prediction ability for mortality than the baseline MELD score, while 

other studies concluded that delta-MELD was not as predictive compared to the most 

updated MELD score.  This suggested that an in-depth study still needs to be conducted 

but with different supporting methodologies.  This research could potentially improve 

upon the current allocation system by including the use of the delta-MELD parameter as 

a criterion for patient selection in order to reduce the number of patients from dropping 

off of the waiting list and to reduce the average MELD score of waiting list patients.  

Strategies used in this study are a methodology for forecasting and estimating liver 

disease progression and the use of a multi-criteria decision-making process, while 

incorporating the multiple processes of the liver allocation system.  This research 

provided further understanding on the usefulness of the delta-MELD parameter. 

Implications for Social Change 

The implication of positive social change is the potential of saving more lives 

through an improved decision-making system for allocating donor livers to transplant 

patients.  Time series prediction technique could be applied to other areas of health care 

for better control and management of disease progression.  This research helped to 

promote using knowledge of disease progression into the decision-making refinements 
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for the donor liver allocation system.   

 Quante et al. (2012) noted that, in December 2006, the MELD score system was 

implemented as the basis for new liver allocation system in many countries within the 

Eurotransplant area.  Cholongitas and Burroughs (2012) also noted that the MELD 

system adopted by Eurotransplant helped to allocate organs in seven countries of central 

Europe: Austria, Belgium, Croatia, Germany, Luxemburg, the Netherlands, and Slovenia.  

Since then, there was a significant reduction in waiting-list mortality in Europe.  This 

affected a social change in the reduction in waiting-list mortality among pretransplant 

patients.  A potential refinement to the liver donor system by including delta-MELD to 

patient selection criteria could benefit the transplant community in the United States and 

in Europe in two ways.  The donor allocation system could be more effective in achieving 

the sickest first policy, and thus, would provide a more fair system for the recipients. 

Scope and Delimitations 

This research was limited to the investigation of the delta-MELD.  Although the 

donor risk index (DRI) was considered in the multi-criteria decision-making, and this 

research referenced the DRI, the DRI values were the same for both before and after 

(utilizing delta-MELD) simulation scenarios.  The delta-MELD was the sole interest of 

this study.  The prediction of MELD scores was limited only to supporting the simulation 

and was not meant to be used for prognosis.  The propagated MELD scores used in the 

simulation were intended to project the MELD scores in future time and in accordance 

with secondary data. 
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In this research, I included data from the UNOS STAR database.  I used a 

simulation model to simulate and fill in additional MELD scores that were estimated 

MELD scores in order to support a sequence of MELD scores so that the derivation of 

delta-MELD values was possible.  This was done because secondary data may not have 

enough MELD values to formulate delta-MELD values throughout a 180-day timeline. 

The 2010 American Association for the Study of Liver Diseases guidelines 

advised against the use of prognostic models in an individual patient (Siciliano et al. 

2012).  The simulation used de-identified patient and donor liver data.  The simulation’s 

processing and output data of MELD average and number of patients dropped from 

waitlist cannot be used to single out any individual patient.  In addition, the research was 

limited to adult liver donations, adult transplant patients, non-HCC patients, and non-

status 1 patients.   

This research limited the use of the UNOS STAR database for the simulation to 

data from the recent five years of 2008-2012, and from one region, Region 9. The 

purpose for this was to limit the simulation’s scope from the need to concern with cold 

ischemia time and the varying MELD averages of additional regions, by focusing solely 

on one region from the recent five years, 2008-2012.  Region 9 is confined to the area of 

New York state and western Vermont. 

Assumptions 

Massie et al. (2011) explained that although MELD was adopted to estimate the 

short-term (90-day) risk of waitlist mortality, it is believed to underestimate such risk for 

certain patients with non-normative conditions.  Some diseases have low risk of short-
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term mortality, but require transplant before progression to the point of irreversible 

complications.  For such cases, additional MELD points can be granted, and these 

patients receive priority based on the exception MELD rather than the calculated MELD.  

The Organ Procurement and Transplantation Network (OPTN) policies originally 

allowed exception points for certain recognized exceptional diagnoses such as 

hepatocellular carcinoma (HCC) and hepatopulmonary syndrome (HPS).   

The two categories of liver diseases are cholestatic and noncholestatic.  The 

assumption is that the exception points are already incorporated in the patient data for the 

noncholestatic disease of HCC.  It is known that HCC patients receive exception MELD 

points that are not derived from the MELD formula.  This research filtered out HCC 

patients for the simulation to allow the MELD scores to be comparable to other MELD 

scores without the concern of how the exception points were applied. 

Limitations 

Simulation limitations, such as using the simulation sampling intervals of 180-day 

instead of 360-day in duration, along with using a limited data sampling from the OPO 

Region 9, may have masked the true effect of delta-MELD, and prevented the t tests from 

producing a significant outcome.  This may be because while OPO Region 9 has many 

liver transplant patients, it is also a region of many organ donors.  This could be the 

predominant factor for keeping the waitlist MELD averages low, and possibly reducing 

the occurrence of waitlist patients from having sizable delta-MELDs in this limited data 

sample.  The delta-MELD values usually have more variability near the end-stage of 

patients’ liver disease (Freeman, 2009), and the simulation model may not have used a 
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duration that was long enough to allow the patients’ disease progression to follow its 

course to completion in order to encounter the variability in delta-MELD values. 

 Finally, the simulation employed two main theoretical frameworks, the Kalman 

estimation for simulating disease progression, and the AHP for simulating decision-

making.  The AHP was used for its sophistication and straightforwardness in applying the 

same decision criteria to all patients.  However, in actuality, the selection of patients is 

likely based on physicians’ medical experience, expertise, and knowledge of patients’ 

medical history (Bernardi et al., 2011), while weighing other factors in addition to the 

AHP criteria.  Many times, transplant physicians are knowledgeable of their patients’ 

medical history, allowing them to see subtle changes to their patients’ conditions 

(Schiano, 2012), which this simulation model or any simulation model may not be able to 

replicate, given only the UNOS STAR database to work with.  
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Conclusion 

The supporting methodologies of this research, AHP and Kalman filter, may be 

new to the health care field and may be new to the donor liver allocation scoring system.  

The research question was to determine whether the parameter of delta-MELD should be 

used, in addition to the MELD score together as primary criteria, for patient selection.  As 

a patient selection criterion, delta-MELD could potentially improve the liver allocation 

system by reducing the number of pretransplant patients from dropping off the waiting 

list and by lowering the average MELD score among pretransplant patients.   

The conceptual framework included the delta-MELD and MELD being primary 

criteria for patient selection decision-making process for selecting the most urgent patient 

in need of a liver transplant.  The underlying theoretical frameworks for the simulation 

were applying the Kalman filter and the AHP technique into the scenarios of the existing 

and proposed liver allocation system.   

By using the conceptual and theoretical frameworks, the decision-making process 

could potentially be refined and equitably judged among the patients waiting for a liver 

transplant.  An additional strategy for the simulation was taking a systems perspective of 

the liver allocation system.   

In Chapter 2, I present a literature review to explain why the investigation of the 

delta-MELD parameter is needed and how the chosen methodologies could bring further 

understanding regarding delta-MELD.  In the literature review, I examine and conclude 

the need to bring forth a different set of methodologies which include statistical 
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prediction, criteria and decision-making development, and a systems perspective into the 

simulation to address the research problem. 
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Chapter 2: Literature Review 

In this introduction, I outline and describe the structure of the literature review.  In 

the first section, I describe the MELD of the donor liver allocation system, its problem 

and gap in research, and the methodology that was used in the simulation model to 

determine whether the MELD system could be refined.  The similarities and differences 

of various MELD-based models are presented.  Among the MELD-based models, the 

delta-MELD is discussed as a potential donor liver allocation criterion.  In the literature 

review, I reveal an unresolved problem of delta-MELD being a viable criterion for donor 

liver allocation.  Kalman filter is a statistical methodology that could provide MELD 

estimations in order to establish consistently measured delta-MELDs.  The Kalman filter 

can provide MELD data based on existing MELD values in order to compute delta-

MELD.   

 In the second section of the literature review, I evaluate the decision-making 

process of the donor allocation system that meets the objectives of urgency (sickest first), 

utility, and survivability.  The DRI and the expanded criteria donor (ECD) are also 

evaluated.  The survival outcomes following liver transplantation (SOFT) scoring system 

is reviewed which meets both urgency and utility objectives.  The AHP model for 

multiple criteria and objectives was proposed for decision-making of the liver allocation 

system.  In the literature review, I evaluate the usefulness and flexibility of AHP for 

analyzing the delta-MELD parameter as an additional criterion for donor liver allocation. 

 The literature search was based on reviewing liver transplant topics through the 

journals of American Journal of Transplantation, Liver Transplantation, Journal of 
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Hepatology, and BMC Gastroenterology.  These peer-reviewed journals are either open 

access or are on-line journals accessible via the internet.  Subsequently, the references 

used by these articles led to other peer-reviewed journals such as Langenbecks Archive of 

Surgery, International Journal of Hepatology, Transplant International, and Hepatology 

International.  As the search developed, other medical, health, and management journal 

databases were referenced.  Initially, the key words used to search these articles were 

liver allocation, liver transplant, liver procurement, waitlist, MELD, and liver donation.   

In the literature review, I conclude by summarizing the major points of the 

literature review and describe the purpose of the research simulation.  The simulation 

model includes the patients entering and exiting the waitlist, the progression of patients’ 

illnesses, the arrival of available livers, and the selection of a compatible recipient 

reflected by theoretical frameworks of the Kalman filter and AHP. 

The MELD Era  

MELD Variable 

In this first section of the literature review, I define the MELD, provide 

background and history of the MELD as it relates to the liver allocation system, identify 

and review the MELD-based models where the studies have been concluded, and identify 

and review the MELD-based models where the studies were inconclusive due to 

conflicting findings.  In this literature review section, I also summarize how the MELD 

had positively impacted but also provided limitations to the liver allocation system, and 

review the effect of MELD in the transplant community of the United States, Europe, and 

Brazil.  In the next section of the literature review, I reveal the trends of the MELD 
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system and discuss how the objective of attending to the sickest first policy (urgency) 

further led to the implementation of urgency, utility, and survivability objectives for 

decision-making on donor liver allocation.  Bernardi et al. (2011); Teixeira de Freitas et 

al. (2010); Bahra and Neuhaus (2011); and Quante et al. (2012) acknowledged the 

advantages of the MELD system in the United States, Europe, and Brazil, particularly for 

shortening the waiting list and wait time for available donor livers.    

 In 2000, Malinchoc et al. (2000) from the Mayo Clinic in Rochester, Minnesota, 

devised a mathematical model to predict the probability of death within three months 

after the procedure.  The model name was called MELD and it was successfully validated 

in patients with different liver disease severity, and from different geographical and 

temporal origin.  Bernardi et al. (2011) explained that what made MELD an ideal 

prognostic model is its reliability in predicting the probability of survival.   

 Bernardi et al. (2011) further noted that MELD possessed predictive 

characteristics, the ability to provide a continuous ranking of disease severity, and the 

characteristic of being independent from the etiology of the liver disease.  The impact of 

the MELD-based liver allocation policy had been impressive.  New registrations on the 

waiting list suddenly dropped and the removal rate for death or disease progression also 

steadily declined.   

 Bernardi et al. (2011) explained that the adoption of the MELD to select and 

prioritize patients for liver transplantation represented a turning point in donor liver 

allocation.  Prioritization of transplant recipients had switched from time accrued on the 

waiting list to the principle of “sickest first” (p. 1297).  The simplicity of the MELD 
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score is in the incorporation of three laboratory parameters, serum creatinine, bilirubin, 

and INR for prothrombin time.  Patients are also then stratified according to the disease 

severity in an objective and continuous ranking scale.  Further advantages associated with 

implementing the MELD was a decrease in the median waiting time to transplant.  Yet, 

the MELD limitations are related to the variability of the parameters and in the inability 

to predict mortality accurately in specific settings.  Bernardi et al. discussed that these 

limitations of the MELD include not properly accounting for factors related to certain 

liver diseases where their progression are not weighted into the MELD scores such as 

with HCC. 

 While Bahra and Neuhaus (2011) also noted that MELD is limiting when scoring 

patients with HCC, Bahra and Neuhaus introduced the definitions of MELD-based 

allocations, labMELD, and a MELD-based concept called matchMELD which is a 

modification of the calculated MELD.  The calculated MELD, or labMELD, was 

developed primarily for viral or ethyltoxic liver cirrhosis.  In cases of HCC, the 

labMELD fails to indicate the urgency for liver transplantation.  In this case, the MELD 

score will increase after implementing a defined criterion of standard exceptions.  

 Bahra and Neuhaus (2011) further noted that in the pre-MELD era, organ 

allocation was usually center-based, which meant that waiting list management was in the 

hands of the transplant center.  The transplant center has the opportunity to decide which 

patient on the waiting list would receive the next available organ.  Factors such as patient 

priority, clinical conditions of the recipient, donor organ quality, donor age, and other 

logistic aspects are included in the decision.  The criteria of this allocation system 
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included patient urgency, blood group similarity, length of time a patient has been 

waiting for a transplant, size, other compatibility, and geographic location of the recipient 

hospital with regard to the donor hospital.  In addition, a byproduct of the MELD 

allocation system was that good quality organs were usually preferentially allocated to 

patients with high morbidity (comparable to patients with MELD > 30).  Bahra and 

Neuhaus questioned whether this allocation system was always fair.  However, currently, 

there is a general consensus that organs with a high DRI should not be allocated to a high 

MELD scoring patient because of a significant increase in chance of posttransplant 

complication and death.  

 Bahra and Neuhaus (2011) argued that patients with HCC would usually achieve 

their matchMELD scores only through standard exceptions.  Those patients usually have 

a labMELD score of less than 20, leading to a decreased rate of patients requiring 

intensive care after liver transplantation.  Patients with matchMELD of 37 are not 

comparable to patients with labMELD of 37.  Bahra and Neuhaus believed that this is a 

reflection of how the MELD system has some significant weaknesses compared to the 

diagnosis of a team of experienced physicians. 

 Teixeira de Freitas et al. (2010) likewise confirmed that end-stage liver disease is 

considered one of the major causes of death in the United States and its treatment is a 

major health dilemma.  Teixeira de Freitas et al. explained that the MELD was introduced 

in Brazil for organ allocation in 2006.  MELD score would help assess the severity of 

cirrhosis and predicted mortality.  It would help provide priority to candidates waiting for 

liver transplants with more severe diseases.  It also would help prioritize patients with 
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HCC.  Before the MELD was introduced, organ allocation was based mainly on 

chronological waiting time.   

 Texiera de Freitas et al. (2010) explained that in one Brazilian center, after the 

introduction of MELD score as priority criterion for liver transplantation, there was an 

increase in the number transplants for patients with HCC.  In the pre-MELD era 16.0% of 

receptors had HCC and in the MELD era 37.5%.  There was no difference in the general 

MELD score of patients with HCC in the two eras.  Excluding the cases of HCC, the 

transplants were performed in patients with more advanced cirrhosis.  Furthermore, there 

were no increases in the indicators of worse prognosis or complications after the 

transplantations and there were no changes in the 3-month and 1-year posttransplant 

survival rate.   

 Teixeira de Freitas et al. (2010) also revealed that the MELD scores of patients 

without hepatocellular carcinoma was 18.2 ± 6 in the MELD era, which is similar to the 

study of Bahra and Neuhaus (2011), and this value was higher in the MELD era than the 

MELD score in the pre-MELD era which was 15.8 ± 4.  Texiera de Freitas et al. 

explained that in Brazil, patients with cirrhosis and hepatocellular carcinoma were listed 

for liver transplantation with MELD exception points as according to the Milan criteria.  

This means that for one nodule of less than 5m in diameter or a maximum of 3 nodules is 

deemed safe, where each of the nodules is less than 3 cm in diameter.  To avoid tumor 

growth beyond the Milan criteria while the patient is on the waiting list, extra points 

could be added to the MELD score.  Therefore, some patients with HCC would be 

transplanted earlier in the evolution of cirrhosis.  According to Brazilian legislation, 
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patients with HCC would initially receive 20 extra points to their MELD scores.   

 Quante et al. (2012) explained that the MELD was implemented on December 

16th, 2006 as the basis for new allocation system in many countries within the 

Eurotransplant area.  The MELD model provided a prediction of 3-month mortality 

without liver transplantation.  Quante et al. similarly noted that there are many different 

possible underlying diseases that despite chronic liver decompensation, often have only a 

modest impact on laboratory results, and standard exceptions to the MELD system with 

adjustment of the score, have been defined.  For example, patients suffering from HCC 

are given an adjustment in their MELD score because of the underlying malignancy and 

the consequent anticipated tumor growth during the waiting period.  In addition to HCC, 

there are other risk factors that may not be reflected by laboratory results.   

 Quante et al. (2012) noted a few significant findings regarding waitlist mortality 

and MELD score at time of organ allocation and donor graft quality.  In their center, there 

was a significant reduction in waiting-list mortality from 18% in the year before to 10% 

in the year after the MELD was introduced.  Other single-center results within Europe 

have also confirmed a reduction in waitlist mortality since the introduction of MELD.  

Quante et al. also noted that after the MELD was implemented, there was a significant 

increase in the mean MELD score at the time of liver allocation, reflecting the intention 

to give priority to sicker patients on the waiting list.  In their center, the mean MELD 

score increased from 16.3 points in the year before to 22.4 points in the year after MELD 

introduction.  Since then, there has been a steady increase in mean MELD score within 

the Eurotransplant area, especially in Germany.  In 2010, a mean MELD score of 34 
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points for standard liver allocation, without standard exceptions and without high-

urgency status, was reported in Germany.  In addition, Quante et al. detailed that this 

resulted in worse posttransplant outcomes in the group of high-MELD recipients, which 

in 2010 represented 43% of all liver graft recipients in Germany.   

 In addition to providing exception MELD points for patients with HCC, recent 

literature revealed how the MELD was compared against the Child-Turcotte-Pugh (CTP) 

model, which was previously applied in the United States, and how the MELD is 

considered a better prognostic model.  Recent literature also revealed the outcomes of 

various MELD-based studies.  Finally, a deeper look into the literature would identify 

and detail the various limitations, strengths, and benefits of MELD-based models. 

MELD and MELD-based Models 

Bernardi et al. (2011) explained that the impact of MELD scoring on the donor 

liver transplant allocation system had such an impact, that the period following the 

implementation of the MELD system is referred to as the "MELD era" (p. 1298).  

However, MELD has its weaknesses and many attempts had been underway to improve 

the applicability and reliability of the MELD formula with specific conditions.  These 

attempts were based on the original MELD score as the original MELD is such that it can 

be employed in many settings.  An analysis in the literature review of Huo et al. (2008) 

and Biselli et al. (2010) provided a comparison of multiple MELD-based models. This 

literature review details the benefits of the various MELD-based models.   

 Huo et al. (2008) and Biselli et al. (2010) both introduced, evaluated, and assessed 

various MELD-based models.  Regarding the analysis of MELD-based models, Huo et al. 
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(2008) analyzed four MELD-based models by comparing and contrasting their risk of 

mortality prediction at 3 and 6 months.  The four MELD-based models included MELD, 

MELD-Na, iMELD, and MESO index scores.  Huo et al. explained that the MELD has 

been shown to be more accurate in predicting survival than the Child-Turcotte-Pugh 

(CTP) classification for patients with cirrhosis awaiting liver transplantation in the United 

States.   

According to Huo et al. (2008), the MELD-Na, iMELD, and MESO index 

formulas are as follows (p. 838): 

 ����(%�) = ���� + 1.59 ∗ (135– %�)     (2) 

 ����� = ���� + (�
� ∗ 0.3) – (0.7 ∗ %�) + 100   (3) 

 ��*+ ����, = (����/%�, ��./�) ∗ 100    (4) 

 Huo et al. (2008) compared the short-term prognostic ability of the four models, 

MELD, MELD-Na, iMELD, and MESO index, to determine which MELD-based system 

have a better predictive accuracy in patients with cirrhosis. The criteria to select eligible 

patients included an initial Child-Pugh score of 6 or higher, with no coexisting 

hepatocellular carcinoma or human immunodeficiency virus infection, and a known 

initial MELD score at the time of evaluation and survival status at follow-up after 6 

months.   

 Huo et al. (2008) explained that the iMELD tended to have the highest scores and 

that was followed by the MELD-Na, MELD, and MESO index at the time of initial 

evaluation.  With the c-statistic and 3- and 6- month mortality as the endpoint, the 

estimated Area Under Curves (AUCs) for the four prognostic models in predicting 
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mortality were graphed.  Of all patients, 83 patients or 10.1% of patients died at 3 months 

of follow-up, and 162 patients or19.6% of patients died at 6 months of follow-up.  At 3 

months, the iMELD had the highest AUC (0.807), and that was followed by the MELD-

Na (0.801), MESO (0.784), and MELD (0.773).  At 6 months, the iMELD still had the 

highest AUC (0.797), and was followed by the MELD-Na (0.778), MESO (0.747), and 

MELD (0.735).   

 Huo et al. (2008) concluded that to further improve the MELD-based liver 

allocation system, their studies have found that serum sodium (Na) is an important 

additional predictor of waitlist mortality.  Hyponatremia is associated with severe 

complications of cirrhosis, including ascites, hepatorenal syndrome, and liver-related 

mortality.  It has been suggested that Na should be incorporated into the MELD to further 

enhance the model's prognostic ability, and so a mathematical equation based on both 

MELD and Na known as the MELD-Na, has been developed to predict the 6-month 

mortality in patients with cirrhosis awaiting liver transplantation.   

 Huo et al. (2008) further concluded that the utilization of MELD has been 

demonstrated to have an equal or better ability in short-term or intermediate-term 

outcome prediction over the CTP system.  In addition, the application of the MELD 

system has been shown to be a useful model in predicting the outcome of patients with 

cirrhosis undergoing surgical procedures for hepatocellular carcinoma and non-

hepatocellular carcinoma conditions.  Huo et al. noted that a potential limitation of their 

study is that the majority of the patients had chronic hepatitis B, were older with more 

males, and were taken from Taiwan’s Taipei Veterans General Hospital (p. 843).  The 
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study results indicated that incorporation of Na into the MELD could enhance the 

prognostic accuracy of MELD for outcome prediction.   

 Similarly, Biselli et al. (2010) analyzed the results of six MELD-based score 

systems by comparing and contrasting the risk of mortality prediction.  These six MELD-

based parameters were MELD, UKELD, iMELD, MELD-Na, uMELD, and mCTP.  At 

present, the MELD score is widely used for donor liver allocation, but it has shown some 

limitations.  MELD is not directly influenced by other complications of cirrhosis 

associated with poor survival, such as persistent ascites and hyponatremia.  For this 

reason, many recent studies have evaluated the effects of incorporating other variables 

into the model, such as serum sodium and age.   

 According to Biselli et al. (2010), the formulas of UKELD, iMELD, MELD-Na, 

and uMELD are as follows (p. 965). 

 /0��� = [(5.395 ∗  ln($%&)) + (1.485 ∗ ln (���������, 4���/�)) 

 + (3.13 ∗ ��(����� ���, 4���/�)) 

= (81.565 ∗ ��(%�, ����/�)]  +  435     (5) 

 ����� = ���� +  (�
� ∗ 0.3) – (0.7 ∗ %�) + 100    (6) 

 ����(%�) = ����– %�– [0.0225 ∗ ���� ∗ (140– %�)] + 140  (7) 

  ���� = 1.266 ∗ ln(1 + ����������, �
/��)   

   + 0.939 ∗ ln (1 + ����� ���, �
/��) 

   + 1.658 ∗ ln (1 + $%&)     (8) 

 Biselli et al. (2010) explained that survival was calculated from the time of listing 

to drop-out, liver transplant, or end of the observation period.  Drop-outs included 
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patients being removed from the list because of either death or worsening of their disease 

up to the point that they were too sick to undergo a liver transplant.  Biselli et al. noted 

that at 6 months, the best calibrated score was iMELD.  Furthermore, an iMELD cutoff of 

39 identified listed patients with a worse prognosis more reliably than standard MELD of 

15, whereas no significant difference was found with respect to standard MELD of 18.  

Similar to the study of Huo et al. (2008), at 3 months the iMELD had the highest AUC, 

showing an excellent diagnostic accuracy, followed by MELD-Na, but the comparison 

between AUCs showed that only MELD-Na had a better prognostic power than the 

standard MELD because of a very small standard error in the difference between the 

areas.  At 6 months, the comparison between AUCs showed that only iMELD and 

MELD-Na had a better prognostic power than the standard MELD. 

 Biselli et al. (2010) explained that their study was a comparison of the short-term 

and intermediate-term prognostic ability of the standard MELD with respect to five 

alternative scoring models.  The performance of these scoring models in relation to the 

varying severity of cirrhosis was specifically assessed by calibration analysis.  The 

utilization of the MELD has been demonstrated to have an equal or better ability in short-

term or intermediate-term outcome prediction in comparison with the CTP system.  In 

addition, Biselli et al. similarly found that the application of the MELD system has been 

shown to be a useful model in predicting the outcome of patients with cirrhosis 

undergoing surgical procedures for hepatocellular carcinoma and non-hepatocellular 

carcinoma conditions.  The studies of both Bisseli et al. (2008) and Huo et al. (2008) 

conclusively determined that the MELD-based models could be used to refine the 
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decision-making of liver allocation, particularly the iMELD and MELD-Na models.   

 In addition to providing exception MELD points for patients with HCC, Biselli et 

al. (2010) and Huo et al. (2008) revealed that when the MELD was compared against the 

CTP model, the MELD was considered a better prognostic model over CTP.  Recent 

literature also included MELD-based studies that studied the delta-MELD.  Bambha et al. 

(2004) defined the delta-MELD as the calculated difference between the current-MELD 

score from the lowest of all serial-MELD scores in the preceding 30 day window.  Thus, 

delta-MELD is defined as the maximum change in MELD over the 30 day period.  Delta-

MELD was covered in several studies and was hypothesized to have prognostic 

predictive value (Cholongitas et al., 2006; Foxton et al., 2006; Gotthardt et al., 2009; and 

Young et al., 2006).  However, these delta-MELD studies revealed that there are research 

problems regarding how delta-MELD was computed and interpreted. 

Delta-MELD: Debate and Gap in Literature 

The research of Bambha et al. (2004), Foxton et al. (2006), Young et al. (2006), 

Gotthardt et al. (2009), and Cholongitas et al. (2006) were reviewed on how delta-MELD 

can help refine the MELD system.  These studies also focused on waitlist mortality while 

searching for a refinement for the MELD scoring system.  A summary of their studies 

regarding the delta-MELD would reveal the conflict and inconsistency on the data 

collection for delta-MELD.  Also, a methodology is presented and suggested regarding 

MELD estimation for the derivation of delta-MELD values.   

 The studies of Cholongitas et al. (2006), Bambha et al. (2004), Young et al. 

(2006), and Foxton et al. (2006) not only included MELD-based models, their studies 
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included the analysis of delta-MELD.  Cholongitas et al. acknowledged that the MELD is 

now used for allocation of donor livers, and it has successfully replaced the Child-

Turcotte-Pugh (CTP) model.  However, there are still debates on whether the MELD is 

really superior to the CTP model in predicting mortality in patients with cirrhosis on the 

liver transplant waiting list and after liver transplant.  Cholongitas et al. found from 

multiple studies, that only 4 of 11 showed MELD to be superior to CTP in predicting 

short-term mortality.  In addition, two of three studies evaluating the changes in MELD 

score, delta-MELD, had shown that the delta-MELD had better prediction for mortality 

then the baseline MELD score.  Finally, Cholongitas et al. also noted that several studies 

have shown that the predictive ability of MELD score increases by adding clinical 

variables, such as hepatic encephalopathy, ascites, and laboratory sodium parameters.   

 Cholangitas et al. (2006) evaluated the change in MELD, delta-MELD, in large 

cohorts of candidates on the liver transplant waiting list.  In this evaluation, the delta-

MELD score had better prediction for mortality than the baseline MELD score.  For 

example, an increase of 5 points in delta-MELD during a 30-day period predicts a 

significantly increased risk of death.  Cholangitas et al. also suggested that delta-MELD 

score be a tiebreaker for patients on the waiting list with identical MELD scores.  When 

Cholangitas et al. explained how the delta-MELD, baseline MELD, and CTP were 

compared, the c-statistic showed that delta-MELD at 6 and 12 months was significantly 

better predictors compared to baseline MELD and CTP.  Although it was found that 

MELD was significantly better than CTP in 4 of 11 studies, whereas 7 studies showed no 

statistical difference, there were no studies that showed MELD to be statistically inferior 
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to CTP scores. 

 Gotthardt et al. (2009) argued that an effort to improve the MELD system should 

involve analyzing the change in MELD scores over time while bearing in mind that this 

dynamic variable would reflect the dynamic of diseases in patients.  When Gotthardt et 

al. analyzed a study of delta-MELD of 60 patients, the delta-MELD scores had better 

prediction for mortality than the baseline MELD score.    

 On the other hand, Bambha et al. (2004) explained that their research was focused 

on monitoring waiting list mortality and refining the MELD scoring system.  Using an 

institutional liver transplantation database of serial MELD measurements for each 

patient, Bambha et al. found that the most recent MELD score for a patient awaiting liver 

transplantation was significantly associated with waitlist mortality.  Bambha et al. also 

found that increasing MELD score, estimated by the slope of the line representing the 

changes of MELD scores over the 30-day period preceding the most recent MELD, 

conferred to an increased mortality risk on the waiting list, while decreasing MELD could 

be associated with a decrease in mortality. 

 However, Bambha et al. (2004) noted that an increasing MELD score may simply 

represent an intrinsic, irreversible component of the death process rather than being 

predictive of death in the future.  For example, patients in the terminal phase of their 

disease may be expected to have increasing daily MELD scores during the last few days 

of life due to progressive organ failure.  Bambha et al. further elaborated that when 

collecting laboratory data for calculation of delta-MELD scores, the potential for 

detection bias exists.  For example, patients with acute liver illnesses, regardless of the 



39 
 

 

status of their liver disease, will undergo frequent laboratory tests producing multiple 

observations of MELD scores. 

 Foxton et al. (2006) explained that the MELD score is based on a methodology to 

predict poor survival in patients undergoing a liver transplantation.  Foxton et al. also 

explained that MELD has been validated among multiple groups with liver disease and 

was shown to retain a high concordance with 3-month mortality.  Foxton et al. noted that 

a change in MELD score, delta-MELD, while awaiting transplant has not only been 

suggested as a method of refining liver allocation, but delta-MELD should be examined 

for its impact on patient survival and intensive care stay.  Foxton et al. found that using 

delta-MELD could subsequently help to improve overall outcomes.  Foxton et al. found 

that delta-MELD over a period of 30 days was predictive of waiting list mortality and 

was significantly better than MELD score at the time of listing.  Foxton et al. calculated 

delta-MELD by simply taking the MELD at transplant minus the initial listing MELD.   

Foxton et al. explained that various researchers may vary on how they calculate the delta-

MELD value.  

 Young et al. (2006) also explained that the usefulness of MELD can be enhanced 

if it could also predict posttransplant outcomes.  Predicting posttransplant outcome is 

important, as this would enable a more rational utilization of scarce resources to achieve 

their maximum benefit.  The MELD score has been validated as an accurate tool for 

predicting 3-month mortality in different groups of patients with end-stage liver disease.  

Young et al. further explained that while MELD uses three readily measurable and 

objective parameters of bilirubin, creatinine, and INR in a logarithmic formula to produce 
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a score between 6 and 40, the wider range of MELD values when compared with CTP 

values can more easily allow the sickest patient to be prioritized.  In addition, Young et 

al. similarly found delta-MELD and hyponatreamia to be significant parameters for 

predicting which patients would be placed on the waiting list and would not proceed to 

undergo a liver transplant.  Young et al. noted that while a move to allocating donor liver 

solely by MELD is not justified for the U.K. allocation system, there is value in using 

MELD, delta-MELD, and hyponatreamia at predicting which patients should be placed 

on the waiting list and which would not proceed to transplant.   

 Young et al. (2006) confirmed in their study that hyponatreamia was highly 

significant in predicting which patients would not get a liver transplant.  And delta-

MELD has been studied before but until now has not been shown to be of significant 

value in determining allocation or predicting outcomes. Young et al. postulated that by 

identifying those patients who are hyponatreamic and who had large delta-MELD scores, 

it may be possible to prioritize them earlier and so have them liver transplanted before 

they become too sick to transplant.  Hyponatreamia and delta-MELD, however, were not 

shown to be significant predictors of posttransplant outcome.  By transplanting this group 

of patients sooner should not result in posttransplant outcomes that are worst off, but 

could even result in improved overall outcomes.  Finally, data revealed that matching a 

poor quality organ with a sicker recipient will lead to much worse outcomes.  Therefore, 

to allocate solely based on disease severity may sometimes discourage the use of 

marginal organs due to bad outcomes.   

 Young et al. (2006) concluded that one of the problems with delta-MELD is that 
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previous studies were biased due to the various collection method of the MELD data.  

Young et al. sought to minimize this bias by using the MELD scores at entry and exit 

from the waiting list.  However this reasoning is flawed as this assumed a linear 

progression of MELD serial values while on the waiting list which is unlikely.  Young et 

al. explained that in the study of Bambha et al. (2004), it was suggested that delta-MELD 

may be of limited value due to having too short a lead time to play a role in decision-

making.  On the contrary, Young et al. explained that it has been shown that despite 

relatively short waiting times, MELD can increase considerably prior to a liver transplant.  

A large prospective study designed to minimize collection bias is needed to fully clarify 

the role of delta-MELD in allocation.  In conclusion, Young et al. noted that there is 

much data supporting MELD as a valuable tool in assessing potential liver transplant 

recipients in the U.K.  Young et al. suggested that by using MELD and delta-MELD 

combined with a measure of hyponatreamia may improve the overall outcomes of 

allocating donor livers with more efficient and optimized timing to transplant while 

reducing waiting list deaths. 

 Even though Young et al. (2006) mentioned that a large prospective study should 

be designed to remove collection bias and to fully clarify the role of delta-MELD in liver 

allocation, there was no further research to either disregard or accept the delta-MELD as 

a valid criterion for determining a donor liver recipient for transplant.  Furthermore, 

while Foxton et al. (2006) had calculated delta-MELD as the transplant MELD minus the 

listing MELD, Young et al. had calculated delta-MELD differently and as dxMELD, 

which is calculated by dividing delta-MELD by the time spent on the waiting list.  While 
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the formula of dxMELD given by Young et al. seems to be more accurate, the time spent 

on the waiting list, the divisor, could be different among patients and the formula of 

dxMELD is different from the formula of delta-MELD given by Bambha et al. (2004). 

 To refine the concept of the sickest first policy based on a delta-MELD criterion, 

a methodology is needed for the consistent computation of delta-MELD prior to 

incorporating a multiple criteria decision-making model for analysis.  A time series 

methodology can provide consistent estimation of data for delta-MELD computation.  

Huth et al. (2010) had suggested a methodology for tracking cell progress by the 

technique of the Kalman filter.  The Kalman filter was used as a methodology for 

estimating data for the consistent computation of delta-MELD values. 

Literature Review on Time Series Analysis Method 

Kalman Filter 

Not only was there a need for a methodology to estimate MELD values in a 

consistent manner based on patient MELD values, but a simulation was also needed to 

progressively track the MELD scores, stratify the groups of MELD values, and keep 

inventory of the patients on the waitlist.  A simulation was needed to advance the study 

of delta-MELD in order to determine whether delta-MELD would be a useful criterion 

for donor liver allocation. 

 In this section, Kalman Filter, I examine the theoretical framework of the Kalman 

estimation and forecasting for the purpose of removing bias of delta-MELD computation.  

In the next section, Kalman State Space, Prediction, and Estimation, I examine the 

literature review of Asemoto (2010), Huth et al. (2010), Baker, Poskar, and Junker 
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(2011), and Zhou and Hu (2010) who demonstrated and highlighted the modeling of state 

space, estimation and prediction, and error management with Kalman filter.   

 Asemoto (2010) explained that the traditional time series analysis is primarily 

directed towards univariate data.  The Kalman filter is a statistical algorithm that enables 

certain computations to be carried out for a model cast in state space form.  Asemoto 

mentioned that even though the Kalman filter algorithm was proposed as far back as 

1960, many statisticians are still unaware of the simplicity and succinctness of this 

methodology. 

 Asemota (2010) noted that state space models and the state-space representation 

of data are important tools for modeling time series data.  State space models of random 

processes are based on the Markov property which implies the independence of the future 

of the process from its past, given the present state.  In other words, the state of a Markov 

process summarizes all the information from the past that is necessary to predict its 

future.  A state space model consists of two equations: the state equation, which is also 

called the transition or system equation, and the observation equation, which is also 

called the measurement equation.  The measurement equation relates the observed 

variables or data, and the unobserved state variables, while the transition equation 

describes the evolution of the state variables (p. 7).  

Asemoto (2010) explained that in a Kalman filter formulation, one can let Yt, Yt-1, 

..., Y1 be denoted as the observed values of an endogenous variable of interest at times t, 

t-1, ... 1 which depends on the unobservable quantity βt and exogenous variable Xt, Xt-1, ... 

X1 (which may be either scalars or vectors) through the following relationship: 
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 67 = 8797 + :7         (9) 

 87 = ;787<= + >7          (10) 

where βt is a vector of unobserved state variable, Xt is a vector of exogenous or 

predetermined observed variables.   

The observation error εt and state error Vt are assumed to be Gaussian white noise 

sequences with zero mean and a covariance matrix.  The covariance matrix is for the 

vector X of dimension n x 1 is defined to be an n x n matrix that contains the ijth elements 

that is the covariance between the ith and jth components of X.  Equation (9) is known as 

the observation equation, and (10) is known as the state, system or transition equation.  

The system of equations (9) and (10) with their assumptions is called the state-space 

model.  The essential difference between the state-space model and the conventional 

linear model representation is that in the state-space model, the dynamic nature of state is 

not assumed to be constant but may change with time.  This dynamic feature is 

incorporated in the transition equation.  The overall objective of the state space analysis 

is to study the development of the state over time using the observed values of the series 

(p. 7).   

 Zhou and Hu (2010) explained that a complementary Kalman filter differs from 

other similar work by adopting a refined noise model which could lead to an efficient 

computation of the Kalman filter.  Zhou and Hu proposed a strategy consisting of four 

components, a prediction model, an error model, a standard Kalman filter, and a 

correction model.  Zhou and Hu compared results by using a Kalman filter with those not 

using a Kalman filter, which only used a direct integration algorithm, and a kinematic 
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model to reconstruct the trajectories of joints from their studies.  The results showed that 

a Kalman filter can significantly reduce errors in the orientation estimates when 

compared with the models in which no Kalman filter was used. 

 Huth et al. (2010) similarly explained that a method through the tracking of 

positions of individual cells over time, marked in consecutive images, through the use of 

the Kalman filter was compared to the migratory behavior of cells through the use of 

time-lapse microscopy.  Huth et al. explained that the tracking of the positions of 

individual cells through the technique of Kalman filter was markedly improved and 

accurate over the technique of a tracking procedure that is commonly performed 

manually through a point and click imaging systems.  In addition to being labor-

intensive, a point and click method is highly susceptible to user-dependent errors 

regarding both the selection of subsets of cells for analysis as well as the manual 

determination of cell centroids serving as measuring points for cell positions. 

 Baker et al. (2011) explained that the focus of systems biology is to study the 

dynamic, complex, and interconnected functionality of living organisms.  To have a 

systems-level understanding of these organisms, it is necessary to integrate experimental 

and computational techniques to form a dynamic model.  Baker et al. elaborated that a 

Kalman filter designed for inference in a linear dynamic system can subsequently result 

in inaccurate results when applied to nonlinear systems.  Instead, a number of extensions 

to the Kalman filter have been proposed to deal with nonlinear systems such as the 

extended Kalman filter (EKF) and the unscented Kalman filter (UKF).   

 In addition to establishing a state space model consisting of two equations that 
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contain both the state and the observation equations, the observed variables or data and 

the unobserved state variables need to be either collected or computed, while the 

transition equation describes the evolution of the state variables.   

Kalman State Space, Prediction, and Estimation 

Asemoto (2010), Huth et al. (2010), Baker et al. (2011), and Zhou and Hu (2010) 

applied the Kalman filter by setting their time series data into a state space model, 

performing prediction using the dynamic data of their systems, and using a correction 

model to reduce errors once their observed data are made available.  These state space 

models were set up to achieve better cell tracking, positional estimation, and error 

reduction of time series data.   

 Asemoto (2010) also demonstrated how the Kalman filter recursive method can 

be applied to a model cast in state space form.  The main advantage of the state space 

model is that it is based on a structural analysis of the problem that includes trend, 

seasonal, cycle, explanatory variables, and interventions that are put together into the 

state space model.  The state space models are based on modeling the observed structure 

of the data. 

 Zhou and Hu (2010) explained that by including an error model in their study, a 

Kalman filter considers a state space representation and models the relation between the 

errors in the estimated orientation angle and the errors in an inclination predicted by the 

model.  And by including a correction model, the error or noise can be reduced at a later 

stage. 

 Huth et al. (2010) demonstrated that systems represented as state space with the 
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Kalman filter can produce objective and highly reproducible measurements, 

outperforming manual tracking procedures.  Huth et al. further explained that the 

precision of automated cell identification and centroid placement was very high, resulting 

in cell detection rates ranging from 96% to 99%.  For the subsequent tracking of 

individual cell centroids through image sequences, Kalman filtering, commonly 

employed in multi-target tracking systems in military radar surveillance applications was 

utilized.  Kalman filters are a set of mathematical equations allowing state ahead 

predictions of object positions as well as the estimation of optimized object states in 

noisy environments. 

 Baker et al. (2011) similarly noted for a nonlinear function of random variables, 

the use of the UKF is a technique that gives more accurate results than analytical 

linearization techniques, such as Taylor series linearization, as it considers the spread of 

the random variables.  UKF is itself an extension of the unscented transform, a 

deterministic sampling technique which implements a native nonlinear transformation to 

derive the mean and covariance of the estimates.  This transformed mean and covariance 

are then supplied to the Kalman filter equations to estimate the state variables.   

 These state space models were set up to achieve better cell tracking, positional 

estimation, and error reduction of time series data.  This was made possible by knowing 

the observed data in order to refine the estimation of optimized object states in noisy 

environments.  For the MELD data, the literature review provided insights on how to 

compute estimated MELD data when there are not enough MELD data available. 

 Asemoto (2010), Huth et al. (2010), Baker et al. (2011), and Zhou and Hu (2010) 
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discussed estimation and prediction techniques for their state space model.  Estimation or 

prediction is only a part of their Kalman filter’s iterative process.  Their state space 

models were set up for the computation of not only predictions of the time series data, but 

for the estimation of errors and covariances.   

 Zhou and Hu (2010) explained that their prediction model included predictions of 

acceleration or gyroscope data that were generated based on previous estimates and 

sensor readings.  The predicted estimates of the angular velocity at any time can be 

expressed as the summation of angular velocity estimate (world coordinate) and 

measurement errors which vary over time.  Zhou and Hu then defined their estimated and 

their predicted estimate.  Zhou and Hu explained that their correction model included 

error or noise reduction.  Before proceeding to the correction model, Zhou and Hu needed 

to know the predicted estimates based on the prediction and error models.  Zhou and Hu 

computed angular velocity error and acceleration error which were used as intermediate 

variables.  Zhou and Hu explained that evaluation was performed during the iteration.  

The inclination difference was first minimized by the Newton method for the inclination 

difference.  This was followed by optimizing using the proposed Kalman filter until the 

discrepancy is smaller than a fixed threshold.    

 Similarly, Huth et al. (2010) explained that the applied discrete Kalman filter 

algorithm consists of two alternating steps, which were repeated for each iteration and 

each new frame, prediction and correction.  In the prediction step, the filter makes an 

assumption (prediction) about the future state of the observed object.  In the correction 

step, an optimized state estimate was computed using a weighted difference between the 
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a priori state and an actual or noisy measurement.  Huth et al. further explained that the 

weighting term was updated iteratively according to the quality of the previous 

prediction.  If the prediction was good, the weighting term will suppress the influence of 

the measurement in the next iteration and show more weight in the state ahead prediction 

than in the measurement.  If the prediction was poor, the weights are applied to the 

measurement more heavily in the next iteration while suppressing the influence of a 

predicted estimate.   

 Baker et al. (20111) argued that at the core of the UKF is the unscented 

transformation, which operates directly through a nonlinear transformation, instead of 

relying on analytical linearization of the system.  Overall, the UKF has been found to be 

more robust and converges faster than the EKF due to increased time update accuracy 

and improved covariance accuracy.  Baker et al. further noted that parameter estimation 

is highly dependent on the availability and quality of the measurement data.  It could be 

difficult to obtain reliable estimates of unknown kinetic parameter values.  Baker et al. 

found that in order to compare the parameter estimation methods, the nonidentifiable 

parameter was fixed to known values.  In general, however, these parameters would not 

be known beforehand.   

Kalman Error Management 

Error management plays an important role in the processing of the Kalman filter.   

Asemoto (2010), Huth et al. (2010), Baker et al. (2011), and Zhou and Hu (2010) 

discussed their error reduction techniques for their state space models.  Error reduction is 

a major part of the Kalman filter’s iterative process.   
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 Asemoto (2010) explained that the Kalman filter considers the mean square error 

(MSE) as the covariance matrix of the unobservable quantity minus a computed optimal 

estimator.  Once current values become available, inference about the unobservable 

quantity on the basis of the observation, the MSE of the prediction can be computed.  The 

prediction error in the state space model consists of two parts.  These two parts include 

the prediction error due in making an inference about the unobservable quantity and the 

error in random shock of the observed values.   

 Zhou and Hu (2010) explained that their error model consisted of a state space 

representation and models the relation between the errors in the estimated orientation 

angles.  The difference between the estimated and the corrected orientation angle and 

error was the difference between the gyroscope and accelerometer inclination estimates.  

Zhou and Hu compared the results of the Kalman filter with those not using a Kalman 

filter, a direct integration algorithm and a kinematic model, to reconstruct the trajectories.  

The result of Kalman filter significantly reduced errors in the orientation estimates. 

 Huth et al. (2010) managed the quality of the data set by taking an automatically 

generated track that was only regarded as valid if it followed one cell (and only one) 

through all frames in which the cell was visible.  This stringent criterion was violated if a 

track failed to initialize, was prematurely terminated, or swapped between two cells.  

Huth et al. suggested that to simplify mitosis detection and track initialization / 

termination, backward tracking of the system was taken, meaning that cells were 

followed from the last to the first frame.    

 According to Baker et al. (2011), the UKF is more consistent throughout and in 
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estimating both larger and smaller values with a more consistent standard deviation.  

Baker et al. summarized that one of the benefits in integrating estimation and 

identifiability is the reuse of the variance generated by the UKF for the step size in the 

calculation and for the sensitivity coefficient for identifiability.  The UKF is thus able to 

overcome one of the major bottlenecks in biological modeling, a lack of experimentally 

measured parameters.   

 MELD data can be set up into a state space model for reference, prediction, and 

error reduction.  The methods reviewed are useful for estimating MELD data evenly and 

consistently for delta-MELD calculations.  Kalman filter is useful in the estimation of 

MELD values into evenly time-spaced intervals that would be equivalent among all 

patients in order to compute consistently measured delta-MELD values.  This would be 

an important aspect for removing bias that is described in the delta-MELD literature.  

Some of the techniques suggested in literature review of the Kalman filter included 

taking all the MELD values to compute estimated MELD data thresholds, backtracking 

data from the transplant time to the entry time of waitlist for better estimation of observed 

MELD, and error reduction by placing more weight to the observed MELD when 

estimating MELD values.  These were all useful techniques for the simulation model. 

Trends in the Liver Allocation System 

MELD Era Objectives 

The MELD era had brought on a major impact to the reduction of waitlist time 

and waitlist deaths while waiting for an available donor liver for liver transplant 

recipients without changing the overall outcomes of post liver transplants.  The sickest 
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first policy has fulfilled its objective that was based on urgency (Bernardi et al., 2011).  

In order to simulate a decision scoring system to test whether delta-MELD would be a 

valid criterion, further literature review of the liver allocation system was reviewed.  The 

following recent literature review would reveal a trend of not one objective but three 

objectives, urgency, utility, and survival, to refine the liver allocation system.  In 

addition, the concepts of ECD and DRI were introduced.  Additional trends were 

analyzed, such as increased age, MELD scores, and intensive care unit and hospital 

length of stays of transplant recipients.  These literature reviews provided understanding 

on the objectives, criteria, and limitations of the liver allocation system that is 

informative for the simulation model.   

 Asrani and Kim (2010) acknowledged that the implementation of the MELD 

system has led to a reduction in waitlist registration and waitlist mortality.  The MELD 

score had been useful in patient management, as well as providing an accurate gauge of 

liver disease severity.  Asrani and Kim concluded that a future beyond MELD could be in 

updating the coefficients, adding terms that are better determinants of liver and renal 

functions, focusing on better donor-recipient matching, and updating the currently used 

urgency-based objective with the additional utility-based objective.  

 Weismuller et al. (2009) concluded that the prioritization of patients with higher 

labMELD scores for liver transplantation was followed by an increase in the mean 

MELD since the implementation of the Eurotransplant criteria in 2006.  However, a 

decrease of post-liver transplantation survival was also observed.  This led to the 

investigation of recipient and donor associated factors capable of determining outcome 
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after liver transplantation in the MELD-based allocation system, and thus provided 

insights to the variables influencing survival.  Wiesmuller et al. also explained that in the 

United Kingdom, analyses indicated that delta-MELD and hyponatremia parameters were 

found to predict patients on the waitlist that did not reach transplantation.  However, the 

prediction of posttransplant outcomes based on pretransplant parameters was much more 

difficult. 

 Wiesmuller et al. (2009) compared the graft quality between the two studied eras 

of transplant activity and recorded the parameters of donor age, cold ischemia time, split 

liver transplantations, gender matching, and ABO matching.  In addition, the total time or 

duration of transplant surgery as a surrogate parameter for the technical complexity of the 

procedure was also reviewed.  Wiesmuller et al. noted that the mean recipient age was 

found to be higher and the mean MELD rose from 14.3 years to 18.9 years in the MELD 

era.  Wiesmuller et al. also noted that in addition to INR, bilirubin, and creatinine, there 

was an increase of blood urea nitrogen in the post-MELD group, which is an indicator of 

more severe renal or nutritional abnormalities.  Mortality is also associated with the 

complexity of the surgery, along with cold ischemia time, age, and quality of donor graft.  

Wiesmuller et al. further noted that while the mean donor graft age did not differ between 

the groups, the mean cold ischemia time was significantly reduced in the MELD-era.  

However, the mean surgical procedure time was significantly longer.  Further analysis 

showed that there was a significant correlation of the mean operation time with INR, and 

since INR is a component of MELD, also with MELD.   

 Wiesmuller et al. (2009) further noted that patients with high labMELD have the 
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highest probability of receiving a graft but they also exhibited the highest complexity and 

severity of disease.  MELD encompassed two parameters, creatinine and INR, and in this 

analysis, these parameters were associated not only with the prediction of mortality 

before transplantation, but appear to be also predictive of 90-day survival.  In a recent 

study, creatinine was also identified as an independent marker of posttransplantation 

survival together with cholinesterase and age.  Wiesmuller et al. further noted that INR 

was associated with the length of operation time and this was found to also be an 

independent variable predicting 90-day mortality.  Wiesmuller et al. explained that recent 

suggestions to modify the MELD score regarding INR and creatinine were confirmed.  

This indicated that the currently employed MELD used for prioritization could be 

modified to account for patients with complex morbidity to optimize overall 

posttransplantation survival. 

 Asrani and Kim (2010) similarly explained that the MELD-Na was associated 

with a higher risk of mortality independent of the MELD score in patients listed for liver 

transplantation.  The effect was greater in patients with a lower MELD score.  According 

to an analysis of 110 patients (23%), the difference between the MELD-Na and MELD 

scores was large enough to have affected allocation priority.  Asrani and Kim argued that 

about 7% of the deaths on the waiting list could have been prevented if MELD-Na had 

been used rather than the MELD.  Asrani and Kim also similarly explained, in the face of 

increasing use of ECD or high risk donors, identifying the right set of donor and recipient 

matching characteristics that would lend to a better outcome after liver transplant should 

be a significant objective.   
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 Donor and recipient matching should occur at the time of organ procurement and 

transplantation with a substantial emphasis on selection going into accepting a donor 

liver.  Given the importance of advanced donor age and graft quality, the arithmetic 

product of donor age and preoperative MELD (D-MELD) was recently evaluated as a 

predictive model (Halldorson et al., 2009).  

Expanded Criteria Donor and Donor Risk Index 

The MELD era brought along with it not only the conceptual framework of a 

sickest first policy for the reduction of time on waitlist to transplant but also the 

conceptual framework of optimizing utilization that would be based on how to best match 

donors and recipients.  Blok et al. (2012) and Halldorson, Bakthavatsalam, Fix, Reyes, 

and Perkins (2009) reviewed, analyzed, and discussed the composition and issues of the 

DRI regarding donor-recipient compatibility for resource utilization in liver allocation.  

Blok et al. and Halldorson et al. also analyzed the risk, concerns, and modeling associated 

with DRI and posttransplant outcomes.     

 Blok et al. (2012) explained that a continuous scoring system for analyzing donor 

risk, DRI, has been developed within the OPTN.  Blok et al. also validated the use of DRI 

in Eurotransplant.  This was based on a database analysis of 5,939 liver transplants 

involving deceased donors and adult recipients from January 2003 to December 2007. 

 In addition, Halldorson et al. (2009) explained that recently, two developments 

have greatly impacted decision-making in liver transplantation.  The first was the 

adoption of the MELD to prioritize the sickest patients for transplantation.  The second 

was the increased use of higher risk donor livers to expand the donor pool and decrease 
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time to transplantation.  Halldorson et al. argued that since posttransplant patient survival 

depends on both preoperative medical condition and donor liver quality, physicians are 

often faced with the difficult decision on whether to accept high risk donor liver offers 

for high risk patients.  Halldorson et al. also elaborated that Feng et al. (2006) identified 

nine donor factors predicting graft failure after transplantation (donor age, donor height, 

donation after cardiac death donors, split liver donors, race, donor cause of death from 

cerebrovascular accident, regional sharing, local sharing, and cold ischemia time).  Using 

these risk factors, a DRI was developed predicting the isolated and cumulative effects of 

these variables on graft survival.  While highly informative, a DRI system is not easily 

translated into practical usage without making generalizations and extrapolations.  In 

general, however, donor age is the predominant donor risk factor. 

 Blok et al. (2012) explained that when these data were analyzed, a significant 

correlation was shown between the DRI and outcomes.  A multivariate analysis 

demonstrated that the DRI was the most significant factor influencing outcomes.  Among 

all donor, transplant, and recipient variables, the DRI was the strongest predictor of 

outcomes.  Blok et al. similarly described that with the increased need for liver allografts, 

the earlier and very strict criteria for liver donors have slowly become more liberal.  

However, the use of donors with additional risk factors may influence outcomes after 

liver transplantation.  Currently, however, there is no unambiguous definition of what 

exactly these donor risk factors are and the extent of these risks, such as donor age, cause 

of death (COD), hypernatreamia, donation after cardiac death (DCD) status, and split 

liver status.   
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 Halldorson et al. (2009) hypothesized that D-MELD, being the product of two 

continuous variables (donor age and calculated preoperative MELD), would result in an 

incremental gradient of risk for postoperative mortality and complications estimated in 

hospital LOS.  Halldorson et al. also hypothesized that this gradient could then be used to 

identify a criterion where donor and recipient risks combined result in inferior outcome. 

 Blok et al. (2012) similarly noted the criteria used as risk factors for liver 

donation.  These risk factors include donor age greater than 65 years, an ICU stay greater 

than 7 days, a high body mass index, steatosis, hypernatremia, high levels of aspartate 

aminotranferase (AST), alanine aminotransferase (ALT), and serum bilirubin.  If any of 

these apply, a donor is considered marginal.  However, Blok et al. argued that most of 

these donor criteria have never been validated, and parameters such as donation after 

cardiac death (DCD) status and split liver status were not included.   

 Blok et al. (2012) analyzed the set of factors contributing to DRI, which was 

developed by Feng et al. (2006) with OPTN data, into a continuous scoring system.  

These factors were based on only donor and transplant parameters found to significantly 

influence outcomes after liver transplantation in a multivariate analysis of a large cohort 

(20,023 transplants) from the Scientific Registry of Transplant Recipients (SRTR) 

database.  Blok et al. noted these factors to be the donor's age, race, height, COD, split 

liver donation status, DCD status, type of allocation (local, regional, or national), and 

cold ischemia time. 

 Blok’s et al. (2012) analysis showed that more than 48% of all transplants were 

from donors 47.6 ±16.5 years old.  Fifty-three point eight percent of all transplants were 
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performed with livers recovered from male donors.  Most donors died from 

cerebrovascular accident (CVA) (63%), only a little more than one-quarter died from a 

traumatic injury (27%).  The DCD rate was 2.1% and the split liver donation rate was 

4.4%.  Among all donors, 0.9% was positive for hepatitis C core antibodies, and 5.8% 

were positive for hepatitis B core antibodies.  Blok et al. also noted the differences 

between donor and transplant characteristics in OPTN/UNOS and Eurotransplant.  The 

mean donor age was much higher in Eurotransplant versus UNOS (48 versus 39 years).  

The COD was more often CVA in Eurotransplant versus UNOS (63% versus 40.9%) and 

was less often trauma in Eurotransplant versus UNOS (26.7% versus 41.9%).  The DCD 

and split liver donation rates were higher in Eurotransplant versus UNOS, and organs 

were more often allocated regionally than outside their regions in Eurotransplant versus 

UNOS.  This resulted in a much higher mean DRI within Eurotransplant versus UNOS 

(1.71 versus 1.45).  Similarly, Blok et al. (2012) noted that in Eurotransplant, 57.6% of 

all donors had a DRI > 1.5.  This was the OPTN limit for twice as many discarded organs 

in comparison with donors with a DRI ≤ 1.1. 

 Halldorson et al. (2009) similarly noted that patients with MELD ≥ 30 and 

patients who received a donor liver aged ≥ 60 were analyzed as subgroups of the whole 

population and then studied as a population.  Both MELD ≥ 30 and donor age ≥ 60 

subgroups demonstrated worse survival when compared to the population as a whole.  D-

MELD was calculated as the simple product of donor liver age and laboratory-based 

MELD score capped at 40.  The D-MELD scores were divided into groups of 400 and a 

D-MELD cutoff of 1,600 was found to best differentiate survival.  Survival was 
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improved in both high risk groups if D-MELD was limited to less than 1,600.  In the 

MELD ≥30 group, D-MELD < 1,600 demonstrated a 4-year survival of 71.3% versus 

63.8% if D-MELD was 1,600 or greater.  Halldorson et al. further noted that in all 

subgroups, with and without hepatitis C, survival was superior if D-MELD was limited to 

less than 1,600.   

 Blok’s et al. (2012) analysis also showed that the outcome was strongly 

influenced by recipient factors.  The recipient's age and the cause of liver disease were 

important factors influencing the outcome as well.  The mean laboratory MELD score at 

transplantation was 20.3, and the mean age was 51.0 years.  Halldorson et al. (2009) 

similarly explained that various donor and recipient risk factors influence patient and 

graft survival after liver transplantation.  A major recipient risk factor is preoperative 

MELD score.  The most influential donor risk factor is age.  Halldorson et al. 

demonstrated that the product of these two factors, D-MELD, stratifies survival and LOS 

after liver transplantation.  Halldorson et al. further noted that currently, liver allocation 

based on the MELD system is urgency which is based without regard for posttransplant 

survival.  The merits of this current system lie in its simplicity, objectivity, and accuracy 

in predicting waitlist mortality.  The downside was facing a dilemma in which centers in 

low donor to recipient ratio regions compete for organs by transplanting the sickest 

(highest MELD) patients or accepting the highest risk donor livers. 

 Blok et al. (2012) and Halldorson et al. (2009) did not only reviewed and 

identified the risk factors of donor livers, their studies analyzed the composition of DRI 

and established that the model D-MELD (Halldorson et al., 2009) can provide more 
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definitive measurements on the outcomes of recipient and donor matches based on donor 

age and recipient MELD score.  The D-MELD measurement was the initial attempt to 

fulfill the objectives of sickest first and resource utilization. 

Increased MELD Scores and Extended Intensive Care Unit Stays 

Dutkowski et al. (2011) and Foxton et al. (2010) noted that the MELD era not 

only resulted in a higher mean MELD score, but also resulted in extended ICU stay, 

hospital LOS, and overall health care cost.  Both Dutkowski et al. and Foxton et al. 

analyzed posttransplant data outside of the United States, although their results mirrored 

the trends of the United States. 

 Dutkowski et al. (2011) explained that there is currently an intense debate about 

whether liver grafts should be offered directly to a patient (the sickest one) or rather to a 

transplant center with the freedom to use an organ for the patient of their choice.  In the 

United States, allocation of donor livers through the MELD system resulted in a 

substantial decrease in median time to transplant from 981 days in 2002 to 306 days in 

2006 (p. 675).  Dutkowski et al. described that despite this change leading to sicker 

patients at the time of transplantation, an initial analysis showed an excellent one-year 

survival after liver transplantation in the MELD era.   

 Foxton et al. (2010) similarly explained that liver allocation for transplantation 

worldwide has undergone dramatic change within the last 5 years, particularly with the 

introduction of the MELD.  This policy change occurred because of increasing demand 

for liver transplant and increasing waitlist mortality.  Foxton et al. explained that the 

MELD system removed the time variable on the waitlist as a discriminating factor in 
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allocation and mandated that organs are allocated to the sickest patients first.  This has 

successfully resulted in a decrease in waitlist mortality with no corresponding worsening 

of mortality after liver transplantation. 

 Dutkowski et al. (2011) studied cost analysis of liver transplants that refers to all 

costs accumulating from the time of hospital admission prior to surgery until first 

posttransplant discharge.  Dutkowski et al. further explained that as expected, 

introduction of the MELD policy increased the laboratory median MELD score of 

recipients from 13.5 to 20.  One third of the transplanted patients, 32%, had a MELD 

score > 25 compared to only 14% in the pre-MELD era.  Correspondingly, the 

preoperative incidence of hepatorenal syndrome increased in the MELD era from 14% to 

35%.  Significantly more patients in this group had to be hospitalized prior to liver 

transplant, 18% versus 35%.   

 Dutkowski et al. (2011) further noted that despite sicker transplant candidates in 

the MELD era, the proportion of patients with MELD ≥ 36 remained similar in both 

groups (4% versus 10%).  Dutkowski et al. also noted in 6 months after liver transplant, 

the number of patients requiring renal replacement therapy was comparable and low in 

both groups.  In addition, the median serum creatinine was not different in both groups 

after 6 months.  Dutkowski et al. described that the median ICU and hospital LOS were 2 

and 6 days longer during the MELD era, respectively.  Also, the recipient MELD score 

correlated significantly with hospital LOS.  Dutkowski et al. tallied the median 

cumulative cost per single case, which was from the time of admission to first discharge 

after liver transplant, and confirmed an increase in cost from U.S. $81,967 during the pre-
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MELD era to U.S. $127,453 per case in the MELD era.  Cost correlated strongly with the 

individual MELD score.   

 Foxton et al. (2010) similarly noted that the median cost associated with the ICU 

stay was U.S. $5,800 (IQR = U.S. $2,900 - $14,600).  Forty-seven patients (11.7%) were 

admitted to ICU more than once following their liver transplant.  Their median MELD 

score at transplant was 16.  This was compared to a median MELD score of 14 for those 

who did not require ICU readmission.  The need for renal replacement therapy (RRT) 

was associated with an ICU stay greater than 3 days.  The median ICU cost of those 

receiving RRT was U.S. $52,812, whereas in those who did not require RRT post-liver 

transplant, the cost was U.S. $5,800.  Foxton et al. explained that DRI was not associated 

with increased cost, whereas the MELD score was associated with increased cost.  Also, 

when dividing DRI into groups, there was no correlation of any DRI group with 

increased health care cost or prolonged ICU stay.   

 Dutkowski et al. (2011) further compared the overall outcome of transplantation 

in a pre-MELD and MELD era.  Previously, the number of patients with MELD > 25 at 

the time of listing was very low at 8%.  Probably due to the fact that sick patients had no 

chance to receive a liver graft while waiting, and at that time, some end-staged candidates 

were not even placed on the waitlist.  And it can be hypothesized that the true death rates 

were much higher in the pre-MELD era.  Dutkowski et al. found that the number of 

patients requiring renal replacement therapy in the post group exceeded the number of 

comparable cases in the pre-group.  However, 6 months after liver transplants, most 

kidneys recovered in both groups.  Dutkowski et al. noted that countries with very low 
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donation rates are under higher pressure to use grafts from ECD.  Dutkowski et al. found 

the price of MELD allocation to be an increase in postoperative morbidity, resulting in 

longer hospital stay, temporary renal complications, and higher health care cost. 

 Foxton et al. (2010) similarly found that their study demonstrated that ICU costs 

associated with liver transplantation increased with increasing MELD score particularly 

where MELD > 24.  Recipient age, alcohol-related liver disease, and the severity of liver 

disease prior to transplantation, in the form of UNOS status or CTP score, have been 

shown to have significant impact on resource utilization according to the study of 711 

patients who underwent liver transplantation in 3 U.S. transplant centers.  Foxton et al. 

explained that in their study, they were not able to identify recipient age or alcoholic liver 

disease as factors that were associated with higher costs, although alcoholic liver disease 

was associated with a prolonged ICU stay.   

 Foxton et al. (2010) iterated Feng’s et al. (2006) DRI formula as follows (p. 669). 

 �&$ = exp[(0.154 �B 40 ≤  �
� <  50) + (0.274 �B 50 ≤  �
� <  60)  
  +(0.424 �B 60 ≤  �
� <  70) + (0.501 �B 70 ≤ �
�)  
  +(0.079 �B  E� �B ����ℎ = ���,��) 

  +(0.145 �B �� E� �B ����ℎ = �������G�E� ��� ��������) 

  +(0.184 �B �� E� �B ����ℎ = ��ℎ��) 

  +(0.176 �B ���� = HB����/HB�� I��������) 

  +(0.126 �B ���� = ��ℎ�� ) 

  +(0.411 �B ������� �B��� ������� ����ℎ) + (0.422 �B J������/EJ���) 

  +{0.066 [(170 − ℎ��
ℎ�)/10]} + (0.105 �B ��
����� Eℎ���)  
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  +(0.244 �B �������� Eℎ���) + (0.010 ∗ ���� �E�ℎ���� ����)]  (11) 

 Dutkowski et al. (2011) concluded that the MELD system addresses the goal of 

urgency and hence fairness the best.  Despite the expected higher postoperative efforts, it 

still appears to be the most reliable tool for selecting liver transplant candidates.  Foxton 

et al. (2010) likewise concluded that the group of patients with the highest MELD score, 

≥24 points, also has the highest health care cost, reflecting significant increase in ICU 

costs and therefore overall transplant costs.  However, patients with MELD score ≥24 

represented only 8% of the cohort.  Foxton et al. also showed that there is a significant 

increase in DRI over time which reflects the trend of transplant centers using more 

marginal grafts.  This finding mirrored the responses to organ shortage that was 

experienced nationally and internationally.  Foxton et al. noted that in practice, there was 

a clear attempt to match better organ quality with patients of higher MELD scores.  This 

likely reflected appropriate matching of donor organs to recipients by experienced 

surgeons in an attempt to optimize outcomes and maximize donor organ utility.  Foxton 

et al. also concluded that DRI failed as a predictor in determining total liver transplant, 

pretransplant, or posttransplant cost. 

 Although Foxton et al. (2010) and Dutkowski et al. (2011) did not establish a 

model fulfilling a liver allocation objective, per se, they showed the trends of the MELD 

era with higher median MELD scores and that higher MELD scores correlated with 

higher health care cost, longer ICU stays, and longer hospital LOS.  Along with higher 

MELD scores, there was more liberal criteria of accepting ECD livers, and hence the 

need to stratify donor livers according to their DRI scores. 
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Decision-Making of Multiple Objectives: Urgency, Utility, and Survival 

The literature review of Rana et al. (2008) and Rodrique, Hanto, and Curry (2011) 

did not only provide modeling and behavior perspectives of the ECD in liver allocation, 

but the perspective of patients’ consent and feedback on accepting an ECD liver.  This 

helped to shape the simulation model to meet the multiple objectives of urgency, utility, 

and survival with the possibility that an available liver is an ECD liver.  The simulation 

model not only simulated the delta-MELD as being a criterion, it also simulated the liver 

allocation system realistically to the existing system, including the incorporation of ECD 

livers. 

 Rana et al. (2008) argued that because recipient factors alone were not predictive 

of survival following transplantation, a new model was required to accurately predict 

posttransplant survival.  The lack of consideration of donor risk factors is one limitation 

of the existing standard, which is transplanting patients with a MELD greater than 15.  

Rana et al. explained that recently, the DRI has been proposed as a method to stratify 

outcomes associated with graft selection.  However, the lack of recipient factors gave the 

DRI alone poor predictive value.  In their analysis, Rana et al. combined both donor and 

recipient risk factors to construct the survival outcomes following liver transplantation 

(SOFT) score to accurately predict recipient posttransplant survival at 3 months.  This 

score would allow clinicians to balance waitlist mortality at 3 months as predicted by the 

MELD score against 3-month mortality following liver transplantation as predicted by 

the SOFT score to determine which patients should undergo liver transplantation. 

 Rodrique et al. (2011) noted that despite notable efforts to increase rates of 
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deceased organ donation and living liver donation, the supply of livers has not kept pace 

with the growing demand for transplantation.  Increased utilization of livers from higher 

risk deceased donors is one strategy to overcome the severe organ shortage, although 

there is no uniformly accepted definition for what constitutes an ECD liver.  Rodrique et 

al. explained that a DRI has been developed and can be used to assess the relative risk for 

a potential graft and the relative risk for a specific recipient.  Rodrique et al. further 

argued that the decision to utilize an ECD liver for transplantation is complex where 

patient's disease severity, comorbidities, and survival without transplantation are 

considered.  During the pre-liver transplant period, patients are informed of ECD versus 

standard criteria donor (SCD) transplantations.  Rodrique et al. explained that patients 

would need to provide explicit consent for ECD liver transplants.  This may be a 

challenging decision for some patients, who must balance the risks and benefits of an 

earlier ECD liver transplant versus the risks and benefits of waiting for a SCD liver 

transplant at a time when their emotional, physical, and cognitive resources are likely 

compromised. 

 Rana et al. (2008) explained that their risk score was actually two different risk 

scores, the preallocation score to predict survival outcomes following liver 

transplantation (P-SOFT), and the score to predict survival outcomes following liver 

transplantation (SOFT).  Rana et al. formulated two distinct scores.  The P-SOFT is 

designed to evaluate patients on the waitlist and the SOFT includes both donor and 

recipient factors to evaluate transplant outcome at the time of transplantation.  Rana et al. 

explained that since MELD has been proven to be an accurate predictor of 3-month 
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waitlist mortality, Rana et al. constructed the SOFT score to complement the MELD 

score by predicting 3-month posttransplant mortality.  The SOFT score along with the 

MELD score would allow clinicians to make a more definitive decision on whether to 

accept a particular allograft.  Rana et al. argued that the SOFT score can also be used to 

avoid wasteful transplants when predicted survival is below an acceptable standard.  As 

the critical liver allograft shortage encourages more aggressive practices to utilize 

marginal donor allografts, the SOFT score can establish risk limits for particular liver 

transplant candidates.   

 Rana et al. (2008) concluded that candidates with a MELD score ranging from 17 

to 19 points should only receive low-risk SOFT transplants.  Candidates with a MELD 

score of 20-29 points should receive low or low-moderate risk SOFT transplants.  

Candidates with a MELD score of 30-39 points should receive low, low-moderate, or 

high-moderate risk SOFT transplants.  And candidates with the highest waitlist mortality 

risk with a MELD score of greater than 40 should receive low, low-moderate, high-

moderate, or high-risk SOFT transplants.  These recommendations likely do not apply to 

patients with hepatic cancers since the benefit of early removal of tumor must also be 

considered in addition to the MELD and SOFT scores.  Rana et al. emphasized that 

transplants in patients with a SOFT score of > 40 are likely futile since the predicted 

posttransplant mortality is greater than any waitlist mortality.   

 Rodrique et al. (2011), on the other hand, studied the willingness of patients 

accepting an ECD liver transplant.  Transplant hepatologists or surgeons determine 

whether a patient is medically eligible to receive an ECD liver transplant and would 
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discuss this option with the patient.  Eligibility includes the ability to read, speak, and 

understand English, and the ability to provide written informed consent.  Expanded 

criteria donor liver transplant is discussed with patients during their initial visit with the 

transplant hepatologist and subsequently during their appointment with the transplant 

surgeon.  Rodrique et al. noted that patients are also informed that they can pursue live 

donor liver transplant at another program or deceased donor liver transplant in another 

region, which may reduce the time they would otherwise have to wait for liver transplant 

in their current program.  Finally, all patients need to attend a 90-minute liver transplant 

orientation class, which includes a discussion of ECD liver transplant, multiple listing, 

and live donor liver transplants.  Rodrique et al. argued that while there is considerable 

discussion about the definition, breadth, and outcomes of ECD liver transplants, there 

were no studies examining patients' willingness to accept ECD liver transplant.  Hence, 

the aim of their study was to assess patients' willingness to accept ECD liver transplant, 

identify the increase in mortality risk they are willing to assume relative to a SCD liver 

transplant, and examine the associations between sociodemographic variables and ECD 

liver transplant willingness. 

 Rodrique et al. (2011) found that patients were significantly less willing to accept 

ECD versus SCD liver transplants.  Most patients were willing to accept a 1-year ECD 

liver transplant mortality risk that is higher than that expected for SCD liver transplant.  

Patients with high labMELD scores and patients of the white race were more willing to 

accept ECD livers and ECD livers with higher 1-year post-liver transplant mortality risk.  

Rodrique et al. found that in more than half of the study, patients reported a low 
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willingness to accept an ECD liver transplant, and one-third were unwilling to consider 

ECD liver transplant at all.  Not surprisingly, patients with higher labMELD scores were 

more willing to accept ECD liver transplant and higher 1-year post-liver transplant 

mortality risk than those patients associated with SCD liver transplant.  Rodrique’s et al. 

analysis showed that the rate which patients are willing to accept an ECD liver with 

higher 1-year mortality risk was 25%.   

 Rodrique et al. (2011) hypothesized that since the MELD score is a reflection of 

the short-term survival probability without liver transplant, patients with higher MELD 

scores may feel a sense of urgency in trying to best balance the ECD liver transplant 

mortality risk with their risk of death while waiting for a higher quality SCD organ offer.  

One could reasonably hypothesize that patients with hepatocellular carcinoma (HCC), 

faced with potential malignancy and tumor progression, would be more willing to accept 

an ECD liver than patients without HCC.  This study did not support this hypothesis, as 

patients with HCC did not differ from patients without HCC in their ECD liver transplant 

willingness.  Furthermore, MELD score with exception points was not associated with 

ECD liver transplant willingness or mortality risk acceptability.  

 Regarding decision tools, Bernardi et al. (2011) described that an ideal decision 

tool should be able to achieve multiple objectives.  It should quantify a patient's chances 

of survival in the short to medium-term for optimal allocation of patients waiting for liver 

transplants.  It should classify patients according to their disease stage, while enabling 

doctors to determine whether it is too early, appropriate, or too late to perform a liver 

transplant.  It should also be able to predict outcome regardless of the disease.  Finally, it 
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should set aside subjective factors influencing the doctors' judgment, such as features of 

the transplant center, human resources, and physician's individual expertise. 

 Freeman, Jamieson, Schaubel, Porte, and Villamil (2009) added that the widening 

gap between the demand and supply of donor livers has prompted governments and 

medical policy-makers to develop strategies to optimize liver graft allocation.  While 

realizing that the donor liver pool will never be sufficient to meet the demand, liver 

transplant practitioners have tried to expand the criteria that define graft quality 

acceptable for transplantation yet recognizing that expanding criteria often come with 

risks to transplant recipients.  Some of the most difficult decisions have been focused on 

determining which patients with acute liver failure should receive transplants since most 

will die without transplantation while realizing that only a fraction of these patients will 

recover.  Freeman et al. discussed that the allocation of liver graft should be based on 

patient-based models that consider urgency, utility, and survival benefits, while 

considering ECDs, HCC patients, and acute liver failure (ALF) patients. 

 The model formulas of DRI, D-MELD, P-SOFT, and SOFT were established to 

meet the utility and survivability objectives, while accommodating to the current trend of 

using ECD livers for liver transplant.  Current literature revealed that ECD liver 

transplants would require consent from patients acknowledging the risks and awareness 

of accepting ECD livers.  Hence, a decision-making model would take on multiple 

objectives, multiple criteria, and the dependency of patient consent of ECD livers for the 

research simulation.       

 In the next section, I review, evaluate, and assess the literature that is related to 
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modeling a multiple criteria and objectives decision-making tool appropriate for the liver 

donor allocation system, the analytic hierarchy process / analytic network process 

(AHP/ANP).  Both AHP and ANP encompass the quantitative measurement of 

consolidating multiple objectives and criteria among many alternatives.    

Literature on Multiple Criteria and Objective Decision-Making 

Analytic Hierarchy Process / Analytic Network Process 

The AHP’s usage, purpose, and construction are the focus of the following 

literature review.  The remaining literature review is based on the research by Parthiban 

and Goh (2011), Danner et al. (2011), Ishizaka, Balkenborg, and Kaplan (2011b), Sipahi 

and Timor (2010), and Ishizaka, Balkenborg, and Kaplan (2011a) on the use of AHP.  

This collection of literature highlights how AHP is flexible, consistent, simple in the 

development of pairwise comparisons, and straightforward in incorporating the decision-

making requirements for the simulation model. 

 Danner et al. (2011) presented the AHP as a preference elicitation method in 

health technology assessment.  Their AHP study included two AHP workshops where in 

these workshops, both patients and professionals rated their preferences with respect to 

the importance of different endpoints of antidepressant treatment by a pairwise 

comparison of individual endpoints.  These comparisons were performed and evaluated 

by the AHP method and relative weights were generated for each endpoint. 

 Danner et al. (2011) explained that the six most important patient-relevant and 

professional-relevant outcome measures resulted in the same outcome for the two 

independent groups, and thus validating the consistency of the AHP.  These six endpoints 
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covered 85% of the overall weights in the patient group and 89% in the professional 

group. 

 Parthiban et al. (2011) proposed that an integrated model consisting of 

performance measurements and quality factors measurements can be evaluated by using 

the AHP.  Parthiban et al. provided a way to identify the current performance of an 

organization and a methodology for further improvement.  An important contribution of 

the AHP model is that it combines both the qualitative and quantitative dimensions of 

manufacturing performance measurements.  For Parthiban et al., both the objective and 

manufacturing quality factors have been converted into consistent dimensionless indices 

to measure system performance.  Partiban et al. demonstrated that the applicability of the 

AHP model can support a manufacturing performance measure where AHP can be used 

to calculate the two different manufacturing units using time, cost, and service quality 

dimensions.   

 Ishizaka et al. (2011b) used experimental economics methods to test how well 

AHP fared as a choice support system in a real decision problem.  Analytic hierarchy 

process provided a ranking that can statistically compare with three additional rankings, 

given by the subjects in the experiment, one at the beginning, one after providing AHP 

with the necessary pair-wise comparisons, and one after learning the ranking provided by 

AHP.  While these rankings varied widely across subjects, it was observed that for each 

individual, all of the rankings were similar.  Hence, AHP was able to replicate their 

rankings.  Furthermore, the AHP ranking helped the decision-makers reformulate their 

choices by taking into account suggestions made by AHP.   
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 Sipahi and Timor (2010) presented a detailed literature review of the recent 

applications of the AHP and analytic network process (ANP) group decision-making 

methodologies.  The findings showed that during the years 2006-2009, the use of the 

AHP technique has continued to increase exponentially.  Moreover, it is expected that 

ANP will gain more popularity in manufacturing, followed by the environmental 

management and agriculture field, power and energy industry, transportation industry, 

construction industry, and healthcare industry.   

 Ishizaka et al. (2011a) described a decision problem with an inherent trade-off 

between two criteria.  For instance, a job may require two unrelated skills and workers 

tend not to be adept at both.  Ishizaka et al. compared the additive AHP and its variant, 

the multiplicative AHP (MAHP), with the utility theory to evaluate the choice among 

three alternatives: two extremes and one compromise.  The utility theory has a normative 

approach and AHP a descriptive or a practical orientation.  In this study, Ishizaka et al. 

aimed to demonstrate the effects of the aggregation method of local priorities and the 

measurement scale of AHP on the selection of a compromise, and hence to the degree of 

agreement with the utility theory. 

AHP Background and Applications 

The experiments among the researchers were varied and the results of their 

studies would show that AHP is a valid decision-making tool, which can be integrated 

with other tools, and can be used to aid in decision-making processes.  In addition, from 

the wide amount of research in literature, AHP and ANP are shown to be versatile, 

consistent in their technique, and are widely applied into decision problems across 
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multiple industrial sectors.   

 Danner et al. (2011) explained that AHP is an approach where a multi-attribute 

decision problem is first structured into a hierarchy of interrelated elements.  This 

hierarchy is a tree-like structure that is used to decompose the decision problem, moving 

from main criteria to more specific sub-and sub-subcriteria.  Pairwise comparisons of 

these criteria are separately performed at each level of a decision hierarchy from the 

lower-level to the upper-level criteria.  Important methodological constraints within AHP 

regarding the decision hierarchy are the independence and comprehensiveness of criteria 

at each level.  Danner et al. further explained the matrices of the pairwise comparisons, 

Saaty's mathematical algorithm as a key element within AHP allowing the calculations of 

an approximation vector representing preference-based weights for each of the decision 

criteria.  While the preferences in AHP are recorded on a numbered but ordinal scale, 

calculation of preference weights is performed by transforming this scale into an 

approximation cardinal one.  Danner et al. further explained that weights can be 

calculated for each endpoint and for each person, and the group geometric mean can be 

calculated for a group of individuals taking part in the AHP.  In addition, because 

reciprocity and transitivity of preferences is required within AHP, AHP allows for 

calculation within a measure of consistency for each group of pairwise comparisons.  

This measure reflects how logical each pairwise comparison is with regard to the 

remainder of comparisons performed by the same individual.  This consistency ratio, as a 

measure of performance within the AHP, has a threshold of 0.1 that should not be 

exceeded. 
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 Parthiban et al. (2011) demonstrated the steps of AHP using criteria from 

performance measures that were classified into objectives and quality factors.  A 

structured survey was conducted at two organizations, Unit A and Unit B using the same 

questions to elicit the performance measure classified into objective and quality factors.  

After the AHP was performed, the quality factor measure was then calculated from the 

results of AHP, followed by the service factor measure for both locations, A and B.  This 

yielded a result that Unit A has a lower service factor measure value which meant Unit A 

needs improvement more than Unit B.  Quality function deployment has been employed 

to facilitate this process.  This was useful in establishing the priority of actions within the 

overall re-engineering strategy.   

 Sipahi and Timor (2010) reviewed recent literature that was comprised of a 

comprehensive literature review of recent applications of AHP and ANP as decision tools 

over the period of 2005-2009.  Saaty (2001) developed the AHP technique, which 

constructed a decision-making problem in various hierarchies as goal, criteria, sub-

criteria, and decision alternatives.  Sipahi and Timor also explained that AHP provides 

decision-makers with a way to transform subjective judgments into objective measures.  

Due to its mathematical simplicity and flexibility, AHP has been a favorite decision tool 

for research in many fields, such as engineering, food, business, ecology, health, and 

government.  Saaty (2001) also developed another technique, the ANP technique, as a 

generic form of AHP that allows for more complex interdependence in relationships, and 

feedback among elements in the hierarchy.  Sipahi and Timor further explained that ANP 

has been used in several decision-making applications in the last decade, especially in the 
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study of risk and uncertainty. 

 Ishizaka et al. (2011b) noted that while the rankings vary widely from individual 

to individual, they found, by using a variety of non-parametric statistical tests, that for 

each individual the ranking generated by AHP is typically in reasonable agreement with 

the rankings provided by each participant.  While the study did show that AHP detected a 

clear top and least priorities well, the study also found that the other rankings given by 

the subjects tend to be closer to each other than they are to the AHP ranking.  Ishizaka et 

al. also noted that there is evidence that the subjects tend to follow the ranking provided 

by AHP and found the experiment showed that AHP is a useful decision tool and that 

AHP could be used as a decision aid. 

 Ishizaka et al. (2011a) elaborated that one of AHP's strengths is the possibility to 

evaluate quantitative and qualitative criteria and alternatives on the same preference 

scale.  In Saaty's AHP, the verbal statements are converted into integers from 1 to 9.  

Theoretically there is no reason to be restricted to these numbers.  Therefore, other scales 

have been proposed.  With integers 1 to 9 being local weights, which could be unevenly 

dispersed, there could be a lack of sensitivity when comparing elements which are 

preferentially close to each other.  Using a logarithmic scale could be smoother for these 

high values.    

 Ishizaka et al. (2011a) explained the decision technique of AHP and MAHP.   

This study described and discussed the hiring decision problem solved with AHP and 

MAHP.  All the possible matrix combinations with an acceptable consistency were used 

with each preference scale.  For the MAHP, four different weight normalizations were 
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applied.  Then, the results of the AHP and MAHP were compared with the consumer 

choice theory.  The final position of a compromise in a candidate was selected.  Ishizaka 

et al. compared the result with the standard consumer theory where the consumer would 

prefer a compromise alternative B.  The choice of a power or geometric scale excluded 

definitely (for AHP) or almost definitely (for MAHP) the compromise alternative.  The 

MAHP captured the obvious case in which B should win. 

AHP Decision-Making with delta-MELD for Simulation 

The strength of the AHP method is in its method to reduce the cognitive burden of 

decision-making by decomposing a complex decision problem into a limited number of 

pairwise comparisons (Ishizaka et al., 2011b).  The AHP with its applications of pairwise 

comparisons of criteria is shown to be in accordance with human behavior, especially if it 

is based on bounded rationality.  Saaty's (1996) method of deriving priorities from 

pairwise comparisons based on matrix multiplication and the eigenvector calculation is 

not only mathematically sophisticated, but it is reflective of human decision-making.  The 

decision-making of selecting a liver transplant recipient, using an integrated model of 

urgency (MELD-based), utility (DRI), and survivability (SOFT) can be set up, modeled, 

and constructed by AHP. 

 The literature review showed that AHP is a powerful decision tool for assessing 

decisions of many and various decision situations.  Although AHP does not take into 

account dependencies and interrelationships among factors, real world problems usually 

consist of dependencies or feedback between elements (Sipahi & Timor, 2010).  One 

such example is in the application of the simulation model where feedback is needed 
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from patients to agree on accepting ECD livers for liver transplant.  For this reason, ANP 

was considered for taking into account patient consent.    

To summarize the MELD-based aspect of the literature review, my analysis of 

Huo et al. (2008) and Biselli et al. (2010) provided a comparison and assessment of the 

MELD-based models of MELD-Na and iMELD with conclusive and known results for 

refining the liver allocation system.  But the analysis of Foxton et al. (2006), Young et al. 

(2006), and Cholongitas et al. (2006) conflicted with Bambha et al. (2004) on the 

assessment of the MELD-based delta-MELD for refining the liver allocation system.  

These studies did not use AHP for decision-making analysis, but delta-MELD used as a 

major criterion in an AHP could help to resolve this conflict in literature regarding the 

delta-MELD utility for refining the liver allocation system. 

 Although Young et al. (2006) mentioned that a study should be designed to 

definitively disregard or accept the delta-MELD for refining the liver allocation system, 

there was still missing research on the assessment of delta-MELD as a valid criterion for 

liver allocation.  Gotthardt et al. (2009) argued that an effort to improve the MELD 

system should involve analyzing the change in MELD scores, delta-MELD, over time as 

this dynamic variable would reflect the progression of disease in patients.  AHP appeared 

to be an appropriate model to analyze whether the current liver allocation can be 

improved upon by taking into account the MELD as primary criterion and then 

comparing it to an AHP model with both the MELD and delta-MELDs as primary 

criteria. 

 Meanwhile, a recent trend of the liver allocation system has moved from the 
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objective of urgency to include utility and survivability.  In addition, since the earlier and 

very strict criteria for liver donors have become more liberal, ECD livers have recently 

become more widely employed for liver transplant than in the past.  This suggests that 

these factors needed to be considered for the study on the role of delta-MELD for liver 

allocation.  A study needed to be conducted to deterministically conclude the utility of 

delta-MELD with consideration of the recent trends of the current liver allocation system.  

It was conceivable to consider delta-MELD along with the recent trends of the current 

liver allocation system in the construction of an AHP model for this study.  

Conclusion 

The literature review described the MELD and MELD-based development, and 

described the history of MELD in the evolution of the liver allocation system.  The 

MELD-based variable, delta-MELD was defined, its background of its use in research 

was evaluated, and its gap regarding it being a viable criterion for liver allocation in 

literature was reviewed.   

Young et al. (2006) sought to minimize the bias due to various collection method 

of the MELD data by using the MELD scores at entry and exit from the waitlist.  The 

varying duration on the waitlist among patients suggested that a methodology should be 

considered to approximate the delta-MELD into consistently measured time intervals.  

Young et al. further explained that a study should be conducted to fully clarify the role of 

delta-MELD in liver allocation.  Since decision-making in liver allocation system has 

evolved from the objective of urgency to include utility and survivability, decision-

making should be multi-objective while integrating with the OPTN liver allocation.  
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Also, since ECD livers have recently been more widely employed for liver transplants 

than in the past, ECD livers were also considered in the study of delta-MELD for liver 

allocation. 

 In Chapter 3, I describe, outline, and define how the simulation was performed in 

two scenarios, with and without delta-MELD being used as criterion.  Chapter 3 will 

explain how the average MELD scores and number of patients dropping off the waitlist 

from the two scenarios were compared.  The decision-making technique behind the 

simulation was AHP.   
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Chapter 3: Research Method 

In Chapter 3, I describe the research design, variables, parameters, and instrument 

(a simulation model).  The simulation was run to determine whether delta-MELD should 

be used in addition to MELD as primary criteria in patient selection.  As a patient 

selection criterion, the delta-MELD could improve the liver allocation system by 

reducing the number of pretransplant patients from dropping off the waitlist (Research 

Question and Hypothesis 1) and by lowering the average MELD score among 

pretransplant patients (Research Question and Hypothesis 2).  The experiment utilized a 

simulation model of two scenarios which used secondary data from the OPTN/UNOS 

Standard Transplant Analysis and Research (STAR) database, additional estimated 

MELD values computed through a Kalman filter, and computed delta-MELD values.  

The additional MELD values through the Kalman filter supported consistent 

measurements of delta-MELD values among all patients on the waitlist.  The theoretical 

frameworks of Kalman estimation and AHP for patient selection were applied in the 

simulation experiment.  The simulation model, data collection by Kalman estimation, 

decision-making by the AHP technique, and the OPTN liver allocation policy are 

elaborated in the sections below.   

 In Chapter 3, I provide justifications on the validity of the research instrument and 

its methodologies.  In addition, explanations of how the simulation outputs data for 

research summary, analysis, and conclusion are provided.  Finally, in Chapter 3, I explain 

how the results of the experiment were designed to answer the research questions and 

hypotheses.   
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The Institutional Review Board (IRB) approval number for this study is 05-01-14-

0175913. 

The Research Design 

Frankfort-Nachmias and Frankfort (2008) described quantitative research as a 

deductive research that deals directly with the operationalization, manipulation of 

variables, predictions, and testing.  Hence, quantitative research places particular 

emphasis on the research methodology, procedures, and their validity.  Consequently, 

quantitative research design should be arranged to show a clear progression from theory 

to operationalization of concepts, a correspondence from the choice of methodology to 

the procedures, and the association from statistical tests to findings and conclusions (p. 

488).  Furthermore, the findings and conclusions would relate and provide answers to the 

research hypotheses and questions.   

Hillier and Lieberman (2010) outlined the steps that a major simulation study 

should contain.  These steps include identifying the research problem, collecting the data, 

formulating the simulation model, constructing the computational program, planning the 

experiments to be performed, conducting analysis of the experiments, and summarizing 

and concluding the study.  In addition, the research design details how the data are 

gathered, processed, and measured, and how the simulation is constructed and used to 

influence its outcome.   

The description of the research questions and hypotheses, process and steps, 

variables, data collection through secondary data, data organization for the simulation, 

and simulation model are described below.       



83 
 

 

Research Questions and Hypotheses 

The research questions and hypotheses below are repeated from Chapter 1. 

1. Does a simulation model using the additional parameter of delta-MELD as a 

patient selection criterion reduce the number of pretransplant patients who 

dropped off the waiting list?  

The research hypotheses for the first research question are as follows. 

 Ho: There is no difference in the number of patients who dropped off of the 

waiting list (Total_Patients_Removed) between simulation models with and without 

delta-MELD along with the MELD score as primary criteria for patient selection in donor 

liver allocation. 

 Ha: There is a difference in the number of patients who dropped off of the waiting 

list (Total_Patients_Removed) between simulation models with and without delta-MELD 

along with the MELD score as primary criteria for patient selection in donor liver 

allocation.  

2. Does a simulation model using the additional parameter of delta-MELD as a 

patient selection criterion lower the average MELD score among pretransplant 

patients?   

The research hypotheses for the second research question are as follows.  

Ho: There is no difference in the average MELD score (MELDmean) among 

pretransplant patients between simulation models with and without delta-MELD along 

with the MELD score as primary criteria for patient selection in donor liver allocation. 
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Ha: There is a difference in the average MELD score (MELDmean) among 

pretransplant patients between simulation models with and without delta-MELD along 

with the MELD score as primary criteria for patient selection in donor liver allocation. 

Research Process and Steps 

  The research process and steps in Table 1 comprise the research design.   

Table 1 

Research Process and Steps 

 Research Process and Steps 

Step 1 Identify/describe the problem and the plan of study.  Describe research 
purpose, questions, and hypotheses for simulation. 

Step 2  Describe the control factors and response variables.   

Step 3 Formulate the simulation model.  Describe key pieces of data, processes, 
parameters, and events in the model.   

Step 4 Ensure the validity of the simulation model.  Describe how the theoretical 
frameworks are incorporated into the simulation and their construct validity 
for the simulation.   
 

Step 5 Test (verify) the simulation model. 

Step 6 Plan the simulation experiment to be performed.  Organize combinations of 
the control factors (inputs to the simulation/experiment) in some form of an 
experiment. 

Step 7  Conduct the experimental simulation runs and analyze the results.  Perform 
quantitative analysis on the outputs of the simulation runs by conducting 
statistical t tests of two independent populations in order to test the 
hypotheses.   

Step 8 Provide analysis, conclusion, and summary of the research questions, based 
on the results of the hypothesis tests.  Provide explanation of limitations and 
recommendations for future studies. 

 



85 
 

 

Simulation Overview 

 The simulation and its computations were implemented by using Microsoft Excel 

and C++ programming language with NetBeans’ integrated development environment 

(IDE) for the Windows operating system.  The simulation generated output data (the 

response variables) in two scenarios: (a) using only MELD as primary criterion, and (b) 

using delta-MELD and MELD as primary criteria in the simulation scenarios.  Hence, the 

control factor for the experiment was the presence or absence of delta-MELD as a 

simulation parameter.   

 There were two response variables for this research: the number of pretransplant 

patients who dropped off the waitlist (Total_Patients_Removed for Research Question 

and Hypothesis 1) and the average MELD score among pretransplant patients (MELDmean 

for Research Question and Hypothesis 2).  Detailed descriptions of the simulation 

variables, parameters, data organization, and validity are explained. 

Variables and Parameters in this Research  

 The MELD and delta-MELD were the primary simulation parameters of interest.  

The MELD values were used to compute the delta-MELD parameters, where  

 ��������� =  (����7 –  ����7<=) / (����7<(7<=))    (12) 

(Young et al., 2006).  Regarding the use of delta-MELD, the control factor for the 

simulation experiment was indicated by DM for indicating whether or not to reference the 

simulation parameter delta-MELD into the AHP decision-making. Therefore, DM was a 

categorical variable which assumed one of two values (with delta-MELD, without delta-

MELD).  The simulation ran two scenarios: one with and one without delta-MELD.   
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The simulation model ensured that all patients’ delta-MELD scores can be 

uniformly compared from an evenly distributed time series.  In order to obtain an evenly 

distributed set of MELD values for consistent and unbiased computation of delta-MELD 

values, the Kalman estimation was performed.  Patient MELD scores were referenced to 

support the Kalman estimation for additional MELD values.  The MELD score is a 

parameter supplied by UNOS that is calculated using serum creatinine, serum total 

bilirubin, and the INR according to the following formula as is currently used by the 

UNOS organization.   

 ���� = 9.57 ∗ ��
�  ����������� (�
/��) 

  + 3.78 ∗ ��
�  ����� ��� (�
/��) 

  + 11.20 ∗ ��
�  $%& (�
/��)  + 6.43    (13) 

The MELD data through Kalman estimation for delta-MELD values were derived 

data from the UNOS STAR database.  This database was requested from the OPTN 

organization.  The UNOS STAR database, provided by UNOS, contained waitlist, 

patient, donor liver, and posttransplantation information on all recipients undergoing liver 

transplantation in the United States since 1987 (Northup & Berg, 2004).   

The delta-MELD values were computed in order to be used as a primary patient 

selection criterion for liver allocation when the indicator DM indicated that the scenario 

with delta-MELD is to be run.  Patient selection was performed in the simulation by the 

AHP processing.   

Other simulation parameters of this research included DRI and SOFT parameters.  

In addition to the two important and primary parameters used for donor liver allocation, 
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MELD and delta-MELD that were used to fulfill the medical urgency objective, the 

parameters DRI and SOFT were used to meet the utility and survivability objectives.  

These simulation parameters, DRI and SOFT, were referenced in the patient selection 

decision-making.  Within the two scenarios with and without delta-MELD, the same 

donor liver data were referenced from the UNOS STAR database.  The DRI and SOFT 

values were not manipulated or varied between the scenarios with and without delta-

MELD.  In addition, when patient data were retrieved from the STAR database and were 

referenced within a 180-day simulation interval, they were the same patient data used in 

both scenarios with and without delta-MELD.  The computation of the DRI parameter is 

expressed using equation (11).  The computation of the SOFT parameter is as follows. 

 *+;N = ���� + �����_&�EP_;�����E + &���J����_&�EP_;�����E (14) 

Donor_Risk_Factors and Recipient_Risk_Factors are listed in Table 2 and Table 3.   
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Table 2 

Donor Risk Factors 

Donor Risk Factors Risk Points 

Age > 70 3 

COD (anoxia, trauma) 2 

Creatinine > 1.5 2 

National Procurement 2 
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Table 3 

Recipient Risk Factors 

Recipient Risk Factors Risk Points 

Age > 70 4 

BMI > 35 2 

Albumin < 2.0 2 

Previous Abdominal Surgery 2 

Dialysis pretransplant 3 

ICU pretransplant 6 

Hospitalized pretransplant 3 

MELD 30-39 4 

MELD ≥ 40 4 

Life support pretransplant 9 

Encephalopathy at transplant 2 

Portal vein thrombosis at transplant 5 

Portal bleed within 48 hours pretransplant 6 

Ascities pretransplant 3 

 

 In each 180-day interval, even with different replications, the simulation used the 

same pool of patients against the same pool of livers.  With each replication, the same 

scenario in each interval was used in both scenarios (two decision-making 

criteria).  However, even though both scenarios involved identical patients, the model 
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was stochastic because in each replication, the livers and their arrival times were 

randomly generated.  In addition, not only were DRI and SOFT simulation parameters 

referenced as decision criteria for patient selection, but the DRI and SOFT parameters 

were stochastic since there was no way to know in advance the liver type, liver data, and 

the timing that a donor liver would become available for transplant.  But the DRI and 

SOFT values were from the same liver data in both the scenarios with and without delta-

MELD.  The MELD and delta-MELD parameters, as well as DRI and SOFT parameters 

were referenced for AHP scoring in the simulation for patient selection.   

 Although the parameters, DRI and SOFT, were referenced in each of the ten 180-

day simulation scenarios for patient selection, they were both considered to be much 

lower in importance compared to the MELD and delta-MELD scores.  Subsequently they 

were rated (weighted) consistently much lower than MELD and delta-MELD in both 

scenarios whether using delta-MELD or not.  The trend in literature, as discussed in 

Chapter 2, suggested that DRI and SOFT parameters were realistic factors in patient 

selection although the MELD and delta-MELD were the primary factors fulfilling the 

sickest first objective.   

 In addition to the MELD, delta-MELD, DRI, and SOFT parameters for decision-

making within the simulation model, the response variables of Average_MELD and 

Patients_Dropped_From_Waitlist were both computed and output by the simulation 

model.  They were compiled at the end of each simulation week and would subsequently 

be summed or averaged within a 180-day interval to compute the response variables that 

determined whether the research hypotheses would be accepted or rejected.   
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 The Patients_Dropped_From_Waitlist parameter was processed from the 

simulation’s Disease Progression and Waitlist Patient Management processes.  

Patients_Dropped_From_Waitlist was computed by adding all the patients who had 

dropped off from the waitlist at the end of each week based on patient data from the 

UNOS STAR database.  The removal of patients from the waitlist was based on patients’ 

MELD score, hazard ratios based on MELD scores, and patients who were deemed too 

sick to transplant.     

The average MELD from the simulation model (dependent variable) was 

computed over ten 180-day intervals, producing ten MELDmean values.  For each interval, 

 MELDU�VW = (1/26) ∗ ∑WY= 7Z [\ ]��^_HG���
�_����(�)  (15) 
 
as there are 26 weeks in one 180-days interval.  The total number of patients dropping off 

of the waitlist from the simulation model (dependent variable) was also computed over 

ten 180-day intervals, producing ten Total_Patients_Removed values.  For each interval, 

 N����_`������E_&���G�� 

  =  ∑WY= 7Z [\ ]��^_ `������E_���JJ��_;���_a�����E�(�) (16) 

For both the response variables, MELDmean and Total_Patients_Removed, the 

control factor, DM, was postulated to be influential.  This was because in addition to the 

parameters of MELD, DRI, and SOFT, the simulation model with delta-MELD as a 

decision criterion could affect the final decisions of winning patients differently from the 

scenario without delta-MELD.  The response variable MELDmean relied on 

Average_MELD(n=1…26) compiled over weeks on the waitlist, and like the response 

variable, Total_Patient_Removed, it could be affected by the choices of winning patients 
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which were  based on MELD, delta-MELD, DRI, and SOFT.  The processing of these 

variables and parameters are further elaborated in the sections, Simulation Outputs, 

Experiment and Sample Size, and Hypothesis Testing. 

Data Collection through Secondary Data 

The main source of data collection was through secondary archived data, which 

was received upon request from the OPTN and the UNOS organizations.  I filled out an 

agreement form indicating that this data was not used to pursue contact of any individual 

patient.  There was a programming fee of $200 for a university researcher not associated 

with a liver transplant hospital to use the UNOS STAR database requested from OPTN.   

OPTN/UNOS STAR database was received by postal mail which consisted of 

patient data and donor liver data from the OPTN/UNOS organizations.  Patient data 

included age group, gender, race, primary cause of disease, transplant history, blood type, 

MELD scores, date of MELD scores, time on wait list, and status.  Donor liver data 

included donor age, donor height, donation after cardiac death donors, split liver donors, 

race, donor’s cause of death from cerebrovascular accident, regional sharing, local 

sharing, and cold ischemia time.   

In a study by Halldorson et al. (2009), the UNOS STAR national transplant 

database was referenced to analyze survival for first-time liver transplant recipients with 

chronic liver failure.  In this study, following approval by the University of Washington 

Institutional Review Board, Halldorson et al. extracted all records of recipients 

transplanted for chronic liver disease from UNOS Standard Transplant Analysis and 

Research (STAR) files from January 1, 2003 through December 31, 2006.  The data were 
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referenced to compute the D-MELD parameter.  This required the referenced donor liver 

data in order to compile the DRI parameter.  The DRI parameter consisted of a 

computation based on nine risk factors and it was referenced to compute D-MELD for the 

study of Halldorson et al.  Similar to Halldorson et al., the simulation model referenced 

patient data and donor liver data from the UNOS STAR database.  

 I utilized OPTN data in the four processes of the research simulation.  Donor liver 

data contained the DRI composition which, according to Feng et al. (2006), included nine 

parameters, were needed to compute the DRI parameter.  Patient data were needed to 

determine compatibility and urgency considerations.  Data from the five years of 2008-

2012 were processed by the simulation model.  The DRI parameter is expressed using 

equation (11).   

Rana et al. (2008) developed the SOFT score by combining patients’ MELD and 

risks scores.  The risks scores come from both donor and recipient risk factors and their 

risks points are summarized in Table 2 and Table 3.  Finally, the MELD, delta-MELD, 

DRI, and SOFT scores were normalized prior to being referenced in the AHP algorithm. 

Data Organization for the Simulation 

Foxton et al. (2010) explained that liver allocation for transplantation worldwide 

has undergone dramatic changes within the last 5 years, particularly with the introduction 

of the MELD.  Liver allocation policy changed because of increasing demand for liver 

transplants and increasing waitlist mortality.  Hence, sample data of years 2008-2012 

were used as these years are recent.  There are 11 Organ Procurement Organization 

(OPO) regions in the United States.  The data requested were from the one of the most 
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populous yet confined OPO regions, Region 9, of the United States.  Region 9 includes 

New York state and western Vermont.  

Burr and Shah (2010) explained that the United States has 58 OPOs and 11 

UNOS regions.  Within the regions are multiple OPOs.  Furthermore, the OPO 

centralizes the patients from the waiting lists of all centers within its coverage area and 

assigns them priority based on the MELD score, so that available organs will first be 

allocated to patients in descending MELD order within each specific OPO.  Organ 

allocation is prioritized as local (within the OPO), then regional (within a UNOS region) 

and finally, national (p. 134). 

Burr and Shah (2010) further explained that the purpose of this allocation is to 

reduce cold ischemia time by shipping the organs within a confined region.  Reducing 

cold ischemia time improves the quality of the transplanted organ.  Hence, the simulation 

model limited the study to one region, Region 9, and limited the scope outside the need to 

concern with cold ischemia time and varying MELD averages of additional regions, by 

focusing solely on one region, Region 9, which is confined to the area of New York state 

and western Vermont.    

The patient and donor liver data from Region 9 were used for simulation input.  

However, the patient data were taken from the UNOS STAR database to enter in the 

waiting list according to the time interval according to their entry timeframe, but the 

donor liver was randomly selected from the UNOS STAR database when simulating the 

arrival of a donor liver.  The timing of the arrival of donor liver was determined by a 

Poisson process.  This way, the content of a patient and a donor liver were from real 
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patient and donor liver data, while the timing and order of available livers were not based 

on any actual occurrences.  But the data of patients and the data of donor livers were from 

actual data. 

MELD projections based on timed intervals.  The patient data and donor liver 

data received from OPTN/UNOS were organized to accommodate an event driven 

simulation.  The patient data were organized into one of the 10 simulation interval based 

on UNOS’ date of entry.  The arrival of an available liver was randomly selected from 

the pool of donor livers at the UNOS-based average rate determined by a Poisson 

process.  This meant that the timing of the actual matching of liver to patient was not 

replicated according to the archived data, but by the arrival of livers processed by the 

simulation model.  Donor livers were randomly selected from the list of donor livers 

which were from UNOS STAR of the 2008-2012 timeframe.  The intent was to simulate 

the same sequence of events in both scenarios, without and with delta-MELD, with the 

purpose of comparing their outcomes.  

Kalman estimation of MELD values.  An additional method of gathering data 

was by the computation of additional and estimated MELD values through the Kalman 

algorithm.  It was through this form of data collection that the simulation was able to 

process sufficient MELD values for a steady flow of available and consistently computed 

delta-MELD values.  The delta-MELD values were used for decision-making in the 

simulation model. 

The Kalman estimation was used to estimate a steady supply of time series 

MELD values for the consistent computation of delta-MELD values.  The OPTN 
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stratification of MELD scores were applied in the simulation model as described in the 

OPTN liver allocation policy section.  Steps were taken to use the Kalman estimation for 

additional MELD data that were computed from patient MELD scores.   

Appendix A illustrates the steps and a basic example of an Extended Kalman 

Filter (EKF).  The progression of actual disease progression is likely to be non-linear and 

hence, in the simulation model, the EKF was used for capturing the series of sequences 

that are likely to be non-linear approximations.  After the time series of MELD values 

were computed, the time series of MELD values were referenced to compute the delta-

MELD values.  Then, patients were stratified according to their MELD scores in the 

following OPTN liver allocation policy levels for patient selection.  This was done in the 

AHP processing of the simulation.  Appendix B illustrated an example of an AHP 

processing. 

OPTN liver allocation policy.  In each OPO, the purpose of allocating livers is to 

enable physicians to apply their consensus medical judgment for the benefit of liver 

transplant candidates as a group.  Each candidate is assigned a status or probability of 

candidate death that has been derived from their MELD score reflecting the degree of 

their medical urgency.  The MELD score is the patients’ mortality risk scores determined 

by prognostic factors.  Candidates are then stratified by the MELD score and by blood 

type similarity (Organ Procurement and Transplantation Network, 2014).   

Regarding the hierarchy of decision-making, donor livers are offered to 

candidates first with an assigned status of 1A and 1B (highest priority) in descending 

point sequence with the candidate having the highest number of points receiving the 
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highest priority before being offered for candidates of lower probability rankings.  At 

each hierarchical level, adult livers are allocated in descending sequence order most 

urgent to least urgent in the OPO hierarchy groups as follows. 

1. Status 1A / Status 1B candidates in descending point order (local and regional). 

2. Candidates with MELD scores ≥35 in descending order of mortality risk MELD 

scores with local candidates ranked above regional candidates at each level of 

MELD score (local and regional). 

3. Candidates with MELD scores 29-34 in descending order of mortality risk MELD 

scores with local candidates ranked above regional candidates at each level of 

MELD score (local). 

4. Liver-intestine candidates in descending order of Status and mortality risk MELD 

scores (national). 

5. Candidates with MELD Scores 15-28 in descending order of mortality risk 

MELD scores (local).  

6. Candidates with MELD Scores 15-34 in descending order of mortality risk 

MELD scores (regional).  

7. Candidates with MELD Scores < 15 in descending order of mortality risk MELD 

scores (local first, then regional). 

These categorical levels were reflected in the AHP scoring algorithm which 

ensured that the OPTN categories were adhered to.  In other words, the AHP algorithm 

ensured that a candidate in category 3 (with a MELD score of 29-34) would never 

supersede a candidate of the same blood type in category 2 (with a MELD score ≥ 35).    
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 Figure 1 is an illustration of hierarchy which the AHP scoring would adhere to.  

Within a hierarchical level, the AHP scoring is ordered according to medical urgency 

(sickest first) and blood type, with the consideration of the donor liver quality and 

survivability factors.   

 
 
Figure 1. Hierarchy of MELD levels for liver allocation. 
 

The priority of the decision-making is to consider patients at the highest MELD 

level first.  When there are no candidates with a valid match at an existing priority level, 

then patients of the next lower priority level are considered. 

Internal and External Validity of the Simulation Components 

The internal validity of the simulation method lies in using secondary data for the 

simulation model to ensure sampling validity, and in the systems perspective of the 

simulation to simulate the actual liver allocation system.  In addition, the simulation 

reflected the objectives and processes of the actual donor liver allocation system.  

Status 1A/B

MELD >35 (Local & Regional)

MELD = 29 - 34 (Local)

Liver-Intestinal (National)

MELD = 15 - 28 (Local)

MELD = 15 - 34 (Regional)

MELD < 15 (Local first, then Regional)
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According to Frankfort-Nachmias and Nachmias (2008), one kind of validity that is 

primarily related to the instrument is the sampling validity.  In the Simulation validity 

section, the sampling validity is described.  The construct validity of the simulation is 

described in the sections, Analytic hierarchy process validity and Kalman estimation 

validity as it is the premise of these theoretical frameworks that the simulation was built 

upon. 

Simulation validity.  Frankfort-Nachmias and Nachmias (2008) defined research 

method validity as three basic types of validity, content validity, empirical validity, and 

construct validity.  These validities relate to a specific type of evidence and conditions (p. 

149).  The simulation validity was established by relating the measuring instrument of the 

data collected which really was the actual data to the general theoretical framework.  

Secondary data were requested and OPTN allocation levels were implemented to reflect 

the actual MELD scoring and decision-making of the existing U.S. liver allocation 

system.  Secondary data were also used to extend the MELD time series with additional 

MELD values. 

 Regarding sampling reliability, OPTN data are open for researchers to use for 

research and the OPTN organization is a reliable resource for the research of patient, 

donor liver, and waitlist history related to organ transplant.  According to Northup and 

Berg (2004), the data requested from the OPTN/UNOS organizations is from the most 

comprehensive liver transplant reference database presently in existence in the United 

States (p. 1648). 
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The data pertaining to this research were based on the recent 5 years of 2008-

2012.  The simulation time duration was 180 days for each of the 10 intervals where there 

are approximately two 180 day intervals per year.  Requesting for multiple years of data 

ensured that there was enough data to carry out the analysis for a statistical conclusion 

and ensured that the sampling sizes were adequate.    

 Regarding content validity of the simulation program, not only were patient and 

donor liver data based on actual data, but the OPTN liver allocation levels were 

integrated into the AHP decision-making.  Also, the percentage of ECD acceptance was 

taken from peer-reviewed literature and it was accounted for in the simulation model.  

The objectives of urgency, utility, and survivability, by the measurements of MELD, 

DRI, and SOFT normalized scores, were integrated into the AHP algorithm. 

Analytic hierarchy processing validity.  Regarding the use of AHP as a valid 

tool for multi-criteria decision-making, Saaty (1996) explained that it is of high 

importance to recognize measurements of various kinds of scales and in particular, the 

ratio scales.  An ordinal scale is a set of numbers that is invariant under monotone 

transformations.  In other words, ordinal numbers can neither be multiplied nor added 

meaningfully.  An interval scale is a set of numbers that is invariant under linear 

transformations, specifically, of the form, ax+b, where a>0, b≠0.  Different interval 

scales cannot be multiplied.  However, numbers from the same scale can be added.  A 

ratio scale, on the other hand, is a set of positive numbers that is invariant under a 

positive similarity transformation of the form, ax, where a>0.  Different ratios scales can 

be multiplied and divided and still give rise to a ratio scale because the invariance of their 
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products and quotients is derived from the invariance of each one of these scales.  

Numbers from the same scale can also be added.  Ratio scales enable us to relate 

alternatives of tangible action to criterion and values that are intangible.  The ratio scale 

of the AHP decision-making scores enabled us to see that our preferences were measured 

and compared among different measuring units among all the patients that were subjected 

to the same criteria.  Finally, the consistency ratio, ensured the transitivity property and 

numerical proportions of the AHP decisions are consistent by ensuring it does not exceed 

0.1. 

 The simulation selected the patient with the highest AHP score of matching blood 

type.  If the donor liver was an ECD or ECD 1-year liver, and the patient has not given 

consent and does not wish to proceed to transplant unless the donor liver is a SCD liver, 

then the next highest AHP scoring patient was selected.  The structure of AHP decision-

making is shown in Figure 2. 

 

Figure 2. Analytic hierarchy process structure of objectives and criteria. 
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The liver allocation decision-making can be translated in its limited range into 

meaningful numbers reflecting criteria ranking and patient selection.  The liver allocation 

selection process via AHP included criteria that were uniformly used among all 

pretransplant patients.   

Kalman estimation validity.  The Kalman filter is the theoretical framework to 

model liver disease progression of pretransplant patients for the simulation.  Steps were 

taken to translate the Kalman filter theory into the simulation model by using patient data 

from the OPTN organization and by estimating additional MELD data consistent with 

actual MELD data.  The main task of Kalman filter was to develop the system model 

where the goal is to determine the matrices reflecting the systems dynamics of disease 

progression, covariance values, and observation matrices of the observed disease 

progression.    

The Kalman filter algorithm for the MELD and delta-MELD parameters consisted 

of two alternating steps, which were repeated for each iteration and each new frame, 

prediction, and correction.  In the prediction step, the filter made an assumption about the 

future state.  In the correction step, an optimized state estimate was computed using a 

weighted difference between the prediction state and an actual or averaged measurement.  

Hence, this provided a mechanism to ensure optimal MELD estimations.  In the 

simulation model, estimates of MELD scores were based on actual MELD values and 

these values were used to propagate MELD data upon arrival of available donor livers.  

An error technique was setup in order to check that Kalman estimations did not exceed 

beyond certain thresholds.   
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The Simulation Model 

This section describes the simulation model and its processing.  The model 

simulated the liver allocation system by the way it handled available donor livers, the 

process of placing patients into the waitlist, and patient disease progression while waiting 

for available livers as reflected by the U.S. liver allocation system.   

The model simulated four processes and outputs relevant values for analysis.  The 

four processes included a process for the arrival of donor livers, transplant patient entry 

into the waitlist, liver disease progression, and waitlist patient management.  These 

processes referred to patient and donor liver data.   

A stochastic component of the simulation experiments was the interarrival timing 

of available donor livers.  The available donor livers were randomly selected from the 

UNOS STAR database, and hence it was not in accordance to the timing as specified by 

the database.  The interarrival timing of the liver was set accordingly to a Poisson process 

and based on the mean interarrival time from actual data.  Also, the random selection of 

available liver presented an uncertainty regarding the type of available liver, whether it is 

SCD, ECD-1 year, or ECD donor liver.   

Each simulation run was conducted over ten 180-day intervals of simulation time.  

There were two scenarios for the simulation which defined the values for the control 

variables, one not using delta-MELD and one using delta-MELD as a primary criterion 

for patient selection.  The sequence of the donor liver arrival was the same for both 

scenarios, with or without using delta-MELD.   
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Waitlist Entry 

The management of waitlist entry included processing new patients waiting for an 

available liver for transplantation.  These patients have undergone a liver medical 

assessment and have an initial MELD score with a start date into the waitlist.  The 

Waitlist Entry process referenced the patient data from OPTN/UNOS.  Once a patient had 

entered into the waitlist, the Disease Progression process would approximate future 

patients’ MELD scores in regular time intervals by Kalman estimation.  The Waitlist 

Entry’s data included patient’s waitlist start date, patient initial MELD score, and the 

number of patients entering into the waitlist. 

Burr and Shah (2010) explained that the way the current allocation system worked 

is that patients are prioritized on the waitlist according to blood type by descending 

MELD order.  This would mean that organs are offered to the waitlisted patient with the 

highest MELD score and blood type identical to the patient.  To avoid an inequitable 

distribution of organs, blood type O livers are only assigned to blood type O patients.  

The system allows patients with special situations such as very small size adult patients 

or AB-type patients to be listed for more than one match of blood types.   

Donor Liver Arrival 

 The events of donor liver arrival were simulated by a Poisson process and the data 

were randomly selected to be one of the donor livers from the UNOS STAR database.  

The Donor Liver Arrival process selected matching patients from the waitlist according 

to patient medical urgency, donor liver’s DRI, and patient-donor SOFT scores.  Hence, 

the Donor Liver Arrival process computed the AHP scores for all the patients on the 
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waitlist.  The winning patient was selected as the best scoring patient for the available 

donor liver.  However, if the available donor liver was an ECD liver, consent needs to be 

retrieved from the patient.  The chances of the patient accepting an ECD liver was 

determined in this process.  The Donor Liver Arrival’s output data included the 

ECD/SCD status, DRI score, whether a patient consented to accept an ECD liver, patient 

MELD and AHP scores, the number of SCD and ECD livers, and the number of patients 

transplanted.  In Figure 3, processing is shown for handling ECD and SCD livers. 

 

 



106 
 

 

  

Figure 3. Donor liver processing based on liver quality.  

 Upon arrival of an ECD or ECD 1-year liver, the model determined whether a 

patient accepted an ECD or ECD 1-year liver, by a random function, with a chance of  

25% or 15%, respectively (Rodrique et al., 2011). 
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Disease Progression 

The Disease Progression process estimated patients’ disease progression by 

updating MELD and delta-MELD parameters.  The patient’s waitlist status was updated 

indicating whether the patient was still on the waitlist awaiting for an available donor 

liver, or has dropped off from the waitlist due to being too sick, death, or for other 

reasons.  The Disease Progression’s output data included patient MELD, delta-MELD, 

and waitlist status.  In addition, the output data provided the average MELD score of 

patients on the waitlist and the count of patients dropping off from the waitlist at the end 

of each week. 

Unlike the Waitlist Entry, Donor Liver Arrival, and Waitlist Patient Management 

processes, which were event-driven, the Disease Progression process was a timer process 

that runs continuously at a one second rate.  Every instance when the Disease Progression 

process runs simulated one day on the waitlist.  The timer process ran for 180-days to 

fulfill one of ten intervals in a simulation scenario. 

In order to simulate and track the occurrence of patients being removed from the 

waitlist because the patient was deemed too sick to transplant, the 

Patients_Dropped_From_Waitlist parameter was updated at the end of each week.  The 

survival table based on MELD score and patient risk factors according to the study of 

Rana et al. (2008) was referenced as a guide when the weekly average MELD exceeded 

the actual Region 9 average MELD of 21.  The risks based on patient risk factors are 

tallied up and patients with the highest risks are considered for removal based on MELD 
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scores and survival rates.  The survival rates were based on the hazard ratio according to 

MELD scores as follows (Sharma, Schaubel, Gong, Guidinger, & Merion, 2012). 

Table 4 

Hazard Ratios based on MELD 

MELD  15-17  18-20 21-23 24-26 27-29 30-32 33-35 36-37 38-39 40 

HR  0.03 0.04 0.08 0.12 0.22 0.39 0.5 0.82 0.98 1 

P-
value 

 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.1 0.89 0.87 

 

Waitlist Patient Management 

 The Waitlist Patient Management process managed patient disease updates due to 

actual MELD scores and removed patients off of the waitlist reported as being too sick to 

receive transplant or died while waiting for available liver.  These updates were based on 

actual patient reports provided by the OPTN data.  The waitlist patient output data 

included patients’ MELD scores, statuses of removal from the waitlist, as well as the 

count of patients dropping off of the waitlist. 

Simulation Inputs and Processing 

Input Data 

 The simulation model input data included a control factor, assumptions, and 

limitations.  From the UNOS STAR database, and similar to the study by Northup and 

Berg (2004), recipients listed for liver transplantation with MELD exclusions such as 

hepatocellular carcinoma patients, all status 1 (acute hepatic failure) recipients, and 

patients with incomplete laboratory or survival data were excluded from the simulation.  



109 
 

 

Also, the data set was queried for MELD score on the day of transplant.  Patients with 

only a single MELD score reported to UNOS or with no MELD scores were excluded 

from the analysis.  The parameters of DRI and SOFT scores were computed upon the 

arrival of a donor liver.  

 The uncertainties of the process, simulated by the model, included the arrival of 

available livers and the type of quality of these donor livers, whether they were SCDs, 1-

year ECDs, or ECDs.  The interarrival times of liver donor were varied according to a 

Poisson distribution.  The liver and patient data and their arrival times were the same in 

both scenarios with and without delta-MELD.  The objective was to measure and 

compare the scenarios with and without delta-MELD to the same livers, pool of patients, 

and their arrival times.  Finally, since there were two 180-day intervals in a year, and data 

were based on 2008-2012 timeframe, there were 10 different model runs.  The entire 

experiment ran 7 replications of these model runs, to meet the minimum required sample 

size, which was 70, for a t test of two independent populations of means.  There was an 

equal number of replications for each of the two groups (one group for each level of the 

independent variable). 

Input Data for Simulation without delta-MELD 

In the simulation scenario without delta-MELD, the AHP integrated the OPTN 

allocation levels of urgency and played a major part in patient selection.  The following 

AHP decision tables were initialized for decision-making where the delta-MELD was not 

used as a criterion.   
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The patient AHP scores were based on the AHP initial values, donor liver DRI, 

patient-donor SOFT, and MELD normalized scores.  The AHP score was computed as 

follows, where the coefficients and multiplier are according to Table 5. 

 Hb (̀cdYe) = � ���J���� 

  ∗ (�= ∗ ����WZfU + �[ ∗ �&$WZfU + �g ∗ *+;NWZfU)  (17) 

Table 5 

AHP Weights and Ranking without delta-MELD 

Allocation Level    MELD        DRI   SOFT        Multiplier  

 �= �[ �g    

Status 1A/B  0.570305 0.214847 0.062941  0.320454  

≥35 (Loc & Reg)  0.457376 0.271311 0.214847  0.216472  

29-34 (Local)  0.347082 0.347082 0.326458  0.149638  

Liver-Int 
(National) 

 0.257338 0.257338 0.371330  0.109904  

15-28 (Local)  0.177135 0.177135 0.411432  0.081728  

15-34 (Regional)  0.122618 0.122618 0.438690  0.065517  

<15 (Local, Reg)  0.882129 0.088212 0.455893  0.056284  

  

Input Data for Simulation with delta-MELD 

In the simulation scenario with delta-MELD, the AHP integrated the OPTN liver 

allocation levels of urgency that also played a major part in patient selection while using 

the delta-MELD parameter as a criterion for liver allocation.  The following AHP Table 6 

contains the weights of the criteria (coefficients), MELD, delta-MELD, DRI, and SOFT, 

and the ranking (multiplier) of priority groups for liver allocation used in AHP scoring. 



111 
 

 

The patient AHP scores were based on the AHP initial values, delta-MELD, 

donor liver DRI, patient-donor SOFT, and MELD normalized scores.  The AHP score 

was computed as follows, where the coefficients and multiplier are according to Table 6. 

 ��������� = (����7  –  ����7<=) / (����7<(7<=))   (18) 

 Hb (̀cdY=) =  � ���J���� 

  ∗ (�= ∗ ����WZfU + �[ ∗ ���������WZfU   

  +�g ∗ �&$WZfU + �h ∗ *+;NWZfU)     (19) 

Table 6 

AHP Weights and Ranking with delta-MELD 

Allocation Level    MELD delta-MELD     DRI   SOFT Multiplier  
 �= �[ �g �h   

Status 1A/B  0.363181   0.363181 0.138186 0.136818 0.352108  

≥35 (Loc & Reg)  0.313835   0.313835 0.186164 0.186164 0.229594  

29-34 (Local)  0.257655   0.257655 0.242344 0.242344 0.150847  

Liv-Int (National)  0.204669   0.204669 0.295330 0.295330 0.104031  

15-28 (Local)  0.150480   0.150480 0.349519 0.349519 0.070833  

15-34 (Regional)  0.109225   0.109225 0.390774 0.390774 0.051732  

<15 (Local, Reg)  0.081062   0.081062 0.418937 0.418937 0.040853  

 

 The AHP technique for the selection of the most suited and sickest patient was 

appropriate for the liver allocation decision-making because there were multiple 

objectives and criteria to weigh into the consideration of many patients awaiting a donor 

liver.  Winston (2004) described that a multi-criteria decision-making process could be 

complex because when multiple objectives are important to a decision-maker, it may be 

difficult to choose among the many alternatives (patients).  The AHP was a tool used for 
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the selection of matching patient as it integrated the objectives with the OPTN liver 

allocation levels into the decision-making.  AHP scores were outputted for analysis from 

the donor liver process of the simulation.  In addition to AHP, number of patients 

dropping out of the waitlist, and average MELD scores were outputted for analysis.  In 

the Figure 4, an overview of the simulation’s data processing is presented. 

 

Figure 4. Overview of simulation data processing.  

 Table 7 lists the actual number of liver transplants performed from deceased 

donors in the years 2008-2012 according to OPTN (2014).  This list indicates that when 

considering the limitation of actual patient data used in the simulation due to non-HCC 

disease, non-status 1 patients, etc., the simulation processing a unique pool of 100 patient 

records and 130 donor liver records within any 180-day simulation interval is feasible.   
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Table 7 

Number of Region 9 Liver Transplants from Deceased Donors 

Year 
Number of  Region 9 Liver Transplant Patients 

from Deceased Donors  

2012 313 

2011 343 

2010 322 

2009 403 

2008 402 

 

 Table 7 shows that the patient sampling within the simulation of 100 patients in 

each of the ten 180-day intervals is a feasible sampling size, where the actual patients 

from the time spanning 2008-2012 from the UNOS Region 9 database was 1,783.  The 

simulation sampled 100 patients for each 180-day interval, where there were two 180-day 

intervals per year, producing 1,000 patients in ten intervals.  The simulation patient 

sampling of 1,000 patients compared to the actual population of 1,783 UNOS Region 9 

patients represent more than 50% of the actual patient population.  This showed that in 

each 180-day interval, it was feasible to set up a unique pool of 100 patients and at least 

130 donor livers, reflective of actual data from UNOS, for each interval to produce a set 

of response variables.  Each simulation of 26 weekly reports per 180-day interval was 

processed after removing patients with HCC disease, status 1 patients, and patient data 

with only one MELD score.      
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Simulation Outputs 

To summarize the simulation output data, each simulation run generated output 

data for analysis for each of the two response variables: MELDmean and 

Total_Patients_Removed.  But most importantly, the disease progression output data 

included patient’s MELD, delta-MELD, as well as the average MELD score of patients 

on the waitlist.  The simulation output data included the number of patients dropping off 

of the waitlist at the end of each week.  The average MELD and number of patients 

removed from the waitlist from the scenario without delta-MELD was compared against 

the average MELD and number of patients removed from the waitlist from the scenario 

with delta-MELD.  

The response variables from model runs were used to compute MELDmean, 

equation (15), and Total_Patients_Removed, equation (16), for each 180-day interval.  

Both Average_MELD(n) and Patients_Dropped_From_Waitlist(n) parameters were 

output from both scenarios with and without delta-MELD.  The only control factor of the 

simulation experiment was the DM that indicated the use or non-use of the delta-MELD 

as a decision criterion in the simulation.   

Experiment and Sample Size 

 The experiment covered 5 years of data (spanning 2008-2012), measured in 180-

day intervals for a total of 10 timeframes.  For each of these timeframes, the simulation 

model ran twice, once for each level of the control factor (once with and once without 

delta-MELD).  Thus, there were 20 simulation scenario runs (10 timeframes times 2 runs, 

with and without delta-MELD).  However, the simulation model was stochastic, so I 
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conducted the experiment to run the simulation model multiple times (7 replications) for 

each timespan and control factor level.  This ensured I met the minimum sample size for t 

tests of two independent populations’ means to meet the desired power, effect size, and 

confidence.   

 I computed the minimum experimental sample size using the following 

methodology.  In determining the minimum experimental sample size, Aczel and 

Sounderpandian (2008) provided the following formula for this purpose (p. 243): 

 Minimum experimental sample size for a t test of two independent and equal 

populations is as follows: 

 � = 2 ∗ ijk [⁄ + jmn[ ∗ σ[/�[      (20) 

 Z α/2 = the normal distribution critical value for a probability of α/2 in each tail, 

Z β = the normal distribution critical value for a probability of β, 

 σ 2 = population variance, and 

 E = dσ, the standard error.  

 I used a 95% confidence interval, hence, Zα/2 is 1.96 (Aczel & Sounderpandian, 

2008), and 80% power, hence, Zβ is 0.84 (Gelman & Hill, 2007, p. 441).  I ensured a 

power of at least 0.8, which is 1 - β, where β is the percentage of Type II error, and Type 

II error is the error of not rejecting the null hypothesis when it is false.     

 For the dependent variables, MELDmean and Total_Patients_Removed, I used 

Cohen’s d effect size, where a large effect size is 0.80, a medium effect size is 0.50, and a 

small effect size is 0.20 (Cohen, 1992).  The standard error, E is rewritten as dσ, as E = 

dσ, where I chose a medium effect size, d = 0.5.  Cohen (1992) explained that the effect 
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size is that measure which can determine whether the null hypothesis may likely be 

wrong.  For MELDmean and Total_Patients_Removed, I chose a medium effect size since 

a MELD score that is off by 1 is a reasonable and noticeable effect size.  E = dσ, where σ 

= 2 (Figure 11), d = 0.5 times (σ = 2) is 1, a medium effect size.  Similarly, for 

Total_Patients_Removed, one person removed from the waiting list is a reasonable and 

noticeable effect size.   

Using an effect size, 0.5, the formula for sample size is reduced to the following:  

 � = 2 ∗ ijk [⁄ + jmn[ ∗ σ[/�[      (21) 

     = 2 ∗ ijk [⁄ + jmn[ ∗ σ[/�[
σ

[      (22) 

     = 2 ∗ ijk [⁄ + jmn[/�[       (23) 

With d = 0.5, α = 0.05, β = 0.80, the sample size is  

 � = 2 ∗ ijk [⁄ + jmn[ ∗ σ[/�[ = 2 ∗ (1.96 + 0.84)[/(0.5)[ = 62.72 (24) 

n is rounded up to 70.  The sample size of 70 required 7 simulation runs as there are ten 

180-days intervals (sample units) per simulation (replication).  The normality, 

homogeneity of variances, and independence of the t tests of two independent 

populations were verified (see Appendix D). 

Hypothesis Testing 

 I conducted statistical tests based on output data from the experiment.   

Total_Patients_Removed and MELDmean values were hypothesized to vary with changes 

in the control factor: without and with delta-MELD.  I utilized t tests for two independent 

populations, and the experiment was based on the random sampling of arriving livers 
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with an UNOS-based average random interarrival time of five days.  The experiment 

involved two scenarios, one scenario with decision-making not including delta-MELD, 

and another scenario with decision-making including the delta-MELD (hence, generating 

samples of two different and independent populations).  Upon completion of the 

simulation experiment, two t tests of two independent populations were performed (one 

for each hypothesis) to evaluate the difference in means between the case where delta-

MELD is not used as a criterion and the case where delta-MELD is used as a criterion. 

 Aczel and Sounderpandian (2008, p. 313) provided the formula for the t test of 

two independent populations for the case where σ1 and σ2 may be unknown and may be 

unequal: 

 t =  (st<su)<(vt <vu)wxtu yt⁄ zxuu yu⁄        (25) 

Since the null hypotheses for both dependent variables stated that there is no 

difference in their values for both scenarios without and with delta-MELD as criterion, 

(μ1 – μ2) is equal to 0.  Hence,  

 t = (st<su)wxtu yt⁄ zxuu yu⁄         (26) 

(Aczel & Sounderpandian, 2008, p. 314).  The formula for the t test of two independent 

populations for MELDmean of the scenarios with and without delta-MELD is as follows. 

 t(MELDmean) = (st<su)wxtu yt⁄ zxuu yu⁄       (27) 
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 ����U�VW = (1/70) ∗  ∑WY= 7Z ~e [����U�VW(�)],    (28) 

 where  x1 is the MELDmean average from scenarios without delta-MELD, 

 x2 is the MELDmean average from scenarios with delta-MELD, 

 S1 is the standard deviation of MELDmean without delta-MELD, 

 S2 is the standard deviation of MELDmean with delta-MELD, 

 N1 is the number of MELDmean in experiment without delta-MELD, 

 N2 is the number of MELDmean in experiment with delta-MELD. 

 The t-statistic is positive when the MELDmean in the scenario without delta-MELD 

is larger than the MELDmean in the scenario with delta-MELD, and negative when the 

MELDmean in the scenario with delta-MELD is larger than the MELDmean in the scenario 

without delta-MELD.  A similar t test of two independent populations was performed for 

Total_Patients_Removed of the scenarios without delta-MELD and the scenarios with 

delta-MELD. 

 Similarly, the t test of two independent populations for the number of patients 

removed for scenarios without delta-MELD and with delta-MELD is as follows. 

 t(PatientsRemoved) = (st<su)wxtu yt⁄ zxuu yu⁄       (29) 

 N����_`������E_&���G��V�� 

   = (1 70⁄ ) ∗ ∑�Y= 7Z ~e[N����_`������E_&���G��(�)], (30) 

 where  x1 is the Total_Patients_Removed mean for scenarios without delta-

MELD, 

 x2 is the Total_Patients_Removed mean for scenarios with delta-MELD, 
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 S1 is the standard deviation of Total_Patients_Removed without delta-MELD, 

 S2 is the standard deviation of Total_Patients_Removed with delta-MELD, 

 N1 is the number of Total_Patients_Removed for scenario without delta-MELD,  

 N2 is the number of Total_Patients_Removed for scenario with delta-MELD. 

Aczel and Sounderpandian (2008) explained that the degrees of freedom for this t 

test is computed by 

df = 
[(xtu yt)⁄ z(xuu yu⁄ )]u[(xtu yt⁄ )u (yt<=)⁄ ] z[(xuu yu⁄ )u (yu<=)]⁄      (31)  

df is then rounded down to the nearest integer.  Here N1 and N2 are equal to 70.  df is 

computed to be 69. 

 I utilized a two-tailed t test of two independent populations.  The scenarios were 

treated as two independent samples with different means for the dependent variables that 

were compared using a t test.  The t-statistic was compared to the critical value of t.  The 

alpha level was set to 0.05.  This means that five times out of a hundred, I will reject a 

null hypothesis when I should have failed to reject it (a false positive result, or Type I 

error); that is, a difference between the means is in truth due to random variability in the 

stochastic process (simulation model) even if no difference exists in reality (Green & 

Salkind, 2011).  Confidence is the inverse of alpha (1 - α), indicating the confidence I 

have that I will avoid incorrectly seeing an effect that is not present in the population.   

 The power of the test was set to 0.80.  The power of a test is 1 - β, where β is the 

probability of a false negative (Type II error)—failing to reject a null hypothesis that 

should have been rejected (Aczel & Sounderpandian, 2008).  Power, therefore, is the 
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probability of properly detecting an effect, such as a true difference in population means.   

 At the end of running the simulation 7 times, there were 70 sets of response 

variables, MELDmean and Total_Patients_Removed, for the t tests of two independent 

populations.  The t-statistic was compared to the critical value of t for 69 degrees of 

freedom, 95% confidence, and a two-tailed test.  When the experimental t-statistic is 

greater than the critical value of t or less than the negative value of the critical t, the null 

hypothesis is rejected.  The results of statistical tests provided answers to both the 

research questions and hypotheses.   

Pilot Testing and Scenario Runs 

Hillier and Lieberman (2010) explained that after the computer simulation 

program has been constructed and debugged, the next key step is to test whether the 

simulation would provide valid results for the system it is representing (p. 961).  Hillier 

and Lieberman suggested some ways to test the simulation model which may include 

observing animations and logs of simulation runs as a useful way to check the validity of 

the simulation model.  Another suggestion provided is to construct and verify a prototype 

simulation which is a smaller version of the simulation (p. 962).   

The simulation was designed to generate logs from each of the simulation’s four 

processes.  An important purpose for this was to provide simulation verification based on 

a pilot dataset.  A pilot dataset was used and generated to run each of the simulation 

processes and to review the logs for simulation verification.  This verification process 

included review of data initialization and data setup of patient, liver, and disease 

progression data, as well as the processing verification of Kalman estimation of patients’ 
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disease progression, AHP scoring for patient selection, removal of patients from the 

waitlist, and t test of two independent populations results.  More specifically, 

verifications of the Waitlist Entry process included checking whether the number of 

patients and their entry sequences matched that of actual data.  Verifications of the Donor 

Liver Arrival process included checking donor liver mean interarrival times, percentages 

of SCD, ECD and ECD 1-year liver types accepted by patients, and AHP selection of 

patients against actual data and intended processing.  Verifications of the Disease 

Progression process included checking whether patients were dropping off of the waitlist 

according to actual data and intended processing.   

Both the pilot and scenario datasets went through the same simulation processing 

and similar log review.  The log review of pilot runs provided description, understanding, 

and verification of simulation steps and output data.  The dataset for the pilot simulation 

consisted of the first 180-day interval of 2008 in the UNOS STAR dataset with the same 

patient and liver sample data in the scenario runs as in the experimental scenario runs.  

The log review of scenario runs provided data analysis and interpretation of output results 

that was based on the UNOS STAR’s dataset.  Descriptions for generating logs for data 

analysis and simulation verification are described in Appendix C, Simulation 

Programming Notes. 

Summary 

The research design was formulated to ensure the research questions and 

hypotheses can be answered.  The research instrument was the simulation, where the 

design of the research included the simulation parameters MELD and delta-MELD as the 
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primary criteria.  The simulation parameters MELD, delta-MELD, DRI, and SOFT were 

used to compute a recipient selection by AHP.  This operationalization of criteria 

included the stratification of MELD scores into OPTN’s categories of MELD levels.  The 

design of the research also included secondary patient data and donor liver data from the 

UNOS STAR database of Region 9 from 2008-2012.  However, in the simulation, the 

donor liver data were not sequenced according to its archived occurrence, but randomly, 

where the donor livers were randomly selected from the database of the same year. The 

research experiment included distributions of SCD, ECD-1 year, and ECD donor livers 

with varying interarrival times of available donor livers.  The random selection of liver 

data and interarrival times were the same for both scenarios with and without delta-

MELD. 

 The simulation used the same patient data for the two scenarios (without delta-

MELD and with delta-MELD), in multiple replications, and are treated as having two 

independently separate sets of patients.  With each experimental run, the purpose of the 

simulation was to generate the average MELD scores and number of patients removed 

from the waitlist over a 180-day interval, for cases with and without using the delta-

MELD parameter as a criterion.  The experiment’s objective was to determine whether 

the delta-MELD parameter would be a viable criterion to refine the current liver 

allocation system.  I ran the simulation 7 times for each of the 10 intervals in 2008-2012 

with delta-MELD and 7 times without delta-MELD.  This resulted in a total of 70 model 

runs for each scenario (with and without using delta-MELD as a criterion). 
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The research methodology described in this chapter was made possible by the 

theoretical frameworks of the Kalman filter, AHP, the OPTN liver allocation policy, and 

the patient, liver and waitlist history data provided by the OPTN/UNOS organizations.  In 

this chapter, I explained the theoretical frameworks, policy, and use of the OPTN/UNOS 

data regarding how they were applied to the simulation.  This information provided the 

conceptual framework for the t tests of two independent populations of response 

variables, Total_Patients_Removed and MELDmean, where these t tests helped to address 

the research questions and hypotheses.      
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Chapter 4: Simulation Results and Analysis 

The purpose of this research was to investigate whether using the delta-MELD 

criterion can improve the liver transplant patient selection process by reducing the 

number of patients dropping off the waitlist and lowering the average MELD score.  Pidd 

(2004) explained that simulation model-building should ideally include four main steps.  

These steps include conceptual model-building, computer implementation, validation, 

and experimentation (p. 35).  Pidd further explained that the conceptual model-building is 

an activity in which the analyst tries to capture the essential features of the system that is 

being modelled.  In the research model, I emphasized the allocation aspect of the donor 

liver system to study the effects of having an additional criterion, delta-MELD, for 

patient selection.  The description of the conceptual model-building and computer 

implementation for this simulation was described in Chapter 3.  In Chapter 4, I describe 

the validation and experimentation results. 

Chapter 4 includes four sections, Research Questions and Hypotheses, Pilot 

Testing and Verification of the Simulation Model, Experimental Outcome, Results, and 

Summary.  I utilized t tests of two independent populations to determine if there was a 

difference in outcomes of the two scenarios, with and without using delta-MELD for 

decision-making.  

Research Questions and Hypotheses 

The research questions and their respective hypotheses are repeated here from 

Chapter 1: 
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1. Does a simulation model using the additional parameter of delta-MELD as a 

patient selection criterion reduce the number of pretransplant patients who 

dropped off the waiting list?  

 Ho: There is no difference in the number of patients who dropped off of the 

waiting list (Total_Patients_Removed) between simulation models with and without 

delta-MELD along with the MELD score as primary criteria for patient selection in donor 

liver allocation. 

 Ha: There is a difference in the number of patients who dropped off of the waiting 

list (Total_Patients_Removed) between simulation models with and without delta-MELD 

along with the MELD score as primary criteria for patient selection in donor liver 

allocation.  

2. Does a simulation model using the additional parameter of delta-MELD as a 

patient selection criterion lower the average MELD score among pretransplant 

patients?   

Ho: There is no difference in the average MELD score (MELDmean) among 

pretransplant patients between simulation models with and without delta-MELD along 

with the MELD score as primary criteria for patient selection in donor liver allocation. 

Ha: There is a difference in the average MELD score (MELDmean) among 

pretransplant patients between simulation models with and without delta-MELD along 

with the MELD score as primary criteria for patient selection in donor liver allocation. 
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Pilot Testing and Verification of the Simulation Model  

 As introduced and explained in Chapter 3, the model simulated processes for 

Waitlist Entry, Waitlist Patient Management, Disease Progression, and Donor Liver 

Arrival.  The Waitlist Entry process handled the days which patients enter into the 

waitlist within the simulation interval.  The Waitlist Patient Management process ensured 

that MELD updates were processed for all patients according to the UNOS data.  The 

Disease Progression process handled the Kalman estimation for all patients’ MELD 

scores according to existing UNOS data on days where there were no patient updates.  

The Donor Liver Arrival handled the arrival of donor livers according to computer 

randomly generated days by a Poisson process.  In addition, pilot testing and verification 

of the simulation model included weekly reports of the 180-day interval and statistics 

from one simulation run which were output for review. 

 Table 8 highlights the data derived by the simulation as well as data provided by 

the UNOS STAR database for simulation processing.  Table 8 identifies whether the data 

were derived, stochastically generated, or retrieved from the UNOS STAR database.  The 

simulation data, which were initially described in Chapter 3, are summarized in Table 8. 
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Table 8 

Simulation Variables and Parameters 

Variable / Parameter Description 

MELD Model for end-stage liver disease retrieved from UNOS 

STAR database and derived for patient on waitlist. 

Delta-MELD This derived parameter is the calculated difference between 

a current MELD and the previous MELD score divided by 

the days between the two MELD scores. 

DM This control parameter is a categorical variable where 1 = 

scenario with delta-MELD as criterion, and 0 = scenario 

without delta-MELD as criterion.   

DRI The donor risk index is a derived parameter that is a 

measurement of liver quality based on nine factors. 

SOFT The survival outcomes following liver transplantation is a 

parameter and measurement of survivability based on risk 

factors. 

AHP Analytic hierarchy process score is a derived parameter and 

measurement of importance or preference among the 

alternatives in decision-making. 

Patients_Dropped_From

_Waitlist 

This parameter contains the number of patients dropped 

from the waitlist weekly. 
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MELDmean This is the mean of weekly Average_MELDs for the 

simulation scenarios with or without delta-MELD and is 

expressed using equation (15). 

Total_Patients_Removed This parameter is expressed using equation (16) and is 

computed within each simulation interval.   

Average_MELD Average MELD is compiled weekly from patient waitlist. 

  

 I performed a verification process on the simulation’s four processes, Waitlist 

Entry, Waitlist Patient Management, Disease Progression, and Donor Liver Arrival.  The 

purpose of pilot testing and verification was to verify that the features of the simulation 

were working as intended and that the simulation input data, which were provided by 

UNOS STAR database, were interpreted correctly.  I verified these four processes by 

running the simulation graphical user interface (GUI), reviewing the outputs against the 

UNOS data, and reviewing the GUI panels and logs generated by the simulation.  The 

data used for pilot testing were the first 180-day interval of 2008.  In addition, I verified 

weekly reports of one 180-day interval and statistics from one simulation run. 

Waitlist Entry and Waitlist Patient Management Processes 

 Table 9 lists the verification steps and corresponding variables or parameters 

being observed for verification of the Waitlist Entry process. 
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Table 9 

Waitlist Entry and Waitlist Patient Management Processes Verification 

Step Waitlist Entry and Waitlist Patient Management Processes Steps 

1 Initialize patient data with valid entry day #, delta-MELD, disease group, 
and status. 

2 Ensure the interval duration goes from 1 through 180 days. 

3 Ensure that both scenarios, one without using delta-MELD and one with 
using delta-MELD as decision-making, are processed. 

4 Ensure that the delta-MELD derived field is computed properly for every 
patient. 

 

 The UNOS STAR data contained all patients who were on the waitlist from 1987 

to March 2014.  The data included all patients and waitlist history of patients from all 

regions of the United States, Regions 1 through 11.  The UNOS tabbed delimited data 

files from the UNOS STAR files were processed in Excel spreadsheets for filtering 

patient waitlist data from Region 9, from 2008 to 2012.  The data were further filtered to 

exclude patients who were status 1 (emergency patients), HCC disease type, and pediatric 

end-stage liver disease (PELD) patient type.  The Waitlist data included the patient 

MELD updates for the Patient ID of the Patient data.  The data, Patient and Waitlist data, 

were merged into the Patient data for the simulation, joined by Patient ID.  More 

specifically, the Waitlist Entry process handled the initial patient entry into the waitlist 

while the Waitlist Patient Management process handled the updates of patient MELD and 

patient statuses through the course of a simulation interval. 
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Figure 5. Waitlist Entry and Waitlist Patient Management processes. 

 Figure 5 shows the patient data processed into the simulation’s patient file in the 

top panel from the raw UNOS STAR patient data.  The data on the top panel were 

correctly processed by observation against the UNOS liver and patient data on the bottom 

panel.  The bottom panel contains the UNOS liver and patient data.  I selected the first 

180-day interval of 2008 for pilot testing but any of the simulation intervals could have 

been selected for pilot testing.  In actual experimental runs, all 10 intervals are processed 

in the simulation.   
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Disease Progression Process 

 The Disease Progression process ran from day 1 through 180 within the 

simulation interval.  This included processing the Kalman estimation for MELD score 

progression, taking weekly reports of MELD averages and the number of patients who 

were dropped from the waitlist, and updating any patient records for each day.   

Table 10 

Disease Progression Process Steps for Verification 

Step Disease Progression Process Steps  

1 Ensure that the processing is performed once for the scenario where AHP 
would use delta-MELD and once for where AHP would not use delta-
MELD.  

2 Ensure the processing performs Kalman estimation of disease progression 
by propagating the MELD scores properly when computed by Kalman 
estimation. 

3 Ensure that patients are removed from the waitlist when their statuses 
indicate they are too sick or they have died. 

4 Ensure that this process proceeds from day 1 through 180. 

 
As shown in Figure 6, verification steps 2 and 3 of Table 10 confirmed that the 

Kalman estimation was propagating MELD scores and only patient status of 

“WAITING” was processed.  In Figure 7, verification steps 1 and 4 of Table 10 were 

accomplished by showing that the scenarios, without and with delta-MELD, were 

performed with the simulation progressing from day 1 through 180.     
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Figure 6. Disease Progression process-1. 

 Figure 6 shows not only that the initial delta-MELD were computed for patients 

as shown on the top panel, but the bottom panel shows the internal daily Kalman 

estimated MELD and delta-MELD computed for patients who do not have a waitlist 

update record for that day as the scenario progressed from day 1 through 180 of the 

scenario.  Patients with the status of “WAITING” were filtered for the initial setup and 

the internal Kalman estimation were performed for patients with “WAITING” statuses 

only. 
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Figure 7. Disease Progression process-2. 

Figure 7 shows the highlighted line on the top panel indicating the beginning of 

the Liver Patient match processing using delta-MELD as criterion.  In the panel’s 

previous lines, the processing was performed without delta-MELD.  The liver arrivals 

were determined by a Poisson process with a computed UNOS-based average interarrival 

time of 5 days.  Once a patient match was determined, the patient status was changed 

from “WAITING” to “TRANSPLANTED”.  The parameters of DRI and SOFT logged 

on the bottom panel were confirmed against data retrieved from patient and liver data. 
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Donor Liver Arrival Process 

 The Donor Liver Arrival process verification method includes steps shown in 

Table 11. 

 
Table 11 

Donor Liver Arrival Process Steps for Verification    

Step Donor Liver Arrival Processing Steps 

1 Ensure the Donor Liver Arrival process is performed once with delta-
MELD and once without delta-MELD. 

2 Ensure that the day of liver arrival is based on the current day and the 
number of days computed by the Poisson process.   

3 Ensure the correct computation of DRI and SOFT derived data.   

4 Ensure patient statuses are translated correctly when processing the 
UNOS patient data. 

5 Ensure the correct processing of winning patient based on AHP score, 
blood type, and DM indicator is performed. 

6 Ensure that upon patient selection, the patient is not a candidate for later 
liver donor arrivals. 

 

 As shown in Figure 8, I performed verification steps 1 and 2 of Table 11 by 

showing that the scenarios, without and with delta-MELD, were performed and the livers 

randomly arrived (by the C++ random function) between the days 1-180.  In Figure 9, I 

performed verification steps 3 and 4 of Table 11 by showing the computation of 

parameters DRI and SOFT were correct by tracing back to their patient and liver data.  

Also in Figure 9, I performed verification steps 5 and 6 of Table 11 by showing that AHP 

scores, blood types, and the DM indicator were used to filter the selection of patients, 



135 
 

 

determining best patient match, and ensuring that patients were taken off of the waitlist 

after transplant. 

 
 
Figure 8. Donor Liver Arrival process-1. 
 

Figure 8 shows that both scenarios, without and with delta-MELD, always shared 

the same liver arrival day, liver ID, and initial pool of patients.  Patient selection in each 

scenario may have varied for the same liver arrival, but may sometimes have resulted in 

the same patient selection.  When there was no patient selected for an arriving liver, it 
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was due to “no match” of patient blood type to donor liver blood type.  Often, these 

donor livers would be transferred to another region.   

 

  

Figure 9. Donor Liver Arrival process-2. 

 Figure 9 shows that on Day 109, Patient ID 41 was matched with Liver 396.  The 

candidate and donor liver blood types were both “O”.  On Day 114, Patient ID 57 was 

matched with Liver 236.  Patient ID 41 was not listed again for the same blood type as 

Patient 41 had received a liver transplanted already on Day 109.  On both days, 109 and 
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114, the patients with the highest AHP score were matched for the arriving liver.  Also, 

ECD acceptance may have affected whether a patient was listed on the candidate list.   

Weekly Reports 

 The response variables from the simulation were verified to ensure that 

computations were performed from weekly statuses.  The MELDmean and 

Total_Patients_Removed were captured in two scenarios, one with and one without delta-

MELD. 

 
 
Figure 10. Weekly reports: Disease progression.  
 



138 
 

 

Figure 10 shows the weekly Average_MELD and 

Patients_Dropped_From_Waitlist.  Patients who received liver transplants were removed 

from the waitlist and were not included in the weekly count.  The simulation interval for 

viewing weekly Average_MELD and Patients_Dropped_From_Waitlist values is user-

selectable.      

Statistics from One Simulation Run 

 
 
Figure 11. Statistics from one simulation run. 
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Figure 11 shows the statistics from only one simulation run, with and without 

delta-MELD, which included 10 intervals covering the years 2008-2012.  This simulation 

run was conducted to verify that the simulation would properly provide statistics of the 

MELDmean and Total_Patients_Removed response variables and that a simulation can run 

correctly to completion.  The number of intervals for the experiment was 10 x 7 = 70.  

The experiment was conducted from 7 replications of simulation runs.     

Experimental Outcome  

 Figure 11 shows the simulation results from running through all 10 intervals, of 

only one simulation run for review of the Total_Patients_Removed and MELDmean 

statistics.  Figure 11 also shows that there was no difference in Total_Patients_Removed 

between the scenarios using and not using the delta-MELD parameter as criterion for 

patient selection.  This is because the average MELD scores from the weekly report did 

not vary by much between the two scenarios with and without delta-MELD; and hence, 

the chances of death for the patients did not change between the two scenarios.  

Therefore, the simulation removed patients off of the waitlist with the same probability 

based on Table 4 within the two scenarios, yielding identical numbers of patients 

removed.     

 For the simulation experiment, Figure 12 captured the Total_Patients_Removed 

and MELDmean values from 7 simulation runs, 70 intervals runs, which the experiment 

covers from the beginning to the end of 2008-2012 time span, seven times.   
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Figure 12. Experimental outcome. 

 Figure 12 shows the response variables of two independent populations from 

running 70 (180-day) intervals (Figure 12 shows an excerpt of interval runs 47-70).  

Table 12 and Table 13 contain the MELDmean without delta-MELD and with delta-MELD 

as criteria.  There was no difference in patients removed between the two scenarios 

because the MELDmean in the two scenarios did not differ significantly, and probabilities 

referenced from Table 4 resulted in the same number of patients who dropped off of the 

waitlist.  
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Table 12 

MELDmean without delta-MELD 

15.8438 16.1996 15.9228 15.1181 13.6869 13.5392 13.7071 

14.2018 13.6028 14.2833 15.5608 16.3485 16.6443 16.7870 

14.1635 13.2521 12.7992 14.3478 13.2947 13.7007 15.8071 

15.1035 16.8286 15.7062 13.9185 13.2357 13.2084 14.4254 

14.0263 13.7512 15.3257 15.9791 16.7212 16.3308 13.9717 

13.4543 13.2394 14.5611 13.3201 14.0769 15.1372 15.6286 

15.5249 14.8552 13.8493 13.5476 13.3461 14.4549 13.9029 

13.6922 15.4811 14.9557 15.5131 15.7917 13.6374 13.7224 

13.4043 14.9186 13.3764 14.3921 14.5505 15.8038 15.3231 

15.2507 14.0098 13.4606 13.1959 14.6224 12.8331 14.1951 

 

 Table 12 contains response values of MELDmean from 70 sample interval scenarios 

not using delta-MELD as criterion.  Its standard deviation was 1.093 and the mean of the 

MELDmean values was 14.5467. 

Table 13 

MELDmean with delta-MELD 

15.5884 15.6231 16.4457 15.3546 13.6629 13.5124 13.7133 

14.1556 13.6045 14.1657 15.7969 16.6854 17.6333 17.3875 

14.0139 13.1232 12.7618 14.2003 13.2199 13.6131 15.8623 

15.1584 16.6119 15.5911 14.0714 13.4139 13.2076 14.3658 

13.9046 13.6221 15.5583 15.6571 16.9211 16.0705 13.8258 

13.2952 13.1861 14.3737 13.4701 13.9819 15.1675 15.7436 

15.7462 14.5906 13.7309 13.1515 13.0595 14.1815 13.5878 

13.4068 15.5278 14.8153 16.0105 15.4416 13.6918 13.5289 

13.2501 14.6899 13.7787 14.1981 14.5525 15.5066 16.4584 

14.3009 13.8084 13.3675 13.0653 14.6666 12.6397 14.2691 

 

 Table 13 contains response values of MELDmean from 70 sample interval scenarios 
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that used delta-MELD as criterion.  Its standard deviation was 1.2010, and the mean of 

the MELDmean values was 14.5192.   

 The values for the t-statistic are as follows.  

 %= = 70          (32) 

 %[ = 70         (33) 

 ,= = 14.5467         (34) 

 ,[ = 14.5192         (35) 

 *= = 1.0930         (36) 

 *[ = 1.2010          (37) 

These values were applied to the formula for the t-statistic described in Chapter 3.   

 � =  (14.5467 − 14.5192)/�(1.0930[/70) + (1.2010[/70))   (38) 

     = 0.02750/0.1940        (39) 

     = 0.1417          (40) 

The critical t value for 69 degrees of freedom is 1.995.  The 95% confidence interval was 

computed according to the formula,  

 ( 9=– 9[) ± �k/[ ∗ �(�=[/%=) + (�[[/%[)       (41) 

(Aczel & Sounderpandian, 2008).  Applying the appropriate values, 

 9= = 14.5467,        (42) 

 9[ = 14.5192,        (43) 

 �k/[ = 1.995,         (44) 
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 �=[ =  (1.0930)[,        (45) 

 �[[ =  (1.2010)[,        (46) 

 %= = 70,          (47) 

 %[ = 70.          (48) 

 95% confidence interval is 
 =  0.0275 ±  1.995 ∗  �1.1946/70 + 1.4424/70     (49) 

 =  0.0275 ±  1.995 ∗ (0.1940)      (50) 

 =  0.0275 ±  0.3872        (51) 

 =  (−0.3597, 0.4147).       (52) 

Since t = 0.1417 is not greater than 1.995, or less than -1.995, the null hypothesis 

for MELDmean is not rejected.  Thus there is insufficient evidence to conclude that there is 

a difference in the average MELD score (MELDmean) among pretransplant patients 

between simulation models with and without delta-MELD where MELD score is the 

primary criteria for patient selection in donor liver allocation.   

Results  

I can conclude that from the data gathered, there was not enough evidence to say 

there was a difference in MELDmean between simulation scenarios with and without using 

delta-MELD as decision-making criterion for liver transplant patient selection.  Based on 

the experimental outcome, I can answer the two research questions.  



144 
 

 

Research Question One 

Does a simulation model using the additional parameter of delta-MELD as a 

patient selection criterion reduce the number of pretransplant patients who dropped off 

the waiting list?   

There is not enough evidence to say there is a difference in 

Total_Patients_Removed between the simulation scenarios with and without delta-MELD 

since that difference is 0.  Therefore, to answer the research question of whether a 

simulation model using the additional parameter of delta-MELD as a patient selection 

criterion would reduce the number of pretransplant patients who dropped off of the 

waiting list, the answer is no.  

Research Question Two 

 Does a simulation model using the additional parameter of delta-MELD as a 

patient selection criterion lower the average MELD score among pretransplant patients?   

 To answer the research question of whether a simulation model using the 

additional parameter of delta-MELD as a patient selection criterion would lower the 

average MELD score among pretransplant patients, the answer is also no.  

Summary  

Based on the simulation results, we conclude that there is no difference in 

outcomes whether or not I used delta-MELD as a decision criterion for the liver 

allocation system.  In Chapter 5, I interpret my experimental results, provide detailed 

insights from the results, and provide new ideas for refining the donor liver allocation 
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system.  These suggestions were based on the observations and limitations of the 

simulation data. 
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Chapter 5: Research Conclusion 

In Chapter 5, I offer my interpretation of the simulation results which leads to 

some recommended future studies that would complement this research.  These 

recommended future studies were based on observations of the OPTN/UNOS data and 

limitations of the OPTN/UNOS data for the simulation model.  Chapter 5 includes four 

sections: A Summary of the Research, Explanation of Simulation Results, 

Recommendations for Future Studies, and Conclusion. 

A Summary of the Research 

I investigated whether the U.S. donor liver allocation system could be improved 

upon by including the delta-MELD parameter into the decision-making process for 

patient selection.  More specifically, I evaluated the influence of the delta-MELD 

parameter on the MELDmean and Total_Patients_Removed response variables in a 

simulation model.  The model was based on Kalman estimation of missing MELD scores 

for the computation of delta-MELD values, and the AHP algorithm for decision-making.  

The main objective was to compare the outcome of the decision-making using delta-

MELD against the decision-making not using delta-MELD as a criterion for patient 

selection.  I used t tests for two independent populations to determine whether the 

postulated improvement in decision-making was significant enough to justify adding 

delta-MELD into the decision-making process for patient selection to refine the liver 

allocation system.  

As detailed in Chapter 4, Pilot Testing and Verification of the Simulation Model, I 

verified the simulation model’s four processes through pilot testing and verified that the 
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simulation processed the UNOS STAR data correctly and as intended.  From the 

simulation, I learned that the UNOS STAR data used in the simulation, such as the 

MELD average, the limitation of data to only OPO Region 9, and the exclusion of HCC 

and status 1 patients can make a difference in the simulation outcome.  As a result of a 

rigorous verification and validation process, I believe the simulation model can be used in 

future research, particularly with data from other OPO regions that have higher MELD 

averages than OPO Region 9.  

 The simulation results showed that given the limitation of data from OPO Region 

9, exclusion of HCC and status 1 patients, and sample intervals of 180-days, the results 

were not enough to be statistically significant given my sample size, level of significance, 

and hypothesis tests.  From the simulation results based on the UNOS STAR data that I 

used, there was insufficient statistical evidence to conclude that including the delta-

MELD parameter for decision-making could improve the liver allocation system.  The 

simulation results showed that there was a slight improvement in the liver allocation 

system, a small drop in average MELD, and this may be operationally significant.  Even a 

modest improvement to the donor liver allocation system, like a 1% reduction of patients 

removed from waitlist or lowering of the average MELD, could mean saving additional 

lives when refining the allocation system.  Freeman (2009) explained that the delta-

MELD parameter may have more variability near the end-stage of patients’ liver disease.  

This suggests that an evaluation of the delta-MELD of patients who dropped off the 

waitlist should be analyzed against patients who remained on the waitlist, while 

extending the simulation sample interval from 180 to 360 days in future research.  The 
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duration of the simulation sample intervals may not have been long enough when 

evaluating the influence of delta-MELD up to 180 days, as the median wait time for liver 

transplant is 11 months (Gift of Life Donor Program, 2014).  Hence, future research 

should be performed by updating the simulation sample intervals from 180 to 360 days to 

ensure that the duration of simulation intervals would be sufficient for all expected 

outcomes to occur in its due time.   

Explanation of Simulation Results 

The simulation results failed to provide sufficient statistical evidence to reject the 

null hypothesis and to then conclude that the use of delta-MELD values were influential 

on the simulation’s response variables.  Looking more closely at the UNOS STAR data 

and the simulation results to explain this outcome, I observed that for most patients, their 

delta-MELD scores did not change by much within a short timeframe such as within a 

month; and when their delta-MELD scores did change, their MELD scores did not always 

increase.  Many times the MELD scores decreased.  There were not many patient cases 

where the delta-MELD increased significantly along with a high MELD score.  This may 

be because when such cases occur, the statuses of these patients are changed to status 1, 

where these patients are then removed from the waitlist.  Status 1 patients are normally in 

ICU with less than 7 days to live (Cherkassky, 2011).  Status 1 and HCC patients undergo 

additional decision-making based on physicians’ knowledge and experience, such as 

exception MELD point assignment or deciding whether a status 1 patient should undergo 

transplant after all, that are outside of the decision-making of the OPO’s hierarchy of 

priority levels for liver allocation.  The additional decision-making for these patients 



149 
 

 

should be researched and implemented in an updated simulation model, and these 

patients should be included in future study.  

In my research, I replicated the decision-making process of the OPO’s hierarchy 

of priority levels into the simulation, used actual MELD data of patients and donor livers 

from OPO Region 9 of the United States from 2008-2012, and used Kalman estimation to 

get uniformed and unbiased delta-MELD values.  While the simulation reflected OPO’s 

hierarchy of priority levels of the liver allocation system and I used actual donor liver and 

patient data, I excluded status 1 and HCC patients, as these subgroups go through 

additional decision-making for patient selection.  However, when Young et al. (2006) 

concluded that there was value in using both MELD and delta-MELD in decision-making 

regarding donor liver allocation, all patients listed for liver transplant between July 1998 

and June 2003 from St. James University Hospital in the U.K. of their study were 

included.  Young et al. explained that their data included all patients who were removed 

from or died on the waiting list during this period.  Data collected included demographic, 

clinical, survival, and donor data that had been prospectively recorded in the U.K. 

transplant database (p. 332).  This means that patients who were the equivalent of status 1 

and HCC patients of the United States were included.  Freeman (2009) explained that 

delta-MELD has been associated with increased waiting list mortality and the most 

significant changes in delta-MELD tend to occur late in the course of the disease.  This 

leads me to conclude that the delta-MELD should be studied among status 1 and HCC 

patients with simulation sample intervals extending to 360 days, as well as analyzing the 

utility and survivability aspects of liver transplants of these patients. 
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On the other hand, in my study, the MELD average from OPO Region 9 is 20, 

which is much lower compared to the MELD averages from other studies in the literature 

review.  Quante et al (2012) explained that in Germany, there has been a steady increase 

in the MELD average.  In 2010, the MELD average for standard liver allocation was 34 

points, without standard exceptions and without high-urgency status.  This is 14 MELD 

points higher than the MELD average in OPO Region 9 of the United States for a similar 

time frame of 2008-2012.  A higher MELD score reflects a more urgent need of a liver 

transplant and a condition closer to the end-stage of liver failure, which is accompanied 

by more variability in the delta-MELD (Freeman, 2009).  Hence, other OPO regions and 

other countries that use the MELD system that have higher MELD averages than OPO 

Region 9 are also suitable for future studies regarding the use of the delta-MELD 

parameter.  

Another observation to note regarding the simulation results was that there were 

instances where donor livers could not be matched to patients on the waitlist.  The 

simulation model did not handle the occurrence of the case where an available donor liver 

needs to be transferred to another OPO.  This suggests that there could be benefits for 

patients to enroll into another OPO in order to increase their chances of getting an earlier 

transplant.  A study should be conducted to evaluate the decision-making of patients 

deciding on whether to stay in the current waitlist or enrolling into another or nearby 

OPO that has a shorter wait time. 
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Recommendations for Future Studies 

Myers et al. (2013) explained that multiple studies used the UNOS STAR 

database for refining the liver allocation system.  Similarly, in this study, the UNOS 

STAR database was referenced to identify patients registered on the liver transplant 

waiting list in the United States.  In fact, the data inclusion and exclusion criteria of this 

study were similar to the study of Myers et al.  These criteria excluded patients listed for 

multiple organs and live donor liver recipients, and status 1, temporarily inactive, and 

HCC patients.  Patients with missing laboratory data necessary for calculation of MELD 

were excluded as well (p. 2).  A more complete model would have included a separate 

study for some of these subgroups as these subgroups were excluded from this delta-

MELD study.   

 Additionally, applying a modeling perspective into a research topic such as this 

one matters because it provided a basis on how to extend this research.  Expanding this 

research could mean going beyond the limitations of pretransplant data such as to include 

posttransplant data for the study of survivability.  Young et al. (2006) explained that the 

usefulness of MELD can be enhanced if it could also predict posttransplant outcomes in 

some way.  Predicting posttransplant outcome could enable a more rational utilization of 

scarce resources to achieve the maximum benefit.  Also, a modeling perspective could 

provide a basis for the analysis of donor liver allocation beyond the geographical location 

of UNOS Region 9 which covers New York and western Vermont to a geographical 

expanded region covering all of continental United States.    

 Pidd (2010) explained that some models are intended for routine use on a frequent 
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basis, with little or no human intervention.  Other models provide assistance to the human 

decision process.  Model validation and data requirements can add value or provide 

insights to possible pitfalls that can lead to a theory.  But most importantly, modeling is 

grouped into four categories.  These four categories of decision modeling are decision 

automation, routine decision support, investigation and improvement, and generation of 

insights for debate (p. 14).  The models of AHP and Kalman estimation models can be 

extended into new and future research for the study of posttransplant survivors, for 

patients that were in the exception subgroups, and for an expanded geographical UNOS 

region, for the purpose of decision support, and investigation and improvement to the 

allocation system, as well and generation of insights for discussion.    

 Schaubel et al. (2009) explained that currently, patients awaiting deceased-donor 

liver transplantation were primarily prioritized by medical urgency.  More specifically, 

waitlist chronic liver failure patients are sequenced in decreasing order of MELD scores.  

In order to maximize lifetime gain through liver transplantation, posttransplant survival 

should also be considered in the prioritization of liver allocation for patients on the 

waiting list.  Schaubel et al. evaluated that a survival benefit-based system should be 

applied for allocation of deceased-donor livers to chronic liver failure patients.  Under 

this proposed system, the transplant survival benefit score would be computed for each 

patient active on the waiting list (p. 1).  Schaubel et al. also explained that this proposed 

score should be based on the difference in 5-year mean lifetime (with vs. without a liver 

transplant) and should account for patient and donor characteristics.  There is an overlap 

in the distribution of benefit score across MELD categories, since waiting list mortality is 
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significantly affected by several factors (p. 1).  Schaubel et al. further argued that their 

simulation study results indicated that over 2,000 life-years could be saved if benefit-

based allocation was implemented.  Schaubel et al. explained that while the shortage of 

donor livers increases, the need to maximize the life-saving capacity of procured livers 

has become more pressing.  Allocation of deceased-donor livers to chronic liver failure 

patient efficiency could make the liver allocation system more effective by also 

prioritizing patients based on transplant survival benefit (p. 1). 

 Schaubel et al. (2009) further explained that one can envision an extreme case 

where medical urgency-based allocation does not result in fewer deaths, but merely shifts 

mortality from the pretransplant to the posttransplant side.  Conversely, a utility-based 

allocation system would ensure that transplanted organs are received by patients with 

lowered posttransplant mortality.  However, patients with the best posttransplant 

outcomes may also have the best waiting list outcomes.  In an extreme case, an ordering 

that is based on utility could also result in transplantation having no effect on the 

mortality experience of the patient population, since the low death rate faced by the low-

risk patients is merely traded for a low posttransplant death rate.  In both cases, the 

lifetime experienced by the patient population is equal to that in the absence of access to 

transplantation (p. 2). 

 Pidd (2010) also explained that operations research/ management science 

modeling is an external and explicit representation of a part of reality that is seen by 

people who use models to understand, change, manage, and control that part of reality (p. 

10).  It is not really so important whether a model is based on a sophisticated 
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mathematical formulation or whether it is just a simple flow diagram showing how 

entities are believed to relate to one another.  It is more important to recognize that 

models are approximations, built with intended use in mind and that models are the 

product of human thought and ingenuity (p. 14).  Therefore, specific and additional 

models can be built for that part of the allocation model that deals specifically on 

exception subgroups or status 1 patients where different sets of decision-making criteria 

are usually implemented.   

 Regarding exception patient groups, Bernal et al. (2010) explained that acute liver 

failure which is one of the major exception groups within status 1 patients is the clinical 

manifestation of sudden and severe hepatic injury which can arise from many causes.  

After abrupt loss of hepatic metabolic and immunological function, it leads to hepatic 

encephalopathy, coagulopathy, and in many cases progressive multi-organ failure.  

Although uncommon, this illness occurs mostly in young adults and is associated with 

high mortality and resource cost.  In many countries, it is the most frequent indication for 

emergency liver transplantation.  In the past 10 years, there have been major changes in 

the understanding of the cause and pathogenesis of this disease.   

 Bernal et al. (2010) further explained that the main causal agents for the hepatic 

injury that triggers the onset of liver failure show wide geographical variation, and is 

normally dependent on the prevalent hepatotoxic virus infections and patterns of drug 

use.  In the developing world, viral causes predominate, with infection by hepatitis A, B, 

and E viruses accounting for most cases.  By contrast, acute viral infection is an 

uncommon cause in the United States and much of Western Europe, where drug induced 
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liver injury instead, predominates (p. 190).  Bernal et al. further explained that drug-

induced injury is the second main cause of acute liver failure and predominates in much 

of the developed world.  In the United States and northern Europe, non-prescription 

paracetamol (acetaminophen) is the analgesic that is most commonly consumed in 

overdose, either inadvertently or with intent for deliberate self-harm.  Paracetamol-

induced hepatoxicity is characteristically hyper-acute from of acute liver failure (p. 3).  

Perhaps this subgroup could be a candidate group for future research simulation of delta-

MELD.   

 For these cases of acute liver failure, survival has been transformed by the 

introduction of emergency transplantation, which is now part of routine care in many 

countries for those patients with acute liver failure who meet criteria indicative of a poor 

prognosis.  However, emergency transplantation outcomes are consistently lower than 

those of elective surgery, with high early posttransplant mortality.  Surgical outcomes 

have shown progressive and substantial improvement, where 1 year survival exceeds 

80% (Bernal et al, 2010).  However, the ideal means for identification and selection of 

patients who are likely to benefit from emergency liver transplantation remains 

controversial.  Inaccurate selection will have serious effects where a patient who would 

otherwise have survived with medical management and who has incorrectly received a 

transplant will be subjected to an unnecessary surgical procedure and lifelong 

immunosuppression, which is associated with major resource cost and increased risk of 

death.  But more significantly, a graft that could have been used for a more suitable 

candidate would have been lost.  The result of failure to identify a patient with acute liver 
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failure who would have survived only with emergency liver transplantation is of equal 

magnitude, because of a potentially preventable death (p. 196).  This suggests that the 

delta-MELD parameter could be an area of focus for these subgroups in future research. 

 Finally, Pidd (2010) argued that the view of complexity can be the property of a 

real-world system that has manifested from the inability to apply any one formal method 

as being adequate to capture all its properties.  A single approach may not be sufficient to 

capture the rich behavior of real-world systems.  Hence, a single model may not be 

sufficient to fully represent its behavior.  This is not based on the view that different 

interpretations are due to cognitive limitations, but that different interpretations may be 

necessary to provide clarity and understanding to the problem (p. 15). 

 Pidd (2010) argued that in many simulation studies, complexity is a function of 

the number of elements in a system and of the number of interactions between the 

elements.  This definition treats complexity as an issue of scale and is better regarded as 

being concerned with complicated, rather than complex, systems (p. 15).  In the context 

of complexity, Feglar and Levy (2005) explained that methods of AHP and ANP are 

powerful for combatting complex system requiring decision-making with tradeoff 

considerations.  At the same time, design of an appropriate hierarchical structure (AHP) 

can help in setting up the control structure (ANP).  An additional application of these 

methods could be significantly simplified when integrated with decision models such as 

benefits, opportunities, cost, and risk (BOCR) models, to a simulation framework.  Feglar 

and Levy suggested using AHP and ANP methods while synthesizing BOCR models.  

Future studies of the donor liver allocation system can be applied in a nation-wide scope 
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by covering the continental United States while integrating the BOCR model into 

multiple AHP regional decision-making models.  This would enable various decision-

making considerations to be taken into account, such as meeting survivability, travelling 

time that add risks to the donor liver’s cold ischemia time, and the number of patients on 

the waitlist. 

 Finally, the social change implication of this research is that donor liver allocation 

systems in the United States, Europe, and Brazil can continuously be made more efficient 

to save more lives through liver transplant.  The MELD and MELD-based modeling has 

been studied world-wide, and the MELD and MELD-based modeling has continued to 

attract researchers from the areas of medicine, health science, and decision-science 

management disciplines.  As new research and additional findings help to refine the liver 

allocation system, the opportunity to effect social change of the liver transplant 

community through the discipline of operation research techniques and modeling 

continues to be a crucial role. 

Conclusion 

In this study, I investigated whether the donor liver allocation system could be 

improved by including the delta-MELD parameter into decision-making for selecting a 

matching recipient. The variables for analysis in the simulation were the average MELD 

scores and the number of patients who dropped off the waitlist.  In this study, I created a 

simulation that mimics the actual U.S. donor liver allocation system. The simulation 

model was based on Kalman estimation of MELD score progression and the AHP, an 

operations research technique for decision-making.  The main objective was to compare 



158 
 

 

the outcome of decision-making using delta-MELD against decision-making not using 

delta-MELD as a criterion for patient selection.  Statistical t tests were used for statistical 

analysis and comparison.  This simulation did not result in an improvement in patient 

average MELD scores or patient wait time after reviewing the data and final results of the 

simulation.  Although a gap in literature in determining the usefulness of the delta-MELD 

parameter towards a significant improvement in the donor liver simulation system is 

closed, there are still unanswered cases of whether, due to the research scope, delta-

MELD could have been an effective criterion for excluded subgroups. 

 While this research did not show a significant impact from using delta-MELD in 

decision-making in a simulation, this research led to the recommendations for future 

research to study decision-making using delta-MELD for status 1 patients with acute liver 

failure, analyze the survivability objective with posttransplant data, and study the 

different dynamics of integrating regional OPOs into a nation-wide study. 
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Appendix A: Kalman Filter and Error Ellipse 

 A state space model consists of two equations: the state equation and the 

observation equation.  The essential difference between the state-space model and the 

conventional linear model representation is that the state space nature is not assumed to 

be constant but can change with time.  This dynamic feature is incorporated and reflected 

in the transition equation.   

 In the example of Kalman filter, the state vector is (MELD, deltaMELD).  The 

state space nature is not assumed to be constant but can change with time.  This dynamic 

feature is reflected in the transition equation.  The transition equation would project the 

current MELD and the delta-MELD values, patient’s progression of liver disease to a 

specific time.  In a state space system, the state vector can be propagated to the specific 

time when a donor liver is made available and upon a change in a patients’ health status.  

The covariance matrix can also be propagated to the time when an available liver is made 

available or upon a patient’s health status is updated.  The eignenvalues of the 

corresponding covariance matrix are computed and use these eigenvalues are used to 

derive an error ellipse.  The state vector is propagated to an instance in time as follows 

where x is MELD and y is deltaMELD. 

 ∆9 =  ∆� ∗  9���,        (A1) 

 ∆6 =  ∆� ∗  6���,         (A2) 

 �ℎ��� ∆� =  N���V7� − N�V�        (A3) 
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 Tval is the last valid time of state vector, and Tupdate is the time of current update. 

 9 =  ����,          (A4) 

 6 =  ���������,         (A5) 

Xdot is the rate of X, and Ydot is the rate of Y.  Tupdate is the time of current update, 

and Xdot and Ydot are the X and Y rates of change of the MELD score progress. 

 The covariance matrix is computed to propagate the covariance matrix to time 

tupdate, where TMELD is the current MELD score and TdeltaMELD is the current deltaMELD.   

The 4 x 4 covariance matrix is computed from the patients’ last health update. 

 The covariance matrix use the matrix equation, 

  `̂ z= =  �`̂ ψ�         (A6) 

to propagate the 4 x 4 covariance matrix of MELD score update. 

 Pk+1 is the covariance matrix valid at time t + 1,  

 ψ is the transition matrix, 

 Pk is the covariance matrix from the matrix valid at time t, and 

 ψT is the transpose of the transition matrix. 

Using matrix equation, Pk+1 = ψPkψT, we calculate this into its final algebraic form. 

 � `̂  �� = �1 ∆0 1 0 00 00 00 0 1 ∆0 1� �A BB E C DF GC FD G H II J § �1 0∆ 1 0 00 00 00 0 1 0∆ 1�   (A7) 
 

where Pk+1 is the covariance matrix valid at time tupdate.  ψ is the transition matrix Pk is 

the covariance matrix from the MELD score update matrix valid blood work at time Tval.  
ψT is the transpose of the transition matrix. 
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 The algebra for the covariance propagation is computed as follows. 

 �[(A + ∆B) + ∆(B + ∆E)] (B + ∆E)(B + ∆E) E [(C + ∆F) + ∆(D + ∆G)] (D + ∆G)(F + ∆G) G[(C + ∆D) + ∆(F + ∆G)] (F + ∆G)(D + ∆G) G [(H + ∆I) + ∆(I + ∆J)] (I + ∆J)(I + ∆J) J § (A8) 

  

�ℎ��� ∆= ∆�           (A9) 

 H = �©[         (A10) 

 ª = �©(©�Z7)         (A11) 

 I =  �©«          (A12) 

 � = �©(«�Z7)         (A13) 

 � = �©�Z7[
         (A14) 

 ; = �©�Z7(«)         (A15) 

 ¬ = �©�Z7(«�Z7)        (A16) 

 b = �«[         (A17) 

 $ = �©(«�Z7)         (A18) 

 ­ =  �«�Z7[           (A19) 

B�� 9 = ���� ��� 6 = ���������. 

 The elements of the 2 x 2 covariance matrix needed for the error ellipse 

calculation are as follows.  

 (�,)[ = �s[          (A20) 

 �,® = �s¯ ,         (A21) 

 (�®)[ = �[̄.         (A22) 
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 To calculate the eigenvalues of the 2 x 2 covariance matrix, the eigenvalues and 

the roots of the characteristic equation of a matrix are calculated by determining the 

following. 

 ��N(H − °$)  =  0         (A23) 

B�� , = ����, ��� ® = ���������. 

In the case of our 2 x 2 covariance matrix, we get the following. 

 (�s[ −  °)(�[̄ − °) − �s[̄  = 0      (A24) 

  � =  �s[          (A25) 

  � =  �[̄           (A26) 

  � =  �s[̄          (A27) 

 �ℎ��� �� ℎ�G� (� − °)(� − °)– � = 0     (A28) 

The following steps calculate out the following. 

  (� −  °) (� −  °) –  � =  0        (A29) 

When in its equation into its quadratic form, we have, 

 °[ – (� +  �) ° –  � +  �� =  0       (A30) 

 �ℎ��� H = − (� + �)  ��� ª = − � + ��     (A31) 

 z= = −�+w�2−4��2�         (A32) 

 ²[ = −�−w�2−4��2�         (A33) 
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Then λ1 and λ2 are as follows, and they would be used to formulate our error ellipse. 

 °= = (−H + √H[ + 4ª)/2       (A34) 

 °[ = (−H − √H[ + 4ª)/2        (A35) 

 �ℎ��� H = −(� +  �) ��� ª = −� +  ��, ��� �ℎ��� 

 � =  �d´µc[   

 � = ����7Vd´µc[   ���  
 � = �d´µc∗���7Vd´µc[  

 The elements of a covariance matrix include σ2
x
 , σ2

y , and σ2
xy , where the 

eigenvalues of λ1 and λ1 are derived to provide the axes for the Error Ellipse. The aspect 

ratio of the ellipse,  

 (∆®/®) / (∆,/,)         (A36) 
is computed which is the counter-clockwise rotation angle of the ellipse as follows.   

 H�
�� = ½ ∗ ���<= ((1/�EJ��� �����) ∗ 2�s¯/(�s[ − �[̄))  (A37) 

 Since σx and σy represent the standard deviations of stochastically independent 

random variables, additional theorem for the chi-square distribution can be used to show 

that the probability associated with a confidence ellipse is given by p = 1 – e –(1/2)k^2.  

Conversely, the semimajor (k * σx) and semiminor (k * σy) axes of a confidence ellipse 

having specified probability p can be calculated from (σx, σy). 

 P =  �(−2 ∗ ��(1 − J))       (A38) 
 Hence, the error ellipse is a confidence ellipse with elliptical scale factor k = 1 

and probability approximately p = 0.3935.  The 50% and 95% confidence ellipses have 
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elliptical scale factors approximately 1.1774 and 2.4477, respectively (Hoover, 1984).   

 If σx > σy, then the semi-axis length parallel to the x-axis is equal to 

wmax(eigenvalues) * scalefactor is computed.  Then the semi-axis length parallel to the 

y-axis is equal to wmin(eigenvalues) * scalefactor.   

 If σy > σx, then the semi-axis length parallel to the x-axis is equal to 

wmin(eigenvalues) * scalefactor is computed.  The semi-axis length parallel to the y 

axis is equal to wmax(eigenvalues) * scalefactor.  The ellipse can now be rotated 

counter clock-wise from this orientation (angle). 
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Appendix B: Analytic Hierarchy Process (AHP) 

Saaty (1996) developed the analytic hierarchy process (AHP) and stated that AHP 

is a general measurement that derives ratio scaled values from both discrete and 

continuous paired comparisons of multilevel hierarchy structures.  These comparisons 

can be taken from actual measurements or from a fundamental scale that reflects the 

relative strength of preferences and feelings.  AHP is widely used for multiple criteria 

decision-making in planning, resource allocation, and conflict resolution.  In using the 

AHP to model a problem, one would need a hierarchy or a network structure to represent 

the problem.  Pairwise comparisons are used to establish relations within the hierarchy or 

network structure.   

Saaty (1996) explained that the AHP is a heuristic algorithm for scoring multiple 

criteria and alternatives in decision-making.  AHP is best demonstrated by reviewing its 

step with an example.  The details of the three major AHP algorithm steps are as follows.   

1. Develop the weights for the criteria. 

a. Develop a single pair-wise comparison matrix for the criteria. 

b. Multiply the values in each row together and calculate the nth root of the 

product. 

c. Normalize the nth root of products to get the appropriate weights. 

d. Calculate and check the Consistency Ratio.      

2. Develop the ratings for each decision alternative for each criterion. 
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a. Develop a pair-wise comparison matrix for each criterion, with each matrix 

containing the pair-wise comparisons of the performance of decision 

alternatives on each criterion. 

b. Multiply the values in each row together and calculate the nth root of the 

product. 

c. Normalize the nth root of product to gate the corresponding ratings. 

d. Calculate and check the Consistency Ratio. 

3. Calculate the weighted average rating for each alternative.  Then choose the one 

with the highest score.   

The following demonstrates the above steps with an example of decision-making 

for selecting a liver transplant recipient.  The criteria of the example are MELD score, 

blood type, and body structure.  Furthermore, the decision alternatives are three possible 

alternatives (patients).  Pair-wise comparison is used to establish the relative priority of 

each criterion against every other criterion.  Then the relative priority of the alternatives 

is pair-wise compared against every other alternative for each criterion.   

The main element to the AHP technique is the use of pair-comparisons.  The pair-

wise comparisons use a scale that ranges from equally preferred to extremely preferred.  

The following illustrates the values associated with the level of preference used to scale 

the results of pair-comparisons. 
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Table B1  

Paired Comparison: Value-Description 

Value Description 

1  Equally preferred 
2  Equally to moderately preferred 
3  Moderately preferred 
4  Moderately to strongly preferred 
5  Strongly preferred 
6  Strongly preferred to very strongly preferred 
7  Very strongly preferred 
8  Very strong 
9  Extremely preferred 

 

In the example below, the value “9” is used to denote that the preference of MELD score 

is “extremely preferred” over body structure.  Also, as indicated in the example the 

MELD score is “moderately preferred” over blood type.  When comparing blood type to 

body structure, the paired comparison shows that blood type is “strongly preferred” 

(number 5) over body structure.  

Table B2 

AHP Table of Weights of the Criteria 

 MELD 
 

Blood Type Body 
Structure 

3rd root of 
product 

Priority 
Vector 

MELD 1 3 9 3 0.67162545 

Blood Type 0.33333333 1 5 1.1856311 0.26543334 

Body Structure 0.11111111 0.2 1 0.2811442 0.06294121 

Sum 1.44444444 4.2 15 4.4667753 1 

Sum*PV 0.97012565 1.11482004 0.94411808 3.0290637 NA 

LambaMax 3.02906377 NA NA NA NA 

CI  0.02906377 NA NA NA NA 

CR 0.05019004 NA NA NA NA 

 

Additional notes on Table B2 are as follows. 



177 
 

 

1. The “Sum” row is the value of the sum of the criteria column (Ex: MELD 

Column = 1 + 0.33333333 + 0.11111111). 

2. The “3rd Product Root” is the product of the row of criteria (Ex: MELD row = 1 * 

3 * 9) taken to the 3rd root divided by the sum of all 3rd Product Root. 

3. The “Sum * PV” row is the value of the sum of the previous row times the 

corresponding “Priority Vector”. 

4. The “LambdaMax” value is the sum of all “Sum*PV” values. 

5. The “Consistency Index” is the value of “LambdaMax” minus 3.  3 is the number 

of criteria. 

6. The “Consistency Ratio” is computed by taking the “Consistency Index” and 

dividing by 0.58.  0.58 is the value to divide for three criteria. 

Now suppose that there are three alternatives (three types of patients).  And these 

three types of patient are the AHP alternatives that have the highest MELD score within a 

Transplant Center (TC), an alternative whose MELD score is the next highest within the 

same Transplant Center, and an alternative of highest MELD score outside of the 

Transplant Center where the donor is.  In this example, the hierarchy of priority is such 

that the highest priority is the alternative with the highest MELD score within the same 

Transplant Center.  The next in priority is the next highest MELD scoring alternative 

outside of the Transplant Center but within the same OPO.  If there are no suitable 

recipients within the OPO, then the highest MELD scoring alternative outside of the OPO 
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is selected.  We now develop the ratings for the each alternative with respect to each 

criterion (MELD, blood type, and body structure). 

 
Table B3 

AHP Table of Weights of Alternatives according to MELD 

 Highest 
MELD in 
TC 
 

Next 
Highest 
MELD in 
TC 

Highest 
MELD out 
of TC but 
within OPO 

Outside 
of OPO 

4rd root 
of 
product 

Priority 
Vector 

Highest 
MELD in 
same TC 

1 5 5 7 3.63713 0.62248 

Next Highest 
MELD in TC 

0.2 1 3 5 1.44225 0.246835 

Highest 
MELD out of 
TC but within 
OPO 

0.2 0.2 1 5 0.58480 0.100086 

Outside of 
OPO 

0.1428571 0.2 0.2 1 0.17878 0.030597 

Sum 1.5428571 0.2 0.2 1 1.78781 0.030597 

Sum*PV 0.9603987 1.579744 0.92079 0.55076 4.01169 NA 

LambaMax 4.011670 NA NA NA NA NA 

CI  0.0116969 NA NA NA NA NA 

CR 0.0129966 NA NA NA NA NA 

 
Additional notes on Table B3 are as follows. 

1. The “Sum” row is the value of the sum of the criteria column (Ex: Column = 1 + 

0.2 + 0.2 + 0.1428571). 

2. The “4th Product Root” is the product of the row of criteria (Ex: Row  = 1* 5 * 5 * 

7) taken to the 4th root divided by the sum of all 4th Product Root. 

3. The “Sum * PV” row is the value of the sum of the previous row times the 

corresponding “Priority Vector”. 
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4. The “LambdaMax” value is the sum of all “Sum*PV” values. 

5. The Consistency Index (CI) above is the value of “LambdaMax” minus 4.  4 is the 

number of criteria.  

6. The Consistency Ratio above is computed by taking the Consistency Index (CI) 

divided by 0.90.  0.90 is the value to divide by for four criteria. 

Table B4 

AHP Table of Weights of Alternatives according to Blood Type 

 Highest 
MELD in 
same TC 
 

 Next 
Highest 
MELD in 
TC 

Highest 
MELD out 
of TC but 
within OPO 

Outside 
of OPO 

4rd root 
of 
product 

Priority 
Vector 

Highest 
MELD in 
same TC 

1 1 1 1 1 0.25 

Next Highest 
MELD in TC 

1 1 1 1 1 0.25 

Highest 
MELD out of 
TC but within 
OPO 

1 1 1 1 1 0.25 

Outside of 
OPO 

1 1 1 1 1 0.25 

Sum 4 4 4 4 4 1 

Sum*PV 1 1 1 1 4 NA 

LambaMax 4 NA NA NA NA NA 

CI  0 NA NA NA NA NA 

CR 0 NA NA NA NA NA 

 
The values on Table B5 are similarly derived as the values from Table B4.  The 

paired comparisons of the alternatives are all identically preferred over each other.  

Hence the Priority Vectors are 0.25 each for all four alternatives. 
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Table B5 

AHP Table of Weights of Alternatives according to Body Structure 

 Highest 
MELD in 
TC 
 

Next 
Highest 
MELD in 
TC 

Highest 
MELD 
score within 
OPO 

Outside 
of OPO 

4rd root 
of 
product 

Priority 
Vector 

Highest 
MELD in 
same TC 

1 1 1 1 1 0.25 

Next Highest 
MELD in TC 

1 1 1 1 1 0.25 

Highest 
MELD out of 
TC but within 
OPO 

1 1 1 1 1 0.25 

Outside of 
OPO 

1 1 1 1 1 0.25 

Sum 4 4 4 4 4 1 

Sum*PV 1 1 1 1 4 NA 

LambaMax 4 NA NA NA NA NA 

CI  0 NA NA NA NA NA 

CR 0 NA NA NA NA NA 

 

Similar to Table B4, the values in Table B5 are similarly derived by paired 

comparisons.  The paired comparisons of the alternatives are all identically preferred over 

each other.  Hence the Priority Vectors are 0.25 each for all four alternatives.  Finally, 

Table B6 shows the calculations of the weighted average rating for each decision 

alternative.  The highest weighted average rating is selected as the “Winner”. 
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Table B6 

AHP Table Ranking of Alternatives 

Criteria 
and 

Alternatives 

MELD Blood 
Type 

Body 
Structure 

Sum Multi-
plier 

 

Highest 
MELD in 
same TC 

0.671624 0.265433 0.062941 1.12248 0.50016 Winner 

Next Highest 
MELD in TC 

0.2468350 0.25 0.25 0.74683 0.24787  

Highest 
MELD out of 
TC but within 
OPO 

0.1000867 0.25 0.25 0.60008 0.14931  

Outside of 
OPO 

0.030597 0.25 0.25 0.53059 0.10264  
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Appendix C: Simulation Programming Notes 

The simulation Graphical User Interface (GUI) panels allow the simulation 

experiments to be broken into logical steps.  The simulation allows the user to choose the 

interval data or pilot test to run, and provides simulation GUI panels and output file for 

simulation verification and data analysis of scenario and pilot runs.  Below are the 

simulation GUI panels and their corresponding programming notes. 

Initialize Data Panel 

 

 
 
Figure C1. Initialize data panel.
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Programming Notes: 

 

1. Upon selection of Select Data push button, Patient data that include age group, 

gender, race, primary cause of disease, transplant history, blood type, MELD 

scores, date of MELD scores, time on wait list, and status are initialized.  This 

Patient data are translated from the UNOS STAR database depending on the 

interval selection or pilot dataset. 

2. Donor Liver data that include donor age, donor height, donation after cardiac death 

donors, split liver donors, race, donor’s cause of death by cerebrovascular accident, 

regional sharing, local sharing, and cold ischemia time are initialized.  This data are 

translated from the UNOS STAR database depending on the interval selection or 

pilot dataset. 

3. Patient data also include the additional initialized fields of patient ID, interval ID, 

and Day_# fields. 

4. Donor Liver data also include the additional initialized fields of Donor ID, 

interval ID, ECD/ECD-1 year/SCD status fields.  Day_# is cleared here and set by 

the Setup Scenario(s) panel. 

5. Patient data processing is prescreened for Waitlist Entry processing of new 

patients by ensuring new patients have multiple MELD scores and that their 

waitlist start dates exist. 

6. Patient data processing is prescreened for patients with non-HCC disease, non-

status 1 patients, and having completed laboratory or survival data.  Hence, there 

are 100 patient records per user defined interval and 130 donor liver records 

annually.   

7. Patient data processing include prescreening for MELD scores on the day of 

transplant as well as at least 30 days prior to medical transplant.   

8. The AHP decision table parameters are initialized for the simulation of decision-

making where the delta-MELD is not used as a criterion according to AHP 

Weights and Ranking without delta-MELD table. 
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9. The AHP decision table parameters are initialized for the simulation of decision-

making where the delta-MELD is used as a criterion according to AHP Weights 

and Ranking with delta-MELD. 

10. Initialize the Recipient and Donor Risk factor tables.     

11. Patient data, Donor Liver data, and Disease Progression data updated into the 

Initialize Data panel are also updated onto the Simulation Progress panel for data 

analysis of scenario runs and simulation verification of pilot runs.   
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Setup Scenario(s) Panel 

 

 
 
Figure C2. Setup scenario(s) panel. 
 

Programming Notes: 

 

1. Upon selection of (Pilot Test Setup radio button or Patient Data Setup radio button), 

and Set up Scenario / Pilot push button, perform the following steps. 

2. Upon selection of the Patient Data Setup radio button and Set up Scenario / Pilot 

push button, the program ensures that the scenarios for including and not including 

delta-MELD are setup consistently in patient data regarding the patients’ arrival 

times (day_#s) into the simulation event queue.   

3. Upon selection of the Patient Data Setup radio button and Set up Scenario / Pilot 

push button, the program ensures that the corresponding Donor Liver data are set up 
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consistently regarding the interarrival times and donor liver parameters for both 

scenarios including and not including delta-MELD into the event queue.  The day_# 

is processed randomly by a Poisson function.   

4. Once Patient and Donor Liver data for a specified time interval are setup, that 

specified scenario can be run.  A new setup would override an existing setup.  

5. Upon selection of Patient Data Setup radio button and selection of a 180-day 

interval, the liver quality of type SCD, ECD 1-year, or ECD is determined.   

6. The programming of both Patient and Donor Liver data are setup up consistently, 

such that patient and donor liver arrival times (day_#s) for both without and with 

delta-MELD scenarios are the same.  

7. The programming of donor liver types are setup randomly but consistently in both 

scenarios with and without delta-MELD, and the liver types are based on the 

proportion of OPTN data. 

8. The Patient Entry, Donor Arrival Liver, and Waitlist Patient Management simulation 

process data are setup as event messages queued for the Run Scenario(s) panel to be 

processed.  

9. Compute the derived parameter DRI based on the Donor Livers’ donor risk factors. 

10. The Patient Entry, Donor Arrival Liver, and Waitlist Patient Management event 

messages are updated onto the Simulation Progress panel for data analysis in 

scenario runs and simulation verification in pilot runs. 
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Run Scenario(s) Panel 

 

 
 
Figure C3. Run scenario(s) panel. 

 

Programming Notes: 

 

1. The Run Scenario(s) panel takes scenario event messages (Patient, Liver, or 

Waitlist Patient Mgmt. messages) and their day_# setup by Setup Scenario(s), and 

run the simulation processes of Waitlist Entry, Donor Liver Arrival, and Waitlist 

Patient Management processes.  

2. Each message processed are updated in the Scenario Runs / Pilot Test Event 

Message(s) text area and Simulation Progress text area. 

3. The Run Scenario(s) panel also processes the simulation Disease Progression 

process for 180 days (iterations).   
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Programming Notes (Waitlist Entry): 

1. A patient is entered into the waitlist by the day_# (there are 180 days in each 

scenario and pilot run).   

2. Upon patient’s waitlist entry, the program ensures that the number of patients 

entering into the waitlist is being tallied at the end of each week. 

3. Patient’s waitlist entry along with initial MELD and MELD dates are updated into 

the Simulation Progress text area for data analysis of scenario runs and simulation 

verification of pilot runs.  The Simulation Progress panel would tag this data as 

from the Waitlist Entry process. 

Programming Notes (Donor Liver Arrival): 

1. The Donor Liver Arrival’s output data includes the ECD/SCD status, DRI score, 

whether a patient has accepted an ECD liver if donor liver is an ECD, patient 

MELD, AHP scores, and the number of SCD and ECD livers.   

2. Upon arrival of an ECD or ECD 1-year, the simulation would determine whether 

a patient would accept an ECD 1-year or ECD by a random function with a 

chance of 25% or 15%.  

3. The Donor Liver Arrival process computes the AHP scores for all the patients on 

the waitlist.   

4. The parameters of DRI and SOFT scores are computed upon the arrival of a donor 

liver according to the formula that is based on donor risks and recipient risks. 

Compute the AHP scores for decision-making where the delta-MELD is not used 

as a criterion.   

 Hb (̀cdYe) = � ���J����   

  ∗ (�= ∗ ����WZfU + �[ ∗ �&$WZfU + �g ∗ *+;NWZfU) (C1) 

5. Compute the AHP scores for decision-making where the delta-MELD is used as a 

criterion and where delta-MELD and AHP scores are calculated as follows.  
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��������� = (����7  –  ����7<=) / (����7<(7<=))  (C2)  Hb (̀cdY=) =  � ���J���� 

   ∗ (�= ∗ ����WZfU + �[ ∗ ���������WZfU  

   +�g ∗ �&$WZfU + �h ∗ *+;NWZfU)    (C3) 

6. Patients are prioritized on the waitlist according to blood type by descending AHP 

scores.  The livers are offered to the waitlist patient with the highest AHP score, 

patient consent to accept ECD liver if liver is ECD or ECD 1-year, and blood type 

identical to the patient.  To avoid an inequitable distribution of organs, blood type 

O livers are only assigned to blood type O patients.  If there is a note indicating 

the patient is a very small size adult patients or AB-type, that patient would be 

listed for more than one blood type. 

7. The Simulation Progress panel would be updated of successful patient selection 

along with patient ID, liver ID, blood-type, liver type, AHP score, MELD, and 

delta-MELD score for data analysis of scenario runs and simulation verification 

of pilot runs.  This update would be tagged as from the Waitlist Entry process. 

Programming Notes (Disease Progression): 

1. This Disease Progression process computes the Kalman estimation of MELD and 

delta-MELD parameters based on the patients’ MELD parameters, and patients’ 

covariance matrices.   

2. This process references Disease Progression data updated from the Initialization 

Data panel and performs a Kalman propagation for every patient.   

3. Every patient’s MELD and delta-MELD (Kalman estimation of MELD and delta-

MELD) are output into the Simulation Progress text area for data analysis of 

scenario runs and simulation verification of pilot runs.  The Simulation Progress 

panel would tag this data as coming from the Disease Progression process along 

with the day_#. 

4. The Disease Progression outputs include patient MELDs, delta-MELDs, and 

waitlist statuses.  Additional outputs include the average MELD scores of patients 
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on waitlist and the counts of patients removed from the waitlist, 

Patients_Dropped_From_Waitlist, updated at the end of each week for 26 weeks.   

5. The risks based on patient risk factors are tallied up and patients with the highest 

risks are considered removal based on MELD scores and survival rates.  The 

survival rates are based on the Hazard Ratios based on MELD Table. 

6. The patient waitlist status would be updated indicating whether the patient is still 

on the waitlist awaiting for an available donor liver, or who has dropped off from 

the waitlist due to being too sick, death, or other reasons.   

7. The response variables are computed at the end of 26 weeks per interval:  

 MELDU�VW = (1/26) ∗ ∑WY= 7Z [\ ]��^_HG���
�_����(�) (C4) 

 N����_`������E_&���G��   

 =  ∑WY= 7Z [\ ]��^_ `������E_���JJ��_;���_a�����E�(�) (C5) 

8. The Average_MELD(n) and Patients_Dropped_From_Waitlist(n) are updated into 

the Simulation Progress text area for data analysis of scenario runs and simulation 

verification of pilot runs for week n = 1 through 26.  The Simulation Progress 

panel would tag this data as coming from the Disease Progression process along 

with the week_#s and patient IDs of patients removed. 

Programming Notes (Waitlist Patient Management):  

1. The Waitlist Patient Management processes the messages indicating patient 

statuses have been updated which may require these patients to be removed from 

the waitlist depending on the reason description.   

2. The patient IDs and the patient statuses are updated into the Simulation Progress 

panel for data analysis of scenario runs and simulation verification of pilot runs. 
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View Disease Progression Panel 

 

 
 
Figure C4. View disease progression panel. 
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Programming Notes: 

 

1. Disease Progression output data include interval_#, week ID, patients who 

dropped from the waitlist, and average MELD.  These fields are tagged “(wo)” for 

the scenario without delta-MELD, and “(w/)” for the scenario with delta-MELD. 

2. The two dependent variables: Average_MELD for “Avg MELD” and 

Patients_Dropped_From_Waitlist for “# Rem” are updated into the View Disease 

Progression panel at the end of each week from the Disease Progression process. 

3. The dependent variables from scenario or pilot runs are used to compute response 

variables MELDmean and Total_Patients_Removed, and are updated as the last 

entry of the View Disease Progression panel.   

4. Both “Avg_MELD” and “# Rem” dependent variables updated into the View 

Disease Progression panel are also updated into the Simulation Progress panel 

for data analysis of scenario runs and simulation verification of pilot runs. 
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View Liver Arrival Panel 

 

 
 
Figure C5. View liver arrival panel. 

 

Programming Notes: 

 

1. To differentiate the data between the scenarios without delta-MELD and with 

delta-MELD, the Liver ID field is tagged either with “(wo)” or “(w/)”.  “(wo)” 

indicates the output is from the scenario without delta-MELD.  “(w/)” indicates 

the output is from the scenario with delta-MELD. 

2. The data fields for scenarios with and without delta-MELD include Liver ID, 

Patient ID, blood type, interval #, and Arrival Day and it is updated upon 

successful patient selections for transplant from the Donor Liver Arrival process. 
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3. The data updated into the View Liver Arrival panel are also updated into the 

Simulation Progress panel’s text area where the data can be updated into a log file 

for data analysis of scenario runs and simulation verification of pilot runs. 

View t tests of two independent populations Parameter Panel 

 

 
 
Figure C6. View t test of two independent populations’ parameters panel. 
 

Programming Notes: 

 

1. Statistical tests are computed upon completion of scenario run.   

2. The t test of two independent populations parameters for average MELD scores 

are computed;  
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  t(MELDmean) = (st<su)wxtu yt⁄ zxuu yu⁄      (C6) 

  ����U�VW = (1/10) ∗  ∑WY= 7Z =e [����U�VW(�)] (J����), (C7) 

  ����U�VW = (1/70) ∗  ∑WY= 7Z ~e [����U�VW(�)] (�,J),  (C8) 

n = 1 to 10 for pilot test, n = 1 to 70 for experimental run. 

x1 is the MELDmean in scenario without delta-MELD, 

 x2 is the MELDmean in scenario with delta-MELD, 

 S1 is the standard deviation of MELDmean in scenario without delta-MELD, 

 S2 is the standard deviation of MELDmean in scenario with delta-MELD, 

S1
2 is the variance of MELDmean in scenario without delta-MELD, 

 S2
2 is the variance of MELDmean in scenario with delta-MELD, and 

  E�� ��G���Z7 = �(1 9)⁄ ∑WY= 7Z =e (��������(�) − ����U�VW)[ (C9) 

   n = 1 to 10 in pilot test supporting Figure 11, 
  E�� ��G�s� = �(1 69)⁄ ∑WY= 7Z ~e (��������(�) − ����U�VW)[ (C10) 

   n = 1 to 70 in experimental run supporting Figure 12. 

  The t test of two independent populations parameters are computed  

  for the Total_Patients_Removed response variable;    

  t(PatientsRemoved) = (st<su)wxtu yt⁄ zxuu yu⁄      (C11) 

  N����_`������E_&���G��V�� 

   = (1 10⁄ ) ∗ ∑�Y= 7Z =e(N����_`������E_&���G��(�)) (J����), 
           (C12) 

   = (1 70⁄ ) ∗ ∑�Y= 7Z ~e(N����_`������E_&���G��(�))(�,J), 
           (C13) 

i = 1 to 10 for pilot test, i = 1 to 70 for experimental run. 

x1 is the Total_Patients_Removed in scenario without delta-MELD, 

  x2 is the Total_Patients_Removed in scenario with delta-MELD, 
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S1 is the standard deviation of Total_Patients_Removed without  

 delta- MELD, 

  S2 is the standard deviation of Total_Patients_Removed with delta-MELD, 

  and  

  TV��  = N����_`������E_&���G��V��    (C14) 

   N(�)  = N����_`������E_&���G��(�), n is the interval index, (C15) 

  E�� ��G���Z7 = �(1 9)⁄ ∑WY= 7Z =e[N(�) − NV��][   (C16) 

   n = 1 to 10 in pilot test supporting Figure 11,  

  E�� ��G�s� = �(1 69)⁄ ∑WY= 7Z ~e[N(�) − NV��][   (C17) 

   n = 1 to 70 in experimental run supporting Figure 12. 

  S1
2 is the variance of Total_Patients_Removed without delta-MELD, 

  S2
2 is the variance of Total_Patients_Removed with delta-MELD, 

3. The data updated onto the View t test of two independent populations panel are 

also updated into the Simulation Progress text area for data analysis of scenario 

runs and simulation verification of pilot runs. 
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Simulation Progress Panel 

 

 
 
Figure C7. Simulation progress panel. 
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Programming Notes: 
 

1. Each messages updated into the Simulation Progress panel have the tag of 

Initialize Data, Setup Scenarios(s), Run Scenario(s), View Liver Arrival, View 

Disease Progression depending on the source of panel output. 

2. When messages are generated as a result of the Run Scenario(s), the simulation 

process names are also tagged (Waitlist Entry, Disease Progression, Donor Liver 

Arrival, and Waitlist Patient Management). 

3. The selection of Save to File push button logs all messages from startup of the 

simulation GUI into the designated output file.    

4. The Message Area text area allows the user to view completion statuses of user 

requests and of any simulation’s informational, warning, or error messages. 
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Appendix D: Statistics Notes 

 The F-ratio test was used for testing homogeneity of variances.  From an example 

of running the pilot test, the standard deviations were computed from Figure D1.  These 

standard deviations were squared to yield their variances and these variances were set 

into an F-ratio, where the smaller of the two variances is the denominator, and the larger 

of the two variances is the numerator.  The critical value for 25 degrees of freedom for 

both variances is 1.35 according to the F distribution critical values table provided by 

Aczel and Sounderpandian (2008).  From Figure D1, the variances were computed from 

the 2008 1st 180 days interval into an F-ratio.  The F-ratio is (1.5363)2 / (1.3861)2 = 

1.228 and is below the critical value of 1.35.  Since the F-ratio of 1.228 is not greater 

than the critical value of 1.35, this indicates the variances of the average MELD scores 

are homogeneous.   

 Aczel and Sounderpandian (2008, p. 311) provided the formula for the test 

statistic Z, for the comparison of two populations, where the hypothesized value for the 

difference in the two population means is (μ1 – μ2).   
 t =  (st<su)<(vt <vu)wxtu yt⁄ zxuu yu⁄        (D1) 

 The research experiment was about a comparison of MELD scores based on the 

same set of arriving donor livers that were applied to the same pool of 100 patients, one 

scenario without delta-MELD, one scenario with delta-MELD.  The MELD scores were 

normally distributed according to a similar study of Kanwal, Dulai, Speigel, Yee, and 

Gralnek. (2005).  Aczel and Sounderpandian (2008) stated that in the case where X1 and 
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X2 each follows a normal distribution, (X1 - X2) would also follow a normal distribution.  

It can be verified whether (X1 - X2) assumed a normal distribution (p. 311).        

 Regarding whether the difference in average MELD scores between the scenarios 

with and without delta-MELD is normally distributed, the chi-square test for normality 

was utilized.  Aczel and Sounderpandian (2008) explained that a chi-square goodness of 

fit method requires hypothesizing about the sample set with null and alternative 

hypotheses, computing frequencies of where the null hypothesis is expected, providing 

the expected counts of data points into different chi-square bins, and computing the 

difference between the observed and expected data leading to the chi-square statistics (p. 

662).  Aczel and Sounderpandian (2008) further explained that a goodness of fit test is a 

statistical test that tells whether data would support an assumption relating to a 

distribution or random variable.  The simulation computed the difference in MELD 

averages against its mean, the mean and standard deviation of these differences, and the 

z-values that would provide the bin values for the goodness of fit chi-square bins.  The 

following formula is the chi-square statistics. 

 ¸[  =  ∑(+� –  ��  ) [/  ��  ,        (D2) 

 for i= 1 to k, where k is the number of fit cells. 

The chi-square hypotheses are as follows:  

 Ho: The differences of average MELD scores are normally distributed.   

 Ha: The differences of average MELD scores are not normally distributed.   

 The differences of average MELD means, standard deviations, and variances are 

computed.  With 26 weeks of average MELD scores, 5 bins are set up, where each bin 
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would have 1/5 = 0.20 probability.  The bin boundaries of 0.20 probability are translated 

to their corresponding z-values which then provide the z value intervals of < -0.84,  

(-0.84, -0.255), (-0.255, 0.255), (0.255, 0.84), and >0.84.  From the formula of  

 ² =  (, –  ,���) / E         (D3) 

Where s is the standard deviation, and x-bar is the mean, the formula is rewritten in terms 

of x,  

 , =  E ∗  ² +  ,���        (D4) 

Table D1 supports the computation of chi-square value based on the differences of 

average MELD scores falling into the appropriate bins.   
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Figure D1. Goodness of fit-test for normality. 

 In Figure D1 example, the differences in MELD averages were computed and 

they were counted and allocated into Table D1.  Table D1 was set up to determine the 

chi-square goodness of fit for the normal distribution.  The differences of average 

MELDs were computed, along with their mean and standard deviation.  These values 

were utilized to support a Goodness of Fitness computation by setting up bin boundary 

values for each of the five bins.  Once these boundary values were computed for each bin, 

a count of the differences of average MELDs can be performed and be grouped into their 
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appropriate bins.  Table D1 identifies the computational steps necessary to carry out the 

chi-square Goodness of Fit test for normality.   

Table D1 

Chi-square Goodness of Fit test for Normality     

Bin #  Interval Observed 
Frequency 
(f) 

Expected 
Frequency 
(e) 

(B –  � ) (B –  � )[ (B –  � )[ �⁄  

 

1 <-0.249998 7 5 2 4 4/5 

2 (-0.249998,  
-0.119605) 

6 5 1 1 1/5 

3 (-0.119605, 
-0.005940) 

1 5 -4 16 16/5 

4 (-0.005940,  
0.124440) 

7 5 2 4 4/5 

5 >0.124440 4 5 -1 1 1/5 

 

The intervals were computed, with  

 ,��� =  −0.062773,        (D5) 

 E =  0.222873, ���         (D6) 

 ² =  −0.84, −0.255, −0.255, 0.84.       (D7) 

 ,�  =  E ∗ ² +  ,���,         (D8) 

where i is the interval boundary index, 

 ,=  =  (0.222873) (−0.84)  +  (−0.062773)  =  −0.249998  (D9) 

 ,[  =  (0.222873) (−0.255)  +  (−0.062773)  =  −0.119605  (D10) 

 ,g  =  (0.222873) (0.255)  +  (−0.062773)  =  −0.005940  (D11) 

 ,h  =  (0.222873) (0.84)  +  (−0.062773)  =  0.124440   (D12) 
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 ¸[ = ((7 − 5)[ + (6 − 5)[ + (1 − 5)[ (7 − 5)[ + (4 − 5)[)/ 5 

  =  (2[  +  1[  +  4[  +  2[  +  1) / 5 

  =  (4 + 1 + 16 + 4 + 1) / 5  

  =  (21 + 5) / 5 =  26 / 5 

  =  5.2         (D13) 

For this example, with 4 degrees of freedom, the chi-square value of 5.2 lies 

between the 0.05 and .95 confidence level of the chi-square region, where the 

corresponding chi-square value is between 1.06336 and 7.779.  The goodness of fit test 

did not suggest rejecting the chi-square null hypothesis.  Hence, one can conclude that 

there is not enough evidence to claim that the MELD scores are not normally distributed.   
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