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Abstract 

Train derailments can result in loss of life, interruption of services, and destruction of the 

environment. Understanding the correlates of train derailments can help railway 

managers and safety managers reduce the occurrences of train derailments. Grounded in 

the Swiss cheese model, the purpose of this quantitative correlational study was to 

examine the relationship between train derailment causal factors, visibility, weather, 

number of crew members, crew members’ length of time on duty, and the occurrence of a 

train derailment. Data were collected from secondary data on 1,396 Class I and Class II 

railroad accidents during the 2019 calendar year. The results of the binomial logistic 

regression were statistically significant, X2(12, N = 1396) = 114.265, p < .001. 

Nonoperator causal factors and the number of crew members on duty were statistically 

significant predictors of the occurrence of a train derailment. A key recommendation for 

railway managers is to adjust preventative maintenance measures and increase the 

number of crew members on duty. The implications for positive social change include 

potentially reducing the frequency of train derailments and saving lives.   
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Section 1: Foundation of the Study  

Human factors can have major contributions to accidents across various industries 

including railway, aviation, maritime, and mining (Li et al., 2019). Human factors and 

nonhuman factors are causes of train derailment (Liu et al., 2013). Though these errors 

can cause catastrophic outcomes, understanding the causes of error can provide the 

knowledge to help eliminate these errors (Underwood & Waterson, 2013). For example, 

when snowy and icy weather occurs, the likelihood of accident occurrence is four times 

higher (Malin et al., 2019). The objective of this study was to help railway managers 

understand the relationship between train derailment causal factors, visibility, weather, 

number of crew members, crew members length of time on duty, and the occurrence of 

train derailment. 

Background of the Problem 

Train derailments can result in the loss of life or property, interruption of services, 

and destruction of the environment (Liu et al., 2013). They are the most frequent kind of 

Federal Railroad Administration (FRA) reportable mainline train accident in the United 

States (Barkan, et al., 2003). There are four main causes for train derailment: (a) 

operations and human mistakes, (b) track failures, (c) factors regarding to rolling stock 

and (d) environmental and natural catastrophes (Mohammadzadeh & Ghahremani, 2012). 

In the FRA Safety Office of Safety Analysis database, the train accident codes can be 

further broken down into specific causes that influenced the occurrence of train 

derailments.  
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Train derailment severity is a key factor in understanding the outcome of a train 

derailment and its impact (Martey & Attoh-Okine, 2019). Derailment severity has been 

influenced by multiple causal factors, which include car mass, derailment speed, residual 

train length, derailment cause, ground friction, proportion of loaded railcars in the train, 

and train power distribution (Zakar & Mueller, 2016). Train derailment severity can also 

be impacted by visibility, weather, number of crew on duty, and crew member length of 

time on duty, which were researched in this study. The topic of train derailment is 

important because the findings may allow management and employees in the railroad 

industry to understand the relationship between train derailment causal factors, visibility, 

weather, number of crew members, crew members length of time on duty, and the 

occurrence of train derailment. Knowing this information can help management and 

safety managers understand how to reduce occurrences of train derailments.  

Problem Statement 

Since 2016, there have been over 4,000 train derailments in the United States, 

resulting in over 248 million dollars’ worth of loss (FRA, 2019). Train derailments have 

decreased by 5.9% each year but continue to have impact on the on-track equipment, 

signals, track, track structures, supply chain, employees, and railbed (Liu et al., 2017). 

The general business problem is that train derailments, sometimes the results of operator 

error, have an impact on community safety, transportation efficiency, and organizational 

cost. The specific business problem is that some railway managers do not understand the 

relationship between train derailment causal factors, visibility, weather, number of crew 

members, crew members length of time on duty, and the occurrence of train derailment. 
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Purpose Statement 

The purpose of this quantitative correlational study was to examine the 

relationship between train derailment causal factors, visibility, weather, number of crew 

members, crew members length of time on duty, and the occurrence of train derailment. 

The independent variables were train derailment causal factors, visibility, weather, 

number of crew members, and crew members length of time on duty. The dependent 

variable was the occurrence of train derailment, represented as a dichotomous variable. 

The targeted sample population consisted of Class I and Class II rail lines in the railroad 

industry across the United States. Data collection was completed through the FRA Office 

of Safety Analysis, which is a publicly available database. All derailment safety reports 

are reported and complied on this site. The implications for social change include the 

potential to reduce the frequency of train derailment occurrences in the railroad industry 

and save lives.  

Nature of the Study 

I used the quantitative method to examine the relationship between the identified 

independent and dependent variables. Quantitative researchers identify changes in 

numerical characteristics of the population being studied and examine statistical 

relationships between variables (Paul & Garg, 2014), which was the purpose of this 

study. In contrast, by using the qualitative approach, researchers usually derive themes 

from the subjective answers of the research participants (Yin, 2018). A mixed methods 

study contains the attributes of both quantitative and qualitative methods (Guetterman et 
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al., 2015). Since the intent of my study was to identify the relationship between variables, 

the qualitative and mixed-method approaches were not appropriate.  

I used the quantitative method with a correlational design to investigate the 

relationship between five independent variables and one dependent variable. Using the 

correlational design approach, researchers can examine the direction and strength of the 

relationship between the predictor/independent variables and criterion/dependent 

variables (Curtis et al., 2015). Experimental design includes many of the same elements 

of a quasi-experimental design, but with quasi-experimental design there is no random 

selection of the secondary participants for control or experimental groups (Jaffee et al., 

2012). The quasi-experimental or experimental research design is used when identifying 

and assessing the causes that influence outcomes (Creswell, 2009). For this study, my 

objective was to examine the relationship between variables within the real world without 

controls. Therefore, the experimental and quasi-experimental designs were not 

appropriate for my study.  

Research Question 

What is the relationship between train derailment causal factors, visibility, 

weather, number of crew members, crew members length of time on duty, and the 

occurrence of train derailment? 

H0: There is no statistically significant relationship between train derailment 

causal factors, visibility, weather, number of crew members, crew members length of 

time on duty, and the occurrence of train derailment.  
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Ha: There is a statistically significant relationship between train derailment causal 

factors, visibility, weather, number of crew members, crew members length of time on 

duty, and the occurrence of train derailment.   

Theoretical Framework 

James Reason’s (1990) Swiss cheese model suggests that longstanding 

organizational deficiencies can create the necessary conditions for a frontline active 

failure to trigger an accident (Underwood & Waterson, 2014). Layers of defense are like 

a slice of Swiss cheese with the potential to have holes or weaknesses (Olson & Raz, 

2021). When the holes in a system’s defenses align, an accident trajectory can pass 

through the defensive layers and result in a hazard causing harm to people, assets, and the 

environment (Reason, 2008). Holes in a single slice or defense will not normally cause a 

bad outcome, but when all the holes momentarily align, that is when a failure has a clear 

path through the system, resulting in a catastrophic accident (Reason, 1997). These holes 

are also changing in sizes and location at any given time. Additionally, these holes can be 

looked at as latent and active errors. Latent errors are the results of organizational system 

or design failures that will allow active errors to happen and cause harm (Collins et al., 

2014). Active errors are the results of an individual’s failure and occur at the point of 

contact between a human and an aspect of a larger system (Collins et al., 2014). Both 

latent and active errors impact the chances of an accident to occur and are both equally 

important when understanding what caused an accident to occur. 

The variables in this study were train derailment causal factors, visibility, 

weather, number of crew members, and crew members length of time on duty. Each of 
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these variables can be looked at as a slice of cheese. Further, Reason looked at four levels 

that are present within sociotechnical systems: unsafe acts, preconditions for unsafe acts, 

supervisory factors, and organizational influences. Each variable in this study can fall 

into one of these categories as they all have impact on the likelihood of an accident to 

occur. With this study, the goal was to determine the relationship between train 

derailment causal factors, visibility, weather, number of crew members, crew members 

length of time on duty, and the occurrence of train derailment. 

Operational Definitions 

Class I railroad: A Class I railroad is based on the annual operation revenue and 

has a threshold of revenue greater than $250 million (Code of Federal Regulation [CFR], 

2018).  

Class II railroad: A Class II railroad is based on the annual operational revenue 

and has a threshold of revenue less than $250 million but in excess of $20 million (CFR, 

2018).  

Federal Railroad Administration (FRA): The FRA compiles all train derailment 

reports received from around the United States that exceed a monetary threshold of 

damage costs and include items such as total damage costs, number of cars derailed, track 

type, train length, derailment speed, and other impacting variables (Liu et al., 2013).  

Nonoperator causal factors: Nonoperator causal factors could include (a) track, 

roadbed, and structure (roadbed, track geometry, rail joint bar and rail anchoring, frog, 

switches and track appliances, other way and structure), (b) signal and communication 

(signal and communication codes), (c) mechanical and electrical failures (brakes, trailer 
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or container on flatcar, body, coupler and draft system, track components, axles and 

journal bearings, wheels, locomotives, doors, general mechanical electrical failures), (d) 

miscellaneous causes not otherwise listed (environmental conditions, loading procedures, 

high-way grade crossing accidents, unusual operational situations, and other 

miscellaneous; FRA, 2019).  

Operator causal factors: Operator causal factors are train operation human 

factors, which can include (a) use of brakes, (b) employee physical condition, (c) hand 

and radio signals, (d) general switching rules, (e) main track authority, (f) train 

handling/train make-up, (g) speed, (h) use of switch, (i) cab signals, and (j) other 

miscellaneous codes (FRA, 2019).  

Assumptions, Limitations, and Delimitations 

Assumptions 

Assumptions are unverified opinions that researchers hold while conducting their 

study (Roy & Pacuit, 2012). The first assumption in this study was that railroads are 

reporting all train derailments according to their rail class and including the necessary 

details within each report. Each accident report should include over 50 different variables 

with each providing different input into the railroad train derailment report analysis (Liu 

et al., 2017). The second assumption was that all information within the FRA of Safety 

Analysis Office database can be broken down into the correct causal code for the train 

derailment. The final assumption was that all information entered in the database on 

weather, visibility, number of crew members, and crew members length of time on duty 

was entered correctly by the accident recorder.  
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Limitations 

Limitations refer to potential weaknesses of the study that are not within the 

control of the research but can be further researched by others once the limitations are 

identified within the study (Simon, 2011). One limitation in the database was that there 

are only two sections for causal code entry and there might be more than just the primary 

causal code and contributing causal code that made the train derailment occur. The 

second limitation was that there are potentially additional causes that are not adequately 

captured by the list of options within the database. The final limitation was that each 

independent variable (train derailment causal factors (human or nonhuman), visibility, 

weather, number of crew members, crew members length of time on duty) in the FRA 

database is entered by the accident recorder, and there could be incorrect information 

recorded.  

Delimitations 

Delimitations refer to the bounds or scope of the study that are within the control 

of the researchers (Patton, 2014). One delimitation was my focus on Class I and Class II 

railroads. This was a delimitation because within the CFRs 49, Title 49, Part 1201 there 

are other classes of railroad Class III–Class VIIII, which each fall into different annual 

operation revenue thresholds (CFR, 2018). The second delimitation was the selection of 

the United States as the area of data collection for train derailment analysis.  
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Significance of the Study 

Contribution to Business Practice 

One common metric for assessing rail safety is accident rate, which can be 

defined as the number of train accidents normalized by traffic exposure, such as train 

miles, car miles, gross ton-miles, or passenger miles (Liu, 2015). Derailments are the 

most common type of train accident in the United States and can cause damage to 

infrastructure, rolling stock, and lading; disrupt service; and have the potential to cause 

casualties and harm to the environment (Liu et al., 2017). The findings from this study 

will provide information to railway managers to help to better understand and prevent 

train derailments, because they will understand the relative importance of the different 

factors on the potential outcomes. Finally, for the nonoperator causal factors, for instance 

with weather, informed decisions can be made on resource allocation to prevent potential 

issues.  

Implications for Social Change 

The impacts for positive social change include giving management the 

understanding of the relative importance of the elements of operator causal and 

nonoperator causal factors. There is also the potential for managers to understand the 

unforeseen accident causal factors for train derailments. Improving operator and 

managers awareness of train derailment causal factors can help to improve the safety 

measures occurring during and after a train derailment. Finally, management will be able 

to analyze causal factors for information disseminate to the community on train 
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derailment safety precautions, which in turn may increase public awareness on disaster 

prevention.  

A Review of the Professional and Academic Literature 

The purpose of this quantitative correlation study was to examine the relationship 

between train derailment causal factors, visibility, weather, number of crew members, 

crew members length of time on duty, and the occurrence of train derailment. The 

theoretical framework for this study was James Reason’s (1990) Swiss cheese model. For 

the literature review, I searched EBSCO host, ProQuest, Thoreau multidata base, and 

Google Scholar for all articles related in the topic areas of aviation accidents, aviation 

accident by human error, maritime accidents, human error maritime, train accident 

human error, accidents in aviation, accidents in maritime, accidents in railway, accidents 

in oil field, aviation accident causes, maritime accident causes, railway accident causes,  

nonhuman error in organizational accidents, medical accidents, human error in 

accidents, accident occurrence through error, train derailment, train safety, causal 

factors, operator error, risk management, organizational accident, accident causation, 

the swiss cheese model, man-machine-environment, 3M model, 5M model, hot cheese 

model, linkage to swiss cheese model, updated swiss cheese model, accidents in multiple 

sectors, common occurrences in accidents, derailment causes, weather, weather 

accidents, visibility, crew members, accident factors, human error causes for accidents, 

nonhuman accident causes, and industry accident causes. I also obtained data from the 

FRA Safety of Safety Analysis database pertaining to the occurrence of train derailments 

and the causes of those train derailments. The review of literature includes 141 
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references. Eighty-three percent of the references were published within the past 5 years 

(2017–2021), and 90% are peer-reviewed.  

In this literature review, I first discuss organizational accidents, including accident 

occurrence in multiple industries and accident causation. Next, I discuss the theoretical 

framework for this study, including the origins of the Swiss cheese model, the 

development and the evolution of this model, and the model’s components followed by 

supporting and contrasting theories. Additionally, I review the literature related to 

accidents within the aviation, maritime, and railroad industry. Finally, I conclude the 

literature review with an analysis of the implications of this study for business practice 

related to train derailments.  

Organizational Accidents 

Accident Occurrence Across Industries 

In a number of industries, the occurrence of accidents is high when dealing with 

human error or nonhuman errors (Erjavac et al., 2018). Currently, an estimated 60% to 

80% of system failures from aviation, railway, and maritime areas are attributable to 

human performance (Erjavac et al., 2018). In each industry, researchers are looking to 

further understand the role of employees in complying with safety standards and also 

ensure that employees have the decision-making skills to handle sudden situations that 

could create an accident.  

Across sectors, there are a number of areas where human error can come into play 

when an accident occurs. Human error within the aviation field means actions associated 

with the pilots, cabin crew members, navigators, meteorologists, mechanics, and 
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constructors (Ding et al., 2019). In the maritime sector, human error often includes 

navigator error or inappropriate behaviors (Youn et al., 2018). Finally, in the railway 

sector, human error often includes accidents that occurred due to operator error (Sun et 

al., 2020). Besides the human element, there is also the chance of nonhuman occurrences 

such as those caused by glitches within the system (Strauss, 2017). Across sectors, human 

error can encompass intentional or unintentional violation of procedures, or 

organizational influences from a managerial level (Kelly & Efthymiou, 2019).   

Accident Causation  

When an accident occurs in a system, one way to discover the causes is to 

complete an analysis using accident causation theories and models (Li et al., 2017). 

Accident causation analysis can help companies find the common patterns within the 

failures to help reduce or sometimes prevent the occurrence of the accident happening 

again. Over time, numerous methods have been developed, but structural decomposition 

and functional abstraction are the two most viable for understanding accident causation. 

Structural decomposition takes a system, breaks it down into objects, and explains the 

causal factors for the object’s failure (Li et al., 2017). This method is most commonly 

used to analyze and break into categories the failures that occurred within a system. 

Functional abstraction deals with analyzing the functional relationships within a system 

to understand the behaviors that occur within the system.  

When discussing accident causation models and theories, two models (3M and 

5M) are used to further analyze the system safety factors, which deal with man, machine, 

and environment. The first adopted version of the man, machine, and environment model, 
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referred to as the 3M model, created by Professor Long in 1981, was used to show that 

there is not a single causal factor when dealing with equipment failure (Guo et al., 2019). 

The 3M model can be seen in Figure 1, but it has been updated over time to include more 

factors that could be causing frequent accidents to occur.  

Figure 1 
 
Man-Machine-Environment (3M) Model 

 

Note. From “Application of Man-Machine-Environment System Engineering in Coal 

Mines Safety Management,” by S. Xiaoyan, and X. Zhongpeng, 2014, Procedia 

Engineering, 84, p. 88 (https://doi.org/10.1016/j.proeng.2014.10.413).   

Both the 3M and 5M model help to first create a picture of the potential reasons 

for the accident to occur (Xiaoyan & Zhongpeng, 2014). The first step in accident 

causation analysis is to understand the different variables that can have an impact of the 

potential outcome for an accident to occur. Over time, the 3M was expanded to include 
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variables that were not thought of when the model was first created. To expand on the 

3M model, the 5M model was created, which includes the following variables: man, 

machine, media, management, and mission. Expansion of the 3M to the 5M helped to 

show other areas that need to be understood on the impact they have to the creation of 

accidents in multiple environments. With each iteration of the models the figure changes 

to streamline the overall impact of the creation of the new model. 

There is an overlap within the 5M model that includes mission and management, 

which is depicted in Figure 2. The 5M and 3M models are important to help accident 

research analyst understand the potential factors that had an impact on the occurrences of 

accidents across multiple industries. Researchers have also proposed another version of 

the 5M model that evaluated the impact of human, process, and technology factors on 

system failures (Irani et al., 2017). The variables were expanded to include other 

variables that have a key role in the accident causation that occurs after a failure in a 

system. Although all factors might not act together, more than one factor can be causing 

the accident or failure within a system.  

Figure 2 
 
5M Model 
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Note. From “An Accident Causation Analysis and Taxonomy (ACAT) Model of 

Complex Industrial System from Both System Safety and Control Theory Perspectives,” 

by W. Li, L. Zhang and W. Liang, 2017, Safety Science, 92, p. 97 

(https://doi.org/10.1016/j.ssci.2016.10.001). 

Although the 3M and 5M model help to show how each safety factor can create 

the perfect opportunity for accidents to occur within a system, the Swiss cheese model is 

still one of the leading models used when looking at accident causation. Accident 

causation is a factor in understanding how Reason came to develop the Swiss cheese 

model (Liu et al., 2017). Reason was more focused on the latent, active, and defenses that 

exist within a system to cause an accident to occur.  

The Swiss Cheese Model 

Creating the Swiss Cheese Model  

Reason (1997) created the Swiss cheese model after placing cat food into a teapot 

instead of the cat bowl, which led to modeling organizational accidents and the 

foundation to the Swiss cheese model (see Figure 3). The question was raised as to which 

defenses failed, how did they fail, and why did they fail, defenses, barriers, and 

safeguards (Peltomaa, 2012). In this model, Reason was looking to understand how 

organizational factors, local workplace factors, and unsafe acts impact the defenses that 

are currently in place within an organization. The defenses that are in place need to be 

strong enough to withstand the factors that could come to break down the efficiency in an 

organization and to create a layered effect to the defensive layer in a system (Bode & 

Vraga, 2021). 
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Figure 3 
 
Model of Organizational Accidents 

 
Note. From Managing the Risks of Organizational Accidents, by J. Reason, 1997, 

Ashgate Publishing.  

Figure 4 shows the early edition of Reason’s Swiss cheese model, which focused 

on decision makers, line management, preconditions, productive activities, and defenses. 

The Swiss cheese model was established as a reference model in the causation, 

investigation, and understanding, and prevention of organization accidents (Larouzee & 

Le Coze, 2020).  
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Figure 4 
 
Early Edition of James Reason’s Model 

 

Note. From “Good and Bad Reason: The Swiss Cheese Model and Its Critics,” by J. 

Larouzee, and J. C. Le Coze, 2020, Safety Science, 126, p. 5 

(https://doi.org/10.1016/j.ssci.2020.104660). 

The Swiss cheese model also includes active failures, latent failures, and defenses. 

Active failures are looked at as unsafe acts by front-end operators, which includes errors, 

mistakes, and violations. Latent failures are gaps or weaknesses in the system safety 

defenses that were implemented into the creation of the system. Latent failures, unlike 

active failures, can lay dormant or undetected for hours, days, weeks, or even longer, 

until one day they adversely affect the system, which creates the failure (Wiegmann et al, 

2021). The layers of defense can be looked at as the holes in Swiss cheese that can be the 

weaknesses within the system. Holes or weaknesses in a single slice or defense do not 

normally result in a catastrophic outcome, but when all the holes align, any failure has a 
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clear path through the system, with the potential to result in a catastrophic accident 

(Reason, 1997). 

Since the creation of the Swiss cheese model, it has been adopted by many 

industries including aviation, nursing, health care and medical, nuclear, chemical 

processing, oil and gas, and rail. The most widely used theory for accident causation in 

various industries is the Swiss cheese model (Waterson et al., 2017). The Swiss cheese 

model is used in risk analysis and risk management, including aviation safety, 

engineering, health care, and emergency organization, and as the principle behind layered 

security (Karimi et al., 2021).  

In the aviation sector, the Swiss cheese model has been used to help identify the 

human and organizational factors that contributed to the occurrence of a general aviation 

accident (Xue & Fu, 2018). For instance, 70–80% of civil and military aviation accidents 

are caused by human error (Shappelll & Wiegmann, 2001). The Swiss cheese model can 

be used in the aviation sector to help understand the potential unsafe acts, unsafe 

conditions, preconditions for unsafe acts and unsafe conditions, deficiencies in the 

general aviation safety management, and deficiencies in safety culture (Xue & Fu, 2018). 

The variables in this model are taken from the Swiss cheese model and are used to 

understand how human and organizational factors impact the likelihood of an accident to 

be caused.  

The health care industry has used the Swiss cheese model to mold the model to a 

specific accident that occurred and connect the holes to show how it created the perfect 

alignment for an accident to occur (Seshia et al., 2017). For example, a surgical error may 



19 

 

occur due to the following factors that created the perfect alignment for the accident to 

occur: incorrect site on consent, first day at the new hospital, new equipment never 

inserviced, band used instead of marking, video transition down had to use pheon, family 

does not speak English, history and physical examination not verified with consent, 

which resulted in the wrong site surgery. Each of these factors represent the holes that 

created the failures in the barriers (Seshia et al., 2017). Though the Swiss cheese model 

has a simplified version, in the health care industry this model can be tailored to show 

where there were holes in the barrier, creating an increased likelihood for an accident to 

occur. The Swiss cheese model can help health care professionals understand the safety 

measures that need to be put into place (Wiegmann et al., 2021).  

The Swiss cheese model has also been used within the railroad industry to 

understand how inadequate defenses, unsafe acts, psychological precursors of unsafe 

acts, line management deficiencies, and fallible decisions can have an impact on the 

occurrence of a train accident (Suryoputro et al., 2015). Within each variable, there could 

be issues that occurred and created the perfect alignment of the hole to cause the accident 

to occur. For instance, psychological precursors of unsafe acts could include poorly 

coordinated communication, physical and mental fatigue, and feeling unwell. When one 

factor within each layer of the Swiss cheese model fails, it creates the perfect opening for 

a train accident to occur.  

Human error is inevitable, and it is impossible for humans to fully eliminate error 

(Reason, 1995). Because errors occur, there is a need for systems to be able to handle the 

potential error. Human error can be looked at as a potential consequence rather than a 



20 

 

cause and blaming operators for the occurrence of the error or accident does not improve 

safety prevention. Looking at the traditional model for accident causation that focused on 

active failures (human errors and mistakes) and single causes is inadequate (Xia et al., 

2018). When creating the organizational accident theory, Reason focused on how 

organizational accidents are catastrophic events that occur in complex systems that 

involve many people at different levels (Reason, 1997). The Swiss cheese model was 

classified as an epidemiological model because of the suggestion that standing defects 

within a system can create the ideal conditions for active failures to trigger an accident to 

occur (Underwood & Waterson, 2014).  

Evolution of the Swiss Cheese Model  

The Swiss cheese model was first introduced in 1987 when Reason was exploring 

human error. From this, Reason published the seminal book, Human Error (Reason, 

1990). While researching human error, Reason was able to find the differences between 

active errors and latent errors. Reason (1990) concluded that active errors, which are 

performed by operators, can be influenced by the conditions that exist within the 

organization, which are known as latent errors. Latent errors can be looked at as dormant 

errors that can be active when combined with other factors creating a breach in the 

defenses and resulting in the occurrence of an accident.  

Perrow (2004) developed the normal accident theory which describes how normal 

accidents or system accidents occur due to multiple failures that are not in direct 

operational sequence. The Swiss cheese model helps to expand on how active errors and 

latent errors have an impact on the occurrence on an accident (Grant et al., 2018). 
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Accident pathogens are adverse latent or preexisting conditions, passive or with no 

impact on the system until triggered by other adverse events (Gnoni & Saleh, 2017).  

When by chance all holes are aligned, the hazard reaches perfect alignment 

creating the potential error or accident to occur (Perneger, 2005). One main point within 

this model was the focus on human error and how each focused area can fall into latent 

failures, active failure or active and latent failures (Reason, 1990). Figure 5 shows 

updated version of the model which incorporated the defense-in-depth concept into the 

model (Reason, 1990).  

Figure 5 
 
Updated Reason Model 

 
Note. From Human Error, by J. Reason, 1990, Cambridge University Press.  

While the model was updated in 1995, latent errors were later renamed to latent 

failures because Reason realized that effective decisions at one point in time may have 

unintended negative outcomes at another time in the system (Larouzee & Le Coze, 2020). 

Further improvements were made to the model by Reason to illustrate that the holes will 
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always be moved, changing in shape and size as a reaction of the acts from operator and 

local demands (Suryoputro et al., 2015). Figure 6 shows the most current version of the 

Swiss cheese model which has not been updated since 2000.  

Figure 6 
 
Current Version of Swiss Cheese Model 

 
 
Note. From “Systems Thinking, The Swiss Cheese Model and Accident Analysis: A 

Comparative Systemic Analysis of the Grayrigg train derailment Using ATSB, AcciMap 

and STAMP models,” by P. Underwood, and P. Waterson, 2014, Accident Analysis and 

Prevention, 68, p. 76 (https://doi.org/10.1016/j.aap.2013.07.027). 

Swiss Cheese Model Components 

The Swiss cheese model consists of different components each having a different 

effect on the potential occurrence of human error or accidents. The independent variables 

in this study are train derailment causal factors, visibility, weather, number of crew 

members, and crew members length of time on duty. Each of the independent variables in 

this study can be looked at as holes that occur in the slice of cheese to increase the chance 
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of accidents to occur (Reason, 2016). The holes will create faults in the defense layer, 

which in turn will increase the likelihood of accident occurrence (Peltomaa, 2012). The 

Swiss cheese model explains the failure of numerous system barriers or safeguards to 

block errors, each represented by holes in cheese slices that allow errors to pass through 

and harm occur (Stein & Heiss, 2015). The first two components are active failures and 

latent conditions which can occur either singly or in diabolical combination creating a 

gap in the defenses (Reason, 2016). Finally, the third component is the defense that is 

currently in place that was ineffective, failed or unavailable during the time of error. 

Next, these components will be explained in more detail.  

Active Failures. Active failures are unsafe acts, errors or procedural violations on 

the part of those in direct contact with the system (Reason, 2016). Active failures can be 

created by the operators which in turn create a weakness within the defensive layers in 

the system. Also, active failures can create long lasting effects on the defenses or 

protective layers that are currently available on the system. Reason (2000) stated that 

almost all legal approaches seek an individual to blame for unsafe acts but almost all such 

acts have a causal history that dates back in time or up through the levels of the system. 

Active failures can also have direct impact on the safety of the system and because of this 

create an environment for adverse effects to happen (Reason, 1997).  

Latent Conditions. Latent conditions can be looked at as poor design, gaps in 

supervision, undetected manufacturing defects or maintenance failures, unworkable 

procedures, clumsy automation, shortfalls in training, less than adequate tools and 

equipment and can go undetected in a system for years before they are combined with 



24 

 

local circumstances and active failures to penetrate the many layers of defense (Reason, 

1997). Latent conditions are present within the system before the operator interacts with 

the system. Latent conditions are weaknesses or gaps in the defenses that were 

unknowingly created by the engineers, designers, builders or stakeholders who were there 

in the beginning creation of the system.  

Every system has the possibility to have latent conditions as no system is built 

perfect. The key importance with latent conditions is to identify them before they cause 

harm to the system. Reason (2000) provided a great analogy on active and latent failures: 

active failures are like mosquitos because they can be swatted one-by-one, but they keep 

coming back. The best medicine is to create more effective defenses and to drain the 

swamp where the mosquitos are bred. In this case, the swamps are the latent conditions 

within the system.  

Defenses. Defenses, barriers, or safeguards are put into place to protect the people 

and assets that are within the local area of the hazard and could be exposed to potential 

harm if an accident were to occur. Defenses can be categorized both according to the 

various functions they serve and by the way the functions are achieved (Reason, 1997). 

Defenses are created for more than one purpose but are in place to protect people and 

local hazards. When creating defenses, Reason (1997) stated that creating defenses-in-

depth provide successful layers of protection, one behind the other, each guarding against 

the possible breakdown of the one in front. Defenses should include a variety of functions 

so if one fails the others have a chance to alarm when an accident is occurring before it 

becomes too late to act. Another strategy for creating the defensive layers is to have 
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mutually supporting defenses that protect against a single failure, either human or 

technical.  

These defenses are how the Swiss cheese model got its name because of the holes 

like a piece of swiss cheese. The holes within the slice of cheese are dynamic, always 

opening and closing, growing or shrinking, and shifting from one location to another. 

Due to the nature of the holes in a single slice or defense it does not normally cause a bad 

outcome but, if the error trajectory has a clear path through the system when all the holes 

align momentarily, this can create the catastrophic accident to occur (Reason, 2016).  

Comparing the Swiss Cheese Model to Other Models 

The Swiss cheese model has been analyzed multiple times against other models to 

see the links or disconnects. From the Swiss cheese model other researchers created their 

own adaptation adding in additional variables that they felt were necessary to expand the 

gap areas in the Swiss cheese model. For instance, the Human Factors Analysis and 

Classification System (HFACS) expanded the Swiss cheese model to explain the 

different levels to human factors in accident occurrences (Underwood & Waterson, 

2014). Leveson (2012) also adapted the System-Theoretic Accident Model and Processes 

which focused mainly on safety as a control problem. Each model is created from the 

knowledge from the researcher and the context the application will be applied to. While 

many researchers stated that the Swiss cheese model is still the most popular model used 

(Underwood & Waterson, 2013), there could be further updates to the model on how the 

holes line up to create the perfect line to create failure within the system.  
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Variations of the Swiss cheese model have also been used to better understand 

train accidents. Specifically, Underwood and Waterson (2014) conducted an analysis on 

Grayrigg train derailment using the Australian Transport Safety Bureau (ATSB), 

AcciMap, and systems theoretic accident modeling and processes (STAMP) model. The 

ATSB was created from the Swiss cheese model and the modifications represent the 

operation of a system via five levels of ‘safety factors’, where a safety factor is an event 

or condition that increases safety risk (Underwood & Waterson, 2014). The ATSB model 

used the Swiss cheese model for investigation and reporting within an accident, while 

research and academic applications of accident analysis often were looked at using the 

AcciMap and STAMP models (Underwood & Waterson, 2014).  

Both AcciMap and STAMP are additional examples of models that are aligned 

with the Swiss cheese model that have been applied to the train industry. The AcciMap 

was developed by Rasmussen (1997) as a means of analyzing the series of interacting 

events and decision-making processes which occurred throughout a socio-technical 

system and resulted in a loss of control. This model was a combination of the cause-

consequence chat and the Risk Management Framework which deals with the socio-

technical systems over six organizational levels. Underwood and Waterson (2014) used 

this framework in their study because it pulled off the Swiss cheese model and also has 

been used previously for analysis on train accidents. The STAMP model was based on 

system and control theory, which focused on safety as a control problem. This model 

looks at three basic constructs (safety constraints, hierarchical safety control, and process 

models) to determine why control was ineffective and resulted in an accident. Safety 
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constraints in this model can be looked at as passive or active and this is pulled from the 

Swiss cheese model.  

Underwood and Waterson (2014) sought to understand how the ATSB, AcciMap, 

and STAMP differ from the Swiss cheese model but overall, how the Swiss cheese model 

still preforms analysis from a system thinking approach. Although the ATSB, AcciMap, 

and STAMP models each pull different aspects from the Swiss cheese model they still all 

point back to the Swiss cheese model being an appropriate model to analyze system 

thinking accidents.  

Shappell and Wiegmann (2001) used the Swiss cheese model to further focus on 

the latent and active failures to create the HFACS. The HFACS framework creation 

helped to bridge the gap between theory and practice by providing investigators with a 

comprehensive, user-friendly tool for identifying and classifying the human causes 

(Shappell & Wiegmann, 2001). The creation of the HFACS model was the most 

successful adaptation from the Swiss cheese model that is used within the industry today. 

There are two causal factors explained in this model symptomatic causal factors which 

are direct or active causes; the initiating events that lead to system failure and latent 

causal factors which are both spatially and temporally disparate from the system failure; 

the factors that increase the potential for systematic causal factors (Erjavac et al., 2018).  

HFACS models help to understand the human factors that can contribute to the 

occurrence of accidents within different industries. The main focus within the HFACS 

system is that human errors can happen at four levels: organizational influences, unsafe 

supervision, preconditions for unsafe acts, and the unsafe acts of operators. The model 
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shows that there latent and active failures but there is an increase focus on human aspect 

of these failures. The HFACS model is useful to identify the organizational and systemic 

weakness rather than focusing on blaming the individual for the accident (Theophilus et 

al., 2017).  

Other versions of the Swiss cheese model have been created to further define 

some of the areas that other researchers have criticized because of the lack of detail. 

Some criticism that is seen around the use of the Swiss cheese model could come from 

the misuse within certain industries. For example, Collins et al. (2014) analyzed use in 

the medical field to understand the active failures. While active failures are an important 

part of the Swiss cheese model there is still the need to look at all aspects of the model 

because this will have an overall impact on the conclusions found within the study. The 

latest Swiss cheese model was updated in 2000. 

Many researchers since then have created other models to attempt to address the 

criticisms of the current Swiss cheese model. Li and Thimbleby (2014) developed the hot 

cheese model which went into a more complex version of the Swiss cheese model where 

there are eight different ‘types’ of cheese layers. The development of this model came 

from Li and Thimbleby who found that the Swiss cheese model didn’t display the 

situations and interactions between the layers also felt that the categorization with the 

unsafe acts of error, violations, and reckless behaviors were not transparent in the model. 

While Li and Thimbleby were trying to achieve a more detailed explanation on the Swiss 

cheese model it got flooded with the creation of the eight layers of cheese. Another issue 

that might have led to the development of a further defined model is the lack of 
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understanding within the layers that were defined in the Swiss cheese model. The hot 

cheese model has not successfully superseded the Swiss cheese model and other authors 

have not regularly referred to it within researcher articles. Although the researchers had a 

goal for the creation of this method, the expansion of the layers has caused issues with 

other researchers using it within their field (Li & Thimbleby, 2014).   

 Within this section, I provided a detailed analysis on the Swiss cheese model 

which is the theoretical framework in this study. This analysis included the organizational 

accidents and accident causation, Swiss cheese model, the evolution of the Swiss cheese 

model, Swiss cheese model components and comparing the Swiss cheese model to other 

models. I provided detailed information on why the Swiss cheese model was the best 

choice for the theoretical framework. The next section of this literature review will be on 

accidents across industries, train derailments and the impact they have on the research to 

be conducted in this doctoral study.  

Causes of Accidents 

Throughout multiple industries there is the chance for accidents to occur by 

human or nonhuman errors. Human errors include personality, attitude toward road 

safety, attention, concentration, and memory (Santoso & Maulina, 2019). Human error 

can also be related to environmental interfaces, organizational and technical factors or 

even the personal like of the employees (Rong et al., 2016; Tripathy & Ala, 2018). Non-

human errors include visibility, weather, number of crew members, crew members length 

of time on duty and road conditions. It is important to understand how these factors 

impact the likelihood of accident occurrence. There is variation across each system 
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domain but 60% to 80% of system failures are, to a certain extent, attributable to human 

performance (Erjavac et al., 2018). Human errors, technical failures, and mechanical 

failures make up the majority factors that occur when an accident happens in industry 

accidents.  

Weather can have an impact on the visibility and increase accident risk. Accident 

risk is significantly heightened during snowy and icy road conditions (Malin et al., 2019). 

For snowy and icy road conditions, Salli et al. (2008) found that accidents were more 

than four times higher compared to bare roads and slushy roads were fivefold for causing 

fatal accidents. In windy conditions, there is an increase in the frequency of rollovers and 

sideslip and spin accident occurrences (Zou et al., 2021). Weather can have an impact on 

occurrences of accidents because response time can be limited for the operator. 

Time of duty has been shown to impact accident occurrences due to the 

connection to fatigue. Worker fatigue can be caused by no limit on employee weekly or 

monthly work hours, irregularity or unpredictability of on-call work schedules, 

mandatory commuting distances without compensatory time off (Coplen & Sussman, 

2000). Within each industry there are different standards to the limitation on how many 

hours workers can work in one day but there are not the same standards established 

across all industries. Since there are not limitations on workdays, excess time on duty can 

cause workers to become tired because they are wanted to complete the task within the 

day. Within the North American Rail Alertness Partnership there are eight key 

components for an effective fatigue countermeasure program education and training, 

employee scheduling practices, emergency response requirements, alertness strategies, 
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evaluation of policies and procedures, adequate rest environments, work environment, 

and implementation strategies (Coplen & Sussman, 2000). Crew members that have been 

on duty for extended periods of time are more likely to have poor or reduced alertness, 

poor psychometric conditions, and impairs the overall health of workers which can have 

impacts of accident occurrences (Peng et al., 2020). 

The number of crew members on duty also has an impact on the occurrences of 

accidents. With more crew members on duty there are more eyes on the train tracks to 

help detect potential situations that can cause train accidents. Crew members within the 

railroad can consist of engineers/operators, firemen, conductors, and brakemen (FRA, 

2021). Each crew member has an important role on the operation of the train engine and 

the rail cars that are pulled along with the train. If the train members are limited there is a 

chance for members to be distracted and accidents to occur (Coplen & Sussman, 2000). 

There is a need for more research to fully understand the impact that number of crew 

members has on the occurrence of train derailments. In this study, I aimed to understand 

the relationship between train derailment causal factors, visibility, weather, number of 

crew members, crew members length of time on duty, and occurrence of train derailment. 

The focus in this literature review is on aviation accidents, maritime accidents, 

and railroad accidents. Within each sector, the factors impacting accident occurrence will 

be discussed along with what researchers are currently still looking to understand. Train 

derailments will also be covered, including the causes of train derailments. This 

information is important because the focus of this study was to understand the factors that 

have an impact on the occurrence of train derailment. Information on factors that impact 
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the occurrence of accident will be helpful to inform management within each sector on 

how employees and crew members can help to decrease the likelihood of an accident to 

occur (Reason, 1995).  

Aviation Accidents 

The aviation sector includes general aviation and air carriers. General aviation is 

air travel that is apart from scheduled air carriers. General aviation accounts for more 

than 85% of all aviation fatalities and over 95% of all fatal accidents even though flight 

hours between general aviation and air carrier operations are similar (Fuller & Hook, 

2020). In the aviation field, pilot error is attributed to 75% of all aviation accidents 

(Gramopadhye & Drury, 2000). The overall aviation accident rate has declined since 

World War II; however, the incidence of human error has not improved and remains the 

primary flight safety risk (Erjavac et al., 2018). Looking at the potential for human error, 

it is known that within a complex system there is no way to avoid human influence on 

accidents (Reason, 1995). Human error can account for intentional or unintentional 

violations of procedures or from organizational influences from management that causes 

effects on flights (Kelly & Efthymiou, 2019).  

The top two causes of aircraft accidents are loss of control in-flight and controlled 

flight into terrain. The main difference between the two is that controlled flight into 

terrain is an in-flight collision or near collision with terrain, water, or obstacle without 

indication of loss of control (Kelly & Efthymiou, 2019). Accidents within the aviation 

industry can also be caused due to the pilot and crew losing the sense of situational 

awareness. Loss of situation awareness can be seen when pilots and air crew forget to 
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ensure pre-flight planning is completed, improving manual flight skills, and maintaining 

a high-level of specific aircraft mechanical and avionics knowledge (IATA, 2014).  

Shappell and Wiegmann (2000) used the Swiss cheese model to create the 

HFACS which helped to further break down what factors impact the occurrence of 

aviation accidents. At a top level in HFACS there is unsafe acts which are classified into 

two categories: errors and violations. Figure 7 was created from their analysis, which 

explains the unsafe acts of pilot operators. These acts can be broken down from errors 

into skill-based errors, decision errors, and perceptual errors. Acts can include human and 

nonhuman errors. The violations can then be broken down into multiple causes that can 

impact the occurrence of an aviation accident occurrence.  

Figure 7 
 
Unsafe Acts of Pilot Operators 
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Note. From “The Human Factors Analysis and Classification System-HFACS,” by S. 

Shappell, and D. Wiegmann, 2000, ResearchGate. 

(https://commons.erau.edu/publication/737). 

Just like unsafe acts of the pilots, there can also be unsafe acts from the air crew. 

These can include human and nonhuman influence factors. At the top level, the air crew 

could be dealing with adverse mental states which could affect their performance when 

under pressure. Another potential area for the aircrew to deal with would be physiological 

states which could include fatigue and medical illness. Other areas of impact to the 

aircrew could be physical/mental limitations, crew resource management, and personal 

readiness. Each of these categories can be further expanded as shown in Figure 8 below. 

These factors are important to understand when safety officers are analyzing what factors 

caused an aviation accident to occur.  

Figure 8 
 
Unsafe Aircrew Conditions 
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Note. From “The Human Factors Analysis and Classification System-HFACS,” by S. 

Shappell, and D. Wiegmann, 2000, ResearchGate. 

(https://commons.erau.edu/publication/737). 

According to the IATA (2014) there are other factors that can impact the potential 

occurrence of aviation accidents. These other factors are noncompliance with established 

standard operating procedures, inadequate flight path management, lack of vertical and/or 

horizontal position awareness in relation to terrain, un-stabilized approached, failure to 

initiate a go-around when required, conducting operations in poor weather conditions, 

incorrect action/response by flight crew, and failure in crew resource management such 

as cross-checking, communications, coordination, and leadership. All of these factors 

plus human error can increase the chances of an inflight accident to occur within the 

aviation industry.  

Researchers are still conducting analyses to understand how upgrading the 

technology and training for pilots can help to limit the occurrence of an aviation accident 

to occur (Kelly & Efthymiou, 2019). While there will never be a 100% elimination of the 

factors that can cause an aviation accident to occur advancements in technology could 

help pilots and flight crew to identify when an accident will occur and the proper 

precautions to take before the situation escalates into the loss of life (IATA, 2014). More 

pilots are being trained through simulation on procedures to complete when an accident is 

occurring. Flight simulators are used extensively for training procedures as they permit 

more in-depth, safer, and more flexible instruction that is possible with real flight 

(Koglbauer, 2016).  



36 

 

Maritime Accidents 

Over the years, there has been an increase in the number of items being 

transported via maritime way. Researchers identified that 65% of the 74 Greek maritime 

accidents analyzed from 1992 to 2005 each accident had more than one causal factor, but 

most accidents were caused by human error, 76% of these were due to negligence on the 

bridge of the ship, 17% to human error in the engine room and the remaining 7% 

elsewhere on board (Antao & Soares, 2019). Some of the most common reasons for 

accidents within the maritime sector are grounding, ship sinking, fire, collision, contact 

damage, dragging, wind damage and human factors (Xue et al., 2020).  

Different weather conditions can also affect the situational awareness of the crew 

on the ship and make the changes of accident occurrence higher. When weather occurs, it 

can have an effect on the decision-making ability of the crew and can have lasting effect 

on the ship (Antao & Soares, 2019). Other factors that impact the occurrence of accidents 

are organization are fatigue, training, and other external factors.  

When conducting analysis on maritime accidents, researchers identified a need to 

understand how incompetent or insufficient personnel and competent personnel can 

contribute to the occurrences of accidents (see Figure 9). The errors that occur in both of 

these groups can be broken down into insufficiencies, inequities, ambiguities, and excess 

(Apostol-Mates & Barbu, 2019). One important factor that researchers sought to 

understand further is the impact of fatigue on the overall operation of the crew. Fatigue 

can decrease the operator’s work performance, by manifestations like slowing down 

physical and mental reflexes and cutbacks in making rational evaluations (Apostol-Mates 
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& Barbu, 2019). Fatigue can have a big impact on the occurrences of accidents and a 

decrease in the security levels that are normal in place when operators are at their full 

potential. Apostol-Mates and Barbu (2019) noted that as the total work hours per week, 

hours of work per day, and number of consecutive night duties per week increased, there 

was decreased output from the crew. The same can be said when the hours of rest 

between duty periods and number of short breaks within duty periods decreased, 

accidents were more likely to occur. 
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Figure 9 
 
Errors in Maritime Accidents 

 

Note. From “Fatigue leading to human error: A study based on marine accidents,” by R. 

Apostol-Mates, and A. Barbu, 2019, Scientific Bulletin of Naval Academy. 

(https://doi.org/10.21279/1454-864X-19-12-013). 

While modern ships have been updated to include advanced technologies such as 

navigation technology, onboard information, and bridge resource management systems, 

human factors are still present in the majority of accidents (Fan et al., 2020). All 

accidents within the maritime sector have some contributions from human or nonhuman 
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causal factors. Nonhuman factors may include weather, visibility, number of crew 

members on duty, and length of time on duty for the crew members. Since the weather 

patterns can be spatial in different oceans around the world this can cause a challenge for 

the crew when responding to weather changes, visibility limitations, and length of time 

on duty for the crew (Zhang et al., 2021). However, researchers have stated that human 

elements account for 75%-96% of maritime casualties within accidents that occur in the 

modern ships and has not changed over time (Fan et al., 2020). Human factors can be 

broken down into workplace conditions, physical and natural environment, procedures, 

technology, training, organization, management, fatigue, task load, and mental state.  

A majority of the accidents have more than one contributing factor. A 

combination of factors may create the perfect holes in the defenses to cause an accident. 

Some of the factors that work together are poor crew competence, fatigue, lack of 

communication, lack of proper maintenance, lack of application of safety culture and 

protocols or other procedures, inadequate training, poor situational assessment, and stress 

(Fan et al., 2018). Safety analysis can be completed on maritime accidents to fully 

understand what occurred when the accident happened. From this research, procedures 

and protocols can be updated so management and crew members can help to limit the 

occur of accidents. Updating research procedures and protocols can help to ensure that 

crew members and management are aware of some of the precursors that lead to accident 

occurrence (Xue et al., 2020).  
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Railway Accidents 

Within the railroad industry, accidents can be broken down into derailment, head 

on collision, rear end collision, side collision, raking collision, broken train collision, 

highway-rail crossing, railroad grade crossing, obstruction, explosion-detonation, 

fire/violent rupture, and other impacts (FRA, 2021). The railroad sector is broken down 

into freight and passenger trains. Freight is moving railcars with different consumer items 

and passenger trains more people from one location to another. Also, within the railroad 

sector, there are different classes of railroad depending on the yearly profit from that 

company. There are multiple factors within the railroad sector that have an impact on the 

occurrence of an accident to occur. 

Within the railroad industry, there are multiple commodities that can be moved, 

including hazardous material, fuel, oil, grains, stones, ice salt, and multiple other items. 

There are multiple ways a train accident could happen which include improper track 

conditions, weather, visibility, time on duty, operator error, and other impending factors. 

Researchers have looked to understand the relation between train accident causes and the 

narrative that is included within the accident report (Heidarysafa et al., 2018). Since only 

the primary and secondary codes are recorded within the FRA accident reporting sheet, 

the narrative could help to explain other important factors that contributed to the 

occurrence of the train accident. This narrative also helps to explain if there were 

circumstances that were outside the control of the conductor and engineer on the train.  

Studies have shown that changes to the technical condition of railroad tracks, 

railroad bridges, tunnels, crossings, individual cars, and the entire rolling stock, may 
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enhance the safety of rail transport (Aliev et al., 2019). This information is important in 

areas around the world that have seismic activity where the integrity of the track 

equipment can be altered. In other areas around the world, it is important to ensure that 

track maintenance is conducted because the track can be worn out over time. One 

important issue that is new with little research is the upgrade to Positive Train Control 

brake system since the current brakes have been used since the civil war era (Schouten, 

2016). One issue with the old brake system is that the hardware could be broken down 

and increase the chances of derailment occurrence. This breakdown has been seen 

multiple times with oil lines which caused concern from lawmakers (Schouten, 2016).  

In the railroad sector, once an accident occurs, crew members are required to 

complete a form to detail what occurred and the factors that contributed to the train 

accident. There are only two fields where crew members can list the causal code for the 

derailment, and this is their primary and contributing factor to the train accident 

occurrence. Crew members give a detailed encounter of the train accident which helps 

safety officials determine what happened and how to correct this within the industry to it 

does not occur again (Heidarysafa et al., 2018).  

The occurrence of train derailments can be attributed to human operator and 

nonhuman operator causal factors. Outside of human and nonhuman errors other factors 

can have an impact on the occurrences of train derailments such as, weather, visibility, 

number of crew members on duty, and crew members length of time on duty. There is 

still much analysis to be completed on this field to fully understand how multiple factors 

can feed into the overall occurrences of train derailments.  
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Train Derailment 

All railroad employees have the responsibility to report accidents when they occur 

and ensure that the information recorded is accurate. Derailments are the most common 

type of train accident accounting for more than 70% of incidents that occurred between a 

fifteen-year period 2001-2015 with a total of 27,014 incidents (Li et al., 2018). With 

respect to Class I and Class II railroads they accounted for 20,249 derailments (Li et al., 

2018). Within the accident causal codes during this fifteen-year period, there were 7,753 

derailments from operator causal factors and 19,261 derailments from nonoperator causal 

factors. I will focus on derailments for my study due to the high percentage of accidents 

that are caused by derailments. The accident reports include important information to 

understand how multiple factors impact the occurrence of train derailments. This 

information can help railway managers to understand the relationship that multiple 

factors have with the occurrence of train derailments and how this information might help 

to eliminate the occurrences of derailments within the railroad industry. The causal codes 

in the accident reports can help to minimize the occurrence of train derailments by further 

understanding how the causal codes once broken down into operator and nonoperator, 

have an impact on the number of train derailments.  

Train derailments can cause huge financial impacts to the company over time if 

they occur multiple times throughout the year and cause lasting effects on the operations 

within the company. The derailments during a fifteen-year period 2001-2015 had a 

financial impact of more than $30.7 million on railroad companies. Costs from train 

derailments can further be broken down into how much operator causal factors and 
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nonoperator causal factors each cost the rail lines when the derailment occurs. 

Researchers have argued that train derailment risk management should be further 

examined such as human factors, rail parts failure, semaphore and control systems, 

vehicle-track interaction, and other contributing factors to train derailments (Zhang & 

Sun, 2019). 

Track maintenance needs to be completed at highest efficiency because this can 

help to prevent the train derailments. Currently it is estimated that track maintenance 

accounted for 30-40% of the total operating cost (Miwa & Oyama, 2018). Ensuring that 

track maintenance is completed before the issue is serious will help to mitigate the 

occurrence of train derailments due to lack of maintenance on the rail lines.  

There has been further analysis completed on train derailments and the lasting 

effects that they can have on employees and the likelihood of train derailments to occur 

from the employee again. Holmes and Rahe (1967) are American psychologists that 

suggest certain situations cause change in human behavior, making it necessary for 

adjustments so we can deal with those events. These events have been known as life 

events and they can create high-stress levels for the individuals that experienced the event 

(Floris et al., 2021). Stress can be looked at as an advanced state of homeostasis, in which 

individuals reach behaviorally, physiologically and psychologically, in an attempt to 

return to normal homeostasis (Paluch et al., 2018). When looking at life events and the 

stress that can occur from such events, each individual has a different response 

mechanism if the life event was the occur again (Floris et al., 2021).  
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While working on the railroad, there is a chance for employees to experience a 

traumatic event. Most of the time this traumatic event is related to individuals committing 

suicide and running in front of the train or jumping from bridges (Li et al., 2018). When 

these incidents occur, employees are required to pull the train brake and stop the train to 

report what happened to the local authority. When this occurs, this can cause a train 

derailment as the employee pulls the brake too fast and other factors play into what 

occurred when the train was stopped. From these traumatic incidents, employees might 

be on edge or experiencing post-traumatic stress disorder.  

When an incident occurs, there are multiple forms that need to be completed and 

recorded within the FRA safety website. All information included within the form will 

help others to understand what occurred when the derailment happened. Included within 

the form is the causal code for the derailment and whether it was an operator or 

nonoperator causal factors. Next, I will provide a detailed analysis on the train derailment 

reporting process and the causes for train derailments.  

Train Derailment Causes. The FRA complies the accident reports submitted into 

the rail equipment accident database, which contains information about the accident 

location, speed, consist type, and damage cost, along with other important information 

(Liu et al., 2017). The causal factors for each derailment are included within the 

accident/incident report. The FRA has more than 350 codes used for the causal factors of 

train derailments. Causal codes are broken down into main level headings and then 

further detailed into the applicable codes that are used when reporting on the Form FRA 
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F 6180.97. Within the FRA accident database, the causal codes are not broken down into 

operator causal codes and nonoperator causal codes.  

Operator causal factors, within the FRA Guide for Preparing Accident/Incident 

Reports (2021), include (a) brakes, use of, (b) employee physical condition, (c) flagging, 

fixed, hand and radio signals, (d) general switching rules, (e) main track authority, (f) 

train handling/train makeup, (g) speed, (h) switches, use of, (i) cab signals, and (j) 

miscellaneous (see Appendix B, Table 1). Operator causal factors are important to 

understand because this can help understand the factors human have impact on when a 

train derailment occurs. Within the list of operator causal factors there are many 

important safety factors that need to be understood by employees or train derailments 

may happen. The physical condition of the employee is also included within the causal 

codes. Included within this area is the impairment, incapacitation, restriction in work, 

employee asleep and employee physical condition. If one of these causal codes is listed 

on the accident report, it could cause further investigation into the employee and what 

occurred on the train.  

Operator causal factors, within the FRA Guide for Preparing Accident/Incident 

Reports (2021), include (a) track, roadbed, and structures, (b) signal and communication, 

and (c) mechanical and electronic failures (see Appendix B, Table 2). Nonoperator causal 

factors are the factors that humans do not have control over. Primarily these deal with the 

mechanical aspect of the tracks or rail car that the employees do not have the ability to 

stop before it occurs. There have been many articles published on the need to ensure that 

maintenance is completed on the tracks and ensuring that during times of extreme 



46 

 

weather precautions are taken before trains get onto the tracks (Miwa & Oyama, 2018). 

Completing the maintenance beforehand can help to limit the number of train derailments 

that occur. All employees need to understand the track and when there are issues during 

the extreme weather that might occur in that region. Contracted personnel need to ensure 

that shortcuts are not taken when performing the maintenance and if anything were to 

occur the day of maintenance this would be on management to get with the contracted 

company to see what was performed or what might have been missed.   

Research on Train Derailments 

There has been no research conducted on the relationship between train 

derailment causal factors, visibility, weather, number of crew members, crew members 

length of time on duty, and the occurrence of train derailment. In contrast, there were 

multiple studies on the causes of train derailment or the after effect of a train derailment 

and how to improve the occurrence of train derailments occurring (Hunter-Zaworski, 

2017; Underwood & Waterson, 2014; Zhang & Sun, 2019).  

Underwood and Waterson (2014) completed an analysis on the Greyrigg train 

derailment using the Swiss cheese model to see if the train accident occurred from a 

system thinking approach. The researchers included different elements from the Swiss 

cheese model or expanded on the model completely. Underwood and Waterson (2014) 

completed the analysis on a single train derailment to fully understand the best model 

when looking at the accident causation models currently available for use in analysis on 

train derailments. They determined that the Swiss cheese model was still a viable method 

on analyzing train derailments. It was determined that the Greyrigg train derailment had 
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multiple factors that caused the derailment to occur which are an incomplete 

understanding within Network Rail of points maintenance requirements which caused an 

absence of clear, properly briefed standard for maintenance (Underwood & Waterson, 

2014).  

Hunter-Zaworski (2017) completed an analysis on passenger incident data from 

five rail transit systems in the United States and Canada. The researcher wanted to 

understand the injury incident data to help improve safety at rail transit platform/train and 

platform/guideway interfaces. Since this research was on transit trains, Hunter-Zaworski 

was looking to understand the platforms where passengers entered the car. There was also 

analysis completed on the platform/guideway interfaces to see where the issues were 

occurring with the train cars. From the analysis, the researcher was able to understand the 

issues that were occurring for passengers to report injury while boarding trains at 

platform locations. The results gave safety officers and managers ideas on how to help 

passengers and also ensure that maintenance was being completed to limit the 

occurrences of derailment with passenger railcars.  

Zhang and Sun (2019) completed an analysis on how the multicriteria decision-

making model can be used to help with train derailment risk response strategies that can 

help limit the occurrences of train derailments. Both researchers found that train 

derailments can result in interruptions within train operations and can cause serious 

delays. The researchers acknowledge that there should be increased attention on 

derailments risk management, such as human factors, rail parts failure, semaphore and 

control systems, and so many more areas. Zhang and Sun’s primary focus was to help the 
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Huangyangcheng station located in Shemu City, Shaanxi. Information within this article 

could be expanded to other locations to see the potential impact that it has on other 

railroad stations around the world.  

Researchers have looked at safety within the railroad industry and how this can 

further be improved by the implementation of new processes or more strict safety 

procedures on the trains (Hunter-Zaworski, 2017). For researchers to better understand 

the train safety and risk analysis associated with train derailments, the derailment rates 

need to be accurately estimated through the train derailment rate.  

Liu et al. (2017) found that higher FRA track classes had lower derailments rates, 

varying by more than an order of magnitude. This came as no surprise because higher 

FRA track classes are intended to ensure safe operations when operating at a higher speed 

which requires a more robust maintenance schedule for these tracks. There is still a need 

to understand the causal factors whether operator or nonoperator and the number of train 

derailments. The findings within this proposed study may help to management 

understand the causal factors for train derailments and how to improve risk management.  

Lui et al,’s (2017) findings in this study have the potential to improve business 

practice because they can help railroad managers increase their knowledge on operator 

causal factors, nonoperator causal factors, and their interaction influence train 

derailments. Understanding the relationship can help railroad management update current 

procedures and policies to help crew members be prepared for the common causal factors 

that impact train derailment occurrences. The relationship can also help management 

understand the potential impacts that weather, visibility, number of crew on duty and 
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crew members length of time on duty have on the occurrences of train derailments. 

Management can understand how over exerting employees can have catastrophic impact 

on train derailment occurrences.  

Transition  

The purpose of this study was to examine the relationship between train 

derailment causal factors, visibility, weather, number of crew members, crew members 

length of time on duty, and the occurrence of train derailment. In Section 1, I discussed 

the background of the study, problem statement, purpose statement, nature of the study, 

research question, hypotheses, theoretical framework, operational definitions, 

assumptions, limitations, and delimitations, significance of the study, and review of the 

professional and academic literature. The literature review consisted of the theoretical 

framework the Swiss cheese model which further looked at organizational accidents and 

accident causation, Swiss cheese model, the evolution of the Swiss cheese model, Swiss 

cheese models components, and comparing the Swiss cheese model to other models. 

Next, I addressed accident occurrences in other industries which includes aviation 

accidents, maritime accidents, railway accidents, train derailments, and train derailment 

causes. Finally, there was a discussion on research on train derailments which included 

current research conducted on train derailments and their occurrences. 

In Section 2, I restate the restatement of the purpose statement, role of the 

researchers, participants, research method, research design, population and sampling, 

ethical research, data collection, data analysis, and study validity. In Section 3, I include a 

presentation of findings, application to professional practice, implications for social 
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change, recommendations for action, recommendations for further research, reflection, 

and conclusion.  
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Section 2: The Project 

Section 2 describes the research project by including the purpose statement and 

describing the role of the researcher, participants, research method, and research design. 

Also included in this section is a detailed discussion on the population and sampling, 

ethical research, data collection, and data analysis. Section 2 concludes with addressing 

study validity and reliability followed by a conclusion and transition into Section 3.  

Purpose Statement 

The purpose of this quantitative correlational study was to examine the 

relationship between train derailment causal factors, visibility, weather, number of crew 

members, crew members length of time on duty, and the occurrence of train derailment. 

The independent variables were train derailment causal factors, visibility, weather, 

number of crew members, and crew members length of time on duty. The dependent 

variable was the occurrence of train derailment, represented as a dichotomous variable. 

The targeted sample population consisted of Class I and Class II rail lines in the railroad 

industry across the United States. Data collection was completed through the FRA Office 

of Safety Analysis, which is a publicly available database. All derailment safety reports 

are reported and complied on this site. The implications for social change include the 

potential to reduce the frequency of train derailment occurrences in the railroad industry 

and save lives.  

Role of the Researcher 

The role of the researcher in the data collection and analysis process in a 

quantitative study is to ensure that the sample size is adequate, that there is consistency, 
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reliability, and validity in the data, and that data analysis is completed (Kyvik, 2013). 

Though I have not worked in the railroad industry, I have multiple family members who 

have worked in the railroad industry for more than 28 years. My role in this data 

collection and analysis for this study was to pull the data from the FRA safety database 

website, which was filtered down by the railroad class to Class I and Class II railroads in 

the United States. From the information pulled in the FRA safety site, I analyzed the train 

derailment causal factors, visibility, weather, number of crew members, and crew 

members length of time on duty. This information was coded according to the list 

included in Appendix C.  

The Belmont Report (2003) was created to provide principles when dealing with 

human subjects for biomedical and behavioral research, providing specific regulations 

under the common rule of fundamental principles research should follow (Metcalf, 2016). 

As a researcher, it is important to provide participants with a safe environment and to 

ensure that they are assured information received during interviews will be confidential. 

However, I did not use surveys, interviews, or participants for my data collection. Due to 

the information for this study being collected from a secondary source, with no human 

interaction, I did not require consent from participants for this study. The secondary 

source used for data collection helped to complete the statistical analysis pertaining to the 

topic of operator causal factors, nonoperator causal factors, and their interaction influence 

train derailments.  

In the role of the researcher, bias should be mitigated to avoid influencing the 

outcome of the data (Daigneault, 2014). During data collection, I was not employed by 
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the railroad, and I did not have direct contact to management within any railroad 

company. The data collected from the FRA website also followed a specific data 

collection and analysis protocol. Data were collected from the FRA website on Class 1 

and Class II railroads, and the causal codes were further separated into operator causal 

factors and nonoperator causal factors.  

Participants 

There were no participants in this study. No railroad companies, management, or 

employees were contacted for participation in this study. All information for this study 

was collected from the FRA safety website, which is a publicly available platform. I 

pulled information on Class I and Class II railroads in the United States.  

Research Method and Design  

Research Method 

I selected a quantitative methodology for this study. The quantitative method is 

used to express the evaluation results with intuitive data, which is more objective, and the 

quantitative results are more scientific, rigorous, and profound (Du et al., 2019; Pickett, 

2020; Teng et al., 2020). Quantitative research is also more applicable when the data are 

already available on a platform. For this study, all the data were pulled from a public 

platform and there will not be any interaction with management or personnel working 

within the company. Further, quantitative methods are used to find patterns, make 

predictions, test relationships, and to understand the research questions that are asked 

(Barnham, 2015; Paul & Garg, 2014). Quantitative methods are used to test a theory 

rather than develop a theory, as would be the case with a qualitative research method 
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(Barnham, 2015; Guetterman et al., 2015). In this study, variables were analyzed to 

assess and test their relationships.  

In contrast, qualitative research methods are more applicable when the researcher 

wants to understand the human side of business by going into the natural setting of the 

company, exploring how people make sense and meaning, and their lived experience 

(Gergen et al., 2015). Qualitative research is more applicable when wanting to ask 

questions and understand the lived experience of someone. Qualitative research methods 

are used to answer the why questions dealing with the research topic. The purpose of this 

study was not to investigate the behaviors or experiences from workers within the 

railroad industry. Instead, the purpose of this study was to test the hypotheses using 

secondary data that is provided within the FRA safety database.  

The mixed method is used when researchers want to understand aspects of 

qualitative and quantitative research methods and pull different factors from each 

method. The benefit of this method is when researchers are looking to eliminate the 

weakness of one research method (Afrifa, 2013; Sahin & Ozturk, 2019). However, the 

objective of my study was not to look at qualitative and quantitative methods; it was to 

understand the relationship between variables. Since I looked at exclusively variables, the 

mixed method was not applicable for this study.  

Research Design 

There are different research designs that can be used when conducting a 

quantitative study, which include experimental, quasi-experimental, and correlational 

design (Roberts & Povee, 2014; Wells et al., 2015). The research design for this study 
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was a correlational design to understand the relationship without manipulating any of the 

independent variables. All data for this study were pulled from the FRA safety database 

and were not manipulated for data analysis. The goal of this study was to examine the 

relationship between five independent variables and one dependent variable, which aligns 

with a correlational design.  

Experimental and quasi-experimental are two other quantitative research designs 

not chosen for the study. Experimental research focuses on potential causal relationships 

(Kuhberger et al., 2014), and manipulation is used to see how the dependent variable 

responds to changes in the independent variable (Andeweg et al., 2020; Geuens & De 

Pelsmacker, 2017). A quasi-experimental design is similar to experimental but lacks 

random assignment (Barrera-Osorio et al., 2018; Tavakol & Pinner, 2019). For this study, 

I collected data from Class I and Class II railroad in the United States; I did not put the 

railroads into assigned participant groups. The experimental or quasi-experimental design 

were not appropriate for my study because I did not manipulate the data that were pulled 

from the FRA database. The goal was to understand the relationship between variables, 

which aligned with the correlational research design. Correlational design is used to use 

statistical tools to assess relationships, which is then tested against the hypotheses to 

answer to research questions involving all the variables (Aderibigbe & Mjoli, 2019; 

Curtis et al., 2016; Vetter, 2017).  
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Population and Sampling 

Population 

Population does not always mean people but can also detail the total quantity of 

causes of things that are needed to research a subject (Etikan et al., 2016). The dependent 

variable was the occurrence of train derailment, represented as a dichotomous variable. 

The population consisted of all accidents for Class I and Class II railroads during the 

2019 calendar year, which was collected from the FRA safety website as the most 

relevant and appropriate record. The FRA safety website was the most reliable source for 

this information because it includes all train accidents that have occurred on Class I and 

Class II railroads each year. Due to the data selection options in the FRA database, I 

decided to focus on Class I and Class II railroads.  

Sampling 

A sample is a subset of the total population being studied to answer research 

questions. Nonprobabilistic sampling is used when elements of the population do not 

have a known or equal probability of being selected (Turner, 2020). Purposive sampling 

is used when the researcher selects subjects from the target population based on the fit 

with the purpose of the study and specific inclusion and exclusion criteria (Etikan et al., 

2016). Purposive sampling can help with providing information on the topic on the 

specific research question (Turner, 2020). Sampling deals with the selection of a subset 

of the population within the research (Faul et al., 2009), but this study included the total 

population of included Class I and Class II railroads during the 2019 calendar year. Using 
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the entire population of Class I and Class II railroads in the United States removed any 

sampling bias and subjectivity that can occur with sampling selection.  

A power analysis was completed to show the sample size needed for the study 

(see Faul et al., 2009; Appendix D). There were five independent variables, three of 

which were recoded as dummy variables. The independent variables were train 

derailment causal factors (three dummy variables), visibility (four dummy variables), 

weather (six dummy variables), number of crew members, and crew members length of 

time on duty. Using G* Power version 3.1.9.6 software, a logistic regression analysis, 

assuming a medium effect size (f 2= .15), α = .05, and 15 independent variables, 

identified that a minimum sample size of 139 participants is required to achieve a power 

of .80 (see Appendix D, Figure D1). Increasing the sample size to 257 would increase 

power to .99 (see Appendix D, Figure D2). For this study I used the total population, 

which consisted of 1,396 accidents, exceeding the number of cases that were identified 

from the power analysis. Using the total population allowed for a more robust analysis.  

Ethical Research 

I did not use participants or organizations in this study; therefore, I did not require 

informed consent, nor did I have a procedure for participants to withdraw from the study. 

The data on train accidents in Class I and Class II railroads was obtained from a public 

safety website managed by the FRA. The data contained the name of the railroad 

companies and location of the train derailments but was not included in this study. The 

only information that was used in this study is the accident causal code and the Class of 

railroad. The Walden Institutional Review Board approval number is 07-15-21-0983532.  
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Instrumentation 

For data collection, I used the FRA Office of Safety Analysis Query tool for 

accident/incident trends, which is a public database. Data entered in this database come 

from the FRA, consolidated reporting groups and individual railroads. Using the FRA 

Office of Safety Analysis Query tool was the best option because all the necessary 

information needed to complete the analysis in this study is included within the database.  

The dependent variable came from the accident type and was coded 0 for an 

accident not classified as a train derailment and 1 for an accident classified as a train 

derailment. The dependent variable came from the type of accident/incident field reported 

in the FRA database: 1 = derailment, 2 = head on collision, 3 = rear end collision, 4 = 

side collision, 5 = raking collision, 6 = broken train collision, 7 = highway-rail crossing, 8 

= railroad grade crossing, 9 = obstruction, 10 = explosion-detonation, 11 = fire/violent 

rupture, and 12 = other impacts. Everything coded as derailment was coded as a 1 for an 

accident classified as train derailment. Everything coded 2 through 13 was coded as a 0 

for an accident classified not a train derailment.  

The independent variables were train derailment causal factors (human or 

nonhuman), visibility, weather, number of crew members, and crew members length of 

time on duty. For the train derailment causal factors, I used the primary causal code and 

secondary causal code (refer to Appendix B for operator and nonoperator causal codes). 

Train derailment causal factors were initially be coded to operator, nonoperator, or both 

causal factors. Visibility and weather were initially coded 1- XX depending on how many 

factors are included within each category (refer to Appendix C for coding). Next, I had 
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SPSS convert these into dummy variables for train derailment causal factors, visibility, 

and weather, which coded the variables 1 for yes and 0 for no. This means that train 

derailment causal factors became three dummy variables, visibility became four dummy 

variables and weather became six dummy variables. Number of crew members and crew 

members length of time on duty were expressed as continuous variables and were not 

recoded. From the FRA Office of Safety Analysis Query tool, which outputted the 

Accident/Incident Trend report for Class I and Class II railroads, the data were then 

sorted into the applicable variable data columns and coded accordingly. 

The data from the FRA website were exported into a Microsoft Excel file and 

stored, filtered, and processed as indicated above. No surveys, interviews, or participants 

were used, only the online tool populated by the FRA Office of Safety Analysis. All the 

variables in my study came from this database.  

The FRA database has been used in multiple studies to help researchers gather the 

information needed for their studies. Zhang et al. (2019) used the FRA to analyze the 

human factors that have an impact on the occurrence of freight train accidents in the 

United States. From the database, they pulled information to understand how much 

movement is made on the railroad network each year and also the occurrence of human 

caused freight accidents. Analysis has also been completed on the analysis of passenger 

incidents within five different rail transit systems (Hunter-Zaworski, 2017). The 

researchers have used the FRA database to pull the injury reports that were completed 

when an accident occurred on a rail transit system. Further, Calabrese et al. (2017) used 

the FRA database to understand how many railroad accidents account for the casualties 
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among maintenance of way employees and signalmen. The overall effort of this research 

was to understand the human factors that contribute to the time-of-day effects on railroad 

worker injury risk.  

Reliability related to the consistency of a measure when using an instrument to 

measure different variables (Heale & Twycross, 2015). For this study, all information 

was gathered from the FRA Office of Safety Analysis database and was not altered other 

than the recode variables as described above. Each time the data was pulled from the 

website it was exported into the same excel sheet. 

When using secondary databases for data collection, researchers need to ensure 

that the sources are free from material error and bias (Parker, 2012). All accident reports 

are completed by the railroads and then pulled into the FRA database. The records in the 

database go back to 1975. If the report is pulled multiple times in the FRA database 

information will not change, the only thing that will change is the personal selections that 

the researcher is looking for. I pulled data from the FRA database on Class I and Class II 

railroads and both reports included all the necessary information to complete the analysis 

for this research topic. None of the fields were filtered out of either document.  

Validity refers to the extent that a concept is accurately measured in a quantitative 

study (Heale & Twycross, 2015). The FRA database uses a specific form to report all 

occurrences of train derailments within the railroad industry. Both forms used (Form 

FRA F 6180.54 & Form FRA F 6180.97) are the same throughout the entire railroad 

community. The data fields on the forms are the same for each railroad company and all 

companies are to fill out this form when a train derailment occurs. There data are then 
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inputted into the database and can be exported into the excel sheet which is how I 

obtained the required data for this research topic.  

To gain access to the data in the FRA database permission is not needed, this is a 

public website. The raw data for this study is attached in Appendix E to show how the 

data is sorted when exported from the FRA database. From the raw data, tables were 

populated in the study to show how it was separated into operator causal factors and 

nonoperator causal factors.  

Data Collection Technique 

Data collection for this study was from a secondary source the FRA Office of 

Safety Analysis Query tool for Accident/Incident Trends database. The research question 

for this study was: What is the relationship between train derailment causal factors, 

visibility, weather, number of crew members, crew members length of time on duty, and 

train derailment? Data for this study was collected from the FRA database. Before 

downloading, the data was filtered into Class I and Class II railroads. For this study, the 

research was completed on the 2019 calendar year since all reports have already been 

complied for that year. I accessed this data from the FRA website and download the 

required information from the Query tab, specifically the FRA Accident/Incident Query.  

For the train derailment causal factors, I used the primary causal code and 

secondary causal code (refer to Appendix B for operator and nonoperator causal codes). 

Train derailment causal factors were initially be coded to operator, nonoperator, or both 

causal factors. Visibility and weather were initially be coded 1- XX depending on how 

many factors are included within each category (refer to Appendix C for coding). Next, I 
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had SPSS convert these into dummy variables for train derailment causal factors, 

visibility, and weather, which coded the variables 1 for yes and 0 for no resulting in three 

variables for train derailment causal factors, four variables for visibility, and six variables 

for weather. Number of crew members and crew members length of time on duty were 

expressed as continuous variables and will not need to be recoded. See Appendix B & C 

for details on how all independent variables were coded into the SPSS data file. For the 

dependent variable, I took the data from the accident type field in the FRA database and 

code each accident as derailment yes or no. Everything coded as derailment was coded as 

a 1 for an accident classified as train derailment. Everything coded 2 through 13 was 

coded as a 0 for an accident classified not a train derailment. All information that was 

exported from the FRA database was not altered because the query function allows for 

the selection of railroad class. Since I did not have to alter the data in the excel sheet this 

helped improve the overall validity and reliability of the mentioned instrument 

I collected data from the FRA database which includes all the necessary 

information to complete my analysis and this data was exported into a Microsoft Excel 

file and then sorted according to the Class I and Class II railroads. The first step after 

pulling the data was to ensure that all sources contain relevant data to answer the research 

question in this study. The goal of the FRA database is to ensure that all train 

accident/incident trends are available for the public to see what accidents/train 

derailments occurred each year on the railroad. The data can be pulled from the system 

which allows for easy access to the data needed for this doctoral study. Data that are 

entered into this system come from the FRA forms that are completed once the train 
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accident/incident occurs. Details are inputted within the forms which will them be 

updated in the system to ensure that it is easily accessible rather than having to look 

through paper copies of the reports. After obtaining Institutional Review Board approval, 

I collected data through electronic retrieval on train accidents that occurred on Class I and 

Class II railroads during the 2019 calendar year. 

Obtaining data from a secondary source via an electronic database can have both 

advantages and disadvantages. Johnston (2014) stated that gathering information from a 

secondary source is inexpensive because researchers can bypass instrument creation and 

data collection stages by extracting the data from existing sources. Another advantage is 

the ability to have the data easily accessible and not having to wait to gather potential 

sensitive material. Other researchers have argued that secondary data saves time and 

financial resources, while minimizing the threat of bias (Johnston, 2014; Parker, 2012). 

Electronic forms of data can also make the data collection process easier than paper 

forms and improve the overall outcome to data reliability (Li et al., 2015). The final 

advantage is that researchers are afforded the opportunity to have data available when 

accessing human participants is difficult. However, secondary data does have potential 

limitations for the researcher. Obtaining data from achieved information may run into the 

potential for incomplete or missing data, which might cause gaps in the data needed to 

answer the research question.  
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Data Analysis 

RQ: What is the relationship between train derailment causal factors, visibility, 

weather, number of crew members, crew members length of time on duty, and the 

occurrence of train derailment? 

Null Hypothesis (H0): There is no statistically significant relationship between 

train derailment causal factors, visibility, weather, number of crew members, crew 

members length of time on duty, and the occurrence of train derailment. 

Alternative Hypothesis (Ha): There is a statistically significant relationship 

between train derailment causal factors, visibility, weather, number of crew members, 

crew members length of time on duty, and the occurrence of train derailment.   

The dependent variable in this study was the occurrence of train derailment, 

represented as a dichotomous variable. The independent variables were train derailment 

causal factors (human or nonhuman), visibility, weather, number of crew members, and 

crew members length of time on duty (see Appendix C for coding). The number of crew 

members and crew members length of time on duty were continuous variables; the total 

sum of each factor was entered into the SPSS database.  

Correlation is a statistical measure of how closely and in what direction two 

variables are potentially related (Emerson, 2015), and Pearson correlations explore the 

linear relationship between variables (Sari et al., 2017). A correlation design allows 

researchers to examine the relationship between or among two or more variables (Altman 

& Krzywinski, 2015). Correlation designs also allow for the relationship between 

multiple independent variables and a dependent variable (Green & Salkind, 2017). The 
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objective of this study was to understand the relationship between train derailment causal 

factors, visibility, weather, number of crew members, crew members length of time on 

duty, and the occurrence of train derailment. Due to the objective of this research, the 

correlation design was most applicable.  

Regression analysis is a statistical technique that helps researchers to explore 

relationships between numerically measured independent and dependent variables, which 

can help researchers predict one variable based on the value of another variable (Hopkins 

& Ferguson, 2014). This type of analysis can help when the researcher is trying to 

understand how a change in an independent variable can have an effect on the dependent 

variable. When a researcher uses one dependent variable and two or more independent 

variable this will be called multiple regression or multilinear. The technique for analysis 

depends on the number of variables the research is looking to analyze and the deserved 

outcome from the completed analysis (Green & Salkind, 2017).  

Binomial logistic regression is used to predict the probability of an observation 

that falls into one or two categories of a dichotomous dependent variable and one or more 

independent variable that is continuous or categorical (Laerd Statistics, 2017). Due to the 

dependent variable being dichotomous because everything coded as derailment was 

coded as a 1 for an accident caused by train derailment and everything coded 2 through 

13 was coded as a 0 for an accident caused by something other than derailment, the 

binomial logistic regression was the most appropriate analysis method for my study. 

Train derailment causal factors, visibility, and weather are categorical nominal variables 

because they were coded 1- XX depending on how many factors are included within each 
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category. Number of crew members and crew members length of time on duty were 

continuous variables; the total sum of each factor were entered into the SPSS database.  

ANOVA is another statistical test a researcher can use to compare the difference 

between samples (Tarlow, 2016). The ANOVA test is more applicable when the 

researcher is dealing with a continuous dependent variable, while the independent 

variables are categorical. The purpose of the ANOVA test is to understand the interaction 

between the two independent variables on the dependent variable (Tarlow, 2016). The 

ANOVA test was not appropriate for my study because I have a dichotomous dependent 

variable which was coded into 0 for not classified as train derailment and 1 for classified 

as train derailment.  

Data cleaning relies on the identification and repair of data quality problems 

(Prokoshyna et al., 2015). Data cleaning helps to ensure that outliers and errors are 

removed from the data set (Fatima et al., 2017). There are times when collecting data that 

the information included is incomplete or missing the details needed for the analysis. 

Data cleaning helps the researcher with clearing out the data that is incomplete or missing 

the important details related to the research topic. When I retrieved the data from the 

FRA database it was exported into a excel file. Additional variables were added to 

identify operator causal factors or nonoperator causal factors. Completing the data 

cleaning in excel this helped when inputting the information into the SPSS program 

because the data was free of error which could have an impact to the SPSS analysis.  

Using Microsoft Excel can help with the data cleaning process because this can be 

completed by filtering the data and seeing where the incomplete fields are within the 
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document. Data missing in the excel sheet can have an effect on the validity of the study. 

Ensuring that the data cleaning process is followed through will help to ensure that the 

validity of the study does not get affected. In this study, I removed all entries that have 

incomplete data and ensure that this does not affect the targeted sample size for this 

study.  

There are seven assumptions associated with binomial logistic regression: (a) one 

dependent variable that is dichotomous (nominal variable with two outcomes), (b) one or 

more independent variables that are continuous or nominal scale, (c) independence of 

observations and the categories of the dichotomous dependent variable and all nominal 

independent variables should be mutually exclusive and exhaustive, (d) bare minimum of 

15 cases per independent variable, (e) linear relationship between the continuous 

independent variables and the logit transformation of the dependent variable, (f) no 

multicollinearity, and (g) no outliers (Laerd Statistics, 2017). The first three assumptions 

were met because the dependent variable was dichotomous (0 – classified as not a train 

derailment, 1 – classified as train derailment), the independent variables are continuous 

and categorical. 

According to the power analysis completed the recommended sample size for this 

study was 139 but all accidents within the calendar year 2019 for Class I and Class II 

railroads were used in this study. For the linear relationship between the continuous 

independent variables and the logit transformation of the dependent variable I used the 

Spearman’s correlation coefficient approach, which measures the strength and direction 

of association that exists between two variables measured on the ordinal scale (Laerd 
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Statistics, 2017). Completing this test will show if there is statistical significance and if 

there is a concern with the linearity of the continuous variables with respect to the logit of 

the dependent variable. The next assumption with logistic regression is that there is no 

problem of multicollinearity. The absence of multicollinearity means that the independent 

variables included in the regression analysis do not correlate too highly to each other 

(Zahari et al., 2014). To assess multicollinearity, I reviewed the tolerance and variance 

inflation factor (VIF) statistics in the SPSS data file output and look for a tolerance level 

greater than .10 and a VIF less than 10 which indicates there is not multicollinearity 

among the independent variables (Zahari et al., 2014).  

The final assumption with logistic regression is that there are no outliers in the 

data. Outliers are cases with extreme scores on one or more of the independent variables 

and this can cause distortions within the regression equation (Laerd Statistics, 2017). 

Within SPSS I checked the casewise list for accident incidents that were above 2.5 in 

deviation, which mean they are outliers and should be corrected or deleted from the data 

set.  

For this study, SPSS version 25 was used for data analysis once the excel sheet 

was inputted into the software. When understanding the logistic regression analysis, the 

following factors were included in the analysis table (a) b, (b) SE, (c) Wald, (d) df, (e) p, 

(f) odds ratio (Exp B), and (g) 95% confidence interval for odds ratio. Beta (b) is the 

probability of making a Type II error in a hypothesis test by incorrectly concluding there 

is no statistical significance (Hollstein & Prokopczuk, 2016). Beta includes the values by 

which the researcher should multiply each independent variable to predict the dependent 
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variable (train derailment). The independent variable that has a larger absolute beta value 

has a great impact on the dependent variable than does independent variables with 

smaller absolute variables (Hollstein & Prokopczuk, 2016).  

The Standard Error are values are associated with the beta coefficients. These 

values describe how precisely the model estimates each coefficient’s real but unknown 

value (Laerd Statistics, 2017). The SE can help researchers to test whether the value for 

each beta is significantly different than zero. Along with this the standard error can be 

used to for a confidence interval for the beta (Bekkar & Wansbeek, 2016). The SE can 

determine the likelihood that the beta falls between a specific higher or lower value.  

The Wald test is used to determine statistical significance for each of the 

independent variables (Laerd Statistics, 2017). Wald is also the chi-square value and can 

be used with the p value to determine the likelihood that the beta coefficients differ 

significantly from those obtained by chance (Voinov, 2015). The df are the number of 

values in the final calculation of a statistic that are free to vary (Gherekhloo et al., 2016). 

There is currently a one-degree freedom for each independent variable. The more degrees 

of freedom in the model, the higher Wald must be to reject the null hypothesis that the 

true value of the associated beta coefficient is actually zero (Laerd Statistics, 2017).  

The p value represents the statistical significance of each independent variable in 

the model (Stern, 2016). Along with this the p value can show the likelihood that the true 

value of the associated independent variables in the population are actually zero. A p 

value less than .05 is accepted as statistically significant (Stern, 2016) or also unlikely to 

have occurred by chance.  
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The Exp (B) is the probability and informs the researcher of the change in the 

odds for each increase in one unit of the independent variable (Laerd Statistics, 2017). 

The odds ratio is defined as when given a particular value for an independent variable 

that an event will occur, divided by the probability that an event will not occur (Lui, 

2016). The odds ratio measures how much each independent variable increase the 

likelihood of an outcome, in this case it will determine train derailments. The 95% 

confidence interval of the odds ratio is used to determine whether the association is 

statistically significant (Laerd Statistics, 2017). When looking at the 95% confidence 

interval the odds ratio means there is a 95% likelihood that the true value of the odds 

ratio in the population falls between the upper and lower boundary values.  

Study Validity 

Validity is the extent to which a concept is accurately measure in a quantitative 

study (Heale & Twycross, 2015). Validity can be broken down into internal and external. 

Internal validity examines whether the manner in which the study was designed, 

conducted, and analyzed allows for answers to be truthful when analyzing the research 

question within the study (Andrade, 2018). Often internal validity will be used in 

experimental and quasi-experimental research studies. Since this research study will not 

be experimental or quasi-experimental, I will not need to address the internal validity. 

However, external validity examines whether the findings within the study are 

generalized to other contexts (Andrade, 2018; Lievens et al., 2019). Data was collected 

according to the suggested sample size from the power analysis and then analyzed using 

the SPSS program; this reduced the threat of external validity.  
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Quantitative research designs also analyze validity through the use of statistical 

conclusion validity. Statistical conclusion validity holds when the conclusion of a 

research study is found through the use of adequate analysis of the data collected (Garcia-

Perez, 2012). There are two different types of statistical conclusion validity, Type-I errors 

and Type-II errors. A Type-I error happens when the research accepts the alternate 

hypothesis and concluding that a relationship exists between variables when there is no 

relationship present (Ampatzoglou et al., 2019). On the reverse side, a Type-II error 

occurs when the research accepts the null hypothesis, which is saying no relationship 

exists, when in reality there is a relationship between the variables (Ampatzoglou et al., 

2019).  

Within this research study, I ensured that Type-I and Type-II errors do not occur 

by setting the alpha (a) level, or level of statistical significance to 0.05 and the beta (b) 

level or statistical power between 0.80 – 0.99. I ensured that my sample size was big 

enough to help eliminate the possibility of Type-I or Type-II errors. The sample size in 

my study included Class I and Class II railroad in the United States. An a priori 

calculation of sample size required an effect size of f = .15, a = .05, and power b = 0.80, 

which will require a minimum of 139 in the sample. If the power b is increased to b = 

0.99 the sample size would jump to a minimum sample size of 257.  

Transition and Summary 

Section 2 contained a plan on conducting research pertaining to the determination 

of a relationship between operator causal factors, nonoperator causal factors, and the 

number of train derailments. In Section 2, I discussed the role of the researcher, 
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participants, research methods and design, populations and sampling, ethical research, 

instrumentation, data collection and analysis, and the study validity. In Section 2, I 

explained why I choose the correlational research design and the binomial logistics 

regression analysis for this study. I explained where the data will be collected, and how I 

will use Microsoft Excel to download the information and complete data cleaning before 

inputting the data into SPSS for analysis. Section 3 will contain the presentation of the 

findings, application to professional practice, implications for social change, 

recommendations for action, recommendations for further research, reflections, and a 

conclusion.  
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Section 3: Application to Professional Practice and Implications for Change 

Introduction 

The purpose of this quantitative correlational study was to examine the 

relationship between train derailment causal factors, visibility, weather, number of crew 

members, crew members length of time on duty, and the occurrence of train derailment.  I 

conducted a binominal logistic regression analysis and found nonoperator train 

derailment causal factors and number of crew members on duty were significant 

predictors in the occurrence of train derailment. The null hypothesis was rejected, and the 

alternative hypothesis was accepted. However, visibility, weather, operator causal factors, 

both operator and nonoperator causal factors and length of time on duty were not 

significant predictors in the occurrence of train derailment. 

Presentation of the Findings 

In this subsection, I discuss the findings of the analyses of the collected data. I 

include the results of testing for statistical assumptions, descriptive analysis, and 

inferential analysis conducted to address the central research question and associated 

hypotheses. The results of the binomial logistic regression analysis procedures are 

included, along with the nature of the relationship between the study variables. I also 

present a theoretical discussion on the findings, application to professional practice, 

implications for social change, recommendations for actions and further research, and my 

reflections.  
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Tests of Assumption 

There are seven assumptions associated with binomial logistic regression: (a) one 

dependent variable that is dichotomous (nominal variable with two outcomes), (b) one or 

more independent variables that are continuous or nominal scale, (c) independence of 

observations and the categories of the dichotomous dependent variable and all nominal 

independent variables should be mutually exclusive and exhaustive, (d) bare minimum of 

15 cases per independent variable, (e) linear relationship between the continuous 

independent variables and the logit transformation of the dependent variable, (f) no 

multicollinearity, and (g) no outliers (Laerd Statistics, 2017).  

The first three assumptions were met. The fourth assumption of minimum of 15 

cases per independent variable was met in all but two instances. The dependent variable 

was dichotomous (0 = classified as not a train derailment, 1 = classified as train 

derailment). The independent variables includes both continuous and categorical 

variables. Number of crew members and crew members length of time on duty were 

continuous variables. Train derailment causal factors, visibility, and weather were 

categorical variables. The independence of observations assumption was met because 

accident cause could only fit under one category. According to the power analysis 

completed, the recommended sample size for this study was 139, but all accident within 

the calendar year 2019 for Class I and Class II railroads were used in this study, which 

totaled 1,396 accidents. There were two instances for sleet and snow where there were 

less than 15 cases per independent variable. All other independent variables had more 

than 15 cases.   
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The assumption of a linear relationship was not met, but this is likely due to the 

large sample size; therefore, no adjustments were needed to the study. According to 

Laerd (2017), a large sample size can result in a violation of this assumption, and when 

this occurs, no adjustments to the analysis are needed. For the assumption of linearity, the 

Spearman’s rank-order correlations (see Table 1) were run to examine the relationship 

between number of crew members and length of time on duty. These were the only 

variables included in the linearity test because they are continuous. The correlation 

coefficient between number of crew members and length of time on duty this was .233 (rs 

= .233, n = 1,396, p < .001), which shows a weak relationship between the two variables. 

Table 1 
 
Linear Relationship Assumption Testing Using Spearman’s rho 

  Number of Crew 
Members 

Length of Time on 
Duty 

Number of Crew 
Members 
 

Correlation 
Coefficient 
 
Sig. (2-tailed) 
 
N 
 

1.000 
 
 
 
 

1,396 

.233 
 
 

.000 
 

1,396 

Length of Time on 
Duty 

Correlation 
Coefficient 
 
Sig. (2-tailed) 
 
N 

.233 
 
 

.000 
 

1,396 

1.000 
 
 
 
 

1,396 
 

The assumption of no multicollinearity was met. Multicollinearity was evaluated 

by viewing the collinearity statistics of tolerance and VIF. Since all predictor variables 

had a tolerance level higher than .07 and VIF lower than 10 (Table 2), there was no 
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violation of the assumption of multicollinearity. The following table shows the tolerance 

and VIF for each predictor variable.  

Table 2 
 
Multicollinearity Assumption Testing Using Coefficients 

 Tolerance VIF 
Visibility 
 

.996 
 

1.004 

Weather 
 
Cause Code 
 
Number of Crew 
Members 
 
Length of Time 
on Duty 

.996 
 

.991 
 

.947 
 
 

.954 

1.004 
 

1.009 
 

1.056 
 
 

1.048 

 

The assumption of no outliers was met. To test for outliers, the case wise list was 

analyzed when the logistic regression analysis was performed, which showed all cases 

had a standard deviation below 2.5, meaning they were not outliers and could be included 

in the data set (Laerd Statistics, 2017). 

Data Cleaning and Descriptive Analysis 

In total, there were 1,609 cases once filtered down to Class I and Class II 

railroads. Once filtered down into Class I and Class II railroads, each accident incident 

number was analyzed to ensure that there was not a duplicate input or missing 

information from the accident report. There were 213 records eliminated due to duplicate 

cases and missing data, resulting in 1,396 records for the analysis. To eliminate these 
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cases from the datafile, I deleted those lines from the Excel file and did not include them 

in the SPSS data file.  

Table 3 contains the descriptive statistics for the frequency of each variable. The 

model included 1,396 cases. The data showed 41.3% of the accidents reported occurred 

during the day and 65.2% of the accidents occurred during clear weather conditions. 

From all accidents reported 45.3% were caused by operator factors and 53.5% were 

caused by nonoperator causal factors. Additionally, the data showed that 63.7% of all 

accidents occurred when there were only two crew members on duty and 25.3% when 

there were three crew members on duty. When looking at length of time on duty, 7.8% of 

the time the crew was on duty 3–4 hours. Finally, from all accidents reported, 73.4% 

resulted in the occurrence of a train derailment which totals 1,024 cases. All 1,396 total 

cases all were considered 100% valid, and there were no missing data.  
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Table 3 
 
Descriptive Statistics—Frequencies 

 N Percentage 
Dawn 164 11.7% 
Day 576 41.3% 
Dusk 146 10.5% 
Dark 510 36.5% 
Clear 910 65.2% 
Cloudy 336 24.1% 
Rain 99 7.1% 
Fog 12 .9% 
Sleet 5 .4% 
Snow 34 2.4% 
Operator Cause 632 45.3% 
Nonoperator Cause 747 53.5% 
Both 17 1.2% 
1 Crew Member 128 9.2% 
2 Crew Members 889 63.7% 
3 Crew Members 353 25.3% 
4 Crew Members 23 1.6% 
5 Crew Members 3 .2% 
0-1 hours 19 1.4% 
1-2 hours 73 5.2% 
2-3 hours 93 6.7% 
3-4 hours 109 7.8% 
4-5 hours 103 7.4% 
5-6 hours 83 5.9% 
6-7 hours 98 7.0% 
7-8 hours 100 7.2% 
8-9 hours 75 5.4% 
9-10 hours 82 5.9% 
10-11 hours 63 4.5% 
11-12 hours 57 4.1% 
12-13 hours 61 4.4% 
13-14 hours 50 3.6% 
14-15 hours 50 3.6% 
15-16 hours 43 3.1% 
16-17 hours 43 3.1% 
17-18 hours 30 2.1% 
18-19 hours 37 2.7% 
19-20 hours 31 2.2% 
20-21 hours 41 2.9% 
21-22 hours 28 2.0% 
22-23 hours 15 1.1% 
23-24 hours 10 0.7% 
27-28 hours 1 0.1% 
44-45 hours 1 0.1% 
Not a Train Derailment 372 26.6% 
Train Derailment 1024 73.4% 
Valid 1,396 100% 
Missing 0  
Total 1,396  
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Inferential Statistics 

The analysis of the model fitting test is summarized in Table 4. The independent 

variables add statistically significant to the model or at least one independent variable is 

statistically significant. The significance value is less than .05; therefore, the null 

hypothesis is rejected. A statistically significant difference does exist between train 

derailment causal factors, visibility, weather, number of crew members, crew members 

length of time on duty, and the occurrence of train derailment.  

Table 4 
 
Model Fitting Information 

 Chi-Square df Sig. 
Step 
 

114.265 
 

12 .000 

Block 
 
Model 

114.265 
 

114.365 

12 
 

12 

.000 
 

.000 
 

Table 5 includes inferential results for the hypotheses. Dummy coding allows 

researchers to turn categories into (1) yes or (2) no, when dealing with categorical 

variables with more than one level (Laerd Statistics, 2017). From the dummy coding 

there will be a reference category that identifies a category of comparison for the other 

categories. The reference category makes all interpretations in reference to that category. 

For example, using visibility—dawn as the dummy variable and visibility—dark as the 

reference, results for that variable showed visibility dark in comparison with train 

accidents visibility of dawn. Visibility, weather, and train derailment causal factors were 

dummy coded for data analysis in SPSS. For visibility, the variables included in the 
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analysis were (a) dawn, (b) day, and (c) dusk. Dark was used as the reference category 

for visibility in the logistic regression analysis. Weather included (a) clear, (b) cloudy, (c) 

rain, (d) fog, and (e) sleet. Snow was used as the reference category for weather. Finally, 

train derailment causal factors were (a) operator causal factor and (b) nonoperator causal 

factors. Both operator causal factors and nonoperator causal factors were used as the 

reference category for train derailment causal factors.   
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Table 5 
 
Inferential Results 

  
B 

 
S.E 

 
Wald 

 
df 

 
p Exp(B) 

95% CI for 
Odds Ratio 

Lower   Upper 
Visibility   .168 3 .983    
Dawn -.068 .209 .107 1 .744 .934 .621 1.406 
Day -.050 .145 .120 1 .729 .951 .716 1.263 
Dusk -0.29 .224 .017 1 .896 .971 .626 1.506 
Weather   3.917 5 .561    
Clear .248 .399 .386 1 .534 1.281 .586 2.802 
Cloudy .165 .412 .160 1 .689 1.179 .526 2.642 
Rain -.147 .450 .106 1 .744 .863 .357 2.086 
Fog .264 .802 .108 1 .742 1.302 .270 6.269 
Sleet -.692 1.033 .448 1 .503 .501 .066 3.796 
Cause Factors   93.708 2 .000    
Operator Causal 
Factors 

.630 .500 1.592 1 .207 1.878 .705 5.001 

Nonoperator 
Causal Factors 

1.871 .504 13.796 1 .000 6.492 2.419 17.419 

Number of Crew 
Members 

.416 .107 15.062 1 .000 1.516 1.229 1.870 

Length of Time on 
Duty 

.005 .011 .179 1 .672 1.005 .983 1.027 

Constant -1.291 .681 3.588 1 .058 .275   
Note. This table depicts the logistic regression analysis output.  
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The p value represents the statistical significance of each independent variable. P 

values of less than .05 are accepted as statistically significant, meaning that they are 

unlikely to have occurred by chance (Stern, 2016). From the p values in Table 5, 

nonoperator causal factors (< .001) and number of crew members (< .001) were 

statistically significant predictors for the occurrence of train derailment. All other 

predictor variables had p values above .05, which showed that they were not statistically 

significant predictors of the occurrence of train derailment. The Exp(B) also informs 

researchers of the change in the odds for each increase in one unit of the independent 

variable (Laerd Statistics, 2017). From the data, nonoperator causal code (6.494) and 

number of crew members (1.516) if increased by one unit increases the odds of a train 

derailment occurrence.  

The null hypothesis was that there is not a statistically significant relationship 

between train derailment causal factors, visibility, weather, number of crew members, 

crew members length of time on duty, and the occurrence of train derailment. The 

regression results showed that two of the predictor variables, nonoperator causal factors 

and number of crew members on duty, were statistically significant predictors for the 

occurrence of train derailment. The other predictor variables, visibility, weather, operator 

causal factors, both operator and nonoperator causal factors and length of time on duty, 

were not statistically significant predictors of train derailment. Therefore, the null 

hypothesis was rejected, and the alternative hypothesis was accepted. 

As shown in Table 6, the Pseudo R2 values show the percentage of the dependent 

variable that can be predicated by the independent variables. The Pseudo R2 values are 
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used to understand how much variance in the dependent variable can be explained by the 

model. I used the Cox & Snell measure (UCLA: Statistical Consulting Group, 2021), 

which indicated that the model with the five independent variables explains 7.9% of the 

variance in the dependent variable, occurrence of train derailment. I also used Nagelkerke 

measure (UCLA: Statistical Consulting Group, 2021), which indicated that the model 

with five independent variables explains 11.5% of the variance in the dependent variable, 

occurrence of train derailment. 

Table 6 
 
Pseudo R-Square 

 -2 Log likelihood Cox & Snell R Square Nagelkerke R Square 
1 1504.318 .079 .115 

 

Summary 

The purpose of this quantitative correlational study was to examine the 

relationship between train derailment causal factors, visibility, weather, number of crew 

members, crew members length of time on duty, and the occurrence of train derailment. I 

collected secondary data from the FRA safety database on train accidents that occurred in 

Class I and Class II railroads during the 2019 calendar year. I conducted a binomial 

logistic regression analysis using the data from 1,396 train accidents. The overall findings 

of this study provided evidence of a statistically significant relationship, x2(12) = 

114.265, p < .001. Of the predictor variables, nonoperator causal factors and number of 

crew members on duty were statistically significant predictors of the occurrence of train 
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derailment. In the following sections, I will discuss these results in relation to existing 

literature, and the conclusions and recommendations based on the results.  

Theoretical Discussion of Findings 

While visibility, weather, operator causal factors, both operator factors, length of 

time on duty were not significant in the analysis of this study, nonoperator causal factors 

and number of crew members on duty were significant predictors of the occurrence of 

train derailment. The results of the study provided insight into the variables that have a 

significant impact on the occurrence of train derailments. Previous research can be used 

to help illuminate the results of this study. From previous research, 19,261 derailments 

were from nonoperator causal factors (Li et al., 2018). Nonoperator causal factors 

encompass things that our outside the control on the operator and are listed in Appendix 

B of this study. Number of crew members on duty can have impact on the ability for crew 

members to observe when other crew members are distracted, and an accident can occur 

(Coplen & Sussman, 2000).  

Previous studies provided insight into the causes of train derailment or the after 

effect of a train derailment and how to improve the occurrence of train derailment 

occurring (Hunter-Zaworski, 2017; Underwood & Waterson, 2014; Zhang & Sun, 2019). 

Underwood and Waterson used the Swiss cheese model to analyze the Greyrigg train 

derailment and realized that poor maintenance along with other factors caused the 

derailment to occur. Hunter-Zaworski) completed an analysis on passenger accidents to 

understand the safety measures that needed to be in place or updated to ensure passenger 

safety. Zhang and Sun analyzed different train derailment risk response strategies to help 
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limit the occurrence of train derailment occurrence. From precious research it was also 

found that high FRA track classes had lower derailment rates, varying by more than an 

order of magnitude (Liu et al., 2017).  

Nonoperator causal factors and number of crew members were found to be 

statistically significant predictors of the occurrence of train derailment. This aligns with 

articles from Hunter-Zaworski, 2017, Underwood & Waterson, 2014, and Zhang & Sun, 

2019. The goal was to understand the causes of train derailment or the after effect of a 

train derailment and how to improve the occurrence of train derailment occurring. From 

the analysis in this study researchers can further understand the main causal factors that 

have an effect on the occurrence of train derailment.  

Visibility, weather, operator causal factors, both operator factors, and length of 

time on duty were not significant predictors in the occurrence of train derailment. This 

conflicts with previous research since operator causal factors were predictors in previous 

research (Hunter-Zaworski, 2017, Underwood & Waterson, 2014, and Zhang & Sun, 

2019). In previous research both operator causal factors and nonoperator causal factors 

were analyzed as causes of train derailment but this doctoral study breaks each of these 

causal factors out for further analysis.  

The theoretical framework for this study was the Swiss cheese model which helps 

to show where the holes are that create the scenario for a train derailment to occur (Olson 

& Raz, 2021). In this study, the holes that are aligning are nonoperator causal factors and 

number of crew members on duty, this can further be expanded if the analysis completed 

by Underwood and Waterson (2014). Researchers can use the Swiss cheese model to 



86 

 

complete further analysis on nonoperator causal factors and number of crew members on 

duty to see how it impacted accidents that were caused by these factors.  

The Swiss cheese model was created to understand the active failures, latent 

failures, and defenses within a system (Reason, 1997). Active failures are unsafe acts by 

front-end operators and latent failures are gaps or weaknesses in the system safety 

defense. Defenses can be looked at as layers of cheese’ with holes in it and when they 

align it created a weakness in the system causing an accident to occur. From this study 

nonoperator causal factors and number of crew members are the slices of cheese that are 

aligning to create train derailment occurrence. Nonoperator causal factors can fall into the 

active or latent failure categories. They can fall into the active failure because there could 

be neglect on track maintenance or other organizational failures that are causing the train 

derailment. Nonoperator causal factors can be latent because there may be a condition not 

known that over time can become active and cause the train derailment to occur. The 

number of crew members can fall into the latent failure category because there could be 

an issue with scheduling on management and having a lack of personal on duty can cause 

issues to not be noticed and a train derailment to occur.  

Applications to Professional Practice 

The general business problem in this study was that train derailments, sometimes 

the results of operator error, have impact on community safety, transportation efficiency, 

and organizational cost. The specific business problem was some railway managers do 

not understand the relationship between train derailment causal factors, visibility, 

weather, number of crew members, crew members length of time on duty, and the 
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occurrence of train derailment. The most important outcome from this study that railway 

managers should deduce is nonoperator causal factors and number of crew members are 

important to help limit the occurrence of train derailment.  

Railway managers should focus on the nonoperator causal factors that are 

increasing the chances for train derailment occurrence. Railway managers could consider 

increasing the frequency of track maintenance or switch maintenance or other variables 

that fall into the nonoperator causal factor table (Appendix B). Environmental conditions 

fall into the nonoperator causal factor area; therefore, railway managers could look at 

potential weather patterns and make decisions about whether to send the crew out if there 

will be a potential environmental issue.  

Railway managers should also consider the number of crew members that are on a 

train at a time. The number of crew members was found to significantly impact the 

occurrence of train derailment. Specifically, train derailments were less likely to occur if 

there were a higher number of crew members, as compared to a lower number of crew 

members. Railway managers can investigate how crews are being managed and if there is 

a need to increase the crew members that are on duty. Limiting the number of crew 

members can cause potential causal factors to not be noticed, which could lead to 

derailment.  

The Swiss cheese model analyzes active failures, latent failures, and defenses 

within a system that cause an accident to occur. Railway managers could have analyses 

completed to understand the specific causal factors that have a higher impact on their 

operations and find the potential solutions to correct the errors before another derailment 
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occurs (Li et al., 2019). Analysis on number of crew members can help railway managers 

with allocation of resources to help limit the occurrence of train derailment. There could 

be the potential for lack of crew members available to be on duty at the time a train is 

moving cars, which could cause a potential train derailment. When there are fewer crew 

members on duty, there are things that can be missed by the crew that can help prevent 

train derailments from occurring. The number of crew members on duty could also be 

indicative of other factors causing derailment that are not mentioned in the accident 

reports. Expanding the content of the accident reports could lead to a better understanding 

of these factors. Further analysis from railway managers will help understand the active 

failures, latent failures, and defense.   

Implications for Social Change 

This study has numerous implications for social change. This study provided an 

understanding of the relative importance of nonoperator causal factors and the number of 

crew members. Understanding the nonoperator causal factors and the number of crew 

members can help management to limit the occurrence of train derailment. Management 

can have further analysis completed to understand the overall impact that nonoperator 

causal factors have on their rail line. Such analyses can help management to allocate the 

correct resources and not limit the number of crew members that are on duty at one point 

in time.  

These results may also help railway mangers to understand the unforeseen 

accident causal factors for train derailments. While there are operator and nonoperator 

causal factors from this study it was found that nonoperator causal factors have a 
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significant impact on the occurrence of train derailments. Railway managers can take this 

information and understand how the nonoperator causal factors (a) track, roadbed, and 

structure, (b) signal and communication, (c) mechanical and electrical failures, (d) 

miscellaneous causes not otherwise listed are causing their train derailment numbers to 

increase. This information can also help management to understand the areas that might 

need improvement with track maintenance, switch maintenance, or environment 

condition pre planning prior to sending the team out on the tracks. These results can help 

management to understand how limiting the crew members can increase their chances of 

train derailment occurrence.  

These results may also help everyone to understand the importance of train 

derailment causal factors which may help improve the safety measures taken during and 

after a train derailment. When a train derailment occurs, operators are required to 

complete a train accident report that details what occurred to allow the train derailment to 

happen. In this study, I found that nonoperator causal factors and number of crew 

members were significantly impacting the occurrence of train derailments. This 

information can help operators to understand what is causing the increased likelihood for 

a train derailment. Allowing operators to understand this information can help them to 

know the common causal factors that occur and to be aware of these before they could 

potentially happen to the operator. These results also allow the operator to understand the 

correct safety measures to take during and after the train derailment when reporting to 

management and the FRA through the accident report documentations.  
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Disbursing this information to the community will allow railway managers to 

analyze the causal factors for information to disseminate to the community on train 

derailment safety precautions. These results will allow for management to tell the 

community when track maintenance is being completed or when a potential derailment 

occurred and if anything, harmful was put out into the community. The results can also 

bring awareness to the areas in the community where train accidents are likely to occur. 

This information will also help with disaster prevention to help the community 

understand factors that can increase the chances of train derailment occurrence from 

outside causal factors.  

Recommendations for Action 

Factors that impacted the occurrence of train derailments were nonoperator causal 

factors and number of crew members. Starting at the top level, managers need to 

understand within their organization how accidents are occurring and the factors that are 

impacting the occurrence of accidents. In this study, I found that nonoperator causal 

factors and number of crew members were significantly impacting the occurrence of train 

derailments. This information helps managers to understand what is causing an accident 

to occur within their organization and how to further decrease the likelihood of accident 

occurrence. Managers and business leaders would be wise to understand the causal 

factors that are causing the occurrence of train derailment to increase and also how to 

limit these factors, in order to decrease the number of train derailments.  

I used the Cox & Snell measure (UCLA: Statistical Consulting Group, 2021), 

which indicated that the model with the five independent variables explains 7.9% of the 
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variance in the dependent variable, occurrence of train derailment. I also used Nagelkerke 

measure (UCLA: Statistical Consulting Group, 2021), which indicated that the model 

with five independent variables explains 11.5% of the variance in the dependent variable, 

occurrence of train derailment. Further research could be done to include more 

independent variables, which might result in a model that has a higher R2 value. There 

are multiple factors listed on the train accident reporting document that other researchers 

could select different factors on how it affects the occurrence of train derailment. 

The theoretical framework for this study was the Swiss cheese model (Olson & 

Raz, 2021). Nonoperator causal factors and number of crew members can be looked at as 

a piece of cheese and when their holes align correctly, they increase the likelihood of 

train derailment occurrence. The Swiss cheese model helped to show how active failures, 

latent failures, and defenses are important for a railway manger to understand within their 

operations system (Seshia et al., 2017). Railway managers need to understand how 

nonoperator causal factors and number of crew members are the pieces of cheese that are 

lining up to increase their changes of train derailment occurrence on their railway.  

Railway managers need to understand how these factors are impacting the 

occurrence of train derailment because it can decrease the stress that operators are feeling 

when a derailment occurs. When a derailment occurs, it can cause stress on the operator 

and increase their chances of repeating a train derailment. Since nonoperator causal 

factors and number of crew member were found statistically significant on the occurrence 

of train derailment, understanding the impact of these factors can also be important when 
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railway managers are selecting crew members to ensure that everyone is safe and the 

chances of train derailment occurrence of decreased.  

Managers may be reluctant to increase the number of crew members on duty at 

one time but doing so can help to decrease the occurrence of train derailment. When the 

crew size is increased, it may help every operator to notice potential causal factors before 

the train derailment can occur. Increasing the crew member size may also help to reduce 

the potential stress from the crew and decrease the likelihood of train derailment 

occurrence.  

The results from this study will be distributed through the publication in the 

ProQuest dissertation database. I plan to reach out to railways to see if they are interested 

in understanding the data that was produced from this study to share this information with 

potential railway managers or business-related managers in the railway industry. There is 

the potential to also present this information at any industry conference to see if analysis 

can be completed in other industries.  

Recommendations for Further Research 

The assumptions, limitations, and delimitations provide ample avenues to build 

upon the results. One limitation was that there are only two sections for causal code entry 

and there might be more than just primary causal code and contributing causal code that 

made the train derailment occur. When an accident occurs, operators are required to 

report this information on an accident form. When selecting the causal code for the 

accident the operator can select a primary and contributing causal code. Future 

researchers could embed themselves in a railway company and looking at the accident 
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reports that are completed and asking the operator is there were more contributing factors 

than just two.   

Another limitation was there are potentially additional causes that are not 

adequately captured by the list of options within the database. Appendix B lists all the 

potential operator and nonoperator causal factors that can be selected by the operators 

when completed the accident report. There could be potential accident causal factors not 

reflected. Future researchers could complete analysis on the individual factors and if 

there is potentially any missing that could be contributing to the accident occurrence.  

The final limitation is that all independent variables for this study were entered by 

the accident recorder and incorrect information was not imputed. Since this information 

is manually inputted into the system there is a chance for the data to be incorrect which 

can change the outcome of a study. A future researcher could investigate the potential of 

an online system for accident recording where the operator will input the information and 

it could potentially decrease the change of incorrect data input.  

There are also methodological implications for future research. As this study was 

quantitative, a qualitative research study could aid in understand how managers process 

the information from train accidents. A qualitative study could provide further insight 

into the variables to see if there are any outside forces that impact the occurrence of train 

derailment. Along with these researchers could complete this study in different industries 

to see how multiple variables impact the occurrence of accidents. By comparing and 

contrasting industries, researchers can make better recommendations for specific 

organizations. This study focused on train derailment causal factors, visibility, weather, 
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number of crew members, and crew members length of time on duty results may be 

different if other variables are selected from the railway accident reporting record.  

Lastly, there is room for theoretical improvement. I used the Swiss cheese model 

to show how nonoperator causal factors and number of crew members where the slice of 

cheese lining up to cause an increased likelihood of train derailment occurrence but there 

are other accident theories that could be used for this analysis. Research using other 

theoretical frameworks might result in a different outcome.   

Reflections 

The Walden University doctoral study process had been challenging and 

rewarding. I learned a lot about myself throughout the whole process. Early in my 

journey, I was very motivated but nervous about how I would progress through the 

program. After my first residency I was worried that I would not know what to write 

about and then began thinking about passions that I had, which led me to my passion for 

the railroad industry. I have thoroughly enjoyed the interactions that I had with faculty, 

staff, and students while attending Walden University. Eventually, I began to find the 

balance between writing my study, personal life, and my full-time professional career. 

Working in the logistic field drove me to better understand how business managers have 

impact within their company. While in class and at residency I have found lifelong 

friends and motivation for completing this journey together. This doctoral study journey 

has helped to strengthen my research skills and to think outside the box when completing 

research analysis.  
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This journey has also allowed me to expand my knowledge on SPSS, which is 

one of the reasons that I completed a quantitative study. I expanded my knowledge on 

quantitative and qualitative research methods which will help me when wanting to 

complete analysis on different things in my professional career. While quantitative 

studies are not popular and most of my classmates were completing qualitative studies, it 

was the best option for me because it expanded my knowledge and expanded my 

experience while at Walden University. I have learned so much from my doctoral chair 

and second committee member during this journey and I will be grateful for this 

experience the rest of my life. I look forward to future researching opportunities and 

expanding my research articles.  

Conclusion 

The general business problem was that train derailments, sometimes the results of 

operator error, have an impact on community safety, transportation efficiency, and 

organizational cost. The specific business problem was that some railway managers do 

not understand the relationship between train derailment causal factors, visibility, 

weather, number of crew members, crew members length of time on duty, and the 

occurrence of train derailment. To address this problem, the purpose of this quantitative 

correlational study was to examine the relationship between train derailment causal 

factors, visibility, weather, number of crew members, crew members length of time on 

duty, and the occurrence of train derailment. The theoretical framework for this study 

was James Reason’s (1987) Swiss cheese model. I conducted this study to address the 
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research question and provide practical information about how railway managers can use 

this information to decrease their likelihood of train derailment.  

The overall findings of this study provided evidence of statistically significant 

relationships between nonoperator causal factors and number of crew members on the 

occurrence of train derailment. This study offered railway managers specific implications 

from variables studied and how they can use this information to better understand and 

prevent train derailments, because they understand the relative importance of the factors 

input on the potential outcomes. Lastly, there are plenty of opportunities for future 

research including studying other industries, using a qualitative approach, and by using 

other theories as the framework for a future study. Further research is important because 

train derailment has an impact on community safety, transportation efficiency, and 

organizational cost. Therefore, determining what variables increase train derailment 

occurrence allows railway managers to help reduce the frequency of train derailment 

occurrences within the railroad industry and save lives.  
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Appendix A: Train Derailment Reporting 

Train derailments occur when on-track equipment depart the rail for reasons other 

than collision, explosion, and rail crossing impact (Federal Railroad Administration 

[FRA], 2019). All derailments, regardless of whether there is damage caused or not, are 

reported reporting on a Form FRA F 6180.97 – Initial Rail Equipment Accident/Incident 

Record which includes important information regarding the incident (see Figure A1).  
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Figure A1 
 
Form FRA F 6180.97 

 

Note. From Federal Railroad Administration, 2019. 
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Depending on the initial information being reported, further forms may need to be 

completed and attached to a more detailed report for input into the FRA safety website. If 

the damage occurring during the derailment is more than the current threshold for the 

current year, then further information is reported on Form FRA F 6180.54 – Rail 

Equipment Accident/Incident Report (see Figure A2). For calendar year 2017 and 

beyond, the threshold was set at $10,700. On this form there are 55 fields that all need to 

be completed each providing important details about the event that occurred. With 

respect to this doctoral study the most important fields are as follows: seven (Type of 

Accident/Incident, 18 (Visibility), 19 (Weather), 22 (FRA Track Class), 38 (Primary 

Cause Code), 39 (Contributing Cause Code), 40-43 (Number of Crew Members), and 44 

& 45 (Length of Time on Duty).  

Field 7 (Type of Accident/Incident) is important because code 1 is applicable to 

derailment which is the area of interest for this doctoral study. All other codes in this 

field will be coded for accidents other than train derailment. Also, this code will help to 

filter through all the accidents that are reported into the FRA Safety website and exported 

into an excel file for analysis. Field 18 (Visibility) will help to understand the conditions 

when the derailments occurred. Field 19 (Weather) will help to understand the weather 

that was occurring when the train derailment happened. Field 22 (FRA Track Class) will 

help to be able to ensure that only Class I and Class II railroad accidents are being 

analyzed. Field 38 (Primary Cause Code) and field 39 (Contributing Cause Code) will 

help with breaking the causal codes into train derailment causal codes (human or 

nonhuman). Field 40-43 (Number of Crew Members) will help to understand the number 
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of crew members that were working when the train derailment occurred. Finally, field 44 

and 45 (Length of Time on Duty) will show the amount of time that the crew members 

were on duty and the impact it have on the occurrence of train accidents. 
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Figure A2 
 
Form FRA F 6180.54 

 

Note. From Federal Railroad Administration, 2019. 
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Completing these forms is important for companies because they allow 

management to understand what occurred at the time of the accident. When a train 

derailment occurs, there could be multiple things effected within the company because of 

the cost associated with train derailments. Along with this, depending on what the 

employee was hauling at the time of the derailment, local law enforcement might need to 

be called in if there was a hazardous material being transported. Safety measures are 

directly tied into these reports because the FRA safety office will use these forms to 

understand where the incident occurred, what occurred, and what was the contributing 

factor to the occurrence of the accident.  
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Appendix B: Operator and Nonoperator Causal Codes 

Table B1 
 
Operator Causal Factors—1 in SPSS Data File 

 Applicable Codes 
Brakes, Use of 
 

H008, H017, H018, H019, H020, H021, H022, H025, H099 

Employee 
Physical 
Condition 
 

H101, H102, H103, H104, H099 

Flagging, Fixed, 
Hand and Radio 
Signals 
 

H201, H202, H205, H206, H207, H208, H209, H210, H211, H212, H217, 
H218, H219, H220, H221, H222, H299 

General Switching 
Rules 
 
Main Track 
Authority 
 
Train 
Handling/Train 
Makeup 
 
Speed 
 
Switches, Use of 
 
Cab Signals 
 
Miscellaneous 

H301, H302, H303, H304, H305, H306, H307, H308, H309, H310, H311, 
H312, H313, H314, H315, H316, H317, H318, H399 

 
 

H401, H402, H403, H404, H405, H406, H499 
 
 

H501, H502, H503, H504, H505, H506, H507, H508, H509, H510, H511, 
H512, H513, H514, H515, H516, H517, H518, H619, H520, H521, H522, 

H523, H524, H525, H526, H599 
 

H601, H602, H603, H604, H605, H606, H607, H699 
 

H701, H702, H703, H704, H705, H706, H707, H799 
 

H821, H822, H823, H824, H899 
 

H991, H992, H993, H994, H99A, H99B, H99C, H99D, H99E, H995, H996, 
H997, H999 
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Table B2 
 
Nonoperator Causal Factors—0 in SPSS Data File 

 Applicable Codes 
Roadbed T001, T002, T099 
Track Geometry T101, T102, T03, T104, T105, T106, T107, T108, T109, T110, T111, T12, 

T113, T199 

Rail, Joint Bar and Rail 
Anchoring 

T201, T202, T203, T204, T205, T206, T207, T208, T210, T211, T212, 
T213, T214, T215, T216, T217, T218, T219, T220, T221, T222, T223, 
T224, T299 

Frogs, Switches and Track 
Appliances 

T301, T302, T303, T303, T305, T306, T307, T308, T309, T310, T311, 
T312, T313, T314, T315, T316, T317, T318, T319, T399 

Other Way and Structures T401, T402, T403, T404, T499 

Signal and Communication S001, S002, S003, S004, S005, S006, S007, S008, S009, S010, S011, S012, 
S013, S014, S015, S016, S099, S101, S102, S103, S104 

Brakes E00C, E00L, E01C, E01L, E02C, E02L, E03C, E03L, E04C, E04L, E05C, 
E05L, E06C, E06L, E07C, E07L, E08C, E08L, E0HC, E0HL, E09C, E09L, 
E10L 

Trailer or Container or Flatcar E11C, E12C, E13C, E19C 

Body E20C, E20L, E21C, E21L, E22C, E22L, E23C, E23L, E24C, E24L, E25C, 
E25L, E26C, E26L, E27C, E27L, E29C, E29L 

Coupler and Draft System E30C, E30L, E31C, E31L, E32C, E32L, E33C, E33L, E34C, E34L, E35C, 
E35L, E36C, E36L, E37C, E37L, E39C, E39L 

Truck Components E40C, E40L, E41C, E41L, E42C, E42L, E43C, E43L, E44C, E44L, E45C, 
E45L, E46C, E4AC, E4BC, E46L, E47C, E47L, E48C, E48L, E4TC, E4TL, 
E49C 

Axles and Journal Bearings E51C, E51L, E52C, E52L, E53C, E53L, E54C, E54L, E55C, E55L, E59C, 
E59L 

Wheels E60C, E60L, E61C, E61L, E62C, E62L, E63C, E63L, E64C, E64L, E65C, 
E65L, E66C, E66L, E67C, E67L, E68C, E68L, E6AC, E6AL, E69C, E69L 

Locomotives E70L, E71L, E72L, E73L, E74L, E75L, E76L, E77L, E78L, E7AL, E7BL, 
E79L 

Doors E80C, E81C, E82C, E83C, E84C, E85C, E856C, E89C 

General Mechanical and 
Electric Failures 

E99C, E99L 

Environmental Conditions M101, M102, M103, M104, M105, M199 

Loading Procedures M201, M202, M203, M204, M206, M207, M208, M299 

Unusual Operational 
Situations 

M401, M402, M403, M404, M405, M406, M407, M408, M409, M410, 
M411 

Other Miscellaneous M501, M502, M503, M504, M505, M506, M507, M509, M510, M599 
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Appendix C: Data Analysis Coding 

 
 Visibility 
Dawn 
 

0 

Day 
 

1 

Dusk 2 
  
Dark 3 
  
 Weather 
Clear 
 

0 

Cloudy 
 

1 

Rain 2 
  
Fog 3 
  
Sleet 4 
  
Snow 5 
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Appendix D: G*Power Analysis 

Figure D1 
 
G*Power 80% Power Plot 

 
 
Figure D2 
 
G*Power 99% Power Plot 
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Appendix E: Data Analysis File 
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