
Walden University
ScholarWorks

Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies
Collection

1-1-2011

Data-Driven Decision Making as a Tool to Improve
Software Development Productivity
Mary Erin Brown
Walden University

Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations

Part of the Business Administration, Management, and Operations Commons, Databases and
Information Systems Commons, Library and Information Science Commons, and the Management
Sciences and Quantitative Methods Commons

This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been
accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please
contact ScholarWorks@waldenu.edu.

http://www.waldenu.edu/?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.waldenu.edu/?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissanddoc?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissanddoc?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1018?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/637?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F1075&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ScholarWorks@waldenu.edu

Walden University

College of Management and Technology

This is to certify that the doctoral dissertation by

Mary Brown

has been found to be complete and satisfactory in all respects,
and that any and all revisions required by
the review committee have been made.

Review Committee
Dr. David Gould, Committee Chairperson, Management Faculty

Dr. Stuart Gold, Committee Member, Management Faculty
Dr. Louis Taylor, University Reviewer, Management Faculty

Chief Academic Officer
Eric Riedel, Ph.D.

Walden University
2013

Abstract

Data-Driven Decision Making as a Tool to Improve Software Development Productivity

by

Mary Erin Brown

M.S. Arizona State University, 1998

M.A. Western Michigan University, 1976

B.A. Western Michigan University, 1970

Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Management

Walden University

August 2013

Abstract

The worldwide software project failure rate, based on a survey of information technology

software manager’s view of user satisfaction, product quality, and staff productivity, is

estimated to be between 24% and 36% and software project success has not kept pace

with the advances in hardware. The problem addressed by this study was the limited

information about software managers’ experiences with data-driven decision making

(DDD) in agile software organizations as a tool to improve software development

productivity. The purpose of this phenomenological study was to explore how agile

software managers view DDD as a tool to improve software development productivity

and to understand how agile software development organizations may use DDD now and

in the future to improve software development productivity. Research questions asked

about software managers’, project managers’, and agile coaches’ lived experiences with

DDD via a set of interview questions. The conceptual framework for the research was

based on the 3 critical dimensions of software organization productivity improvement:

people, process, and tools, which were defined by the Software Engineering Institute’s

Capability Maturity Model Integrated published in 2010. Organizations focus on

processes to align the people, procedures and methods, and tools and equipment to

improve productivity. Positive social change could result from a better understanding of

DDD in an agile software development environment; this increased understanding of

DDD could enable organizations to create more products, offer more jobs, and better

compete in a global economy.

Data-Driven Decision Making as a Tool to Improve Software Development Productivity

by

Mary Erin Brown

M.S. Arizona State University, 1998

M.A. Western Michigan University, 1976

B.A. Western Michigan University, 1970

Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

Management

Walden University

August 2013

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3591716

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 3591716

Dedication

This proposal is dedicated to my husband, Mike Brown, who supported my goals,

to my dad, Mr. Phillip Stackpoole who taught me to love learning, to Dr. Paul Doelle

who taught me the importance of moving in the direction you want to go whether the

wind is at your back or in your face, and to my sisters and brothers who made all the

difference in my life.

Acknowledgments

I would like to thank the dedicated faculty and staff of Walden University School

of Management who shared their knowledge and expertise with me and who provided

encouragement along the way, especially Dr. David Gould, Dr. Stuart Gold, and Dr.

Louis Taylor who provided valuable guidance along the way.

 i

Table of Contents

List of Tables ...v

List of Figures ... vii

Chapter 1: Introduction to the Study ..1

Background of the Study ...2

Problem Statement ...4

Purpose of the Study ..5

Research Questions ..6

Conceptual Framework ..8

Nature of the Study ..11

Definition of Terms..12

Assumptions ...16

Scope and Delimitations ..17

Limitations ...18

Significance of the Study ...18

Summary and Transition ..19

Chapter 2: Literature Review ...21

The Literature Search Strategy ..22

Organization of the Review ...24

Conceptual Foundation ..24

Current Understanding of Data Driven Decision Making ...25

Current Research in Software Methods ...34

 ii

Current Research in Software Development and KM ...51

Current Research in Software Methods and Analytics ..61

Current Research in Software Methods, KM, and Analytics63

Research Methods in the Current Literature ..64

Research Methods for Research ...78

Research Approaches in the Current Literature ...79

Research Approach for Used for this Research ...80

Research Process Used for this Research ..81

Summary and Conclusions ..81

Chapter 3: Research Method ..84

Research Design and Rationale ...85

Research Questions ... 85

Central Concept .. 86

Research Tradition .. 87

Rationale ... 88

Role of the Researcher ...90

Researcher Role .. 90

Relationships ... 90

Management of Bias / Relationships .. 91

Other Ethical Issues .. 91

Methodology ..92

Participant Selection Logic ... 92

 iii

Instrumentation ... 96

Procedures for Pilot Studies .. 97

Procedures for Recruitment, Participation, and Data Collection 98

Data Analysis Plan .. 100

Issues of Trustworthiness ...102

Trustworthiness ... 103

Ethical Considerations .. 105

Dissemination of Findings .. 108

Summary and Transition ..108

Chapter 4: Results ..110

Pilot Study ..111

Research Setting...113

Demographics ..114

Data Collection ..117

Data Analysis ...118

Evidence of Trustworthiness..127

Research Results ..128

Research Question 1 ... 129

Research Question 2 ... 131

Research Question 3 ... 153

Comparison of Themes by Research Participant Demographics 170

Research Question 4 ... 175

 iv

Summary ..178

Chapter 5: Discussion, Conclusions, and Recommendations ..180

Interpretation of the Findings...181

Limitations of the Study...190

Recommendations ..191

Implications..192

Conclusion ...193

References ..195

Appendix A: Qualitative Research Schedule ...211

Appendix B: Agile Scrum Process Versus the Traditional Waterfall Process218

Appendix C: Informed Consent Form ...220

Appendix D: Research E-mail Invitation ...224

Appendix E: Curriculum Vitae ..225

 v

List of Tables

Table 1. Pros and Cons of Agile Software Development Methodologies 46

Table 2. Research Participant Roles and Years of Agile Software Development

Experience ... 115

Table 3. Research Participant Project Size ... 116

Table 4. Research Participant Agile Software Development Methods Used 117

Table 5. Codes That Emerged From The Data ... 120

Table 6. Categories That Emerged From The Data Analysis Process 121

Table 7. Km Themes That Emerged From The Data By Category 125

Table 8. Analytic Themes That Emerged From The Data By Category 126

Table 9. Current Use Of Analytics By Analytic Type .. 134

Table 10. Current Use Of Analytics - Category By Agile Coaches 135

Table 11. Current Use Of Analytics - Category By Project Managers 136

Table 12. Current Use Of Analytics - Category By Software Managers 136

Table 13. Current Use Of Analytics – Swebok Activity By Analytic Type 142

Table 14. Current Use Of Knowledge Management By Km Process 144

Table 15. Current Use Of Km - Category By Agile Coaches ... 145

Table 16. Current Use Of Km - Category By Project Managers 145

Table 17. Current Use Of Km - Category By Software Managers 146

Table 18. Current Use Of Km – Swebok Activity By Km Activity 153

Table 19. Future Use Of Analytics All ... 155

Table 20. Future Use Of Analytics - Category By Agile Coaches 156

 vi

Table 21. Future Use Of Analytics - Category By Project Managers 156

Table 22. Future Use Of Analytics - Category By Software Managers 157

Table 23. Future Use Of Analytics – Swebok Activity By Theme 162

Table 24. Future Use Of Knowledge Management .. 163

Table 25. Future Use Of Km - Category By Agile Coaches .. 165

Table 26. Future Use Of Km - Category By Project Managers 165

Table 27. Future Use Of Km - Category By Software Managers 165

Table 28. Future Use Of Km – Swebok Activity By Km Activity 170

Table 29. Analytic Themes Unique To Research Participants With <5 Years Of

Experience ... 171

Table 30. Analytic Themes Discussed By Research Participants – Unique For Project

Size .. 173

Table 31. Km Themes Discussed By Research Participants – Unique For Project Size 174

Table 32. Analytic Themes Discussed By Research Participants Using Xp 175

 vii

List of Figures

Figure 1. The 3 critical dimensions of software organization productivity improvement...9

Figure 2. Literature Review: Number of Articles by Topic…….………………………..21

1

Chapter 1: Introduction to the Study

Although software project failure rates have decreased over the past 10 years,

Ambler (2012), Emam and Koru (2008), Mieritz (2012), and the Standish Group (n.d.)

found that the software project success rate still needs to be improved and Fitzgerald

(2012) stated that there is a crisis in software development because software development

productivity has not kept pace with the advancements in hardware. The social

implications for improved software development productivity included the opportunity

for organizations to compete more effectively in a global economy. If software

development productivity improved, more software products may be developed, which

would potentially decrease the cost of software products and increase the number of

individuals who could experience the benefits.

Brynjolfsson, Hitt, and Kim (2011) found that data driven decision-making

(DDD) improved organizational output and productivity by 5-6%. If DDD can improve

organizational output and productivity, then a better understanding of DDD in software

organizations may enable software organizations to improve output and productivity.

This study was conducted to better understand the meaning of DDD in software

organizations.

A qualitative research study is described in this dissertation. The problem

addressed by this research study is discussed in Chapter 1, as is the purpose for the study

and the research questions. Research plans should describe the research in as much detail

as possible; therefore, the conceptual framework, assumptions, scope, delimitations, and

limitations of the research are discussed in Chapter 1 and the implications for social

2

change are explained. The three dimensions of software organization productivity

improvement, which were defined by the Software Engineering Institute (SEI) Capability

Maturity Model Integrated (CMMI), provided the conceptual framework for the research

study. The operational definitions used to explore DDD in this qualitative research study

and to measure DDD in this qualitative research study are provided to minimize

ambiguity. The background of this research study is provided before the detailed plan is

discussed to explain why this research study was needed.

Background of the Study

There is a need to improve software project success according to Ambler (2012),

Emam and Koru (2008), Mieritz (2012), and the Standish Group (n.d.). Agile software

development methods were developed to improve software project success (Rao, Naidu,

& Chakka, 2011). Agile software methods are based on the Agile Manifesto, which

states that software development should focus on delivering working software;

consequently, agile methods are intended to provide value to customers by iteratively

delivering working code to customers. Although the failure rate for software projects that

used traditional software development methods is 50%, the failure rate for software

development projects that used agile software development methods is 40% (Ambler,

2012).

Brynjolfsson et al. (2011) found that DDD improved organizational productivity

by 5-6%; however, based on a review of the literature, few research studies have explored

the use of DDD as a tool to improve software development productivity in either a

traditional software development environment or an agile software development

3

environment. Although Brynjolfsson et al. defined DDD as “data and business analytics”

(p. 1), Chandler, Hostmann, Rayner, and Herschel (2011), stated organizations need to

define analytics because analytics have been defined many ways.

Brynjolfsson et al. (2011) argued that DDD was related to the knowledge

management (KM) processes of “knowledge creation, accumulation, retention, and

transfer” (p. 4); however, Brynjolfsson et al. did not state that KM and DDD are

equivalents. Although Chan and Thong (2010) found that there was a positive

relationship between the agile practices of pair programming, collective ownership, and

coding standards with the KM outcomes of knowledge creation, knowledge retention,

and knowledge transfer, the meaning of DDD in the context of an agile software

environment has not been defined. The research focused on agile software

management’s understanding of DDD, which includes agile software management’s

understanding of analytics and the KM processes of knowledge creation, accumulation,

retention, and transfer to improve software development productivity.

Based on a review of the literature, a few research studies explored the use of KM

to improve software development productivity in a traditional software development

environment (Slaughter & Kirsch, 2006) or in an agile software development

environment (AlaAli & Issa, 2011; Amescua, Bermon, Garcia, & Sanchez-Segura, 2010;

Neves Rosa, Correia, & Neto, 2011; Pikkarainen, Haikara, Salo, & Abrahamson, 2008;

Tessem & Mauer, 2007). One research study was found that used both analytics and KM

to improve productivity in a traditional software development environment. Intelligent

agents were used to enhance a knowledge management system (KMS) to manage defects

4

in a traditional software development environment (Abdullah, Talib, & Misran, 2011b).

However, no research studies were found that explored the use of analytics and KM to

improve productivity in an agile software development environment.

Qualitative research methods were used to explore management’s understanding

of DDD as a tool to improve software development productivity. The intent was to

better understand the phenomenon of DDD as a tool to improve software development

productivity and to explore how software organizations may use DDD now and in the

future to improve productivity in an agile software development environment. If

software development productivity is improved, organizations may be able to take

advantage of the advances in hardware and compete more effectively in a global

economy.

Problem Statement

The problem was the limited information about software managers’ lived

experiences with DDD in agile software organizations as a tool to improve software

development productivity. Although the software project failure rate fell from

approximately 50% in 1994 to approximately 26-34% in 2007, the software project

failure rate remains unacceptably high (Emam & Koru, 2008). Software methods, such

as agile methods, were developed to improve software development productivity

(Schwaber, 1995); however, software development improvements have not kept pace

with advancements in hardware (Fitzgerald, 2012). DDD, which was found to improve

organizational productivity by 5-6% based on a survey of the business practices and

information technology investments of 179 publicly traded organizations (Brynjolfsson

5

et al., 2011), may provide software organizations with the tools to improve productivity;

however, software managers need to brainstorm ways to use DDD to improve software

development productivity because chief technology officers (CTOs) do not know how to

communicate the potential use of DDD to their subordinates (Adrian & Genovese, 2011).

Although some research has been done on the use of KM processes and tools to

improve software development productivity in traditional software environments

(Abdullah et al, 2011b; Slaughter & Kirsch, 2006) and in agile software environments

(AlAli & Issa, 2011; Boehm, Lane, Koolmanojwong & Turner, 2010; Ceschi, Sillitti,

Succi, & Panfilis, 2005; Rubin & Rubin, 2011) little research has been done on the use of

analytical tools to improve software development productivity in traditional software

environments (Hullett, Nagappan, Schuh, & Hopson, 2011; Siwen & Jun, 2010; Zare &

Akhaven, 2009) or in agile software environments (Abouelela & Benedicenti, 2010).

The research study explored how software managers, project managers, and agile coaches

used DDD as a tool to improve software development productivity. An in-depth

understanding of DDD as a tool to improve software development productivity in an

agile software development environment may encourage software managers to create and

share new ways to improve software development productivity and may enable future

research that measures the effectiveness of alternative DDD uses to improve software

development productivity.

Purpose of the Study

Although Maxwell (2005) preferred to use the word goal rather than the word

purpose to describe the intent of the research, the purpose for this research will be

6

described. The purpose of this phenomenological study was to explore the lived

experiences of software managers’ use of DDD in agile software organizations as a tool

to improve software development productivity. The purpose was to illustrate

impediments to DDD use in software development organizations and to make

recommendations for improving DDD use in software development organizations based

on the findings from this research study and a review of the literature.

At this stage in the research, software development productivity refers to

increasing the amount of deliverable software based on the agile principles (Glazer,

Dalton, Anderson, Konrad, & Shrum, 2008) rather than to increasing the lines of code

produced per hour or to increasing the number of function points produced per hour.

Software development productivity also refers to individual productivity, team

productivity, and organizational productivity. DDD refers to data, analytics, knowledge

creation, knowledge accumulation, knowledge retention, and knowledge transfer. The

software development activities defined by the IEEE Software Engineering Body of

Knowledge (SWEBOK), published in 2004, provided a software development framework

that is agnostic to the software development methods used; consequently, the SWEBOK

(2004) activities are applicable in an agile software development environment.

Research Questions

Miles and Huberman (1994) recommended formulating general questions and if

necessary formulating more specific questions related to the general questions. The

number of research questions should be limited to six or fewer. Four major questions

were formulated for this research study. The purpose for this research study was

7

exploratory; therefore, qualitative research methods, including in depth interviews, were

conducted. The interview questions (see Appendix A) were derived from these research

questions. Questions were added to obtain demographic data.

The interview questions were intended to gather qualitative data on the

phenomenon under study. Interpretive phenomenological analysis (IPA) research

methods described by Smith, Flowers, and Larkin (2009) were used to analyze the

responses from the interviews on how DDD may be used in agile software organizations

based on the experiences of agile software managers.

The following research questions are based on the lived experiences of software

managers, project managers, and agile coaches in agile software environments.

1. What do software managers, project managers, and agile coaches in agile

software environments think about the use of DDD to improve software

development productivity?

2. How do software managers, project managers, and agile coaches in agile

software environments currently use descriptive analytics, diagnostic

analytics, prescriptive analytics, and predictive analytics, or knowledge

creation, retention, accumulation, and transfer to improve software

development productivity?

3. How do software managers, project managers, and agile coaches in agile

software environments think descriptive analytics, diagnostic analytics,

prescriptive analytics, and predictive analytics, or knowledge creation,

8

retention, accumulation, and transfer could be used to improve software

development productivity?

4. What obstacles do software managers, project managers, and agile coaches in

agile software environments think their organization needs to overcome to

improve software development productivity?

Conceptual Framework

The conceptual framework for the research was based on the three critical

dimensions of software organization productivity improvement defined by the Software

Engineering Institute’s (SEI) Capability Maturity Model Integrated (CMMI) published in

2010, as shown in Figure 1. Organizations focus on processes to align people,

procedures and methods, and tools and equipment to improve productivity. According to

the CMMI (2010), productivity may be improved if organizations define processes,

establish process improvement goals, and measure the outcomes. Organizations need to

train people to use procedures and methods that are intended to achieve the process

improvement goals and organizations need to provide people with tools and equipment

that will enable the people to achieve the desired outcomes to improve productivity.

9

Figure 1. The three critical dimensions. Reprinted from http://www.sei.cmu.edu, by the

CMMI Product Team, 2010, Retrieved from

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

Agile software methods may improve software development productivity

(Balijepally, Mahapatra, Nerur, & Price, 2009; Ballou, 2008; Boehm et al., 2010; Eccles,

Smith, TanBelle, & van der Watt, 2010; Glazer et al., 2008; Ionel, 2009; Lalsing,

Kishnah, & Pudaruth, 2008; Layman, Williams & Cunningham, 2006; Shull et al., 2010;

Sutherland, Jakobsen, & Johnson, 2007; Zhang & Patel, n.d.); consequently, if people

were trained to use agile software development methods, productivity may be improved.

DDD, which includes the use of data, analytics, and KM tools and techniques to make

decisions, was found to improve organizational productivity (Brynjolfsson et al., 2011).

10

However, as discussed in Chapter 2, little research was found on the use of DDD to

improve productivity in either a traditional software development environment or an agile

software development environment and no research was found on software

management’s understanding of DDD as a tool to improve software development

productivity. Consequently, this research was intended to fill this gap in the literature by

exploring software management’s understanding of DDD as a potential tool to improve

productivity in an agile software development environment.

A review of the literature revealed the need for additional research into the

meaning of DDD and the related topics of business intelligence (BI), artificial

intelligence (AI), business analytics, data mining, knowledge management, and entity

resolution and analysis (Adrian & Genovese, 2011; Herschel, 2011; Lingling, Jun, Yong,

& Xiaohui, 2009). There are many potential uses for BI and business analytic software;

however, CTOs and chief information officers (CIOs) do not know how to communicate

the potential to the organization (Adrian & Genovese, 2011). If CTOs, CIOs and their

subordinates had a better understanding of analytics, they could brainstorm ways in

which the technologies could be used to improve decision-making. In addition to the BI

and AI capabilities, developed primarily in medicine and finance, organizations should

prepare to take advantage of natural language processing, pattern recognition, pattern

matching, the ability to process large volumes of data, and rich media types.

The participants were selected from software teams who are currently using agile

software development methods. Some forms of DDD may already be in use in agile

software development environments because agile software methods were developed to

11

improve productivity (Schwaber, 1995). Once the current DDD methods are identified,

they could be shared, which would increase the number of people trained to use these

tools and techniques. This research is intended to provide a better understanding of DDD

as a tool to improve productivity in the context of agile software development.

Nature of the Study

Software development failure rate is high and agile software methods were

developed to improve software development success. Although DDD can improve

organizational output and productivity, organizations need to define DDD within the

context of the problem. Based on a review of the literature on DDD and agile software

development, the research on DDD as a tool to improve software development

productivity is in the initial stages; therefore, qualitative research methods will be used to

explore the meaning of DDD within the context of agile software development.

 Qualitative research methods are used when more needs to be known about a

topic (Patton, 2002), when the nature of the research is exploratory, and when there is

insufficient data available to develop hypotheses (Sullivan, 2001). The qualitative

research methods used for this research are the interpretive phenomenological analysis

(IPA) research methods described by Smith et al. (2009). The IPA methods are based on

the philosophical views of Husserl, Heidegger, Merleau-Ponty and Sarte, the

hermeneutics, which are based on the philosophic views of Schleiermacher, Heidegger,

and Gadamer, and idiography. According to Smith et al., the IPA researcher believes that

each individual develops perspectives through their own unique experiences. The IPA

researcher interprets the meaning of the phenomenon by examining the part in relation to

12

the whole and the whole in relation to the part and the IPA researcher is focused on

explaining the phenomenon in relation to the individual rather than in relation to the

group.

Qualitative data was obtained by interviewing software managers, project

managers, and agile coaches. The research participants were selected based on their

familiarity with agile software development methods, their experience as software

managers, project managers, and agile coaches, and their interest in participating in the

research study. The interviews were transcribed and analyzed to identify major themes,

common responses, and unique responses to the interview questions. The interviews and

the literature review served as the basis for my interpretation of the phenomenon of DDD

as a tool to improve software development productivity in an agile software development

environment.

Definition of Terms

 The research on management understanding of DDD used the following

operational definitions. Operational definitions describe the concepts measured in a

research study (Sullivan, 2001). The purpose for operational definitions is to indicate

which words will be used to define terminology within the framework of the research

study.

Agile: Agile is used to describe a software development framework that includes

multiple processes including Scrum. All of the agile software development processes

emphasize collaboration, teamwork, adaptability, and frequent and iterative software

delivery (Cohn, n.d. a).

13

Crystal: is a set of people centered rather than process centered agile software

development methodologies (Cockburn, 2008). Data Driven Decision Making: Data,

analytics, and the knowledge management processes for knowledge creation,

accumulation, retention, and transfer (Brynjolfsson et al., 2011).

 Descriptive analytics: Answer the questions what happened and what is

happening and are used to measure and manage performance. Examples include reports,

dashboards, and scorecards (Salam & Cearley, 2012). Descriptive analytics may be used

to identify alternative solutions but may not provide an optimal solution (Turban, Sharda,

& Delen, 2005).

 Design improvement: is an extreme programming (XP) software development

practice that is based on the concept of continuous improvement. Software developers

are expected to refactor or optimize the code design with each iteration (Jeffries, n.d.).

 Diagnositic analytics: Answers the questions why did it happen and what are the

key relationships. Diagnostic analytics are used to understand outliers and variance, to

create profiles, and to classify data. Examples include machine learning, interactive

visualization, data mining and modeling, and content analytics (Salam & Cearley, 2012).

Diagnostic analytics may be used to identify the underlying causes for irregularities

(Turban et al., 2005).

 Dynamic systems development methodology (DSDM): is an agile software project

management methodology developed by the DSDM consortium. (DSDM consortium,

n.d.).

14

 Extreme Programming (XP): “Extreme Programming is a discipline of software

development based on values of simplicity, communication, feedback, courage, and

respect. It works by bringing the whole team together in the presence of simple practices,

with enough feedback to enable the team to see where they are and to tune the practices

to their unique situation” XP practices include “simple design, pair programming, test-

driven development, and design improvement” (Jeffries, n.d.).

 Feature driven development (FDD): is an agile software methodology consisting

of 5 iterative activities beginning with developing a model of the system, followed by

developing an organized list of features. A subset of the features is selected for the next

iteration and then the selected features are designed and built. The process is repeated

until all of the features described in the model are built (Ambler, n.d.).

 Knowledge accumulation: the process of acquiring, capturing, or obtaining

knowledge (Gold, Malhotra, & Segars, 2001).

 Knowledge creation: the process in which explicit and tacit knowledge is shared

between individuals and groups within an organization through socialization,

externalization, combination, and internalization (Nonaka & Takeuchi, 1995).

 Knowledge Management (KM): The first generation of KM is “a systematic

discipline and set of approaches to enable information and knowledge to grow, flow, and

create value in an organization” (Rao, 2005, p. 3). The definition of the second

generation of KM is “information in action“(O’Dell & Hubert, 2011, p. 2).

 Knowledge retention: the process of organizing and preserving or storing

knowledge (Mansour, Alhawari, Talet, & Al-Jarrah (2011).

15

 Knowledge transfer: the process of distributing knowledge to people other than

those who generated, produced, or created the knowledge (Mansour et al., 2011).

 Lean software development methodology: is based on the manufacturing

processes developed by Toyota and like agile software methodology, lean is focused on

people rather than on processes (Bielicki, n.d.).

 Model driven development (MDD): is an iterative software development

methodology; however, unlike agile software methodology, which is based on

communication and collaboration, MDD requires that models of the system be developed

before the software is coded.

 Pair programming: An XP software development practice in which two

programmers sit side by side to develop the same code (Jeffries, n.d.).

 Predictive analytics: Answers the questions what will happen, how risky is it, and

what if it happened. Predictive analytics are used to forecast and test hypothesis and to

model risk. Examples include forecasting applications, predictive models, and content

analytics (Salam & Cearley, 2012).

 Prescriptive analytics: Answers the questions what is the best option, how can an

optimal solution be reached, and what should happen. Prescriptive analytics are used for

risk management, business optimization, and recommending the best action. Examples

include modeling, simulation, optimization, and visualization (Salam & Cearley, 2012).

Scrum: “Scrum is an agile approach to software development. Rather than a full

process or methodology, it is a framework. So instead of providing complete, detailed

descriptions of how everything is to be done on the project, much is left up to the

16

software development team. This is done because the team will know best how to solve

the problem they are presented” (Cohn, n.d., b, para. 2).

 Simple design: An XP practice, which encourages simple but adequate software

design that ensures continuous improvement, can be made to working software (Jeffries,

n.d.).

 Test-driven development: An XP software development practice in which

software is tested immediately after each small code module is developed to ensure

working code is delivered with each cycle or iteration (Jeffries, n.d.).

 Traditional software methods: are software development methods that are

focused on process rather than on people and managing explicit knowledge, such as the

waterfall method (Bjornson & Dingsoyr, 2008).

Assumptions

The research was based on several assumptions. First, the communication

between the myself and the research participants was open and honest because the

research participants were assured of privacy and their identities will not be made public.

Second, the research participants knew enough about the situation in their software

organization to propose solutions for the future. Third, given DDD definitions, the

research participants were able to identify examples of DDD as a tool to improve

software development productivity. Fourth, the research participants may have had

different opinions on what data is needed to design and produce software products.

17

Scope and Delimitations

The focus of the research study was limited to an in-depth understanding of the

phenomenon of DDD to improve software development productivity in an agile software

development environment. The research included measuring how frequently the research

participants identify analytics and KM as a potential tool for improving software

development productivity in each software development activity. The research study did

not include measuring how well DDD is used to improve software development

productivity or how well DDD is used to improve product design or development.

The findings from the research study may or may not be generalizable beyond the

population under study. The qualitative research study included research participants

who work on local software projects and software projects in other U.S. locations. The

participants were selected based on their in-depth knowledge of agile methods in

software organizations.

Although there are other agile software methods, Scrum methods were selected

for the research study because of the popularity of Scrum (Rao et al., 2011). In addition

to Scrum methods, the research participants discussed other software development

methods because, “Scrum is an agile project management framework that can be used

alone or in coordination with any Agile process or processes” (Northern, Mayfield,

Benito, & Casagni, 2010, p. 3). Scrum methods are frequently used with other software

development methods, which means that the research participants could have discussed

other software development methods.

18

Limitations

The research questions were limited to software management’s understanding of

DDD, which includes software management’s understanding of analytics and KM to

improve software development productivity. The research participants were limited to

software managers, project managers, and agile coaches in the United States who use

agile software development methods. The use of analytics and the combined use of

analytics and KM to improve software development productivity are relatively new and a

limited number of research studies were found on the use of DDD to improve software

development in either a traditional software environment or an agile software

development environment.

Significance of the Study

Cappelli and Kowall (2011) stated “agile software development methods are

pushing software changes to the market faster” (p. 8). If change is introduced more

quickly by agile software methods, then agile software managers may need to make

decisions faster. DDD may enable agile software managers to make decisions at the

speed of change.

If DDD improves organizational output and productivity then organizations can

benefit from a better understanding of DDD. A review of the literature indicated that

there is no universal definition for DDD and that the definition of DDD is dependent

upon the context. A better understanding of DDD in software organizations could enable

software organizations to find ways to improve output and productivity. The meaning of

19

DDD may expand and mature as software organizations discover the potential for

analytics for both software product design and software development.

Positive social change could result from a better understanding of DDD in an

agile software development environment. If DDD, which includes data, analytics, and

KM, enabled agile software managers to make better decisions, software development

productivity may be improved, and software organizations would be better able to

compete in a global economy. If software development productivity were improved,

software organizations may create more products that take advantage of the advances in

hardware and software organizations may create more jobs.

Summary and Transition

A qualitative research study on the phenomenon of DDD in the context of agile

software development was discussed in this chapter. The software project failure rate

continues to be higher than desired for an applied discipline (Emam & Koru, 2008).

Software project success needs to be improved if organizations are to remain competitive

in a global economy. Software organizations depend upon trained people who know how

to use methods and tools to improve software development productivity (CMMI Product

Team, 2010).

Software organizations may improve productivity by using Agile software

development methods, which were developed to improve software development

productivity (Schwaber, 1995) and software organizations may use DDD as a tool to

improve decision making because Brynjolfsson (2001) found that organizational output

and productivity was improved when organizations used DDD as a tool to improve

20

decision making. However, a better understanding of DDD in the context of agile

software development may enable software managers to find ways to use DDD to

improve software output and productivity. Brynjolfsson et al. proposed that DDD is

related to KM and Chan and Thong (2010) found that three agile practices were

positively related to three KM practices; however, additional research was needed to

understand the meaning of DDD within the context of agile software development.

The current literature on DDD, software methods, and KM was reviewed and the

results of this literature review are discussed in Chapter 2 of this dissertation. The

process used to a review the literature is discussed at the beginning of the next chapter

followed by a review of the literature on each topic. Although research could be found

on each topic, few studies examined the topics of DDD, agile software development

methods, and KM in combination.

21

Chapter 2: Literature Review

According to Emam and Koru (2008) organizations could benefit from reducing

the combined software project cancellation and failure rate, which they claimed was

between 24% and 36%. The problem investigated in the literature review was software

development productivity, which included reviewing the literature on the tools, methods,

and processes people are trained to use to improve software development productivity.

The literature on traditional software development, agile software development, analytics,

and KM was reviewed and analyzed to identify the common themes and to identify the

need for additional research.

The purpose for this literature review was to gain insight into the tools, methods,

and processes people are trained to use to improve software development productivity.

This literature review includes a review of the literature on traditional software

development methods and agile software development methods because agile software

development methods were intended to improve software project success (Rao et al.,

2011) and to improve software development productivity (Schwaber, 1995). The

literature on DDD, which includes data and analytics, was reviewed because DDD is a

tool that improved organizational productivity (Brynjolfsson et al., 2011) and may

improve software development productivity. The literature on KM for software

development was reviewed because according to Brynjolfsson et al. DDD is likely related

to the KM processes of “knowledge creation, accumulation, retention, and transfer” (p.

4). Consequently, a better understanding of KM within an agile software environment

22

may lead to a better understanding of DDD as a tool to improve software development

productivity within an agile software environment.

The process used to review the literature is discussed followed by the conceptual

foundation for the research study on management’s understanding of DDD. A more in

depth discussion of the current literature on DDD, agile software methods, traditional

software methods and KM, and agile software methods and KM follows. See Appendix

B for a comparison of traditional software methods to agile software methods. The

literature review concludes with a discussion of the research method, research approach,

and research process used for the research study based on a review of the methods,

approaches, and processes discussed in the current literature.

The Literature Search Strategy

An iterative process was used to review the literature for the research study. The

literature review process was based on advice from the Walden University library staff

demonstrating search techniques at residencies and the techniques on how to conduct a

literature review discussed by Machi and McEvoy (2009). Multiple libraries were

searched for journal articles including the Walden library, corporate libraries,

organization libraries, and public libraries. Keyword searches were used along with

subject searches and author searches for primary and secondary sources.

The topics searched included software, software development productivity, agile

software, analytics, and knowledge management. Searches were based on each topic and

then on the topics in combination. The articles were reviewed for relevance. In some

23

cases articles were eliminated based on the abstract. In other cases, articles were

eliminated based on the contents of the article.

The relevant articles were reviewed and critiqued for validity and reliability. The

articles were categorized based on the type of article. In some cases the articles presented

the author’s view of the topic based on a review of the literature and in other cases the

articles presented the results of research. Figure 2 shows the number of articles found by

topic. Although many articles discussed the topic of analytics and a few articles

discussed the topics of software development and KM and software development and

analytics, little research has been conducted on analytics in an agile software

environment. This research is expected to begin to fill this gap in the literature.

Figure 2. Literature Review: Number of Articles by Topic

24

Organization of the Review

The literature review was based on a review of general topics to more specific

topics. The topics explored included the more general topics of software development,

knowledge management, and analytics to the more specific topics of knowledge

management in traditional and agile software environments and analytics to improve

knowledge management and software development. The literature review culminated in

a search for articles that focused on the combined use of knowledge management and

analytics in a traditional software development environment and the use of knowledge

management and analytics in an agile software development environment.

Conceptual Foundation

The results of the systematic literature review are discussed in this section of the

dissertation proposal. The current understanding of DDD is that more needs to be known

about the meaning of DDD and that the meaning of DDD is context dependent. The

current research on traditional software development methods and agile software

development methods are discussed as well as the current research on the use of KM to

improve software development productivity. Although some research was found on the

use of analytics and KM to improve software development productivity in a traditional

software environment, no research was found on the use of analytics and KM in an agile

software environment to improve software development productivity.

The research methods, approaches, and processes used in the current literature to

study DDD, traditional software development methods, agile software development

methods and KM are discussed and the rationale for the research methods, approaches,

25

and processes used for this research study are presented. Although both quantitative and

qualitative research methods were used to study DDD, traditional software development

methods, agile software development methods, and KM, only two qualitative research

studies and one quantitative research study were found on the use of analytics in a

traditional software environment (Hullet et al.,2011, Siwen & Jun, 2010, Zare &

Akhaven, 2009), only one qualitative research study was found on the use of analytics in

an agile software development environment (Abouelela and Benedicenti, 2010), only one

mixed-methods research study and one qualitative research study were found on the use

of analytics and KM in a traditional software environment (Abdullah et al, 2011b; Jiang,

Eberlein, and Far, 2008), and no research studies were found on the use of analytics and

KM in an agile software environment. This qualitative research study is intended to

begin to fill this gap in the literature by exploring management’s understanding of DDD

as a tool to improve software development productivity in an agile software environment.

Current Understanding of Data Driven Decision Making

Based on a review of the literature, there are many definitions for DDD. Some of

the definitions found in the literature will be reviewed in this section of this dissertation.

If organizations need to define DDD, they need to be aware that the definition of DDD

depends upon the context. Once DDD is defined, organizations, including software

organizations, may be better able to brainstorm ways to use DDD to improve software

development productivity.

DDD definitions. Although Brynjolfsson et al. (2011) equated DDD to “data and

business analytics” (p. 1), based on a review of the literature, there does not appear to be

26

a consistent and universally understood definition of DDD. DDD was referred to as a

DSS (Hedgebeth, 2007) and as business intelligence (BI) according to Ivancenco,

Boldeanu, and Mocanu (2010). DDD was also referred to as both DSS and BI (Ow &

Morris, 2010) and as competitive intelligence (CI) according to Bartes (2011).

Chandler et al. (2011) claimed that organizations should define analytics because

there are many meanings of analytics. For example, the meaning of business intelligence,

performance management, and analytics can be confusing. Organizations need to define

the scope of any business intelligence, performance management, or analytics project to

reduce confusion.

DDD was described as analytics and analytics was described as a continuum

beginning with descriptive analytics and ending with predictive analytics (Salam &

Cearley, 2012). Descriptive analytics are used to describe what happened in the past and

what is happening in the present. Diagnostic analytics are used to identify cause of

historical events. Predictive analytics are for what if analysis and to test hypothesis and

prescriptive analytics are used to recommend an optimal solution.

According to Salam and Cearley (2012), Gartner defined advanced analytics as

the use of statistics, data mining, simulation, and optimization to analyze text, images,

audio, and video. Advanced analytics produce insights that cannot be accomplished with

queries and reports. However, “analytics means different things to different groups

within organizations and across the market” (Herschel, Hostmann, Rayner, & Bitterer,

2010, p. 2). Organizations should not seek to reach consensus on a single definition for

27

analytics; instead, organizations should ensure that the definition for analytics is clear for

each initiative or project that uses the term (Herschel et al., 2010).

Analytics refers to a specific advanced BI capability or technique, such as, neural

network or self-learning algorithms and not to less advanced BI capabilities, such as,

reporting or querying. Analytics refers to the process of using analysis to solve a

business problem, such as, creating insight into how to create customer loyalty without

specifying a specific BI technique or capability. Analytics means a specific packaged BI

application, such as, “web analytics, marketing analytics, or supply chain analytics”

(Herschel et al., 2010, p. 3). Analytics refers to the entire domain including BI, analytic

applications and performance management.

However, several different BI definitions were discussed along with the analysis

of several maturity models that could be used to measure organizational BI maturity

(Rajteric, 2010). Additional work would be needed to use any of the maturity models

alone or in combination to measure organizational BI maturity. Organizations need to

define BI before developing a BI maturity model.

BI was defined as a KM process (Ivencenco et al., 2010). BI is “the process of

transforming data into information and then into knowledge. Business Intelligence

systems are specialized tools for data analysis, queries and reporting, that support

management in the decision-making process” according to Ivancenco et al. (2010, p. 51).

BI is intended to improve strategic decision-making rather than to improve daily tactical

decision-making.

28

Although the literature contains alternate DSS definitions Hedgebeth (2007) used

the dssresources.com definition of a DSS and Ow and Morris (2010) discussed the need

for additional research to determine the cultural specific DSS design and development

needs. Bassi (2011) claimed that the meaning of HR analytics means different things to

different people. HR analytics consist of a set of tools and methods that provide HR

statistics as well as predictive analytics. HR analytics provide an evidence-based

approach to management on the people side of the business. Although HR does not yet

have the skills and knowledge, Bassi argued that HR should lead IT and Finance to

implement HR analytics. However, if HR is not prepared to lead the effort to implement

HR analytics then IT and Finance need to be prepared to take the lead.

Environment and context matter. Ow and Morris (2010) conducted a

quantitative research study using policy capturing methodology to determine how chief

technology officers (CTOs) consider, weigh, and integrate data for decision making. Ow

and Morris found that CTOs used some but not all of the data they thought they would

use to make strategic technology decisions. However, additional research may be needed

to determine how decision makers consider, weigh, and integrate data for decision-

making. For example, Ow and Morris stated that it is possible that decision makers used

heuristics to make decisions when time, knowledge, and computational power were

limited.

 The meaning of DDD depends upon the context. Ferrand, Amyot, and Corrales

(2010) stated that context affected the BI definition for healthcare safety. Rajteric (2010)

recommended that organizations define BI before developing a BI maturity model. Yeoh

29

and Koronios (2010) found that BI critical success factors or CSFs were not likely to be

generalizable due to dependence on context and if a more universal definition of BI

emerged, organizations would be better able to compare BI maturity across organizations.

 The context of this research study is software development. According to Emam

and Koru (2008) software development failure rates are high. Approximately 26%-34%

of software projects surveyed were cancelled or failed. The most common reasons for

software project failure were changes in scope, requirement changes, lack of senior

management involvement, budget shortages, and lack of project management skills. The

most difficult problem in software development was software development scheduling.

Emam and Koru claimed that software estimating, scheduling, and management tools

need to be improved and the techniques need to be improved.

 KM and DDD. DDD is related to KM because DDD requires knowledge

creation, accumulation, retention, and transfer (Brynjolfsson et al., 2011). Individuals are

able to use explicit knowledge because explicit knowledge is codified, which means that

the knowledge must be captured, organized, stored, and easy to retrieve. Individuals

must communicate to share tacit knowledge, which is only in the minds of the individuals

who have developed the expertise.

 Multiple definitions for KM can be found in the current literature; however, KM

is generally defined as the intentional reuse of knowledge to improve organizational

process and performance (Mansour et al., 2011). The KM objective is to manage the

knowledge that will result in improvements, such as, improved productivity, creativity,

and competence rather than to manage all knowledge. Brynjolfsson et al. (2011)

30

questioned how organizations could retain proprietary knowledge while sharing

knowledge within and between organizations.

KM is not about building a repository of knowledge; KM is about “people,

process, and technology” (Molaei, 2011, p. 426); however, small organizations may

benefit from sharing knowledge with other organizations by developing common

knowledge repositories. Molaei (2011) recommended that small organizations share

knowledge with other organizations to increase the available expertise. Organizations

could minimize the risk of sharing information outside the organization by sharing with

similar organizations that do not compete in the same geographic area, who do not have a

direct effect on profitability, or who do not have profit as a motive. For example,

nonprofit organizations could develop a common knowledge repository, individuals in

human resources could develop a common knowledge repository, or individuals who

share a common interest, such as agile software development methods could develop a

common knowledge repository.

 Many authors proposed KM models with as few as three KM processes and as

many as seven KM processes (Mansour et al., 2011). To reduce the confusion between

KM models, a general KM framework was proposed by Mansour et al. (2011). The

general KM model consisted of 10 KM processes including, identifying the need for KM,

KM goal review, knowledge identification, knowledge acquisition, knowledge validation,

knowledge storage, knowledge distribution, knowledge application, knowledge retention

and update, and knowledge training.

31

Artificial intelligence and KM. Smith and Farquhar (2000) described a ten-year

roadmap for KM, which predicted that artificial intelligence (AI) could be incorporated

into a KMS. The purpose for the KM roadmap was to encourage the AI community to

conduct the research needed to incorporate AI into KM initiatives. Smith and Farquhar

claimed that KM could utilize the lessons learned from AI to improve KM knowledge

acquisition, representation, and inference. AI could be used to improve KM search

capabilities, intelligent agents could be used to improve knowledge retrieval and

notification and AI could be used to facilitate the implementation of distributed problem

solving technology.

According to Smith and Farquhar (2000) expert systems were intended to provide

expert solutions to problems while KM was intended to provide people with expert

support to solve problems. Although initially both AI and KM suffered from unmet

expectations, Smith and Farquhar claimed that KM had been adopted by a number of

organizations. Consequently, “if the AI community is able to develop something of value

in this area—the ‘killer app’ for knowledge management—there is an audience waiting to

use it” (Smith & Farquar, 2000, p. 22).

Trends in analytics. The use of real-time analytics to support strategic decision-

making will increase (Cappelli & Kowall, 2011). Organizations need to be aware of the

interaction between hardware and software because agile software development methods

are pushing software changes to the market faster. Laney (2012) provided 10 reasons

why organizations should go beyond basic BI capabilities, such as, reporting and

querying because “tactical and operational decisions must increasingly be made at a rate

32

faster than humans are capable of” (p. 2). Organizations should consider advanced

analytics, such as, rules and artificial intelligence to:

 Benefit from big data.

 Identify weak signals.

 Embrace complexity, unexpected activity and changing conditions.

 Understand unstructured data.

 Optimize business processes.

 Automate governance, risk and compliance reporting.

 Enable full-sample forensics.

 Evolve to insight and foresight.

 Enhance scenario planning.

 Instigate innovation. (Laney, 2012, p. 2)

Rayner (2011) predicted that over the next 40 years, advanced analytics would

mature and take over management decision making while management decision-making

will focus on setting strategic direction, innovation, and analytics. Organizations should

take advantage of the existing capabilities of advanced analytics. For example, personnel

decisions can be improved by using software systems that incorporate advanced

analytics. Rayner recommended that organizations use collaborative decision making to

brainstorm ways to use analytics, such as, machine learning, predictive analytics, and

modeling and simulation.

33

The use of collaborative decision-making (CDM) will increase due to the

economic downturn and reduced travel budgets; however, management may resist

adopting CDM if the increased transparency is feared (Schlegel, Salam, Austin, &

Rozwell, 2009). CDM combines BI with social networking and Schlegel et al. (2009)

stated that CDM is best used for “nonroutine, complex decisions that require iterative

human interactions” (p. 1). Organizations have and will continue to increase their use of

analytics for performance management in many domains including finance, HR, sales,

marketing, and IT (Chandler, 2011).

CDM platforms will increase in use within the next five to 10 years for both

strategic and tactical decision-making (Chandler, 2011). Over the past year, Chandler

(2011) stated that several BI software vendors have already improved the ability for

decision makers to collaborate. IT organizations, including software organizations,

should be able to develop templates to improve collaborative decision-making.

According to Chandler the most difficult barrier organizations need to overcome to

increase the use of collaborative decision-making is cultural. If CDM is more likely to

thrive in less hierarchical and open organizations, then agile software development

organizations could provide an optimal environment for CDM.

Organizations need to select mobile application vendors based on their ability to

incorporate analytics (Clark & King, 2011). Managers need to learn about four trends in

business analytics that will rapidly change the assumptions about BI (Gassman, Salam,

Bitterer, Hagerty, & Chandler, 2011). These trends include the increased use of mobile

and tablet devices as a BI platform. The way in which information feeds decision making

34

will change in the next few years, organizations will change how and where they procure

business analytics, and organizations will change the types of BI and analytics they use.

Most importantly, the applications and technologies for business analytics were predicted

to change frequently in the next few years.

Benefits of a better understanding of DDD. The technical papers provided by

Bartes (2011), Hedgebeth (2007), and Ivancenco et al. (2010) discussed the potential

benefits of improved BI and DSS. The quantitative research discussed by Brynjolfsson et

al. (2011) measured the potential organizational productivity and profitability of DDD.

The quantitative research discussed by Ow and Morris (2010) measured the factors

decision makers used to make strategic technology decisions.

A better understanding of DDD could enable organizations to develop maturity

models, to define CSFs, and compare DDD across organizations. If organizations that

use DDD were more productive and profitable than organizations that do not use DDD

(Brynjolfsson et al., 2011) then organizations may benefit from a better understanding of

DDD. Software development organizations may be able to brainstorm how to use DDD

to improve software development if they had a better understanding of DDD.

Current Research in Software Methods

The current literature on traditional and agile software development methods was

reviewed and the findings were summarized in this section of this dissertation. The

research in agile methods is in the initial stages; therefore, the focus has been on

determining what agile means and to what degree agile software development is

complex. The current literature in agile software methods was limited to two software

35

development processes: the requirement engineering process and the software release

process that provides opportunities for future research in agile software methods focused

on other software development processes, such as, software management, design,

development, and test.

The transition from traditional software methods to agile software methods has

also received some attention in the literature. While three agile methods were compared,

extreme programming (XP), dynamic systems development method (DSDM), and Scrum

(Rao et al., 2011), additional research is needed to identify the strengths and weaknesses

of other agile methods and to determine how agile methods compare to traditional

software development methods. Although Roa et al. (2011) and Zhang and Patel (2011)

found that agile methods were best for small projects, Roa et al. proposed that larger

projects could be broken into multiple smaller projects and Zhang and Patel proposed that

agile methods could be combined with model driven development (MDD) for larger

projects.

Traditional software development. Software project failure rate is too high

(Emam & Koru, 2008) and software development productivity has not kept pace with

advancements in hardware (Fitzgerald, 2012). Software development productivity has

generally been defined as the ratio of inputs to outputs and organizations have

traditionally measured software development productivity by the ratio of lines of code

(LOC) produced to the number of person months consumed (Sudhakar, Farooq, &

Patnaik, 2012). Software development productivity is dependent upon people, process,

and tools (Wadhwa & Mittra, n.d.).

36

Rodger, Pankaj, and Nahouraii (2011) examined data from 138 organizations

from 1989-2001 to determine the factors influencing software development productivity

and time. Rodger et al. (2011) concluded that 4GL languages increased productivity and

decreased development time; ICASE tools did not affect productivity or development

time, as team size increased productivity and development time increased and as platform

complexity increased productivity increased and development time decreased. Contrary

to Rodger et al., Dubey (2011) proposed that CASE tools should be integrated and used

to prototype software to improve software development productivity.

Hewagamage and Hewagamage (2011) argued that software success needed to

improve and software research that could lead to improved software success could benefit

from consistently defined terminology and consistently defined relationships between

software framework components. Hewagamage and Hewagamage proposed a general

software development framework for IT project management based on their review of the

Capability Maturity Model-Integrated (CMMI), Project Management Body of

Knowledge (PMBOK), Projects in controlled environments (PRINCE2), IT Infrastructure

Library (ITIL), and Microsoft Solutions Framework (MSF) frameworks. The general

software development framework incorporated the project management phases defined

by the PMPOK and the software engineering phases defined in the SWEBOK (2004).

The phases defined in the PMBOK are starting, planning, executing, and closing. The

phases defined in the SWEBOK (2004) are requirement engineering, software design,

software implementation, and software testing and deployment.

37

Although individual software engineers were able to improve the accuracy of

their estimates to complete tasks when they were provided with historical data on their

own performance, their productivity did not improve (Elminir, Khereba, Elsoud, & El-

Hennewy, 2009). The Personal Software Process (PSP) was developed to enable

software engineers to measure their productivity and the quality of their work. The

skilled engineers were able to reduce interruptions and increase the quality of the

software delivered while management was able to identify the least skilled engineers and

remove them from the project. Elminir et al. (2009) assumed the engineers would

accurately self-report using the PSP; however, the PSP may foster competition rather

than cooperation between team members.

Churchman inquiry systems. Linden et al. (2007) stated that there is a lack of

continuity in the design of information systems and knowledge management systems

(KMS) and they proposed that Churchman’s inquiry systems could provide a theoretical

basis for future information systems and KMS research. Linden et al. summarized each

of the five inquiry systems proposed by Churchman in order to enable the reader to

understand the Leibnizian, Hegelian, Kantian, Lockean, and Singerian inquiry systems

without having access to Churchman’s out-of-print book. Linden et al. explained the

philosophical viewpoint of each of the inquiry systems and compared the inquiry systems

to enable the reader to understand the key characteristics of each inquiry system.

Linden et al. (2007) claimed more is required to be known about Churchman’s

inquiry systems based upon their own research and the research found in the literature.

As a result of their analysis, Linden et al. compared seven opportunities to apply each of

38

Churchman’s inquiry systems to information system and KMS design and development

including input, given, process, output, guarantor, IT support, and applicable situations.

For example, input to a Lockean inquiry system would be based on elementary

observations while the input to a Singerian inquiry system would be based on units and

standards. The output from a Lockean inquiry system would be taxonomy while the

output from a Singerian inquiry system would be a new standard or exoteric knowledge.

The Leibnizian inquiry system does not accept input and knowledge is deductive

(Linden et al., 2007). A system that checks medication dosages recommended by

physicians is an example of a Leibnizian inquiry system. A Lockean inquiry system

accepts input, knowledge is inductive, and properties are labeled. Google’s image

labeling database is an example of a Lockean inquiry system. A Kantian inquiry system

has the same characteristics as a Lockean inquiry system and a Kantian inquiry system

uses models to find the best fit for the data. A Hegelian inquiry system has the same

characteristics as a Kantian inquiry system and a Hegelian inquiry system is able to

synthesize conflicting theses to arrive at a new thesis.

Information systems as wicked systems. According to Linden et al. (2007)

information systems that are developed in complex environments where stakeholders

have different perspectives are referred to as wicked systems. “Wicked situations are

characterized by the multiplicity of stakeholders involved, the pervasive nature of

conflicts among their perspectives, the lack of firm criteria for determining an optimal

answer and the complex interconnectedness of numerous problem elements” (Linden et

al., 2007, p. 863). The input to a Hegelian inquiry system design represents the different

39

perspectives of the stakeholders and the different perspectives are synthesized to account

for opposing views.

Linden et al. (2007) stated that the Singerian inquiry system is based on the

Leibnizian, Hegelian, Kantian, and Lockean inquiry systems. Although the Leibnizian,

Hegelian, Kantian, and Lockean inquiry systems do not adequately address real world

whole systems; the Singerian inquiry system is holistic and agile. The Singerian inquiry

system addresses whole systems and is open to change when new information becomes

available. Singerian inquiry systems generate exoteric knowledge, which is knowledge

that is intended for a broad audience as opposed to esoteric knowledge, which is intended

for a narrow audience.

As organizations are faced with more complex environments it is more likely that

information systems will require methodology tailored for wicked systems development.

Linden et al. (2007) described an information system design approach based on

Churchman’s Hegelian inquiry system. However, Linden et al. stated that the Singerian

inquiry system is the most appropriate inquiry system for designing wicked information

systems.

The pursuit of actionable knowledge. According to Linden et al. (2007) inquiry

is the “process of searching for the truth, that is, for facts, information and knowledge”

(p. 837) and actionable knowledge enables the decision maker to “act effectively within a

domain of interest” (Linden et al., 2007, p. 838). Lingling et al. (2009) defined

actionable knowledge as knowledge that has been transformed from rough knowledge.

Rough knowledge is data that was mined from a data warehouse. Lingling et al. claimed

40

that rough knowledge should be transformed to make it actionable. DDD may be

synonymous with inquiry and the pursuit of actionable knowledge.

Linden et al. (2007) agreed with Churchman that information system researchers

should make moral and ethical decisions when designing information systems. “The

designer is moral if he or she serves a client who has a legal or moral right to expect that

the system will serve the client’s interest and these interests themselves are legal or

moral” (Linden et al., 2007, p. 847). Linden (2010) developed a website based on

Churchman’s Singerian inquiry system and the Connectedness Caretaker Principle and

Linden concluded that the website was an ethical platform because the research

participants were required to consider the ethical implications of their decisions.

Linden et al. (2007) defined five design characteristics of Churchman’s inquiry

systems. The data that would be needed to design an information system based on

Churchman’s inquiry system design characteristics includes a software development

methodology, which would provide a framework that is generalizable and repeatable.

Data would be needed to determine the differences between the user’s behavior patterns

and data would be needed to estimate how well the user’s behavior met the overall

system goals. Data would also be needed to communicate the goals to the software

development team so that the information system design reflected the goals and data

would be needed to ensure the integrity of the whole system was maintained.

Nonseparability and decomposition principles. Nonseparability and

decomposition refer to the relationship of the parts of a system to the whole system

(Linden et al., 2007). Although the integrity of an information system is dependent upon

41

the relationship of the parts to the whole system, an information system should be

designed so that the parts are separable. The integrity of an information system is

dependent upon how the information system adapts to change and data would be needed

to ensure that the designer could “predict the effects that the change will have on the

overall system performance” (Linden et al., 2007, p. 848).

Linden et al. (2007) claimed that Churchman stated “human intuition can be

faulty” (Linden et al., 2007). Although Churchman and Brynjolfsson et al. (2011) agreed

on the weaknesses of intuition, Churchman hypothesized that human intuition could be

valuable if it could be incorporated into an information system. Brynjolfsson et al. found

that instead of relying on intuition, DDD improved organizational performance and

profitability. If software management understanding of DDD can be better understood in

agile software development environments, then software managers may be able to use

DDD to improve the development of wicked systems.

Agile software development. Quality and productivity may be improved by

using agile software methods, such as, XP (Layman et al., 2006). Agile software

development methods were developed to improve software development productivity and

to decrease the time-to-market (Ballou, 2008). Although the current research in agile

software methods explored the opinions of agile projects managers toward agile methods,

the meaning of complexity within agile software projects, the challenges of transitioning

from traditional software methods to agile software methods, the need for models in agile

software projects, RE, and test and release, metrics are needed to compare the benefits of

42

agile software development to the benefits of traditional software methods (Ballou,

2008).

Complexity in agile software development. Agile software development

methods challenge the assumption that change and uncertainty are controlled by a high

degree of formality; consequently, agile software development methods are focused on

learning and innovation rather than on optimization and control (Nerur & Balijepally,

2007). Software development is frequently focused on complex problems that are

difficult to resolve. Rather than knowing the solution at the beginning of a project, the

solutions emerge as more is known about the problem space. Nerur and Balijepally

(2007) argued that multiple perspectives should be considered, assumptions should be

questioned. Conflict should be resolved through argumentation, and what if scenarios

should be used to imagine and prepare for a preferred future state.

Pelrine (2011) identified which agile software development techniques were

complex and which agile software development techniques were not complex based on

responses from over 300 individuals involved in agile software development projects.

The research participants were asked to classify the agile software project techniques

based on the Cynefin sense-making framework, which has been used to classify activities

as simple, complicated, complex, or chaotic. The research participants rated 21% of the

agile software development tasks as simple or unknown and 79% of the agile software

development tasks as complicated, complex, or chaotic.

Because the majority of agile software development tasks were considered

complicated, complex, or chaotic, Pelrine (2011) proposed that software tasks, such as

43

estimating, benefit from a probe-sense-respond model rather than from a reductionist

methodology. Pelrine claimed that “the ‘apply-inspect-adapt’ model of agile

development is a probe-sense-respond model” (p. 36), which establishes system

boundaries, determines what will work and what does not work and then adapts as more

is learned about the evolving system. Pelrine stated that a deeper understanding of the

relationship between complexity and agile software development is needed.

Sutherland et al. (2007) argued that agile software development methods are

intended to manage change rather than complexity. Process discipline is needed to

manage complexity. By using both the Capability Maturity Model – Integrated (CMMI)

developed by the Software Engineering Institute (SEI) and agile software development

methods, software teams can adapt to changing requirements and manage complexity by

using a disciplined approach to process (Glazer et al., 2008; Sutherland et al., 2007).

However, success is not guaranteed and software managers need to be aware of the risks

associated with the transition from traditional software methods to agile software

methods.

Transitioning from traditional methods to agile methods. There are multiple

agile software methods and software managers need to be aware of the strengths and

weaknesses of each agile method to select which agile methods to adopt (Qumer &

Hendersen-Sellers, 2008; Rao et al., 2011). Software managers need to aware of how

decision making can be influenced when making the transition from traditional software

methods to agile software methods (McAvoy & Butler, 2009) and software managers

also need to be aware of the physical environment, including the room layout and noise

44

(Eccles et al., 2010). Software managers need to be prepared to tailor the agile processes

to meet different needs (Clutterbuck, Rowlands, & Seamans, 2009), and to be flexible

enough to adjust to the changing requirements of the software team throughout the

transition process (Ganesh & Thangasamy, 2012).

McAvoy and Butler (2009) found that the Abilene paradox and groupthink

influenced two software teams when they were making the transition from traditional

software methods to agile software methods. Groupthink was defined as dysfunctional

consensus in which a group agrees to a solution due to the perceived influence of one or

more individuals. The Abilene paradox was defined as group decision-making based on

unanimous agreement with a proposed solution; however, all of the group members

silently disagree with the decision. Agile software development managers need to

balance team cohesion and team empowerment to avoid the pitfalls of groupthink and the

Abilene paradox (McAvoy & Butler, 2009).

Although Ionel (2009) found little empirical research on agile methodologies in

the literature, Balijepally et al. (2009) conducted a study, which compared paired

programming to individual programming on less complex tasks and more complex tasks.

Balijepally et al. found that although paired programming methods did not improve

performance, paired programming improved software quality. Although improved

software quality may result in less rework, Balijepally et al. did not equate quality to

productivity.

Based on the results of two different case studies, agile software methods were

found to improve morale, which increased team creativity, problem solving (Omar, Syed-

45

Abdullah, & Yasin, 2011) and adaptability to changing requirements (Clutterbuck et al.,

2009). Transitioning to agile software methods increased the need for communication

with the team and between the team and external entities. Agile methods, such as XP

encourage communication; however, inadequate communication was found to be at the

root of all problems.

Organizations need to select the agile methods they will use when they transition

from traditional software methods to agile software methods. Sharp, Robinson, and Petre

(2009) found those organizations that transition to agile software development methods

should consider the social and the notational effect of agile methods, such as use of story

cards and the wall. Story cards are used to document requirements and the wall is used to

display the story cards so that the work in progress is visible to the stakeholders.

Organizations that choose to use automated methods to develop and display story cards

may not benefit from the social benefits of face-to-face communication.

Rao et al. (2011) reviewed the literature on agile software development,

conducted interviews and three case studies on software organizations in India to identify

the agile software development methodologies in use and the issues experienced by these

software organizations. Rao et al. found that extreme programming (XP), dynamic

system development method (DSDM), Scrum, feature driven development (FDD), lean

software development and Crystal were discussed in the literature; however, based on

three case studies, Roa et al. were able to identify the pros and cons of XP, DSDM, and

Scrum as shown in Table 1. Rao et al. also found that communication and coordination

46

was a challenge when there was more than one agile software team or when there were

many stakeholders.

Table 1

Pros and cons of agile software development methodologies

 XP DSDM Scrum
Pros Works well for small

projects.
Technique independent
process.

Efficient use of time and
budget.

Requirements evolve over
time.

Works well for small
projects.

Requirements can be
prioritized.

Cons Does not work well
when limited to 1
developer due to pair
programming
requirements.

May be difficult to
identify all of the
software problems
because testing and
development are
conducted by the
same person.
Poor customer
collaboration.

Requires end-user
involvement, which may not
be possible on all projects.

Team dynamics not
improved if limited to
1 developer.

Poor customer
collaboration if
customer is off-site.

Note. From Rao et al. (2011)

Rao et al. (2011) identified the following benefits of transitioning from traditional

software methodology to agile methodology: “adaptability to change, short time frames

of releases, continuous feedback from customers, high-quality and bug free software” (p.

43). Although agile software development methodologies worked best for small projects,

47

Roa et al. suggested that larger projects be broken down into several smaller projects.

Zhang and Patel (n.d.) proposed that agile methodologies could be combined with model

driven development (MDD) for larger projects.

Software managers need to consider the people issues when transitioning from

traditional software methods to agile software methods, Lalsing et al. (2008) found that

there was a positive relationship between the size of the agile software teams and

productivity. Based on the analysis of three case studies, the smaller team was able to

deliver the required functionality on-time 90% of the time while the largest software team

delivered the required functionality on-time 30% of the time. Lalsing et al. argued that

managers should be aware of the exponential increase in communication channels as

team size increases when transitioning from traditional software methods to agile

software methods.

The perception in European software organizations was that some agile methods

were more useful than other agile methods and some agile practices were more useful

than other agile practices. Salo and Abrahamsson (2008) found that more European

organizations had adopted agile XP practices than Scrum practices. The XP practices of

open office space, a forty-hour work week, coding standards, continuous integration, and

collective ownership were implemented more frequently than other XP practices and the

practice of maintaining a software backlog was the most frequently implemented Scrum

practice.

Models still needed. Khan, Al-Bidewi, and Gupta (2011) claimed that agile

methodologies were developed to overcome the complexity of object-oriented

48

methodologies but agile has not successfully replaced the need for models. Khan et al.

claimed that additional research was needed to develop an object-oriented methodology

that works. Zhang and Patel (n.d.) described a Motorola case study that combined agile

methodologies with MDD to develop a real-time telecommunication system. Software is

iteratively developed in both MDD and agile methodologies. While documentation was

limited based on agile methodologies, Zhang and Patel developed MDD models before

the software was developed.

Zhang and Patel (n.d.) found that automating the software code development

process based on the MDD models improved the software quality. Agility was also

improved by streamlining the system engineering, development, and testing processes to

ensure usable code was delivered after each cycle of testing. Zhang and Patel proposed

using a combined MDD and agile methodology for large projects with multiple releases.

Requirement engineering in agile software environments. Lee and Xia (2010)

and Ramesh, Lan, and Baskerville (2010) focused on how agile software teams

developed software requirements. Lee and Xia claimed that agile software management

must determine how to balance agility. Ramesh et al. identified two risks agile software

managers must manage when developing requirements.

Lee and Xia (2010) used both quantitative and qualitative research methods to

study the relationship between agile software team autonomy and diversity and the

extensiveness of an agile software team’s response to requirement changes and the

efficiency of an agile software team’s response to requirement changes. Lee and Xia also

studied the relationship between the extensiveness of an agile software team’s response to

49

requirement changes and project cost, schedule, and functionality. Lee and Xia found

that that agile software requirement changes could have both positive and negative effects

on on-time completion and on-budget completion; therefore, Lee and Xia recommended

that agile software managers balance software team autonomy and diversity to

successfully deliver the functionality that meets the customer expectations for quality,

cost, and schedule.

Ramesh et al. (2010) conducted a qualitative research study to determine how

agile requirement engineering (RE) was conducted in practice. Ramesh et al. conducted

16 case studies and Ramesh et al. interviewed managers, project managers, developers

and others to obtain an in-depth understanding of the strengths and weaknesses of agile

RE compared to traditional RE. Ramesh et al. (2010) “identified six agile RE practices

and 7 challenges to RE” (p. 455), which were condensed into a list of nine agile RE

practices and challenges.

Ramesh et al. (2010) compared how well nine agile RE practices and challenges

mitigated risk to how well traditional RE practices mitigated risk. Three agile RE

practices mitigated risk, three agile RE practices exacerbated risk, and three agile

practices neither mitigated nor exacerbated risk. Two of the nine agile practices were

considered intractable while seven of the agile RE practices were considered tractable

(Ramesh et al., 2010). Intractable risks are risks that are difficult while tractable risks are

easy to manage.

Ramesh et al. (2010) identified two intractable risks introduced by agile RE

practices. The agile RE practice of modeling only functional requirements exacerbated

50

the risk of ignoring non-functional requirements and Ramesh et al. categorized this risk

as intractable. Although agile RE practices encouraged customer participation, in some

cases it was difficult or impossible to obtain customer concurrence and in some cases the

customers lacked the required expertise. The negative impact on agile RE would be high

if the customer participation was inadequate or if the customer lacked the required

expertise and it would be difficult to mitigate the impact of this risk; therefore, Ramesh et

al. categorized this risk as intractable. Ramesh et al. recommended that agile software

managers select the RE practices based on the software engineering environment.

Software test and release in agile software environments. Agile software

development is incrementally released which means that the software must be tested for

each cycle or iteration. Test-driven development (TDD) methods have been used to

ensure that software is tested as it is developed for each cycle or iteration. Shull et al.

(2010) found that TDD improved the mean time to fix software based on an interview

with a Microsoft manager whose teams use TDD.

 Agile software managers depend upon the software team to report the burndown

rate for each software cycle or iteration. The burndown is a measure of the work

completed during each cycle or iteration. In addition to measuring the completed work

for each iteration, Rinko-Gay (2009) recommended that agile testers report the number of

tests in scope for the current build, the cumulative number of tests passed and failed, the

cumulative number of open and closed defects and the total number of reopened defects

for each iteration. At the end of the project, agile software teams should use Pareto

51

analysis to provide in depth analysis of the defects found, when and where they were

found and the root cause for each defect (Rinko-Gay, 2009).

Smith (2011) discussed the Gartner philosophy of using agile methods to release

software code into production for cloud computing. Trust between development and

operations was defined as critical to successful software release for cloud computing.

Smith claimed that software development for cloud computing required improved

application lifecycle management (ALM), which could be accomplished by using

automated regression testing and continuous integration to release software frequently

while maintaining service levels.

Current Research in Software Development and KM

The current literature on traditional software development and KM revealed that a

KM tool could potentially benefit the software architecture definition process, the

requirement engineering process, and the software estimating process in a traditional

software development environment. Additional research is needed to determine the

applicability of the research findings on traditional software development and KM in an

agile software environment. A review of the current literature on traditional software

development and KM did reveal that it was feasible to use DDD in the form of intelligent

agents to improve defect management in a traditional software environment.

Traditional software development and KM. Bjornson and Dingsoyr (2008)

reviewed the literature from 1999 through August 2006 on software development and

knowledge management. Bjornson and Dingsoyr discussed Buono’s and Poulfelt’s

(2005) claim that KM is moving from the first generation in which knowledge was

52

managed through the use of technology to the second generation in which knowledge will

be managed through action. Knowledge that is managed through action will take into

consideration the interaction between individuals within the social setting. In Nerur and

Balijepally’s study (as cited in Bjornson & Dingsoyr, 2008) software organizations that

use traditional software development methods focus on managing explicit knowledge

while software organizations that use agile software development methods focus on

managing tacit knowledge.

Bjornson and Dingsoyr (2008) used the KM framework developed by Earl (2001),

which classified KM into seven schools to analyze the literature. The seven schools

include three technocratic schools: systems, cartographic, and engineering, one economic

school, and three behavioral schools: organizational, spatial, and strategic. Bjornson and

Dingsoyr found most of the literature on software development and KM focused on the

technocratic school and the behavioral school with little focus on the economic school

which means that the research focused on the KM processes and tools but not on

“creating revenue streams from the exploitation of knowledge and intellectual capital”

(Earl, 2001, p. 218).

Bjornson and Dingsoyr (2008) concluded that future research should provide in-

depth studies of KM in software organizations, such as ethnographic studies and future

research should focus on the schools relevant to agile software development particularly

the organizational school, the cartographic school, and the spatial school. This means

that organizations may benefit from additional research in “the creation, sharing, and the

use of knowledge as a resource” (Earl, 2001, p. 218). Software organizations may benefit

53

from additional research in how software organizations can provide a knowledge map of

the organization by identifying who knows what (Earl, 2001).

Boden, Avram, Bannon, and Wulf (2009) discussed two case studies that

illustrated how cultural and social issues affect knowledge sharing in software

development. Boden et al. proposed that traditional software development projects can

use a technocratic or behavioral approach to knowledge management; but agile software

development projects require a second-generation approach to KM because agile

software development processes focus on social interaction and customer collaboration

rather than on documentation and codification. Boden et al. found that there was less

conflict and more knowledge sharing when social capital was high and interpersonal

relationships were formed between individuals on the geographically dispersed teams.

Slaughter and Kirsch (2006) found that performance improvement increased

when knowledge transfer between individuals was frequent and directions were not used

or when knowledge transfer was infrequent and directions were made available to the

individuals to support their performance. Knowledge was transferred more frequently

when the team members were in close proximity, when they were in a hierarchical

relationship, or when they worked in different units of an organization. Directions were

used more frequently when the team members were not in close proximity, when they

were in a hierarchical relationship, or when they worked in different units of an

organization.

Traditional software architecture and KM. Abdullah, Shah, and Talib (2011a)

designed a KM architecture and a prototype tool used to create, maintain, share, and

54

distribute knowledge during the software architecture development process. The KM

architecture was based on the architecture tradeoff analysis method (ATAM), which

consists of four phases: “presentation, investigation and analysis, testing, and reporting”

(Abdullah et al., 2011a, p. 4). Research participants completed a survey after the KM

requirements were defined and after the KM tool prototype was developed to determine

how well the prototype met the research participant’s expectations. Although 80% of the

research participants accepted the KM tool, Abdullah et al. (2011a) did not describe the

survey population and additional research is needed to determine if the findings apply to

software projects using agile software methods.

Traditional software requirement engineering and KM. Jangping, Qingjing,

Dejie, and Hongbo (2010) and Jiangping, Hui, Dan and Deyi (2010) focused on how

traditional software development teams could benefit from KM to develop software

requirements. Jangping et al. proposed a KM model to improve knowledge transfer

during the software requirement development process. The results were based on the

responses from one hundred and six staff members from the Guang-dong Software

Organization to a 46-question survey. Jangping et al. found that there was a negative

relationship between knowledge transfer and the ambiguity of the knowledge and there

was a negative relationship between knowledge transfer and the systemization of the

knowledge. There was a positive relationship between knowledge transfer and trust,

technical support, incentives, willingness to transfer knowledge, capacity for absorption

and capacity of knowledge impartation. Jangping et al. controlled for the research

participants’ number of years of experience, position, and qualifications.

55

Jangping et al. (2010) proposed a model for knowledge creation during the

software requirement development process based on a review of the literature and a case

study of a New York organization. Jangping et al. found that knowledge creation during

the software requirements process benefited from a diverse project team. Subject matter

experts provided valuable information to the knowledge creation process and effective

project management and methodology contributed to the success of the knowledge

creation process during the software requirement development process at the New York

organization. Additional research is needed on KM in an agile software environment to

determine if knowledge transfer and knowledge creation are affected by the same factors

as Jangping et al. and Jiangping (2010) found in a traditional software requirement

environment.

Traditional software estimation and KM. Software organizations need to

prepare and collect software data to estimate software size, effort, cost, and schedule;

however, existing software estimating tools are inadequate for estimating 4GL software

development projects because existing software estimating tools did not adequately

account for software complexity or interaction of 4GL applications (Patil & Nageswara

Yogi, 2011). A 4GL software-estimating tool was developed and validated by Patil and

Nageswara Yogi (2011) and they concluded that their software-estimating tool more

accurately estimated the software effort than the existing software estimating tools. If

agile methodologies are used, then as claimed by Patil and Nageswara Yogi software

teams need to collect data to improve software development estimation.

56

Traditional software development and knowledge codification. Sholla and

Nazari (2011) interviewed software managers, software developers, and project managers

at four medium-sized organizations to identify KM codification success criteria. KM

codification was defined as the process of making tacit knowledge explicit and KM was

defined as active knowledge that is shared via an intranet. Sholla and Nazari identified

four success criteria software organizations need to successfully implement intranet

enabled KM codification strategies. Software organizations need to create a knowledge

sharing culture, software organizations need to maintain a consistent focus on KM, and

software organizations need to update the KM tools, as the organizational strategy and

processes change, and software organizations need to align the KM strategy with the

business goals.

Although Sholla and Nazari (2011) mentioned Smith and Farquar’s (2000) study

of KM from an AI perspective, Sholla and Nazari did not explore artificial intelligence

(AI) or the use of analytics in software development organizations. A variety of KM

tools were used to varying degrees within each organization that participated in the

research study. Organizations may benefit by implementing KM tools that focus on skill

management and people to minimize entry cost and increase visibility to KM (Sholla and

Nazari. Organizations could also benefit by tailoring KM tools to provide the knowledge

needed by team members other than management.

Agile software development and KM. Based on a review of the literature on

agile software development and knowledge management, Chan and Thong (2010) found

that little work had been done to determine the relationship between the use of agile

57

software development practices and KM. Chan and Thong gathered data from 288 agile

software developers and based on the data collected, Chan and Thong concluded that

there was a positive relationship between three agile software development practices and

KM. The three agile software practices of pair programming, collective ownership, and

coding standards positively affected the outcome of knowledge creation, knowledge

retention, and knowledge transfer in an agile software environment.

Ceschi et al. (2005) claimed that software project failure was due to issues related

to people and project management rather than technology. Software development teams

were better able to reduce the risk of project failure by using agile software development

methods rather than traditional software development methods (Ceschi et al., 2005). The

agile software development teams were better able to deliver the required functionality on

time and improve productivity by using more effective communication methods and

knowledge transfer methods than traditional software development teams.

Based on a review of the literature on agile software development and KM from

2001-2011, Neves et al. (2011) found that agile teams created knowledge by developing

working software, by responding to change, and by interacting and collaborating with

customers and team members. Although several advantages and opportunities to using

agile software development methods were identified, several weaknesses and threats to

using agile software methods were also identified. Productivity may be improved by

using agile software methods because the goal of the iterative process is to frequently

deliver working software; however, productivity may be negatively affected by the need

for more experienced team members to take the time to train less expert team members.

58

Although conflicts may occur within agile software development teams, agile

software teams have higher job satisfaction and are more motivated than traditional

software teams (Tessem & Maurer, 2007). Although tacit knowledge is created through

interaction between individuals, interaction may be difficult to facilitate on large software

projects or on projects where team members are not co-located (Ryan & O’Connor,

2009). Investments in architecture are required to enable agile software methods to work

on large software projects (Boehm et al., 2010).

Agile software development methods minimize the RE documentation developed

which may reduce the maintainability of the software products delivered (AlAli & Issa,

2011; Rubin & Rubin, 2011). Although the agile manifesto encouraged “maximizing the

amount of work not done” (Beck et al., Twelve Principles, 2001), code that cannot be

maintained may increase the overall system cost. AlAli and Issa (2011) proposed

developing reusable use cases to increase the documentation developed during each

software cycle or iteration while reducing the level of documentation effort required.

Rubin and Rubin (2011) proposed embedding knowledge gained from traditional

RE into agile software to improve the documentation needed for software maintenance.

The proposed solution combined knowledge gained from data modeling, behavior

modeling, enterprise modeling, and domain modeling while eliminating the overlap in the

various modeling approaches. The solution was a set of classes that model "actors, roles,

resources, services, goals, constraints, transitions, and states” (Rubin & Rubin, 2011, p.

125). The use of a Wiki may improve learning across agile software teams and enable

less experienced engineers to work independently (Amescua et al., 2010).

59

Levy and Hazzan (2009) claimed that knowledge management implementation

efforts encountered the same barriers as agile software development implementations.

Levy and Hazzan compared nine arguments that arise when agile software development

processes are introduced in an organization to nine arguments that arise when knowledge

management processes are introduced in an organization. Although agile software

project managers understand the importance of KM in agile software development

projects, Levy and Hazzan claimed that agile software project managers should know

how to apply knowledge management in agile software development implementations.

Levy and Hazzan (2009) recommended six KM activities that could be integrated

into agile software development processes:

1. Assign one team member to the role of knowledge manager.

2. Make KM a topic at a retrospective meeting.

3. Make KM a topic and at planning meetings.

4. Use the project board to assess the value of new knowledge.

5. Include KM metrics with the agile software project metrics.

6. Adapt the KM activities along with the agile software continuous improvement

efforts.

Mishra and Mishra (2011) reviewed the literature from 2000-2011 on global

software development (GSD). GSD projects present unique challenges for software

management due to the geographic dispersion of software teams. Mishra and Mishra

found that most of the research had been done on “project management, process

60

management, knowledge management and requirements management areas while

configuration, risk, and quality management issues” (p. 48) received limited attention.

Although only a few of the articles reviewed by Mishra and Mishra (2011)

discussed agile software methods from a GSD perspective, Mudumba and Lee (as cited in

Mishra & Mishra, 2011) found that agile methods reduced risk in GSD projects. Mishra

and Mishra also stated that KM was found to be a critical component of successful GSD.

However, Mishra and Mishra found that more than one of the articles reviewed,

recommended additional research be done to determine how to manage knowledge from

a variety of sources and formats.

Qumer and Hendersen-Sellers (2008) developed the agile adoption and

improvement model (AAIM) and the agile software solutions framework (ASSF), which

includes the Agile Toolkit. The AAIM was developed to enable managers to determine

which agile practices to implement at each stage of agile maturity. Managers select agile

practices from one of six agile stages in the AAIM, which are associated with one of

three AAIM maturity blocks. Managers select agile practices from the prompt block

when the agile transition is initiated. Managers select agile practices from the crux block

when the software organization is ready to implement the core agile practices and

managers select agile practices from the apex block when the organization is ready to

focus on quality and learning.

The ASSF was developed to provide a comprehensive framework for agile

implementation, which, in addition to people, process, and tools, included knowledge,

governance, the Agile Toolkit, and alignment with the business (Qumer & Hendersen-

61

Sellers, 2008). The Agile Toolkit was a KMS that was intended to assist managers in

their selection of the appropriate agile practices. Although Qumer and Hendersen-Sellers

(2008) claimed that agile methods could be used in large and small software projects,

Pikkarainen et al. (2008) argued that agile methods do not provide the communication

required to support complex development or larger decentralized software development.

Current Research in Software Methods and Analytics

Although research has been published on the use of analytics to improve software

development including RE, software testing, and software estimating, little research has

been published on the use of analytics to improve software development. Traditional

software methods were used to explore the use of analytics to determine which

functionality to include in an electronic game, to test software, and to estimate the

software development schedule. Agile software methods were used to explore the use of

analytics to estimate the software completion date and a DSS was developed to aid in the

selection of prioritizing requirements.

Traditional software development and analytics. Based on a research study in

electronic gaming, analytics were used to better understand user behavior (Hullett et al.,

2011). Descriptive analytics were used to analyze the usage patterns of game players.

The data revealed that some of the game content was underused. The decision was made

to remove 20% of the content in future releases and to provide feedback to the user,

which would improve their gaming experience. Hullet et al. (2011) argued that the

research in gaming applied to software development in general.

62

Siwen and Jun (2010) developed a software-testing tool using multi-agents to

extract data from unified modeling language (UML) and to develop test cases. Although

UML has successfully been used to develop test cases, the test cases could not be

extended. The multi-agent tool enabled the software testers to develop rules that enabled

the multi-agent tool to extend the test cases. Siwen and Jun concluded that their multi-

agent tool was feasible based on applying the tool to an aviation software project.

Additional research is needed to determine the feasibility of using the multi-agent tool in

an agile software environment.

Software projects that use traditional software methods rely on schedules that are

developed at the beginning of the project and are dependent upon uncertain data. Zare

and Akhaven (2009) developed a fuzzy logic algorithm to account for pessimistic

estimates, most likely estimates, and optimistic estimates. The fuzzy logic algorithm also

accounted for the probability that there would be loops in the schedule when software

developers repeated activities. Zare and Akhaven found that the fuzzy algorithm was

more accurate than the schedule, based on the critical path method (CPM), when the

scheduling methods were applied to the same software project in Iran.

Agile software development and analytics. A Bayesian network was used to

model an agile software project that used the XP method (Abouelela & Benedicenti,

2010). The model was used to estimate the completion date and the defect rate for each

software release. Abouelela and Benedicenti (2010) claimed that the model accurately

predicted the completion date for each software release based on the results of two case

studies.

63

Current Research in Software Methods, KM, and Analytics

Some research was found in the literature that discussed the potential use of

analytics and KM to improve software development in a traditional software

development environment. Abdullah, Talib, and Misran (2011b) discussed how an agent

based KMS could improve software defect management and Jiang et al. (2008)

developed a DSS that used case-based reasoning to select RE techniques. Abdullah et al.

(2011b) developed an agent based KMS to improve software defect knowledge sharing.

The KMS was based on the personal software process (PSP) and the team software

development process (TSP) framework “of forms, guidelines, and procedures” (Abdullah

et al., 2011b, p. 347) to develop the agent based KMS. The agent based KMS used four

agents: a profiling agent, a notification agent, a reminder agent, and a scheduling agent.

Twelve officers at the Malaysian Qualification Agency (MQA) information

technology department completed a preliminary survey on software defect management

processes and the knowledge needed to manage defects. After the agent based KMS was

developed, the 12 officers completed a final survey. Based on the final survey results,

Abdullah et al. (2011b) reported that the agent based KMS correctly categorized the

software defects, and the notification, reminder, and scheduling agents were effective;

however, 10% of the survey respondents rated the accuracy of the agent based KMS as

poor.

The effectiveness of the agent based KMS developed by Abdullah et al. (2011b)

was not evaluated within the context of a software development project. The agent-based

KMS was not designed for use in an agile software development environment.

64

Additional research could determine the effectiveness of the agent based KMS developed

by Abdullah et al. (2011b) within a traditional software development environment and

additional research could determine how to develop an agent based KMS for use within

an agile software development environment.

Jiang et al.(2008) argued that software teams do not have adequate knowledge of all

of the available RE techniques and the strengths and weaknesses of each technique when

they are selecting RE techniques for software projects. Three case studies were used to

evaluate the use of a prototype DSS to select RE techniques to use for a software project.

Case based reasoning (CBR), frame-based-reasoning, and relational reasoning was used

to develop the DSS.

Although Jiang et al. (2008) found that the prototype DSS did improve the

understandability of the requirements and fewer requirement changes were needed, Jiang

et al. stated that additional research was needed to generalize the findings beyond the

case studies included in their research. The prototype DSS included 46 RE techniques;

however, additional techniques may be added in the future. Additional rules may also be

added to identify additional situations in which each technique would work well and

situations in which each technique would not work well. Additional rules may also be

added to identify potential cost reductions and user-defined rules, which define

constraints, based on the project characteristics.

Research Methods in the Current Literature

The research methods used in the current literature are discussed in this section of

the research proposal. The research methods used to study analytics are discussed

65

followed by a discussion of the research methods used to study software development in

traditional and agile software development environments. The research methods used to

study KM and KM in traditional and agile software environments are discussed. This

section of the research proposal concludes with a discussion of the research methods used

to study analytics in traditional and agile software environments followed by a discussion

of the research methods used to study the use of analytics and KM in a traditional

software environment.

Analytics research methods. Based on a review of the current literature, two

authors used qualitative research methods while the remaining authors used quantitative

research methods to study analytics. Qualitative research methods were used to answer

questions, such as, what framework can be used to discover BI metrics (Ferrand et al.,

2010) and what are BI CSFs (Yeoh & Koronios, 2010)? Quantitative research methods

were used to answer questions, such as, does DDD improve organizational productivity

and profitability (Brynjolfsson et al., 2011), and how do CTOs consider, weigh, and

integrate data (Ow & Morris, 2010)?

Gartner’s proprietary research methods were used to answer questions, such as,

what are the capabilities of IBMs Watson (Adrian & Genovese, 2011), what are the

trends in BI (Gassman et al., 2011), and how will analytic applications evolve over time

(Herschel, 2011)? Chandler (2011) discussed how analytics would be used to improve

performance management and Schlegel et al. (2009) discussed how CDM would increase

in use for non-routine complex decisions. Several authors conducted literature reviews,

book reviews, document analyses, or system analyses to answer questions, such as, what

66

is the state of BI in Romania (Ivancenco et al., 2010), and what are the trends in HR

analytics (Bassi, 2011)?

Traditional software development research methods. Emam and Koru (2008)

improved upon the research on software project success conducted by the Standish Group

by describing their research methods, which included quantitative research methods. The

claim that the software project failure rate had decreased since 2008 and software

development productivity had not kept pace with the advancements in hardware was

based on a review of the literature (Fitzgerald, 2012). Although software development

productivity improved, Fitzgerald (2012) argued that software development productivity

has not kept pace with hardware improvements that will enable the number of hardware

devices connected to the Internet to increase from 35 billion in 2010 to over 100 billion

by 2020.

Quantitative research methods were used to determine that productivity increased

when traditional software teams used 4G languages, as the development platform

complexity increased, and as team size increased (Rodger et al., 2011). Quantitative

research methods were also used to determine if the order in which people, process, and

tools were implemented affected software project success (Wadhwa & Mittra, n.d.).

Although the order in which people, process, and tools were implemented did not affect

software project success, software project success was affected by how closely people,

process, and tools were aligned with the strategic goals of the organization.

Dubey (2010), Hewagamage and Hewagamage (2011), and Sudhakar et al. (2010)

published technical papers on traditional software methods. CASE tools can be used to

67

improve software development productivity; consequently, Dubey categorized CASE

tools into 18 categories so that managers could make more informed decisions about the

use of CASE tools. Dubey argued that additional CASE tools are needed to automate

each phase of the software development process.

Hewagamage and Hewagamage (2011) claimed that the terminology used in

software engineering was inconsistent based on a review of the literature on CMMI,

PMBOK, PRINCE2, ITIL, and MSF. Software project success may improve if software

teams used common terminology and a common framework that defines the relationship

between the terms. Hewagamage and Hewagamage proposed a common software

development framework; however, additional research is needed to determine the

feasibility of their hypothesis that their proposed software development framework could

serves as a common framework and that their common framework would improve

software project success.

One question that needs to be answered when discussing software project success

is, how is success measured? Sudhakar et al. (2010) attempted to answer that question by

reviewing the literature to determine how software development productivity had been

defined. Sudhakar et al. found that lines-of-code (LOC) was the most commonly used

measure of productivity, although more than 10 definitions of productivity were found in

the literature. Productivity can be improved by reducing interruptions and by improving

the quality of the software produced and software developers can use historical data to

improve software estimation and to reduce defects (Elminir et al., 2009).

68

Agile software development research methods. Clutterbuck et al. (2009),

Ganesh and Thangasamy (2012), Layman et al. (2006), McAvoy and Butler (2009),

Omar et al. (2011), Qumer and Henderson-Sellers (2008), Ramesh et al. (2010), Sharp et

al. (2009), and Zhang and Patel (n.d.) used qualitative research methods to study agile

software methods. Clutterbuck et al. (2009) observed how the individuals on a software

team consisting of seven members tailored the agile Scrum and XP methods to develop a

web application. Although key information was shared between all stakeholders when

agile methods were used, the benefits of using agile methods were dependent upon the

skills and experience of the software team members.

Zhang and Patel (n.d.) described how MDD was combined with agile methods to

improve software development productivity in a telecommunications project. McAvoy

and Butler (2009) explored negative influences on decision making in agile software

environments, Ramesh et al. (2010) explored the risks and rewards of agile software

practices during the requirement engineering process. Agile software teams must adjust

to many process and cultural changes as they transition from traditional software methods

to agile methods (Ganesh & Thangasamy, 2012). By remaining flexible, four software

teams were able to overcome some of the difficulties they encountered when they

transitioned from traditional software methods to agile software methods (Omar et al.,

2011).

Qualitative research methods were used to determine if the software quality and

productivity were better than industry averages when agile software methods were used

(Layman et al., 2006). Although Layman et al. found that quality and productivity were

69

better than industry averages; Layman et al. discussed how “availability of data, tool

support, cooperative personnel, and project status” (p. 10) influences the outcome of case

studies. Consequently, reliability and validity can be improved if researchers account for

these factors when conducting case studies.

Qumer and Hendersen-Sellers (2008) used qualitative research methods to test the

feasibility of the agile model and framework they developed to assist organizations that

are transitioning from traditional software methods to agile methods. Based on the

results of two case studies, Qumer and Hendersen-Sellers concluded that the AAIM and

the ASSF, which included a KMS, were effective in assisting managers to gradually

introduce agile software practices. Although Rao et al. (2011) claimed that agile methods

are effective in small organizations; Qumer and Hendersen-Sellers argued that large

organizations might successfully transition to agile methods by using the AAIM and

ASSF, which enables management to gradually introduce agile practices over time.

Sharp et al. (2009) conducted a qualitative research study of the use of two

physical artifacts in agile software development, the story cards and the wall. Story cards

are used to document requirements when the agile Scrum method is used. The story

cards are placed on a wall, which is used to communicate progress. The story cards and

the wall serve a social and a notational purpose; therefore, teams who are considering the

use of automated story cards and the wall need to consider the potential negative social

effect of limiting or reducing face to face communication.

Ballou (2008), Balijepally et al. (2009), Pelrine (2011), and Salo and

Abrahamsson (2008) used quantitative research methods to study agile software methods.

70

Ballou discussed a research study conducted by QSM Associates on behalf of one of the

agile tool vendor companies. QSMA compared the software project results from 29 agile

software projects to the results from 7,500 traditional software projects. The agile

software projects were delivered 37% faster than the average traditional software project

and the agile project teams were 16% more productive than the average traditional

software team.

Salo and Abrahamsson (2008) used quantitative research methods and surveyed

team members from 35 projects in 13 organizations in eight European countries on the

use of agile XP methods and Scrum methods. Although Salo and Abrahamsson found

that XP was used more than Scrum, the research study did not explain why the software

organizations used XP methods more than Scrum methods. The least used XP practices

were TDD, pair programming, shared code ownership, and on-site customer. The most

commonly used Scrum practice was the requirement backlog; however, the research

study did not explain why the European software organizations chose to use some agile

practices more than other agile practices.

Based on the results of a laboratory experiment, Balijepally et al. (2009)

concluded that software developers who use agile XP practice of pair programming did

not outperform software developers who did not use pair programming; however, the

software developers who used pair programming were more satisfied and more confident

than the software developers who do not use pair programming. Although Pelrine (2011)

found that 79% of the agile software development tasks were complicated, complex,

chaotic, Balijepally et al. found no difference between the performance of the software

71

developers who used pair programming and those who did not use pair programming

based on task complexity.

Eccles et al. (2010), Lalsing et al. (2008), Lee and Xia (2010), Rao et al. (2011),

and Smith (2011) used qualitative and quantitative research methods to study agile

software practices. Smith claimed software development and operations should work

together to focus on the business outcomes rather than on process compliance. Eccles et

al. found that software team productivity can be improved by locating agile software

development teams in the same location although collocated teams may experience more

interruptions. Rao et al. (2011) compared the benefits of three agile software

development methods, XP, DCDM, and Scrum to traditional software methods and Lee

and Xia studied the effect of software team response extensiveness, software team

response efficiency, software team autonomy, and software team diversity on software

project on-time completion, on-budget completion, and software functionality. Based on

an analysis of the project budgets, schedules, and defects, and based on observation of

three agile software teams of different sizes, Lalsing et al. claimed that agile methods

work best for smaller software teams.

Glazer et al. (2011), Ionel (2009), Khan et al. (2011), Nerur and Balijepally

(2007), Rinko-Gay (2009), Shull et al. (2010), and Sutherland et al. (2007) published

technical papers on agile software methods. Glazer et al. argued that software

development is dependent upon people, process, and technology. Consequently, Glazer

et al. argued that software projects could benefit from both agile software methods, which

72

focus on people and SEI CMMI methods which focus on process to improve software

quality and productivity.

Based on a review of the literature from 1998-2009 on agile software methods,

Ionel (2009) stated that additional empirical research was needed to determine how well

agile methods improved software quality and productivity. The research on agile

software methods primarily consisted of case studies and anecdotal evidence. Khan et al.

(2011) argued that although agile methods were developed to improve productivity,

additional research is needed to systematically develop methods and technologies that are

scalable and incorporate processes that are understandable.

KM research methods. Mansour et al. (2011) and Molaei (2010) published

technical papers on KM. KM is needed to enable organizations to innovate, compete,

and improve productivity (Mansour et al., 2011). Organizations use knowledge as an

input to production processes, to control production processes, to process knowledge, and

to design processes. Because knowledge is a critical component of organizational

success, Mansour et al. developed a general KM framework that consolidated 16 KM

processes described in the literature and because small organizations need to find ways to

share knowledge with similar organizations, Molaei developed a KM model. However,

additional research is needed to validate the effectiveness of the proposed KM framework

developed by Mansour et al. and the KM model developed by Molaei.

 Traditional software development and KM research methods. Quantitative

research methods were used to determine that trust improved knowledge transfer in a

Software Process Improvement (SPI) team (Jangping et al., 2010), and to determine how

73

KM should be used to manage knowledge during the software architecture development

process. Qualitative research methods were used to evaluate the use of Churchman’s

inquiry systems to develop a KMS (Linden, 2011) and to determine the effectiveness of

knowledge transfer methods in a traditional software development environment

(Slaughter & Kirsch, 2006). Two authors used both qualitative and quantitative research

methods to study software and KM to answer questions, such as, what influences

knowledge creation in the software requirements process (Jiangping et al., 2010), what

success criteria can software organizations use for KM codification initiatives (Sholla &

Nazari, 2010).

Agile software development and KM research methods. Quantitative and

qualitative research methods were used to determine how to measure team knowledge

sharing in an agile software development environment (Ryan & O’Connor, 2009). The

Team Tacit Knowledge Measure (TTKM) was developed and validated; however, Ryan

and O’Connor (2009) found that although the TTKM could be used to measure

effectiveness, the TTKM could not be used to measure team efficiency. Team

effectiveness measured how well the team interacted and met the project goals and

objectives and efficiency measured how well the team adhered to the project budget and

schedule.

Boehm et al. (2010) also use both qualitative and quantitative research methods to

study KM and agile methods. Boehm et al. claimed that approximately 5% of all

software projects were large. Large software projects have over 25 team members and if

agile software methods are used on large software projects, project success requires that

74

both architecture and agility be adequately addressed. The appropriate mix of agile and

architected methods is dependent upon “the system’s size, criticality, and requirements

volatility” (Boehm et al., 2010, p. 3).

Quantitative research methods were used to develop the Incremental Commitment

Model (ICM), which Boehm et al. (2010) developed to enable managers to determine the

appropriate mix of agile and architected methods to use for large software projects.

Based on the results of five case studies, the ICM enabled managers to select the

appropriate mix of architected and agile practices to use. Boehm et al. stated that the

criteria for selecting the appropriate mix of agile and architected practices will continue

to evolve and additional research will be needed to mature the ICM.

Based on a qualitative research study, which compared communication between

two software teams that used agile XP and Scrum practices, such as, daily meetings and

open office space, agile practices improved internal and external communication

(Pikkarainen et al., 2008). The knowledge sharing and transfer methods used to develop

requirements were insufficient when the number of requirements was large. Pikkarainen

et al. recommended that traditional methods might be needed to manage knowledge on

larger software projects.

Qualitative research methods were also used to describe the cultural influences

that affect KM in global software engineering environments including agile software

development environments (Boden et al., 2009). Rubin and Rubin (2011) used

qualitative research methods to validate their proposed agile documentation process and

Tessem and Maurer (2007) used qualitative research methods to determine if agile

75

methods increased job satisfaction and motivation. Although agile methods favor

working software over documentation, Rubin and Rubin argued that the lack of

documentation might increase the dependency on collaboration between stakeholders and

increase software maintenance complexity. Although Rubin and Rubin described how

documentation could be developed on an agile software project, additional research is

needed to determine the feasibility and generalizability of the proposed agile

documentation methods. Additional research is also needed to determine if the findings

that agile methods increase job satisfaction and motivation are generalizable beyond the

case study conducted by Tessem and Maurer.

Quantitative research methods were used to determine the feasibility of reusable

use cases in agile software development and although a catalogue of use cases was

developed, AlAli and Issa (2011) did not refer to the use case repository as a KMS.

Based on six case studies, AlAli and Issa concluded that documentation can be

developed when agile software methods are used. The use case catalogue saved time and

improved the completeness of the documentation.

Knowledge transfer and sharing was improved when agile software developers

had access to the agile processes on a Wiki during the software development process

(Amescua et al., 2010). Quantitative research methods were used to test the hypothesis

that a KMS would improve learning in an agile software environment. The Wiki- based

KMS enabled the junior engineers to work independently and agile software engineers to

learn the agile software development process without formal training.

76

Quantitative research methods were also used to determine if agile software

methods reduced the risk of software project failure. A quantitative research study was

conducted to answer the question, do the agile practices of pair programming, collective

ownership, and coding standards positively affect the KM outcomes of knowledge

creation, knowledge retention, and knowledge transfer (Chan & Thong, 2010)? Ceschi et

al. (2005) compared the survey results of 20 agile software managers to the survey results

of 20 traditional software managers to determine if agile methods improved project

management practices. The communication practices in agile methods improved

knowledge transfer, which reduced the risk of project failure.

Bjornson and Dingsoyr (2008) and Mishra and Mishra (2011) reviewed the

literature on agile software and KM to make recommendations for future research on

agile software engineering and KM. Levy and Hazzan (2009) proposed a definition for

agile KM based on a review of the literature. Neves et al. (2011) conducted a systematic

literature review to determine how agile software teams were affected by knowledge

creation and sharing.

Traditional software development and analytics research methods. Hullett et

al. (2011) and Siwen and Jun (2010) used qualitative research methods to study the use of

analytics in traditional software development environments. Hullet et al. used descriptive

analytics to track user interaction with an electronic game. Siwen and Jun used

prescriptive analytics to generate test data from UML. Zare and Akhaven (2009) used

quantitative research methods to study the use of prescriptive analytics to improve the

accuracy of software scheduling.

77

Analytics and KM research methods. Smith and Farquar (2000) proposed in

their qualitative research study on KM that analytics could be used to improve KM and

Lingling et al. (2009) proposed in their technical paper that data mined from large data

bases needed to be transformed to become actionable knowledge. Additional research is

needed to determine how analytics could be used to improve KM in an agile software

environment and to determine how to use analytics to improve software development

productivity in an agile software environment.

Agile software development and analytics research methods. Abouelela and

Benedicenti (2010) used qualitative research methods to study the use of analytics to

improve agile software methods. A Bayesian network was used to predict the software

defect rate of projects using agile XP methods. Although this study demonstrates the

potential use of analytics to improve software development in agile environments,

additional research is needed to generalize the findings of this study beyond the cases

under study and to measure the impact on software development productivity.

Traditional software development, analytics, and KM research methods.

Abdullah et al. (2011b) conducted a research study on analytics, in the form of intelligent

agents, and KM using both qualitative and quantitative research methods to manage

defects in a traditional software development environment and Jiang et al. (2008) used

qualitative research methods to validate the DSS they developed to enable managers to

select RE techniques for “requirements elicitation, requirements analysis & negotiation,

requirements documentation, and requirements validation” (p. 118). The DSS used case-

based reasoning to prescribe the appropriate RE techniques. Although Jiang et al. found

78

that the DSS was affective when it was applied in one case study, Jiang et al. stated that

the RE technique DSS was a prototype and additional research was needed to validate

future enhancements to the RE technique DSS.

Research Methods for Research

Qualitative research methods were used for the research study on management’s

understanding of DDD as a tool to improve software development productivity.

Although both qualitative and quantitative research methods were used to study

traditional software development, agile software development, traditional software

development and KM, and agile software development and KM, quantitative research

methods were predominantly used to study analytics. Few research studies were found

on the use of analytics on software development or on the use of analytics and KM on

software development. Organizations need to define DDD within the context of the

problem (Herschel et al. 2010; Ferrand et al., 2010; Yeoh & Koronios, 2010); therefore,

the qualitative research study on software management’s understanding of DDD is

intended to fill this gap in the literature by exploring the meaning of DDD within an agile

software development environment.

Based on a review of the literature, the research on the use of DDD as a tool to

improve software development productivity is nascent. Patton (2002) stated that it is

appropriate to use qualitative research methods when more needs to be known about a

topic. More needs to be known about DDD; consequently, qualitative research methods

were used for a research study on software management’s understanding of DDD as a

tool to improve software development productivity in an agile software environment.

79

Qualitative research may provide a better understanding of how software managers

consider, weigh, and integrate data for decision-making and qualitative research may

provide additional information on the meaning of data and analytics to improve software

development productivity.

Research Approaches in the Current Literature

 Based on a review of the current literature, case study was the predominant

qualitative research approach used to study traditional software development, Agile

software development, traditional software development and KM, and Agile software

development and KM. According to Creswell (2007) the case study approach is used to

describe a bounded system that attempts to resolve a problem. Ferrand et al. (2010) and

Yeoh and Koronios (2010) used the case study approach to study analytics. Ferrand et al.

focused on problems related to healthcare safety in Canadian hospitals and Yeoh and

Koronios focused on problems related to five large data warehouse implementations.

 One researcher used an ethnographic approach to study the role of artifacts in

agile software development (Sharp et al., 2009) while survey was the predominant

quantitative research approach used to study analytics. Although few research studies

were found on the use of data, analytics, and KM to improve software development

productivity, Abdullah et al. (2011b) used both interviews and surveys to study the use of

an agent based KMS to reduce software defects in a traditional software environment.

Additional research is needed to explore the use of data, analytics, and KM in an agile

software environment.

80

Research Approach for Used for this Research

The qualitative research approach used for the research study on software

management’s understanding of DDD is a phenomenological approach. Creswell (2007)

noted phenomenological research “seeks to understand the meaning of experiences of

individuals about this phenomenon” (p. 94). A review of the literature revealed the need

for additional research into the meaning of DDD and the related topics of BI, AI,

business analytics, data mining, knowledge management, and entity resolution and

analysis within the context of the problem (Adrian & Genovese, 2011; Herschel, 2011;

Lingling et al., 2009; Yeoh & Koronios, 2010).

According to Patton (2002) there is a difference between phenomenological

inquiry and a phenomenological research approach. Phenomenological inquiry is a

worldview that is focused on the shared reality of individuals while the

phenomenological research approach is a study that describes what individuals

experience and how they experience what they experience. Although Smith and Farquar

(2000) recommended that AI be used to improve KM and Abdullah et al. (2011b)

determined that intelligent agents could improve software defect management in a

traditional software development environment, a better understanding of the phenomenon

of DDD within an agile software environment is needed.

The research participants were selected based on their familiarity with agile

software development methods, their experience as software managers, project managers,

and agile coaches, and their interest in participating in the research study. According to

Nerur and Balijepally (2007) agile software development methods are focused on

81

learning and innovation rather than on optimization and control. Just as Linden et al.

(2007) recommended the use of Churchman’s inquiry systems to design and develop

information systems in complex environments, agile software development methodology

was developed to improve productivity in complex environments.

Research Process Used for this Research

The qualitative research process planned for this research is the IPA research

process described by Smith et al. (2009). Although Smith et al. described a series of

steps; the research process will remain flexible in keeping with their guidance. The data

will be analyzed as it is collected to identify clusters of meaning. The IPA process is

discussed in more detail in Chapter 3.

Summary and Conclusions

The software project failure rate needs to be reduced (Emam & Koru, 2008) and

although the software project failure rate has decreased since 2008, software development

productivity has not kept pace with hardware advancements (Fitzgerald, 2012). Agile

software methods were developed to reduce the software project failure rate and (Rao et

al., 2011) and to improve productivity (Schwaber, 1995). Although agile methods work

best for smaller projects, software projects can be broken up into smaller units or

combined with other methods like MDD for larger projects (Zhang & Patel, n.d.).

Brynjolfsson et al. (2011) found that DDD improved organizational output and

productivity and although DDD was defined as data and business analytics; multiple

definitions for analytics were found in the literature. Organizations need to define

analytics and the scope of any initiative (Salam & Cearley, 2012). Based on a review of

82

the literature, the meaning of DDD within an agile software environment has not been

defined and few research studies have explored the use of DDD as a tool to improve

software development productivity.

Slaughter and Kirsch (2006) found that knowledge transfer improved productivity

in a traditional software development environment and although agile methods may

increase knowledge creation, productivity may be negatively impacted when more

experienced software developers have to take time to train less experienced software

developers (Neves et al., 2011). KM may improve productivity when agile software

teams work in the same location (Pikkarainen et al., 2008), when agile software teams

use a WIKI to share knowledge (Amescua et al., 2010), and when agile software teams

use reusable use cases (AlaAli & Issa, 2011). Tessem and Mauer (2007) claimed that

Agile methods lead to increased job satisfaction which results in increased productivity

and although Abdullah et al. (2011b) found that the use of KM and analytics improved

defect management in a traditional software environment, no research was found on the

use of KM and analytics in an agile software environment.

Additional research is needed to determine if knowledge creation, accumulation,

retention, and transfer may improve decision making in an agile software environment

and to determine how the improved decision-making results in improved productivity.

The qualitative research study was intended to explore the use of DDD, which includes

data, analytics, and KM, as a tool to improve productivity in an agile software

environment. A better understanding of the phenomenon of DDD within an agile

software environment may enable software teams to brainstorm ways to use DDD as a

83

tool to improve software development productivity. The research methodology and

procedures for the qualitative research study are discussed in Chapter 3.

84

Chapter 3: Research Method

The problem researched in this dissertation was the limited information about

software managers’ experiences with DDD in agile software organizations as a tool to

improve software development productivity. The purpose for this research was to better

understand software manager’s attitudes toward the use of DDD as a tool to improve

software development productivity, to better understand how DDD is currently used in an

agile software environment, and how DDD could be used in an agile software

environment to improve software development productivity.

Although software development productivity has improved, software

development productivity needs to continue to improve (Emam & Koru, 2008). Global

competition and advances in hardware have increased the opportunities and the

challenges for software development organizations and the software organizations that

can take advantage of hardware advances and bring products to market quickly will be

more likely to survive and thrive (Fitzgerald, 2012). According to Brynjolfsson et al.

(2011) productivity may be improved if organizations use DDD; however, organizations,

including software organizations, need to define DDD within their own context, and

explore how they can use DDD to improve productivity (Chandler et al., 2011; Ferrand et

al., 2010; Herschel et al., 2010; Rajteric, 2010; Yeoh & Koronios, 2010).

The design of a qualitative research study is described in this chapter as well as

the rationale for selecting the qualitative research approach that was used to understand

the meaning of DDD in an agile software environment. The role of the researcher is

described, the research setting will be described, and the research sampling methods is

85

described. This chapter also covers the measures used to increase trust between the

researcher and the research participants.

Research Design and Rationale

The research design should be based on the research questions rather than on the

familiarity of the researcher with a research approach. The research questions along with

the central concept of the research study are discussed. The rationale for a

phenomenological qualitative study is provided based on a review of the research

methods and approaches historically used to answer similar questions.

Research Questions

The problem researched in this dissertation was the limited information about

software managers’ experiences with DDD in agile software organizations as a tool to

improve software development productivity; therefore, qualitative research methods were

used, including in depth interviews. The research schedule used to conduct the

interviews was derived from these research questions. The following four questions were

formulated for this research study:

1. What do software managers in agile software environments think about the

use of DDD to improve software development productivity?

2. How do software managers in agile software environments currently use

descriptive analytics, diagnostic analytics, prescriptive analytics, and

predictive analytics, or knowledge creation, retention, accumulation, and

transfer to improve software development productivity?

86

3. How do software managers in agile software environments think descriptive

analytics, diagnostic analytics, prescriptive analytics, and predictive analytics,

or knowledge creation, retention, accumulation, and transfer could be used to

improve software development productivity?

4. What obstacles do software managers in agile software environments think

their organization need to overcome to improve software development

productivity?

Central Concept

The central concept of the research study was software development productivity.

According to the CMMI (2010), productivity may be improved if organizations define

processes, establish process improvement goals, and measure the outcomes.

Organizations need to train people to use procedures and methods that are intended to

achieve the process improvement goals and organizations need to provide people with

tools and equipment that will enable the people to achieve the desired outcomes to

improve productivity.

Agile software development methods, such as Scrum, are software development

methods that are intended to improved productivity. Organizations have used DDD as a

tool to improve productivity; however, more knowledge about DDD as a tool is needed to

improve software development in an agile software environment. This research study

was intended to explore the meaning of DDD in an agile software development

environment and to identify how DDD can be used to improve software development

productivity.

87

Research Tradition

Quantitative research methods were developed to test hypotheses (Chen, 1998)

while qualitative research methods were developed to “identify the (socially constructed)

patterns and regularities in the world” (Moses & Knutsen, 2007, p. 192). Quantitative

research methods are based on a positivist view of the world while qualitative research

methods are based on a non-positivist view of the world. The positivist view of the world

assumes that the world is governed by rules and the purpose for research is to discover

the rules, patterns, and regularities that make the world work. The non-positivist or

constructivist worldview is that reality is subjective and each individual creates his or her

own reality.

Moses and Knutsen (2007) claimed that there is a hierarchy of quantitative

research methods, which are based on the positivist or naturalist worldview. Experiments

are at the top of the hierarchy followed by nonexperimental methods, such as, statistics,

comparison, and case study. The purpose for experimental research methods is to explain

cause and effect by testing hypotheses. Experimentation requires the researcher to

deliberately manipulate the variables; however, it is not always practical, ethical, or

desirable to conduct an experiment (Moses & Knutsen, 2007). Nonexperimental methods

include statistics and comparative methods. Comparative methods are intended to

identify causal relationships while statistics are intended to identify the rules, patterns,

and regularities in nature (Sullivan, 2001).

Although Maxwell (2005), Miles and Huberman (1994) and Patton (2002)

claimed that a variety of approaches to qualitative research have been described in the

88

literature, Creswell (2007) described five approaches to qualitative research, which

encompass the primary approaches to qualitative research. According to Moses and

Knutsen (2007) there is no hierarchy to the approaches to qualitative research. The five

approaches to qualitative research described by Creswell include: narrative research,

phenomenology, grounded theory, ethnography, and case study.

The researcher should select the narrative approach to qualitative research when

the purpose for the research is to describe chronological events, happenings, or the stories

of a single individual, such as a biographical account of an individual’s lived experiences.

The phenomenological approach to qualitative research should be selected when the

purpose for the research is to describe the lived experiences of several individuals with a

phenomenon. The researcher should select the grounded theory approach to qualitative

research when the research is intended to result in a theory. The researcher should select

the ethnographic approach to qualitative research when the research is intended to

improve the understanding of the research participant’s culture and the researcher should

select the case study approach to qualitative research when the purpose for the research is

to study one or more groups to better understand an issue or a problem (Creswell, 2007).

Rationale

The purpose of this phenomenological study was to explore the lived experiences

of software managers’ use of DDD in agile software organizations as a tool to improve

software development productivity rather than to “precisely state theories and derive

testable, quantitative predictions from them” (Sullivan, 2001, p. 20); therefore, qualitative

research methods were used for the research study rather than quantitative research

89

methods or mixed methods. Quantitative research methods may be used when enough

information is known about a phenomenon; however, based on a review of the literature,

more needs to be known about the phenomenon of DDD as a tool to improve software

development productivity in an agile software environment. According to Patton (2002)

“qualitative methods facilitate study of issues in depths and detail” (p. 14) and the intent

of the research study was to gain an in depth understanding of software management’s

perspectives on DDD.

 More needs to be known about the use of DDD as a tool to improve decision

making in agile software environments before a theory can be generated as to how DDD

could be used to improve software development productivity; therefore, the research

study did not use the grounded theory approach. The ethnographic approach was not

used for the research study because there was no intent to understand the culture of agile

software managers or agile software development teams and the case study approach was

not used because the focus of the study was to explore potential solutions to improve

software development productivity rather than to better understand problems or issues

within agile software development teams. The narrative research approach was not used

because the purpose for the research study was to understand the lived experiences of

several individuals rather than to describe the history of a single individual.

The phenomenological approach to qualitative research was used for the research

study. The purpose for the research was to describe the lived experiences of several

software managers, project managers, and agile coaches with the phenomenon of DDD as

a tool to improve software development productivity. An assumption was that software

90

managers understand their own experiences with DDD and it was anticipated that the

meaning of DDD in the software environment would emerge by exploring software

management understanding of DDD.

Role of the Researcher

According to Patton (2002) the role of the researcher in qualitative research

affects the outcome. When the researcher acts as a participant observer the data collected

is affected by the researcher’s point of view and when the research acts as an onlooker

observer, the data collected is affected by the act of the researcher observing. Although

the degree to which a qualitative researcher participates in the research may vary, the

qualitative research must balance observation with reflection and involvement with

detachment to ensure that the effect on the data collected is managed along with the data

that is collected (Patton, 2002).

Researcher Role

As the principle researcher, my role in the qualitative research study was

predominantly as an observer. However, as an observer, I needed to balance observation

with reflection and involvement with detachment as recommended by Patton (2002). I

needed to play a dual role as observer of the research participants and observer of the

research participants who are observing the phenomenon of DDD as a tool to improve

software development productivity (Smith et al., 2010).

Relationships

Through my efforts to become a Certified Scrum Master (CSM), through my

attendance at local Scrum gatherings, and through my networking efforts, I have formed

91

professional relationships with agile software managers, agile project managers, and agile

coaches. The research participants were selected from the agile software development

community based on their willingness to participate in this research study and on the

demographic information they provided. The research participants were provided with

information about the nature of the study to be done and I communicated with the

potential research participants to obtain their agreement to participate in the research

study.

Management of Bias / Relationships

Bias was managed by ensuring that each research participant was aware that

participation in the research study was voluntary and that they may opt out of the

research study at any time. Although I attend the Scrum gatherings, my role has been

limited to that of an attendee and not as a presenter in order to avoid researcher bias. I

am also not employed by any of the companies represented by the Scrum community.

Other Ethical Issues

Although the research participants were given a $10 gift card as a thank you for

their participation in the research study, their participation was voluntary. The research

participants were asked to sign an informed consent form, as shown in Appendix C if

they agreed to participate in the research. The purpose for the research was explained to

the research participants and they were assured that their participation and responses

would remain confidential.

92

Methodology

The research methodology used to explore the meaning of the phenomenon of

DDD as a tool to improve software development productivity in an agile software

environment is discussed in this section of the proposal. The strategy used to select the

research participants is discussed, as well the procedures for recruiting the research

participants. The data collection instrumentation and the data analysis plan are also

discussed.

Participant Selection Logic

A description of the research participants and the process used to select the

research participants is described in this section of the proposal. The population from

which the research participants were selected is described as well as the selection strategy

and the criterion used to select the research participants. The relationship between the

researcher and the research participants is discussed as well as the number of research

participants.

Population. The population for this research study was the agile software

development community. The goal was to understand their lived experiences. The

research participants were selected based on their use and understanding of Scrum

software development methods.

Software teams who use Scrum software development methods all share a

common interest in the use of agile software development methods, which focus on

providing software that improves customer value. Agile software development methods

encourage decision making by the people who know the most about the situation, face-to-

93

face communication to improve knowledge sharing, and continuous improvement. The

agile software development community consists of software managers, project managers,

agile coaches, business analysts, and software developers who are employed by large and

small companies.

Sampling Strategy. There are three strategies for determining a sample size:

probability sampling, convenience sampling, and purposeful selection (Maxwell, 2005).

Probability sampling and convenience sampling are primarily associated with

quantitative research while purposeful selection is primarily associated with qualitative

research. The purposeful snowball sampling strategy is used in qualitative research

because the research participants are expected to have the background and experience to

inform the research study (Creswell, 2007). A purposeful snowball or chain sampling

strategy was used to determine which members of the agile software development

community to interview.

Selection Criteria. The research participants were selected based on their

familiarity with agile software development methods, their experience as agile software

managers, agile project managers, and agile coaches, and their interest in participating in

the research study. Initial contact was made with an agile software manager, an agile

project manager, and a Scrum coach through their Linkedin.com association. I included

an invitation to participate in this research study (see Appendix D) along with a letter of

informed consent (see Appendix C). The research participants were asked to recommend

one or two other members of the agile software development community who meet the

selection criteria. I contacted the potential research participants and in addition to

94

determining if they were willing to participate in the research, I asked the potential

candidates to recommend potential research participants based on the selection criteria.

How Participants are Known. I have been able to establish professional

relationships within the agile software development community through my efforts to

become a CSM, through my networking efforts, and through my attendance at local

Scrum gatherings. I trusted that the members of the agile software development

community would recommend research participants who meet the selection criteria. I

was also be able to determine the qualifications of the research participants by collecting

demographic data that includes their current role, the number of years of experience with

agile methods, and the size of the projects they manage.

Number of Participants / Cases and Rationale. Sample size refers to the

number of participants, events, processes and locations in a research study (Maxwell,

2005). The sample size and the process used to select the research participants can affect

the reliability, validity, and generalizability of the research findings. The sample size for

the research study is based on the IPA, which recommended that between 4 and 10 hours

of interviews be conducted for a Ph.D. study and that selecting participants from different

user groups would enable the researcher to explore the phenomenon under study from

multiple perspectives (Smith et al., 2009). The purpose for the qualitative research study

is to better understand the phenomenon of DDD in an agile software environment;

therefore, three agile software managers, three agile project managers, and three agile

coaches were interviewed. This multiperspectival approach improved the reliability and

validity of the research. The total number of interview hours was approximately 12 hours

95

and the different perspectives “provide a more detailed and multifaceted account of the

phenomenon” (Smith, 2009, p. 52). This number of participants is consistent with

Moustakas (1994), who considered a range of five to 25 participants acceptable in

phenomenological studies.

Identification, Contact, and Recruitment. Initially, informational interviews

were conducted with members of the agile software development community to identify

three participants for a pilot study. An email, as shown in Appendix D, along with the

informed consent form, as shown in Appendix C, was sent through their Linkedin.com

association to three potential contacts with a request to participate in a pilot study. The

invitation to participate in the research states that participation is voluntary and that the

research participant may opt out at any time.

The participants in the pilot study were asked to recommend other potential

research participants. The research participants were provided with the purpose for the

research study and the criteria for selecting research participants. The research

participants were incentivized by the promise that the research results will be shared with

the agile software development community. The research participants were further

incentivized, as they received a $10 gift card when the interview process concluded to

thank them for their participation.

Relationship between Saturation and Sample Size. The purpose for

phenomenological qualitative research is to provide a deep understanding of the

phenomenon under study. For that reason, the sample size is typically small. Successful

analysis “requires time, reflection, and dialogue, and larger datasets tend to inhibit all of

96

these things” (Smith et al., 2010, p. 52). The number of research participants was limited

to three software managers, three project managers, and three agile coaches with the

expectation that in depth interviews of one to two hours in duration would yield sufficient

data from different perspectives without providing redundant data or data that is difficult

to analyze.

Instrumentation

According to Smith et al. (2009) the qualitative researcher should develop a

research schedule which outlines the open ended questions that will be asked during the

interview in the order in which they will be asked. The purpose for the research schedule

is to facilitate the communication between the researcher and the research participant.

The research schedule is a tool the researcher uses during the interview process from

which the researcher may deviate to probe deeper or to explore the phenomenon under

study.

The research schedule was used as an aid when each research participant was

interviewed. Face to face interviews were conducted whenever possible and the audio

portion of all interviews was recorded. The research schedule was intended to ask

individuals what they think about the use of DDD as a tool to improve software

development productivity and to ask individuals about their past and future use of DDD

to improve software development productivity. In addition to collecting data on the use

of DDD as a tool to improve software development productivity, the research participants

were asked to provide demographic data including their experience with various agile

97

software development methods and the size and duration of the software projects they

manage.

The research schedule was based on the four definitions of analytics provided by

Salam and Cearley (2012) and the KM processes of knowledge creation, accumulation,

retention, and transfer as discussed by Brynjolfsson et al. (2011). The software

development activities defined by the SWEBOK (2004) provided a methodology agnostic

software development framework for the development of the research schedule.

Although the qualitative researcher may develop a research schedule, the researcher

should remain flexible throughout the interview process. The qualitative research

schedule for the research study can be found in Appendix A.

A pilot study was conducted to validate the qualitative research schedule.

Changes were made to the research schedule before this instrument was used to collect

data. The pilot study was intended to better ensure that the questions were clear and

understandable.

Procedures for Pilot Studies

According to Sullivan (2001) a pilot study can increase the validity of the

research. A pilot study is a miniaturized walk-through of the research procedures and a

pilot study of the research procedures for the research study was conducted. Three

participants were purposely selected from the agile software development community for

the pilot of the qualitative research study. Duplication of responses was avoided by

purposely selecting the pilot study research participants. The three research participants

were interviewed using the qualitative research schedule as shown in Appendix A.

98

The responses from the qualitative research schedule were analyzed following the

same procedures as the research study. Changes were made to the qualitative research

schedule based on the feedback from the participants in the pilot study. The qualitative

research schedule was edited to clarify questions and prompts were prepared to better

ensure that the research participants would be able to understand the open-ended

interview questions (Smith et al., 2009).

Procedures for Recruitment, Participation, and Data Collection

This section of the dissertation describes the procedures that were used to describe

from where the data was collected and from whom the data was collected. The exit

strategy that was used with the research participants is discussed and the communication

procedures that were used following the interviews are discussed. The steps that were

taken after the interviews are explained.

Data Collection Details. Face-to-face semistructured interviews were planned as

the data collection method for the qualitative research as recommended by Smith et al.

(2009). Field notes were taken during the interviews. The research participants were

asked to provide documentation that supports or explains their experiences with

descriptive analytics, diagnostic analytics, prescriptive analytics, or predictive analytics

used during each phase of the software development process. The research participants

were also asked to provide documentation that supports or explains their experiences with

knowledge creation, accumulation, retention, or transfer during each phase of the

software development process. Any documentation provided was analyzed and coded

along with the field notes and the interviews for their relevance and contribution to the

99

understanding of the phenomenon of DDD in software development organizations. The

interviews were recorded to ensure that the interviewees’ exact words were captured

(Smith et al., 2009).

An initial interview was scheduled for one hour with each research participant. A

second one-hour interview was scheduled if more time was needed to discuss all the

questions on the research schedule or if the research participant had additional

information to share. The research participants were asked follow up questions via

telephone or email as necessary.

How Participants Exit the Study. The research participants were provided with

the purpose for the study and the plan for scheduling interviews during the research

participant selection process. The research participants were reminded when the first

one-hour interview was scheduled that a second one hour interview would be scheduled

if needed. This set expectations for the research participants regarding the start and stop

time and the duration of the interviews.

The research participants were provided with my contact information, they were

told that they might be contacted to answer questions during the analysis process, and

they were told that they would be given several days to review a copy of their interview

transcript and make corrections if needed. Trust was built between me and the research

participants by setting expectations at the beginning of the research process and by

reviewing the research purpose and plan with the research participants at the end of the

interview process.

100

Follow-up Procedures. Immediately after each interview, I wrote notes to

capture my thoughts on the interview and to document any observations I did not capture

during the interview process. When the interview process was complete, thank you notes

were sent to each of the research participants. The research participants were told when

they could expect to receive a summary of the research findings and the research

participants were told that they might be asked to answer follow-up questions as the data

was analyzed.

Data Analysis Plan

There are different approaches to phenomenological analysis and although the

IPA data collection and analysis process is flexible, the goal was to systematically

analyze the data as recommended by Creswell (2007), Smith et al. (2009), and Patton

(2002). The data analysis process began with a description of my own experience with

the phenomenon under study including a description of my assumptions, viewpoint, and

perspective, which Patton referred to as epoche. For the remaining steps in the

qualitative data analysis, I followed the seven-step IPA process recommended by Smith

et al..

1. The first interview transcription was read and reread to understand the

meaning of the whole interview. Extraneous information was identified and

unique statements that describe how the research participant’s experienced the

phenomenon was identified.

2. Comments were made on the interview content including comments on the

linguistics and the concepts conveyed.

101

3. Themes within the interview were identified.

4. Patterns were identified between the emergent themes

5. Steps 1-4 were repeated for the remaining interviews

6. Patterns were identified across the interviews

7. The results of the analysis was interpreted based on the themes identified, the

comments made within each interview, and the literature.

In addition to analyzing the interview transcripts, any other data provided by the

research participants was systematically analyzed and the themes were coded for all of

the qualitative data throughout the data collection and data analysis process as

recommended by Maxwell (2005) and Smith et al. (2009). Codes can be created, by

forming “organizational, substantive, and theoretical categories” (Maxwell, 2005, p. 97).

For the qualitative study, the following organizational categories were defined: people,

project setting, process, and perspectives.

According to Maxwell (2005) substantive categories can only be assigned during

the data analysis process. Substantive categories are subcategories of the organizational

categories and they describe the research “participants’ concepts and beliefs” (Maxwell,

2005, p. 97). Substantive categories were defined during the analysis process once the

data collection process began. Theoretical categories represent a more abstract

framework that can inductively evolve from the data analysis process and the theoretical

categories represent the researchers thinking rather than the research participants’

thinking (Maxwell, 2005). The research questions included questions that facilitated

categorization and questions that facilitated connecting the themes and categories.

102

Initially, one theoretical category was defined, meaning. Subcodes were defined after the

data collection process began.

The demographic data was intended to anonymously describe the research

participants based on their background and experience. The demographic data was

analyzed to describe the research participant’s years of experience and the size of the

software projects they manage. Scrum is an agile project management framework that

can be used alone or in coordination with any agile process or processes. In addition to

Scrum, the research participants may have had experience with other agile software

development methods; therefore, the research participants were asked to discuss their

familiarity with agile software methods other than Scrum.

Qualitative data analysis (QDA) research tools can make it easier to mix data

collection and data analysis for qualitative research. QDA software was used to help

ensure that the data was organized throughout the data collection and data analysis

processes so that the accuracy of the data provided was not compromised. I used NVivo

for the qualitative research study on management understanding of DDD in agile

software development organizations.

Issues of Trustworthiness

The ethical considerations and the steps that were taken to protect the rights of the

research participants are discussed in this part of the dissertation. The researcher must

carefully consider the possible ethical concerns related to each research study because

there is no comprehensive list of all possible ethical considerations (Smith et al., 2009).

Research participants could potentially be harmed by their involvement in research;

103

therefore, steps must be taken to protect the rights of the research participants and ensure

that no harm results from the research (Sullivan, 2001).

Trustworthiness

The issues of trustworthiness in qualitative research include issues of credibility,

transferability, dependability, and confirmability rather than issues of generalizability or

repeatability (Guba & Lincoln, as cited in Trochim & Donnelly, 2008). Qualitative

research is more about exploring the meaning of things rather than of determining the

truth. Therefore, the issues of credibility, transferability, dependability, and

confirmability will be discussed as they relate to the research study on DDD as a tool to

improve software development productivity.

Credibility. Research results are more likely to be credible or believable if they

are free from bias (Patton, 2002). Consequently, the qualitative researcher must remain

neutral throughout the research process; however, neutrality is not easily attained. The

research study improved credibility by maintaining an awareness of any biases and by

reporting both confirming and disconfirming evidence that support any conclusions as

recommended by Patton.

Transferability. According to Guba and Lincoln (as cited in Patton, 2002)

qualitative research is usually not generalizable; however, qualitative research may be

transferable. Qualitative research is not generalizable because the research findings are

context dependent. The research findings may be transferable from the context under

study to a congruent context. Therefore, the research findings from the research study

may be transferable beyond the local software development community to other similar

104

software development communities. Verification of the transferability of the research

findings is beyond the scope of the research study; however, transferability was improved

by collecting data from three different groups within the Scrum community: software

managers, project managers, and agile coaches.

Dependability. Although the quality of research is dependent upon the ability to

repeat the research procedures, qualitative research is conducted in real-world settings

where change is inevitable. Therefore, the qualitative researcher should account for the

changes that occur during the study (Guba & Lincoln, as cited in Trochim & Donnelly,

2008). The research study accounted for any changes that occur as a result of conducting

the research and any changes that occur within the context of the research study.

Confirmability. Because neutrality is difficult to attain, the qualitative researcher

can minimize issues of trustworthiness that result from any researcher bias by describing

the research procedures in detail (Lincoln & Guba, as cited in King & Horrocks, 2010).

If the reader is able to confirm that the researcher’s conclusions are reasonable based on

the description of the data collection and analysis processes, then the research findings

will be trusted. The data collection and analysis processes for the research study have

been described in detail in this dissertation.

Intra and Intercoder Reliability. Sullivan (2001) noted reliability could be

tested, by measuring how consistently a measure yields the same results each time it is

applied. A valid measure is a reliable measure; however, a reliable measure is not

necessarily valid. Consequently, measures were taken to improve the reliability of the

research.

105

When there are multiple coders, the reliability of the research is dependent upon

the consistent application of the codes; however, when there is only one researcher

coding the data intercoding reliability may be improved by coding the same set of data

more than once (Sullivan, 2001). The analysis process for the research included

analyzing the data more than once, which should improve the reliability of the coding.

Intra coding reliability may be improved by ensuring that there are clear operational

definitions and by ensuring that the codes have “some conceptual and structured order”

(Miles & Huberman, 1994, p. 60). Operational definitions were developed for the codes

as they were defined for the research. The measures that were taken to create an

organizational set of codes at the start of the research process were described in this

dissertation and the methods used to develop substantive and theoretical categories

during the analysis process were described in this dissertation.

Ethical Considerations

The ethical concerns were addressed throughout the research study. According to

Creswell (2007) ethical research must provide answers to questions that need to be

answered and generate dialogue. The purpose for the research was to better understand

the use of DDD as a tool to improve software development productivity in an agile

software environment. A better understanding of DDD may stimulate discussion that

leads to future research in DDD.

Agreements to Gain Access. The purpose for research was to obtain knowledge

and when conducting qualitative research, the researcher must remain neutral while at the

same time the researcher must build rapport with the research participants (Patton, 2002).

106

When conducting research, the researcher must ensure that the research participants

volunteer and are not coerced into participating and ensure that the privacy of the

research participants is protected (Babbie, 2006). The research was conducted in an

ethical manner and measures were taken to protect the confidentiality of the research

participants and the data they provided. Each research participant was asked to sign a

letter of informed consent, as shown in Appendix C, following approval from Walden

University Institutional Review Board (IRB) to begin the research study (IRB approval

#1234567).

Treatment of Human Participants. The qualitative researcher must question

their underlying moral assumptions and ensure that all research participants are treated

equitably (Creswell, 2007). The researcher should ensure that no harm comes to the

research participants, ensure that the research participant’s privacy is maintained, disclose

the purpose for the research, and ensure that the research analysis and findings are

reported (Babbie, 2006).

The purpose for the research was explained to the research participants and each

research participant was given an informed consent form (Appendix C) as part of the

research participant selection process. The research participants were given a copy of the

signed informed consent form before the data collection process began. The informed

consent form describes the measures that were taken to protect the research participants

including the voluntary nature of the research study, the purpose for the research study,

the research procedures, the risks and benefits of participation, measures to protect

confidentiality, and contact information.

107

The research participants were told that a summary of the research findings will

be shared with them when the research is ready for publication. The research participants

were also asked to review the transcript of their interviews and they were given the

opportunity to correct or clarify any comments from their interviews. The research

participants were told that they could withdraw from the research study at any time prior

to reviewing the transcript of their interview.

A coding scheme was used to ensure the research participants remain confidential

and interview data is attributable to any individual. For example, each interviewee is

referenced by number rather than by name and their place of employment is identified by

industry rather than by name. All interviews were held in a private room, either a

meeting room at the public library or a conference room selected by the research

participants. Any documentation that the research participants provided is protected so

that the data remains confidential.

Treatment of Data. The research participants were told that they could withdraw

from the research process at any time. However, the research participants were told that

if they chose to withdraw after they have been given an opportunity to review the

transcript of their interview, then the data would remain part of the research study. If a

research participant chose to withdraw from the research study before the interview

process was complete or before they had a chance to review the transcript, their data

would be eliminated from the research study.

The research data is stored on a secure laptop computer that only I can access.

The interviews were tape-recorded and interviews were transcribed immediately

108

following each interview session. The recordings of the interviews were destroyed after

the research participants had an opportunity to review the transcript of their interview.

Other Ethical Issues. The research participants were given a $10 gift card in

appreciation for their participation in the research. The monetary value of the gift card is

nominal and is only intended to thank the research participants for sharing their time and

expertise. No adverse effects are anticipated as a result of offering a gift card to the

research participants.

Dissemination of Findings

The findings from the research study on management understanding of DDD will

be shared with the research participants. The findings of the research will also be made

available to the members of the Knowledge Management Association (KMA), which is a

newly formed national organization focused on promoting KM best practices. Other

opportunities will also be sought to disseminate the finding of the proposed research

including submitting a proposal to present at the 2013 KM World conference and the

APQC conference.

Summary and Transition

The research methods for a qualitative research study of software management’s

understanding of DDD as a tool to improve productivity within an agile software

environment was discussed in this chapter. The IPA process was used for the qualitative

research study. Several members of the agile software development community were

interviewed to better understand the phenomenon of DDD in an agile software

109

environment. The results of the qualitative data analysis and data collection processes

will be discussed in Chapter 4.

110

Chapter 4: Results

The purpose for this research study was to explore how agile coaches, project

managers and software managers view data driven decision making, which includes data,

analytics, and knowledge management, as a tool to improve software development

productivity, to understand how agile software development organizations currently use

data driven decision making to improve software development productivity, and to

understand how agile software organizations may use data driven decision making in the

future to improve software development productivity. The following research questions

were asked in order to accomplish the goals for this research study.

1. What do software managers, project managers, and agile coaches in agile

software environments think about the use of DDD to improve software

development productivity?

2. How do software managers, project managers, and agile coaches in agile

software environments currently use descriptive analytics, diagnostic

analytics, prescriptive analytics, and predictive analytics, or knowledge

creation, retention, accumulation, and transfer to improve software

development productivity?

3. How do software managers, project managers, and agile coaches in agile

software environments think descriptive analytics, diagnostic analytics,

prescriptive analytics, and predictive analytics, or knowledge creation,

retention, accumulation, and transfer could be used to improve software

development productivity?

111

4. What obstacles do software managers, project managers, and agile coaches in

agile software environments think their organizations need to overcome to

improve software development productivity?

Pilot Study

The purpose for conducting a pilot study was to determine the adequacy of the

research study design and to assess how long it would take to complete the research study

(Bazeley, 2013). The goals were to obtain feedback from the research participants on the

data gathering procedures used for this research study in order to make improvements to

the research study and to execute the research data gathering and analysis procedures in

order to make improvements to the research study. The same research procedures were

used to conduct a pilot study as were used for the research study on data driven decision

making as a tool to improve software development productivity. NVivo was used to

facilitate the analysis of the pilot study data just as NVivo was used to analyze the data

for the research study.

Three research participants were selected to participate in the pilot study from

software teams who are currently using agile software development methods. An agile

coach, a project manager, and a software manager were interviewed for the pilot study

and their interviews were recorded and transcribed. The same Qualitative Research

Schedule was used to conduct the interviews for the pilot study as for the research study.

In addition to answering the interview questions, the pilot study participants were asked

to provide feedback on the data gathering procedures used for the pilot study.

112

One of the pilot study participants said that the research questions were too broad

and that more specific questions should be asked, such as, “How do you capture

information for a retrospective?” However, this same pilot study participant said that it

might be difficult for other research participants to answer more specific questions.

Another pilot study participant said that the questions were fine; however, using the

SWEBOK activities as a framework for the research questions could be confusing to

some research participants if they assume the SWEBOK activities imply using a waterfall

software development process rather than using an agile software development process.

The third pilot study participant said that the questions were “pretty good;” however,

some of the terminology caused them to think.

As a result of the feedback from the pilot study, the Qualitative Research

Schedule, which included background information on the research study, the research

study questions, and the definitions of the terminology used in the interviews was sent to

the research study participants prior to each interview. In some cases, the research study

participants were asked probing questions to ensure the questions were understood and

that the answers were captured. The research participants were also told prior to the start

of each interview that although the SWEBOK activities were used as a framework for the

research study, the SWEBOK activities were considered generic software development

activities and did not refer to use of waterfall software development process.

The transcriptions of the pilot study interviews were analyzed using NVIVO.

Case nodes were created for the pilot study interviews and the interviews were coded

based on the research study framework including analytics, the SWEBOK activities, and

113

the Knowledge Management types. The interviews were summarized using framework

matrices. A model was created to show the relationships between Knowledge

Management types, the SWEBOK activities and software development productivity and

another model was created which showed the relationship between the types of analytics,

the SWEBOK activities, and software development productivity. Themes began to

emerge as a result of this data analysis process. The results of the pilot study indicated

that the research procedures were adequate for accomplishing the goals of the research

study.

Research Setting

The research interviews were conducted either face-to-face or on the telephone.

The face-to-face interviews were conducted at a branch of the local library convenient to

the research participants. A conference room was used for all but one of the interviews to

ensure that the quality of the recording was optimized for transcription and to maintain

the anonymity of the research participants. In one case, a conference room was not

available at a location convenient to the research participant, and the research participant

agreed to be interviewed at a table located in a quiet corner of the library. The research

participants who were interviewed on the telephone selected a location that would

provide the privacy they desired. No information was provided by the research

participants that negatively influenced the interpretation of the data, and none of the

research participants indicated that any personal or organizational issues were affecting

them and their ability to answer the research questions.

114

Demographics

All of the research participants were agile coaches, project managers, or software

managers who were using agile software development methods at the time of their

interview. The research participants were asked to state their primary role. Although

three of the research participants said that there primary role is an agile coach, three said

their primary role is a project manager, and three of the research participants said that

their primary role is a software manager, 66% of the project managers and the software

managers said that they had multiple roles.

All three of the agile coaches said they have used agile software development

methods for over 5 years, two of the project managers said they have used agile software

development methods for over 5 years and one of the project managers said they have

between one and three years of agile software development experience. Two of the

software managers said they have used agile software development methods for over 5

years and one software manager said they used agile software development methods for

three to five years. Table 2 shows the number of years of experience for each research

participant role.

115

Table 2

Research Participant Roles and Years of Agile Software Development Experience

Role #of Participants Years of

Experience

Agile Coach 3 >5 years

Project Manger 2 >5 years

Project Manger 1 1<>3 years

Software Manager 2 >5 years

Software Manager 1 3<>5 years

The research participants were asked to describe the size of their software

projects, the duration of their software projects and the agile methodologies used. Three

research participants described their software projects as small, three research

participants described their software projects as medium, two research participants

described their software projects as large, and one research participant stated that they

were engaged with small, medium, and large software projects. Software projects with

less than three teams were categorized as small for this research study. Software projects

with less than five teams were categorized as medium for this research study and

software projects with over five teams were categorized as large for this research study.

While four of the research participants described the duration of their projects as less than

one year, five of the research participants described the duration of their projects as over

116

one year and up to 5 years in duration. Table 3 shows the number or research participants

by project size.

Table 3

Research Participant Project Size

Project Size #of Participants #of Teams

Small 3 <3

Medium 3 <5

Large 2 >5

Small, Medium & Large 1 1 - >5

The research participants stated that they used a variety of agile software

development methods including Scrum, Lean\Kanban, and XP. Two of the research

participants said that they used Scrum, Lean\Kanban, and XP, Two of the research

participants said they used Scrum and Lean\Kanban, four of the research participants said

that they used Scrum, and one of the research participants said that they used

Lean\Kanban. Table 4 shows the number or research participants by research methods

used.

117

Table 4

Research Participant Agile Software Development Methods Used

Agile Software Development Method # of Participants

Scrum 4

Scrum, Lean\Kanban 2

Scrum, Lean\Kanban, XP 2

Lean\Kanban 1

Data Collection

The data collection methods used for this research study included semistructured

face-to-face and telephone interviews. A Qualitative Research Schedule was used to

ensure that the same questions were asked all of the research participants. The research

participants were provided with a Qualitative Research Schedule prior to the interview

and they were provided with a copy of the Qualitative Research Schedule if they did not

have the document readily available at the time of the interview. The Qualitative

Research Schedule was reviewed with each research participant prior to beginning the

interview and each interviewee was told that they could refer to the definition of terms in

the Qualitative Research Schedule at any time during the interview. The interviewees

were also told that the SWEBOK activities are generic and not specific to any particular

software development methodology and that the SWEBOK activities are not specific to a

waterfall software development methodology.

118

A total of nine—one to one and a half hour interviews were conducted: five face-

to-face interviews and four telephone interviews. Field notes were taken during the

interviews. The research participants were asked to provide demographic data as well as

answer questions on their attitude toward the need to improve software development

productivity and the use of analytics and knowledge management to improve software

development productivity. The interviews were recorded and transcribed.

Although the research participants were asked to provide documentation that

supported their experiences with DDD in an agile software development environment,

only one of the research participants provided any documentation to support or explain

their experiences with descriptive, diagnostic, prescriptive, or predictive analytics or with

knowledge creation, accumulation, retention, or transfer during each phase of the

software development process. The documentation that was provided was analyzed and

coded along with the field notes and the interviews for their relevance and contribution to

the understanding of the phenomenon of DDD in software development organizations.

Data Analysis

The data analysis process began with a description of my own experience with the

phenomenon under study including a description of my assumptions, viewpoint, and

perspective, which Patton (2002) referred to as epoche. The data was systematically

analyzed using the seven-step IPA process for data collection and analysis (Smith et al.,

2009).

1. The first the interview transcript, the interview notes, and in one case, the

examples were read and reread to understand the meaning of the whole

119

interview. Extraneous information was identified and unique statements that

describe how the research participant’s experienced the phenomenon were

identified.

2. Comments were made on the interview content including comments on the

linguistics and the concepts conveyed.

3. Themes within the interview were identified.

4. Patterns were identified between the emergent themes

5. Steps 1-4 were repeated for the remaining interviews

6. Patterns were identified across the interviews

7. The results of the analysis were interpreted based on the themes identified, the

comments made within each interview, and the literature.

The QDA software application, NVIVO, was used to help ensure that the data

was organized throughout the data collection and data analysis processes so that the

accuracy of the data provided was not compromised. After the interview transcripts, the

interview notes, and the examples were read and re-read, they were coded based on the

conceptual framework for this research study. Framework matrices were developed to

summarize each interview and themes were identified. Queries, coding matrices, and

models were created to analyze the data across the emergent themes and additional codes

were created to explore the emergent themes. The process was repeated for all of the

qualitative data throughout the data collection, and data analysis process as recommended

by Maxwell (2005) and Smith et al. (2009). Initially, codes were created based on the

conceptual framework to identify the people, the project setting, the process, and

120

perspectives then additional codes were created to analyze what the research participants

said about agile practices and productivity as shown in Table 5.

Table 5

Codes that Emerged from the Data

Category Codes

SWEBOK Activities: Requirements, Design, Construction, Testing,

Maintenance, Configuration Management,

Engineering Management, Process, Tools and

Methods, Quality

Analytic Types: Descriptive, Diagnostic, Predictive, Prescriptive

Knowledge Management Activities: Accumulation, Creation, Retention, Transfer

Agile Practices: Scrum, User Stories, Continuous Improvement,

Burndown charts, Kanban, Meetings, XP,

Retrospective, Pair Programming, Test Driven

Development

Similar substantive categories emerged from the data analysis of the use of

analytics to improve software development productivity and the use of KM to improve

software development productivity as shown in Table 6. While the research participants

discussed how communication and collaboration are used to improve software

development productivity, the research participants discussed how software development

121

productivity is improved when analytics are used to improve security and to estimate,

plan, and forecast.

Table 6

Categories that Emerged from the Data Analysis Process

Categories for Use of Analytics Categories for Use of KM

Continuous Improvement Continuous Improvement

NA Communication

Decision Making Decision Making

Estimate, plan, forecast NA

Inspect and Adapt Inspect and Adapt

Quality Quality

Risk Management Risk Management

Security NA

Transition from Development to Release Transition from Development to Release

The themes that emerged from the data are based on the researcher’s

interpretation of the research participants’ responses to the interview questions.

Continuous improvement is part of the agile software development process as was

discussed in relationship to the use of analytics and KM.

Essentially I’m describing the retrospection process. What went wrong? What

went right? All of those things feed into… Okay we’re going to use all of these

metrics in all the phases to improve in the future.

122

Continuous improvement in both the configuration management and engineering

management will get better in time is long test that knowledge is transferred

among the whole organization it won’t prove.

Communication is used to share knowledge in agile software development; however, the

communication is structured to facilitate collaboration and to minimize wasted time.

We do a daily standup in the morning. We actually have three development

teams. One of them is a really small one at the moment. The two really big teams

have their daily standup at 9:30 in the morning and then we have this third team

which is focused on a big third-party integration and the rest of our management

team do a management level [meeting].

Decision Making is improved when analytics and KM are used.

How much effort should go into maintenance [is] based [on] real metrics rather

than on which salesperson speaks the loudest.

Whatever makes sense for that specific project is how you can determine what

tools and methods. You get that from knowledge accumulation from knowledge

retention of working on several projects so that’s how that fits in.

Estimating, planning and, forecasting may be used to help software teams determine how

productive they are.

That being said, I believe that descriptive analytics in terms of helping a team

understand what they have done in the past is good and that I have used, both here

and in my previous jobs, a predictive model that I had created. Very simple but in

123

terms of feeding in previous project timesheets by type of work and a few other

factors… Very simple.

Inspect and Adapt is the agile process that is used to answer the question, “How are we

doing?”

On a day-to-day basis I keep tabs on individual productivity and quality of work,

you know, through the source control system.

Quality and productivity were closely linked by the research participants.

But since I said the word rework, I will jump ahead to quality. That’s a huge one

from a quality perspective. So, you know, it’s the traditional… QA writes about a

bug. The software engineer sends it back. QA opens it up again. No, it’s still

broken and that iteration. So keeping track of those types of metrics greatly

improve, not just the quality, but gives a window into your development team.

What’s missing there? Is it a communication issue or is this issue so complex that

it’s, you know, changing…

Risk Management was talked about by the research participants when they discussed how

KM is used to improve the probability that new employees will succeed.

I’m on boarding 2 new people this week. I’m going to schedule some time on the

calendar for them… For the BA to talk to the existing BA and for the QA to talk

to the existing QA and say, “Hey, let’s get an hour together and sit down and

talk.” Walk through the environments and access rights, permissions and show

them where we keep stuff in SharePoint and stuff like that.

Security is improved when analytics are used to inspect the code.

124

So an example would be if you look at the use of a static code testing tool like HP

Fortify. What it does is inspect the code that you built and looks for particular

kinds of security flaws and gives you a report back that says here’s what I found,

either warnings or severe errors. So the process that we use is taking that report

and going back and inspecting it. From my standpoint that would be a diagnostic

function that I have to perform.

Transition from Development to Release was discussed by the research participants as a

phase in the software development process that caused conflict which negatively

impacted productivity.

In my opinion, the pain points are… the transition from testing to deployment and

integration was painful but it got better with additional measures so I guess that’s

a place to start. How did we improve that? Well, we added more measures and

defined objects, which were the actual test cases themselves and their related bugs

and once we define those objects, we could measure them.

The themes that emerged from the analysis of the data are documented in Tables 7 and 8.

125

Table 7

KM Themes that Emerged from the Data by Category

KM Category KM Themes
Continuous Improvement For continuous improvement
 To drive change across the organization
Communication To store and find content
 To improve communication between stakeholders
 To communicate project status to stakeholders
 To share knowledge including agile expertise
 To capture knowledge just-in-time
 To integrate knowledge into the code
Decision Making To know what to build and how to build it
 To improve team decision making
 To select the best tool for the job
Monitor and Adapt To monitor and adapt
 To improve knowledge about project status
Quality To improve code quality
Risk Management To manage risk
 To minimize the negative effects of employee

transitions
Transition from
Development to Release

To transition from development to release

126

Table 8

Analytic Themes that Emerged from the Data by Category

Analytic Category Analytic Theme
Continuous Improvement For continuous improvement
 To improve coding productivity
Decision Making To determine what products and features should

be built
 To determine maintenance priorities
 To determine how to design and build it
Estimate, Plan, Forecast Groom the backlog
 Time to design versus time to construct
 To estimate, plan, and forecast
Monitor and Adapt To monitor and adapt
 To measure cost for delays
 To measure change in scope over time
Quality To improve quality
Risk Management To manage risk
 To determine the root cause of issues
Security To improve security
Transition from
Development to Release

For continuous integration and automated testing

 To improve the transition from development to
release

Although almost all of the research participants discussed some themes, few

research participants discussed other themes. For example, while 32% of the research

participants discussed how analytics are currently used to estimate, plan, and forecast

iterations and releases; only 2% discussed how analytics are used to improve security and

while 33% of the research participants said that KM is used to store and find content only

4% of the research participants said that KM is used to onboard new employees.

However, none of the themes identified were eliminated from the results of this research

study because this research study did not evaluate how well software development

127

productivity is or could be improved by each of the activities discussed by the research

participants. This research study did not attempt to correlate the percentage of research

participants who discussed a theme and the effectiveness of an activity on software

development productivity. For example, although only 2% of the research participants

discussed how analytics could be used to improve security, in some cases, software

development productivity may be greatly improved if analytics are used to improve

security and software development productivity may be only moderately improved if KM

is used to store and find content although 33% of the research participants discussed this

theme.

Evidence of Trustworthiness

Credibility

I remained neutral throughout the process to improve the believability of the

research findings. The research reported both confirming and disconfirming evidence.

For example, while I reported that the agile coaches, project managers, and software

managers said that software development productivity needs to improve, I also reported

that one of the agile coaches and two of the software managers qualified their responses

when they said, a balance needs to be maintained between productivity and quality.

Transferability

Data was collected from three different groups within the agile software

development community: agile coaches, project managers, and software managers, which

improved the transferability of the research findings from the context under study to a

128

congruent context. However, in general, qualitative study outcomes are not transferable.

If some elements are transferable, these are beyond the scope of this study.

Dependability

I conducted a pilot study and I accounted for the changes that occurred within the

context of the research study to improve the repeatability of the research. For example, I

stated in the research proposal that Scrum coaches would be interviewed; instead, I

interviewed agile coaches when it was discovered that Scrum coaches and project

managers have similar roles. Because one of the pilot study participants was confused by

the terminology used during the interview, I provided the research participants with the

operational definitions for the terms used in the research questions during the interview

process.

Confirmability

The data collection and analysis processes for the research study were described

in detail to improve the confirmability of the research study findings. The research

questions were included in Appendix A. QDA software was used to analyze the data,

and the IPA process that was used to systematically analyze the data was described.

Research Results

The research participants were asked a series of questions as shown in Appendix

A in order to answer the research questions. The responses to the interview questions

were analyzed and the results for each research question are discussed in this section of

the dissertation. The interview questions were also analyzed to determine the similarities

and differences between responses based on the research participant demographics.

129

The purpose of this qualitative phenomenological research study was to explore

how agile software managers view DDD as a tool to improve software development

productivity and to understand how agile software development organizations may use

DDD now and in the future to improve software development productivity. Agile

coaches, project managers, and software managers were interviewed and the transcripts

of the interviews were analyzed. An analysis of the data revealed the answers to the four

research questions.

Research Question 1

The research participants were asked, “What do software managers, project

managers, and agile coaches in agile software environments think about the use of DDD

to improve software development productivity?” Although most of the agile coaches (3),

project managers (3), and software managers (2) stated that software development

productivity needs to improve, one of the agile coaches cautioned that a balance needs to

be maintained between productivity and quality as did one of the software managers.

One of the software managers stated that productivity is a side effect of effective software

development management.

I don’t want to waste time. I want to control scope. I want to understand risk and

I want to manage it and I kind of tend to think of it that way. So although

productivity is important I tend to think of it more as a side effect of managing all

those things effectively.

The agile coaches (3), project managers (3), and software managers (3) claimed

that DDD is needed to improve software development productivity. One of the agile

130

coaches stated that customers expect to be given dates when work will be completed;

however, an on-going dialogue is needed throughout the software development process to

establish priorities and to set expectations.

We have to give people that we think it’s going to be this big and this long. So

we have to produce some types of estimates because of the nature of the work that

we do, right? But our customers hear those words as commitments and we are

afraid of making those commitments. It is this double-edged sword, but from my

perspective, if you tell your customers, “This is what we think it is. Let me tell

you about why my estimate is probably incorrect, and what the word estimate

really means, right?” Then we are having an open conversation with perhaps

another adult but we are afraid to give those things. It is just a psychology

problem more than anything else I think.

Another agile coach described how productivity can be improved when KM and analytics

are used to inspect and adapt to ensure that the right software product is built.

Knowledge management, that’s one of the things with agile and Scrum per se is

that you inspect and adapt the process as you move forward and by doing that you

garner the knowledge of what’s working, what’s successful, how you get

something to the end state of done and shippable to production. The analytics

deals with exactly what it is that the project needs to do. What’s the project goal

and defining what that project goal is then you have the ability to look at, okay,

here’s the first iteration, so, in the first iteration, the first Sprint, what is the Sprint

goal? One of the things I always like to do is challenge my team members to look

131

at the Sprint goal and question the product owner, does that Sprint goal satisfy the

project goal? It’s that inspect and adapt… Constantly looking and analyzing it as

it goes that when you get done with the project you’ll have something that they

desire to have built.

 One of the agile coaches cautioned that although analytics and KM are valuable,

data collection should be part of the process and if data collection is not part of the

software development process and is only done to meet programmatic or organizational

goals then it should not be done. One of the project managers also warned that software

development productivity is not improved if the wrong thing is measured.

The key thing of any analytics is measuring the right thing.

According to one of the software managers, analytics need to measure the work in

progress and they need to be actionable; however, the action needs to be considered

carefully since numbers do not always reflect the productivity of an individual engineer

according to another software manager.

Research Question 2

The research participants were asked, “How do software managers, project

managers, and agile coaches in agile software environments currently use descriptive

analytics, diagnostic analytics, prescriptive analytics, and predictive analytics, or

knowledge creation, retention, accumulation, and transfer to improve software

development productivity?” The data was analyzed to determine what the research

participants said about their experiences with the people, process, and tools and methods

related to the current use of analytics and KM to improve software development

132

productivity. Although the research participants were asked to describe how they

currently use analytics and KM in each of the activities defined by the SWEBOK, the

research participants did not always structure their responses based on the SWEBOK

activities; therefore, I interpreted the responses.

Current Use of Analytics – People. Although the agile coaches, project

managers, and software managers said that people know how to use analytics to estimate,

plan and forecast (34%), inspect and adapt (21%), and to transition from development to

release (21%), the agile coaches, project managers, and software managers said that

people have difficulty using analytics because they do not know how to use analytics

(44%). People currently know how to use descriptive analytics to answer the question,

“Where are we at?” and people know how to view charts that show software project

status. Although people know how to measure how long a typical installation takes,

people do not have a common understanding of velocity and how to measure velocity.

Config[uration] Management and Engineering Management… It’s hard to get

from an analytics perspective. You can use tools in TFS to say, “How was the

build cycle? Was it successful?” …those kinds of things but we tend not to do a

lot of this. It’s advanced thinking for a lot of people. …some projects we will use

them on.

 Current Use of Analytics – Process. The themes that emerged from the data

were analyzed to determine how descriptive, diagnostic, predictive, or predictive

analytics are currently used. The themes were analyzed to identify the differences and

similarities between what each of the research participant groups said about the current

133

use of analytics and the themes were analyzed to determine the SWEBOK activities in

which analytics are currently used. All themes identified by the research participants

were included in the results, although some themes were identified by only one research

participant.

Current Use of Analytics by Analytic Type. The research participants primarily

use descriptive analytics (57%) and diagnostic analytics (28%) to improve software

development productivity rather than predictive (15%) or prescriptive (0%) analytics as

shown in Table 9. Descriptive, diagnostic and predictive analytics are used to estimate,

plan, and forecast (33%).

I believe that descriptive analytics in terms of helping a team understand what

they have done in the past is good and that I have used, both here and in my

previous jobs, a predictive model that I had created. Very simple but in terms of

feeding in previous project timesheets by type of work and a few other factors…

Descriptive, diagnostic, predictive analytics are used to monitor and adapt (22%)

I think the tendency is to look at the information from both the predictive

analytics and from the descriptive analytics and then the diagnostic stuff to make

a determination about what you should do. In other words if I’m looking at a

burn down chart I can change things around for instance I can remove an item,

remove scope. Generally then am I going to fit within the team’s capacity at that

point? We do things like that.

Descriptive and diagnostic analytics are used to transition from development to release

(20%) to improve quality (11%) and for continuous improvement (7%). Diagnostic and

134

predictive analytics are used to improve security and descriptive analytics are used to

manage risk and to improve decision making.

Table 9

Current Use of Analytics by Analytic Type

Category Descriptive Diagnostic Predictive Prescriptive Total
Estimate, Plan, Forecast 13% 9% 11% 0% 33%

Monitor and Adapt 13% 7% 2% 0% 22%

Transition from
Development to Release

13% 7% 0% 0% 20%

Quality 9% 2% 0% 0% 11%

Continuous
Improvement

4% 2% 0% 0% 7%

Security 0% 2% 2% 0% 4%

Decision Making 2% 0% 0% 0% 2%

Risk Management 2% 0% 0% 0% 2%

Grand Total 57% 28% 15% 0% 100%

Current Use of Analytics – Category by Role. The current use of analytics was

compared by role. The agile coaches (48%) discussed how they use analytics to improve

software development productivity more than the project managers (26%) or the software

managers (26%). The agile coaches, project managers and software managers discussed

how they use analytics to estimate, plan, and forecast and to inspect and adapt (33%).

The agile coaches, project managers and software managers discussed how they use

analytics to transition from development to release (20%), to monitor and adapt (20%)

and to improve quality (11%). The agile coaches and the project managers discussed

how analytics are used for continuous improvement. Only one agile coach talked about

135

the use of analytics to improve security, only one software manager talked about the use

of analytics for decision making and only one project manager talked about the use of

analytics for risk management. The analytic themes identified by the agile coaches are

shown in Table 10. The analytic themes identified by the project managers are shown in

Table 11 and the analytic themes identified by the software managers are shown in Table

12.

Table 10

Current Use of Analytics - Category by Agile Coaches

Category Descriptive Diagnostic Predictive Prescriptive Total

Estimate, Plan, Forecast 4% 4% 7% 0% 15%

Monitor and Adapt 4% 4% 2% 0% 11%

Transition from
Development to Release

4% 4% 0% 0% 9%

Continuous Improvement 2% 2% 0% 0% 4%

Quality 2% 2% 0% 0% 4%

Security 0% 2% 2% 0% 4%

Decision Making 0% 0% 0% 0% 0%

Risk 0% 0% 0% 0% 0%

Grand Total 17% 20% 9% 2% 48%

136

Table 11

Current Use of Analytics - Category by Project Managers

Category Descriptive Diagnostic Predictive Prescriptive Total
Estimate, Plan, Forecast 4% 2% 2% 0% 9%
Transition from
Development to Release 4% 2% 0% 0% 7%
Quality 4% 0% 0% 0% 4%
Continuous Improvement 2% 0% 0% 0% 2%
Monitor and Adapt 2% 0% 0% 0% 2%
Risk 2% 0% 0% 0% 2%
Security 0% 0% 0% 0% 2%
Decision Making 0% 0% 0% 0% 0%
Grand Total 20% 4% 4% 0% 26%

Table 12

Current Use of Analytics - Category by Software Managers

Row Labels Descriptive Diagnostic Predictive Prescriptive Total
Estimate, Plan, Forecast 4% 2% 2% 0% 9%
Monitor and Adapt 7% 2% 0% 0% 9%
Transition from
Development to Release 4% 0% 0% 0% 4%
Decision Making 2% 0% 0% 0% 2%
Quality 2% 0% 0% 0% 2%
Continuous Improvement 0% 0% 0% 0% 0%
Risk 0% 0% 0% 0% 0%
Security 0% 0% 0% 0% 0%
Grand Total 19% 4% 2% 2% 26%

Current Use of Analytics - Themes by Category. The themes emerged from an

analysis of the data on how agile coaches, project managers, and software managers

currently use analytics. Although the research participants primarily discussed how they

use analytics to estimate, plan, and forecast all of the themes that emerged from an

analysis of the data are described in this dissertation. For example, although only one

137

software manager talked about the use of analytics to improve security, the theme was

included in the results.

Estimate, Plan, Forecast. Agile coaches, project managers, and software

managers use descriptive, diagnostic, and predictive analytics to estimate, plan, and

forecast iterations and releases. One agile coach and one software manager talked about

the use of descriptive analytics to determine how much time is spent on design versus

how much time is spent constructing the software and one project manager talked about

using descriptive analytics to groom the backlog.

An agile practitioner or Scrum practitioner would look at things like velocity and

estimating accuracy and those pieces of information and those are useful and

actually things that a well-functioning agile team of developers find useful. In

other words I want to be able to estimate so that I can accurately predict how long

it will take me. And I want to improve my velocity and make sure that I’m

working at as high a level as I can. There are some good tools out there for

helping that. Are you familiar with tools like VersionOne or Rally?

Monitor and Adapt. Agile coaches, project managers, and software managers use

descriptive, diagnostic, and predictive analytics to monitor progress and to adapt the

software development plan for each software development iteration.

I think the tendency is to look at the information from both the predictive

analytics and from the descriptive analytics and then the diagnostic stuff to make

a determination about what you should do. In other words if I’m looking at a

burn down chart I can change things around for instance I can remove an item,

138

remove scope. Generally then am I going to fit within the team’s capacity at that

point? We do things like that. That does play into it.

Transition from Development to Release. Agile coaches, project managers, and

software managers talked about the use of descriptive and diagnostic analytics to

transition from development to release and the project managers talked about the use of

diagnostic and predictive analytics to transition from development to release.

Would you consider configuration management… We do use… And again this is

probably only descriptive analytics. We do use descriptive analytics and

monitoring tools to take a look at and understand what our system performance

requirements are. If we identify that we have to add new servers and those sorts

of things, we are keeping an active daily monitor of speeds and response times

and things like that and system bandwidth usage. Things like that. We actively

use a lot of those.

Agile coaches, project managers, and software managers use descriptive analytics

for continuous integration and automated testing. Two agile coaches also talked about

the use of diagnostic analytics for continuous integration and automated testing and one

project manager talked about the use of predictive analytics for continuous integration

and automated testing.

We do use descriptive analytics and monitoring tools to take a look at and

understand what our system performance requirements are. If we identify that we

have to add new servers and those sorts of things, we are keeping an active daily

139

monitor of speeds and response times and things like that and system bandwidth

usage. Things like that. We actively use a lot of those.

Quality. Agile coaches, project managers, and software managers use descriptive

analytics to improve quality and one agile coach talked about the use of diagnostic

analytics to improve quality.

From a quality perspective it easy to use tools to measure where was the defect

was found, how often? We will use TFS to do that. That’s pretty simple for a

descriptive diagnostic perspective.

Continuous Improvement. Agile Coaches and Project Managers use descriptive

and diagnostic analytics for continuous improvement.

Essentially I’m describing the retrospection process. What went wrong? What

went right? All of those things feed into… Okay we’re going to use all of these

metrics in all the phases to improve in the future. In that respect agile does have a

good process for having a traditional postmortem but shorter cycles than a

waterfall. So, you can kind of prevent those mistakes from happening again.

Security, Decision Making, and Risk Management. Although few research

participants talked about the use of analytics to improve productivity related to security,

decision making or risk management, productivity may be improved if more agile

software teams focused on security, decision making and risk management. One agile

coach uses diagnostic and predictive analytics to improve security. One software

manager discussed how descriptive analytics are used to determine maintenance

140

priorities. One project manager use descriptive analytics to manage risk by determining

the root cause of issues.

Current use of Analytics - Tools and Methods. Agile coaches, project

managers, and software managers discussed how they use qualitative and quantitative

tools and methods to measure progress on software development projects (67%). Agile

coaches, project managers, and software managers said that they use tools like Team

Foundation Server (TFS), Jira, Trello, VersionOne, Rally, ScrumworksPro, and Excel to

manage the backlog, to determine the software development team velocity and to view

burndown charts. The backlog is groomed for each software development iteration and

release, which enables the software development team to focus on the highest priority

items for each software development iteration and release.

Agile software teams collect epics, which are linked to the organizational goals.

The epics are decomposed into user stories and the user stories are combined with

existing backlog items where they are prioritized and sized. The backlog items are linked

to tasks and tests. Agile coaches, project managers and software coaches said that they

measure progress by analyzing burndown charts and comparing the burndown to the team

capacity.

So the tools that we use and the way we use the tools allow us to do that. So we

use it both as a way to describe what is happening so for descriptive analytics.

We have new ones in, how many do we have, the state that they are in, whether

they been allocated to a release, whether they are currently being worked on in an

iteration, and whether or not they are successfully completed. Are all the tasks

141

completed or have they been left out of the requirements? Which tests have been

executed successfully against it as well?

 Although agile coaches, project managers, and software managers said that they

currently use tools and methods for configuration management (44%), they said that there

is a conflict between the agile software development goal to release software frequently

and the configuration management goal to maintain system stability. Consequently, agile

software development teams need to provide information to the configuration

management and maintenance teams that enable the configuration management and

maintenance teams to plan long term.

So, the agile teams need a way to put information in a place where they can see

more roadmap oriented type of data. Whether that is transforming the objects that

we call epics into something that they can use in the future… I think that a tool

could benefit this by making sure that the maintenance and configuration group

have visibility because they are challenged.

 One of the agile coaches talked about how regression testing has just begun to be

used to improve security and the agile coaches and project managers talked about how

tools and methods are used to improve quality (33%).

We look at quality is kind of a two-phase thing. Quality is built into the product.

So that processes actually built in all the way through. Again going back to what

we talked about in release planning side identifying what tests will be executed on

it. What standards have to be applied and getting agreement and buy-in by the

team for a definition of done for the release planning before you move into the

142

construction phase and then the other side of quality is the inspection or audit side

of it.

Current Use of Analytics – SWEBOK Activity by Analytic Type. The research

participants primarily discussed how analytics are used during the tools and methods

activities (20%), the process activities (12%), the requirements activities (12%), the

engineering management activities (11%), and the quality activities (11%) as shown in

Table 13. What the research participants said about the use of analytics during the Tools

and Methods activities was discussed previously in this dissertation. Few the research

participants talked about how they currently use analytics during the testing activities, the

design activities or construction activities.

Table 13

Current Use of Analytics – SWEBOK Activity by Analytic Type

SWEBOK Activities Descriptive Diagnostic Predictive Prescriptive Total
Tools and Methods 9% 7% 3% 1% 20%
Process 7% 2% 3% 0% 12%
Requirements 7% 3% 2% 0% 12%
Engineering Management 5% 2% 2% 1% 11%
Quality 7% 3% 1% 0% 11%
Configuration Management 4% 4% 0% 0% 9%
Testing 7% 2% 0% 0% 9%
Construction 5% 1% 0% 0% 7%
Design 4% 1% 0% 0% 5%
Maintenance 4% 1% 0% 0% 5%
Grand Total 59% 27% 12% 2% 100%

Current Use of Knowledge Management – People. The agile coaches, project

managers, and software managers described how they currently know how to us KM

(87%) to improve software development productivity. People know how to use KM

143

processes to retain and transfer knowledge and they know how to collaborate to reach

decisions and resolve issues. However, the project managers stated that people currently

have difficulty using KM effectively because they do not have the time to accumulate and

transfer knowledge (22%). Software teams may accumulate knowledge when they work

in a culture of knowledge sharing (22%).

So, knowledge management and accumulation and creation… The whole

concept… I see the value of it. It continually goes against what software

development teams want to be doing. Is there an easy way for me to accumulate

[knowledge] without impacting software development?

Current Use of Knowledge Management – Process. The themes that emerged

from the data were analyzed to determine how knowledge accumulation, creation,

retention, and transfer are currently used. The themes were analyzed to identify the

differences and similarities between what each of the research participant groups said

about the current use of KM. The data was analyzed to determine what the research

participants said about the use of KM in each of the SWEBOK activities.

Current Use of KM by KM Activity. Agile coaches, project managers, and

software managers use knowledge accumulation (19%), creation (24%), retention (26%),

and transfer (31%) to improve software development productivity as shown in Table 14.

The research participants primarily use knowledge management to improve

communication (36%), to improve decision making (17%), for risk management (17%),

and to improve quality (11%). A few of the agile coaches, project managers, and

144

software managers use knowledge management for continuous improvement, to

transition from development to release, and to monitor and adapt.

Table 14

Current Use of Knowledge Management by KM Process

Category Accumulation Creation Retention Transfer Total
Communication 9% 7% 10% 10% 36%
Decision Making 3% 4% 4% 6% 17%
Risk 3% 4% 4% 6% 17%
Quality 3% 3% 3% 3% 11%
Continuous Improvement 0% 4% 1% 4% 10%
Transition from Development to
Release 1% 1% 1% 3% 7%
Monitor and Adapt 0% 0% 1% 0% 1%
Grand Total 19% 24% 26% 31% 100%

Current Use of KM – Category by Role. The current use of KM was compared

by role. The agile coaches (43%) and the software managers (36%) discussed how they

use KM to improve software development productivity more than the project managers

(21%). The agile coaches, project managers and software managers discussed how they

use KM to improve communication, to improve decision-making and for risk

management. While the agile coaches and project managers discussed how they use KM

improve quality and for continuous improvement, the software managers did not discuss

how KM is used to improve quality and for continuous improvement. The project

managers and software managers talked about how they use KM to transition from

development to release and one software manager talked about how KM is used to

monitor and adapt. The KM themes identified by the agile coaches are shown in Table

145

15. The KM themes identified by the project managers are shown in Table 16 and the

KM themes identified by the software managers are shown in Table 17.

Table 15

Current Use of KM - Category by Agile Coaches

Category Accumulation Creation Retention Transfer Total
Communication 3% 4% 3% 4% 14%
Decision Making 3% 3% 3% 3% 11%
Continuous Improvement 0% 3% 1% 3% 7%
Quality 1% 1% 1% 1% 6%
Risk 0% 1% 0% 3% 4%
Monitor and Adapt 0% 0% 0% 0% 0%
Transition from Development
to Release 0% 0% 0% 0% 0%
Grand Total 7% 13% 9% 14% 43%

Table 16

Current Use of KM - Category by Project Managers

Category Accumulation Creation Retention Transfer Total
Communication 1% 0% 3% 1% 6%
Quality 1% 1% 1% 1% 6%
Continuous Improvement 0% 1% 0% 1% 3%
Decision Making 0% 0% 1% 1% 3%
Risk 0% 0% 1% 1% 3%
Transition from Development
to Release 0% 0% 0% 1% 1%
Monitor and Adapt 0% 0% 0% 0% 0%
Grand Total 3% 3% 7% 9% 21%

146

Table 17

Current Use of KM - Category by Software Managers

Category Accumulation Creation Retention Transfer Total
Communication 4% 3% 4% 4% 16%
Risk 3% 3% 3% 1% 10%
Transition from Development
to Release 1% 1% 1% 1% 6%
Decision Making 0% 1% 0% 1% 3%
Monitor and Adapt 0% 0% 1% 0% 1%
Continuous Improvement 0% 0% 0% 0% 0%
Quality 0% 0% 0% 0% 0%
Grand Total 9% 9% 10% 9% 36%

Current Use of KM - Themes by Category. The themes emerged from an

analysis of the data on how agile coaches, project managers, and software managers

currently use KM. Although the research participants primarily discussed how they use

KM for communication, all of the themes that emerged from an analysis of the data are

described in this dissertation. For example, although only one software manager talked

about the use of KM to monitor and adapt; the theme was included in the results.

Communication. The agile coaches and software managers said that knowledge

accumulation, creation, retention and transfer are used to store and find content and one

project manager said that knowledge retention and transfer are used to store and find

content.

We are a Microsoft shop so of course it is in SharePoint. We tuned the search

engines and all that kind of stuff. We are also associating metadata tags to the

deliverables before they are stored with the artifacts. So as part and parcel of that,

the accumulation portion is beginning again.

147

While the agile coaches and software managers discussed how they currently use

knowledge accumulation, creation, retention and transfer to communicate project status

to stakeholders, one project manager talked about how they use knowledge retention to

communicate project status to stakeholders. One agile coach said that knowledge

accumulation, creation, retention and transfer are used to share agile expertise and one

project manager said that knowledge retention and transfer are used to share agile

expertise. One project manager discussed how knowledge transfer is used to share

knowledge.

For example, when I talk to people in my department about anything pertinent to

what we’re going to do… Any risks need to be recorded there and shared through

our project management processes. Some of our processes are… So we have

regular project reviews with stakeholders and the leadership teams. Typically,

most of those folks… And we post our report so we have… Our reports are stored

in SharePoint so they are produced and then put into SharePoint. I can tell you

that many people don’t go there to look at them.

The agile coaches and the software managers said that knowledge accumulation,

creation, retention, and transfer are used to improve communication between

stakeholders. One project manager said that knowledge accumulation is used to improve

communication between stakeholders.

We use standard Scrum meetings for knowledge transfer with the usual Scrum

dictates of what I did I do since the last meeting, what am I going to do, what

impediments do I have, and what Scrum topics do I need to talk to the rest of the

148

team about? That can cover anything from a requirements conversation, a

programmatic design, construction and any of those activities or most all of them.

Decision Making. One agile coach discussed how knowledge accumulation,

creation, retention, and transfer are used to know what to build and how to build it. An

agile coach and a software manager said that knowledge creation and transfer are used to

know what to build and how to build it.

The best communication is a whiteboard, markers, and face-to-face conversation.

Getting back to the three C’s: the card, the conversation, and the confirmation.

That’s how you get at knowing what is you need to build and how to build it,

through those conversations.

One agile coach said that knowledge accumulation, retention, and transfer are

used to select the best tool for the job and one project manager said that knowledge

retention and transfer are used to improve team decision making.

For me, sort of with our agile mindset when we were doing Scrum we had kind of

that an agile practices guide for our department. This is our story points, kind of

metric table. How to decide if it is a three or a five or and eight. How we should

be using Mercury or how we should be using Jira. So we have some best

practices documentation there that people can refer to.

Risk Management. One software manager said that knowledge accumulation,

creation, retention and transfer are used to manage risk while one software manager said

that knowledge accumulation, creation, and retention are used to manage risk by

minimizing the negative impact of acquiring or losing employees. One of the project

149

managers discussed how knowledge retention and transfer are used to manager risk by

retaining basic templates and information for use by new employees.

We had a key employee leave around September. She had been here for about 6

years and she was the product development manager for about 2 or 3 of those

years so she had a lot of knowledge of the system and how things worked and

how things should work and how they are supposed to work and because the

culture around here has been about documenting everything in the wiki then most

of her knowledge was captured and we were able to pull forward.

One of the agile coaches talked about how pair programming is used to reduce risk by

improving the skills and knowledge of all of the software developers.

For construction, pair programming. Transfer that knowledge. Tear down the

silos. If all you do is backend DB work… I’ve got a team I’m working with at

[organization] now doing that. Transferring the knowledge of the backend

development to the front end, etc. it’s going to be a time on that team when

anyone on the team can do any task, which is much better than the silo effect.

Quality. One agile coach and one project manager talked about the use of

knowledge accumulation, creation, retention, and transfer to improve code quality.

Continuous Improvement. One of the agile coaches said that knowledge creation,

retention, and transfer are used for continuous improvement and another agile coach and

one of the project managers said that knowledge creation and transfer are used for

continuous improvement. One agile coach said that knowledge creation and transfer are

used to drive change across the organization.

150

We’re very strong proponents of retrospectives. Each iteration ends with a

retrospective where the team can look at what they did and look at improving the

process but also a structure that identifies what is in their purview to change.

There are some things they can fully change how they are doing it and there are

other things where they can’t just deviate completely from the architecture that

the rest of the product might be following for example. So that kind of a

retrospective as well as using production support or operations and maintenance

retrospectives to look at how the software is working. It is a deployed set of

software and they are looking at what kinds of changes, what kind of non-

functional changes might to be driven out of the maintenance group back into the

backlog as nonfunctional requirements.

Transition from Development to Release. One software manager said that

knowledge accumulation, creation, retention, and transfer are used to transition from

development to release and one project manager said that knowledge transfer is used to

transition from development to release.

Monitor and Adapt. One software manager said that knowledge retention is used

to monitor and adapt.

Current Use of Knowledge Management - Tools and Methods. Although agile

coaches, project managers, and software managers discussed how KM tools and methods

are used to qualitatively measure progress on software development projects, they did not

discuss how KM tools and methods are currently used to quantitatively measure progress

on software development projects. One of the agile coaches described how face-to-face

151

communication is used to transfer knowledge about project status during the daily

standup meeting.

Told the team that I had just three questions: what did you do yesterday, what are

you going to do today and the only thing I want to hear as the Scrum master is

you have anything impeding your progress? I want to know that and we’ll talk

afterwards and you aren’t reporting to me. You are just having a conversation

with your team members of what it is you’re doing and that is the key importance

of it.

One of the software managers discussed how KM tools and methods are currently

used to accumulate, create, retain, and transfer knowledge that minimize wasted time as

long as the software development team follows the process.

We have a wiki and members of the team will write up summaries of how things

work when they reach one of those points. So part of the discipline around here is

if you don’t have the time or it’s not part of the current scope of a project to kind

of rework some of those things that don’t make sense then document them as

code, if you will. Then you have to go describe it somewhere so that then the

next person to run into it has a reference to it. That’s been going phenomenally

well for us, especially for some things that are not worth rebuilding because

maybe they get revisited once a year.

Current Use of KM – SWEBOK Activity by KM Activity. The research

participants primarily discussed how KM is currently used during the tools and methods

activities (21%) and the process activities (14%) as shown in Table 18. What the

152

research participants said about the use of KM during the Tools and Methods activities

was discussed previously in this dissertation. A few research participants discussed how

KM is currently used during testing activities (13%) and the requirements activities

(12%) and even fewer research participants discussed how KM is currently used during

the configuration management, design, quality, construction, and maintenance activities.

For example, one of the software managers discussed how the Scrum process includes

KM activities.

In terms of the Scrum process itself obviously we have the normal, you know,

Sprint reviews and all the normal ceremonies that go on in Scrum. The main

place that we store information... We also use Jira. Half of our organization uses

Jira because they haven’t moved to Team Foundation Server but either way

between SharePoint and between the actual tool itself almost everything related to

those projects is really stored in those two areas and they are shared through

meetings basically.

153

Table 18

Current Use of KM – SWEBOK Activity by KM Activity

SWEBOK Activity Accumulation Creation Retention Transfer Total
Tools and Methods 6% 4% 6% 6% 21%
Process 2% 4% 3% 4% 14%
Testing 2% 4% 3% 4% 13%
Requirements 3% 3% 3% 4% 12%
Configuration Management 1% 3% 1% 3% 9%
Design 1% 3% 1% 3% 9%
Quality 2% 2% 2% 2% 9%
Construction 1% 2% 1% 2% 6%
Maintenance 1% 2% 1% 2% 6%
Engineering Management 0% 1% 0% 1% 3%
Grand Total 19% 29% 21% 31% 100%

Research Question 3

The research participants were asked, “How do software managers, project

managers, and agile coaches in agile software environments think descriptive analytics,

diagnostic analytics, prescriptive analytics, and predictive analytics, or knowledge

creation, retention, accumulation, and transfer could be used to improve software

development productivity?” Although the research participants were asked to describe

how they could use analytics and KM in the future in each of the activities defined by the

SWEBOK, the research participants did not always structure their responses based on the

SWEBOK activities; therefore, I interpreted the responses.

Future Use of Analytics – People. The agile coaches, project managers, and

software managers said that people needed to know how to use analytics to improve

software development productivity (44%). People need to know more about what to

measure and people need to know how to analyze the user feedback to improve the

154

software. People need to know how to measure productivity in an agile software

development environment, which is delivering value to the customer rather than

measuring lines of code or counting function points.

….And that’s something I don’t necessarily have the answer for, what are the

ideal analytics or what are the right things that will help the productivity. For us

right now, having a measure of delivering value is kind of for me the paramount

thing.

Future Use of Analytics – Process. The themes that emerged from the data were

analyzed to determine how descriptive, diagnostic, predictive, or predictive analytics

could be used in the future. The themes were analyzed to identify the differences and

similarities between what each of the research participant groups said about how

analytics could be used in the future and the themes were analyzed to determine the

SWEBOK activities in which analytics could be used in the future.

Future Use of Analytics by Analytic Type. The research participants said that

descriptive (37%), diagnostic (26%), and predictive (21%) and prescriptive (16%)

analytics could be used in the future to improve software development productivity as

shown in Table 19. Descriptive, diagnostic, predictive, and prescriptive analytics could

be used in the future to improve decision making (26%). Descriptive, diagnostic, and

predictive analytics could be used in the future to improve quality (26%). Descriptive,

predictive, and prescriptive analytics could be used in the future to estimate, plan, and

forecast (16%). Descriptive and diagnostic analytics could be used in the future to for

continuous improvement. Diagnostic and predictive analytics could be used in the future

155

to improve the transition from development to release. Diagnostic analytics could be

used in the future to improve security and descriptive analytics could be used in the

future to monitor and adapt.

Table 19

Future Use of Analytics ALL

Category Descriptive Diagnostic Predictive Prescriptive Total
Decision Making 5% 5% 5% 11% 26%
Quality 16% 5% 5% 0% 26%
Estimate, Plan, Forecast 5% 0% 5% 5% 16%
Continuous Improvement 5% 5% 0% 0% 11%
Transition from
Development to Release 0% 5% 5% 0% 11%
Monitor and Adapt 5% 0% 0% 0% 5%
Security 0% 5% 0% 0% 5%
Grand Total 37% 26% 21% 16% 100%

Future Use of Analytics – Category by Role. The future use of analytics was

compared by role. The software managers (53%) and the agile coaches (37%) discussed

how analytics could be used in the future to improve software development productivity

more than the project managers (11%). The agile coaches, project managers, and

software managers discussed how analytics could be used in the future to improve

decision-making (33%). The project managers and software managers discussed how

analytics could be used to improve quality. The agile coaches said that analytics could be

used in the future to estimate, plan, and forecast and to improve security. The software

managers said that analytics could be used to in the future for continuous improvement,

to transition from development to release, and to monitor and adapt. The analytic themes

identified by the agile coaches are shown in Table 20. The analytic themes identified by

156

the project managers are shown in Table 21 and the analytic themes identified by the

software managers are shown in Table 22.

Table 20

Future Use of Analytics - Category by Agile Coaches

Category Descriptive Diagnostic Predictive Prescriptive Total
Decision Making 0% 5% 5% 5% 16%
Estimate, Plan, Forecast 5% 0% 5% 5% 16%
Security 0% 5% 0% 0% 5%
Continuous Improvement 0% 0% 0% 0% 0%
Monitor and Adapt 0% 0% 0% 0% 0%
Quality 0% 0% 0% 0% 0%
Transition from Development
to Release 0% 0% 0% 0% 0%
Grand Total 5% 11% 11% 11% 37%

Table 21

Future Use of Analytics - Category by Project Managers

Category Descriptive Diagnostic Predictive Prescriptive Total
Decision Making 5% 0% 0% 0% 5%
Quality 5% 0% 0% 0% 5%
Continuous Improvement 0% 0% 0% 0% 0%
Estimate, Plan, Forecast 0% 0% 0% 0% 0%
Monitor and Adapt 0% 0% 0% 0% 0%
Security 0% 0% 0% 0% 0%
Transition from Development
to Release 0% 0% 0% 0% 0%
Grand Total 11% 0% 0% 0% 11%

157

Table 22

Future Use of Analytics - Category by Software Managers

Category Descriptive Diagnostic Predictive Prescriptive Total
Quality 11% 5% 5% 0% 21%
Continuous Improvement 5% 5% 0% 0% 11%
Transition from Development
to Release 0% 5% 5% 0% 11%
Decision Making 0% 0% 0% 5% 5%
Monitor and Adapt 5% 0% 0% 0% 5%
Estimate, Plan, Forecast 0% 0% 0% 0% 0%
Security 0% 0% 0% 0% 0%
Grand Total 21% 16% 11% 5% 53%

Future Use of Analytics - Themes by Category. The themes emerged from an

analysis of the data on how agile coaches, project managers, and software managers

could use analytics in the future. Although the research participants primarily discussed

how they could use analytics to improve decision making and quality all of the themes

that emerged from an analysis of the data are described in this dissertation. For example,

although only one agile coach talked about the use of analytics to improve security, the

theme was included in the results.

Decision Making. A project manager talked about how descriptive analytics

could be used in the future to determine what features should be developed. An agile

coach and a software manager said that prescriptive analytics could be used in the future

to determine how to design and build the software product.

That would also be helpful from a design standpoint. So we were thinking about

moving from… I don’t know, what is a good example? Moving from, who knows

what it is...one particular architecture to a second one… Kind of predictive like

158

simulators that would validate…” Is that the right design approach to take to this

code problem or are you making things worse or better?” Those sorts of things.

An agile coach said that diagnostic and predictive analytics could be used to determine

what products and features should be built.

Predictive analytics would probably come and maybe on the process of the whole

thing if you are looking at the project. Predicting that what it is you are

developing, is it going to be useful? Are people going to use it? Are they going to

need it? How is it going to go in the marketplace? By utilizing predictive

analytics would give you an idea of maybe what share of the market can you hope

to obtain by coming out with this new product, new software to help people live

easier.

Quality. A software manager said that descriptive, diagnostic, and predictive

analytics could be used in the future to improve quality and a project manager and a

software manager said that descriptive analytics could be used in the future to improve

quality.

I tend to find that really good software developers tend to have very little effect

on improvements in their code in development. Where I see the bigger effect is in

assisting younger or more junior developers coming up to learn things quicker as

to where certain problem areas are. Part of my staff is very experienced in they

tend to know what is or tends to be difficult and to focus on that first whereas the

more junior developers have no intuition and that and so the metrics would

definitely help them understand where the difficulties are going to be and allow

159

them to focus more on that. So, I think the improvements there would be more on

quality than anywhere.

Estimate, Plan, Forecast. One agile coach said that descriptive, predictive, and

prescriptive analytics could be used in the future to forecast.

This is really where I’m trying to take my company from predictive to

prescriptive. This is where you’re getting into forecasting models. It could be

perhaps. From a prescriptive perspective you’re really trying to predict what is

your future timeline for multiple releases across the project, right? What do we

anticipate our burn to be?

Continuous Improvement. One software manager said that descriptive analytics

could be used in the future to improve coding productivity and another software manager

said that diagnostic analytics could be used in the future to improve coding productivity.

…a commit tool that would go through your code and identify memory leaks and

things like that. Those tools are definitely hugely beneficial...Kind of self-testing

diagnostic tools.

Transition from Development to Release. A software manager said that

diagnostic and predictive analytics could be used in the future to improve the transition

from development to release.

Monitor and Adapt. One software manager said that descriptive analytics could

be used to measure the change in scope over time and to measure the cost for delays.

Security. An agile coach said that diagnostic analytics could be used in the future

to improve security.

160

Future Use of Analytics - Tools and Methods. Agile coaches, project managers,

and software managers talked about how qualitative and quantitative tools and methods

could be used in the future to measure progress on software development projects (66%).

One of the project managers discussed the need for automated user interface testing and

one of the software managers stated that tools and methods are needed to measure the

progress of each user story through the Kanban process when agile Lean software

development methods are used. Although the agile coaches, project managers, and

software managers stated that software development organizations may better understand

the scope of work to be completed if better forecasting tools and methods were available,

they doubted that better forecasting tools and methods would be used in an agile software

development environment and one of the agile coaches stated that although continuous

integration and automated test tools and methods are currently available, software

development productivity will not improve until more software development teams use

the tools.

Configuration management and engineering management: those two go hand-in-

hand. Once again I can’t say it enough, continuous integration and automated

test. The more these come together and in sync will greatly improve software

quality and improve it. By utilizing… the tools…

Future Use of Analytics – SWEBOK Activity by Theme. The research

participants primarily discussed how analytics could be used in the future during the

engineering management activities (16%), the requirements activities (16%), and the

tools and methods activities (16%) as shown in Table 23. What the research participants

161

said about the use of analytics during the tools and methods activities was discussed

previously in this dissertation.

The research participants also talked about how analytics could be used in the

future during the quality activities (12%), testing activities (12%), and the process

activities (9%). For example, a software manager talked about measuring the time a

software developer spends problem solving versus writing code as a way to optimize

development time in the future.

Then on the process side even more, helping… I’ll give you a great example.

You have a developer who gets stuck on a problem and they chase that problem

for way too long before they realize that they are losing ground in terms of

actually getting things done productivity wise.

A few research participants also discussed how analytics could be used in the future

during the configuration management (7%), design (5%), maintenance (5%) and

construction (2%) activities.

162

Table 23

Future Use of Analytics – SWEBOK Activity by Theme

SWEBOK Activities Descriptive Diagnostic Predictive Prescriptive Total
Engineering Management 7% 2% 5% 2% 16%
Requirements 7% 5% 5% 0% 16%
Tools and Methods 5% 5% 5% 2% 16%
Quality 7% 2% 2% 0% 12%
Testing 7% 5% 0% 0% 12%
Process 5% 2% 2% 0% 9%
Configuration Management 0% 2% 5% 0% 7%
Design 0% 0% 0% 5% 5%
Maintenance 0% 2% 2% 0% 5%
Construction 2% 0% 0% 0% 2%
Grand Total 40% 26% 26% 9% 100%

Future Use of Knowledge Management – People. The agile coaches, project

managers, and software managers said that people needed to know how to use KM

effectively to improve software development productivity (56%). People need to know

how to do their jobs. People need knowledge they can understand and people need

knowledge when they need it. Most importantly, people need to know how to

communicate and collaborate.

Collaboration is key on any process whether you use lean or Kanban or Scrum or

XP. It’s that collaboration that is key. It’s also one of the things that points out

why software projects fail; there is no collaboration. Management doesn’t

support it. Stuff like that. You’ve got a get involved to make it successful.

Future Use of Knowledge Management – Process. The themes that emerged

from the data were analyzed to determine how knowledge accumulation, creation,

retention, and transfer could be used in the future to improve software development

163

productivity. The themes were analyzed to identify the differences and similarities

between what each of the research participant groups said about the use of KM in the

future. The data was analyzed to determine what the research participants said about the

use of KM in the future in each of the SWEBOK activities.

Future Use of KM by KM Activity. The research participants talked more about

the use of knowledge transfer (50%) and knowledge creation (31%) than knowledge

retention (13%) or knowledge accumulation (6%) when they talked about the use of KM

to improve software development productivity. The research participants talked about

how knowledge transfer could be used in the future to improve decision making (19%).

Table 24 shows the KM themes by knowledge process.

Table 24

Future Use of Knowledge Management

Categories Accumulation Creation Retention Transfer Total
Decision Making 6% 6% 6% 19% 38%
Communication 0% 6% 6% 3% 16%
Monitor and Adapt 0% 6% 0% 6% 13%
Quality 0% 6% 0% 6% 13%
Risk 0% 0% 0% 6% 6%
Transition from
Development to Release 0% 0% 0% 6% 6%
Grand Total 6% 31% 13% 50% 100%

Future Use of KM – Category by Role. The future use of KM was compared by

role. The agile coaches (38%) and the project managers (38%) talked more about how

KM could be used in the future to improve software development productivity than the

software managers (25%). Agile coaches, project managers, and software managers said

164

that KM could be used in the future to improve decision making (38%). The software

managers said that KM could be used in the future to improve communication (16%).

The project managers said that KM could be used in the future to monitor and adapt

(13%), to improve quality (13%), and to transition from development to release (6%).

The KM themes identified by the agile coaches are shown in Table 25. The analytic

themes identified by the project managers are shown in Table 26 and the analytic themes

identified by the software managers are shown in Table 27.

165

Table 25

Future Use of KM - Category by Agile Coaches

Categories Accumulation Creation Retention Transfer Total
Decision Making 6% 6% 6% 13% 31%
Risk 0% 0% 0% 6% 6%
Communication 0% 0% 0% 0% 0%
Monitor and Adapt 0% 0% 0% 0% 0%
Quality 0% 0% 0% 0% 0%
Transition from Development
to Release 0% 0% 0% 0% 0%
Grand Total 6% 6% 6% 19% 38%

Table 26

Future Use of KM - Category by Project Managers

Categories Accumulation Creation Retention Transfer Total
Monitor and Adapt 0% 6% 0% 6% 13%
Quality 0% 6% 0% 6% 13%
Decision Making 0% 0% 0% 6% 6%
Transition from Development
to Release 0% 0% 0% 6% 6%
Communication 0% 0% 0% 0% 0%
Risk 0% 0% 0% 0% 0%
Grand Total 0% 13% 0% 25% 38%

Table 27

Future Use of KM - Category by Software Managers

Categories Accumulation Creation Retention Transfer Total
Communication 0% 6% 6% 6% 19%
Decision Making 0% 6% 0% 0% 6%
Monitor and Adapt 0% 0% 0% 0% 0%
Quality 0% 0% 0% 0% 0%
Risk 0% 0% 0% 0% 0%
Transition from Development
to Release 0% 0% 0% 0% 0%
Grand Total 0% 13% 6% 6% 25%

166

Future Use of KM - Themes by Category. The themes emerged from an

analysis of the data on how agile coaches, project managers, and software managers

could use KM in the future. Although the research participants primarily discussed how

they use KM could be used to improve decision making and communication, all of the

themes that emerged from an analysis of the data are described in this dissertation. For

example, although only one project manager talked about how KM could be used in the

future to transition from development to release, the theme was included in the results.

Decision Making. An agile coach and a project manager said that knowledge

creation and transfer could be used in the future to determine what gets built and another

agile coach said that knowledge accumulation, retention, and transfer could be used in the

future to determine what gets built.

In the work I see in the work I’ve been involved with there is definitely a need for

improvement in the requirements and user stories. Typically, in a user story “As

a, I want to, so that”, that is a user story and that goes in the product backlog and

that’s handed to the team but there are several things that can help strengthen that

user story to make it able for a team to understand exactly what it is that needs to

be done to satisfy that user story. Those are some of the other techniques of

including acceptance criteria or even behavior driven development. …Additions

to the user story. There’s ways to improve it even just beyond the shell so to

speak.

Communication. A software manager said that knowledge transfer could be used

in the future to improve communication between stakeholders and to capture knowledge

167

just in time while another software manager said that knowledge creation and retention

could be used in the future to improve communication between stakeholders and to

integrate knowledge into the code.

So it’s really presenting information in a way that people can see and will take the

time to look at and so for example, it would be pretty interesting if you could

shoot back information to somebody’s phone. Everybody’s tethered to their

phones these days and they are used to looking at it. When you’re sitting in a

meeting it’s kind of hard to get people to look up from their phones. So I think

there a lot of areas where delivering information to stakeholders in ways they can

understand and will look at is important.

Other Categories. Few research participants talked about the use of KM to

monitor and adapt, to improve quality, to manage risk or to transition from development

to release. A project manager said that knowledge creation and transfer could be used in

the future to improve knowledge about project status. A project manager said that

knowledge creation and transfer could be used in the future to improve quality. An agile

coach said that knowledge transfer could be used in the future to manager risk and a

project manager said that knowledge transfer could be used to transition from

development to release.

Future Use of Knowledge Management - Tools and Methods. The agile

coaches, project managers, and software managers did not discuss how quantitative

methods could be used in the future to measure software development progress; however,

the project managers and software managers claimed that KM tools and methods could

168

be used to improve software development productivity if the knowledge was

understandable to all stakeholders, up to date, and synchronized with the software

development.

Right. I think one of the biggest challenges of any of those software things is that

separation of code from kind of human understandable language. When it is

happening, it seems that they naturally become separated. Okay, we have our

code so all of the engineers can look at the code and know what’s going on and

know what should happen and then describing back to the users… If someone

says, “How does the payment processing work?” I can’t give them the payment

processing class and there is a function in here called process payment and that

describes it, right? So how do we build in or find translation tools to make those

pieces of the communication and knowledge management, you know, more

holistic?...How do we make the requirement and the documentation of the system

and the code of the system, one?

 One of the project managers recommended that KM tools and methods could be

used to improve software development productivity if software teams actively trained the

configuration and maintenance teams for a seamless transition from development to

release.

So that knowledge management of the system at a high level, deploying it,

configuring it for release, those types of things as well as all of the diagnostic

tools of the software. You know, for instance, logging and performance

monitoring. Those types of things. Knowledge management is critical there and

169

that’s where typically if you are transitioning to a support team you’re not just

going to dump. “Here’s the wiki, have fun.” Figure it out for yourself. There has

to be some official knowledge transfer process they kind of falls outside of

anything agile gives you guidance for.

Future Use of KM – SWEBOK Activity by KM Activity. The research

participants primarily discussed how KM could be used in the future during the process

activities (50%) and the research participants discussed how KM could be used in the

future during the requirements activities (25%) and the tools and methods activities

(25%) as shown in Table 28. What the research participants said about the use of KM

during the Tools and Methods activities is discussed later in this dissertation. One of the

software managers discussed how KM could be used in the future to improve software

development productivity by delivering information to the stakeholders’ phones.

So it’s really presenting information in a way that people can see and will take the

time to look at and so for example, it would be pretty interesting if you could

shoot back information to somebody’s phone. Everybody’s tethered to their

phones these days and they are used to looking at it. When you’re sitting in a

meeting it’s kind of hard to get people to look up from their phones. So I think

there a lot of areas where delivering information to stakeholders in ways they can

understand and will look at is important.

170

Table 28

Future Use of KM – SWEBOK Activity by KM Activity

SWEBOK Activities Accumulation Creation Retention Transfer Total
Requirements 3% 10% 7% 10% 31%
Process 0% 7% 3% 10% 21%
Tools and Methods 0% 7% 3% 7% 17%
Configuration Management 0% 3% 0% 7% 10%
Construction 0% 3% 0% 3% 7%
Maintenance 0% 3% 0% 3% 7%
Quality 0% 3% 0% 3% 7%
Design 0% 0% 0% 0% 0%
Engineering Management 0% 0% 0% 0% 0%
Testing 0% 0% 0% 0% 0%
Grand Total 3% 38% 14% 45% 100%

Comparison of Themes by Research Participant Demographics

The research participant responses were analyzed to determine the similarities and

differences of their responses to the research questions based on demographics. The

responses were compared by number of years of agile software development experience.

The responses were compared based on the agile software development methods used by

the research participants and the responses were compared based on the size of the

software development projects described by the research participants.

Analytics and Agile Experience. Approximately 78% of the research

participants had over 5 years of agile software development experience. Unlike the

research participants with fewer than 5 years of experience (22%), the research

participants with more than 5 years of experience said that analytics are used to improve

security. The research participants with fewer than 5 years of agile software development

experience identified three unique themes as show in Table 29.

171

Table 29

Analytic Themes Unique To Research Participants With <5 Years of Experience

Category Theme

Estimate, Plan, Forecast Analytics are used to groom the backlog

Decision Making Analytics are used to determine maintenance

priorities

Risk Management Analytics are used to determine the root cause

of issues

Knowledge Management and Agile Experience. Most of the research

participants had more than five years of experience using agile software development

methods (78%). The research participants with less than 5 years of agile software

development experience included one project manager and one software manager. They

did not identify any unique KM themes compared to the KM themes identified by the

research participants with over 5 years of agile software development experience.

Analytics and Project Description. The themes that emerged from the data were

compared based on the project description provided by the research participants. The

projects were categorized as small, medium or large based on the project description

provided by the research participants and the estimated number of employees at the

research participant’s organization. Projects were categorized as small if the number of

employees was 500 or less. The project was categorized a medium if the number of

employees was greater than 500 but less than 50k. The project was categorized as large if

172

the number of employees was greater than 50k. One research participant described their

projects as small, medium, and large.

Four research participants described their projects as small, four research

participants described their projects as medium, and three research participants described

their projects as large. One research participant described their project as small, medium,

and large. The themes were analyzed to identify the unique themes for each project size.

Only one research participant who described their project as large discussed the use of

analytics to improve security and only one research participant who described their

project as large talked about the use of analytics to manage risk. The remaining themes

were not unique to the category. Table 30 shows the analytic themes discussed by the

research participants unique to each project size.

173

Table 30

Analytic Themes Discussed by Research Participants – Unique for Project Size

Category Theme Size
Decision Making Analytics are used to determine maintenance

priorities
Small

Estimate, Plan,
Forecast

Analytics are used to groom the backlog Large

 Analytics could be used in the future to
forecast

Small

Inspect and
Adapt

Analytics could be used in the future to
measure change in scope over time

Medium

 Analytics could be used in the future to
measure cost for delays

Medium

Risk Analytics are used to determine the root
cause of issues

Large

Security Analytics are used to improve security Large
 Analytics could be used to improve security Large
Transition from
Development to
Release

Analytics could be used to improve the
transition from development to release

Small

Knowledge Management and Project Description. The research participants

who described their projects as small, medium, and large did not discuss categories

related to the use of KM to improve software development productivity that were unique.

Instead, the research participants discussed themes that supported the categories

identified by the other research participants. For example, the research participants who

described their projects as small discussed how KM is used to inspect and adapt as did

other the research participants. Table 31 shows the unique KM themes discussed by the

research participants for each project size.

174

Table 31

KM Themes Discussed by Research Participants – Unique for Project Size

Category Theme Project Size

Communication KM could be used in the
future to integrate
knowledge into the code

Small

 KM could be used in the
future to capture knowledge
just-in-time

Medium

 KM could be used in the
future to improve
communication between
stakeholders

Medium

Continuous Improvement KM is used to drive change
across the organization

Large

Decision Making KM is used as a competitive
advantage

Medium

Monitor and Adapt KM could be used in the
future to improve
knowledge about project
status

Small

Risk KM could be used in the
future to manage risk

Small

Analytics and Agile Practices. The research participants stated that they used

Scrum (44%), Scrum and Lean\Kanban (22%), Scrum, Lean\Kanban, XP (22%), and

Lean\Kanban (11%). No unique categories related to how analytics are used to improve

software development productivity emerged from the data provided by the 11% of the

research study participants who stated that they did not use Scrum methods for software

development. Although one unique analytic theme was discussed by the research

participants who stated that they used XP (22%) in addition to Scrum and other agile

software development methods; this theme was not unique within the category of

175

estimate, plan, forecast since research participants who do not use XP discussed themes

related to estimate, plan, forecast. No unique Analytic categories emerged from the data

provided by the research participants who claimed to use Scrum (89%). Table 32 shows

the theme unique to the research participants who use XP.

Table 32

Analytic Themes Discussed by Research Participants Using XP

Category Theme
Estimate, Plan, Forecast Analytics could be used in the future to forecast

KM and Agile Practices. No unique themes related to how KM is used to

improve software development productivity emerged from the data provided by the 11%

of the research study participants who stated that they used Lean\Kanban rather than

Scrum methods for software development. No unique KM categories emerged from the

data provided by the research participants who claimed to use Scrum (89%).

Research Question 4

The research participants were asked, “What obstacles do software managers,

project managers, and agile coaches in agile software environments think their

organization need to overcome to improve software development productivity?”

Obstacles - People. The agile coaches, project managers, and software managers

said that the stakeholders do not understand agile software development practices well

enough to make informed decisions. For example, the Software Managers said that senior

management interrupts the software development teams during an iteration to add or

change the work because the management does not understand agile well enough. The

176

project managers said that confusion and conflict results when the stakeholders and the

software development team do not have the same understanding of agile software

development practices. Although productivity could be improved if the stakeholders had

a better understanding of agile software development practices, the agile coaches stated

that the stakeholders do not always want to know more about agile software

development.

So for software managers and project managers it’s explaining how they do what

they do lightly enough to people who don’t have an interest deeply enough so that

they understand the implications of the decisions that they can make from their

role within an organization.

 The agile coaches also said that there is a lack of project management skills and

the software teams do not have a thorough understanding of agile software development

practices; consequently, only some agile practices are used which limits the benefits

derived from using agile software development methodology. According to one software

manager, productivity could be improved if software teams had alternative ways to learn

new processes, tools, and technology.

 The project managers recommended that software development teams improve

the communication and collaboration with the infrastructure team to remove the obstacles

to implementation, which cause confusion and conflict.

There are groups outside of the dome of the engineering team which aren’t quite

there yet and that is where the obstacles still exist or the challenges still exist. We

talked about it in several different ways. The way that I see that they could be

177

improved which is visibility and a common description of those objects, if you

will, that are shared between them.

Obstacles - Process. The agile coaches said that the organizations’ command-and

control structures conflict with the use of agile software development practices.

According to the project managers, there is a culture clash between the iterative process

of agile software development, which is not focused on long range planning and the

business need for long range planning. The software managers said that the corporate

culture does not support agile software development.

For software managers and agile coaches I think the biggest hurdle is corporate

culture and that’s true of really anything but even more so in software. It hugely

defines whether someone can be agile and innovative or whether, you know, you

are just coasting and putting things out because someone up the chain decided,

“Hey, we should do this.”

 The project managers and the software managers said that the software developed

does not solve the right problem because there is insufficient understanding of the

business needs and because the requirements are not clearly defined.

One of our biggest challenges is really nailing a requirement and we have seen

this time and time again.

 Productivity is negatively affected when there is no software product roadmap

according to one software manger and aligning the software development plan with the

organizational goals could improve productivity.

178

Really making sure that this is what we think we need to do, this is what we can

do, and then this is what we’re going to do.

 One of the project managers said that when organizations try to impose a single

software development process on all software development teams, productivity is

negatively impacted.

We had a guy a year or so ago tried to write the software development lifecycle

manual and we realized in the process of doing that, because we have so many

different teams that have different end-user business needs and they operate in

different languages. The applications are different sizes. This one small little

lightweight app they could probably even deploy every week. The other one that

is our e-commerce site, it takes a week to regression test. So, you can’t be apples

to apples on different teams forcing them to do things the same way because they

are just different scales.

Obstacles – Tools and Methods. The agile coaches said that tools like Excel are

not sufficient for agile software development because they do not scale and do not enable

the team to forecast and the software managers said that the software development and

management tools are not mature and that the software teams do not know how to use the

agile tools.

Summary

 The results of this phenomenological research study were discussed in this

chapter. The research questions were answered and evidence was provided to support the

findings. The agile coaches, project managers, and software managers who were

179

interviewed said that DDD is needed to improve software development productivity;

however, productivity should not be improved at the expense of quality. The research

participants discussed the need to include DDD in the software development process and

to measure the right thing. The research participants recommended that DDD be used to

determine what should be built because productivity is negatively impacted when the

wrong thing is built and the research participants recommended that DDD be used to

ensure the stakeholders have a common understanding of agile software development

methods.

In Chapter 5, the research findings discussed in this chapter are interpreted based

on the conceptual framework: people, process, and tools and methods. Recommendations

for additional research are presented and the limitations of this research study are

presented. Finally, the implications for social change are discussed and the conclusions

are discussed.

180

Chapter 5: Discussion, Conclusions, and Recommendations

Software project success needs to improve (Ambler, 2012; Emam & Koru, 2008;

Mieritz, 2012; the Standish Group (n. d.) and agile software development methods were

developed to improve software project success (Rao, Naidu, & Chakka, 2011). Although

DDD can improve organizational output and productivity, organizations need to define

DDD within the context of the problem (Ferrand et al., 2010; Herschel et al. 2010; Yeoh

& Koronios, 2010). Based on a review of the literature on DDD and agile software

development, the research on DDD as a tool to improve software development

productivity is in the initial stages; therefore, this qualitative research study was intended

to fill this gap in the literature by exploring the meaning of DDD within an agile software

development environment.

The purpose of this phenomenological research study was to understand the lived

experiences of agile coaches’, project managers’, and software managers’ use of DDD in

agile software organizations as a tool to improve software development productivity. The

purpose was to identify impediments to DDD use in software development organizations

and to make recommendations for improving DDD use in software development

organizations based on the findings from this research study and a review of the

literature.

The IPA approach was used to iteratively analyze the data for this research study.

Approximately 19 themes in eight categories emerged from an analysis of the data on the

current and future use of analytics to improve software development productivity and

181

approximately 26 themes in seven categories emerged from an analysis of the data on the

current and future use of KM to improve software development productivity.

Software development productivity may be improved if organizations use DDD to

determine what to build and how to build it. Software development productivity may be

improved if organizations use DDD to transition from a command and control culture to a

culture that supports agile software development. Based on the results of this research,

software development productivity may be improved if organizations use DDD to ensure

the stakeholders have a common understanding of agile software development methods.

Interpretation of the Findings

Software development productivity needs to improve (Ambler, 2012; Emam &

Koru, 2008; Mieritz, 2012; the Standish Group (n. d.) and agile software development

methods were developed to improve software development productivity (Schwaber,

1995). Most of the research participants said that analytics and KM could be used to

improve software development productivity; however, productivity should be improved

by focusing on building the right thing, rather than focusing on increasing the number of

lines of code written per hour. Although a few of the research participants cautioned that

a balance needs to be maintained between productivity and quality, other research

participants equated improved quality with improved productivity. If quality is

improved, less rework is needed to meet customer expectations and to maintain the

software.

182

People

Organizations need to adapt a culture of sharing for successful agile software

development and organizations need to adapt a culture of sharing to successfully create

and transfer active knowledge (Sholla & Nazari, 2011). Organizations need to explore

ways to use analytics. Although Brynjolfsson et al. (2011) found that DDD improved

organizational productivity, organizations need to brainstorm ways to use DDD to

improve software development productivity (Adrian & Genovese, 2011). Agile software

organizations need to explore ways to use DDD because people need to know more about

what to measure and how to measure productivity in an agile software development

environment.

Agile software development teams need to be trained to use the agile software

development tools and agile software development teams and their stakeholders need

alternative ways to learn new processes, tools, and methodologies. For example, one

research participant recommended that the agile software development teams consider

using mobile technology to provide knowledge to stakeholders when and where they

need it. The knowledge about agile software development practices needs to be tailored

to the needs of the stakeholders. For example, some of the research participants said that

the stakeholders do not always want to know more about agile software development.

The stakeholders need to know enough about agile software development practices to

make informed decisions. The agile software development teams need to know the

benefits and disadvantages of each of the agile software development methods in order to

183

select the appropriate agile methods for each project. Roa et al. (2011) were able to

identify the pros and cons of XP, DSDM, and Scrum.

In addition to training the software development team, the stakeholders need to

understand agile software development practices to avoid negative impacts to

productivity such as interruptions. Productivity can be improved by reducing

interruptions and by improving the quality of the software produced. Software

developers can use historical data to improve software estimation and to reduce defects

(Elminir et al., 2009).

Process

Communication. Most of the research participants talked about how knowledge

transfer is used to store and find content and to improve communication between

stakeholders just as Ceschi et al. (2005) found, productivity was improved when agile

software communication methods and knowledge transfer methods were used instead of

traditional software development methods. Although the research participants did not

discuss the differences between using agile software development methods on small

projects versus large projects and although Qumer and Hendersen-Sellers (2008) claimed

that agile methods could be used in large and small software projects, managers should

be aware of the exponential increase in communication channels as team size increases

(Lalsing et al., 2008; Pikkarainen et al., 2008; Rao et al., 2011).

One of the research participants promoted the benefits of face-to-face

communication on agile software development projects; however, organizations that

choose to use automated methods to develop and display story cards may not benefit

184

from the social benefits of face-to-face communication (Sharp et al., 2009). A few of the

research participants said that knowledge accumulation, creation, retention, and transfer

are used to share agile expertise and one of the research participants said that KM could

be used in the future to capture knowledge just-in-time and to integrate knowledge into

the code.

Continuous Improvement. The research participants said that descriptive and

diagnostic analytics are currently used for continuous improvement and that analytics

could be used in the future to improve coding productivity. A few of the research

participants talked about how KM is used during the agile retrospective process which

was one of the six KM activities Levy and Hazzan (2009) recommended to improve agile

software development. Organizations should integrate KM activities into the agile

software development continuous improvement processes (Levy & Hazzan, 2009). KM

is used to drive change across the organization according to one research participant.

Decision Making. Descriptive analytics are currently used to determine

maintenance priorities according to one of the research participants. The research

participants recommended that organizations use advanced analytics to determine what

should be built and how to build the software products just as Laney (2012)

recommended that organizations take advantage of advanced analytics to evolve from

insight to foresight and to embrace complexity and changing conditions. Therefore,

organizations will need to take advantage of big data and explore ways to use advanced

analytics.

185

Several of the research participants talked about how knowledge transfer is

currently used as a tool to determine what should be built and how it should be built and

how knowledge transfer could be used in the future to determine what should be built and

how it should be built. However, agile software development teams need to aware that

increased knowledge transfer may or may not lead to the correct solution. If stakeholders

are like CTOs, they may use heuristics to make decisions when time, knowledge, and

computational power are limited Additional research may be needed to determine how

decision makers consider, weigh, and integrate data for decision-making (Ow & Morris,

2010).

The research participants also discussed how KM is used to improve team

decision making, to select the right tool for the job, and as a competitive advantage.

However, agile software development teams need to aware that knowledge needs to be

transformed so that it is actionable (Linden et al., 2007; Lingling et al., 2009). More data

does not lead to better decision-making and improved productivity unless the data is

analyzed, formatted, and presented in a way that enables the decision makers to make

better decisions. Although the research participants discussed how KM is used to

improve team decision making, agile software development teams need to balance team

cohesion and team empowerment to avoid dysfunctional consensus in which all the group

members either silently disagree with a solution or all of the members agree because of

one person who is perceived as an influencer (McAvoy & Butler, 2009).

Estimate, Plan, Forecast. A few of the research participants mentioned that

descriptive analytics are currently used to determine how much time has been spent on

186

the software design versus how much time has been spent on software construction and to

groom the backlog. Several of the research participants said that currently descriptive,

diagnostic, and predictive analytics are used to estimate, plan, and forecast software

development iterations and releases; however, a few of the research participants said that

more advanced analytics could be used in the future to estimate, plan, and forecast. For

example, one of the research participants talked about the use of advanced analytics to do

long-term planning:

This is really where I’m trying to take my company from a prescriptive

perspective. This is where you’re getting into forecasting models. It could be

perhaps. From a prescriptive perspective you’re really trying to predict what is

your future timeline for multiple releases across the project, right? What do we

anticipate our burn to be?

Although Abouelela and Benedicenti (2010) were able to successfully estimate

the completion date and the defect rate of an agile software development project using a

Bayesian network, their research was limited to two case studies and agile XP methods

and although Zare and Akhaven (2009) found that their fuzzy cyclic network algorithm

was more accurate than the schedule based on the critical path method (CPM), their

research was limited to estimating software development in a traditional software

development environment. Additional research is needed to determine how advanced

analytics could be used to estimate, plan, and forecast agile software development

projects. Contrary to what the project managers said about the need for long term

estimating, planning, and forecasting in order to meet the business needs, Pelrine (2011)

187

proposed that agile software development organizations use the inspect and adapt model

to estimate by establishing system boundaries and then adapting as more is learned about

the evolving system.

Monitor and Adapt. Several of the research participants talked about how they

currently use descriptive and diagnostic analytics to monitor progress and adapt the

software development plan or “inspect and adapt.” Only one software manager

recommended that descriptive analytics be used in the future to measure the change in

scope over time and to measure the cost for delays in order to improve software

development productivity. A few of the research participants talked about how

knowledge creation and retention could be used to improve knowledge about project

status and to monitor progress and adapt the software development plan.

Quality. Several of the research participants said that descriptive and diagnostic

analytics are currently used to improve quality and one of the research participants said

that predictive analytics could be used in the future to improve quality. Several of the

research participants discussed how KM is currently used to improve code quality and

how KM could be used in the future to improve code quality. A research study seems to

support this claim. When software engineers were provided with historical data, although

they were not able to improve productivity, they were able to improve the quality of their

work (Elminir et al, 2009).

Quality may also be improved when agile software development teams use the XP

practice of paired programming. Paired programming promotes knowledge transfer and

as Balijepally et al. (2009) found, while paired programming methods did not improve

188

performance, paired programming did improve software quality. However, Lee and Xia

(2010) recommended that agile software managers balance software team autonomy and

diversity to successfully deliver the functionality that meets the customer expectations for

quality, cost, and schedule because agile software requirement changes can have both

positive and negative effects on on-time completion and on-budget completion.

Risk. One of the research participants discussed how descriptive analytics are

currently used to manage risk by determining the root cause of issues. Although Laney

(2012) recommended that analytics be used to automate risk reporting, no other articles

were found in the literature that discussed analytics as a tool to manage risk in an agile

software development environment. Most of the research participants talked about the

use of KM to manage risk by minimizing the negative impact of personnel changes.

However, agile software development teams need to find ways to train new employees

rather than have more experienced team members take the time to train less expert team

members which can negatively impact productivity (Neves et al., 2011).

Security. Only one of the research participants discussed how diagnostic

analytics are currently used to improve security during software development and that

diagnostic analytics could be used in the future to improve security.

Transition from Development to Release. The majority of the research

participants said that descriptive and diagnostic analytics are currently used to transition

from software development to release by using automated test and continuous integration

methods. The research participants also said that descriptive and diagnostic analytics

could be used in the future to transition from software development to release while one

189

research participant said that predictive analytics could be used to transition from

development to release. Although Smith (2011) recommended using automated

regression testing and continuous integration to release software frequently for cloud

computing, no empirical research was found to validate this recommendation. A few of

the research participants said that KM is used to improve the transition from development

to release and that KM could be used in the future to improve the transition from

development to release.

Process. According to Linden et al. (2007) organizations could improve software

development by designing software systems on Churchman’s inquiry system design

characteristics, which would provide a framework that is generalizable and repeatable.

Data would be needed to determine the differences between the user’s behavior patterns

and data would be needed to estimate how well the user’s behavior met the overall

system goals. Data would also be needed to communicate the goals to the software

development team so that the information system design reflected the goals and data

would be needed to ensure the integrity of the whole system was maintained.

Tools and Methods

Some of the software managers said that software development and management

tools needed to mature. Software productivity may improve when the software tools

mature because software development productivity is dependent upon people, process,

and tools (Wadhwa & Mittra, n.d.). Some of the research participants said that agile

software development teams need to use tools that scale and software estimating,

190

scheduling, and management tools need to be improved and the techniques need to be

improved (Emam & Koru, 2008; Patil, Nageswara, & Yogi, 2011).

Organizations may benefit by implementing KM tools that focus on skill

management and people to minimize entry cost and increase visibility to KM.

Organizations could also benefit by tailoring KM tools to provide the knowledge needed

by team members other than management (Sholla & Nazari, 2011). Several of the

research participants talked about the use of KM to improve communication within the

software development team and between stakeholders. Although Rayner (2011) and

Chandler (2011) recommended that organizations use CDM to improve decision making,

communication and collaboration, the research participants did not mention using CDM

platforms for decision making nor did they recommend using CDM platforms in the

future. Agile software development teams may need to aware of the benefits and

limitations of CDM as well as the tools that enable CDM. Agile software teams need to

know that CDM platforms are best used for “nonroutine, complex decisions that require

iterative human interactions” (Schlegel et al., 2009, p. 1).

Limitations of the Study

Although the research participants were provided with definitions for descriptive,

diagnostic, predictive, and prescriptive analytics, and knowledge accumulation, creation,

retention, and transfer, the responses to the research questions were limited to the

research participants’ understanding of the use of analytics and KM in an agile software

development. This research study was limited to interpreting the lived experiences of

software managers, project managers, and agile coaches in the United States who use

191

agile software development methods and did not attempt to provide empirical evidence

that analytics or KM improve software development productivity. The research questions

were answered by research participants, who agreed that software development

productivity needed to improve, and that analytics and KM could help improve software

development productivity. The responses to the research questions may differ for those

who do not agree that software development productivity needs to improve or that

analytics and KM could help improve software development productivity.

Recommendations

This qualitative research study was intended to explore the use of DDD, which

includes data, analytics, and KM, as a tool to improve software development productivity

in an agile software development environment. This research study was limited to

understanding the lived experiences of nine individuals who work for organizations in the

United States and this research study was limited to understanding the lived experiences

of individuals with knowledge creation, accumulation, retention, and transfer and

descriptive, diagnostic, predictive, and prescriptive analytics. Additional research outside

the United States or with different operational definitions for KM and analytics may

reveal new insights into how DDD could be used to improve software development

productivity.

This research study was limited to understanding the lived experiences of agile

coaches, software managers, and projects managers. Additional research that included

software developers, business analysts, and other agile software development team

members could reveal different results. Although some of the research participants

192

described their projects as small, others described their projects as medium or large.

Additional research that purposefully selected research participants based on project size

could add to the knowledge on how DDD improves software development productivity in

an agile software development environment.

Qualitative research is exploratory in nature. Additional research is needed to

empirically determine the correlation between DDD and software development

productivity in an agile software development environment. Quantitative research

methods could be used to determine how much productivity is or is not improved when

DDD is used and mixed methods research methods could be used to better understand

agile software development environments and to measure their effectiveness on the use of

DDD to improve software development productivity. Additional research could be

conducted to evaluate the effectiveness of KM tools that incorporate analytics to improve

software development productivity.

Implications

Organizations in the United States and elsewhere have spent time and money

developing software products that have failed to meet customer expectations and have

failed to take advantage of advances in hardware capabilities. Organizations may be able

to use DDD to improve software development productivity, which would result in

improved customer satisfaction, opportunities to develop new products and features, and

the potential to spend time and money on additional projects. Positive social change

could result from organizations that are better able to compete in a global economy and

from organizations that are better able to create products and jobs.

193

Organizations should consider transforming from a command and control culture

to a culture that supports agile software development and organizations should encourage

stakeholders at all levels of the organization to learn enough about agile software

development methods to make informed decisions. Organization should explore ways to

use DDD to determine what should be built and software development organizations

should explore ways to use DDD to improve software development productivity.

Conclusion

This phenomenological qualitative research study explored the lived experiences

of agile coaches, project managers, and software managers with DDD as a tool to

improve software development productivity in an agile software development

environment. Just as DDD was found to improve organizational productivity

(Brynjolfsson et al., 2011), the research participants agreed that DDD has the potential to

improve software development productivity in agile software development organizations.

Although agile software development methods were developed to improve software

development productivity (Schwaber, 1995), the research participants talked about the

need for organizations to consider the unique characteristics of each project and ensure

that the people, process, tools, and methods are aligned to meet the goals of the

organization.

This qualitative research study explored the use of DDD, which consists of data,

analytics, and KM to improve software development productivity. The cost for software

project failure is high and the benefits for improved software development productivity

are significant. Therefore, based on the results of this research study, organizations

194

should explore ways to use more advanced analytics to better ensure the right product is

built and to work collaboratively with agile software development organizations

throughout the software development process and organizations should find ways to use

KM to improve communication and collaboration with agile software development teams

and to make knowledge actionable.

195

References

Abdullah, R., Shah, Z. M., & Talib, A. M. (2011a). A framework of tools for managing

software architecture knowledge. Computer & Information Science, 4(2), 2-16.

Retrieved from http://journal.ccsenet.org/index.php/cis/index

Abdullah, R., Talib, A. M., & Misran, E. K. (2011b). Agent technology application

strategies in personal and team software process environment. American Journal

of Economics & Business Administration, 3(2), 347-351. Retrieved from

http://thescipub.com/ajeba.toc

Abouelela, M., & Benedicenti, L. (2010). Bayesian network based XP process modeling.

International Journal of Software Engineering & Applications, 1(3), 1-15.

doi:10.5121/ijsea.2010.1301

Adrian, M., & Genovese, Y. (2011, May 2). Analytics and learning technology: CIOs,

CTOs should rethink art of the possible. 1-7. Retrieved from

http://www.gartner.com/technology/home.jsp

AlAli, A. I., & Issa, A. A. (2011). Towards well documented and designed agile software

development. World Academy Of Science, Engineering & Technology, 73, 73126-

73131. Retrieved from http://www.waset.org/

Ambler, S. W. (2012). Feature driven development and agile modeling. Retrieved from

http://www.agilemodeling.com/essays/fdd.htm

Ambler, S. W. (2010). 2010 IT project success rates. Retrieved from

http://www.drdobbs.com/architecture-and-design/2010-it-project-success-

rates/226500046?pgno=2

196

Amescua, A. A., Bermón, L. L., García, J. J., & Sánchez-Segura, M. I. (2010).

Knowledge repository to improve agile development processes learning. IET

Software, 4 (6), 434-444. doi:10.1049/iet-sen.2010.0067

Babbie, E. R. (2006). The practice of social research (11th ed.). Belmont, CA:

Wadsworth.

Balijepally, V., Mahapatra, R., Nerur, S., & Price, K. H. (2009). Are two heads better

than one for software development? The productivity paradox of pair

programming. MIS Quarterly, 33(1), 91-118. Retrieved from

http://www.misq.org/

Ballou, M. (2008). Key disruptive trends driving agile adoption. Retrieved from

http://www.qsma.com/pdfs/AgileMetricsQSMAStudy.pdf

Bartes, F. (2011). Action plan - basis of competitive intelligence activities. Economics &

Management, 16664-16669. Retrieved from

http://www.ktu.lt/lt/mokslas/zurnalai/ekovad/16/1822-6515-2011-0664.pdf

Bassi, L. (2011). Raging debates in HR analytics. People & Strategy, 34(2), 14-18.

Retrieved from http://www.hrps.org/

Bazeley, P. (2013). Qualitative data analysis: Practical strategies. Thousand Oaks, CA:

Sage.

Beck, K., Beedle, M., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., . . .

Thomas, D. (2001). The agile manifesto. Retrieved from www.agilemanifesto.org

Bjornson, F., & Dingsoyr, T. (March 11, 2008). Knowledge management in software

engineering: A systematic review of studied concepts, findings and research

197

methods. Information and Software Technology, 14. Retrieved from

http://alarcos.esi.uclm.es/doc/metotecinfinf/articulos/bjornson.pdf

Boden, A., Avram, G., Bannon, L., & Wulf, V. (2009). Knowledge Management in

distributed software development teams: Does culture matter? Paper presented at

the IEEE 4th International Conference on Global Software Engineering

(ICGSE'09), Limerick, Ireland.

Boehm, B., Lane, J., Koolmanojwong, S., & Turner, R. (2010). Architected agile

solutions for software-reliant systems. In T. Dingsøyr, T. Dybå & N. B. Moe

(Eds.), Agile Software Development (pp. 165-184): Berlin: Springer.

Brynjolfsson, E., Hitt, L. M., & Kim, H. H. (2011). Strength in numbers: How does data-

driven decision making affect firm performance? SSRN eLibrary. Retrieved from

http://ssrn.com/paper=1819486

Cappelli, W., & Kowall, J. (2011). Magic quadrant for application performance. 46.

Retrieved from http://www.gartner.com/technology/core/home.jsp

Ceschi, M., Sillitti, A., Succi, G., & De Panfilis, S. (2005). Project management in plan-

based and agile companies. Software, IEEE, 22(3), 21-27.

doi:10.1109/ms.2005.75

Chan, F. K. Y., & Thong, J. Y. L. (2009). Acceptance of agile methodologies: A critical

review and conceptual framework. Decision Support Systems, 46(4), 803-814.

doi:10.1016/j.dss.2008.11.009

Chandler, N. (2011). Hype cycle for performance management. 64. Retrieved from

http://www.gartner.com/technology/core/home.jsp

198

Chandler, N., Hostmann, W., Rayner, N., & Herschel, G. (2011). Gartner's business

analytics framework. 18. Retrieved from

http://www.gartner.com/technology/core/home.jsp

Chen, S. (1998). Mastering reasearch: A guide to the methods of social and behavioral

sciences. Chicago, IL: Nelson-Hall.

Clark, W., & King, M. (2011). Magic quadrant for mobile consumer application

platforms. 39. Retrieved from http://www.gartner.com/technology/core/home.jsp

Clutterbuck, P., Rowlands, T., & Seamons, O. (2009). A case study of SME web

application development effectiveness via agile methods. Electronic Journal of

Information Systems Evaluation, 12(1), 13-26. Retrieved from

http://www.ejise.com/main.html

CMMI Product Team (2010). CMMI for development, Version 1.3. Retrieved from

http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

Cohn, M.. (n.d., a). What is agile and Scrum? In Mountain goat software. Retrieved June

3, 2012, from http://www.mountaingoatsoftware.com/.(definition)

Cohn, M.. (n.d., b). What is Scrum? In Mountain goat software. Retrieved June 3, 2012,

from http://www.mountaingoatsoftware.com/.(definition)

Cohn, M.. (n.d., c). A reusable Scrum presentation. In Mountain goat software. Retrieved

June 3, 2012, from http://www.mountaingoatsoftware.com/.(figure)

Creswell, J. W. (2007). Qualitative inquiry & research design: Choosing among five

approaches (2nd ed.). Thousand Oaks, CA: Sage.

199

Dubey, N. (2011). A paper presentation on software development automation by

computer aided software engineering (CASE). International Journal Of Computer

Science Issues (IJCSI), 8(1), 182-184. Retrieved from www.ijcsi.org

Earl, M. (2001). Knowledge management strategies: Toward a taxonomy. Journal of

Management Information Systems 18(1), 215–233. Retrieved

from http://www.mesharpe.com/results1.asp?ACR=mis

Eccles, M., Smith, J., Tanner, M., Van Belle, J., & van der Watt, S. (2010). The impact of

collocation on the effectiveness of agile is development teams. Communications

of The IBIMA, 1-11. Retrieved from

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

Elminir, H. K., Khereba, E. A., Elsoud, M., & El-Hennawy, I. (2009). Application and

evaluation of the personal software process. International Journal of Basic &

Applied Sciences, 9(10), 55-78. Retrieved from

http://www.sciencepubco.com/index.php/ijbas

Emam, K., & Koru, A. (2008). A replicated survey of IT software project failures. IEEE

Software, 25(5), 84-90. doi:1534417671

Ferrand, D., Amyot, D., & Corrales, C. (2010). Towards a business intelligence

framework for healthcare safety. Journal of Internet Banking & Commerce, 15(3),

1-9. Retrieved from http://www.arraydev.com/commerce/jibc/

Fitzgerald, B. (2012). Software crisis 2.0. IEEE Computer, 45(4), 89-91.

doi:10.1109/MC.2012.147

200

Ganesh, N. N., & Thangasamy, S. S. (2012). Lessons learned in transforming from

traditional to agile development. Journal of Computer Science, 8(3), 389-392.

Retrieved from http://thescipub.com/jcs.toc

Gassman, B., Salam, R. L., Bitterer, A., Hagerty, J., & Chandler, N. (2010). Predicts

2011: New relationships will change BI and analytics. Retrieved from

http://www.gartner.com/technology/core/home.jsp

Glazer, H., Dalton, J., Anderson, D., Konrad, M., & Shrum, S. (2008). CMMI or agile:

Why not embrace both! Retrieved from

http://www.sei.cmu.edu/reports/08tn003.pdf

Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge Management: An

organizational capabilities perspective. Journal Of Management Information

Systems, 18(1), 185-214. Retrieved from http://www.mesharpe.com/

Hedgebeth, D. (2007). Data-driven decision making for the enterprise: an overview of

business intelligence applications. VINE, 37(4), 414-420.

doi:10.1108/03055720710838498

Herschel, G. (2011). Hype cycle for analytic applications, 2011. Retrieved from

http://www.gartner.com/technology/home.jsp

Herschel, G., Hostmann, B., Rayner, N., & Bitterer, A. (2010). Clarifying the meanings

of "analytics". 1-7. Retrieved from

http://www.gartner.com/technology/core/home.jsp

201

Hewagamage, C., & Hewagamage, K. P. (2011). Redesigned framework and approach

for IT project management. International Journal of Software Engineering & Its

Applications, 5(3), 89-106. Retrieved from http://www.sersc.org/journals/IJSEIA/

Hullett, K., Nagappan, N., Schuh, E., & Hopson, J. (2011). Data analytics for game

development. ICSE: International Conference On Software Engineering, 940-

943. doi:10.1145/1985793.1985952

IEEE Computer Society (2004). Guide to the software engineering body of knowledge

(SWEBOK). Los Alamitos, CA: Angela Burgess.

Ionel, N. (2009). Agile software development methodologies: an overview of the current

state of research. Annals of The University Of Oradea, Economic Science Series,

18(4), 381-385. Retrieved from

http://www.doaj.org/doaj?func=openurl&issn=1222569X&genre=journal

Ivancenco, V., Boldeanu, D., & Mocanu, M. (2010). Efficient information management:

Essential factor for high-performance management. Metalurgia International,

1551-1554. Retrieved from http://www.metalurgia.ro/metalurgia_int.html

Jangping, W., Qingjing, L., Dejie, L., & Hongbo, X. (2010). Research on knowledge

transfer influencing factors in software process improvement. Journal of Software

Engineering & Applications, 3(2), 134-140. doi:10.4236/jsea.2010.32017

Jiang, L., Eberlein, A., & Far, B. H. (2008). A case study validation of a knowledge-

based approach for the selection of requirements engineering techniques. .

Requirements Engineering, 13(2), 117-146. doi:10.1007/s00766-007-0060-2

202

Jiangping, W., Hui, Z., Dan, W., & Deyi, H. (2010). Research on knowledge creation in

software requirement development. Journal of Software Engineering &

Applications, 3(5), 487-494. doi:10.4236/jsea.2010.35055

Khan, U. A., Al-Bidewi, I. A., & Gupta, K. (2011). Object-oriented software

methodologies: Roadmap to the future. International Journal of Computer

Science Issues (IJCSI), 8(5), 392-396. Retrieved from http://www.ijcsi.org/

King, N., & Horrocks, C. (2010). Interviews in qualitative research. Thousand Oaks: CA:

Sage.

Lalsing, V., Kishnah, S., & Pudaruth, S. (2012). People factors in agile software

development and project management. International Journal of Software

Engineering & Applications, 3(1), 117-137. doi:10.5121/ijsea.2012.3109

Laney, D. (2012). Ten reasons to reach beyond basic business intelligence. 7. Retrieved

from http://www.gartner.com/technology/core/home.jsp

Layman, L., Williams, L., & Cunningham, W. (2006). Motivations and measurements in

an agile case study. Journal of Systems Architecture: the EUROMICRO Journal -

Special issue: AGILE methodologies for software production, 52(11), 654 - 667.

doi:10.1016/j.sysarc.2006.06.009

Lee, G., & Xia, W. (2010). Toward agile: An integrated analysis of quantitative and

qualitative field data on software development agility. MIS Quarterly, 34(1), 87-

114. Retrieved from http://www.misq.org/

Levy, M., & Hazzan, O. (2009). Knowledge management in practice: The case of agile

software development. Paper presented at the Workshop on Cooperative and

203

Human Aspects on Software Engineering, 2009. CHASE '09. ICSE Vancouver,

BC. http://ieee.org

Linden, L. P. (2010). A method for developing churchmanian knowledge management

systems. University of Central Florida). ProQuest Dissertations and Theses, 155.

Retrieved from http://search.proquest.com/docview/733931756?accountid=14872.

(733931756).

Linden, L., Kuhn Jr., J., Parrish Jr., J., Richardson, S., Adams, L., & Elgarah, W. (2007).

Churchman's inquiring systems: Kernel theories for knowledge management.

Communications of AIS, 2007(20), 836-871.

Lingling, Z., Jun, L., Yong, S., & Xiaohui, L. (2009). Foundations of intelligent

knowledge management. . Human Systems Management, 28(4), 145-161.

doi:10.3233/HSM-2009-0706

Machi, L. A., & McAvoy, J. (2009). The literature review. Thousand Oaks, CA: SAGE.

Mansour, E., Alhawari, S., Talet, A., & Al-Jarrah, M. (2011). Development of conceptual

framework for knowledge management process. Journal of Modern Accounting &

Auditing, 7(8), 864-877. Retrieved from

http://www.davidpublishing.com/davidpublishing/journals/J2/acc2011/accountant

2011/414.html

Maxwell, J. A. (2005). Qualitative research design: An interactive approach (2nd ed.

Vol. 41). Thousand Oaks, CA: SAGE.

204

McAvoy, J., & Butler, T. (2009). The role of project management in ineffective decision

making within agile software development projects. European Journal of

Information Systems, 18, 372-383. doi:10.1057/ejis.2009.22

Mieritz, L. (2012). Gartner surveys show why projects fail. Retrieved from

http://thisiswhatgoodlookslike.com/2012/06/10/gartner-survey-shows-why-

projects-fail/

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded

sourcebook (2nd ed.). Thousand Oaks, CA: Sage.

Mishra, D., & Mishra, A. (2011). Research trends in management issues of global

software development: Evaluating the past to envision the future. Journal of

Global Information Technology Management, 14(4), 48-69. Retrieved from

http://www.uncg.edu/bae/jgitm/

Molaei, M. (2011). Knowledge management model for managing knowledge among

related organizations. World Academy Of Science, Engineering & Technology,

74426-429. Retrieved from http://www.waset.org/

Moses, J. W., & Knutsen, T. L. (2007). Ways of knowing: Competing methodologies in

social and political research. New York, NY: Palgrave/Macmillan.

Moustakas, C. (1994). Phenomenological research methods. Thousand Oaks, CA: Sage.

Nerur, S., & Balijepally, V. (2007). Theoretical reflections on agile development

methodologies. Communications of the ACM, 50(3), 79–83. Retrieved from

http://cacm.acm.org/

205

Neves, F., Rosa, V., Correia, A., & Neto, M. (2011). Knowledge creation and sharing in

software development teams using agile methodologies: key insights affecting

their adoption. . Paper presented at the CISTI (Iberian Conference On

Information Systems & Technologies / Conferência Ibérica De Sistemas E

Tecnologias De Informação).

Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company. Oxford, UK:

Oxford University Press.

Northern, C., Mayfield, K. M., Benito, R., & Casagni, M. (2010). Handbook for

implementing agile in department of defense information technology acquisition.

Retrieved from

http://www.mitre.org/work/tech_papers/2011/11_0401/11_0401.pdf

Omar, M., Syed-Abdullah, S., & Yasin, A. (2011). The impact of agile approach on

software engineering teams. American Journal of Economics & Business

Administration, 3(1), 12-17. Retrieved from http://thescipub.com/ajeba.toc

Ow, T. T., & Morris, J. G. (2010). An experimental study of executive decision-making

with implications for decision support. Journal Of Organizational Computing &

Electronic Commerce, 20(4), 370-397. doi:10.1080/10919392.2010.516642

Patil, M. V., & Nageswara Yogi, A. M. (2011). Importance of data collection and

validation for systematic software development process. International Journal of

Computer Science & Information Technology, 3(2), 260-278.

doi:10.5121/ijcsit.2011.3220

206

Patton, M. Q. (2002). Qualitative research & evaluation methods (3rd ed.). Thousand

Oaks, CA: Sage.

Pelrine, J. (2011). On understanding software agility: A social complexity point of view.

Emergence: Complexity & Organization, 13(1/2), 26-37. Retrieved from

http://emergentpublications.com/ECO/about_eco.aspx

Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., & Still, J. (2008). The impact of

agile practices on communication in software development. Empirical Software

Engineering, 13(3), 303-337. doi:10.1007/s10664-008-9065-9

Qumer, A., & Henderson-Sellers, B. (2008). A framework to support the evaluation,

adoption and improvement of agile methods in practice. The Journal of Systems

and Software, 81, 1899-1919. Retrieved from

http://www.journals.elsevier.com/journal-of-systems-and-software/

Rajteric, I. (2010). Overview of business intelligence maturity models. Management:

Journal of Contemporary Management Issues, 15(1), 47-67. Retrieved from

http://www.efst.hr/management/

Ramesh, B., Lan, C., & Baskerville, R. (2010). Agile requirements engineering practices

and challenges: An empirical study. Information Systems Journal, 20(5), 449-480.

doi:10.1111/j.1365-2575.2007.00259.x

Rao, K. N., Naidu, G. K., & Chakka, P. (2011). A study of the agile software

development methods, applicability and implications in industry. International

Journal of Software Engineering & Its Applications, 5(2), 35-45. Retrieved from

http://www.sersc.org/journals/IJSEIA/

207

Rao, M. (2005). Knowledge management tools and techniques. Burlington, MA: Elsevier.

Rayner, N. (2011). Maverick research: Judgement day, or why we should let machines

automate decision making. 18. Retrieved from

http://www.gartner.com/technology/core/home.jsp

Rinko-Gay, B. (2009). Test reporting on an agile project. Journal of the Quality

Assurance Institute, 23(1), 5. Retrieved from

http://www.qaiglobalinstitute.com/Innerpages/Default.asp

Rodger, J. A., Pankaj, P., & Nahouraii, A. (2011). Knowledge management of software

productivity and development time. Journal of Software Engineering &

Applications, 4(11), 609-618. doi:10.4236/jsea.2011.411072

Rubin, E., & Rubin, H. (2011). Supporting agile software development through active

documentation. Requirements Engineering, 16(2), 117-132. doi:10.1007/s00766-

010-0113-9

Ryan, S., & O'Connor, R. V. (2009). Development of a team measure for tacit knowledge

in software development teams. Journal of Systems and Software, 82, 229-240.

doi:10.1016/j.jss.2008.05.037

Salam, R., & Clearley, D. (2012). Advanced analytics: predictive, collaborative,

pervasive. 16. Retrieved from http://www.gartner.com/technology/core/home.jsp

Salo, O. O., & Abrahamsson, P. P. (2008). Agile methods in European embedded

software development organizations: a survey on the actual use and usefulness of

Extreme Programming and Scrum. IET Software, 2(1), 58-64. doi:10.1049/iet-

sen:20070038

208

Schlegel, K., Salam, R., Austin, T., & Roswell, C. (2009). The rise of collaborative

decision making. 7. Retrieved from

http://www.gartner.com/technology/core/home.jsp

Schwaber, K. (1995). SCRUM development process. Paper presented at the 10th Annual

ACM Conference on Object Oriented Programming Systems, Languages and

Applications (OOPLSA).

Sharp, H., Robinson, H., & Petre, M. (2009). The role of physical artefacts in agile

software development: Two complementary perspectives. Interacting with

Computers, 21(1–2), 108-116. doi:10.1016/j.intcom.2008.10.006

Sholla, A., & Nazari, E. (2011). Knowledge Management and factors that influence the

success of codification strategies in medium-sized companies that develop

software: The model, strategies and tools. Journal of Information Technology &

Economic Development, 2(1), 54-63. Retrieved from

http://www.informingscience.us/icarus/journals/jiito/

Shull, F., Melnik, G., Turhan, B., Layman, L., Diep, M., & Erdogmus, H. (2010). What

do we know about Test-Driven Development? IEEE Software, 27(6), 16-19.

doi:10.1109/MS.2010.152

Siwen, Y., & Jun, A. (2010). Software test data generation based on multi-agent.

International Journal of Software Engineering & Its Applications, 4(3), 69-76.

Retrieved from http://www.sersc.org/journals/IJSEIA/

209

Slaughter, S., & Kirsch, L. (2006). The effectiveness of knowledge transfer portfolios in

software process improvement: A field study. Information Systems Research,

17(3), 301-320. doi:10.1287/isre.1060.0098

Smith, D. (2011). Hype cycle for cloud computing. 82. Retrieved from

http://www.gartner.com/technology/core/home.jsp

Smith, J. A., Flowers, P., & Larkin, M. (2009). Interpretive phenomenological analysis:

Theory, method and research. Thousand Oaks, CA: Sage.

Smith, R. G., & Farquahar, A. (2000). The year ahead for knowledge management: An

AI perspective. AI Magazine, 21(4), 17-44. Retrieved from

http://www.aaai.org/Magazine/magazine.php

Sudhakar, G., Farooqb, A., & Patnaikc, S. (2012). Measuring productivity of software

development teams. Serbian Journal Of Management, 7(1), 65-75. doi:

10.5937/sjm1201065S

Sullivan, T. J. (2001). Methods of social research. Orlando, FL: Harcourt Inc.

Sutherland, J., Jakobsen, C. R., & Johnson, K. (2007). Scrum and CMMI level 5: The

magic potion for code warriors. doi:10.1109/AGILE.2007.52

Tessem, J., & Maurer, F. (2007). Job satisfaction and motivation in a large agile team.

Paper presented at the Agile Processes in Software Engineering and Extreme

Programming, Berlin.

The Standish Group. (n.d.). Chaos summary for 2010. Retrieved from

http://insyght.com.au/special/2010CHAOSSummary.pdf

210

Trochim, W., & Donnelley, J. P. (2006). The research methods knowledge base (3rd ed.).

Cincinnati, OH: Atomic Dog.

Turban, E., Sharda, R., & Delen, D. (2005). Decision support systems and intelligent

systems (9th ed.). Upper Saddle River, NJ: Pearson/Prentice Hall.

Wadhwa, A., & Mittra, N. (n.d.). People, process and tools: What is more important – the

order or the mechanics? Retrieved from

http://jindal.utdallas.edu/files/11WadhwaMittra-Paper.pdf

Yeoh, W., & Koronios, A. (2010). Critical success factors for business intelligence

systems. Journal of Computer Information Systems, 50(3), 23-32. Retrieved from

http://www.iacis.org/jcis/jcis.php

Zare, H., & Akhavan, A. A. (2009). Developing one heuristic algorithm for software

production schedule in fuzzy condition. Australian Journal Of Basic & Applied

Sciences, 3(3), 1685-1695. Retrieved from http://www.ajbasweb.com/

Zhang, Y., & Patel, S. (n.d.). Agile Model-Driven Development in Practice. IEEE

Software. IEEE Software, 28(2), 84-91. doi:10.1109/MS.2010.85

211

Appendix A: Qualitative Research Schedule

Research Interview Schedule

1. Please review the materials provided prior to the scheduled interview. (Research

participants will be provided with the following data one week prior to the

scheduled interview:

a. Table 2 which shows the software failure rate from the 1994 – 2009

Standish Group reports as summarized by Hewagamage and Hewagamage

(2011)

Table 2. Summary of findings from the 1994 – 2009 Standish Group

reports on software failure.

 1994 1996 1998 2000 2002 2004 2006 2009

Successful 16% 27% 26% 28% 34% 29% 35% 32%

Challenged 53% 33% 46% 49% 51% 53% 46% 44%

Failed 31% 40% 28% 23% 15% 18% 19% 24%

(Hewagamage and Hewagamage, 2011, p. 90)

b. Although the software failure rate has decreased since 2009, software

development productivity has not kept pace with advancements in

hardware; consequently, there is a new crisis in software development

called the software crisis 2.0 (Fitzgerald, 2012). For example, there were

212

35 billion devices tied to the Internet in 2010 and the number of devices

tied to the Internet is expected to increase to 100 billion by 2020. Efforts

have been made to resolve the crisis; however, the efforts have been

disjointed and are not likely to enable software organizations to take

advantages of the available data.

c. A list of definitions for data, analytics and KM from the literature.

i. Data and analytics

 Descriptive analytics: Answer the questions what happened and what is

happening and are used to measure and manage performance. Examples include reports,

dashboards, and scorecards (Salam & Cearley, 2012). Descriptive analytics may be used

to identify alternative solutions but may not provide an optimal solution (Turban et al.,

2005).

 Diagnositic analytics: Answers the questions why did it happen and what are the

key relationships. Diagnostic analytics are used to understand outliers and variance, to

create profiles, and to classify data. Examples include machine learning, interactive

visualization, data mining and modeling, and content analytics (Salam & Cearley, 2012).

Diagnostic analytics may be used to identify the underlying causes for irregularities

(Turban et al., 2005).

 Knowledge accumulation: the process of acquiring, capturing or obtaining

knowledge (Gold, Malhotra, & Segars, 2001).

213

 Knowledge creation: the process in which explicit and tacit knowledge is shared

between individuals and groups within an organization through socialization,

externalization, combination, and internalization (Nonaka & Takeuchi, 1995).

 Knowledge retention: the process of organizing and preserving or storing

knowledge (Mansour, Alhawari, Talet & Al-Jarrah (2011).

 Knowledge transfer: the process of distributing knowledge to people other than

those who generated, produced, or created the knowledge (Mansour et al., 2011).

 Predictive analytics: Answers the questions what will happen, how risky is it, and

what if it happened. Predictive analytics are used to forecast and test hypothesis and to

model risk. Examples include forecasting applications, predictive models, and content

analytics (Salam & Cearley, 2012).

 Prescriptive analytics: Answers the questions what is the best option, how can an

optimal solution be reached, and what should happen. Prescriptive analytics are used for

risk management, business optimization, and recommending the best action. Examples

include modeling, simulation, optimization, and visualization (Salam & Cearley, 2012).

Interview Questions:

1. What is your current role?

Current Role: Software Manager

 Project Manager

 Agile Coach

2. How long have you used agile software development methods?

214

Experience Mark one answer.

<1 year

>1 year and <=3years

>3 years and <=5 years

>5 years

3. How do agile software managers, project managers, and agile coaches describe

their projects?

 What is the project size?

 What is the project duration?

 What agile methodologies are used?

4. What do software managers, project managers, and agile coaches in agile

software environments think about the need to improve software development

productivity?

5. What do software managers, project managers, and agile coaches in agile

software environments think about the use of analytics and KM to improve

software development productivity?

6. How do software managers, project managers, and agile coaches in agile software

environments currently use descriptive, diagnostic, prescriptive or predictive

analytics to improve software development productivity in each of the following

software activities?

215

 Requirements

 Design

 Construction

 Testing

 Maintenance

 Configuration Management

 Engineering Management

 Process

 Tools and Methods

 Quality

7. How do software managers, project managers, and agile coaches in agile software

environments currently use KM (knowledge creation, knowledge accumulation,

knowledge retention, and knowledge transfer) to improve software development

productivity in each of the following software activities?

 Requirements

 Design

 Construction

 Testing

 Maintenance

 Configuration Management

 Engineering Management

216

 Process

 Tools and Methods

 Quality

8. How do software managers, project managers, and agile coaches in agile software

environments think descriptive, diagnostic, prescriptive, or predictive analytics

could be used in the future to improve software development productivity in each

of the following software activities?

 Requirements

 Design

 Construction

 Testing

 Maintenance

 Configuration Management

 Engineering Management

 Process

 Tools and Methods

 Quality

9. How do software managers, project managers, and agile coaches in agile software

environments think KM (knowledge creation, knowledge accumulation,

knowledge retention, and knowledge transfer) could be used in the future to

217

improve software development productivity in each of the following software

activities?

 Requirements

 Design

 Construction

 Testing

 Maintenance

 Configuration Management

 Engineering Management

 Process

 Tools and Methods

 Quality

10. What obstacles do software managers, project managers, and agile coaches in

agile software environments think their organization should overcome to improve

software development productivity? Consider obstacles that involve people,

process and tools.

218

Appendix B: Agile Scrum Process Versus the Traditional Waterfall Process

(Cohn, n.d. c, “A reusable Scrum presentation”)

“Traditional Agile

Sequential Iterative

Defined Empirical

Plan-driven Result-driven

Big-bang Incremental

Specialized teams Cross-functional teams

Test at the end Test-first”

(Pelrine, 2011, p. 28)

219

(“waterfall model”, n.d.)

220

Appendix C: Informed Consent Form

You are invited to take part in a research study of management’s understanding of data

driven decision making as a tool to improve productivity in an agile software

development environment. You were chosen for the study because of your level

expertise and your familiarity with agile software development methods. The purpose for

this informed consent form is to allow you to understand this study before deciding

whether to take part.

Organizations face global competition and increasing volumes of data that must be

managed. If organizations can find ways to improve software development productivity,

they may increase their opportunities and their ability to thrive and survive in a

competitive world. This research study is being conducted by a researcher named Molly

Brown, who is a doctoral student at Walden University. Research gathered in this study

will be used to explore the lived experiences of software managers, project managers, and

agile coaches who have managed agile software development projects.

Research Study Purpose Statement:

The purpose for this research study is to explore how agile software managers view data

driven decision making, which includes data, analytics, and knowledge management, as a

tool to improve software development productivity, to understand how agile software

development organizations currently use data driven decision making to improve

software development productivity, and to understand how agile software organizations

may use data driven decision making in the future to improve software development

productivity.

221

Procedures:

Participate in a 1-2 hour individual interview regarding the use of data driven decision-

making in an agile software development environment. Provide documentation that

supports your experiences with data driven decision making in an agile software

development environment. The interview will be audio taped for analysis by the

researcher. You will be provided with a copy of your transcribed interview for your

review. At the conclusion of the research study, your interview transcript along with any

documentation provided will be transferred to DVD, and both the DVD and audio tape

will be stored in a secure location for the required 5 years. Both the audio tape and DVD

will be destroyed at the end of the 5 years.

Voluntary Nature of the Study:

Your participation in this study is voluntary. This means that everyone will respect your

decision of whether or not you want to be in the study. No one will treat you differently if

you decide not to be in the study. If you decide to join the study now, you can still change

your mind during the study. If you feel stressed during the study you may stop at any

time. You may skip any questions that you feel are too personal.

Risks and Benefits of Being in the Study:

The interview will take approximately 1-2 hours to complete and will involve a detailed

discussion of your lived experiences regarding the use of data driven decision making as

a tool to improve software development productivity in an agile software development

environment. This study could potentially benefit the agile community by providing a

description of how software development productivity is currently improved and how

222

software development productivity may be improved in the future. The risks of

participation in this research study are minimal as participants will not be subject to any

stress or risk greater than would normally be encountered in everyday life.

Compensation:

Although participation is voluntary, you will receive a $10 Amazon.com gift certificate

as a thank you for your participation and you will be given a summary of the research

findings.

Confidentiality:

Any information provided will be entirely confidential. The researcher will not use your

information for any purposes outside of this research project. Also, the researcher will not

include your name or anything else that could identify you in any reports of the study.

Contacts and Questions:

You may ask any questions you have now. Or if you have questions later, you may

contact the researcher via telephone (602-721-4568) or email

(mary.brown2@waldenu.edu). If you want to talk privately about your rights as a

participant, you can call Dr. Leilani Endicott. She is the Walden University

representative who can discuss this with you. Her phone number is 1-800-925-3368,

extension 1210. Walden University‘s approval number for this study is [nnnn] and it

expires on [M/D/Y]. The researcher will give you a copy of this form to keep.

Statement of Consent:

I have read the above information and I feel I understand the study well enough to make a

decision about my involvement. Please reply to this e-mail with the words “I consent” if

223

you agree to participate in this research study. Your reply to this e-mail with the words “I

consent” serves as your consent to participate in this research study.

224

Appendix D: Research E-mail Invitation

From: Molly Brown

Email address: azmollybrown@cox.net

Date: [Date]

Dear [Research Participant Name]:

You are invited to take part in a research study of data driven decision making
(DDD), which includes the use of analytics and knowledge management, as a tool to
improve software development productivity in an agile software development
environment.

You were selected based on your experience with agile software development

methods including Scrum methods. The research will be conducted by Molly Brown,
Certified Scrum Master (CSM) and a doctoral candidate at Walden University. The
purpose for this research is to understand how software development productivity may be
improved through the use of analytics and knowledge management. The results of this
research study may benefit the software development community by improving the
understanding of the tools and techniques that can be used to improve software
development productivity.

Please read the attached Letter of Informed Consent and reply to this e-mail with

the words “I consent” if you agree to participate in this research study. Your reply to this

e-mail with the words “I consent” serves as your acknowledgement that you are eighteen

years of age or older and that you consent to participate in this research study.

Sincerely,

Molly Brown

Attachment

225

Appendix E: Curriculum Vitae

Mary Erin Brown, MA, MS, PhD

mollybrownaz@gmail.com

EDUCATION:

PhD Management – Management .. 2013
Walden University, Minneapolis, MN
Dissertation Topic: Data driven decision making as a tool to improve software
development productivity
Dissertation Advisor: Dr. David Gould

Master of Science Information Management ... 1998
Arizona State University

Master of Arts – Educational Technology ... 1976
Western Michigan University

Bachelor of Arts – Education ... 1970
Western Michigan University

TEACHING EXPERIENCE:

Instructor of Information Technology ... 1999-2009
University of Phoenix, Phoenix, AZ

 Taught face-to-face courses to undergraduate students in Bachelor Degree
program. Course topics include project management, critical thinking, and
business systems development. Received average course evaluation of 3.9/4.0.

Instructor of Technical Project Management 2003-2004
ITT Technical Institute

 Taught face-to-face courses to undergraduate students in Associates Degree
program. Course topics include project management and E-commerce.

COURSES TAUGHT:

CMGT 410 Project Planning and Implementation
CMGT 575 Project Management
WEB 350 The Internet Concepts and Applications
BSA 375 Fundamentals of Business Systems Development

226

CIS 319 Computers and Information Processing
CSS 330 Critical Thinking and Computer Logic
CMGT 325 Organizational Communications
EC 321 Introduction to E-Commerce
EC 312 Project Management Techniques

OTHER EXPERIENCE:

Embedded Software Training Lead 2004-2011
Boeing, Mesa AZ

 Led the Warfighter Machine Interface (WMI) effort to coordinate with the Future
Combat Systems (FCS) / Brigade Combat Modernization (BCTM) program
training management, their suppliers and their subcontractors to design and
develop embedded training and to embed training systems into the operational
software.

 Advised BCTM Training suppliers on cost, schedule, and technical issues
impacting the embedded training development

 Managed separate Future Combat Systems, FCS Contract Line Item (CLIN) that
included managing WMI team and suppliers to develop embedded training User
Interfaces, and WMI Supplier to develop WMI Soldier training

 Developed embedded training standards and guidelines in coordination with FCS
Training IPT.

Instructional Design Lead .. 2003-2004
ComForce, Mesa, AZ contractor to The Boeing Company, Boeing, Mesa AZ

 Member of the Boeing Defense Systems, Mission System Armament IPT process
team implementing CMMI processes for the MSA IPT.

 Led the effort to implement process improvements within MSA Common Test
Environment (CTE)

 Led Apache Longbow engineers and a team of training developers to design,
develop, and deliver over 75 days of technical training to Fuji Heavy Industries
covering Apache Longbow hardware and software.

Project Manager ... 1999-2001
MarchFIRST, Phoenix, AZ

 Managed airline industry Internet and Intranet projects including development of

jetBlue infrastructure and websites for National Airlines and TWA

IT Project Manager .. 1998-1999
Apollo Group, Phoenix, AZ

227

 Implemented infrastructure, curriculum, marketing, and accounting system at 12
UOP campuses to support delivery of technology based certification programs
including MCSE and A+.

Program Manager... 1993-1996
Intel, Chandler, AZ

 Managed cross-site project to assess the network, hardware, and software
infrastructure improvements needed to enable delivery of Intel computer-based-
training needed for Intranet delivery of computer-based-training.

 Managed implementation of Components Training Department’s Alternative
Training Partnered with IT and Intel University, and other customers to build and
improve corporate systems for alternative training design & delivery, increasing
Component’s Training Alternative Training Delivery from 400 seats over 4,000
seats.

 Awarded Division Recognition for multisite database Implementation
 Managed instructor base and materials for corporate wide Gas Systems Training

Curriculum
 Led project to develop a Virtual Reality simulation of the Anelva 1052

Manager, Pilot Training Technology 1991-1993
United Airlines Flight Training Center, Denver, CO

 Managed United Airlines supplier to develop database to support UAL Advanced

Qualification Program

 Developed United Airlines pilot training task analysis for the Advanced

Qualification Program in coordination with Boeing for the initial Boeing 777 pilot

training program.

Instructional Design Lead .. 1989-1991
McDonnell Douglas Aircraft, Aurora, CO

 Led instructional design team for the Tanker Transport Training System, TTTS

program

 Led team of 60 instructional designers for the USAF Special Operations Forces

ATS program

228

Instructional Design Lead .. 1987-1989
Infotec Development, Inc., Colorado Springs, CO

 Managed team to develop computer-based-training for the USAF Consolidated
Space Operations Center

229

CERTIFICATIONS:

SCRUM Master certified (SCM)
Project Management Professional, PMP certified,

PROFESSIONAL AFFILIATIONS:

Project Management Institute member
American Society for Training and Development member
Knowledge Management Association member

REFERENCES:

John Rosenberger
Email: dospalomas06@yahoo.com
Phone: 915-261-8026

Dr. David Gould
Email:david.gould@waldenu.edu
Phone: 206-409-4021

Mark Busby
Email: marksbusby1@gmail.com
Phone: 602-920-3648

	Walden University
	ScholarWorks
	1-1-2011

	Data-Driven Decision Making as a Tool to Improve Software Development Productivity
	Mary Erin Brown

	ABSTRACT

