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Abstract

This research focused on product test scheduling in the presence of in-process and at-completion inspection
constraints. Such testing arises in the context of the manufacture of products that must perform reliably in
extreme environmental conditions. Often, these products must receive a certification from prescribed regulatory
agencies at the successful completion of a predetermined series of tests. Operational efficiency is enhanced by
determining the optimal order and start times of tests so as to minimize the makespan while ensuring that
technicians are available when needed to complete in-process and at-completion inspections. We refer to this as
the product test scheduling problem. We first formulated a mixed-integer linear programming (MILP) model to
identify the optimal solution to this problem and solve it using a commercial optimization package. We also
present a genetic algorithm (GA) solution methodology that is implemented and solved in Microsoft Excel.
Computational results are presented demonstrating the merits and consistency of the MILP and GA solution
approaches across a number of scenarios.
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Introduction

As the Deepwater Horizon oil spill illustrates, failure of industrial equipment in sensitive environmental settings
can have devastating impacts on the natural world as well as severe economic implications for the associated
business entities (Barstow et al., 2010). As a result, the scheduling of product tests under extreme environmental
conditions presents both a complex and critically important business problem. Various industrial products need
to be exposed to low and high temperatures, different vibration levels, and variations in pressure and humidity
in isolated chambers as part of the product certification process. Thus, the certification process often involves a
series of lengthy tests that require inspections in process (i.e., while the test is running) and at completion to
certify the functionality and durability of the product before delivery and deployment.

In order to operate effectively, companies must be able to minimize lead times, provide accurate delivery dates,
and deploy resources in an effective manner. In the context of this research, all these things necessitate an ability
to identify the optimal order and start times of product tests so as to minimize the makespan while ensuring that
the appropriate personnel are available to complete the required in-process and at-completion inspections.
Additionally, it is preferable to schedule the test so that the required inspections occur within the normal
operating hours of the facility so that personnel do not have to come in at off-hours to perform inspections. We
refer to this as the product test scheduling problem (PTSP).

The problem considered here was identified by engineers at Rockwell Automation, the world’s largest company
dedicated to industrial automation, with 2019 revenue of $6.69 billion. For the product in question, a series of
five required environmental condition tests must be carried out on each unit for it to receive certification. These
tests are summarized in Figure 1. We refer to the tests as Test 1, Test 2, Test 3, Test 4, and Test 5; however, the
tests are independent and may be completed in any order. All five tests require inspections at the end of the test,
referred to as at-completion inspections. Additionally, Tests 2 and 5 require inspections at different points while
the tests are being carried out, referred to as in-process inspections. An employee must be present for every
inspection. However, employees do not need to be present to start a test as the tests can be scheduled to start
automatically at any time on any day. Our objective was to determine a schedule (testing order and test start
times) that minimizes the makespan of the five tests while ensuring all required inspections take place during
normal operating hours of 7 AM to 6 PM (or as close to that as possible).
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Figure 1. Summary of the Five Required Tests
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The remainder of this paper is organized as follows. We first provide a literature review covering product test
scheduling, the traveling salesman problem with time windows (TSPTW), and job shop scheduling. Next, we
formulate a mixed-integer linear programming (MILP) model for the PTSP that minimizes the makespan. We
then describe an alternative spreadsheet implementation of this problem suitable for optimization using the
genetic algorithm (GA) in the Solver that comes with Microsoft Excel. Computational comparisons of these two
solution approaches are provided next, followed by conclusions and benefits of this work.

Materials and Methods

The work described in this paper prompts us to provide a brief review of literature in product test scheduling, the
TSPTW, and job shop scheduling. A brief overview of these research fields is given as context for the
methodology and techniques used later in the paper.

Product Test Scheduling

Product test scheduling occurs in a variety of industries, but much of the published research in this area centers
on automotive, chemical, and semiconductor applications. With the importance of safety and the need to reduce
production cost, the automotive industry has been the focus of much product test scheduling research (Bartels &
Zimmermann, 2009; Chelst et al., 2001; Reich et al., 2016; Shi et al., 2017). Bartels and Zimmerman (2009)
evaluated the development cost of automotive R&D projects with the objective of minimizing the number of
experimental vehicles by optimizing the test schedule using a MILP formulation. Many rules apply to this
problem; for example, a subset of tests cannot be completed simultaneously or on the same vehicle. The
resulting MILP is industry specific and difficult to generalize for other use. Similarly, Shi et al. (2017) used
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integer programming and heuristics to develop efficient test plans to make the best use of available time by
conducting multiple tests within tight schedules with the goal of minimizing the cost of prototypes used.

Chelst et al. (2001) reported on Ford’s use of a set-covering model to plan prototype testing fleets. More recently,
Reich et al. (2016) used integer programming with a column-generation algorithm to create an automobile
crash-test schedule for Ford. Due to the expensive nature of experimental vehicles, the primary objective was to
maximize the utilization of test vehicles in an effort to minimize total cost. Each optimization evaluated a
different sequence of tests and the impact on cost.

In the chemical and pharmaceutical industries, the tasks involved in producing a new product require a series of
tests mandated by environmental and safety regulators. Failures in the testing process carry significant cost
implications, particularly the further in the testing process that they occur. Schmidt and Grossman (1996)
formulated a MILP for this domain that maximizes expected net present value of a testing schedule that
considers probabilities of success, duration of testing tasks, and new product income. Later, Jain and Grossman
(1999) considered a variation on this problem modeled as a continuous time MILP with the option of
outsourcing.

Semiconductor manufacture is another fertile area of test scheduling research. Jiang and Vinnakota (2001)
presented a test ordering heuristic for integrated electronic circuits focused on finding defective units early in the
testing process, where the efficacy of each test is first estimated using simulation. Uzsoy et al. (1991) considered
the problem of first grouping semiconductor testing operations into work centers and then optimizing the order
in which products flow through the centers. These studies focused on ordering for early failure detection whereas
our objective was minimizing testing makespan.

The Traveling Salesman Problem With Time Windows

The problem we considered shares similarities with the well-known TSPTW. The TSPTW involves finding a
minimum cost tour of n nodes where each node is visited exactly once, has a known service time, has a ready (or
release) time when service at the node may begin, and has a deadline by which service must be completed
(Ferreira da Silva & Urrutia, 2010). TSPTWs arise in a variety of applications, including delivery services, bus
routing and scheduling, automated manufacturing, and as a subproblem of the vehicle routing problem with
time windows (Gendreau et al., 1998). The tour cost usually corresponds to the total travel distance or to the
total schedule time (i.e., travel time + waiting time + service time) though Lopez-Ibanez et al. (2013) recently
investigated adapting TSPTW algorithms to optimizing makespan. Several algorithms have been proposed for
solving the TSPTW (Dumas et al., 1995; Focacci et al., 2002; Boland et al., 2016).

In the case of the PTSP, we can frame the problem such that each test corresponds to a node in the TSPTW. A
key aspect of the PTSP that differentiates from the TSPTW is the need to identify the specific time each test
should start. However, multiple services (i.e., in-process and at-completion inspections) may be required for
each test in the PTSP, where the time windows for those services are determined by the start time of each test.

Job Shop Scheduling Problems

The job shop scheduling problem (JSP) shares many similar characteristics with the PTSP. The JSP is the
process of assigning n different jobs to m different machines, with potential setup times for the machines. The
PTSP may be framed as the problem of assigning n different tests to m specific time periods to ensure
technician involvement during business operating hours. Thus, while the number of machines required is not
a factor in the PTSP, the number of similarities is too strong to neglect this area of research.

In the JSP, each job requires a sequence of operations, and each operation must be completed for the job to be
considered complete. Jobs are independent of each other, and the processing times are fixed. The transportation
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time between jobs is included in the processing times. Only one job can be processed at a time on a machine, and
jobs can be processed in any order. In our PTSP, the tests may be viewed as jobs and the different testing times
and inspections as operations. However, in the PTSP, the operations must be completed in order and at specific
time periods. Identifying the job optimal order and set of machine assignments while minimizing the makespan
in a JSP is often impossible due to its NP-hard nature; therefore, GAs are often used to find good solutions to
these problems (Cheng et al., 1996, 1999; Garey et al., 1976; Potts & Strusevich, 2009).

Cheng et al. (1996) identified a list of nine categories for GAs used in an attempt to solve the JSP;
unfortunately, all categories utilize multiple machines, and the basic assignment problem of job order does
not factor in technician availability. One identified category (called priority rule-based representation)
resembles the test scheduling problem with job order decided based on priority dispatch rules. Dispatch rules
help decide which operation is next in line for completion. Rules can incorporate the shortest processing time,
longest processing time, earliest due date, first come, first served, or even random assignment. To date,
business operating hours and technician availability has not been researched; therefore, the GAs for the JSP
do not apply directly to the PTSP.

Calculation

We now describe two different approaches to solving the PTSP. We first develop a MILP to identify the optimal
scheduling of tests that minimizes the makespan to conduct tests for one product unit. Next, we propose a GA-
based solution methodology that may be implemented using Microsoft Excel.

A Mixed-Integer Linear Programming Model

Let N denote the number of tests to be performed and let the binary variable x;; = 1 if test j follows test 7; and
0 otherwise. Let the binary variable s;; = 1 if test i starts in time period j; and 0 otherwise. Let the variable t;
denote the time period in which test i begins. Let the parameter /; denote the number of time periods required
to run test i including in-process and at-completion inspection times. Finally, let the variable Q denote the
makespan required to complete all tests on one product.

The testing facility considered here normally operates with personnel present Monday through Friday (5-day
work week) from 7 AM to 6 PM (11-hour workday). However, the facility allows personnel to arrive 1 hour early
or stay 2 hours late to accommodate Test 5’s in-process and at-completion inspections. Automated equipment
allows for testing to begin at any time during a 24-hour time frame. Thus, an important aspect of this problem
is the granularity of time period measurement representing when tests may begin (e.g., seconds, minutes, n-
minute intervals, hours, etc.). For the problem addressed in this research, we selected 5-minute intervals as the
unit of measure across a 3-week planning horizon. This results in 6,048 unique time periods (denoted as TP) in
which tests may start or be carried out. Again, employees do not need to be present to start a test, as each test
can be scheduled to start automatically at any time, and the tests can be carried out in any order. We let the
parameter b;;= 1 if the employees are available for the required inspections of test 7 during time period j; 0
otherwise.

The MILP model for this problem is given below in Equations (1)—(14). Our objective is to minimize the
makespan to conduct all tests with in-process and at-completion inspections on one product. The objective
function in Equation (1) and constraints in Equation (9) work together to minimize the makespan of all testing.
More specifically, Equation (9) requires that all elapsed time periods between the start and end of all testing
must be less than Q.
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Equation (2) ensures that the product switches to test j only once and Equation (3) ensures that the product
switches to test 7 only once. Equation (4) requires the product to switch between tests a total of N-1 times,

ensuring every test is performed.

Equation (5) requires each test i be assigned a starting time period j via the variable s;;. Equation (6) requires
t; to equal the time period in which test i begins. In other words, Equation (6) establishes the link between t; and
s;;- When the product switches from test i to test j, Equation (7) ensures that test j starts after test 7 is completed,
where M is an arbitrarily large positive integer. Equation (8) ensures all in-process and at-completion
inspections occur when personnel are available during business operations (i.e., P: consists of the set of all times
periods k where inspections are required in the kth time period during and/or at the end of test 7).

In the event the testing cycle needs to start in a specific time window (for example, Tuesday morning)
Equation (10) ensures the first test will start at or after a specific opening time period, 0. Additionally,
Equations (11) and (12) work together to ensure that the first test occurs before the time window closes at a
specific time period, c. That is, Equation (11) requires the binary variable d; to equal 1 if test i starts after time
period ¢, and Equation (12) allows a maximum of N-1 tests to start after time period c. Equation (13) requires
the decision variables xj, sj, and d; to be binary. Finally, Equation (14) imposes nonnegativity constraints for

the remaining decision variables, t; and Q.
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A Genetic Algorithm Model

A careful consideration of Equation (8) in the MILP model suggests another approach to solving this problem.
Recall that the binary variable s;; = 1 if test i starts in time period j; and 0 otherwise. However, Equation (8)
eliminates starting periods that would place in-process or at-completion inspections at times when needed
workers are not available (e.g., weekends and outside of normal working hours). Before solving the problem,
we can use this same idea to create a list of feasible start times for each test.

Because we desire to complete the entire suite of tests in the shortest possible amount of time for a given
sequence of tests (e.g., Test 2, Test 3, Test 5, Test 1, Test 4), it follows that at the completion of any test we
should begin the next test in the sequence at its next available feasible starting time. Thus, a feasible solution
to the problem is given by a permutation (or ordering) of the test numbers (indicating the testing sequence)
along with a feasible starting time period for the first test, from which the earliest feasible starting times for
the remaining tests can be easily determined. Therefore, we must simultaneously determine the optimal
permutation of the test numbers and the optimal starting time period for the first test in that permutation.
This approach may be implemented in Microsoft Excel and optimized using its built-in Solver. Moreover,
Excel provides a readily available and familiar modeling platform for practitioners.

Figure 2 shows an example of how the PTSP in Figure 1 may be implemented in Excel for a testing sequence
that must start on a Thursday morning between 12:00 AM and 11:55 AM (or between the 864th [cell J21] and
1007th [cell J22] 5-minute time intervals in the planning horizon). We first preprocessed the data to identify
the feasible starting times for each of the tests. The starting times represent 5-minute intervals, with each
interval being assigned a consecutive index number. The feasible index numbers are listed in columns P
through T, starting in row 6, for Tests 1 through 5, respectively. For example, for Test 1, Intervals o through 7
(cells P6 through P13) correspond to feasible starting times, but Intervals 8 through 164 are infeasible; so, the
next feasible interval listed is 165 (cell P14). Note that there are 1,842 feasible starting intervals for Test 1 (per
cell P2). However, only those intervals in the 394th to 401st positions on the list fall within the desired
starting window indicated by cells J21 and J22.

In cells P5 through T5, Solver selects a cell in the list of index numbers that corresponds to a possible (and
feasible) starting time period for each test within the lower and upper bounds specified in cells P3 through T4.
This is done for each test in the event that it becomes the first test in the sequence of tests given in cells I4
through I8. For example, note that Test 3 is the first test in the solution shown in Figure 2 (cell I4), and it
starts in the 931st time period (cell K4), which is the 461st feasible time period for Test 3 (cell R5). (Note that
the lower and upper bounds of Test 5 are conditionally formatted with a red background because this test does
not have a feasible starting time within the desired starting window. Constraints in the optimization model
will prevent Test 5 from being scheduled first.)

The order of the remaining tests is shown in cells I5 through I8 (i.e., Tests 5, 2, 4, and 1 in that order). The
values in J4 through J8 correspond to the number of 5-minute intervals required to complete each test. For
example, Test 3 requires 36 hours and 25 minutes, or 437 5-minute intervals. Cells K5 through K8 show the
optimal starting time periods for the tests in cells I5 through I8, respectively (i.e., the first feasible time period
following the end of the preceding test). The total time required to execute this testing sequence is computed
in cell J10 as 169.58 hours.

The key cell formulas required to implement the logic for this spreadsheet are shown at the bottom of Figure
2. The Solver settings used for solving the problem are given in Figure 3.
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Figure 2. Example GA Implementation of Test Scheduling Problem in Excel
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File Home Insert Page Layout Formulas Data Review View Developer Add-ins Help Analytic Solver Data Mining 1% Share 2 Comments
06 E # | Feasible Starting Intervals <
H I ) K L M | N o P Q R s | T U -
1 [ Optimization Model J Tes-t 1 2 3 4 5
2 #Feasible 1842 1419 1771 1886 247
3 Test #Intervals  Start End Lower Bound 394 304 394 394
4 3 437 931 1368 Upper Bound 401 308 461 445
5 5 630 1619 3 2249 # Chosen 398 304 461 414 64
6 2 212 2250 2462 Feasible 0 0 0 0 35
7 4 165 2513 2678 Starting 1 1 1 1 36
8 1 209 2757 2966 Intervals 2 2 2 2 37
9 3 3 3 3 38
10 Total Hours 4 4 4 4 39
11 5 192 5 5 40
12 Schedule 6 193 6 6 41
13 Test Start Time (in hrs) End Time (in hrs) 7 194 7 7 42
14 3 Thu 5.58 Fri 18.00 165 195 8 8 43
15 5 Sat 14.92 Mon 19.42 166 196 9 9 44
16 2 Mon 19.50 Tue 13.17 167 197 10 10 45
17 4 Tue 17.42 Wed 7.17 168 198 11 11 46
18 1 Wed 13.75 Thu 7.17 169 199 12 12 47
19 170 200 13 13 179
20 Starting Interval Day Time (in hrs) 171 201 14 14 180
21 Open 864 Thu 0 172 202 15 15 181
22 Close 1007 Thu 11.92 173 203 16 16 182 -
process map detailed ‘ Problem | Model ‘ Daily Data ‘ ® 4 >
Ready [® [2:] m - 1 + 100%
Cell Formula Copied
to
J1o =(L8-K4)*5/60 -
K4  =INDEX($P$6:$T$1891,INDEX($P$5:$T$5,1,14),14) -
K5 =INDEX($P$6:$T$1891, MATCH(L4,0FFSET($P$6,0,15-1,1886,1),1)+1, I5) K6:K8
Lg =K4+J4 Ls5:L8
P2 =COUNT(P6:P6050) Q2:T2
P3 =IFERROR(MATCH($J$21,P$6:P$6048,0),IFERROR(MATCH($J$21,P$6:P$6048,1)+1,1)) Q3:T3
P4 =MAX(IFERROR(MATCH($J$22,P$6:P$6048,0),IFERROR(MATCH($J$22,P$6:P$6048,1),P Q4:T4
2)),P3)
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Figure 3. Solver Settings for the GA Model.

Solver Settings:

Objective: J10 (Minimize)
Variable cells: 14:18 and P5:T5
Constraints:

14:18 all different

P3:T3 <= P5:T5 <= P4:T4

P5:Ts integer

J21<=Kg <=J22

Solver Options:

Evolutionary Engine

Results and Discussion

We evaluate and compare the MILP and GA solution techniques with a series of 15 scenarios. Again, Rockwell
Automation is faced with the dilemma of selecting the optimal sequence and start times of five tests in Figure
1 while ensuring needed employees are present to conduct in-process and at-completion inspections. This
decision might need to be made on any day of the week, as summarized in Scenarios 1 through 14 in Table 1.
Scenario 15 in Table 1 is included as a benchmark to identify the best possible time for starting the testing
sequence and the best possible outcome (makespan) that can be expected.

Table 1. Starting Time Windows of Scenarios

Scenario  Day Time Window

1 Monday 12 AM—11:55 AM
2 Monday 12 PM—11:55 PM
3 Tuesday 12 AM—11:55 AM
4 Tuesday 12 PM—11:55 PM
5 Wednesday 12 AM—11:55 AM
6 Wednesday 12 PM—11:55 PM
7 Thursday 12 AM—11:55 AM
8 Thursday 12 PM—11:55 PM
9 Friday 12 AM—11:55 AM
10 Friday 12 PM—11:55 PM
11 Saturday 12 AM—11:55 AM
12 Saturday 12 PM—11:55 PM
13 Sunday 12 AM—11:55 AM
14 Sunday 12 PM—11:55 PM
15 Any Any

Table 2 shows the optimal objective value for each scenario for the MILP and the GA. Recall that the objective
value is the makespan required to complete all five tests on one product. The optimal objective value for the
GA is the same as the optimal objective value for the MILP for all 15 scenarios, demonstrating the effective
performance of the GA. The GA is also very efficient, requiring approximately 5 minutes of CPU time while the
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MILP solved in seconds. Thus, in the scenarios tested here, the GA produced solutions equivalent to the MILP
in a reasonable amount of time using only the inherent capabilities of Excel.

Scenarios 10 and 11 (with starting time windows of Friday pM and Saturday Am) returned infeasible solutions
for both the MILP and the GA; therefore, the tests cannot be scheduled to start during those times without
interruption or requiring a technician to perform inspections on a weekend. Scenarios 5 and 7 return the best
(least) makespan for the product with an objective value of 169.67 hours.

Table 2. Computational Results by Scenario for the MILP and GA

Scenario Time window MILP obj. value MILP run GA obj. value GA run time
(hours) time (hours) (seconds)
(seconds)

1 Monday AM 171.00 1.72 171.00 319

2 Monday PM 175.33 5.13 175.33 318

3 Tuesday AM 171.00 1.64 171.00 329

4 Tuesday PM 175.33 1.13 175.33 316

5 Wednesday AM 169.67 1.31 169.67 320

6 Wednesday pMm 175.33 1.14 175.33 319

7 Thursday AM 169.67 1.11 169.67 339

8 Thursday pm 175.33 0.89 175.33 317

9 Friday AM 171.00 0.75 171.00 326

10 Friday pm Infeasible Infeasible Infeasible Infeasible

11 Saturday AM Infeasible Infeasible Infeasible Infeasible

12 Saturday PM 199.33 0.89 199.33 317

13 Sunday am 193.67 1.03 193.67 321

14 Sunday PM 175.33 1.14 175.33 318

15 No Restrictions 169.67 5.37 169.67 317

Conclusion

This research introduced the PTSP, addressing the scheduling of tests for an industrial product that requires
in-process and at-completion inspections for product certification. We first introduced a MILP formulation of
the problem that determines the optimal schedule of tests that minimizes the makespan while ensuring in-
process and at-completion inspections are conducted during normal operating hours. This problem can be
solved to global optimality in a few seconds using commercial optimization software. Optimizing the testing
schedule will assist in reducing lead times, accurately estimating delivery dates, and deploying resources to
increase operational efficiency.

We provided results for the MILP and the GA with a series of 15 what-if scenarios demonstrating that the GA
is capable of consistently obtaining global optimal solutions in a timely manner. Both of the modeling
techniques provide guidance to decision makers concerning the scheduling of product testing at various
starting points throughout the workweek.
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Because specialized optimization software can be expensive from both a cost and learning curve perspective,
we identified a GA-based methodology for solving the problem that produced the same optimal results as the
MILP in modest additional run time using Microsoft Excel. Davis (1989) noted that perceived usefulness and
perceived ease-of-use are key factors that play a substantial role in a decision maker’s willingness to accept a
new technology for solving a problem. Thus, the use of a familiar spreadsheet-based solution methodology for
this problem enhances the decision maker’s inclination and ability to use the system and understand the
solution approach.

The Excel-based solution procedure described in this paper is in use at Rockwell Automation where it solved a
challenging test scheduling problem for a key product and is being applied to other test facilities within the
company. The PTSP of identifying the most time efficient order of testing products is a common challenge and
can be applied to a multitude of industries, including medical equipment, infant furniture, automobiles, and
military armaments. A potential expansion of this methodology would be to factor in machine and equipment
testing constraints by incorporating IoT communication to make real-time adjustments to the product test
schedule. In general, the benefits of this methodology include faster time-to-market for new products and
enhanced customer experience via consistently meeting delivery dates as well as improved capacity planning
capabilities and product flow within the test cells while maximizing available test engineering resources.
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