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Abstract 

Healthcare waste (HCW) incineration practices in the global South countries are among 

the major sources of black carbon (BC) emissions or smoke. This study analyzes HCW 

incineration trends during emergency situations and smoke from HCW incineration 

processes in Haiti.  The study was prompted by the current arguments about the climate 

change and the growing health effects associated with BC emissions. The conceptual 

framework was based on both adverse health effects from BC emissions exposure and 

climate change potential of BC emissions. Therefore, the goal was to determine whether 

cardboard HCW sharps containers emit lower BC emissions to the atmosphere during the 

incineration process, relative to the plastic sharps containers, and the pattern of 

emergency HCW incineration before and after the 2010 earthquake and cholera 

emergencies in Haiti. This was an observational study conducted with secondary data on 

HCW incinerated weights from January 2009 to December 2013 and primary data on 

average smoke densities. Linear regression analysis of the pattern of HCW incinerated 

weights revealed a relatively linear pattern (R2 = 0.164) with fluctuating scenarios (peak 

sharp rise in 2012). Independent samples t-tests demonstrated significantly lower smoke 

emission during the incineration processes of cardboard sharps HCW containers as 

compared to plastic containers (95 % CI, p = 0.003). Implications for positive social 

change include provision of quantitative evidence of the benefits of cardboard sharps 

HCW containers in reducing smoke during incineration activities, potential data for 

policy formulation, suggestions for review of existing HCW guidelines, and additional 

research on potential health impacts of emergency HCW disposal and BC emissions.  
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Chapter 1: Introduction to the Study  

Currently, researchers around the world are studying climate change challenges 

and its remedies with significant results. So far, the National Academy of Science [NAS] 

team has identified some of the fundamental issues to understand climate change. These 

include research, tools, and approaches for addressing human impacts to the climate 

challenge (National Research Council [NRC], 2010). Likewise, scientists are studying 

practical mitigation techniques and focusing on curbing carbon dioxide (CO2) emissions. 

However, focusing climate change remediation measures on curbing CO2 emissions as 

the major cause of climate change, and neglecting the climate change potential of black 

carbon (BC) emissions, has not been effective for many years (Bond et al., 2013; Santisi, 

2012; Spotts, 2013; United Nations Environmental Programme & World Metrological 

Organization [UNEP/WMO], 2011). Recently, researchers identified BC emissions as the 

second strongest cause of climate change after CO2 (Bond et al., 2013; Deangelis, 2011; 

Mahajan, Evans, Hack, & Truesdale, 2013). It has been estimated that 1 gram of BC 

emissions contributes to 100 to 200 times more warming than same amounts of CO2 over 

a period of 100 years (UNEP/WMO, 2011).  

Interestingly enough, BC emissions are reported to have shorter residence times in 

the atmosphere than CO2, hence, their remediation will result in immediate health and 

climatic effects (Bond et al., 2013; Jacobson, 2004; Ramanathan & Carmichael, 2008: 

Santisi, 2012; Spotts, 2013; WHO, 2014b).  BC emissions refer to the incomplete 

combusted fossil fuels, waste, wood and other biomass soot particles in the atmosphere 

(Deangelis, 2011; Kuo, 2009; World Health Organization [WHO], 2012). Healthcare 
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waste (HCW) incineration practices in the global South countries are among the major 

sources of BC emissions in the atmosphere, although they are unrecognized (Batterman, 

2004; Ferraz, Cardoso & Pontes, 2000; Ko, 1992; Mangaa, Fortonb, Moforc, & 

Woodardd, 2011; Zakaria & Labib, 2003; Zakaria, Labib, Mohamed, El-Shall, & 

Hussein, 2005). Reducing BC incineration emissions will contribute to positive health 

and climatic conditions (Biello, 2012; Bond et al., 2013; Jacobson, 2004; Ramanathan & 

Carmichael, 2008: Santisi, 2012; Spotts, 2013; WHO, 2012, 2014b).  

Therefore, in this study I examined how BC emissions from emergency HCW 

incineration practices could be reduced in the global South countries where incineration 

remains the best available technology (Basel Convention Technical Guidelines on 

Incineration on Land, 2002; Global Environmental Facility [GEF], 2009; UNEP 1996, 

2005). This study chapter is comprised of 12 sections including: the background of the 

problem, problem statement, purpose of the study, research questions and hypotheses, the 

conceptual framework in which the study literature and methodology rely, nature of the 

study, definition of terms, study assumptions, scope and delimitations, limitations, 

significance of the study and the chapter summary.  

Background of the Problem 

Numerous episodes of climate change have occurred since the 1950s, resulting in 

rampant fluctuations in temperature and precipitation, forest fires, drought, sea level rise, 

floods, melting of glaciers, heat waves, and disruption of habitats to plant and animal 

species to extinction (American Meteorological Society, 2008; Bond et al., 2013; 

Jacobson, 2004; Ramanathan & Carmichael, 2008: Santisi, 2012; Spotts, 2013). Yet, the 
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world has only been focused in curbing CO2, which is a leading cause of climate change. 

Scientists are formulating newer perspectives on BC emissions for potential impacts on 

climate change.  

According to the United States Environmental Protection Agency [USEPA], 

climate change occurs when greenhouse gases (GHGs) trap the incoming solar radiation 

released by the sun and reflect back the infrared radiation which then causes an increase 

in earth’s temperature (USEPA, 2014). Also, the climate of the earth changes because of 

variation in the reflectivity of earth’s surface and atmosphere (Jansen et al., 2007; 

USEPA, 2014). GHGs, primarily CO2, have longer residence times in the atmosphere of 

approximately 400 years and, therefore, recognized as long-lived climate change 

pollutants (Hegerl et al., 2007; Jansen et al., 2007; Santisi, 2012; Solomon et al., 2007).  

Scientific evidence keeps mounting on the increasing significance of BC 

emissions influencing climate change. BC emissions, or simple smoke refers to the 

particles originating from soot and exist in the atmosphere mostly from anthropogenic 

activities including the incomplete burning of fossil fuels, wood, waste, and other open 

biomass burning such as forest fires (Ban-Weiss, Cao, Bala & Caldeira, 2012; Biello, 

2012; Bond et al., 2013; Rypdal et al., 2009; Santisi, 2012). Since BC emissions absorb 

the sunlight’s energy, rather than reflecting it back, soot is thought to cause global 

warming (Bond et al., 2013; Deangelis, 2011; Santisi, 2012). BC emissions, though not 

GHGs, are climate change pollutants of greater concern because of their ability to absorb 

solar energy, and, alter the reflectivity of earth’s atmosphere and ice surfaces.  
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In studying global warming due to BC, Ramanathan and Carmichael (2008) 

concluded that soot accounts for roughly half of the global warming potential of CO2, 

suggesting that BC emissions are linked with flooding and drought in southern and 

northern China respectively. According to Bond et al. (2013) and Ramanathan and 

Carmichael (2008), BC emission’s contribution to the global warming is ranked second 

after the CO2 with a combined warming potential of 1.0 to 1.2 watts per square meter 

(Wm-2).   

Another scholar indicated that BC emissions or smoke emitted from the 

incomplete burning of biomass, waste and fossil fuels heat the earth twice as much than 

originally thought by scientists (Deangelis, 2011). BC particles are the principle light-

absorbing emissions that absorb radiation from the sun and decrease the reflectivity of the 

earth’s surface and, therefore, contribute to global warming (Anonymous, 2013; Ban-

Weiss et al., 2012; Bond et al., 2013; Kirkevåg, Iversen, Kirstjánsson, Seland, & 

Debernard, 2008; Kuo, 2009; NRC, 2002). Furthermore, cloud droplets entangle BC 

emissions, therefore, increasing the level and degree of cloud formation that disturbs 

thermal gradient. Also, clouds are less able to reflect sunlight when they become darker, 

thus, make the earth surface warmer (Deangelis, 2011; Forster et al., 2007; Mahajan et 

al., 2013; Santisi, 2012).  

The Intergovernmental Panel on Climate Change [IPCC] is providing additional 

evidence from their assessment that BC as a short-lived climate change pollutant is 

contributing to global warming nearly twice as much than originally estimated 

(Deangelis, 2011). The author stated that BC emissions have approximately 60% of the 
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global warming effects of CO2 with world-wide warming effects of 0.9 Wm-2 (Deangelis, 

2011). BC deposits have caused 0.5 to 1 .4 degree Celsius (0C) of warming over last 100 

years (Bond et al., 2013; Deangelis, 2011). Also, they contributed to the rapid warming in 

the Arctic region over the past 30 years (Bond et al., 2013; Deangelis, 2011; Santisi, 

2012). BC deposits in the Arctic and the Himalayas promoted melting of ice by lowering 

reflectivity of ice which threatens the water supply of more than 10% of the world 

population (Deangelis, 2011). India and China, as larger emitters of BC emissions, are 

reported to have caused the melting of Himalaya glaciers because of the proximity to the 

Himalayan range (Bond et al., 2013; Deangelis, 2011).  

BC emissions cause acute lower respiration infections, lung cancer, pneumonia, 

premature death, and chronic obstructive pulmonary disease (Deangelis, 2011; Hoek et 

al., 2011; Jansen et al., 2005; Shi et al., 2007; USEPA 2013; WHO, 2012, 2014b). As a 

result of its small particle size of 2.5 or smaller micrometer diameter, BC is said to 

penetrate deeply into the lungs, thus, people absorb fatal compounds like polycyclic 

aromatic hydrocarbons into their bloodstreams which lead to cancer-causing cell 

mutations and cardiovascular disease risks (Kuo, 2009; WHO, 2012). In addition to 

contributing to chronic disease risks, Grasso, Manera, Chiabai and Markandya (2012) and 

Haines and Patz (2004) reported climate change to be among the important factors 

prompting the occurrence of infectious diseases as well.  

In analyzing the potential effects of climate change in relation to heat exposure 

illness, Casimiro, Calheiros, Filipe, and Kovats (2006) projected an increase in vector-

borne diseases mainly schistosomiasis and malaria in Portugal between the year 1980 and 
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2050. Furthermore, extreme weather, food and water scarcity associated with climate 

change, tend to modify human behavior and lifestyle, which in turn, contribute to 

negative health as reported by DeBono, Vincenti and Calleja (2012).  

 Management of HCW is ineffective in most global South countries in Asia, 

Africa and Caribbean (Andrea, 2010; Manyele & Kagonji, 2012; Mochungong, Gulius, & 

Sodemann, 2012; Njagi, Oloo, J. Kithinji, & M. Kithinji, 2012; Taghipour & Mosaferi, 

2009). Approximately 85% of HCW generated in healthcare settings is comparable to 

household waste (WHO, 2014), thus normally disposed of through municipalities. The 

remaining 15% is infectious sharps, non-sharps, and, hazardous waste that requires 

treatment, incineration or complex hazardous waste disposal actions (WHO, 2011, 

2014c). More specifically, infectious waste comprises of approximately 5% whereas 

hazardous waste account for 10% of HCW.   

Sharps HCW, though represent about 1% of HCW, are major sources of 

transmitting infections mainly hepatitis B, C, and acquired immunodeficiency syndrome 

(AIDS), if they are not properly disposed of (Andrea, 2010; Ciplak & Barton, 2012; 

Ministry of Health and Social Welfare Tanzania, 2006a, 2006b, 2006c; WHO, 2011, 

2014c). Ineffective management of HCW in global South countries causes air pollution 

and exposes healthcare workers, patients and the general community to risks of infections 

(Andrea, 2010; International Monetary Fund [IMF], 2008; Ko, 1992; WHO, 2011, 

2014c). 

In studying combustion and emissions from 6 HCW incinerators in Egypt, 

Zakaria et al. (2005) reported the average smoke emissions to have been exceeded the 
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allowable limits established by the Egyptian environmental law for all incinerators. 

Incineration of HCW in Haiti “…as practiced by some health facilities is carried out 

without any filtering system thus raising the problem of air pollution and exposure to 

risks of disease on the part of the people living near such a pollution source” (IMF, 2008 

p. 46). Smoke emission from HCW incineration activities in Haiti is a growing threat to 

both public health and climate change. 

Similarly, Ko (1992) analyzed air particulate samples from two hospitals 

incinerators in Toronto, Canada, through proton-induced X-ray emission analysis (PIXE) 

and neutral activation analysis (INAA).  The purpose was to identify various sources of 

emission and their contributions to the ambient atmosphere. The results indicated HCW 

incineration processes to have been the major source of anthropogenic BC emissions at 

the two study sites which contributed to 22% and 36% ambient emissions found (Ko, 

1992). In addition, higher levels of toxic chemicals such as Ag, Cd, Sb, Cr, Zn and Pb 

were found in the ambient air owing to the higher plastic content in the HCW (Ko, 1992). 

Poor HCW segregation, wrongful anticipation of demands and poor inventory, as 

explained by Hicks (2013) and WHO (2014c), caused higher HCW volumes, and that the 

cost of wastage is one of the biggest expenditure in the healthcare system. Hicks (2013) 

thus, recommended the use of inventory technologies in demand forecasting, ordering 

appropriate amount of required supplies and equipment at the right time, and proper 

monitoring of inventories in order to reduce HCW volumes that reduce medical cost in 

general.  



8 

  

 

Andrea (2010) conducted a study on challenges affecting healthcare waste 

management (HCWM) in the Caribbean countries including Jamaica, St. Vincent and 

Grenadines, and the Republic of Trinidad and Tobago public hospitals in October 2009. 

In his results, Andrea, reported poor HCWM in public hospitals with the widespread lack 

of sharps waste containers, lack of HCW records and measurements for tracking HCW 

for disposal (Andrea, 2010). At the roots of his findings were a case of insufficient funds 

for HCWM, lack of standard operating procedures, inadequate environmental health and 

safety, absence of occupation health and safety, and lack of regulations in Jamaica 

(Andrea, 2010). According to Andrea (2010), HCWM costs in Caribbean were neither 

tracked nor included in hospital operations nor maintenance costs.  

Two groups of researchers from Cameroon analyzed HCWM processes from 

which they noticed ineffective conditions such as poor incineration process, higher HCW 

generation rates and poor segregation practices (Mangaa et al., 2011; Mochungong et al., 

2012).  These findings were similarly shared by Bangladesh counterparts, Akter and 

Tränkler (2003), who finally recommended a chain of steps needed to improve HCW 

disposal in Bangladesh medical facilities with stricter emission regulations.   Similarly, 

Coker et al. (2009) recommended requirements for monitoring and evaluation of HCWM 

activities in Ibadan, Nigeria. 

On another extreme, Manowan (2009) reporting on the management of HCW in 

Thailand, suggested the need to acquire an effective incineration process to mitigate 

climate change effects, while Alhumoud and Alhumoud (2007) pointed to the need for a 

detailed study to address rules and standards on HCWM in Kuwait. Likewise, Emenike 
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(2010) studied the efficiency of HCWM interventions in the global South countries 

through a systematic review of HCWM interventions between 2000 and 2010. The author 

reported efforts done in China, which, reduced stack emissions and increased efficiency 

of HCW incineration process (Emenike, 2010). Effectiveness of incineration as the best 

available HCW disposal technology in the global South countries is necessary in order to 

reduce BC emissions. 

The WHO team argued that treaties to reduce BC emissions would slow global 

and regional warming and would improve public health, especially in the global South 

countries where BC emissions originate primarily (WHO, 2012). More precisely, 

reducing short lived-climate pollutants could prevent 2 to 2.5 million annual deaths in the 

world (WHO, 2014b). Therefore, additional research on BC emissions reduction and 

strong policy guidelines towards climate change mitigation measures are crucial (Bond et 

al., 2013; NRC, 2010; Spotts, 2013; Stott, 2006; Tollefson, 2012), including an analysis 

of emergency HCW incineration trends and related BC emissions. 

Problem statement 

Although BC emissions reduction efforts had been traditionally left under the 

WHO which aims at reducing health risks associated with PM, the evidence of higher 

atmospheric warming potential of BC emissions requires joint efforts to reduce global BC 

emissions from different sources (Biello, 2012; Bond et al., 2013; Jacobson, 2004; 

Ramanathan & Carmichael, 2008; Rypdal et al., 2009; Santisi, 2012; Spotts, 2013). 

Jacobson (2004) and Rypdal et al. (2009) reported that the framework of Kyoto Protocol 

described under the United Nations Framework Convention on Climate Change 
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[UNFCCC] does not focus on BC emissions reduction. Notably, Santisi (2012) indicated 

that a nearly 3 degree Fahrenheit warming could be reduced above the arctic circles by 

controlling soot within five years, which are comparable to reversing all the warming that 

happened in the last 100 years in the Arctic region.  

Likewise, smoke or BC emissions are confirmed to be the major source of 

respiratory health risks affecting worldwide population health mainly in the global South 

countries (WHO, 2014a). Researchers provided scientific evidence that over ¾ of BC 

emissions come from the global South countries in the world followed by China (25%) 

and India (35%) (Deangelis, 2011; Santisi, 2012). HCW incineration activities in the 

global South countries including Haiti lack air pollution control systems, thus, release 

smoke into the atmosphere (Andrea, 2010; Batterman, 2004; Ferraz et al., 2000; IMF, 

2008; Ko, 1992; Zakaria et al., 2005). Reducing BC particles may cause immediate 

health and climatic effects because of its shorter atmospheric lifetime as compared to 

CO2 (American Meteorological Society, 2008; Bond et al., 2013; Jacobson, 2004; 

Ramanathan & Carmichael, 2008: Rypdal et al., 2009; Santisi, 2012; Spotts, 2013).  

Based on the three identified needs of joint efforts in curbing BC emissions, 

higher BC emissions in the global South countries, and the observed lack of control 

systems in HCW incineration activities in the global South countries including Haiti, the 

study identified a gap related to BC mitigation measures by healthcare facilities. This 

includes the ways in which HCW generation rates and smoke emissions can be reduced 

in hospitals. Thus, a call for a study to analyze HCW incineration trends during an 
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emergency situation and smoke measurement for different sharps container’s incineration 

processes.  

Purpose of the Study 

The purpose of this study was: 

1. To determine whether HCW incinerated weights before and after the January 

2010 earthquake and October 2010 cholera disasters in Haiti follow a linear 

pattern. 

2. To measure the average smoke densities coming from incineration of plastic 

and cardboard sharps HCW containers.  

3. To determine if cardboard HCW sharps containers emit lower BC emissions 

to the atmosphere during the incineration process, relative to the plastic sharps 

containers.   

In order to address the first study purpose, I quantitatively analyzed HCW 

incineration trend of the United Nations Mission for Stabilization in Haiti (MINUSTAH) 

within a span of 5 years of data starting from January, 2009 to December, 2013. This 

entailed going back one year before the most fatal 2010 earthquake and cholera disasters, 

and 4 years thereafter. The independent variable was the period including 12 months 

(January to December) in which HCW was incinerated from January, 2009 to December, 

2013, while the dependent variable was the weights in kilogram (kg) of incinerated 

HCW. The second and third purposes were addressed by observing and recording the 

estimated smoke levels or Ringelmann smoke numbers that are also quantitative by 

nature. Average smoke densities were computed based on the Ringelmann smoke 



12 

  

 

numbers for BC emissions or smoke from incineration of plastic and cardboard sharps 

containers. The independent and dependent variables were the types of sharps HCW 

containers (Cardboard and plastic) and the average smoke densities in percentage 

respectively.  

Research Questions 

In this study, I addressed two research questions:  

1. Do HCW incinerated weights before and after the January 2010 earthquake 

and October 2010 cholera disasters in Haiti follow a linear pattern? 

2. Do the cardboard HCW sharps containers emit lower BC emissions to the 

atmosphere during the incineration process, relative to the plastic sharps 

containers? 

The hypotheses for the first research question were: 

 Null hypothesis (Ho): the pattern of HCW incinerated weights before and after 

the January 2010 earthquake and October 2010 cholera disasters in Haiti is 

linear. 

 Alternate hypothesis (Ha): the pattern of HCW incinerated weights before and 

after the January 2010 earthquake and October 2010 cholera disasters in Haiti 

is non-linear. 

The hypotheses for the second research question were: 

 Null hypothesis (Ho): The average densities of BC emissions (smoke) during 

the incineration process of plastic sharps HCW containers and cardboard 

boxes are similar. 
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 Alternate hypothesis (Ha): The average density of BC emissions (smoke) is 

significantly lower during the incineration process of cardboard box sharps 

HCW containers. 

The independent and dependent variables for the first hypothesis were the time (months) 

in which HCW was incinerated from January 2009 to December 2013, and the weights in 

kg of HCW incinerated respectively. For the second hypothesis, the independent 

variables were the types of sharps containers (cardboard and plastic), while the dependent 

variables were smoke densities or Ringelmann smoke numbers.  In this study, I used the 

independent samples t-test to analyze the differences between smokes means obtained 

from incineration of cardboard and plastic sharps HCW containers. Likewise, I 

performed linear regression analysis to analyse the pattern of HCW incinerated weights, 

and predicted relationships in the resulting emergency HCW incineration model.  

Conceptual Framework 

The study’s conceptual framework focused on the potential health and climate 

change effects of BC emissions, and, therefore, the need for reducing smoke emissions 

from HCW incineration activities. Unabated BC emissions are a growing threat, 

scientifically proven to be causing a variety of human health effects and climate change 

with extreme impacts in the global South countries (Deangelis, 2011; Pan American 

Health Organization [PAHO], 2012; WHO, 2012, 2014b).  

In previous discussions, it is reported that over three quarters of BC emissions in 

the world originates primarily in the global South countries (Deangelis, 2011; WHO, 

2012, 2014a). Correspondingly, researchers have shown that climate change impacts 
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global population health in many ways including community migration, thus, regional 

and tribal conflicts towards squeezed resources (PAHO, 2012). Change in intensity, 

frequency and duration of weather events is the major cause of community relocation 

(PAHO, 2012).  

Grasso et al. (2012) and Haines and Patz (2004) reported climate change to be 

prompting the occurrence of infectious diseases. In studying climate change effects, 

Casimiro et al. (2006) projected an increase in vector-borne illnesses mainly 

schistosomiasis and malaria in Portugal between the year 1980 and 2050.  Furthermore, 

climate change leads to food and water scarcity that tends to modify human behavior and 

lifestyle, thus, negative health (DeBono et al., 2012). Deangelis (2011) cited the resultant 

melting of the Himalayan glacier following BC deposits, while Ramanathan and 

Carmichael (2008) suggested that BC emissions are linked to the flooding and drought in 

southern and northern China respectively.    

Experimental researchers show that exposure to BC emission causes airway 

inflammation, increase levels of serum amyloid, higher blood coagulation tendency and 

temporary lipid peroxidation’s increase (Barregard et al., 2006, 2008; Sehlstedt et al., 

2010; Solomon, Balmes, Jenkins, & Kleinman, 2003).  Grounding in the experimental 

study results above, epidemiologists reported an association between death rates and BC 

emissions (Jiang, Kazuhiko, Lall, Lippmann, & Thurston, 2011), and that, the rates vary 

based on season, location and source of BC emissions as supported by Grigg (2011), 

Maciejczyk, Zhong, Lippmann, and Chen (2010), and Park et al. (2007).  Likewise, the 

USEPA (2013) and WHO  (2012, 2014b) scientists reported long-term exposure effects 
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of BC emissions to be reproductive effects, reduced lung functions, development of 

chronic bronchitis, low birth weights, cancer, and premature deaths. Short-term effects 

cause asthma attack, acute bronchitis, and increase susceptibility to respiratory infections 

(USEPA, 2013; WHO, 2012). 

Based on the health and climate change effects of BC emissions, higher BC 

emissions in the global South countries, and regional variation in climate change impacts, 

additional studies to evaluate climate change mitigation measures are needed, including 

BC emissions reduction measures. One of the major methods to controlling BC emissions 

is by reducing smoke emissions from various sources including emergency HCW 

incineration activities, a focal point to which this study is directed.   

Nature of the Study 

 This study was an observational undertaking that relied on both primary and 

secondary data in analyzing smoke emissions from incineration of cardboard and plastic 

contained sharps waste, and emergency HCW incineration trends respectively. 

Observational study approach was considered appropriate as it stood to provide useful 

results for this study that directly relate to physical sciences as emphasized by Frankfort-

Nachmias and Nachmias (2008) and Javaherian (2012). I analyzed HCW incineration 

trend of the United Nations Haiti within a span of 5 year data starting from January 2009 

to December 2013 based on the approval note appeared under Appendix B. Equally, 

primary data on smoke density emitted from incineration of sharps HCW containers were 

collected and analyzed. As such, I applied a quantitative research design to the effect.  
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 I conducted quantitative analysis of HCW incineration trend by using secondary 

data on HCW incinerated weights by MINUSTAH from January 2009 to December 

2013. The independent and dependent variables were monthly periods in which HCW 

was incinerated, and HCW weights (kg) respectively. Quantitative data allowed statistical 

tests, including linear regression analysis that determined the pattern of HCW incinerated 

weights, and predicted relationships in the resulting emergency HCW incineration model 

as emphasized by Frankfort-Nachmias and Nachmias, (2008). Use of secondary data in 

this analysis reduced the study costs and time as well as providing answers to the testable 

hypotheses (Frankfort-Nachmias & Nachmias, 2008). 

Conversely, I employed quantitative approach to determine the BC emissions or 

smoke densities through observation at incinerator initial startup, the charging phase, and 

the actual burning phase for plastic and cardboard sharps HCW containers. The 

Ringelmann smoke charts were used to measure the intensity of smoke or Ringelmann 

smoke numbers which were then be used to compute the average smoke densities. The 

independent and dependent variables were the types of sharps HCW containers 

(Cardboard and plastic) and the average smoke densities in percentage respectively. 

Likewise, the independent samples t-test was used to test the differences between smokes 

means obtained from two separate incineration processes for cardboard boxes and plastic 

sharps HCW containers. I have discussed in details the data collection procedure in 

Chapter 3.  
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Definition of Terms 

Soot: Refers to the BC particles formed at higher temperatures through gas-phase 

processes, such as diesel engines and incinerators (WHO, 2012). 

Char: Refers to the carbonaceous materials formed when organic substances are 

heated up, from the pyrolysis process, or from partial burning of carbonaceous material 

with limited air or graphitic carbon (WHO, 2012). 

Black carbon (BC): Refers to the dark component of particulate matter (PM) 

which absorbs light and contains two forms of elemental carbon (Bond et al., 2013; 

WHO, 2012). BC is the generic term introduced by Novakov in 1982 and modified later 

in 1988 by Goldberg.  

Elemental carbon (EC): Refers to the PM in the atmosphere derived from 

combustion sources containing “Char-EC” and “Soot-EC” (Bond et al., 2013; Borrell, 

2008; WHO, 2012).     

Particulate matter (PM): Refers to the mixture of liquid droplets and solid 

particles found in air. PM includes soot, dust, char, smoke, dirt and other invisible 

particles made up of hundreds of diverse chemicals (USEPA, 2013). Inhalable PM 

includes fine particles of 2.5 or smaller micrometer diameter size and coarse particles 

ranging from 2.5-10 micrometer diameter size.  Sources of PM into the atmosphere can 

be primary (from smokestacks/incineration exhausts) or secondary (from complicated 

reactions of industrial chemicals in the air or industrial operations). 

Health-care waste (HCW): Refers to the liquid, gaseous and solid materials 

generated from healthcare facilities, laboratories, medical research institutions, homes 
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and other minor sources that include infectious sharps and non-sharps waste, 

pharmaceuticals, general waste, chemicals and radioactive materials (Ministry of Health 

and Social Welfare Tanzania, 2006a, 2006b, 2006c; WHO, 2014c).  

Health-care waste management (HCWM): Refers to a chain of activities that 

ensure safer HCW generation rates, handling, collection, storage, transport, treatment or 

destruction and final disposal (Ministry of Health and Social Welfare Tanzania, 2006a, 

2006b, 2006c).  

Health-care waste incineration: Refers to the HCW organic material’s thermal 

destruction by combusting at higher temperatures of above 800 0C in order to reduce 

waste volume and weight to over 80 % (WHO, 2014c).  Over 90% of infectious HCW 

generated in the United States is incinerated (Patki, 2012). HCW incineration by-products 

are flue gas, heat, particulates and ash (Ahmad, Baharun and Arshad, 2010; WHO, 

2014c). Air pollution control system is required in order to clean particles and 

compounds prior to release into the atmosphere (Basel Convention Technical Guidelines 

on Incineration on Land, 2002; GEF, 2009; UNEP 1996, 2005; USEPA, 2010; WHO, 

2014c).  

HCW incinerated weights: Refers to the amount of HCW in kg that was disposed 

of through thermal destruction by burning in the incinerator.  

Thermoplastics: Refers to plastic materials that melt while burning (Boedeker 

Plastics, Inc., 2014). 

Thermoset plastics: Refers to plastic materials that do not melt while burning 

(Boedeker Plastics, Inc., 2014). 
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Assumptions 

The key study assumptions are highlighted below: 

 I assumed that smoke emissions measurements from incinerators, using 

Ringelmann smoke charts, were unbiased. As such, the study recorded 

readings from three different smoke readers during the initial startup, the 

charging phase, and the actual burning phase before using the average 

phase-based readings as the final unbiased readings; assumed proper 

eyesight among three smoke readers trained in the use of the Ringelmann 

smoke charts. 

 I assumed that the nature of sharps waste generated before and after the 

2010 earthquake and cholera disasters in Haiti is similar. 

 I assumed that HCW incineration weight differences are associated with 

the 2010 earthquake and cholera disasters in Haiti. Other HCW sources 

during that time are unnoticed.  

 I assumed that HCW incinerated weights and patterns by MINUSTAH 

represent the HCW patterns and weights incinerated by other healthcare 

disposal facilities in Haiti. 

Scope and Delimitations 

The study boundaries and aspects were:  

 To determine the incineration patterns I used only the MINUSTAH’s 

HCW incinerated weights in the analysis. This was due to lack of reliable 

data on HCW incinerated weights from other healthcare facilities in Haiti.   
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 To measure black smoke emissions at three different healthcare 

incineration facilities including (a) MINUSTAH, (b) Public hospital, and 

(c) Private hospital. 

 This study’s conceptual framework was based on the significant health 

effects of exposure to BC emissions and climate change potential of the 

BC emissions. However, other aspects of the BC emissions including its 

cooling effects are excluded in the study. 

 To generalize HCW incinerated weights by MINUSTAH and the smoke 

measurement from three different healthcare facilities as a representation 

of the actual HCW incinerated weights and BC emissions in Haiti.  

Limitations 

The main study limitations were: 

 Lack of HCW incineration facilities nor records at Haiti State’s Hospital 

University, the location at which the Ministry of Public Health and 

Population (MSPP) in Haiti permitted me to conduct my research. I 

intended to collect primary data from this public hospital as indicated in 

the second study objective to measure the average smoke densities from 

incineration of plastic and cardboard sharps HCW containers from three 

hospitals in Haiti. Similarly, I was unable to get permission from any of 

the private hospitals visited. Thus, I had to rely only on the MINUSTAH 

HCW incinerated weights and incineration facilities for the available 

secondary data and primary data collection.  
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 Lack of acceptable BC or EC standard measurement methods in the world 

as reported by the WHO, (2012). As a result, in this study I had to opt for 

the use of Ringelmann smoke chart, regarded as a valid smoke 

measurement tool.  

 Insecurity impediments in Haiti that prevented me from visiting hospital 

in Cite Soleil. It is possible that hospitals in this area could, perhaps, have 

provided different insights in regard to HCW incineration in the country.  

 Weather challenges during smoke emission reading had forced me to 

postpone smoke reading test on a number of days that were either cloudy 

or highly windy. 

 It is possible that the MINUSTAH HCW incinerated weights and patterns 

might not represent the real patterns in Haiti as the materials came from 

different sources during the emergency. This infers that other hospitals 

could well have had different patterns due to the logistical problems 

including accessibility to transport during emergency.   

Significance of the Study 

This is the first study where a researcher analyzes HCW weights incinerated by 

MINUSTAH around the most fatally catastrophic 2010 earthquake, and the resultant 

cholera disasters that would provide an evidence-based account of what may have 

transpired. Second, it is optimistic that the results of the HCW incineration patterns 

analysis have provided information useful to most humanitarian agencies on effective 
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planning of emergency medical responses in the future in order to avoid expired 

pharmaceuticals, leading to lowered BC emissions and fuel consumption.  

Third, reduced HCW incineration emissions could result in positive social change 

for healthier communities following a drop in BC emission exposure and associated 

health risks. Fourth, the study findings on the challenges of emergency HCW incineration 

process in relation to BC emissions in Haiti may provide an informed basis for robust 

policy formulation and safe management of HCW disposal in Haiti and other countries 

where emergency and humanitarian efforts could similarly be taking place. Fifth, the 

findings could possibly provide informed guidelines for the purchase and use of greener 

sharps HCW containers verifiable for lower smoke emission as among climate change 

mitigation measures. Finally, the study outcome confirmed that there is a widespread lack 

of filtering system in incineration facilities in Haiti (IMF, 2008) observation.    

Chapter 1 Summary 

Enhanced research and tools, faster learning, flexibility and robust policy 

frameworks are critical measures for effective climate change remedies. According to the 

recent studies, BC emissions are reported to be the second cause of climate change after 

CO2 with approximately 60 % of global warming effects of CO2. Consequently, this 

study evaluated BC emissions from sharps HCW incineration, and patterns of emergency 

HCW incinerated weights for informed measures in the future emergency planning and 

climate change mitigation measures.  

As such, Chapter 1 included background information necessary to grasp the study 

problem, its purpose and significance to make a difference in the academic world. In 
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Chapter 2, I provide details on the empirical evidence and conceptual frameworks in 

analyzing the research problem. This covered health effects of BC emissions, ambient air 

quality standards for PM, occupational BC exposure limits, as well as climate change 

effects. Likewise, HCW incineration practices as performed by MINUSTAH, Guidelines 

on HCW incineration process and smoke emissions are captured in Chapter 3 under tools, 

design, procedures, and methodology for success of this study. In Chapter 4, I used 

statistical tests to analyze the research questions, hypotheses and documented the results. 

Chapter 5 is the final part of this study. In this area I interpreted my findings, discussed 

study limitations, and drew conclusion and recommendations.  
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Chapter 2: Literature Review 

Introduction 

In Chapter 2, I summarize the outcomes of the literature review that supports the 

conceptual framework, research design and methodology for this study. Most 

importantly, this is the first study of its kind to analyze the emergency HCW incineration 

trends and its climate change effects which is exceptional to the available research. In this 

chapter, my aim was to identify a knowledge gap that has not been documented by 

previous studies.  

BC emissions, also released during HCW incineration process, are identified to be 

the second strongest cause of climate change after CO2. Scientists reported that reducing 

BC emissions will result into immediate health and climate change effects due to their 

shorter residence time in the atmosphere as compared to CO2. However, BC emissions 

reduction remained untapped potential that requires action in order to attain healthier 

environments. Both the literature review and online search processes supported that there 

is a research gap on the BC emissions from the incineration of HCW and the associated 

mitigation measures.  Similarly, the purpose of the study was to examine the climate 

change implications of HCW incineration in emergencies based on the conceptual 

framework of health and climate effects caused by its exhaust emissions.  

The literature review for this research based on online search that I conducted 

through Academic Search Complete, CINAHL Plus with Full Text, Dissertations and 

Theses, Medline with Full Text, Science Direct and ProQuest Central databases using the 

Walden University Library. Key search terms that I used included healthcare or hospital 
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or medical waste incineration, black carbon emissions, global warming, climate change, 

incineration emissions, incineration smoke, health effects of BC emissions exposure, 

effects of climate change and waste disposal. Apart from online references from search 

engines, other sources were included such as International Panel on Climate Change 

[IPCC] meeting proceedings, the USEPA, WHO, United Nations treaties, WMO, and 

HCWM reports. In the literature search, I prioritized articles and reports that were peer 

reviewed and published within the last 5 years.  

Conceptual Framework 

The conceptual framework focused on the potential effects of BC emissions 

exposure to human health and its associated climate change potential. BC emissions are a 

growing threat to human health and climate change with extreme impacts in the global 

South countries where over three quarters of BC emissions are produced (Deangelis, 

2011; PAHO, 2012; WHO, 2012, 2014b). Subsequently, this called for the analysis of 

HCW incineration trends in Haiti after reported lack of control system (IMF, 2008) in 

order to provide knowledge, insights and scientific evidence towards BC mitigation 

measures. Some key references underlining the effects of BC emissions included research 

on climate change potential of BC emissions (Ban-Weiss et al., 2012; Bond et al., 2013; 

Kuo, 2009; Mahajan et al., 2013; Rypdal et al., 2009; Santisi, 2012; UNEP/WMO, 2011) 

and regional distribution of climate change effects (PAHO, 2012; WHO, 2012, 2014b).  

Likewise, BC emissions are reported to be associated with morbidity, and the 

global South communities remained at higher risks because of higher generation of BC 

emissions (Barregard et al., 2006, 2008; Danielsen et al., 2008; Grigg, 2011; Hoek et al., 
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2011; Jansen et al., 2005; Maciejczyk et al., 2010; Park et al., 2007; Sehlstedt et al., 2010; 

Solomon et al., 2003; USEPA, 2013; WHO, 2012, 2014b). Also, researchers indicated 

the evidence on deaths associated with both climate change and BC emissions exposure 

(Bond et al., 2013; Haines & Patz, 2004; Jian et al., 2011; USEPA, 2013; United States 

Global Change Research Program [USGCRP], 2009; WHO, 2012, 2014b).  

Conversely, I based this study’s conceptual framework on potential health effects 

of BC emissions to humans directly exposed. Furthermore, in the literature review, I 

focused on the studies about the climate change potential of the BC emissions. The 

following is a summary of the literature review based on the two key components of the 

conceptual framework.  

Health Effects of Black Carbon Emissions Exposure 

The effects of exposure to BC emissions are associated with that of PM2.5 or PM10 

and vice versa (WHO, 2012). Also, World Health Organization (2012), through 

reviewers, noted that health effects of BC emissions are much greater as compared to 

PM2.5 or PM10 when particulates are measured in unit mass concentration of microgram 

per cubic meters (μg/m3). “Studies of short-term health effects show that the associations 

with BC are more robust than those with PM2.5 or PM10, suggesting that BC is a better 

indicator of harmful particulate substances from combustion sources (especially traffic) 

than undifferentiated PM mass” (WHO, 2012 p. vii).   

Existing studies of BC emissions exposure and associated health effects largely 

target experimental, long and short-term exposure to different sources of BC emissions 

including wood smoke, rice-straw smoke (RSS), ultrafine PM and EC.  These are 
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particularly relevant to study together with the WHO review research. In a 3-days 

experimental study to evaluate health effects of RSS exposure to 27 women and 18 men, 

Solomon et al. (2003) reported airway inflammation among healthy, asthmatic and 

allergic rhinitis subjects. The impact manifested after single exposure to PM10 ~600 

μg/m3 and three uninterrupted exposure patterns to PM10 ~200 μg/m3 each lasting 30-

minutes. According to Solomon et al. (2003), asthmatic subjects showed higher 

inflammation as compared to healthy subjects, and repeated exposure to PM10 ~200 

μg/m3 caused a more powerful inflammation than a single PM10 ~600 μg/m3 exposure 

among all subjects.  

Other BC experimental exposure studies were performed by Barregard, et al. 

(2006, 2008) and Sällsten et al. (2006) from the Swedish University of Gothenburg. The 

authors generated smoke from logwood burn on a cast iron stove and exposed healthy 

volunteers (seven women and six men of 20 to 56 years) to wood smoke of PM2.5 ~ 279 

and 243 μg/m3 in two different sessions of 4 hours each.  Clean air break patterns of 25 

minutes period were presented between wood smoke exposure patterns in which light 

exercises were performed at clean air of 13 and 11μg/m3 PM respectively. According to 

the results, wood smoke exposure was associated with elevated levels of serum amyloid 

(cardiovascular risk factor), higher blood coagulation tendency, impermanent increase in 

lipid peroxidation and inflammatory response (Barregard et al., 2006, 2008).  The 

exposure session was followed by substantial up-regulation of blood mononuclear cell’s 

repair gene among subjects 20 hours after wood smoke exposure (Danielsen et al., 2008). 
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Similar wood smoke exposure study was evaluated by Sehlstedt et al. (2010). The 

study was performed among 9 women and 10 men of 21 to 31 years. After two-3 hours 

exposure patterns to wood smoke with mean PM2.5 of 224 μg/m3 from a 15 kilo Watt 

residential pallet burner and clean air, progressive mild irritation occurred in the nose and 

throat especially between 90 and 150 minutes of wood burning. Furthermore, Riddervold 

et al. (2011) reported a significant increase in mucosal irritation among allergic subjects 

(10 women and 10 men of 19 to55 years) after exposure to wood smoke from logwood 

burner. Three exposure patterns of 3.5 hours each were presented to subjects and 

characteristics of smoke for this experiment were PM2.5 ~200 μg/m3 and PM2.5 ~ 400 

μg/m3 (Riddervold et al., 2011). 

Different from experimental studies above is an epidemiological study to assess 

the association between health effects and PM including BC among 16 older respiratory 

disease subjects in Seattle by Jansen et al. (2005).  Data on the fractional exhaled nitric 

oxide, blood pressure, spirometry, blood oxygen saturation and pulse rate were sampled 

for 12 days and analyzed simultaneously with the collected air filters located inside and 

outside subject’s houses. Jansen et al. (2005) showed that increase in 1μg/m3 BC 

emissions were associated with elevations in fractional exhaled nitric oxide among 

subjects. The author reported that BC particles are useful in assessing the associations 

between PM from primary combustion and health effects (Jansen et al., 2005). This was 

supported by meta-analysis and systematic review by Hoek et al. (2011) in which the 

author suggested that “BCP is a valuable additional air quality indicator to evaluate the 

health risks of air quality dominated by primary combustion particles” (p. 1691). 
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Based on the above findings, Jiang et al. (2011) performed a time-series study 

aimed at assessing the mortality effects of fine PM components in Seattle and Detroit 

from 2002 to 2004. Jiang et al. (2011) collected 24 hour Teflon filter samples of PM2.5 in 

two sets for 3 years and analyzed them for BC and trace elements using light reflectance 

and X-ray fluorescence respectively. In order to estimate seasonal variation in 

cardiovascular and respiratory deaths, 3 sources of data applied in the processes of 

conducting the poison regression model analysis. 

Data sources included those of the mortality data from the National Center for 

Health Statistics [NCHS], gaseous pollutant data from the Health Effects Institute [HEI], 

and metrological data from the National Oceanic and Atmospheric Administration. Jiang 

et al. (2011) in his result indicated that the composition of PM influenced health effects 

associated with PM and that Seattle’s mortality rates were associated with traffic during 

the cold season and other BC emission sources such as wood burning and residual 

lubricant (Jiang et al., 2011). Detroit’s mortality rates according to Jiang et al. (2011) 

were associated with traffic makers and secondary emissions during the warm season, 

explaining seasonal, locale, and source mortality difference as proposed by Grigg (2011),  

Maciejczyk et al. (2010), and Park et al. (2007).     

More specific, WHO (2012) systematically reviewed several studies on health 

effects of BC emissions and the review team concluded that: 

 Epidemiological short-term studies sufficiently evidenced the association 

between daily BC emission’s concentration difference and short-term 

health changes. 
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 Cohort studies sufficiently evidenced the relationship between long-term 

BC average emission exposure and mortality including cardiopulmonary 

mortality and all-cause mortality. 

 Toxicological research recommended that BC could not be a fine PM’s 

main toxic constituent, but rather a common carrier of toxic compounds 

to the lung, major body defense cells and perhaps the blood’s systemic 

circulation.  

 Reducing exposure to BC and combustion-related particulates of PM2.5 

should reduce health effects related to PM exposure. 

Likewise, the USEPA (2013) and WHO  (2012, 2013, 2014b) scientists reported 

short and long-term exposure effects of BC emissions to be: low birth weights and 

premature deaths, reduced lung functions, reproductive effects, development of chronic 

bronchitis and cancer, acute bronchitis, asthma attack and increase susceptibility to 

respiratory infections. Nearly 235 million people in the world suffer from asthma illness 

with most deaths being in the global South countries (WHO, 2013).  Asthma is a 

persistent chronic ailment in Haiti and the Capital Allergy and Respiratory Disease 

Center is among organizations that work to improve asthma disease treatment in Haiti 

(Capital Allergy and Respiratory Disease Center, 2013). 

In summarizing the above findings, it is evident that BC emissions exposure is 

associated with health effects and that mortality differences based on season, location and 

PM source. In the next sub-sections, I show the gap in relation to the air quality standards 
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for PM, smoke emission limits for HCW incineration activities, and reduction of BC 

emissions as among pollutants significant to climate fix. 

Ambient Air Quality Standards for Particulate Matter  

The WHO team reported non-existence of any acceptable BC or EC standard 

measurement methods in the world over the last 20 years, the exhaustive efforts 

notwithstanding (WHO, 2012). Scientifically speaking, this is such an expansive void in 

the face of the escalating climate change threat, thus, the tallying with this study’s 

problem statement and social change implications. Subsequently, the WHO experts called 

for the need to address inherent biases in thermal optical and filter-based light absorption 

carbon measurements to find definite and world unifying scientific frameworks soonest 

(WHO, 2012).  

There exist both the annual and daily ambient air quality standards for PM in 

general set by the WHO and various countries, mostly the developed nations. However, 

some of the county-specific PM standards are far above the WHO as shown in Table 1, 

and also its implementation remains big dilemmas. A review of PM air monitoring 

studies in twelve African countries indicated higher PM2.5 level above the WHO limits as 

reported by Petkova, Jack, Volavka-Close and Kinney (2013). 
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Table 1 

Ambient Air Quality Standards for Particulate Matter  

Country / 

institution 

PM size 24 hours mean 

limits (μg/m3) 

Annual mean 

limits (μg/m3) 

Reference 

     

WHO PM2.5 25 10 WHO (2014a) 

PM10 50 20 

     

USA PM2.5 35ab 12 a, 15 b USEPA (2012) 

PM10 - 150 

     

EU PM2.5 - 25 European Commission 

(2014) PM10 50 40 

     

CANADA PM2.5 10c 30d, 28c Environment Canada (2014) 

PM10 - - 

     

AUSTRALIA PM2.5 25 8 The Australian Government 

Department of Environment 

(2014)  

PM10 50 - 

     

CHINA PM2.5 50e, 150f, 250g 40e, 100f, 150g Code of China (2014) 

 PM10 50e, 150f, 250g 40e, 100f, 150g 

Note: Ambient air quality standards for smoke or Particulate Matter (PM) as is given by different institutions. 
a = primary source, b = secondary source, c = new air quality standards to be implemented in 2015,  

d = existing or old air quality standards, e = residential areas, f = commercial areas, g = industrial areas. 

 

Occupational Black Carbon Exposure Limits 

In my literature search for occupational BC emissions exposure limits, I found 

world-wide information inadequacy in this area. It follows that most of the global South 

countries lack BC emissions occupational limits which, in fact, is no good news but a 

wake-up-call for future research. Smoke emissions from HCW incineration processes 

remain unregulated in most global South countries, hence, expose healthcare workers, the 

general community, and contribute to climate change (Andrea, 2010; Ferraz et al., 2000; 

Ko, 1992; Mangaa et al., 2011; Zakaria & Labib, 2003; Zakaria et al., 2005). According 

to the Mine Safety and Health Administration, the final exposure limit for total carbon 
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exposure for mine workers is 160 micrograms of total carbon (160TC μg/m3) or 308 

micrograms of elemental carbon per cubic meter of air (308ECμg/m3) as reported under 

the United States Department of Labor (MSHA, 2001).  

Climate Change 

Climate change played an important role in formulating this studies’ conceptual 

framework. For years, its remedies have focused on curbing CO2 emission based on one 

particular scientific argument that global warming primarily occurs when GHGs trap the 

incoming solar radiation and reflect back to the earth’s surface the infrared radiation 

(Hansen et al., 2007, 2013; USEPA, 2014). However, very recent, researchers released 

scientific evidence that BC emissions heat the earth twice as much than originally 

thought by scientists (Bond et al., 2013; Deangelis, 2011; Santisi, 2012).  Furthermore, 

BC emissions cause approximately 60% of the global warming effects of CO2 (Bond et 

al., 2013; Deangelis, 2011; Santisi, 2012), making it the second most important global 

warming pollutant. Santisi (2012) and Deangelis (2011) argued that global warming 

reduction efforts could have been quickly achieved by reducing BC emissions as a short-

lived climate pollutant.  

In principle, BC emissions cause global warming by absorbing heat radiation 

from the sun and reduce the sunlight’s reflecting ability of snow and ice upon its 

deposition, (Ban-Weiss et al., 2012; Kirkevåg et al., 2008; Kuo, 2009; NRC, 2002).  

Also, cloud droplets entrap BC emissions hence increase the level and degree of cloud 

formation. This interrupts thermal gradient because clouds are less able to reflect sunlight 
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when they become darker, thus, warms the earth’s surface (Deangelis, 2011; Foster, 

2007; Mahajan et al., 2013; Santisi, 2012).  

BC emissions contribute to world-wide warming effects of 0.9 Wm-2 (Deangelis, 

2011), and their deposits on the Arctic ice have caused 0.5 to 1 .4 0C warming over the 

past 100 years, contributing to rapid warming in the Arctic region over the last 30 years.  

In the Arctic and Himalaya, BC deposits promoted the ice melting by lowering its 

reflectivity, which threatens the water supply of more than 10% of the world population 

due to its proximity to larger BC emitters, India and China (Deangelis, 2011).   

Climate effects of BC emissions depend on their altitudinal position in the 

atmosphere (Ban-Weiss et al., 2012; Bond et al., 2013). When BC emissions concentrate 

in stratosphere and upper troposphere, they decrease the surface temperature and vice-

versa. Ban-Weiss et al. (2012) studied the warming effects of BC emissions through 

simulation models. The author added 1 million tons of BC emissions uniformly at 

different horizontal layers (0, 3, 6, 1, 3, 20 and 23), corresponding to atmospheric 

attitudes of 0 km near surface, 1, 4, 12, 20 and 29 kilometers respectively (Ban-Weiss et 

al., 2012). The author reported that BC emissions added at higher levels produce less 

surface warming whereas the addition of 1 Mt of BC, at a point closer to the earth’s 

surface increases terrestrial air temperature by 2.22+-0.007 Kelvin (Ban-Weiss et al., 

2012). 

Building on the same results, Mahajan (2013) modelled an experiment to simulate 

an increase in tropospheric BC emissions and climate response. The author discovered 

that the atmospheric radiative forcing of BC warms and increases linearly as the 
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concentration of BC increases (Mahajan, 2013). The climate’s BC sensitivity from the 

experiment was estimated to be 0.42 KW-1 m2  and  0.22 KW-1 m2  with semi-direct and 

direct effects considered respectively, and was forced with 0, 1X, 2X, 5X, and 10X daily 

BC emissions while maintaining the current day universal latitudinal and longitudinal 

distribution.  

Based on the study findings above, climate change remains the most challenging 

world-wide topic that calls for the research to provide up-to-date scientific results; 

knowledge, insights and experience to the decision makers for adjustment of policy 

mitigation measures. According to the NRC (2010), research, tools and approaches are 

cross-cutting issues for improving the understanding of human’s contribution to climate 

change, and that, the effective management of climate change requires flexible and robust 

actions by the decision makers. Consequently, scientific research is said to play a key role 

in informing decision makers on mitigation focus (NRC, 2010). As such, decision makers 

need to be very flexible, open to learn and equip with robust action plans for assured 

climate change risks management and mitigation measures including reduction of BC 

emissions (NRC, 2010; Spotts, 2013; Stott, 2006; Tollefson, 2012).  

This study, therefore, would inform decision makers on matters pertaining to 

climate change potential of BC emissions from HCW incineration and their mitigation 

measures towards policy formulation.  BC is the second highest climate change pollutant 

that originates primarily in the global South countries (Deangelis, 2011; WHO, 2012). 

Figure 1 summarizes the climate change potential of BC emissions in the climate system.  
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Figure 1. Black Carbon Emission and Processes in The Climate System.  

Note. From “Bounding the role of black carbon in the climate system: A scientific assessment”, by Bond, et 

al., 2013. Journal of Geophysical Research: Atmospheres, 118, p. 5390, doi:10.1002/jgrd.50171 

Reprinted with permission (see Appendix H (ii)).  

 

Guidelines on Healthcare Waste Incineration Process and Smoke Emissions 

The WHO (2014c) recommended the use of medium temperature double-

chambered incinerators with a minimum temperature of 850 0C for the emergency HCW 

disposal. This includes disposal of pharmaceuticals except antineoplastic waste that 

requires a higher temperature of above 1200 0C (WHO, 2001, 2014c).  

Correspondingly, two types of sharps containers permitted for use are disposable 

containers made of plasticized plastic or cardboard, and reusable containers made of 

metal or plastics (WHO, 2014c). According to the WHO (2007), plastic containers are 

not supposed to be incinerated. In case incineration is the only available option, 

containers made of materials that emit toxic fumes, ozone depleting substances and gases 

with higher climate change potential are not permitted (WHO, 2007).  
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Although over 90% of HCW in the USA is incinerated as reported by Patki 

(2012), the United States Food and Drug administration [USFDA] (2013) permits the use 

of plastic sharps containers made of rigid plastic. Also, the USFDA (2013) permits the 

use of improvised containers such as empty detergent containers for home-based sharps 

HCW. Global south countries use both plastic and cardboard sharps HCW containers 

depending on the availability of such containers (see appendix G). Disposal of these 

containers as recommended by manufacturing companies is through incineration. There 

is variation on the choice of sharps HCW containers and their final disposal options in the 

globe. 

Hence, the WHO emphasized greener procurement, re-use and recycling 

strategies to minimize HCW, use of non-polyvinyl chloride (PVC) equipment to avoid its 

toxicity, and proper HCW segregation (WHO, 2001, 2014c). Consequently, the WHO 

(2014c) added that the Environmental Procurement Policy (EPP) and re-use strategies are 

beneficial to both the environment and human health.  The EPP is reported to have 

reduced HCW volumes in a UK hospital by 4.1 %, water and energy consumption by 9.8 

% and 3.6 5 % respectively (WHO, 2014c).  

Additionally, a formal approach called environmental management system (EMS) 

is used in developed countries having stringent environmental laws in order to manage 

the environmental impacts caused by organizations (WHO, 2014c).  Hospitals and health 

centers should derive benefits from introducing and implementing an EMS in order to 

lower running cost by reducing quantities of waste and energy use, increasing recycling, 

and improving public image with efficient HCW management and environmental 
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protection (WHO, 2014c). According to the WHO (2014c), approximately 41 % of 

Canadian hospitals re-use non-disposable medical devices. However, Neely, Maley, and 

Taylor (2003) evaluated over 250 reusable containers and found that over 99 % were 

contaminated, p < 0.001.  Reusable plastic sharps HCW containers unlike single use 

cardboard boxes can cause hospital acquired infections because of ineffective disinfection 

practices.    

The USEPA and European Union established emission guidelines for PM, smoke 

or dust emissions from HCW incineration process (WHO, 2014c; USEPA, 2010, 2012). 

However, HCW incineration smoke emissions remain unregulated in many areas of the 

world mainly the global South countries that lack emission standards and/or fail to 

comply with the set standards, thus, higher smoke levels from HCW incineration 

activities (Andrea, 2010; Batterman, 2004; Ferraz et al., 2000; IMF, 2008; Ko, 1992; 

Manowan, 2009; Zakaria et al.,2005; Zakaria & Labib, 2003).  

The Stockholm Convention’s primary measures of reducing toxic smoke by 

introducing HCW into combustion chambers at temperatures greater than 850 0C (WHO, 

2014c), is hardly implementable. This is due to the wide use of low-temperature 

incinerators in the global South countries (Batterman, 2004) and manual incineration 

operations including waste loading. Table 2 shows HCW incinerator emissions guidelines 

for PM or smoke under different operational conditions. 
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Table 2 

Healthcare Waste Incinerators Emission Limits for Particulate Matter 

Pollutant 

(mg/m3) 

Standard 

conditions 

USEPA 

emission limits 

EU emission 

limits 

Air pollution 

emission factor 

AP42 

Reference 

 

 

Particulate 

matter or 

total dust 

20 (%) C, 

101.3kPa, 

7 (%) O2,dry 

 

66a, 22b, 18c 

 

- 

 

223 

 

USEPA 

(2010) 

 

WHO 

(2014c) 
2730k,  

101.3kPa, 

11 (%)  

O2,dry 

 

- 

 

10d, (10,30)e,  

 

15 

      

Note: Smoke, total dust or particulate matter emission limits for healthcare incinerators. 

a = small incinerators of capacity up to 200 lbs. /hr., b = medium incinerator of capacity >200 to 500 lbs. /hr., 

c = a large incinerator of capacity >500 lbs. /hr., d = daily limits, e = Half-hour average limits to be attained 

by 97% and 100% respectively, AP42 = United States Environmental Protection Agency (USEPA) emission 

estimates for incinerators lacking filtering system, EU = European Union.  

 

United Nations Stabilization Mission in Haiti Healthcare Waste Management 

The Government of Haiti, through the Ministry of Public Health and Population 

(MSPP), recommends the incineration method of HCW disposal and functional 

incinerators exist in Haiti (UNEP, 2010). MINUSTAH through Property Disposal Unit 

(PDU) under the Property Management Section is disposing of infectious HCW (sharps 

and non-sharps waste), pathological waste and some of the expired solid drugs generated 

within MINUSTAH medical facilities through incineration in dual chambered 

incinerators (MINUSTAH, 2009). This follows the WHO recommendations on the 

emergency disposal options for the HCW through medium temperature incineration 

(WHO, 1999, 2014c) which is done by MINUSTAH since the year 2009.  

The MINUSTAH incinerators called MediBurn operate at medium temperatures 

with controlled exhaust temperatures ranging from 1000 to 1025 0C during the burning 



40 

  

 

cycle. The MediBurn portable medical waste incinerators are electronically controlled 

dual chambered, portable, and medium temperature incinerators manufactured by the 

Elastec Company in the US (Elastec American Marine Innovative Products, 2013).  The 

MediBurn units are medical waste incinerators capable of burning a load of up to 8 cubic 

feet of HCW (equivalent to 150 kg in 12 hours or 18 to 20 kg per hour) using 11 liters of 

diesel and 0.35 kilowatts of electrical energy (Elastec American Marine Innovative 

Products, 2013). 

The USEPA, UNEP and Basel Convention on the Control of Trans-boundary 

Movements on Hazardous Waste and Their Disposal recognize incineration as among the 

disposal options if the set air emission standards meet (Basel Convention Technical 

Guidelines on Incineration on Land, 2002; UNEP 1996, 2005; USEPA, 2010). The World 

Health Organization identified the best incineration practices to be observed during 

incineration (WHO, 2001, 2014c). MINUSTAH, through the PDU, takes measures to 

reduce toxic emissions (dioxins and furans) by complying with the WHO best practices 

for incineration (MINUSTAH, 2009). 

1. Waste reduction to reduce the volume and toxicity through: 

 Proper segregation of HCW in which halogenated plastics, such as 

polyvinyl chloride (PVC) equipment including IV bags, tubes and other 

plastic materials (except sharps containers that are disposable), are not 

incinerated; 

 Waste materials with high mercury content, such as broken thermometers, 

are excluded from the incineration stream and managed according to the 
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PDU guidelines distributed to the Military and Formed Police Units 

(FPUs) medical facilities (MINUSTAH, 2009). Long-term measures to 

phase out mercury and PVC medical supplies in MINUSTAH facilities 

are addressed in PDU Field Occupational Safety Risk Assessment (O-

SRA) document;  

 Sealed ampoules or ampoules containing controlled drugs are 

encapsulated and excluded from the incineration stream; 

 Incineration ash is encapsulated in order to avoid the possibility of 

leaching dioxins and furans into the environment, and 

 X-ray films are excluded from incineration stream. 

2. Proper incineration design and operation:  

MINUSTAH opts for the high temperature incineration with double chambers 

that refine the exhaust gases. In addition, the operational standards are 

followed according to the incinerator manual and annual training provided by 

the manufacturing company.  

3. Proper Siting: 

Incinerators are located on non-agricultural lands and less populated areas.  

Study Design and Method Rationale 

Whereas incineration is still the best technology available for HCW disposal in 

global South countries, researchers, through their observational studies, indicated the 

problem of higher BC emissions or smoke (Alvim-Ferraz & Afonso, 2003; Andrea, 

2010; Batterman, 2004; Manyele & Kagonji, 2012; Njagi et al., 2012; Zakaria et al., 
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2005). Additional observational studies have analyzed poor HCWM as conducted by 

Gupta and Boojh (2006) and by Taghipour and Mosaferi (2009). 

In this study, I utilized observational approach in order to analyze emergency 

HCW incineration trends and smoke emissions from incineration of sharps HCW 

contained in cardboard boxes and plastic containers. Primary data on smoke emission 

and secondary data on HCW incinerated weights before and after the 2010 earthquake 

and cholera disasters were used in this quantitative study. The intent was to determine 

whether cardboard HCW sharps containers emit lower BC emissions to the atmosphere 

during the incineration process, relative to the plastic sharps containers. In addition, the 

study aimed to determine whether HCW incinerated weights before and after the 

January 2010 earthquake and October 2010 cholera disasters in Haiti follow a linear 

pattern.  

 Frankfort-Nachmias and Nachmias (2008) and Javaherian (2012) emphasized 

that the observational approach is appropriate for the conceptual framework of the study 

that directly relates to physical sciences. Similarly, Manyele and Kagonji (2012) have 

demonstrated the significance of the observational approach and mixed-method study 

design in assessing the performance of HCW incineration process using statistical data 

analysis. Manyele and Kagonji (2012) utilized HCW incinerated weights for a period of 

22 months to assess time series for HCW incineration data, difference in HCW 

incinerated weights and HCW incinerator performance (probability density functions).  

The researchers identified poor HCW incinerator performance in terms of fuel 

consumption and cycle time. Most importantly, the two authors reported that the use of 
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properly collected HCW incineration data together with statistical analysis results was 

beneficial (Manyele & Kagonji, 2012). The study results formed the basis information 

for realistic planning, budgeting and designing HCW incineration activities towards 

effective, efficient and economical HCW disposal systems (Manyele & Kagonji, 2012). 

In evaluating HCW incineration and associated public health effects, Njagi et al. 

(2012), observed HCW incineration process at Kenyatta National Hospital and Moi 

Referral hospital. The authors analyzed exhaust gases including Oxygen, CO2, nitrous 

oxide, sulfur dioxide, nitrogen oxides and nitrogen dioxide when HCW incinerators 

were entirely operational (Njagi et al., 2012).  Through the analyses, Njagi et al. (2012) 

established combustion efficiency (CE) for HCW incinerators. Kenyatta National 

Hospital and Moi Referral hospital attained CE of 48.1% and 60.8% respectively under 

respective stack operational temperature of 764 and 811 0C (Njagi et al., 2012). The two 

HCW incinerators were found to operate below the minimum limit of 99% set by the 

Government of Kenya (Njagi et al., 2012). Based on that fact, thus, the researchers 

feared much that other emissions too were very much likely to take place (Njagi et al., 

2012). 

Likewise, Taghipour and Mosaferi (2009) collected hospital HCW data through a 

checklist, observed HCW disposal at sites through site visits to 10 out of 25  Tabriz, Iran  

hospitals in 2007, and quantitatively analyzed weights of HCW generated. The purpose 

of the analysis was to find a scientific base from which to describe HCWM in Tabriz, 

Iran. As a result, Taghipour and Mosaferi (2009), through physical observation and 

quantitative analysis, revealed that nearly 50% of health facilities had been provided 
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with HCW incinerators. However, they realized that only 10 % had been operational at 

the time of visit despite higher HCW generation rates. They further raised concerns over 

environmental pollution and disease transmission due to illegal HCW recycling and 

segregation practices at final disposal.  Taghipour and Mosaferi (2009) thus, 

recommended waste minimization strategies be applied to reduce HCW generation rates 

up to 70.11% and centralized HCW incineration or autoclaving process.  

One more observational study with relevance to this research was conducted by 

Alvim-Ferraz and Afonso (2003), and its aim was to assess the influence of HCW 

segregation and composition in relationship to emission factors. In this study, the 

researchers emphasized the need for HCW segregation to reduce toxic emissions, 

projection of HCW volumes and management model for efficient HCW disposal. 

Based on the review of observational studies above, I found the use of 

observational study design to be appropriate for this study. Quantitative study design 

using both primary and secondary statistical data enhances greater understanding of 

research results while increasing its validity (Creswell, 2009). 

Chapter 2 Summary 

In this chapter, the researcher detailed both the conceptual framework and 

empirical evidence analysis to support the climate change potential of BC.  The literature 

has further highlighted the practical cases of increased climate change and associated 

health and environmental effects. These include the ice melting and threats on water 

shortage in Himalaya, disease vectors, food scarcity, extreme weather events and other 
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effects. On another hand, the chapter pointed the lack of standard BC emission 

measurement and inadequate efforts on BC emission curb as compared to CO2.  

Similarly, the literature review has drawn parallels in a cross-section studies 

indicating that HCW incineration processes emit higher smoke levels thus global 

warming especially in the global South countries. The chapter also captured WHO 

(2014c) position in providing the PM emission guidelines for HCW incineration and 

general ambient air quality standards. Requirement for greener HCW equipment purchase 

and use adherence that extends to sharps containers is questionable based on low priority 

on HCWM, thus, the need for a study in this area. Based on the literature review, chapter 

3 outlined the design, methodology, tools and procedures that are correspondingly 

requisite in evaluating HCW incineration trends in Haiti and BC emissions resulting from 

incineration processes.  
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Chapter 3: Research Method  

Introduction 

In concert with approval number 09-03-14-0156572 by the Institutional Review 

Board (IRB), this was an observational study where I relied on both primary and 

secondary data analyses. The secondary data was generated from MINUSTAH’s HCW 

weights that were incinerated periods before and after the 2010 earthquake and the 

subsequent cholera disasters outbreak. The aim was to determine whether the pattern of 

HCW incinerated weights is linear, and to measure the intensity of smoke emissions from 

incineration of HCW contained in different types of containers including cardboard boxes 

and plastic containers. The determination processes was performed through physical 

observation of the current sharps HCW incineration smoke using Ringelmann smoke 

charts. This based on the assumption that the nature of sharps waste before and after the 

emergency is similar. Therefore, data analysis in this study considered any inherent trend 

realized from secondary data used in here and primary data on smoke density. The 

analysis spread within a span of 5 years, starting from January 2009 to December 2013. 

This scope of analysis took 1 year before the most fatal 2010 earthquake and cholera 

disasters, and those in the 4 years that followed. 

Research Design and Rationale 

In this study, I addressed two research questions as discussed earlier:  

1. Do HCW incinerated weights before and after the January 2010 earthquake 

and October 2010 cholera disasters in Haiti follow a linear pattern? 
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2. Do the cardboard HCW sharps containers emit lower BC emissions to the 

atmosphere during the incineration process, relative to the plastic sharps 

containers? 

I used quantitative research design in order to analyze the study data due to its 

benefits of allowing statistical analysis, enhancing greater understanding of study 

findings, and increasing the validity of study findings (Creswell, 2009).  Quantitative 

research allow the scientific claim be tested as emphasized by Creswell (2009). The 

analyzed patterns of HCW incineration included the patter before and after the 2010 

earthquake and cholera disasters.  

On the other hand, I used Ringelmann smoke charts to evaluate the intensity of 

BC emissions (smoke) by observing the emissions during the initial startup, the charging 

phase, and the actual burning phase for plastic and cardboard sharps waste containers. 

This quantitative analysis supported the use of greener medical waste collection 

containers by healthcare facilities for climate change mitigation measures.  

 Linear regression analysis was appropriate analysis for studying the pattern of 

HCW incinerated weights while at the same time predicting relationships in the resulting 

model. Likewise, the independent samples t-test suited the evaluation of the differences 

between smoke means obtained from two separate incinerations in which I incinerated 

cardboard boxes and plastic sharps HCW containers.  

Population and Setting 

The study was conducted at the United Nations Mission base in Haiti. This 

research setting is favorable for the study on the account that the researcher has served 



48 

  

 

for a period of 6 years. During the entire period of service as a United Nations 

Volunteer, the researcher has both actively and consistently been handling technical 

aspects of a myriad waste disposal work in the field. The significance of this research 

setting is its being the point at which all United Nations disposal operations in Haiti are 

headquartered. This study did not need any population as it entirely relied on 

MINUSTAH secondary data and primary data that were generated from observational 

process of measuring smoke densities from a practical incineration operation.  

Sampling and Data collection 

In this study, I used convenient sampling techniques to sample and collected 

primary data by observing 20 incineration processes of varying quantities and types of 

sharps HCW containers.  The incineration smoke intensity measuring operations were 

generated from the routine HCW incineration at the MINUSTAH. Likewise, I retrieved 

secondary data on HCW incinerated weights by MINUSTAH at the 5-year scope 

beginning from January 2009 to December 2013 (60 months). The said secondary data 

came from MINUSTAH database volumes that were systematically compiled from the 

body’s daily incineration time sheet before getting transferred to the computer under the 

shared drive (MINUSTA/PMS/PDU). This database was copied from MINUSTAH 

database and used for this study with direct and full authorization of the United Nations 

as attached in the Appendix B. Daily incineration log sheets are kept by MINUSTAH 

for quality assurance and can be reviewed. I used Tabachnick and Fidell (2007) formula, 

and, Equation 5 for calculating sample size required based on the desired power of 80 % 

and statistical significance level or α (alpha) level of 0.05. 
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Secondary Data Retrieval from MINUSTAH’s HCW incineration Database. 

The HCW secondary data at MINUSTAH, a database from which this research is to 

benefit, were systematically collected through a well-established process. The 

incineration operators ultimately file primary data from their specific field operation into 

the transfer vouchers for HCW from the PDU yard. The form depicted the type of HCW, 

its weight, and generation source or healthcare facility. The means that whenever HCW 

is delivered at the PDU yard, the receiving officer there took the weight in kg and 

confirmed it by filling the specified space in the form. The HCW is then stored in the 

PDU yard in readiness for incineration. Prior to incineration, the facility operators are 

required to take HCW weights. The aim was to establish quantities at hand in relation to 

the incineration capacity per cycle versus the length that each cycle has to go. Such 

details were systematically recorded in MINUSTAH incineration logbook. The data 

were transferred into soft copy before getting to final centralized computer storage at 

MINUSTAH/PMS/PDU database under the shared drive. 

Primary Data Collection for Incineration Smoke Emissions Testing. In this 

study, I observed 20 incineration process of various types of sharps HCW containers and 

recorded the smoke emission intensity in each case to determine the density levels of the 

BC emissions or smoke produced. Smoke levels were recorded at incinerator initial 

startup, the charging phase, and the actual burning phase for plastic and cardboard 

sharps HCW containers. In this case, Ringelmann smoke charts were used, in the 

process of collecting the data, to determine the level of intensity on smoke emission 

from sharps HCW incineration activities. I purchased the Right to Use Manual from the 
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British Standards Institution [BSI] as shown in the Appendix D and compared the 

density of smoke with a known greyness scale of the Ringelmann smoke charts. I 

conducted pilot tests in order to increase the proficiency in using the Ringelmann smoke 

charts, and performed the practical application of smoke reading protocol.   

Primary Data collection Tool. The Ringelmann smoke chart, an invention of 

Prof Maximilan Ringelmann of La Station d’Essais de Machine in Paris, is a scientific 

tool used to measure smoke level by comparing its apparent density contrary to the 

known greyness scale levels representing different smoke densities (BSI British 

Standards 2009; Solid Fuel Technology Institute [SOLiFTEC], 2010; United States 

Bureau of Mines, 1967; USEPA, 1993). As such, this tool ranges from ‘0’ to ‘5’, 

different density levels inferred from a grid of black lines on a white surface under 

which smoke column reading at Level ‘0’ is complete white or lightest in colour and 

complete black or darkest at Level ‘5’(BSI British Standards 2009; SOLiFTEC, 2010; 

United States Bureau of Mines, 1967; USEPA, 1993).  

The appended interpretation goes that the lighter the colour (British Spelling of 

the smoke), the lower the density or concentration of BC or smoke PM in the effluent, 

the smaller the size of particulate, the lesser the depth of the smoke column being 

viewed in relation to the direction of the natural lighting (sun) from the position where 

the smoke viewer stands, and the vice versa is also true (BSI British Standards 2009; 

SOLiFTEC, 2010; United States Bureau of Mines, 1967; USEPA, 1993). The smoke 

column readings between Level 1 to 4 are represented by 10 millimeter square black 

grids drawn with line thicknesses of 1mm, 2.3mm, 3.7mm and 5.5 mm (see Appendix 
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C). When viewing the grid from a distance, the smoke levels are supposed to merge into 

known shades of greyness. The chart Level 1, 2, 3, 4, and 5 represent 20 %, 40 %, 60 %, 

80 %, and 100% smoke levels respectively.  Also, in that instance, Level 0 would simply 

be meaning smokeless or white background in which only the sky color is depicted 

during observation (BSI British Standards 2009; SOLiFTEC, 2010; United States 

Bureau of Mines, 1967; USEPA, 1993).  

Although the modern version of Ringelmann smoke chart was published in 1967 

for use by the United States Bureau of Mines in circular 8333, the British Standard 

Version was used based on its simplicity in terms of data collection form and the overall 

chart use as emphasized by SOLiFTEC (2010).  Quality Ringelmann smoke charts were 

used and natural lighting facilitated smoke measurement with minimal obstructions. The 

smoke readers conducted a series of observations at regular intervals as emphasized by 

the USEPA (1993). According to the smoke law in the United Kingdom, darker smoke 

of more than shade 2 of the Ringelmann smoke chart is considered illegal (SOLiFTEC, 

2010; BSI British Standards 2009). 

Miniature smoke charts (bar and circle type) are recognized as handy 

interpretation of the Ringelmann smoke chart. I used them for additional clarification on 

how to take smoke readings for everyday incineration processes on a much simplified 

interpretation (BSI British Standards 2009; SOLiFTEC, 2010).  Bar-type miniature 

smoke charts were printed black and white while the circle types were printed under 

grey-scale. For the circle type, the smoke readers made a central hole, held the charts at 

arm’s length, and finally, observed the source of smoke through the hole. For the bar-
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type, the smoke readers cut along the edge (as shown in the Figure 2), held the charts at 

arm’s length and compared the source of smoke with the cutting edge as recommended 

by BSI British Standards (2009) and SOLiFTEC (2010). Figure 2 and 3 show the bar 

type and circle type miniature smoke charts.  

 

Figure 2: Bar-Type Miniature Smoke Chart. 

Note: From “The Ringelmann smoke chart” by SOLiFTEC, 2010. With Purchased Right 

to Use, British Standards BS 2742:2009 (see Appendix D).  

 

 

 

Figure 3: Circle-Type Miniature Smoke Chart. 

Note: From “The Ringelmann smoke chart” by SOLiFTEC, 2010. With Purchased Right 

to Use, British Standards BS 2742:2009 (see Appendix D).  
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Primary Data Collectors. In this study, three smoke readers were involved in the 

quantitative measurement of smoke densities. I was a keen reader by participating in 

practical observation of smoke emission from HCW incineration process of cardboard 

boxes and plastic sharps containers. In this effect, I was among the three smoke readers. 

I am certified visible emissions reader by the USEPA and the two smoke readers were 

trained in the use of both the Ringelmann and miniature smoke charts.  

Pilot smoke reading. Pilot smoke readings during HCW incineration process 

were performed 2 weeks prior to data collection period. Different HCW amounts were 

incinerated, and I attended the two newly trained smoke readers until they were 

competent with their readings. Being a USEPA certified visible emissions reader, 

together with extensive experience in smoke reading, I took measures to ensure quality 

measurements by simultaneously recording of emissions and comparing the results. This 

uncovered any problems faced by the two newly trained smoke readers as stated by the 

USEPA (1993). Additional field trainings and practices were performed for higher 

discrepancies of greater than 20% Ringelmann smoke results or 10% average smoke 

densities by different readers.  Pilot tests raised skills and tactics among smoke readers, 

and, ensured quality measurements by not exceeding the allowable discrepancies as 

emphasized by USEPA (1993).  

Estimation of Average Smoke Densities. Based on the user manual and smoke 

reading levels, I calculated the average smoke density in percentage as the total of the 

average Ringelmann number multiplied by 20 that is the equivalent of the standard 

smoke. The average Ringelmann number was obtained by dividing the total Ringelmann 
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numbers recorded for a serial observation divided by the total number of observation. The 

Equations 1 and 2 summarize the average smoke density estimation. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑖𝑛𝑔𝑒𝑙𝑚𝑎𝑛𝑛 𝑁𝑢𝑚𝑏𝑒𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑅𝑖𝑛𝑔𝑒𝑙𝑚𝑎𝑛𝑛 𝑁𝑢𝑚𝑏𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
                    (1) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑚𝑜𝑘𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (%) = (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑖𝑛𝑔𝑒𝑙𝑚𝑎𝑛𝑛 𝑁𝑢𝑚𝑏𝑒𝑟) × 20            (2) 

 

Level of Measurement. Frankfort-Nachmias and Nachmias (2008) identified the 

four principle levels of measurement as nominal, ordinal, interval and ratio. In this study, 

I utilized all four levels starting with the lowest (nominal) to the highest (ratio). The 

nominal levels included 12 months (January –December) in which HCW were 

incinerated, equivalent to 52 weeks, which is also nominal value. The ordinal level 

included lower and higher smoke levels to be determined by the Ringelmann smoke chart 

readings, whereas the interval level included both the smoke intervals and five days 

interval in which HCW was incinerated in a week. The last level of measurement is the 

ratio with the true zero point, used for measurement of HCW weights incinerated by 

MINUSTAH. 

Validity. The validity of the measurements according to Frankfort-Nachmias and 

Nachmias (2008) is the ability to measure exactly what the study intends to measure. This 

study measured smoke levels from incineration of sharps HCW contained in different 



55 

  

 

types of containers (cardboard box and plastic). Also, the study evaluated the pattern of 

HCW incinerated weights from January 2009 to December 2013.  

In assuring content validity (Frankfort-Nachmias and Nachmias, 2008), the 

researcher used a weighing scale and Ringelmann smoke charts. The Ringelmann smoke 

charts are widely used tool in measuring smoke column density. However, in adherence 

to the empirical validity of the measurement standard which questions the 

appropriateness of the measurement performed and the instrument used (Frankfort-

Nachmias & Nachmias, 2008), the study relied on the accuracy of the Ringelmann smoke 

charts. The empirical validity of the Ringelmann smoke charts was, therefore, attained by 

using pure white paper and modern black ink as emphasized by the United States Bureau 

of Mines (1967), USEPA (1993), BSI British Standards (2009), and SOLiFTEC (2010). 

In view of the meaning of construct validity as the ability to match the measuring 

instrument and the study’s conceptual framework (Frankfort-Nachmias & Nachmias, 

2008),  the collected data and instruments used in this study  including the weighing scale 

and the Ringelmann smoke charts are recognized as the measurement tools for weight 

and smoke respectively.  

Reliability. According to Frankfort-Nachmias and Nachmias (2008), reliability of 

the measurement instrument is the ability to provide similar results under different-tests. 

The reliability of the Ringelmann smoke charts relied on the blackness of inks and 

whiteness of the printing while the apparent smoke darkness relied on smoke column 

depth, effluent PM concentration, and natural lighting. In this effect, a series of 

observation were performed by 3 smoke readers and compared results as a measure 
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towards reliability. More specific, inter-rater reliability were performed by constructing 2 

similar tests in order to measure consistency of smoke densities. Accuracy relied on the 

ability of the smoke reader and all of the readings were taken by trained readers. 

Furthermore, I conducted pilot test in order to test the accuracy of Ringelmann smoke 

charts and assessed whether the protocol for reading smoke was realistic and practical. 

Furthermore, pilot testing raised skills and tactics among smoke readers.  

Data Analysis 

I used Statistical Package for the Social Sciences (SPSS) software to perform 

univariate and bivariate data analyses for the secondary and primary data. Conversely, 

Ringelmann smoke charts were used in the process of analysing smoke in order to 

determine the frequency distribution for each observed Ringelmann number in a 30-

minute record. Data cleaning were performed by reorganizing HCW incinerated weights 

into months rather than days in order to eliminate zero effect for days without 

incineration activities. Furthermore, decimal points were eliminated by rounding the 

numbers to the nearest tenths.  Study questions and hypotheses as explained in the first 

chapter include:   

1. Do HCW incinerated weights before and after the January 2010 earthquake 

and October 2010 cholera disasters in Haiti follow a linear pattern? 

2. Do the cardboard HCW sharps containers emit lower BC emissions to the 

atmosphere during the incineration process, relative to the plastic sharps 

containers? 

The hypotheses for the first research question were: 
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 Null hypothesis (Ho): the pattern of HCW incinerated weights before and after 

the January 2010 earthquake and October 2010 cholera disasters in Haiti is 

linear. 

 Alternate hypothesis (Ha): the pattern of HCW incinerated weights before and 

after the January 2010 earthquake and October 2010 cholera disasters in Haiti 

is non-linear. 

The hypotheses for the second research question were: 

 Null hypothesis (Ho): The average densities of BC emissions (smoke) during 

the incineration process of plastic sharps HCW containers and cardboard 

boxes are similar. 

 Alternate hypothesis (Ha): The average density of BC emissions (smoke) is 

significantly lower during the incineration process of cardboard box sharps 

HCW containers. 

The independent variables for the first hypothesis were months in which HCW 

was incinerated while the dependent variables were the weights of incinerated HCW in 

kg. For the second hypothesis, the independent variables were the types of sharps 

containers (cardboard and plastic) while the dependent variables were smoke levels or 

Ringelmann smoke numbers.   

Box plots, line graphs and independent samples t-test were used respectively to 

present the average smoke density and to evaluate the differences between smoke means 

obtained from two separate incinerations in which cardboard and plastic sharps HCW 

containers were incinerated. Likewise, the researcher performed linear regression 
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analysis to determine whether HCW incinerated weights from January 2009 to December 

2013 follow a linear pattern (Frankfort-Nachmias & Nachmias, 2008), and predicted 

relationships in the resulting model.   

Ethical Procedures 

In concert with approval number 09-03-14-0156572 by the Institutional Review 

Board (IRB), this study did not cause any harm to human subjects. The approval MEMO 

attached in the Appendix B allowed the use of secondary data and primary data collection 

from MINUSTAH incineration facilities. Primary data collection was conducted without 

causing any harm to smoke readers (2 MINUSTAH staff and the researcher). A minimum 

of N-95 face masks were used as emphasized by the Occupational Safety and Health 

Administration (2014). Masks were not required during an upwind of emissions, and all 

smoke readers were advised to avoid emissions. The study was conducted at researcher’s 

place of work without any conflict of interest. It is important to point out that the 

researcher collected data for this study after completing the volunteer contract with 

MINUSTAH. In this regard, the relationship with data collectors was purely that of the 

researcher and her assistant in the field. Data collected were non-confidential, and they 

have been stored in hard discs and metal cabinet with locker, pending destroy in the year 

2020.  

Dissemination of Study Findings 

The study findings will be disseminated to the WHO, United Nations Agencies, 

National and International HCWM stakeholders in several ways. First, the study results 

will be presented to the HCWM team of the WHO during the HCWM Meetings and for 
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Sub-Saharan Africa and during working sessions throughout the year 2015. Second, the 

researcher will conduct some public presentation at two universities that are yet to be 

identified in the parts of Haiti and Tanzania. In other instances, hard copies of this study 

shall be presented to MINUSTAH office, United Nations Headquarters in New York and 

at some two libraries and universities in Haiti and Tanzania. Third, a synopsis of the 

study will be presented to the Department of Peace Keeping Operations (DPKO), 

MINUSTAH, UNEP, and UNDP-GEF during a visit to their specific offices. Fourth, 

study results will be disseminated through scientific journals. 

Chapter 3 Summary 

The researcher conducted an observational study to analyse HCW incineration 

trends and smoke from HCW incineration activities. The Ringelmann and miniature 

smoke charts were used to measure the average intensity of smoke emission from HCW 

incineration. Similarly, 5-year secondary data were used for the analysis of incineration 

trends at MINUSTAH as from January 2009 to December 2013.  The study did not cause 

harm to human subjects and results of this study will be widely disseminated through 

meetings, visiting lectures, working sessions, posted on the website and hardcopy 

distributed to relevant offices and institutions of higher learning. The results of the 

statistical analysis that answered both the research questions and hypotheses are 

discussed in chapter 4.  
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Chapter 4: Results 

Introduction 

In this chapter, I analyze both secondary data on HCW incinerated weights by 

MINUSTAH at the 5-year scope beginning from January 2009 to December 2013, and 

primary data on smoke densities collected from practical incineration processes at 

MINUSTAH incineration facilities. In so doing, I considered two research questions at 

the core of my analysis work. These included: 

1. Do HCW incinerated weights before and after the January 2010 earthquake 

and October 2010 cholera disasters in Haiti follow a linear pattern? 

2. Do the cardboard HCW sharps containers emit lower BC emissions to the 

atmosphere during the incineration process, relative to the plastic sharps 

containers? 

This chapter includes the information on the data collection process, the generated 

results from statistical analysis, as well as a summary to help readers grasp main points in 

an easy way. 

Data Collection 

Secondary Data on Healthcare Waste Incinerated Weights from 2009 to 2013 

In view of the introduction above, I retrieved secondary data from MINUSTAH 

on HCW incinerated weights before, during and after the 2010 earthquake and cholera 

disasters in Haiti. The said data covers the period as from January 2009 to December 

2013.  The data source was MINUSTAH/PMS/PDU database, a computer facility under 
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the shared drive. I copied the data in my external drive disc ready for the analysis.  Table 

3 shows the secondary data retrieved from MINUSTAH. 

Table 3 

Secondary Data on HCW Incinerated Weights  

 

 

 

 

 

 

 

 

 

 

Primary Data Collection on Smoke Levels from MINUSTAH Incineration Facility  

Pilot test. I collected the primary data on smoke levels by way of performing a 

series of activities. I began by organizing a number of pilot smoke readings. This took a 

period of two weeks. The purpose for doing this was to familiarize the two newly trained 

smoke readers into understanding how the actual smoke readings were to be conducted 

competently, and to achieve the desired goals from the whole process as required of this 

study. These two smoke readers were currently serving as full-time incineration assistants 

at the MINUSTAH facility.  

 HCW incinerated weights (kg) 

Months 2009 2010 2011 2012 2013 

January 170 590 434 587 777 

February 229 627 393 571 461 

March 185 343 558 556 419 

April 160 254 347 793 497 

May 197 382 268 635 406 

June 218 298 427 680 159 

July 203 114 261 723 473 

August 503 140 292 576 292 

September 178 704 778 492 292 

October 404 795 623 477 421 

November 199 437 649 488 718 

December 201 527 611 685 223 

Total  2847 5211 5641 7263 5138 

Note: Healthcare waste incinerated Weights (kg) by MINUSTAH (2009-2013). 
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Primary data collection. In the second phase, I embarked on the actual primary 

data collection on smoke levels at the MINUSTAH incineration facility. I led the team of 

two newly trained smoke readers in conducting the whole process and the ultimate 

primary data collection. Smoke levels were recorded at incinerator initial startup, the 

charging phase, and the actual burning phase for plastic and cardboard sharps HCW 

containers. The whole process started by taking the weights of sharps HCW in readiness 

for incineration by MediBurn portable and electronically controlled medical waste 

incinerators. The two incinerator assistants loaded the incinerators with sharps HCW kept 

in different containers (plastic containers and cardboard boxes). The weights in those 

containers lined-up for incineration ranged between 3 and 14.6 kg. While doing all these, 

the bottom-line here was to measure and take readings of smoke levels resulting from the 

incineration process for sharps HCW kept in plastic and cardboard containers.  

The actual incineration processes were initiated by incinerator operators by 

selecting the cycle time and pressing the start button once the incinerators had been 

loaded with sharps HCW. The two incinerator operators were cautious enough to make 

sure that there were enough fuel in the incinerators prior to starting incineration. A 

complete incineration cycle started after pressing the start button in which the upper 

burner started firing for a period of 6 minutes in order to preheat the top burner to a 

temperature of 640 0C. Soon after the top burner had attained the required preheat 

temperature of 640 0C, the bottom burner ignited and burned the load of sharps HCW.  

During the entire burning phase, the MediBurn incinerator maintained an exhaust 

temperature of up to 1025 0C by firing the top burner which normally reached a high-end 
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shut-off at 1140 0C. Soon after the MediBurn completed the cycle, it automatically began 

to cool down to 300 0C before the operator chose to reload a new sharps HCW load in 

readiness for a new cycle of burning or simply shut of the incinerator.  

Some three smoke readers’ recorded smoke levels emitted during incineration 

processes by using Ringelmann smoke charts as described under Chapter 3. 

Consequently, I used Equations 1 and 2 on estimating average smoke densities under 

Chapter 3 to compute the average smoke densities in percentage. Table 4 captures the 

amounts of sharps HCW incinerated in MediBurn incinerators owned by MINUSTAH 

for a cycle time of thirty minutes each. Likewise, the table shows a list of recorded 

Ringelmann smoke numbers and smoke densities.  
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Table 4 

Primary Data on Smoke Densities from Incineration Processes of Plastic and Cardboard Sharps HCW Containers 

Quantities of 

sharps HCW 

incinerated (kg) 

Types of sharps 

containers used 

Incinerator barcode 

number 

Initial bottom 

burner temperature 

(0C) 

Final bottom burner 

temperature (0C) 

Average 

Ringelmann 

smoke number 

Average smoke 

density (%) 

14.6 Plastic MSH-Y-01386 389 1095 48.0 32.0 

Cardboard box MSH-Y-01386 398 950 21.5 14.3 

13.7 

 

Plastic MSH-Y-01386 379 1062 43.5 29.0 

Cardboard box MSH-Y-01386 389 948 20.0 13.3 

11.7 Plastic MSH-Y-01386 372 1049 38.0 25.3 

Cardboard box MSH-Y-01386 382 952 17.0 11.3 

10.0 Plastic MSH-Y-01386 378 978 31.3 20.9 

Cardboard box MSH-Y-01384 401 916 11.3 7.6 

8.0 Plastic MSH-Y-01386 377 951 14.7 9.8 

Cardboard box MSH-Y-01384 363 896 8.3 5.6 

5.0 Plastic MSH-Y-01386 389 949 18.7 12.4 

Cardboard box MSH-Y-01384 364 879 10.3 6.9 

3.0* Plastic** MSH-Y-01386 388 910 20.3 13.6 

Plastic*** MSH-Y-01386 378 881 13.3 8.9 

Cardboard box MSH-Y-01384 363 851 1.7 1.1 

Cardboard box MSH-Y-01384 396 859 4.7 3.1 

Plastic*** MSH-Y-01386 386 912 19.7 13.1 

Cardboard box MSH-Y-01384 390 891 4.0 2.7 

Plastic*** MSH-Y-01384 398 927 19.0 12.7 

Cardboard box MSH-Y-01386 387 861 3.3 2.2 

Note: Data on smoke densities emitted from practical incineration processes of cardboard and plastic sharps HCW containers, Haiti (2014). * = empty sharps 

HCW containers; ** = yellow-colored plastic containers with red top lid; *** = yellow-colored plastic containers with colorless top lid. 
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Primary Data Collection on Smoke Levels from Haiti State’s Hospital University 

(HUEH) 

The exercise for collecting primary data from sharps HCW incineration at the 

Haiti National Hospital (Haiti State’s Hospital University) revealed a lack of incineration 

facility at the Hospital. This is because the January 2010 earthquake in Haiti destroyed 

the incinerator and the entire incinerator building. The hospital had been, therefore, 

disposing of its sharps HCW through open burning at the main dump site in Port au 

Prince called Trutier.  

HCWM supervisor of the hospital organized disposal sessions based on the 

quantities of sharps HCW collected and the availability of truck to transfer sharps HCW 

for burning. Soon after the sharps HCW had reached the disposal site, HCW disposal 

assistant off-loaded the consignment at the identified location and sprayed up the heap 

with up to 4 liters of diesel to facilitate burning of the material. The disposal session 

ended once the plastic and cardboard materials have completely burnt except for needles 

and other metallic sharps. The successful burning of sharps HCW under the open-air 

burning process solely depends on weather conditions.  

Equally, the exercise for collecting primary data revealed that the quantities of 

HCW generated by Haiti State’s Hospital University are neither tracked nor recorded by 

the hospital staff. Lack of incineration facility, therefore, made the entire data collection 

from this particular hospital being excluded from the analysis since the aim was to 

measure smoke levels from incineration processes. A disposal session of sharps HCW 
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from Haiti State’s Hospital University through open burning was performed in the 

presence of the researcher during data collection period. 

Descriptive and Statistical Results 

Descriptive Statistics 

Descriptive statistics of secondary data on HCW incinerated weights. The 

descriptive statistics of HCW incinerated weights by MINUSTAH from January 2009 to 

December 2013 are summarized in Table 5.  

Table 5 

Descriptive Statistics for HCW Incinerated Weights 

Year n Minimum Maximum Mean Std. deviation 

2009 12 160 503 237.25 104.95 

2010 12 114 795 434.25 218.26 

2011 12 261 778 470.08 170.11 

2012 12 477 793 605.25 99.89 

2013 12 159 777 428.17 182.35 

Total (N) 60 114 795 435 196.22 

Note:  Healthcare waste (HCW) incinerated weights (kg) by MINUSTAH (January, 2009 - December, 

2013).  

Std. Deviation =Standard Deviation, n = Proportion of the sample, N = Total sample.  

 

As indicated in Table 5, the HCW incinerated weights in 60 month’s period ranged from 

114 kg to 795 kg, with a mean value of 435 kg and a standard deviation of 196.22. The 

lowest and the highest mean HCW incinerated weights were 237.25 kg and 605.25 kg in 

year 2009 and 2012 respectively as indicated in Figure 4.  
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Figure 4: Line Graph of Mean HCW Incinerated Weights (2009 – 2013). 

Group statistics of primary data on smoke densities. The group statistics of 

primary data on smoke densities are summarized in Table 6. 

Table 6 

Group Statistics for Smoke from Incineration of Plastic and Cardboard HCW Containers 

Smoke Density n Minimum Maximum Mean 

Std. 

deviation 

Smoke density (%) for Plastic containers 10 8.9 32.0 17.77 8.38 

Smoke density (%) for Cardboard boxes 10 1.1 14.3 6.81 4.79 

Total (N) 20 1.1 32.0 12.29 8.70 

Note:  Smoke densities emitted during practical incineration processes of sharps HCW containers and 

their mean values.  

Std. Deviation =Standard Deviation, n = Proportion of the sample, N = Total sample,  

(%) = Percentage. 

 

As indicated in Table 6, the smoke densities emitted from practical incineration 

process of sharps HCW containers ranged from 1.1 % to 32 %, with a mean value of 

12.29 %, and a standard deviation of 8.7. The smoke densities emitted from practical 
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incineration process of sharps HCW kept in plastic containers ranged 8.9 % to 32 %, with 

a mean value of 17.77 % and a standard deviation of 8.38. The smoke densities from 

incineration of sharps HCW kept in cardboard boxes ranged from 1.1 % to 14.3 %, with a 

mean value of 6.81 % and a standard deviation of 4.79. Box plots in figure 5 shows 

average Ringelmann smoke numbers and densities for plastic and cardboard sharps HCW 

containers. 

 
 

Figure 5: Box Plot of Mean Smoke Densities for Plastic and Cardboard Sharps HCW 

Containers. 

 

It is important to point out that the quantities of sharps HCW incinerated ranged 

from 3 kg to 14.6 kg, with a mean value of 7.5 kg, and a standard deviation of 4. 59, as 

indicated in Table 7. Initial incineration operational temperatures for bottom burners 

ranged from 363 0C to 401 0C, with a mean value of 383.35 0C and a standard deviation 

of 11.55. Final bottom burner’s operational temperatures ranged from 851 0C to 1095 0C 

with a mean value of 935.85 0C and a standard deviation of 67.7.  
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Table 7 

Quantities of Sharps HCW Incinerated and Operational Temperatures 

Quantity/Temperature N Minimum Maximum Mean 

Std. 

deviation 

Quantities of Sharps HCW Incinerated (kg) 20 3.0 14.6 7.50 4.59 

Initial Bottom Burner Temperature (0C) 20 363 401 383.35 11.55 

Final Bottom Burner Temperature (0C) 20 851 1095 935.85 67.70 

Note:  Operational temperatures of incinerators (bottom burners) during incineration of sharps HCW of 

different quantities. Std. Deviation =Standard Deviation, N = Total sample, (%) = Percentage. 

 

Sampling distribution. Descriptive statistics for secondary data on HCW 

incinerated weights indicated that the distribution is approximately normal. The 

Skewness is 0.146 with a standard error of 0.309, and Kurtosis is -1.106 with a standard 

error of 0.608. Similarly, the descriptive statistics for primary data on average smoke 

densities indicated that the distribution is approximately normal. The Skewness is 0.931 

with a standard error of 0.512, and Kurtosis is 0.349 with a standard error of 0.992.  

Sample Adequacy 

As a rule of thumb, VanVoorhis and Morgan (2007) recommended a reasonable 

sample size of 50 to be adequate for the analysis of correlation and regression 

relationships. However, for this study, I statistically assumed that the sample size of 60 

HCW incinerated weights within a span of 5 years would be sufficient in order to 

represent HCW incineration operations during an emergency situation.  To confirm the 

required sample size, I used Tabachnick and Fidell (2007) formula (Equation 3) on page 

70 for calculating sample size based on the desired power of 80 %.  
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𝑁 > 50 + 8𝑚                                   (3) 

Where, 

N = Total Sample size  

m = number of independent variables (1) 

 Based on this analysis, the minimum required sample size to allow the rejection of the 

null hypothesis was 58.  

Therefore, the sample size of 60 is above the minimum required sample size to 

reject the null hypothesis. Furthermore, I used the Equation 4 for calculating sample size 

based on the standard error of the mean and standard deviation. 

𝑛 =
𝜎 2

𝑆𝐸2
                                               (4) 

Where, 

n = Sample size  

σ = Standard deviation of outcome variable (196.219) 

SE = Standard error of the mean (25.332) 

Based on the Equation 4, I estimated a sample size of 59.9 for power of 80%. The 

two analyses, therefore, indicated that the sample size of 60 was above the minimum 

required to reject the null hypothesis at α = 0.05, with a statistical power of 80%. 

For the primary data, the sample size of 10 incineration processes of sharps HCW 

kept in plastic containers and another sample size of 10 incineration processes of sharps 

HCW kept in cardboard boxes were assumed to be adequate. The assumption was based 

on the actual incineration processes on the ground, MediBurn incineration manual, and, 
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smoke densities emitted from incineration processes. The purpose was not to emit higher 

smoke densities unnecessarily for the sake of data collection. I confirmed the sample size 

for primary data set based on the Equation 5.  

 

𝑛 = 2𝜎2 = (𝑍𝛽 + 𝑍𝛼/2)/𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒2                    (5) 

Where, 

n = Sample size in each group (assumed equal for plastic and cardboard) 

σ = Standard deviation of outcome variable (8.701) 

Zβ = Desired power (0.84 at 80% power) 

Zα/2 = Level of statistical significance (1.96 for α = 0.05) 

Difference = The difference in means (10.96) 

In view of the Equation 5, I estimated a sample size of 9.88 for each group 

necessary for the power of 80 %. This analysis indicated that the sample sizes of 10 in 

each case for the two groups were above the minimum required sample size to reject the 

null hypothesis at α = 0.05, with a statistical power of 80%. 

Statistical Analyses for Secondary Data on HCW incinerated Weights 

Analysis of the pattern of HCW incinerated Weights from 2009 to 2013. The 

first research question required an analysis of the pattern of HCW incinerated weights 

before and after the 2010 earthquake and cholera disasters in Haiti. I used Linear 

Regression Analysis (Frankfort-Nachmias & Nachmias, 2008; Green & Salkind, 2011) in 

order to determine the pattern of emergency HCW incinerated weights.  



72 

  

 

The null hypothesis to be tested here was that the pattern of HCW incinerated 

weights before and after the January 2010 earthquake and October 2010 cholera disasters 

in Haiti is linear. The alternate hypothesis was that the pattern of HCW incinerated 

weights before and after the January 2010 earthquake and October 2010 cholera disasters 

in Haiti is non-linear. I conducted a linear regression analysis by using SPSS Statistics 21 

with a pre-specified error of 0.05. To start with, I had to check if there exist a significant 

correlation between HCW incinerated weights and the months under which it occurred 

(months before, during and after the 2010 cholera and earthquake disasters). I therefore, 

conducted a Pearson Correlation test. Table 8 summarizes the results of the test.  

Table 8 

Pearson Correlation Test for HCW Incinerated Weights  

Variables N r p 

HCW Incinerated Weights (kg) and 

Period (months) 

 

60 .406** .001 

Note: Correlation between HCW incinerated weights and months in which they occurred (months before, 

during and after the 2010 earthquake and cholera disasters), r = Pearson Product-Moment Correlation 

Coefficient, p = probability, N = Total sample, ** = Correlation is significant at the p = 0.01 level (2-

tailed).  

 

As indicated in Table 8, there exist a significant correlation between HCW incinerated 

weights and the months they occurred (months before, during and after the 2010 cholera 

and earthquake disasters). The Pearson product-moment correlation coefficient (r) is 

.406, p = 0.001. Linear regression analysis was conducted following the existence of 

significant correlation in order to evaluate the linearity of HCW incinerated weights for 

the 60 months period. The model summary indicated R value of 0.406 and R square (R2) 
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value of 0.164. Therefore, the independent variable (months before, during and after the 

2010 cholera and earthquake disasters) included in the model explained 16 % variance 

(0.164 * 100%) in the dependent variable (HCW incinerated weights).  I performed the 

analysis of variance (ANOVA) to check whether the model was significant (see Table 9).   

Table 9 

ANOVA for HCW Incinerated Weights  

Model df F p 

Regression 1 11.419 .001 

Residual 58   

Note: Analysis of Variance (ANOVA) of healthcare waste (HCW) incinerated weights (2009 – 

2013). df = degree of freedom, p = probability, F = F statistical test, the model is significant at the 

p = 0.001 level. 

 

Statistical results in Table 9 confirmed the model as a whole to be significant F (1, 58) = 

11.419, p = 0.001. Therefore, approximately 16 % variance in the amount of HCW 

incinerated weights are explained by the months under which HCW incineration 

processes occurred (before, during and after the 2010 cholera and earthquake disasters).  

Table 10 shows the coefficients of linear regression analysis.  

Table 10 

Linear Regression Analysis for HCW Incinerated Weights 

 

Model 𝞫 p 

95 % CI  

Lower bound Upper bound 

HCW Incinerated Weights (kg) 296.017 .000 201.342 390.692 

Months Before, During and After the 

2010 Earthquake and Cholera Disasters 
4.557 .001 1.858   7.256 

Note: Linear regression results of HCW incinerated weights (kg) based on months in which they occurred. 

𝞫= Unstandardized Coefficients, p = probability, Cl = Confidence Interval, R2 = .164, (p = 0.001).  
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A linear regression analysis was conducted to evaluate the pattern of HCW 

incinerated weights or the prediction of HCW incinerated weights from the months in 

which they occurred (months before, during and after the 2010 cholera and earthquake 

disasters). The scatterplot for the two variables as is indicated in Figure 6 in the coming 

page did not show that the two variables are linearly related. The regression equation for 

predicting the HCW incinerated weights is indicated in Equation 6. 

 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐻𝐶𝑊 𝐼𝑛𝑐𝑖𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑊𝑒𝑖𝑔ℎ𝑡𝑠 = 4.56 𝑀𝑜𝑛𝑡ℎ𝑠 𝑇ℎ𝑒𝑦 𝑂𝑐𝑐𝑢𝑟𝑒𝑑 + 296        (6)  

 

The 95 % confidence interval for the slope, 1.858 to 7.256 does not contain the 

value of zero; thus, HCW incinerated weights are related to months in which they 

occurred. As hypothesized, the pattern of HCW incinerated weights is non-linear, the 

accuracy in predicting HCW weights was moderate. The correlation between HCW 

incinerated weights and the  months in which they occured was 0.406. Approximately, 16 

% variance of the HCW incinerated weights was accounted for by its linear relationship 

with the months under which HCW incineration processes occurred (before, during and 

after the 2010 cholera and earthquake disasters).   

Based on this analysis, I retained the null hypothesis that the pattern of HCW 

incinerated weights before and after the January 2010 earthquake and October 2010 

cholera disasters in Haiti is linear. The alternate hypothesis that the pattern of HCW 

incinerated weights before and after the January 2010 earthquake and October 2010 

cholera disasters in Haiti is non-linear in this case is explained by 84 %.  



75 

  

 

 

Figure 6: Scatterplot between HCW Incinerated Weights and Months They Occurred. 

 

Monthly time series model in Figure 7 explains the observed variation in HCW 

incinerated weights from January 2009 to December 2013 (60 months period). 

 

 
 Figure 7: Time Series Model for HCW Incinerated Weights in kg (Y-Axis) and Months 

They Occurred (X-Axis). 
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Statistical Analyses for Primary Data on Average Smoke Densities 

Comparison of average smoke densities emitted during the incineration 

process of plastic sharps HCW containers and cardboard boxes. The second research 

question required a comparison of average smoke densities emitted from incineration of 

plastic and cardboard containers. The assigned null and alternate hypotheses for the 

second research question included:   

 Null hypothesis (Ho): The average densities of BC emissions (smoke) during 

the incineration process of plastic sharps HCW containers and cardboard 

boxes are similar. 

 Alternate hypothesis (Ha): The average density of BC emissions (smoke) is 

significantly lower during the incineration process of cardboard box sharps 

HCW containers. 

I used an independent samples t-test (Frankfort-Nachmias & Nachmias, 2008; 

Green & Salkind, 2011) in order to evaluate the difference between the means of the two 

independent groups by using SPSS Statistics 21 with a pre-specified error of 0.05. Table 

11 summarizes the results of this analysis.  
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Table 11 

Independent Samples t-test for Average Smoke Density from Incineration of Plastic and Cardboard Sharps HCW Containers 

Assumption 

Levene's Test for Equality of 

Variances 

t df 

Sig. (2-

tailed) 

95 % CI 

F Sig. Lower Upper 

Equal variances assumed  6.133 .023 3.590 18 .002 4.544 17.367 

Equal variances not assumed   3.590 14.305 .003 4.423 17.488 

Note: Comparison of average smoke densities emitted during practical incineration processes of plastic and cardboard sharps HCW containers. 

 df = degree of freedom, t = t statistical test, F = F statistical test, sig. =  significant or probability (p) level, Cl = Confidence Interval.  

Mean difference = 10.96 % average smoke density, 95 % Cl (4.4, 17.5), p = 0.003 level. 
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As indicated in Table 11, Levene's test for equality of population variances yielded a 

significance of 0. 023, which is less than 0.05. Consequently, this observation is 

significant and, therefore, the equality of variance assumption inherent to the t-test is 

violated. In this test, the variances are very similar and both the t-test for equal variances, 

t(18) = 3.59, p = 0.002 and the t-test for unequal variances t(14) = 3.59, p = 0.003, yield 

comparable results. The use of unequal variance’s t-test is valid for this analysis.  

The independent samples t-test was significant, t(14) = 3.59, p = 0.003, thus, the 

rejection of null hypothesis that the average densities of BC emissions (smoke) during the 

incineration process of plastic sharps HCW containers and cardboard boxes are similar. 

The test indicated that the average density of smoke is significantly lower during the 

incineration process of cardboard box sharps HCW containers (M = 6.81, SD = 4. 79) 

than plastic sharps HCW containers (M = 17.77, SD = 8.38). The 95 % confidence 

interval for the difference in means was quite wide, ranging from 4.42 to 17.49, and 

reflecting the large disparity in average smoke densities emitted from incineration of 

different sharps HCW containers (cardboard boxes and plastic containers). 

Based on this analysis, there is a significant difference between the average 

smoke densities from the incineration process of cardboard and plastic sharps HCW 

containers. The average density of smoke is significantly lower during the incineration 

process of cardboard box sharps HCW containers.  

In order to rule out the probability that the differences in smoke densities may 

have been associated with poor segregation of sharps HCW, I conducted an independent 

samples t-test in order to evaluate the difference in smoke means for empty plastic and 
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cardboard sharps HCW containers. I used the Equation 5 to confirm the required sample 

size. The results of indicated the sample size of 1.733 to be sufficient for the analysis. 

Therefore, sample sizes of 4 in each case for the two groups were above the minimum 

required sample size to reject the null hypothesis at α = 0.05, with a statistical power of 

80 %. In this instance both Table 12 and 13 summarize the descriptive and statistical 

results of the independent samples t-test.  

Table 12 

Group Statistics for Smoke from Incineration of Empty Plastic and Cardboard Containers 

Variables n Minimum Maximum Mean 

Std. 

deviation 

Smoke density (%) for empty plastic 

containers 
4 8.9 13.56 12.06 2.14 

Smoke density (%) for empty cardboard 

boxes 
4 1.1 3.11 2.28 0.86 

Total (N) 8 1.1 13.56 7.17 5.44 

Note:  Average smoke densities emitted during practical incineration processes of empty sharps HCW 

containers and their mean values.  

Std. Deviation =Standard Deviation, n = Proportion of the sample, N = Total sample.  

 

As indicated in Table 12, the smoke densities emitted from practical incineration process 

of empty sharps HCW containers ranged from 1.1 % to 13.56 %, with a mean value of 

7.17 % and a standard deviation of 5.44. The smoke densities emitted from practical 

incineration process of empty plastic sharps HCW containers ranged 8.9 % to 13.56 %, 

with a mean value of 12.06 % and a standard deviation of 2.14. The smoke densities from 

incineration of empty cardboard sharps HCW boxes ranged from 1.1 % to 3.11 %, with a 

mean value of 2.28 % and a standard deviation of 0.86.  

 



80 

  

 

Table 13 

Independent Samples t-test for Average Smoke Density from Incineration of Empty Plastic and Cardboard HCW Containers 

Assumption 

Levene's Test for Equality of 

Variances 

t df 

Sig. (2-

tailed) 

95 % CI 

F Sig. Lower Upper 

Equal variances assumed  2.547 .162 8.474 6 .000 6.955 12.601 

Equal variances not assumed   8.474 3.939 .001 6.555 13.001 

Note: Comparison of average smoke densities emitted during practical incineration processes of empty plastic and cardboard sharps HCW containers. 

 df = degree of freedom, t = t statistical test, F = F statistical test, sig. =  significant or probability (p) level, Cl = Confidence Interval. 

Mean difference = 9.78 % average smoke density, 95 % Cl (6.96, 12.6), p < 0.001 level. 
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As indicated in Table 13, Levene's test for equality of population variances yielded a 

significance of 0.162, which is greater than 0.05. Accordingly, this observation is non-

significant and, therefore, the equality of variance assumption inherent to the t-test is not 

violated. Therefore, the use of equal variance’s t-test is valid for this analysis.  

The independent samples t-test was significant, t(6) = 8.47, p < 0.001.  The test 

indicated that the average density of smoke is significantly lower during the incineration 

process of empty cardboard sharps HCW containers (M = 2.28, SD = 0.86) than empty 

plastic sharps HCW containers (M = 12.06, SD = 2. 14). The 95 % confidence interval for 

the difference in means was quite wide, ranging from 6.96 to 12.6, and reflecting the 

large disparity in average smoke densities emitted from incineration of empty sharps 

HCW containers (cardboard boxes and plastic containers). Based on this analysis, the 

difference in smoke densities during the incineration process of cardboard and plastic 

sharps HCW containers is not subjected to poor segregation.  

Furthermore, I conducted an independent samples t-test in order to evaluate the 

difference between the final operating temperatures for the bottom burners to see whether 

the average smoke densities can be caused by the final operating temperatures of the 

bottom burners. In using the Equation 5 to confirm the required sample size, the results 

indicated a sample size of 4.539 to be sufficient for the analysis. Therefore, sample sizes 

of 10 in each case for the two groups were above the minimum required sample size to 

reject the null hypothesis at α = 0.05, with a statistical power of 80 %. Table 14 and 15 

are both presenting the results of the analysis. 

 



82 

  

 

Table 14 

Group Statistics for Final Bottom Burner’s Temperatures 

Variables n Minimum Maximum Mean 

Std. 

deviation 

Final Bottom Burner temperature (0C) 

for plastic HCW containers 
10 881 1095 971.40 72.96 

Final Bottom Burner temperature (0C) 

for cardboard HCW containers 
10 851 950 900.30 39.29 

Total (N) 20 851 1095 935.85 67.70 

Note:  Incinerator operational temperatures for the bottom burner, recorded during practical 

incineration processes of sharps HCW containers and their mean values.  

Std. Deviation =Standard Deviation, n = Proportion of the sample, N = Total sample,  

(%) = Percentage. 

 

As indicated in Table 14 above, the final temperatures of the bottom burners ranged from 

851 0C to 1095 0C, with a mean value of 935.85 0C and a standard deviation of 67.7. The 

final temperatures of the bottom burners during the practical incineration process of 

plastic sharps HCW containers ranged from 881 0C to 1095 0C, with a mean value of 

971.40 0C, and a standard deviation of 72.96. The final temperatures of the bottom 

burners during the practical incineration process of cardboard sharps HCW containers 

ranged from 851 0C to 950 0C, with a mean value of 900.3 0C, and a standard deviation of 

39.29. 
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Table 15 

Independent Samples t-test for Final Bottom Burners’ Temperatures during Incineration of Plastic and Cardboard Containers 

Assumption 

Levene's Test for Equality of 

Variances 

t df 

Sig. (2-

tailed) 

95 % CI 

F Sig. Lower Upper 

Equal variances assumed  4.193 .055 2.713 18 .014 16.044 126.156 

Equal variances not assumed   2.713 13.816 .017 14.824 127.376 

Note: Comparison of final bottom burners’ temperatures (0C) during practical incineration processes of plastic and cardboard sharps HCW containers. 

 df = degree of freedom, t = t statistical test, F = F statistical test, sig. =  significant or probability (p) level, Cl = Confidence Interval. 

Mean difference = 71.1 (0C), 95 % Cl (16, 126. 2), p = 0.014 level. 
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As indicated in Table 15 above, Levene's test for equality of population variances yielded 

a significance of 0.055, which is greater than 0.05. Accordingly, this observation is non-

significant and therefore, the equality of variance assumption inherent to the t-test is not 

violated. Therefore, the use of equal variance’s t-test is valid for this analysis.  

The independent samples t-test was significant, t(18) = 2.71, p = 0.014.  The test 

indicated that the average final temperatures of the bottom burners is significantly lower 

during the practical incineration process of cardboard sharps HCW containers M = 900.3, 

SD = 39.29) than for plastic sharps HCW containers (M = 971.40, SD = 72.96). The 95 % 

confidence interval for the difference in means was quite wide, ranging from 16 to 126.2, 

and reflecting the large disparity in average final temperatures of the bottom burners 

during the practical incineration process of cardboard and plastic sharps HCW containers.  

Therefore, it is unlikely that the average smoke densities are caused by the final operating 

temperatures of the bottom burners.  

Chapter 4 Summary 

Linear regression analysis conducted to evaluate the pattern of HCW incinerated 

Weights from 2009 to 2013 indicated that the pattern of HCW incinerated weights before, 

during and after the 2010 earthquake and cholera disasters in Haiti is linear.  I was unable 

to confirm that the quantities of HCW incinerated before, during and after the January 

2010 earthquake and October 2010 cholera disasters in Haiti did not depend on the 

months they occurred.  

Also, the independent samples t-test conducted to evaluate the difference between 

the mean of smoke densities emitted during the incineration process of plastic and 
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cardboard sharps HCW containers. The results of the independent samples t-test indicated 

the average density of BC emissions (smoke) is significantly lower during the 

incineration process of cardboard box sharps HCW containers than is the case in plastic 

containers incineration. I was, therefore, able to confirm that the use of cardboard sharps 

HCW resulted into the release of lower smoke emission into the atmosphere as compared 

to plastic containers. Additionally, in order to rule out any question of the effects of a 

possible poor segregation situation, I conducted an independent analysis for empty 

containers. The test apparently revealed that the results were similar. 

From sheer personal curiosity, I had to run the independent samples t-test for the 

average final temperatures of the bottom burner for the purposes of checking whether the 

average smoke densities are caused by the final operating temperatures of the bottom 

burners. The results indicated lower bottom burner’s final temperatures during the 

practical incineration process of cardboard sharps HCW than for plastic sharps HCW 

containers. From this analysis, it was discovered that temperatures had no relationship 

with the final average smoke densities. Thus, it is unlikely that the average smoke 

densities are caused by the final operating temperatures of the bottom burners.  

Apparently, these results provide the basis for several key factors and 

recommendations discussed in Chapter 5. Specifically, Chapter 5 includes an 

interpretation of the results, limitations, and implications of the study, and 

recommendations stemming from the collection of primary data and analysis during this 

study.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

Introduction 

The purpose of this study was to analyze the emergency HCW incineration trends 

and BC emissions or smoke from HCW incineration processes in Haiti.  This study 

provided a quantitative demonstration of fluctuating trends of HCW incinerated weights 

during the emergency situation in Haiti. Also, the study provided a quantitative 

illustration of the reduction in BC emissions during sharps HCW incineration activities 

by using cardboard sharps HCW containers. Likewise, the study provided empirical 

evidence on health and climate change impacts of BC emissions. In addition, the study 

has generated data that may be used to guide policy formulation and safe management of 

HCW disposal in Haiti and other countries where emergency and humanitarian efforts 

could similarly be taking place.  The reduced HCW incineration emissions could result in 

positive social change for healthier communities following a drop in BC emission 

exposure and associated health risks.  

I relied on the conceptual framework that based on both adverse health effects 

from BC emissions exposure and climate change potential of BC emissions. I used both 

secondary data on HCW incinerated weights by MINUSTAH at the 5-year scope 

beginning from January 2009 to December 2013, and primary data on smoke densities 

collected from practical incineration processes at MINUSTAH incineration facilities. I 

addressed two research questions. The first research question was whether HCW 

incinerated weights before and after the January 2010 earthquake and October 2010 

cholera disasters in Haiti follow a linear pattern. The second research question was 
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whether cardboard HCW sharps containers emit lower BC emissions to the atmosphere 

during the incineration process, relative to the plastic sharps containers.  

In this result discussion chapter, I discuss and interpret the findings, as well as 

verify the working hypotheses as they appeared in Chapter 4 of this study.  Likewise, I 

also make recommendations informed by a number of findings in this study, point out 

areas that need further research, and provide conclusions stemming from the whole 

stream of research activities right from the beginning to the end of this dissertation. This 

chapter is broadly subdivided into five major parts that include the interpretation of 

research findings, study limitations, recommendations, implications and conclusions. 

Interpretation of the Study Findings 

Under this section, I interpret the research findings in agreement to the two 

research questions that were guiding this study. In the course of this research, I made a 

number of observation from literature review and data collection. Subsequently, I have 

included the interpretation of such observation in this chapter.  Similarly, I have 

interpreted a number of findings of statistical analyses conducted with regard to the two 

research questions. Further discussion of the said findings is elaborated under the 

subheadings. 

Healthcare Waste Incineration Pattern during Emergency Situation 

Studying HCW incineration before, during and after emergency situations in 

Haiti. As is discussed in Chapter 3, my study of secondary data from MINUSTAH that 

spread-out for a period of 60 months, led me into discovering a number of features which 

are either positive or negative to healthcare facilities in Haiti. As at MINUSTAH, I found 
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a well-organized database which gave day-to-day account of HCW incineration activities 

including HCW incinerated weights (kg).  

However, in a number of hospitals visited outside MINUSTAH, they neither had 

any HCW incineration records at all to rely on, incinerators nor other disposal facilities 

standing within their premises. Likewise, these hospitals did not have any HCW disposal 

services contracted to them from any other location. To be particular, for the case of Haiti 

National Hospital (Haiti State’s Hospital University), a hospital that offer referral 

services to other public hospitals throughout the country, did not have incineration 

facility at all. I was given explanation that their not having incineration facility was due 

to the January 2010 earthquake in Haiti that destroyed their entire incineration unit of 

which has since not been put up together again.  

Consequently, the hospital had no formal alternative for HCW disposal instead 

they turned in for open-air burning at the main dump site in Port au Prince called Trutier 

as discussed in Chapter 4. I had the opportunity to visit the site where Haiti State’s 

Hospital University was practicing her open burning activities. What I witnessed was a 

haphazardly instead of the pit burning as is recommended by WHO (2014c) only for 

emergency operations. It is important to note that I visited the said hospital 4 years after 

the 2010 earthquake in Haiti. In this instance, it must be remembered that it was no 

longer an emergency period. In reviewing the WHO (2014c) guidelines on emergency 

HCWM, I revealed that even the WHO itself has not specifically defined what span of 

time qualifies to be an emergency period in the strict sense of the term. In my view, this 

technical miss-out has since caused unnecessary laxity and excuse of a hit from a 
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particular emergency, thus, the perpetual lack of functional HCW disposal facility in 

place.  

In spite of the situation elaborated above, in my case as a researcher, my objective 

was to know what the situation was with other hospitals in the country.  For this reason, I 

had to ask for a document from the MSPP which gave me a list of hospitals (both public 

and private) with incineration attached to them (see Appendix F). Apart from listing those 

hospitals with functional incinerators, and those with non-functional incinerators (reason 

not attached), elsewhere, the MSPP could not tell whether the incinerators in some of the 

hospitals are either functional or not. This was evidenced by a question mark that they 

had placed on their document against incineration status of certain hospitals. For this last 

point, the unclear status of incinerators at certain hospitals drew doubts and curiosity as 

to who should provide this answer if MSPP itself cannot do that. I upgraded the 

document provided by the MSPP into a global positioning system [GPS] accessible map 

which provides the specific hospital, location, and the said incineration unit attached (see 

Appendix F). In my view, this map will make the work of future researchers in this area 

more convenient and to the point.  

Based on the observation above, HCW disposal in Haiti seems to lack proper 

coordination, monitoring, and maintenance strategies thus inadequate HCW disposal 

infrastructure at its disposal. Open-air burning practice observed seems to be one case of 

haphazard open burning that is compensating for the incineration facility inadequacy 

pointed above. According to the Making Medical Injection Safer [MMIS] project, over 

90 % of healthcare facilities in Haiti dispose of its sharps HCW ineffectively through 
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open-air burning, burial and disposal in unsupervised areas (MMIS, 2010).  Wilburn 

(2012) also reported open-air burning of HCW in Haiti. The observed open-air burning of 

sharps HCW in Haiti tallies with the conceptual framework of the study that based on 

health and climate change potential of smoke. In summary, what the prolonged haphazard 

open-air burning may mean to the cost of health and climate change impacts is not clear 

and can only be a subject of another research and policy actions.  

Pattern of HCW incineration during the 2010 earthquake and cholera 

emergencies in Haiti. The cardinal point of the first research question was to analyze the 

pattern of HCW incinerated weights during the 2010 earthquake and cholera emergencies 

in Haiti. The descriptive statistics of 60 months secondary data from MINUSTAH 

showed that the HCW incinerated weights were normally distributed, thus, supporting the 

use of linear regression analysis.   

From a number of my statistical analyses, the study revealed that there was a 

significant correlation (Pearson product-moment correlation coefficient, r = 0.406) 

between HCW incinerated weights and months in which the incineration processes 

occurred (before, during and after the 2010 cholera and earthquake disasters). Linear 

regression analysis indicated that the pattern of HCW incinerated weights was linear (R 

=0.406, R2 = 0.164), with a significant analysis of variance (ANOVA) results of F (1, 58) 

= 11.419, p = 0.001. From the statistical findings above, the independent variable (in 

which the incineration processes occurred) included in the model explained 16 % 

variance (0.164 * 100%) in dependent variable (HCW incinerated weights).  In short, 



91 

  

 

approximately 16 % variance in the amount of HCW incinerated weights is explained by 

the months under which HCW incineration processes occurred. 

Even though the statistical findings could not allow the rejection of the null 

hypothesis that the pattern of HCW incinerated weights before and after the January 2010 

earthquake and October 2010 cholera disasters in Haiti is linear, the small R-value of 

0.406 explained fluctuations that existed. This is evidently represented by 84 % non-

linearity (which agrees with the alternate hypothesis) and 16 % accounting for the 

linearity of the trend. This way, I can say that even though the alternate hypothesis is 

statistically been disapproved from the analysis findings, it is largely valid.  

As hypothesized, the pattern of HCW incinerated weights is non-linear, the 

accuracy in predicting HCW weights was moderate (r = 0.406).  The increase in months 

caused an increase in HCW incinerated weights (4.56 kg each month) as indicated in the 

Equation 6. The evidence of fluctuating trends in HCW incinerated weights during 

emergency is well-explained in Chapter 4 under Figure 4. From the figure, it is evident 

that the year 2009 had the lowest mean HCW incinerated weights standing at 237.25 kg 

with a sharp rise of almost doubling HCW incineration weights by the year 2010 (434.25 

kg). This sharp trend is because January 2010 was a crisis moment when earthquake had 

hit Haiti and before long, cholera called in by October 2010.  The effects of these two 

emergency factors should be responsible for the sharp trend observed, with a slight rise 

between 2010 and 2011 standing at 470.08 kg as the situation was still volatile.  

However, there is another sharp rise between the year 2011 (470.08 kg) and 2012 

(605.25 kg), before the trend experienced a sharp decline in 2013 (428.17 kg). The 
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second sharp rise in the trend of HCW incinerated weights is a representation of 

incineration of written off emergence pharmaceuticals due to both the expiration and 

wrongful storage under higher temperature. These pharmaceuticals came from other 

organizations asking for incineration assistance by MINUSTAH. The reason for the other 

agencies asking for assistance by MINUSTAH to help incinerating pharmaceuticals was 

because they lack incineration facilities.  

  MINUSTAH had to help other agencies in disposing of pharmaceuticals for the 

reason that it was unsafe to leave the materials unattended any longer. MINUSTAH 

incinerators meet the WHO (1999, 2014c) requirement of emergency pharmaceutical 

disposal in double chambered incinerators at a temperature of 850 0C -1100 0C, except 

for the case of the cancer treatment medication that need much higher temperatures of 

above 1200 0C (WHO, 2014c). It is fortunate that none of cancer treatment medications 

had ever been brought for incineration by MINUSTAH. It is important to know that, I 

was one of the United Nations Volunteers with MINUSTAH from November 2008 to 

June, 2014 serving as environmental quality control volunteer.  

The incineration of the said pharmaceuticals is counted as a wastage, and, Hicks 

(2013) and WHO (2014c) argued that the cost of wastage is one of the biggest 

expenditure in the healthcare system. Karlsson and Pigretti Öhman (2005) concluded that 

significant reductions in climate change impacts could be attained by reducing inefficient 

consumption trends in healthcare sector. Though Hicks (2013) recommended the use of 

inventory technologies in demand forecasting and other inventory monitoring techniques 

in order to reduce HCW volumes, it was evidence that the two emergencies could not 
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allow deployment of such techniques. As for the case of pharmaceutical disposal in 2012 

by MINUSTAH, the wastage could not be apportioned to MINUSTAH since the latter 

was only charged by the responsibility to dispose of what was brought in from other 

agencies.  

Effective planning and coordination during emergency medical responses reduce 

quantities of expired pharmaceuticals, leading to lowered BC emissions and fuel 

consumption. Based on these research findings, it is clear that coordination during 

emergency medical mission and policy intervention are necessary in order to avoid 

similar situations or even worse in the future. Such policy guidelines should be able to 

provide strict guidelines on what should be done during an emergency and period after as 

far as pharmaceutical handling is concerned. Reduction in emergency pharmaceutical 

HCW will result into considerable reductions in health and climate change potential of 

BC emissions. 

Comparing the Average Smoke Densities during Sharps HCW Incineration 

Processes  

The core objective of the second research question was to compare the average 

smoke densities emitted during the practical processes of incinerating plastic and 

cardboard sharps HCW containers. I conducted 20 practical incineration processes of 

both empty plastic and cardboard sharps HCW containers, and those with full contents. 

The quantities incinerated ranged from 3 kg to 14.6 kg, with a mean value of 7.5 kg and a 

standard deviation of 4. 591 as indicated in Table 7. During that time, I conducted a total 

of 20 Ringelmann smoke readings during the incineration of sharps HCW kept in plastic 
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and cardboard containers (10 tests for plastic and 10 for cardboard containers). The 

average smoke densities emitted from practical incineration process of plastic and 

cardboard sharps HCW containers were normally distributed, thus, supporting the use of 

parametric statistics in the analysis.  

As summarized in Table 6, the smoke densities emitted from practical 

incineration process of sharps HCW containers ranged from 1.1 % to 32 %, with a mean 

value of 12.29 % and a standard deviation of 8.701. The smoke densities emitted during 

incineration processes of plastic sharps HCW containers ranged 8.9 % to 32 %, with a 

mean value of 17.77 % and a standard deviation of 8.38. The smoke densities from 

incineration of cardboard sharps HCW containers ranged from 1.1 % to 14.3 %, with a 

mean value of 6.81 % and a standard deviation of 4.79. Initial incineration operational 

temperatures for bottom burners ranged from 363 0C to 401 0C, with a mean value of 

383.35 0C and a standard deviation of 11.55. Final bottom burner’s operational 

temperatures ranged from 851 0C to 1095 0C with a mean value of 935.85 0C and a 

standard deviation of 67.7.  

In applying the above data in summary form, I performed an independent samples 

t-test with the intention of comparing the mean smoke densities emitted during 

incineration of plastic and cardboard HCW containers. The test was significant, t(14) = 

3.59, p = 0.003, thus, resulting in the rejection of null hypothesis that the average 

densities of BC emissions (smoke) during the incineration process of plastic sharps HCW 

containers and cardboard boxes are similar. The test indicated that the average density of 

smoke is significantly lower during the incineration process of cardboard box sharps 
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HCW containers (M = 6.81, SD = 4. 79) than plastic sharps HCW containers (M = 17.77, 

SD = 8.38). The difference between the sample mean smoke densities was 10.96 %. 

The 95 % confidence interval for the difference in means ranged from 4.42 to 

17.49, reflecting the large disparity in average smoke densities emitted from incineration 

of different sharps HCW containers (cardboard boxes and plastic containers). From the 

statistics above, it is evident that the average density of smoke during incineration of 

plastic sharps HCW containers is 2.61 times of what comes out during cardboard sharps 

HCW containers implies that the impact of cardboard containers on reducing BC 

emissions is significant .  

For the purposes of clearing any doubt that the differences in smoke densities may 

have been associated with poor segregation of sharps HCW, I conducted an independent 

samples t-test in order to evaluate the difference in smoke means for empty plastic and 

cardboard sharps HCW containers. According to Table 12, the smoke densities emitted 

from practical incineration process of empty sharps HCW containers ranged from 1.1 % 

to 13.56 %, with a mean value of 7.17 % and a standard deviation of 5.44. The smoke 

densities emitted from practical incineration process of empty plastic sharps HCW 

containers ranged 8.9 % to 13.56 %, with a mean value of 12.06 % and a standard 

deviation of 2.142. The smoke densities from incineration of empty cardboard sharps 

HCW boxes ranged from 1.1 % to 3.11 %, with a mean value of 2.28 % and a standard 

deviation of 0.86.  The independent samples t-test was significant, t(6) = 8.47, p < 0.001, 

thus, it indicated that the average density of smoke is significantly lower during the 

incineration process of empty cardboard sharps HCW containers (M = 2.28, SD = 0.86) 
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than is the case with empty plastic sharps HCW containers (M = 12.06, SD = 2. 14). The 

difference between the sample mean smoke densities was 9.78 %. 

The 95 % confidence interval for the difference in means was quite wide, ranging 

from 6.96 to 12.6 which reflected the large disparity in average smoke densities emitted 

from incineration of empty sharps HCW containers (cardboard boxes and plastic 

containers). From the above analysis findings, I was able to verify that poor segregation 

is not responsible for the difference in smoke densities during the incineration processes 

of cardboard and plastic sharps HCW containers. Also, I evaluated the difference in final 

incineration temperature for the bottom burners. The independent samples t-test (see 

Table 15) indicated higher mean final temperature during incineration of plastic 

containers (M = 971.40, SD = 72.961), as compared to cardboard containers (M = 900.3, 

SD = 39.294). Therefore, I ruled out the temperature effect on the average smoke 

densities based on the results of the test with 95 % Cl(16, 126. 2) and p = 0.014. 

A closer observation during data collection revealed that carton boxes burn faster 

than is the case with plastic containers that start burning after an average of 3 minutes 

with the observed higher initial smoke levels (Level 3 and 4 of the Ringelmann smoke 

chart). This was incomparable to the average initial smoke Level 1 for cardboard 

containers. Cardboard boxes are made of cellulose fibers that originate from wood 

whereas plastic containers originate from petroleum products (Marsh & Bugusu, 2007; 

Tan & Khoo, 2006). Although both plastic and cardboard materials contain carbon 

compounds, plastic materials are harder and requires higher energy to burn as compared 

to cardboards (Pan, Houck, Clark, & Pinnick, 2013). Niu, et al. (2013) found that that 
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burning fires or fuel mass loss of cardboard boxes correlate with time, and, the higher 

initial burning occurred prior to the inception of full flaming combustion. In view of the 

fact that cardboard boxes burn much faster than plastic containers, the contents in the box 

(sharps HCW) scatter-off and start burning too immediately owing to the increased 

burning surface area and ample air circulation.  

However, a look at plastic container’s incineration processes revealed that the 

contents are confined and the containers do not allow faster scattering of the sharps HCW 

in the entire incinerator chamber. For this reason, the contents burn slowly thus higher 

smoke levels. The burning test results of plastic identification indicated that most 

thermoplastics and thermoset plastics emit black smoke during combustion (Boedeker 

Plastics, Inc., 2014). Gullett, Tabor, Touati, Kasai and Fitz (2012) reported that burning 

of used pesticide plastic containers caused PM emission. The emission factors for PM2.5 

ranged from 9-35 mg/g of carbon burned, and, 6-43 mg/g of carbon burned for PM10.  

As is indicated in Table 4, incineration of 10 kg of sharps HCW and above in 

plastic containers emitted average smoke densities higher than (20%) or darker than 

Level 1 of Ringelmann smoke chart as opposed to the case with cardboard containers. 

Saxe (2008) and Slette (1999) reported higher emissions from plastic burning. This 

implies that a continued use of plastic sharps HCW containers in incineration processes is 

more likely to cause higher BC emissions.  

In summary, the incineration processes smoke tests have revealed the increasing 

scientific significance of BC emissions especially from plastic sharps HCW containers. 

BC emissions have got both health and climate change effects, the basis of the conceptual 
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framework as explained in the literature review. In this regard, this study provided a 

quantitative data as a basis for further research and policy formulation towards lower BC 

emissions. 

Comparing the Observed Smoke Densities and Health-Based Threshold 

 The researcher revealed higher initial smoke levels (Level 3 and 4 of the 

Ringelmann smoke chart) during incineration processes of plastic sharps HCW 

containers. Correspondingly, the incineration of equal or more than 10 kg of plastic HCW 

containers emitted smoke levels darker than Level 1 of Ringelmann smoke chart as 

indicated in Table 4. Smoke or BC emissions of higher than Level 1 have got health and 

climate change effects hence prohibited.   

According to the New Jersey Administrative Codes [NJAC] Title 7, Chapter 27 

emission of smoke darker that Level 1 of the Ringelmann smoke chart or 20 % opacity is 

considered illegal (NJAC, 2009). British smoke law prohibits darker smoke of more than 

shade 2 of the Ringelmann smoke chart (BSI British Standards 2009; SOLiFTEC, 2010). 

Furthermore, the United States Bureau of Mines (1967), the Scottish Environmental 

Protection Agency (SEPA, 2014), and various maritime departments in the globe 

(Anonymous, 2014) prohibit dark smoke (shadier than or similar to Level 2 of the 

Ringelmann smoke chart) for a maximum of 3 minutes.  

Health effects of smoke or BC emissions. BC emissions have got effects as 

conceptualized in the framework of this study. The literature review identified 

experimental, long and short-term exposure effects to different sources of BC emissions.  

According to the experimental studies, exposure to PM2.5 and PM10 of more than 200 
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μg/m3 caused airway inflammation, higher blood coagulation tendency, elevated levels of 

serum amyloid and increase in mucosal irritation among subjects (Barregard et al., 2006, 

2008; Riddervold et al., 2011; Sällsten et al., 2006; Sehlstedt et al., 2010; Solomon et al., 

2003).  

Epidemiological studies on association between health effects and PM including 

BC showed an association between mortality rates and BC emissions among subjects 

(Hoek et al., 2011; Jiang et al., 2011; Jansen et al., 2005).  The said association based on 

the season, location, and source mortality difference (Grigg, 2011; Maciejczyk et al., 

2010; Park et al., 2007). Likewise, short and long -term exposure effects of BC emissions 

are reported to be: acute bronchitis low birth weights and premature deaths, reproductive 

effects, reduced lung functions, development of chronic bronchitis and cancer, asthma 

attack and increase susceptibility to respiratory infections (USEPA, 2013; WHO, 2012, 

2013, 2014b).  

 According to the Capital Allergy and Respiratory Disease Center (2013), asthma 

is a persistent chronic illness in Haiti.  Approximately 235 million people in the world 

suffer from asthma illness with most deaths being in the global South countries (WHO, 

2013).  Systematic review of studies on health effects of BC emissions as performed by 

the WHO (2012) concluded that reducing exposure to BC would reduce health effects 

related to PM exposure, with major effects in the global South countries (WHO, 2014a). 

Climate change potential of smoke or BC emissions. The literature review based on the 

climate change potential of BC emissions as among key issues in formulating the 

conceptual framework of this study. Smoke or BC emissions from different sources as 
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indicated in Figure 1, contribute to climate change. Although climate change mitigation 

measures had been focused on curbing CO2 emissions as the major climate change 

pollutant (Hansen et al., 2007, 2013; USEPA, 2014), researchers released scientific 

evidence that BC emissions heat the earth twice as much than initially thought (Bond et 

al., 2013; Deangelis, 2011; Santisi, 2012).  BC emissions absorb heat radiation from the 

sun and reduce the sunlight’s reflecting ability of snow and ice upon its deposition, thus 

causing global warming (Ban-Weiss et al., 2012; Kirkevåg et al., 2008; Kuo, 2009; NRC, 

2002).  When BC emissions get entrapped into clouds, they increase the level and degree 

of cloud formation (make the clouds darker) which in turn warms the earth by reducing 

sun’s reflectivity (Deangelis, 2011; Foster, 2007; Mahajan et al., 2013; Santisi, 2012). BC 

emissions cause approximately 60% of the global warming effects of CO2 (Bond et al., 

2013; Deangelis, 2011; Santisi, 2012), making it the second most important climate 

change pollutant.  

Climate effects of BC emissions depend on their altitudinal position in the 

atmosphere (Ban-Weiss et al., 2012; Bond et al., 2013; Mahajan, 2013), and their 

deposits on the Arctic ice have caused 0.5 to 1 .4 0C warming over the past 100 years 

(Deangelis, 2011).  Ice melting following BC deposits in the Arctic and Himalaya 

because of its proximity to larger BC emitters, India and China has threatened the water 

supply of more than 10% of the world population (Deangelis, 2011).   

There is a need in the world for reducing BC emissions in order to mitigate 

climate change effects (NRC, 2010; Spotts, 2013; Stott, 2006; Tollefson, 2012).  The 

results of this study would inform decision makers on BC emissions from HCW 
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incineration activities, their climate change potential, and, their mitigation measures 

towards policy formulation and action.   

Comparing Incineration Emission Limits and Air Quality Standards  

In comparing the established incineration emission limits and the accepted air 

quality standards, I find the established HCW incineration emission limits to be unusually 

much higher than air quality standards recommended in many places. For example, the 

USEPA (2012) and WHO (2014a) recommended daily air quality standards for PM 

ranging from 10 μg/m3 to 150 μg/m3 as is indicated in Table 1. In their recommendations, 

the USEPA (2010) and WHO (2014c) recommended incineration emission limits for PM 

ranging from 10 mg/m3 (10000 μg/m3) to 66 mg/m3 (66000 μg/m3) as is indicated in 

Table 2. Therefore, given the huge variation above, it is evident that, the geographical 

distribution of incinerators in the global South countries, as is for the case of Haiti (See 

Appendix F), have got higher impacts of the quality of air in such locations.  

Alternatively, if the use of centralized higher temperature incineration facilities 

were in place, this would mean that the effects of incineration emissions per cubic meters 

of air quality would likewise lower and thus provide a relief.  A scattered distribution of 

small-scale incineration facilities, given the variations above, infers that the impacts of air 

quality per cubic meters is equally widespread over the large area than would be the case 

with a centralized incineration facility. Small scale incinerators have got higher emission 

rates as compared to large-scale incinerators (Rogers & Brent, 2006). 

However, it is important to note that the MINUSTAH incineration facilities that I 

used for the purposes of generating data for this study meet the emission limits set by the 
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USEPA and WHO with test emission values ranged from 9.84 mg/m3 to 18.5 mg/m3 as 

indicated in Appendix E.  

Study Limitations  

There were a number of limitations in the course of conduction this study. These 

ranged from man-made and natural challenges which I had to overcome in order to 

achieve objectives of this study. First, lack of acceptable BC or EC standard 

measurement methods in the world as reported by the WHO (2012). As a result, in this 

study I had to opt for the use of Ringelmann smoke charts, which are regarded as valid 

smoke measurement tool. The said tool help me to measure the average smoke densities 

emitted during incineration of sharps HCW in plastic and cardboard containers. I 

performed inter-rater reliability test in order to determine the reliability of the 

Ringelmann and miniature smoke charts before performing the actual incineration 

processes.   In order to increase efficiency of the results from Ringelmann smoke charts, I 

had to train 2 smoke readers who had to record independent observations, alongside 

myself, from the same incineration process after which I had to find the average.  

Likewise, I had to perform a number of pilot smoke reading tests in order to 

increase the efficiency in using the Ringelmann and miniature smoke charts among the 

newly trained smoke readers. For the purposes of guarding against any bias from smoke 

readers, I gave them the leeway to record what they independently see from the 

incineration process. Again, apart from my having being one of the supervisors during 

my time as a volunteer, it is important to point out that this study was conducted long 

after I had finished my contract with MINUSTAH. That is to say the relationship was 
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purely that of the researcher and her assistant in the field. There was neither 

compensation nor inducement of any kind in the course of data collection.  Elsewhere, 

challenges of weather vagaries during smoke emission reading had forced me to postpone 

smoke reading test on a number of days that were either cloudy or highly windy. 

Second, lack of HCW incineration facilities nor records at Haiti State’s Hospital 

University, the location at which MSPP permitted me to conduct my research. One more 

feature about this location is that it is a national hospital that reflects the best of the 

country’s public hospital health services and also a potential high generator of HCW. 

Therefore, the second study objective to measure the average smoke densities from 

incineration of plastic and cardboard sharps HCW containers from this hospital could not 

be achieved. Thus, I had to rely only on the MINUSTAH HCW incinerated weights and 

incineration facilities.  

To overcome this stagnation, I had to visit their improvised open-air burning 

alternative at Truiter dump site in Port au Prince from there the best I could get was only 

to observe how the process was being conducted. On another hand, from a few private 

hospitals visited, not anyone of them could permit me to conduct my research. The reason 

for their not being ready to allow me to conduct my study was on the ground that they 

don’t do any incineration instead they outsource. However, to whom do they outsource 

incineration activities, by how much and at what frequency were inadequately disclosed. 

After this hurdle, I had to request the MSPP for a list of both public and private hospitals 

with incinerators in the country and their functionality status (see Appendix F).  
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Third, I could not visit health facilities located in Cite Soleil because of insecurity 

impediments of this specific location in Haiti. It is possible that some hospitals in said 

locale could, perhaps, have different insights in regard to HCW incineration in the 

country.  

Last, the challenge of the absence of air quality standard for smoke or PM in the 

global South countries, Haiti for one, thus, relying on international standards and 

standards set by other institutions in the developed world. Likewise, challenge of non-

existence of occupation PM or smoke standards as highlighted in Chapter 2 of this study 

is a challenge that is affecting both the developed nations, and the global South countries.   

Recommendations 

Based on this study, I have proposed several recommendations for further 

research and actions. First, I recommend that BC emissions or smoke from HCW 

incineration activities in the global South countries be reduced, monitored and regulated.  

Second, I recommend the WHO to revise the guidelines on HCWM by specifying 

cardboard boxes as environmental friendly sharps HCW containers suitable for 

incineration with lower BC emissions. Plastic containers should remain as reusable 

containers during automatic incineration processes that allow automatic emptying of the 

contents into the incinerators. In this regard, I equally recommend that MINUSTAH stops 

use of plastic containers in view of scientific reasons earlier mentioned in this study.   

Third, I recommend that the WHO revise the emergency HCW disposal 

guidelines to redefine the specific time span that an emergency situation ought to stand 



105 

  

 

active and valid beyond which everything ought to go back to normal in relation to HCW 

disposal processes and requirements.  

Fourth, I recommend that relevant international agencies should support the 

establishment of specialized autonomous HCWM agencies, attached to each hospital, to 

be specifically responsible for proper HCWM in the global South countries including 

Haiti. On the same note, I similarly recommend the instituting of policy guidelines in 

every country to provide HCW incineration framework including air pollution control 

systems.  

Fifth, there should be effective guidelines on logistics and pharmaceutical 

management and coordination during an emergency medical mission in order to avoid 

huge wastage in pharmaceuticals. Based on the research findings above, it is clear that 

coordination during emergency medical mission and policy intervention are necessary in 

order to avoid similar situations or even worse in the future. Such policy guidelines 

should be able to provide strict guidelines on what should be done during an emergency 

and period after as far as pharmaceutical handling is concerned. 

Last, the concerned international agencies should revise incineration emission 

limits for PM based on locations and to be current and realistic with present industrial 

developments and urbanization rates in the world. 

Implications for Positive Social Change 

A number of significant implications stemmed from this study, contributing to 

positive social change, theoretical and empirical contexts for future research towards BC 

emissions curb from HCW incineration activities during emergency situations.  
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First, this is the first research to analyze HCW incinerated weights by 

MINUSTAH around the most fatally catastrophic 2010 earthquake, and the resultant 

cholera disasters. Thus, it has provided an evidence-based account of fluctuating trend in 

HCW incineration during emergency with a peak sharp rise in 2012; a representation of 

the incineration of unwanted emergency pharmaceuticals due to poor storage under 

extreme heat. It is optimistic that the observed pattern of HCW incinerated weights have 

provided information useful to most humanitarian agencies on effective coordination and 

planning of emergency medical responses in the future in order to avoid expired 

pharmaceuticals, leading to lowered BC emissions and fuel consumption. 

Second, the information obtained from data collection process indicated that 

HCW incineration facilities in Haiti lack air pollution control systems, thus, agreeing 

with the IMF (2008) report. Equally, the study indicated that the problem of smoke from 

HCW incineration facilities in Haiti had been escalated by the January 2010 earthquake 

that left the national hospital (HUEH) without incineration facility at all, following the 

collapse of the incinerator building.  Open burning disposal option remained an interim 

disposal option practiced by HUEH from the January 2010 earthquake emergency to-

date. This information, therefore, suggested the need to review the WHO guidelines on 

emergency HCWM in order to specifically define what span of time qualifies to be an 

emergency period in the strict sense of the term. Also, the information is a wake-up call 

to help the HUEH and other hospitals with a similar problem in Haiti towards proper 

HCW disposal in the country.  
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Third, the study revealed that the established HCW incineration emission limits 

are much higher than air quality standards recommended in many places, suggesting the 

review of such limits, and use of centralized higher temperature incineration facilities for 

lower incineration emissions per cubic meters of air quality. 

Fourth, this study provided quantitative evidence of the benefits of cardboard 

sharps HCW containers in reducing BC emissions during HCW incineration activities. 

This has provided potential data basis for policy formulation and emphasized the need for 

review of existing HCW guidelines in relation to sharps HCW containers. Furthermore, it 

informed the need for the purchase and use of cardboard boxes (greener sharps HCW 

containers) by MINUSTAH, other peacekeeping missions in the world and hospitals in 

the global South countries, as among climate change mitigation measures.   

Fifth, the study findings on the challenges of emergency HCW incineration 

process provided an informed basis for robust policy formulation and safe management 

of HCW disposal in Haiti and other countries where emergency and humanitarian efforts 

could similarly be taking place.  

The above mentioned study implications have a significant impact on social 

change for healthier communities related to reducing BC emissions and associated health 

risks, while contributing theoretical and empirical contexts for future research. Key 

contributions, therefore, include the significance of reducing, regulating and monitoring 

BC emissions from HCW incineration activities in the global South countries. 
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Conclusions 

The findings of this study are in agreement with the conceptual framework which 

presupposed that smoke or BC emissions are a growing threat to human health and 

climate change with extreme impacts in the global South countries where over three 

quarters of BC emissions are produced (Deangelis, 2011; PAHO, 2012; WHO, 2012, 

2014b). The analysis of HCW incineration pattern of periods before, during and after the 

2010 earthquake and cholera disaster in Haiti revealed a relatively linear pattern (R2 = 

0.164) with fluctuating scenarios (peak sharp rise in 2012); a representation of the 

incineration of unwanted emergency pharmaceuticals due to poor storage under extreme 

heat. Also, the study supported the IMF (2008) observation which pointed out on the lack 

of air pollution control systems in HCW incineration facilities in Haiti. The study 

demonstrated that the average density of smoke is significantly lower during the 

incineration process of cardboard sharps HCW containers as compared to plastic 

containers. In providing quantitative evidence of the benefits of cardboard sharps HCW 

containers in reducing BC emissions during HCW incineration activities, and, fluctuating 

pattern of HCW incinerated weights, this study provides data which can potentially 

provide the basis for policy formulation needs, and, future research on potential health 

impacts of emergency HCW disposal and BC emissions.  
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Appendix A: Ministry of Public Health and Population (MSPP) Haiti Research Approval  
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Appendix B: MINUSTAH Healthcare Waste Incineration Data Use Approval  
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Appendix C: The Ringelmann Smoke Chart 
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Appendix D: Purchased Right to Use Ringelmann and Miniature Smoke Charts  
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Appendix E: Incineration Source Emissions Report Prepared for Elastec, Inc 
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Appendix F (i): A List of Hospitals with Incinerators in Haiti 

      

DIRECTION DE PROMOTION DE LA SANTE ET DE PROTECTION DE L'ENVIRONNEMENTSERVICE 

D'ASSAINISSEMENT 

LISTE DES SITES D'INCINERATION 

NO MARQUE NOM DE L'INSTITUTION DEPARTEMENT COMMUNE REMARQUES 

1 Microburn 23b Hopital Notre Dame de la nativité  Centre  Belladère Fonctionnel 

2 Microburn 23b CAL de Petit Trou de Nippes Nippes Petit Trou  Non Utilisé 

3 Microburn 23b CSL de Port Margot Nord Port-Margot Non Utilisé 

4 Microburn 23b CAL de St jean de Limbé Nord Limbé Fonctionnel 

5 Microburn 23b Hopital Esperance de Pilate Nord Pilate Fonctionnel 

6 Microburn 23b CAL de la Grande Rivière du Nord Nord Grande Rivière  Fonctionnel 

7 Microburn 23b Hopital de Fort Liberté Nord'Est Fort Liberté Fonctionnel 

8 Microburn 23b CAL de Ouanaminthe Nort'est Fort Liberté Fonctionnel 

9 Microburn 23b Hopital C.H de Marchand Dessalines Artibonite Marchand Dessalines Fonctionnel 

10 Microburn 23b Hopital Pierre-Payen Artibonite Pierre Payen Fonctionnel 

11 Microburn 23b CAL de Bambardoplis Nord'Est Bombardopolis Fonctionnel 

12 Microburn 23b CAL d'Aquin Sud Aquin Fonctionnel 

13 Microburn 23b CAL de Port-a-Piment Sud Port-a-Piment Fonctionnel 

14 Microburn 23b CAL de Camp Perin Sud Camp Perin Fonctionnel 

15 Microburn 23b CAL St Agnès Grand-Anse Beaumont Non Utilisé 

16 Microburn 23b CAL Comm. Dame Marienne Grand-Anse Dame-Marie Fonctionnel 

17 Microburn 23b CSL de Chommeil Sud'Est Bainet Non Utilisé 

18 Microburn 23b CAL de Thiotte Sud'est Thiotte Fonctionnel 

19 Microburn 23b Hopital communauté Haitienne Ouest Petion-Ville Fonctionnel 
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NO  MARQUE NOM DE L'INSTITUTION  DEPARTEMENT COMMUNE  REMARQUES 

1 Microburn 32b Hopital St Therese  centre  Hinche  Fonctionnel 

2 Microburn 32b Hopital St Michel  Sud'Est Jacmel en panne  

3 Microburn 32b Hopital OFATMA Ouest Port-au-Prince ? 

4 Microburn 32b MIJ Ouest Port-au-Prince Fonctionnel 

5 Microburn 32b Hopital CARE Artibonite Gonaives ? 

      

      

NO  MARQUE NOM DE L'INSTITUTION  DEPARTEMENT COMMUNE  REMARQUES 

1 SALA 30 Hopital Justinien  NORD Cap-Haitien Fonctionnel 

2 SALA 30 Hopital communautaire Centre Cange Fonctionnel 

3 SALA 30 Hopital Zanmi lasanté Centre Mirbalais Fonctionnel 

4 SALA 30 Hopital Saint-Antoine Grand-anse Jeremie Fonctionnel 

5 SALA 30 Hopital Ste-Therese Nippes Miragoane 

en panne 

cheminé 

6 SALA 30 Hopital Grace Children Ouest Delmas Fonctionnel 

7 SALA 30 Hopital Food for the poor Ouest Carrefour Fonctionnel 

8 SALA 30 Hopital de Fermathe    Ouest  Petion-ville Fonctionnel 

9 SALA 30 HIC Sud Cayes Fonctionnel 

10 SALA 30 Hopital Beraca  Nord'Ouest St louis du Nord Fonctionnel 

      

      

NO  MARQUE NOM DE L'INSTITUTION  DEPARTEMENT COMMUNE  REMARQUES 

1 MEDIBURN  

Laboratoire Nationale de Santé 

Publique Ouest Delmas Fonctionnel 

2 MEDIBURN  Hopital CARE ( ST CHARLES) Artibonite  Gonaives ? 
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Appendix F (ii): A Map of Hospitals with Incinerators in Haiti 
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Appendix G: Photos of Sharps HCW Containers Used within MINUSTAH 
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Appendix H (i): Permission to Use Incineration Emission Report 

From: Jeremy Pretzsch <jpretzsch@elastec.com> [mailto:Jeremy Pretzsch <jpretzsch@elastec.com>]  

Sent: Monday 03 March 2014 3:49 PM 

To: "'Emilia Raila'" <raila@un.org> 

Cc: "MINUSTAH-PDU%UNFIELDMISSIONS@un.org" <MINUSTAH-

PDU%UNFIELDMISSIONS@un.org> 

Subject: RE: Requesting permission to use both the incineration manual and source emission report from 

Elastec, Inc for my research 

 Sounds good.  I look forward to it. 

 Jeremy  

Jeremy Pretzsch 

Sales Manager 

Elastec/American Marine 

From: Emilia Raila [mailto:raila@un.org]  

Sent: Monday, March 03, 2014 2:11 PM 

To: Jeremy Pretzsch 

Cc: MINUSTAH-PDU%UNFIELDMISSIONS@un.org 

Subject: RE: Requesting permission to use both the incineration manual and source emission report from 

Elastec, Inc for my research 

Dear Jeremy, 

I appreciate very much for the permission. There is no problem to providing a copy and will discuss with 

my dissertation chair to know exactly at what stage I can share it prior to publishing.  

Best Regards! 

Emilia Mmbando Raila 

Property Disposal Unit 

Ext. 6794 

From: Jeremy Pretzsch <jpretzsch@elastec.com> [mailto:Jeremy Pretzsch <jpretzsch@elastec.com>]  

Sent: Monday 03 March 2014 10:15 AM 

To: "'Emilia Raila'" <raila@un.org> 

Cc: "'MINUSTAH-PDU%UNFIELDMISSIONS@un.org'" <MINUSTAH-

PDU%UNFIELDMISSIONS@un.org> 

Subject: RE: Requesting permi! ssion to use both the incineration manual and source emission report from 

Elastec, Inc for my research 

  

 

mailto:raila@un.org
mailto:MINUSTAH-PDU%25UNFIELDMISSIONS@un.org
mailto:jpretzsch@elastec.com
mailto:jpretzsch@elastec.com
mailto:raila@un.org
mailto:MINUSTAH-PDU%25UNFIELDMISSIONS@un.org
mailto:MINUSTAH-PDU%25UNFIELDMISSIONS@un.org


144 

  

 

Dear Emilia,  

 

I agree to allowing you to use the information as requested. I would like to ask for an advanced copy of 

your report to make sure no sensitive material is included but certainly look forward to reading it.  

 

Jeremy  

 

Jeremy Pretzsch  

Sales Manager  

Elastec/American Marine  

 

-----Original Message-----  

From: Emilia Raila [mailto:raila@un.org]  

Sent: Monday, March 03, 2014 9:08 AM  

To: Jeremy Pretzsch  

Cc: Emilia Raila; MINUSTAH-PDU%UNFIELDMISSIONS@un.org  

Subject: Requesting permission to use both the incineration manual and source emission report from 

Elastec, Inc for my research  

 

Dear Jeremy,  

 

I am Emilia Mmmbando Raila, working with MINUSTAH as Environmental Quality Control 

Assistant/Volunteer. Currently, I am doing my PhD dissertation on medical waste incineration in Haiti and 

will be analyzing MINUSTAH’s incineration process. I am therefore requesting your company to grant me 

a permission to use the incineration manual and source emission report as among reference materials for 

my research. Kindly let me know as well if I can include them in my appendices.  

 

Kindly be informed that I am officially authorized to use the MINUSTAH incineration data for my 

dissertation.  

 

Best regards!  

Emilia Mmbando Raila  

Property Disposal Unit  

Ext. 6794  

 

 

 

 

 

 

 

 

 

mailto:raila@un.org
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Appendix H (ii): Permission to Reprint Figure 1 

 
On Thu, Oct 16, 2014 at 3:05 PM, Bond, Tami C <yark@illinois.edu> wrote: 

 

Hello Emilia,  

Thanks for your inquiry. I believe I do not have copyright to the figure and you need to contact American 

Geophysical Union. However, if it matters, you have my permission 

 

Best regards, 

 

Tami Bond 

 

On Oct 16, 2014, at 3:08 PM, Emilia Raila <emilia.raila@waldenu.edu> wrote: 

 

Dear Professor Bond,  

  

My Name is Emilia Raila. Currently, I am a Ph.D. candidate at the Walden University. In my dissertation, I 

am analyzing black carbon emissions from waste incineration activities and its climate change impacts.  

  

I am kindly requesting permission to reprint and use the figure on ‘sources of Black carbon aerosol and co-

emitted species’ from your journal article titled “Bounding the role of black carbon in the climate system: 

A scientific assessment”. Journal of Geophysical Research: Atmospheres, 118, p. 5390, 

doi:10.1002/jgrd.50171  

  

If permitted, I will change the color to be black and white, and put a heading at the bottom in accordance to 

the APA citation.  

  

 Anticipating your favorable replies.  

  

Stay Blessed. 

--------------------------------- 

Professor, University Scholar 2012-2015 

Dept. of Civil & Environmental Engineering 

University of Illinois, Urbana-Champaign 

Newmark Civil Engineering Laboratory, MC-250   (1)217-244-5277 

205 N. Mathews Ave., Urbana, IL 61801   USA 

 

 

‘Revolutionary’ discipline depends on political consciousness-- on an understanding of why orders must be 

obeyed; it takes time to diffuse this, but it also takes time to drill a man into an automaton on the barrack-

square.  --George Orwell, Homage to Catalonia 
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