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Abstract 

Despite the availability of medical data, environmental surveillance tools, and heightened 

public awareness, West Nile Virus (WNv) remains a global health hazard. Reliable 

methods for predicting WNv outbreaks remain elusive, and environmental health 

managers must take preventive actions without the benefit of simple predictive tools. The 

purpose of this ex post facto research was to examine the accuracy and timeliness of 

exogenous data in predicting outbreaks of WNv in South Carolina. Decision theory, the 

CYNEFIN construct, and systems theory provided the theoretical framework for this 

study, allowing the researcher to broaden traditional decision theory concepts with 

powerful system-level precepts. Using WNv as an example of decision making in 

complex environments, a statistical model for predicting the likelihood of the presence of 

WNv was developed through the exclusive use of exogenous explanatory variables 

(EEVs). The key research questions were focused on whether EEVs alone can predict the 

likelihood of WNv presence with the statistical confidence to make timely preventive 

resource decisions. Results indicated that publicly accessible EEVs such as average 

temperature, average wind speed, and average population can be used to predict the 

presence of WNv in a South Carolina locality 30 days prior to an incident, although they 

did not accurately predict incident counts higher than four. The social implications of this 

research can be far-reaching. The ability to predict emerging infectious diseases (EID) for 

which there are no vaccines or cure can provide decision makers with the ability to take 

pro-active measures to mitigate EID outbreaks.   
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Chapter 1: Introduction to the Study 

Despite the availability of serological sampling, environmental surveillance tools, 

and heightened public awareness, consistently reliable methods for predicting West Nile 

virus (WNv) outbreaks remain elusive (Manore et al., 2014). Current predictive models 

of local WNv outbreaks are reliant on robust epidemiological (EPS) and environmental 

surveillance programs (EVS) that produce actionable data. Hadler et al. (2015) showed 

that environmental health programs across the United States are executed with differing 

levels of resources and funding. With emerging infectious diseases (EIDs) like WNv and 

Zika, a simple, reliable predictive tool is required to ensure public health measures can be 

taken before an outbreak occurs. In this research, I examined the accuracy and timeliness 

of using web-based, publicly accessible ecological and environmental data in predicting 

outbreaks of WNv in South Carolina. 

 This chapter contains the background, problem statement, and purpose of the 

research; sets the theoretical structure for the study; and defines the terms of reference. It 

concludes with a series of assumptions and highlights the significance of the study to the 

field of management. 

Background of the Study 

First detected in Africa in 1937, the initial cases of WNv in the United States 

occurred in New York City in the summer of 1999. Today, WNv has been diagnosed in 

all 48 states within the contiguous United States, with two nationwide epidemics 

occurring in 2003 and 2012 (Centers for Disease Control and Prevention, 2013; Kwan et 
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al., 2012). At the end of 2016, the U.S. Department of Health & Human Services, Centers 

for Disease Control and Prevention (CDC) reported 46,086 cases of WNv, with 2,017 

human deaths over the 1999 to 2016 timeframe. Although it has become the “principal 

cause of viral encephalitis in the United States” (Austin & Dowd, 2014, p. 1015), no 

vaccine or specific therapy for WNv currently exists (CDC, 2013; Gubler, 2007). 

Due to a universal lack of a vaccine and approved therapy, public officials around 

the world have been actively seeking tools that will predict human outbreaks of WNv and 

aid decision making in the timely application of preventive measures when transmission 

cycles are high. Predictive modeling of WNv is an important decision support tool in this 

effort, but it remains problematic due to the dynamic temporal and spatial 

interdependencies of the pathogenic, ecological, and anthropological components of the 

virus (Pirofski & Casadevall, 2012). These interdependencies present a complex 

decision-space for environmental health managers (EHMs). 

The presence of WNv in a locality is dependent on numerous interactive 

biological, environmental, and ecological factors. To quantify WNv risks, researchers and 

EHMs have developed EPS and EVS tools to monitor arbovirus infections in humans, to 

understand WNv mosquito transmission activity (vector control), and to execute 

preventive measures (CDC, 2013). 

EPS involves testing humans for the presence of WNv in blood or cerebrospinal 

fluid, detecting anti-WNv immunoglobulin antibodies or through nucleic acid 

amplification testing. These types of surveillance data are conclusive as to the presence of 
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WNv and are critical to understanding the extent of human incidents of WNv in a 

locality. However, utilizing EPS data by itself is usually insufficient for predicting 

outbreaks as the data can lag several weeks behind the actual infection timeframe (CDC, 

2013, p. 11). This deficiency in EPS data has led to the development of EVS activities to 

gather additional explanatory factors and to strengthen the indices supporting predictive 

capabilities. 

EVS monitors WNv transmission in mosquitoes, birds, equines, chickens, and 

other mammals. Using several surveillance activities, such as mosquito pools, sentinel 

animals, and birds, EHMs gather additional explanatory data to compare against 

historical EVS and EPS data to better understand and quantify the antecedent conditions 

necessary to address WNv. Using a combination of EVS and EPS data, these types of 

mixed predictive models provide detection timeframes of 2 to 4 weeks prior to the onset 

of human symptoms. In a locality that has a robust EVS and EPS program, integrated risk 

management (IRM) decisions can occur within a sufficient time-period to take preventive 

actions. However, according to Hadler et al. (2015), “arboviral surveillance is inadequate 

in many states to rapidly detect and control outbreaks and to give the public critical 

information it needs for prevention” (p. 1165). 

Following the outbreak of WNv in the United States in 1999, the federal 

government implemented programs and funding to support state or local arbovirus 

surveillance programs. The National Association of County & City Health Officials 

(NACCHO, 2014) reported that by 2004, approximately $45M in federal funding 
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supported these surveillance programs. By 2010, reports began to surface of funding 

declines in these programs in the states of California, South Carolina, Florida, Nevada, 

Wyoming, and Oregon (DeLong, 2010). In 2012, federal funding for arbovirus 

surveillance programs had declined by 61% or $17.5M (NACCHO, 2014). This decrease 

sparked a shift in the capacity for IRM and required local health officials to prioritize 

mosquito surveillance at the expense of other EVS (equine, avian, sentinel animals) 

methods (Hadler et al., 2015). By 2012, Hadler et al. (2015) reported that “57% of states 

reported eliminating avian death surveillance, 58% decreased mosquito testing, and 46% 

decreased the number of human specimens tested for WNv” (p. 1161).  

Although local EHMs reprioritized limited funding, the downward trend in 

operational capability continues. In 2016, NACCHO found that 84% of national 

mosquito vector control programs needed improvement due to a failure of one or more 

vector control program core competencies (routine mosquito surveillance, treatment 

decisions using surveillance data, larviciding, adulticing, or both, routine vector control 

activities, pesticide resistance training (NACCHO, 2017). This decrease in capability 

directly affects current WNv predictive tools such as California Mosquito-Virus Risk 

Assessment and Dynamic Continuous-Area Space-Time systems (Kwan et al., 2012). 

These predictive modeling tools rely on robust surveillance programs with regular 

sampling/reporting to provide EHMs with indices that can accurately support WNv 

outbreak prediction in an accurate and timely manner.  
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 In the absence of these robust, data rich WNv surveillance programs, there is 

evidence that other explanatory environmental factors can provide interactive context to 

the presence of WNv in a locality. Explanatory factors such as meteorological data, 

topology, land use, and population density have been used in past studies to enrich 

predictive models when univariate analysis has shown some correlation to incidents of 

WNv (Ahmadnejad et al., 2016; Soverow et al., 2009). Most of these factors, referred to 

as exogenous explanatory variables (EEVs) in this research, are collected in web-based, 

publicly accessible data bases allowing real-time access to historical and trending sets of 

data. When viewed from a management science perspective, the use of these exogenous 

factors reflects a more holistic, systems-level approach to decision making that may 

provide statistically significant predictability using contextual data in the absence of 

primary EPS and EVS surveillance data.  

In combination with EPS and EVS factors, several studies have proven these 

types of exogenous factors to be important to understanding WNv-vector-host 

interaction, virus maturity, and vector abundance. However, there are no studies that have 

addressed the power of these types of explanatory factors in predicting WNv when robust 

data from EPS and EVS are not available. 

Problem Statement 

Despite the availability of medical data, environmental surveillance tool sets, and 

heightened public awareness, reliable methods for predicting WNv outbreaks remain 

elusive (Manore et al., 2014). According to Manore et al. (2014) and Chevalier et al. 
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(2014), statistical predictions of local WNv outbreaks with the reliability and timeliness 

required for EHMs to make pro-active public health decisions is increasingly 

problematic. The existing research has identified shortfalls in current EID predictive 

models due to a lack of robust empirical data, longitudinal analysis, and research 

exploring the exclusive use of EEVs (see, for example, Liu et al., 2009; Manore et al., 

2014; Rochlin et al., 2011).  

The research problem was that no current mechanism, model, or algorithm exists 

for the accurate and timely prediction of WNv outbreaks without robust EPS and EVS 

data (Chevalier et al., 2014; Manore et al., 2014). Specifically, there was a lack of 

understanding of the predictive power of EEVs when used by themselves or in 

combination when robust EPS and EVS data are unavailable. 

Purpose of the Study 

The purpose of this ex post facto quantitative, correlational research was to 

examine the use of EEV data in predicting outbreaks of WNv in SC when robust EPS and 

EVS data are unavailable. To address the scholarly gap of accurate and timely predictive 

modeling of WNv, I examined 10 EEVs listed in Table 1. These 10 EEVs were proposed 

based on a systems-level review of the WNv decision-space within the literature review 

and are readily available from publicly accessible data sets. 

  



7 

 

Table 1 

Study Variables 

Variable type Description Label Scale Measure 

Dependent Presence of 

WNv 

DVPRESENCE Categorical Presence of WNv in a 

time-lagged period 

0 (no) 

1 (yes) 

Dependent Number of 

WNv 

incidents 

DVCOUNT Discrete Count of WNv incidents 

in a time-lagged period 

Independent Average 

temperature 

EV1ATM Ratio Average 30-day county 

temperature in degrees 

Fahrenheit (°F) 

Independent Average 

rainfall 

EV2ARN Ratio Average 30-day county 

rainfall in (inches) 

Independent Average 

dewpoint 

EV3ADP Ratio Average 30-day county 

dew point in degrees 

Fahrenheit (°F) 

Independent Average 

snow depth 

EV4ASD Ratio Average 30-day county 

snow depth in (inches) 

Independent Average 

barometric 

pressure 

EV5ABP Ratio Average 30-day county 

barometric pressure in 

inches of mercury (HG) 

Independent Average wind 

speed 

EV6AWS Ratio Average 30-day county 

wind speed in miles per 

hour (MPH) 

Independent Topology  EV7ELV Interval County seat elevation in 

(feet) 

Independent Land use EV8USE Categorical 0 (agricultural use) 

1 (industrial use) 

Independent Urbanization  EV9POP Ratio Population density per 

county square miles 

Independent Dew point 

deficit 

EV10ADD Interval The difference between 

EV1ATM and EV3ADP 
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The dependent variables (DVs) were various measures of the presence of WNv 

and were suitable for analysis using Statistical Package for the Social Sciences (SPSS) 

binary logistic regression (BLR) and generalized linear model (GZLM) regression. There 

were five DVs, with varying degrees of time lag (0, 30, 60, 90-days; and a 90-day 

moving average). These varying degrees of time lag directly addressed EEV predictive 

capability in the research questions. The issue of time lag is addressed further in Chapter 

2. 

Research Questions and Hypotheses 

The following research questions examined the utility of EEVs in predicting 

outbreaks of WNv. Research question two was developed with multiple hypothesis pairs. 

In this research, a WNv incident was the positive identification of the virus in a locality 

in either a human, mosquito, bird, equine, or sentinel animal. 

Research Question 1 (RQ1): In the absence of robust EPS and EVS data, which 

EEVs are predictors of incidents of WNv in South Carolina (SC) in a current month? 

H01: When used alone or in combination, EEVs do not accurately predict 

incidents of WNv in SC in the same month.  

Ha1: At least one EEV accurately predicts incidents of WNv in SC in the same 

month. 

Research Question 2 (RQ2): In the absence of robust EPS and EVS data, which 

EEVs accurately predict incidents of WNv in SC in the future?  
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H02: When used alone or in combination, EEVs do not predict incidents of WNv 

in SC 30 days later.  

Ha2: At least one EEV predicts incidents of WNv in SC 30 days later. 

H03: When used alone or in combination, EEVs do not predict incidents of WNv 

in SC 60 days later. 

Ha3: At least one EEV predicts incidents of WNv in SC 60 days later. 

H04: When used alone or in combination, EEVs do not predict incidents of WNv 

in SC 90 days later. 

Ha4: At least one EEV predicts incidents of WNv in SC 90 days later. 

In this research, I examined 10 EEVs and a numerical DV indicating the presence 

of WNv (see Table 1). I used BLR and GZLM regression to test the hypotheses, then 

developed and validated predictive models of the effects and associations of the EEVs 

with the relevant DVs. 

Theoretical Foundation 

This research leveraged Simon’s (1960) decision-making process, decision theory 

(DT), and Snowden and Boone’s (2007) contextual decision-making framework called 

CYNEFIN. These theoretical constructs aligned with this research because EHMs are 

facing complex decision-spaces associated with WNv and require a broader, systems-

level approach to explanatory factor selection. 

 The epidemiological cycle associated with WNv incubation, transport, and 

transmission reflect components of both deterministic biological processes and stochastic 
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ecological/environmental conditions. The theoretical concepts within DT and CYNEFIN 

allow the manager to frame WNv decision-space complexity within Simon’s (1960) 

iterative three-phase decision process, allowing for a more holistic systems approach to 

EID prediction and prevention. 

DT and CYNEFIN provide the underlying theoretical construct for this research 

and provided the means for addressing the complex decision-space associated with WNv. 

The identification and use of contextually based EEVs in predicting EID outbreaks 

provided a unique contribution to the field of management science and disease 

prevention. 

Nature of the Study 

The study was quantitative and retrospective in nature. To answer the research 

questions, I initially selected nine contextually derived EEVs based on the literature 

review. These nine EEVs were (a) average 30-day temperature (EV1ATM), (b) average 

30-day rainfall (EV2ARN), (c) average 30-day dew point (EV3ADP), (d) average 30-day 

snow depth (EV4ASD), (e) average 30-day barometric pressure (EV5ABP), (f) average 

30-day wind speed (EV6AWS), (g) topology (EV7ELV), (h) land use (EV8USE), and (i) 

urbanization (EV9POP). The DV was the presence of WNv (see Table 1) computed as a 

number of WNv incidents within a SC county.  

The EEVs acted as predictors in this research. Using longitudinal South Carolina 

Department of Health and Environmental Control (SC DHEC) data from 1999 to 2016, 

each EEV was subjected to a purposeful selection process, as detailed by Field (2013). 
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The EEV selection process was guided by the acknowledgement that the decision-space 

surrounding the WNv challenge consists of a diverse set of biological, ecological, 

environmental, topological, and demographic factors that interact to create a dynamic, 

complex system. For my analysis, these explanatory factors must have met two criteria: 

They must have exhibited an interactive contextual relationship to the genesis, 

maturation, and vectorization of WNv; and they must have been drawn from publicly 

available, web-based sources that provide historical and real-time data. My challenge was 

to determine which factors correlated strongly with the likelihood of WNv outcomes. I 

further constrained the study to exogenous factors alone. 

Initially, this culling involved exploratory data analysis (EDA), planned use of 

multiple linear regression (MLR; models of multiple EEVs), and univariate analysis of 

the influence of each EEV on the DVs. If the analysis showed significance (p < .20) for 

any EEV, the variable would be carried forward into the final MLR model. The temporal 

dimension was examined (five DVs measuring no lag; 30-, 60-, 90-day lags; and a 90-day 

moving average time lag) to support the examination of IRM timeframes and predictive 

accuracy. 

The EEV data were extracted from original and publicly available sources (e.g., 

SC DHEC, United States Geological Survey, South Carolina Department of Natural 

Resources). Because of the type of EEV and their standard measures, the reliability of the 

source data were high. The predictive validity of the EEVs’ impact on model outcomes 
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was reliant on the fit of those variables within the statistical model. The final model was 

developed using data from 2002 to 2016. 

The original DVs were measures of the number of WNv incidents present in SC. 

The ability to predict each DV was directly dependent on the fidelity of the data used to 

construct the statistical model. Predictive models were developed by both BLR and 

regression using GZLMs in SPSS. GZLMs refer to a broad family of regression models 

that follow an exponential family distribution (Javaras & Vos, 2002). The empirical 

validity of the predictive models was assessed using historical results of WNv in SC. 

Definitions 

Abiotic: “Not biotic” (Abiotic, n.d., para. 1). 

Arbovirus: “Any of various RNA viruses (as an arenavirus, bunyavirus, or 

flavivirus) transmitted principally by arthropods and including the causative agents of 

encephalitis, yellow fever, and dengue” (Arbovirus, n.d., para. 1). 

Arthropod: “Any of a phylum (Arthropoda) of invertebrate animals (such as 

insects, arachnids, and crustaceans) that have a segmented body and jointed appendages, 

a usually chitinous exoskeleton molted at intervals, and a dorsal anterior brain connected 

to a ventral chain of ganglia” (Arthropod, 2019, para. 1). 

Biotic: “Of, relating to, or caused by living organisms” (Biotic, n.d., para. 1). 

Biological systems theory: “Combines experimental . . . techniques and 

mathematical modeling and analysis, with the ultimate goal of understanding the 

emergence of biological function on the basis of interdependencies among molecular 
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components” (Radde & Hutt, 2016, p. 1).  

 

Causation: An awareness of what causes what in the world and why it matters. 

There are generally two types of causality, direct and indirect (Pearl, 2009). 

Complex adaptive system: A system that lightly constrains agent behavior and in 

turn the agents through their interactions constantly modify the nature of the system 

(Snowden & Boone, 2007). 

Complexity theory: “A scientific theory which asserts that some systems display 

behavioral phenomena that are completely inexplicable by any conventional analysis of 

the systems’ constituent parts. These phenomena, commonly referred to as emergent 

behavior, seem to occur in many complex, robust systems involving living organisms, 

such as a stock market or the human brain” (Casti, 2017, para. 1). 

Complex dynamical systems theory: “Complex dynamical systems theory and its 

related disciplines and tools -- network theory, agent-based modeling -- provide the 

appropriate prism through which interdependent systems such as social groups can be 

understood, and coherent, integrated policy recommended” (Juarrero, 2010, p. 1). 

Context: Decision making is context dependent; context influences the decision 

analysis process (Riabacke, 2006). 

CYNEFIN: “The CYNEFIN framework is derived from several years of action 

research into the use of narrative and complexity theory in organizational knowledge 
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exchange, decision making, strategy, and policy-making” (Kurtz & Snowden, 2003, p. 

463). 

Decision-support tools: “Computer-based information systems that help support 

decision-making activities” (Decision-support tools, n.d., para. 1). 

 Decision theory: “Decision theory is concerned with the reasoning underlying an 

agent’s choices” (Zalta, 2016, para 1). 

Emerging infectious disease (EID): An emerging infectious disease is one “whose 

incidence in humans has increased within the past two decades or threatens to increase in 

the near future” (van Doorn, 2014, p. 1). 

Endogenous: “Caused by factors inside the organism or system” (Endogenous, 

n.d., definition 2a). 

Environmental surveillance program (EVS): EVS monitors WNv transmission in 

mosquitoes, birds, equines, chickens, and other mammals.  

Epidemiological surveillance program (EPS): EPS involves the testing of humans 

for the presence of WNv in blood or cerebrospinal fluid, detecting anti-WNv 

immunoglobulin antibodies, or through nucleic acid amplification testing. 

Exogenous: “Caused by factors or an agent from outside the organism or system” 

(Exogenous, n.d., definition 2b).  

Exogenous explanatory variable (EEV): Variables that have the ability to produce 

interactive context with a WNv eco-system. (e.g., average rainfall, average temperature, 

average windspeed). 

http://en.wikipedia.org/wiki/Decision-making
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Explanatory variable (EV): An independent variable postulated to influence or 

predict the dependent variable in a real-world process or that explains the behavior of the 

dependent variable (Montgomery, 2019). In this study, EVs were the set of independent 

variables that included EEVs, their two-factor interactions (2FI), and months.  

Flavivirus: “Are responsible for a number of important mosquito-borne diseases 

of man and animals globally” (Hobson-Peters, 2012, p. 1). 

Pathogen: “A microorganism that causes, or can cause, disease” (Pirofski & 

Casadevall, 2012, p. 1).  

Predictive analytics: “A collective term for techniques with the aim of predicting 

the future based on static or historical data” (Geerdink, 2013, p. 1). 

Real-time business intelligence: The real-time capture, access, understanding, and 

analysis of raw data into actionable intelligence to improve business performance 

(Azvine et al., 2006). 

Systems biology: “The science that studies how biological function emerges from 

the interactions between the components of living systems and how these emergent 

properties enable and constrain the behavior of these components” (Wolkenhauer, 2014b, 

p. 1). 

West Nile virus (WNv): A mosquito-borne zoonotic arbovirus in the family of 

Japanese encephalitis serocomplex (Hobson-Peters, 2012). 

Zoonotic: Infectious diseases of animals (usually vertebrates) that can naturally be 

transmitted to humans (Rosenberg, 2015). 

http://en.wikipedia.org/wiki/Mosquito-borne_disease
http://en.wikipedia.org/wiki/Zoonotic
http://en.wikipedia.org/wiki/Arbovirus
http://en.wikipedia.org/wiki/Infectious_diseases
http://en.wikipedia.org/wiki/Vertebrates
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Assumptions 

An assumption is a belief that cannot be proven but is critical to the success of the 

study (Simon & Goes, 2013). For this research, I assumed the following:  

• Contextually based EEVs can provide sufficient statistical power for use in 

WNv prediction. 

• These explanatory data were available from publicly accessible sources and 

could be readily used in predictive models. 

• Publicly accessible data were generally available to decision makers in their 

work environments and did not require permission for use. 

• Publicly accessible data could be collected with standardized measurement 

tools.  

These assumptions were necessary in the context of the study as the research 

findings were based on the availability of publicly accessible, timely, relevant contextual 

data to a decision maker.  

Scope and Delimitations 

In this research, I examined the power of exogenous explanatory data in WNv 

predictive models when robust EPS and EVS data are lacking. To examine the use of 

these explanatory data in complex decision-spaces, the research scope was confined to a 

single EID in the southeastern United States. Research data and analysis were focused on 

the ability to predict WNv in SC localities alone. 
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According to Simon and Goes (2013), “The delimitations of a study are those 

characteristics that arise from limitations in the scope of the study (defining the 

boundaries) and by the conscious exclusionary and inclusionary decisions made during 

the development of the study plan” (p. 4). The problem of timely predictive modeling of 

EIDs is not limited to WNv, but because of the complex epidemiological and 

environmental cycles associated with different EIDs (e.g., Zika) and disparate health 

resources across local environmental health organizations, it was not feasible to develop a 

single model suitable for all geographic regions and EIDs. An additional delimitation 

within this research was the use of near real-time, web-based publicly accessible data. 

Using readily available data from public sources allowed me to determine if publicly 

accessible exogenous data alone could reliably and accurately predict outbreaks of WNv.  

Limitations 

Although the climate and topography of the region is similar to other temperate 

areas, the ability to generalize the study was limited by the use of regionally focused 

publicly accessible data (Liu et al., 2009; Ozdenerol et al., 2013). The scope of this study 

was limited to the state of SC, and the data collected were primarily historical, raising 

issues of external validity about the numerous means of collection and accuracy. Hence, 

any attempt to infer results beyond the scope of this study should be done with caution. 

Beyond the scope of this study, further research should consider placing 

contextually based, publicly available EEVs in more advanced statistical toolsets 

examining complex decision spaces. Also, the application of a priori beliefs to data 
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collection strategies is an area of interest. The field of combinatorial probability is an 

interesting alternative means of research in this area.  

Significance of the Study 

The application of DT and CYNEFIN to predictive analytics was a unique aspect 

of this research. The results of the study may provide insight into the robustness of 

systems-level, contextually based EEVs in predictive models. According to Gatherer 

(2010), Motta and Pappalardo (2013), and Wolkenhauer (2013), a system-level research 

approach aligns with the rise of systems-level biology and its attempts to characterize 

biological complexity in more holistic terms. An EID case study provided the complexity 

required to potentially generalize any findings to other predictive frameworks such as 

decision support tools, analytical decision management models, and real-time business 

intelligence applications. However, these frameworks were not addressed in this study. A 

secondary benefit of the research could be the examination of a predictive contextual 

framework for the proactive management of EIDs.  

Significance to Theory 

In this research, I examined the relationship among DT, decision-making context 

(CYNEFIN), and systems theory to understand the impact of exogenous data on complex 

decision making. The tenets of these theories were combined to provide a theoretical 

framework that challenges traditional linear-causal approaches to decision making, to 

expand the manager’s perception of the decision-space, and to provide greater fidelity to 

the design and choice phases of the decision-making process. This was accomplished 
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through an emphasis on data intelligence and specifically the use of systems-level 

exogenous data to provide context and reduce uncertainty in the decision-making process. 

Significance to Practice 

Managers of all professions are required to make decisions daily. These decisions 

are made within decision-spaces that range from simple to chaotic (Snowden & Boone, 

2007). The ability for a manager to make decisions when dealing with complicated and 

complex decision-spaces is dependent on their ontological understanding, breadth of 

intelligence, and analytic support.  

In this research, I used a contextually based theoretical foundation that leveraged 

the dynamic presence of publicly accessible data in forming intelligence collection 

strategies for decision making. The theoretical foundation approached the decision-space 

in a way that allows practitioners to make decisions when empirical data are not 

available. 

Significance to Social Change 

The significance of this study was two-fold. First, I leveraged the tenets of DT, 

CYNEFIN, and systems-thinking to more robustly account for EEV data use in WNv 

predictive modeling. The premise was that if contextually based explanatory factors 

within a linear regression model can predict WNv presence in a locality prior to an 

outbreak, then the research and the predictive models may provide practitioners and 

decision makers in other like professions with an alternative theoretical framework for 

decision making in data-poor environments. 
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The second goal of the research was to develop a predictive model that would 

allow proactive EID decision making in a number of different localities based on the use 

of exogenous exploratory factors unique to the region. I used SC as a case study, as 

NACCHO rated the state as needing improvement across all core competencies of their 

mosquito vector control programs. This means that local detection and other preventive 

measures like mosquito abatement procedures are less robust than in other states. 

According to Hadler et al. (2015), many public health care organizations are 

resource constrained, and the mosquito abatement programs in SC are no exception. 

Funding for these types of programs have decreased in the state since 2008, and this was 

exemplified in the SC DHEC’s request for five additional EHMs in a recurring operating 

request in the Fiscal Year 2018-1019 Agency Budget Plan (SC DHEC, 2018). A lack of 

resources also requires local EHMs to examine and use a variety of predictive models of 

WNv. 

A predictive model developed using SC county EEV data could reduce the 

latency of the current process and positively influence abatement and preventive 

measures, reduce WNv outbreaks, and provide a cost-effective means for disease control. 

It may also prove generalizable to other communities and mosquito-borne viruses around 

the United States and the world. This is a critical point when considering the effects of 

environmental factors like temperature on the WNv ecosystem and in the face of rising 

temperatures associated with global climate change (Soverow et al., 2009). 
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Summary and Transition 

Historically, the timely and accurate prediction of WNv in a locality requires 

robust EPS and EVS programs. These programs produce surveillance data that populate 

predictive models, which allow EHMs to make timely decisions on preventive measures 

(Manore et al., 2014). With EIDs like WNv and more recently Zika, simple, reliable 

predictive tools are required to ensure public health measures can be taken before 

outbreaks occur. To address this scholarly gap, I examined the accuracy and timeliness of 

contextually based exogenous explanatory data in predicting outbreaks of WNv in SC. In 

doing so, I also examined the importance of context and system-level thinking in decision 

making. 

Management tools that predict trends and services need to adapt to the complexity 

of today’s information environment and to the systems-level data it produces. A systems-

level, context driven approach could offer an answer to these data challenges. When 

required, this practical approach could allow the manager to place a decision within a 

broader systems-level context, using exogenous data to enrich and define a less ordered 

decision-space. This is particularly relevant for decision makers and managers who work 

within the complex field of EIDs. In Chapter 2, I examine relevant literature in decision-

making theory and explore the complexities associated with emerging infectious disease. 
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Chapter 2: Literature Review 

A scholarly gap exists in the accurate and timely predictive modeling of WNv. As 

revealed in the literature review, this shortfall is broadly true within the field of 

epidemiology and EID, where predictive models have been developed to assist managers 

in making resource decisions associated with EID preventive actions (e.g., public 

education and mosquito abatement; Reiner et al., 2013). In this research, I addressed this 

gap through the exclusive use of contextually based, system-level EEVs to enhance 

decision-space context and to predict outcomes in complex environments. The purpose of 

this ex post facto research was to examine the accuracy and timeliness of publicly 

accessible exogenous explanatory data in predicting outbreaks of WNv in SC. 

The literature review accomplished two research objectives: the identification of a 

gap in the scholarly research relating to the power of contextual data in EID predictive 

modeling and the development of a theoretical foundation for addressing that gap. To 

properly examine the theoretical foundations for this research, a cross-disciplinary review 

was conducted, incorporating the core elements of DT, the CYNEFIN construct, and 

systems-thinking. A contextually rich, decision-making approach emerged from this 

review and establishes a potential process of inquiry for decision making in complex 

environments.  

To examine the statistical power of contextual data, I chose WNv as an example 

of a complex decision-space and as such, a detailed review of literature associated with 

this EID was accomplished. To predict outbreaks of WNv, EEVs were selected from 
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exogenous data that were contextually related to WNv. The DVs were DVPRESENCE and 

DVCOUNT. The exogenous variables were employed within a statistical model to determine 

its utility in predicting outbreaks of WNv. 

This chapter consists of three sections: (a) The search strategy establishes the 

boundaries of the literature review; (b) the theoretical foundation section examines 

Simon’s contributions to contemporary DT, the CYNEFIN construct, and systems-

thinking; and (c) a review of the history of WNv provides current modeling approaches 

for predicting WNv and key predictor variables traditionally used within the EID 

community. Insights gained from the literature review highlight a practical and 

theoretically based foundation for the use of contextual variables in complex decision 

spaces.  

Literature Search Strategy 

The search strategy for the review was to gather literature that contributed to the 

identification of a scholarly gap and provided the necessary rigor for addressing the 

formulation of research questions and hypothesis. The strategy was executed in two 

phases: first, a focused foundational review of Simon’s contributions to DT the impact of 

complexity and systems-thinking on that theory (concept formulation) using Snowden 

and Boone’s (2007) CYNEFIN construct; second, a broadly defined search associated 

with WNv predictive modeling (problem specificity). 

The search strategy focused on keywords associated with biological systems 

theory, bounded rationality, complexity, complexity theory, complex dynamical systems 
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theory, decision-making context, decision-making process, causality (direct and indirect), 

systems theory, reductionism, West Nile virus, and West Nile virus modeling. The years of 

2010 to 2018 were used as search filters to ensure literature currency, but a more targeted 

search on the theoretical foundations of the study required a relaxation of literature 

currency to adopt the grounded theoretical concepts introduced by Simon’s mid-19th 

century contributions to DT and the decision-making process. The review spanned a wide 

range of publications to include published books, peer-reviewed journal articles, 

conference proceedings, corporate studies and reports, academic studies, federal and state 

government publications, and articles and papers retrieved from the internet. I used 

research database structures available through the Walden University library, the Defense 

Advanced Research Projects Agency research portal, and Google Scholar for this 

literature search. 

Theoretical Foundation 

This research leveraged DT, Simon’s (1960) decision-making process, and 

Snowden and Boone’s (2007) framework of contextual decision making called 

CYNEFIN. These theoretical constructs aligned with this research because EHMs are 

facing complex decision-spaces associated with WNv and require a broader, systems-

level approach to explanatory variable selection. 

 The epidemiological cycle associated with WNv incubation, transport, and 

transmission reflects components of both deterministic biological processes and 

stochastic ecological/environmental conditions. The theoretical concepts within DT and 
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CYNEFIN allow the manager to frame WNv decision-space complexity within Simon’s 

(1960) iterative three-phase decision process, allowing for a more holistic systems 

approach to EID prediction and prevention. 

DT and CYNEFIN acted as the underlying theoretical construct for this research 

and provided the means for addressing the complex decision-space associated with WNv. 

The theoretical foundation in this study offered a new approach to the challenges of EID 

predictive modeling through the identification and use of contextually based EEVs in 

predicting EID outbreaks. This approach provided a unique contribution to the field of 

management science and disease prevention. 

Decision Theory and Simon’s Concept of Bounded Rationality 

According to Moreno-Jimenez and Vargas (2018), “The ability to make decisions 

is an inherent and essential characteristic of human beings that reflects their degree of 

evolution, knowledge, and freedom” (p. 68). The study of decision making has been a 

part of scholarly research for centuries, but despite this fact, there is no definitive, 

universally accepted description of DT. North (1968), a mid-20th century decision 

theorist, stated that “decision theory provides a rational framework for choosing between 

alternative courses of action when the consequences resulting from this choice are 

imperfectly known” (p. 220). According to Devinney and Siegel (2012), DT is a mature 

and broad field sharing deep practical connectivity within the social science disciplines of 

economics, management, psychology, sociology, anthropology, and political science. 

Steele and Stefansson (2016) provided a more contemporary definition: “Decision theory 
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is concerned with the reasoning underlying an agent’s choices” (para. 1). This definition 

resonates with current technological thrusts in artificial intelligence and machine 

learning, where software agents are placed within data streams to extract and process 

intelligence for decision making. 

According to Buchanan and O’Connell (2006), classical DT has its roots in 

philosophy and psychology. It is in these roots that one finds the enduring concept of the 

rational man. The concept of the rational man in decision making spans nearly 70 years 

of contemporary DT and has sparked the theories of normative, descriptive, and 

prescriptive DT. 

Based on his life’s work in the field of decision making and his challenge to DT’s 

classical concept of the rational man, I elected to use Simon’s work in DT and the 

decision-making process as the theoretical underpinning for my research. Simon’s 

interest in political science and economics began with his undergraduate studies at the 

University of Chicago in the early 1930s. In the process of earning his B.A. (1936) and 

PhD (1943), Simon developed an academic interest in reasoning and decision making. By 

1949, amid postwar thought on human rationality and the rise of computational models, 

Simon began to challenge the traditional economic theories of maximizing expected 

utility and the precepts behind normative DT. Social scientist, economist, and 

mathematician, Simon was awarded the ACM Turing Award in 1975 and then went on to 

win the Nobel Prize for Economics in 1978.  
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Gorzen-Mitka and Okreglicka (2014) highlighted that over the last 70 years, DT 

has primarily adhered to the unitary foundation of rationality. In other words, when 

confronted with a decision, the decision maker will make rationale choices with respect 

to the expected utility of the outcome and within moral boundaries. According to 

Moreno-Jimenez and Vargas (2018), scientific decision making well into the 1970s was 

executed using mechanistic processes that ignored the subjective aspects of human 

cognitive processes. Rationally driven decision making can be described by three 

theoretical models: normative, descriptive, and prescriptive. 

Normative DT 

Normative DT sits at the core of classic decision-making theory and is dependent 

on the rationality of human behavior. The normative model of DT states that an 

individual makes decisions that best satisfy a desired outcome or objective. According to 

Gigerenzer and Selten (2001), the concept of reasonableness or rationality emerged out of 

the 1950s and 1960s, where psychology, probability, and optimization combined to yield 

new models of statistical inference and cognitive processes. Within a normative decision 

process, managers exercise a theory of how humans will rationally address problems and 

decide on courses of action. In normative decision making, individuals strive to 

understand the impact of sociocultural biases, experience, training, time, and personal 

well-being on the decision process. Proponents of normative theory believe individuals 

can accurately assess the risk, probability, and utility of their decision-making options 

(Simon, 1955). 
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Challenging the rational man theories of the time, Simon (1955) believed the 

decision maker or economic man was not cognizant of all aspects of their decision-

making environment. He argued that the normative definition of rational choice was 

modified by the levels of informational access and computational capacities available to 

the decision maker. According to Buchanan and O’Connell (2006), Simon argued that 

decision makers were constrained or bounded by the costs of acquiring information for 

decision making. These bounds on rationality constitute Simon’s (1956) main argument, 

stating that decision makers essentially adapt their choices well enough to satisfice rather 

than to optimize or maximize. Simon’s principle of satisficing or bounded rationality 

disrupted the classical normative model of DT, which strove for optimal solutions. 

Descriptive DT 

Descriptive DT is more heuristically oriented than its normative kin. Dillon 

(1998) claimed that descriptive DT is focused on what the decision maker actually does 

in the decision process. In other words, descriptive DT describes what happened in a 

particular situation and why. 

Following Simon’s theory, in descriptive DT, the decision maker is bound by 

organic and informational constraints that force them to work to a decision that is 

satisfactory vice optimal. This reveals the promise of complexity in decision making, 

where organic and informational elements of a decision exist in some state of equilibrium 

within the decision maker. Simon (1956) believed a decision maker in constant 

interaction with their environment will satisfice to reduce the complexity of that 
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interaction. In Dillon’s (1998) words, “Humans have limits that they cannot exceed” and 

will seek some form of satisfactory equilibrium (p. 101). Koopmans (2014) illustrated 

these limits in research when a researcher seeks to apply linear causality to dynamic 

states of equilibrium in randomized controlled trial or controlled tests. In today’s 

complex environments, this approach is questionable and reflective of linear vice 

recursive thinking. 

In descriptive DT, individuals use highly tailored and rational approaches to 

balancing decisions based on available time, resources, and commitment in descriptive 

theory. Because the practice of descriptive decision making is more heuristic than its 

normative cousin, it is possible to identify variables within a decision-space that can 

provide acceptable statistical results when a rudimentary understanding of correlation or 

causality is required. However, descriptive theory and its supporting heuristic processes 

and statistical tools have limits. According to Koopmans (2014), the ability to quantify a 

decision-space defined by complexity, feedback loops, and emerging behavior is 

extremely difficult in a process that seeks to reduce the problem to a set of hierarchical 

variables. This is particularly true when addressing decision making within the field of 

epidemiology. 

Building on Simon’s theory of bounded rationality, Tversky and Kahneman 

(1981) introduced an additional aspect of uncertainty to DT related to transitivity. While 

descriptive DT explains how and why decisions are made, it does not address why certain 

decisions, when framed differently, result in shifts of choice preference. Tversky and 
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Kahneman called this phenomenon prospect theory, arguing that decision makers prefer 

prospects that offer the highest expected utility. Divekar et al. (2012) differentiated 

descriptive DT and prescriptive DT through the inclusion of prospect theory. 

Prescriptive Decision Theory 

French and Rios Insua (2000) described the prescriptive theory of decision 

making “as the application of normative theories, mindful of the descriptive realities, to 

guide real decision-making” (p. 5). In this theoretical framework, a prescriptive means is 

available to the decision maker to make a specific decision with the full knowledge of the 

normative and descriptive elements. The decision maker can pursue an optimized 

solution understanding the constraints of Simon’s bounded rationality for making a 

specific decision. The prescriptive approach is more malleable to the uncertainty of data 

and information used within the decision process because it accounts for its presence. 

Uncertainty 

A review of DT and the concept of bounded rationality would be incomplete 

without broaching the topic of uncertainty. According to Russell et al. (2017), uncertainty 

can limit course of action development. Uncertainty can also delay or even corrupt the 

decision-making process making front-end intelligence a critical factor. In the 

information gathering phase of the decision process, incomplete or missing data reduce 

an individual’s ability to identify the problem, frame the decision-space, and conduct the 

type of analysis (codification and idealization of data) necessary for decisions of utility. 
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 Data analysts typically deal with incomplete or missing data by imputing values. 

Hewett (2004) stated that this can occur in two ways: “Eliminating cases with missing 

data” (p. 182) or by estimating values for substitute data. Empty set, fuzzy set, and rough 

set theories are all mathematical approaches for estimating missing or partial data, and 

these have been used in numerous automated information systems (Rissino & Lambert-

Torres, 2009; Walczak & Massart, 1999). For EHMs, imputing values to mitigate 

uncertainty may not be viable. Motta and Pappalardo (2013) applied this same viability to 

the science of biology, positing that the development of numerical equivalents for 

biological parameters may result in large uncertainty. 

In complex professions such as finance, economics, and medicine, the application 

of value approximations for data can lead to incorrect inferences and poor decisions. This 

may require managers within these professions to either delay the decision process until 

all data are in, approximate missing or partial data, or make decisions based on the 

information at hand. The risk associated with decisions made without broader level 

contextual data can have severe consequences. This is particularly true when one 

addresses preventive measure decisions associated with EIDs such as WNv. The failure 

to detect WNv before an outbreak can result in a lack of action to educate the public on 

its presence or to take effective mosquito abatement actions. 

Lichtenstein et al. (2006) stated that a new paradigm is rising within the art of 

organizational leadership. The reality of today’s complex, interrelated, and adaptive 

business environments are causing decision makers to view complex decision-spaces 
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from a more holistic perspective, willing to incorporate heterogeneous factors into 

traditional decision processes. This is particularly true in the biological sciences, where 

systems biology has embraced the concepts of emergence and multilevel systems-

thinking. This approach paves the way for the wider use of contextual variables in 

decision-making tools and models. 

Simon’s Decision-Making Process 

Central to Simon’s views on bounded rationality and “satisficing” are his thoughts 

on the decision-making process. As the Ford Distinguished Visiting Professor at New 

York University, Simon gave three lectures that were then synthesized and published in 

the book, The New Science of Management. Within this book, Simon (1960) introduced 

the idea of programmed and nonprogrammed decisions. He described them as bookends 

of a decision continuum. He believed programmed decisions are transactional by nature; 

they recur often enough that decision makers can quickly recognize and implement 

experientially informed decisions. Nonprogrammed decisions lie at the other end of the 

continuum. Simon described these types of decisions as “novel, unstructured, and 

consequential” (p. 6). 

 Simon (1960) described a manager’s decision-making process across this 

continuum in three phases: intelligence, design, and choice. This concise decision-

making framework provides the foundation for my research, providing a grounded 

theoretical starting point for comparison to more contemporary decision-making tools 

such as Snowden and Boone’s (2007) CYNEFIN construct. 
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 To examine the impact of complexity, uncertainty, and context on decision 

making, I framed DT through lens of Simon’s (1960) decision-making process. I began 

with an overview of Simon’s three-phased process of intelligence, design, and choice. I 

then examined each phase separately using Snowden and Boone’s (2007) CYNEFIN 

construct to address the impact of complexity, uncertainty, and increasing importance of 

context in Simon’s decision-making construct. 

 According to Simon (1960), the decision-making process occurs in three phases: 

intelligence, design, and choice (Figure 1). Presented in a simple form, the complex 

nature of decision-making lies completely within his model. Simon described the phases 

as follows: 

The first phase of the decision-making process – searching the environment for 

conditions calling for decision – I shall call intelligence (borrowing the military 

meaning of intelligence). The second phase – inventing, developing, and 

analyzing possible courses of action – I shall call design activity. The third phase 

– selecting a particular course of action from those available – I shall call choice 

activity. (p. 2) 

Simon (1960) declared that decision makers spend large amounts of time in the 

gathering of intelligence and the development of courses of action. If the intelligence and 

design phases are done correctly, choice becomes less time consuming as the decision-

space context will have been adequately defined and COA alternatives mentally 

prioritized. In Simon’s construct, intelligence and design work in a recursive fashion to 
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establish the context behind a decision and to set the stage for an informed choice. While 

this construct is theoretically complete and incorporates feedback, its simplicity masks 

the complex issues facing decision makers in the information age. 

Figure 1 

Simon’s Decision-Making Cycle 

 

Note. The decision-making cycle diagramed above reflects Simon’s (1960) thoughts 

described in “The New Science of Management Decision,” Harper & Brothers Publishers, 

N.Y. (1960). I modified Simon’s decision-making construct with a feedback loop. 

 

Azvine et al. (2006), Babu and Sastry (2014), Gorzen-Mitka and Okreglicka 

(2014), Hewett (2004), and Osman et al. (2013) all posited that the ability to rapidly 

stratify, discriminate, and synthesize decision quality information from the midst of 

complex dynamical systems is one of the great challenges associated with information 

age decision making. Artikis et al. (2012) highlighted several trends driving this 

Intelligence Design Choice 

Feedback Loop 
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challenge: the virtual instrumentation of the world through the internet of things; 

expanding sources of cheap storage; the pervasiveness of sensor technology resident in 

personal devices such as smart phones; and the spread of broadband connectivity. 

According to Boisot (1999), Geerdink (2013), and Osman et al. (2013), while 

these drivers create a data rich environment, the ongoing convergence of personal 

computing, mobile communications, and web-enabled technologies has increased the 

complexity and uncertainty of the decision-making process due to the sheer volume and 

heterogeneity of data. In many cases, the uncertainty lies in how data were produced, 

recorded, or disseminated to decision makers. Trust in the completeness, accuracy, and 

relevance of outsourced data and the latency associated with that data are a concern to 

enterprise-level decision makers who, according to Azvine et al. (2006), “are no longer 

satisfied with scheduled analytics reports, pre-configured key performance indicators, or 

fixed dashboards” (p. 1). 

To provide similar contextual fabric to complex decision spaces such as EID, 

management tools predicting trends and services need to adapt to the complexity of 

today’s information environment and to the system-level data it produces (Babu & 

Sastry, 2014; Koehler, 2014, Raia, 2008). Adopting a more holistic strategy to data 

collection and analysis is required to maintain contextual robustness in a complex 

decision-space that is shaped by interacting contextual factors (Gorzen-Mitka & 

Okreglicka, 2014). 
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Intelligence 

Dillon (1998) explained in Phase 1 of Simon’s decision-making construct that the 

term intelligence is used to describe the function of collecting data to design and make 

intelligent choices about the decision at hand. Seventy years ago, business intelligence 

and data collection were made without the ubiquitous data streams of the 21st century; 

data sources were created and aligned to record observable factors reflecting mechanistic 

and causal relationships. Meadows (2008) believed that while Western society benefited 

from these past mechanistic approaches, simple causal observations introduced a form of 

reductionism into intelligence gathering and decision-space formulation. Riabacke (2006) 

described how centralized management can develop organizational norms that constrict 

decision-making context. Koopmans (2014) and Straub (2013) warned these constricted, 

linear approaches in today’s complex business environments will not be sufficient. 

Intelligence derived from constrained data streams are more likely suited to the type of 

transactional decision making experienced in simplified problem sets with repetitive 

histories and do not incorporate Meadow’s (2008) principle of “equifinality” in its data 

strategy (p. 41). 

According to Sargut and McGrath (2011), access to, collection, and analysis of 

data in today’s business environments can be constrained by locally derived and 

business-oriented data mining strategies that have evolved to obsolescence. For example, 

a decision maker may only have the authority to access and use data applicable to his/her 

product, service, or division. This could unnecessarily constrain the broader intelligence 
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required to appropriately abstract and design the decision-space and to make quality 

choices in the decision process. These constraints appear to be present in the intelligence 

being captured for EHMs in general. While EHMs recognize the dynamics associated 

with the inherent biological and environmental complexities of WNv, the traditional EPS 

and EVS surveillance process currently in use provides non-real time, incomplete 

intelligence. 

The EID intelligence phase (i.e., surveillance) tends to ignore the interactive, hard 

and soft effects of feedback, equilibrium, and emergence within complex systems. Motta 

and Pappalardo (2013) also addressed this reductive approach to intelligence collection in 

the choosing of mathematical models to explain biological systems. They posit that the 

mathematical representations of biological systems need to consider multiple sources of 

data, essentially using more integrative strategies. Consequently, data collection 

strategies and intelligence gathering become critical elements in creating context in EID 

decision making.  

For Simon’s (1960) intelligence to be actionable and constructive in today’s 

environments, the decision maker needs to adapt data collection and analysis strategies 

that align with their current decision-space. This is an iterative (lower feedback loop in 

Figure 1) but necessary process to ensure the ongoing mental model constructed within a 

decision-space is rich enough to support quality decisions.  

For these reasons, Simon’s (1960) Design and Choice phases become highly 

dependent on the following:  
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1. The fidelity, relevance, and wholeness of collected intelligence data. 

2. The completeness of a decision-space; constructed to support either ordered, 

unordered, or disordered decision-spaces. 

3. The managerial belief functions (experience, trust, commitment) associated 

with both the intelligence data and model used. 

Design and Context 

The design phase determines how the decision maker abstracts their decision-

space from experiential and collected intelligence data. It is here that decision makers 

encounter the challenges of modern-day complexity in nature and in business. Schafer 

(1976) described a decision-space as a frame of discernment or dynamic mental model 

that organizes the variables within a decision. Groen and Mosleh (2005) defined a 

decision-space as the idealized sum of a decision makers understanding of reality 

combined with their socio-cultural biases and life experiences as applied to a current 

decision. 

According to Bunge (1973), the art of abstracting reality begins with idealization. 

Groen and Mosleh (2005) and Motta and Pappalardo (2013) believed decision makers 

accomplish this idealization through a fluid cognitive synthesis of reality, experience, and 

understanding. These elements of idealization help the decision maker to refine their 

frame of discernment in a complex but contextually rich decision-space. 

In more complex situations, a decision-space becomes a dynamic mental mosaic 

of internal and external factor relationships and pathways. The multi-dimensional process 
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of decision making becomes more complex by a decision-space affected by modifying 

factors such as time (e.g., schedule and speed of decision), resources (e.g., funding and 

capital assets), and commitment (e.g., stakeholder interest and utility; Dietrich, 2010). If 

present, these factors may shape the decision-space in a way that modifies the final 

decision. 

In decision-space construction, the decision maker ultimately builds context about 

the problem set. As stated by Riabacke (2006), “No decision takes place in vacuo: there 

is always a context” (p. 1). Decision-making context builds and gains fidelity as 

intelligence gleaned from data are made available and are examined from different 

perspectives. This sets up a recursive process (Figure 1 feedback loop between 

intelligence and design) of collection and idealization for the decision maker that is 

driven by the complexity of the problem set and the completeness of data.  

Choice 

In Simon’s (1960) construct, intelligence and design work in a recursive fashion 

to establish the context behind a decision and to set the stage for an informed choice. 

Choice lies at the end of Simon’s decision-making construct and represents the pathway 

taken by a decision maker based on the clarity of the decision-space once intelligence has 

been applied to design. The decision maker acts with the understanding they are 

executing a decision within a quadrant of the CYNEFIN construct.  

 There is a necessary feedback loop from choice to intelligence that needs to 

follow the decision. The real-time observation of a decision in action can inform the 
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decision maker of any adjustments required and will update the previous decision-space 

with new information (Snowden & Boone, 2007). 

The CYNEFIN Construct in the Design Phase 

Kurtz and Snowden’s (2003) decision-making framework called CYNEFIN 

(pronounced ku-ne-vin) provided an interesting construct to explain the different levels of 

cause-and-effect relationships the decision maker faces when designing their decision-

space. The CYNEFIN framework was constructed around three types of relational 

contexts; ordered, unordered, and disordered. 

Within the ordered category, Snowden and Boone (2007) identified simple and 

complicated contexts. The unordered category includes complex and chaotic contexts. 

Disorder is situated in the center of the diagram signifying the ease at which a decision-

space may slip from one category to another. In Figure 2, I expand on the original 

CYNEFIN framework to highlight the decision maker’s initial system-level (ontological) 

understanding, level of intelligence data required to support decision-space construction 

(contextual understanding), the level of decision analytics required to support decisions, 

and finally the level of decision certainty; that is the level of certainty that the decision 

maker has in their decision process. 
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Figure 2 

CYNEFIN Construct 

 

Note. The CYNEFIN construct is organized around three types of cause-and-effect 

relationships, ordered, unordered, and disordered with simple and complicated being 

categorized as ordered. Adapted from CYNEFIN construct at 

https://en.wikipedia.org/wiki/Cynefin_framework#/media/File:Cynefin_as_of_1st_June_

2014.png. Content freely available from Creative Commons (CC BY-SA 3.0). 

 

The CYNEFIN construct is complementary to Simon’s (1960) design phase. Here 

the decision maker identifies where their decision-space context lies and thus what level 

of ontological understanding, intelligence, decision analytics, and decision certainty they 

are addressing. Each of the quadrants are now addressed separately. 

Ordered

OrderedUnordered

Unordered

https://en.wikipedia.org/wiki/Cynefin_framework#/media/File:Cynefin_as_of_1st_June_2014.png
https://en.wikipedia.org/wiki/Cynefin_framework#/media/File:Cynefin_as_of_1st_June_2014.png
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Ordered-Simple Context 

According to Meadows (2008), ontological understanding of systems range from 

simple to complex. Simple systems consist of simple feedback mechanisms that allow 

repetitive, transactional activities to occur, responding to internal and external stimuli in 

bounded ways. For instance, the fuel gauge within an automobile relies on a feedback 

system that consists of a fuel sender unit (or float) and a lever arm attached to a resistor 

that is powered by the car’s battery (Nice, 2019). In a fully fueled vehicle, the float will 

sit at the level of the fuel and the lever arm will cause the resistor to send a current to the 

fuel gauge that will result in a full tank reading. As fuel is used, the float will fall with the 

fuel level and the lever arm will cause the resistor to send more current to the fuel gauge 

indicating levels less than full. In this example, the system accepts external stimulus from 

the filling or draining of the tank. However, the system is bounded by several factors 

such as the size of the tank and the instrumentation of the fuel gauge. While many simple 

systems are more complicated than the example, it is consistent with the characteristics of 

systems of this type. 

The decision maker can conceptualize this type of system as being in the lower 

right quadrant (Figure 2) of the CYNEFIN framework. In this quadrant, the decision 

maker is dealing with simple systems and thus the context surrounding that system is well 

understood. Intelligence data are collected, categorized, and a response/decision can be 

quickly made. Directly causal effects are observable and repetitive, allowing the decision 

maker to make decisions aligned with best practices (Snowden & Boone, 2007). 
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Decisions with simple systems can be transactional by nature and fit within Simon’s 

(1960) programmed definition. 

Ordered-Complicated Context 

In the complicated systems quadrant, Snowden and Boone (2007) moved away 

from transactional decisions to those that require expert knowledge and good practice. 

Kempermann (2017) stated that “contexts, in which causalities can at least in theory (or 

retrospect) be known but are non-linear and difficult to untangle are called complicated” 

(p. 3). Expert knowledge and experiential rule-based approaches are used to idealize the 

decision-space and construct courses of action. In this category of system understanding, 

decision making relies on subject matter experts who are supported by knowledge-based 

systems with historical precedents. 

Using the CYNEFIN construct, Smit and Derksen (2017) looked at complex and 

complicated problems in primary mental healthcare. Of 113 primary care vignettes, 35% 

were classified as complicated. Although these complicated vignettes contained one or 

more relationships, the outcomes were predictable. The professions of medicine and 

engineering are prime examples of the types of decision-spaces seen in the complicated 

quadrant. The decision-space in these systems can be very complicated but there are 

historical precedents, expert-driven decision support tools, and established standards of 

practice available to the decision maker. 

Based on the WNv literature review, it appeared that EHMs have been reliant on 

traditional surveillance tools and historical best practices. It is likely that many EHMs are 
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gathering intelligence data and constructing decision-spaces appropriate to the 

complicated quadrant vice the complex quadrant. If this is the case, their frames of 

discernment may be skewed. 

Unordered-Complex Context 

According to Udelll (2017), the study of complexity has been in the literature for 

over 25 years. Walton (2016) wrote that in those 25 years, complexity theory (CT) 

precepts have expanded from the mathematical and physical sciences into organizational 

and social sciences such as management, health, public policy, and evaluation. The 

sciences of biology and ecology have embraced the complexity of nature for decades and 

are rapidly adopting system-thinking approaches to their fields. For example, 

Wolkenhauer and Green (2013) described “systems biology as the science that studies 

how biological function emerges from interactions between the components of living 

systems, and how these emergent properties constrain the behavior of these components” 

(p. 5939). 

While Morcol (2001) and Walton (2016) believed that a specific definition for 

complexity remains elusive, Bar-Yam (1997) developed a common set of central 

properties or commonalities that steers adherents away from the deterministic and 

reductionist approaches of Newtonian thinking. Bar-Yam championed a post-positivist 

system view that recognizes the concept of emergence and embraces context in the form 

of (a) elements and their number; (b) interactions and their strengths; (c) operating 
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structure and their time slots; (d) diversity and variability; (e) the environment and its 

external demands; and (f) activities and objectives.  

Meadows (2008) aligned these central properties in the terms of a system; “a 

system is an interconnected set of elements that is coherently organized in a way that 

achieves something” (p. 11). While their findings are separated by 11 years, Bar-Yam 

(1997) and Meadows (2008) defined complexity and systems as inextricably linked 

through the properties of interconnectivity, diversity, and objective. Morgan (2007) urged 

decision makers to apply these properties in a systems-thinking approach. An approach 

that is more inclusive than the mechanistic decision processes of the past. 

A complex systems decision-space is more dynamic than simple or complicated 

decision-spaces. It is characterized by symbiotic relationships formed by component 

interdependencies and on internal and external interactions. According to Gatherer 

(2010), these dynamic relationships allow system components and their associated 

structures to adapt, evolve, and to behave in new ways. 

As an example, in the top-hand pane of Figure 3, two independent systems 

operate for a function or purpose (Meadows, 2008, p. 11). While each contains internal 

elements that interact (endogenous), the two systems may also act upon each other 

dynamically. In the bottom pane, the external interactions (exogenous) between the two 

systems results in Outcome Y. Therefore, Outcome Y is dependent on some level of 

exogenous interaction between System 1 and 2. 
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Meadows (p. 17) posited that the changing relationship between systems will also 

change the system behavior or outcome. This means that Outcome Y can change based 

on some dynamic change in System 1 or 2. If Outcome Y involved financial, health, 

defense, or safety related outcomes, a decision maker may wish to predict the outcome of 

this system-level interaction. 

To fully understand the dynamic relationship between System 1, System 2, and 

Outcome Y, the decision maker requires not only an understanding of the endogenous 

elements of the interacting systems but also the exogenous factors that shape these 

interactions as depicted in the bottom pane in Figure 3. These exogenous interactions are 

depicted as input arrows to the system-level interaction. 

Senge (2006) defined the composite of these inputs as the “invisible fabrics of 

interrelated actions” (p. 7). Wolkenhauer (2014a) addressed these interactions stating, 

“biological systems are complex, not only as a consequence of non-linear dynamics but 

also as a consequence of multi-levelness; the functioning of tissues is determined by 

interactions taking place across multiple levels of structural and functional organization” 

(p. 247). As a part of the functional organization of the system depicted in Figure 3, it 

makes sense that these exogenous factors are included in any understanding of Outcome 

Y because they are an extended part of system interactions. They add context to the 

understanding of an outcome. Examination of EPS and EVS explanatory factors in WNv 

predictive modeling found that many localities do not have the resources to produce the 

primary surveillance data necessary to robustly populate their models (Hadler et al., 
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2015). In the absence of these data, understanding the power of contextually derived 

exogenous factors in predicting WNv outbreaks is required. 

Figure 3 

Endogenous and Exogenous Factors in System Interactions and Outcomes 

 

 

Note. Endogenous and exogenous factors in system interactions and outcomes. The top 

pane of the figure depicts two interacting systems that produce Outcome Y. The bottom 

pane shows that there can be EEVs that act as catalyzing agents to the interactions 

between Systems 1 and 2. 
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According to Wolkenhauer (2014a), when addressing complex decisions within 

areas such as systems biology and EID, integrating system-level exogenous data to define 

and enrich a less ordered decision-space, may invigorate traditional statistical tools and 

enhance cognitive thresholds for decision making. Based on the non-linear, spatio-

temporal dynamics associated with WNv, EHMs will find themselves in the unordered-

complex quadrant, attempting to understand the interactions and relationships between 

key biological parameters such as pathogenicity, environmental conditions, a myriad of 

virus hosts, and transmission pathways (Russell et al., 2017; Wolkenhauer & Green, 

2013). Additional intelligence is required to fully understand system interactions and to 

build context for the WNv decision-space. Effective decisions in this quadrant require a 

more holistic characterization of the decision-space to provide EHM decision makers 

with the proper frame of discernment. A holistic characterization of WNv may benefit 

from a time-lagged examination of contextual variables and the temporal aspect of their 

influence on WNv outbreaks. 

In the design phase of Simon’s (1960) construct, the study of EID and systems 

biology in general, may be enhanced by viewing the decision-space within a complex 

quadrant that is idealized at multiple levels (Russell et al., 2017; Wolkenhauer & Green, 

2013). To develop this contextually rich decision-space, EHM decision makers may 

expand their intelligence strategy to include both endogenous and exogenous data. 

Decisions taken in this quadrant are more likely to reflect new or emergent practices 

(Snowdon & Boone, 2007). 
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Unordered-Chaotic Context 

In the Chaotic decision quadrant, systems that appear to have no patterns of 

discernment. Simple causal, rule-based, or pattern recognition approaches to problem 

solving and decision making cannot provide the decision quality information required to 

make decisions of high utility. Gatherer (2010) defined this level as irreducible 

complexity. This type of system and their effects tend to drive the decision maker to 

decisions that spark practices without precedent. 

Kempermann (2017) described biological systems in advanced stages of disease 

as chaotic. He goes on to stress that responses to chaotic decision-spaces require some 

form of immediate action. There are no precedents or standard operating procedures 

available to the decision maker and unlike complex decisions, probing for causal effect is 

inappropriate. Here the decision maker must perturbate the system into a new, perhaps 

ordered equilibrium if possible. 

Disorder 

Finally, the CYNEFIN framework recognizes the fact that disorder may exist in 

systems, and this is shown in the middle of the diagram. In this area, an immediate 

categorization of the decision-space may not be possible. Kurtz and Snowden (2003) and 

Snowden and Boone (2007) suggested that decision makers should attempt to break down 

the elements into actionable parts. Driving those elements that they can, into the 

unordered or ordered categories of context. 
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In summary, CYNEFIN is a conceptual framework that recognizes and places 

decision and systems theory at its core. It categorizes the types of systems that decision 

makers must deal with and aligns the type of decision approach (best practice, good 

practice, emergent practice, and novel practice) that is suited to the decision-space 

(Snowdon & Boone, 2007). While the CYNEFIN construct allows the decision maker to 

recognize and posture their supporting intelligence collection activities, they will still 

face challenges related to resources, commitment, and uncertainty. These may constrain, 

reduce, or provide additional freedom of design and choice. 

A contextually rich, systems-level approach to decision making using DT and 

CYNEFIN could provide EHMs with a more inclusive framework to gather EID 

intelligence, construct complex decision-spaces, and choose EEVs for predictive 

modeling. The following literature review establishes shortfalls in WNv predictive 

modeling and provides insight into the types of contextually derived EEVs necessary for 

more dynamic EID modeling. 

Literature Review  

In the previous section, Simon’s (1960) decision-making process was integrated 

with the CYNEFIN construct to provide a more contemporary, contextually rich 

approach to decision making for EHMs. Snowden and Boone’s (2007) CYNEFIN 

construct was interwoven into the Simon’s (1960) framework to show how intelligence 

and design worked iteratively to identify and develop ordered, unordered, and disorders 

contexts.  
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As the EHM considers their WNv decision-space, they need to construct a mental 

model that is more inclusive and holistic than traditional mechanistic and reductionist 

approaches. An expansion of the EHM decision-making process to include both 

endogenous and exogenous data may provide a broader frame of discernment in EID 

decision-spaces. Theoretically, this type of approach drives the decision maker to a 

system-level orientation; an approach better suited to the systems biology of EIDs 

(Gatherer, 2010). This systems-level orientation guided my literature review of the 

predictive modeling of WNv. 

Presence and Prediction of West Nile Virus 

First detected in Africa in 1937, the initial cases of WNv in the United States 

occurred in New York City in the summer of 1999. Today, WNv has been diagnosed in 

all 48 states within the contiguous United States, with two nationwide epidemics 

occurring in 2003 and 2012 (CDC, 2013; Kwan et al., 2012). At the end of 2016, the U.S. 

Department of Health & Human Services, CDC reported 46,086 cases of WNv, with 

2,017 human deaths over the 1999 to 2016 timeframe. Although it has become the 

“principal cause of viral encephalitis in the United States” (Austin & Dowd, 2014, p. 

1015), no vaccine or specific therapy for WNv currently exists (CDC, 2013; Gubler, 

2007). 

Due to a universal lack of a vaccine and approved therapy, public officials around 

the world have been actively seeking tools that will predict human outbreaks of WNv and 

aid decision making in the timely application of preventive measures when transmission 
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cycles are high. Predictive modeling of WNv is an important decision support tool in this 

effort, but it remains problematic due to the dynamic temporal and spatial 

interdependencies of the pathogenic, ecological, and anthropological components of the 

virus (Pirofski & Casadevall, 2012). These interdependencies present a complex 

decision-space for environmental health managers (EHMs). 

The presence of WNv in a locality is dependent on numerous interactive 

biological, environmental, and ecological factors. To quantify WNv risks, researchers and 

EHMs have developed EPS and EVS tools to monitor arbovirus infections in humans, to 

understand WNv mosquito transmission activity (vector control), and to execute 

preventive measures (CDC, 2013). 

EPS involves testing humans for the presence of WNv in blood or cerebrospinal 

fluid, detecting anti-WNv immunoglobulin antibodies or through nucleic acid 

amplification testing. These types of surveillance data are conclusive as to the presence of 

WNv and are critical to understanding the extent of human incidents of WNv in a 

locality. However, utilizing EPS data by itself is usually insufficient for predicting 

outbreaks as the data can lag several weeks behind the actual infection timeframe (CDC, 

2013, p. 11). This deficiency in EPS data has led to the development of EVS activities to 

gather additional explanatory factors and to strengthen the indices supporting predictive 

capabilities. 

EVS monitors WNv transmission in mosquitoes, birds, equines, chickens, and 

other mammals. Using a number of surveillance activities, such as mosquito pools, 
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sentinel animals, and birds, EHMs gather additional explanatory data to compare against 

historical EVS and EPS data to better understand and quantify the antecedent conditions 

necessary to address WNv. Using a combination of EVS and EPS data, these types of 

mixed predictive models provide detection timeframes of 2 to 4 weeks prior to the onset 

of human symptoms. In a locality that has a robust EVS and EPS program, integrated risk 

management (IRM) decisions can occur within a sufficient time-period to take preventive 

actions. However, according to Hadler et al. (2015), “Arboviral surveillance is inadequate 

in many states to rapidly detect and control outbreaks and to give the public critical 

information it needs for prevention” (p. 1165). 

Following the outbreak of WNv in the United States in 1999, the federal 

government implemented programs and funding to support state or local arbovirus 

surveillance programs. NACCHO (2014) reported that by 2004, approximately $45M in 

federal funding supported these surveillance programs. By 2010, reports began to surface 

of funding declines in these programs in the states of California, South Carolina, Florida, 

Nevada, Wyoming, and Oregon (DeLong, 2010). In 2012, federal funding for arbovirus 

surveillance programs had declined by 61% ($17.5M; 2014). This decrease sparked a 

shift in the capacity for IRM and required local health officials to prioritize mosquito 

surveillance at the expense of other EVS (equine, avian, sentinel animals) methods 

(Hadler et al., 2015). By 2012, Hadler et al. (2015) reported that “57% of states reported 

eliminating avian death surveillance, 58% decreased mosquito testing, and 46% 

decreased the number of human specimens tested for WNv” (p. 1161).  
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Although local EHMs reprioritized limited funding, the downward trend in 

operational capability continues. In 2016, NACCHO found that 84% of national 

mosquito vector control programs needed improvement due to a failure of one or more 

vector control program core competencies (routine mosquito surveillance, treatment 

decisions using surveillance data, larviciding, adulticing, or both, routine vector control 

activities, pesticide resistance training (NACCHO, 2017). This decrease in capability 

directly affects current WNv predictive tools such as California Mosquito-Virus Risk 

Assessment and Dynamic Continuous-Area Space-Time systems (Kwan et al., 2012). 

These predictive modeling tools rely on robust surveillance programs with regular 

sampling/reporting to provide EHMs with indices that can accurately support WNv 

outbreak prediction in an accurate and timely manner.  

 In the absence of these robust, data-rich WNv surveillance programs, there is 

evidence that other explanatory environmental factors can provide interactive context to 

the presence of WNv in a locality. Explanatory factors such as meteorological data, 

topology, land use, and population density have been used in past studies to enrich 

predictive models when univariate analysis has shown some correlation to incidents of 

WNv (Ahmadnejad et al., 2016; Soverow et al., 2009). Most of these factors, referred to 

as EEVs in this research, are collected in web-based, publicly accessible data bases 

allowing real-time access to historical and trending sets of data. When viewed from a 

management science perspective, the use of these exogenous factors reflects a more 

holistic, systems-level approach to decision making that may provide statistically 
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significant predictability using contextual data in the absence of primary EPS and EVS 

surveillance data.  

In combination with EPS and EVS factors, several studies have proven these 

types of exogenous factors to be important to understanding WNv-vector-host 

interaction, virus maturity, and vector abundance (see, for example, Cotar et al. (2016); 

Ozdenerol et al. (2013); Rochlin et al. (2011). However, there are no studies that have 

addressed the power of these types of explanatory factors in predicting WNv when robust 

data from EPS and EVS are not available. 

Key Variables and Concepts 

In the summer of 1999, U.S. federal and local EHMs faced a new and deadly EID. 

Previously undetected in North America, WNv was identified in human serology in New 

York City and the virus would leave seven patients dead. Over the next two years, 78 

additional cases of WNv were reported within the confines of greater New York City 

(Campbell et al., 2002). With two nationwide epidemics in 2003 and 2012, the virus had 

spread to 48 states within the contiguous United States by 2016 with 46,086 reportable 

cases and 2,017 deaths (CDC, 2018; Kwan et al., 2012). According to Austin and Dowd 

(2014), CDC (2013), and Gubler (2007), although it has become the principal cause of 

viral encephalitis in the United States, no vaccine or specific therapy for WNv currently 

exists.  

Due to the lack of a vaccine and approved therapy, EHMs around the world 

actively seek decision support tools that will predict human outbreaks of WNv and aid 
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decision making to apply preventive measures when virus transmission cycles are high. 

According to Pirofski and Casadevall (2012) and Russell et al. (2017), predictive 

modeling of WNv is an important decision support tool in this effort but remains 

problematic due to the dynamic temporal and spatial interdependencies of its pathogenic, 

ecological, and anthropological components. 

In a comprehensive literature review of 325 publications, Reiner et al. (2013) 

found inherent problems with current mathematical models of mosquito-borne pathogen 

transmission due to the complexities of accurately parameterizing biological and 

ecological factors. While the numerous interactions extant within the genesis, maturation, 

and vectorization of WNv reflect the inherent biological complexity of the virus, that 

same complexity relies on certain preconditions or antecedent explanatory variables (e.g., 

temperature, rainfall, wind, etc.). This fact has led to modeling approaches that use 

combinations of EPS, EVS, and EEV data. 

Ozdenerol et al. (2013) reported that researchers focusing on human WNv 

infection risk in Connecticut in the period 2000 to 2005 identified static and dynamic 

EEVs associated with land use (static), “daily temperature, yearly precipitation, growing 

degree days (GDD), and animal sentinel data” (p. 5411). Using multiple regression, the 

predictive power of these risk factors was analyzed, and they found significant predictors 

in land use, population density, GDD, no positive mosquito pools in the last 30 days, no 

mosquito testing in the last 30 days, dead bird counts in last 30 days, positive WNv in 

birds in the last 30 days, and average temperature over the last 30 days. Liu et al. (2009) 
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found that while environmental and climate factors were significant predictors of WNv, 

these predictors appeared to be geographically dependent.  

Cotar et al. (2016) examined mosquitoes in the Danube Delta between 2011-2013. 

They found significant positive and significant negative linkages between time-lagged 

temperature and precipitation data with regards to WNv infection rates. These findings 

point to the necessity of further time-lagged studies of WNv. 

Rochlin et al. (2011) explored “the association between vector-borne WNv and 

habitat, landscape, virus activity, and socioeconomic variables derived from publicly 

accessible data” (para. 1). Using data from 2000-2004 and focusing on Suffolk County, 

New York, the researchers examined EEVs such as college education, distance to tidal 

wetland, number of senior households, road polygons, and vacant housing. The 

researchers highlighted the interdependence of socioeconomic and natural environments 

in the prediction of WNv outbreaks, finding the highest WNv human risk associated with 

middle class suburbia vice affluent suburbia and in the inner city. It was also noted that 

birds tested positive for WNv were not significant predictors, whereas habitat 

fragmentation by roads was an important factor. The researchers also found that “to be 

useful for disease surveillance and control program, a geographic human risk model 

should: (a) use predictors that are easily available and interpretable; (b) be accurate 

against independent data; and (c) generate outputs that can assist control decisions” 

(2011, p. 7). 
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Young et al. (2013) used landscape epidemiology to develop a national scale 

model of WNv using remotely sensed data. Manore et al. (2014) identified the 

importance of the combination of antecedent factors such as temperature, topology, 

precipitation, population density, economic status, bird migration, and positive cases of 

WNv in mosquito pools to the promotion of WNv outbreaks. According to Ozdenerol et 

al. (2013) and Petersen et al. (2013), evidence also shows that statistical models tailored 

to a specific locale are better suited to predict the unique interactions of EPS and EVS 

interdependencies. For example, the virus reflects a different biological fingerprint in 

Europe than it does in the United States.  

Petersen et al. (2013) highlighted that within the United States, research shows 

that these biological fingerprints can vary within the diverse ecological conditions present 

in the individual states. Mancayo (2014) reported that University of Tennessee 

researchers looked at the use of biotic, non-pathogenic markers to identify WNv 

pathogenic events. However, the CDC (2013) and Elith et al. (2011) reported that while 

researchers have developed numerous statistical models using variations of these EEVs, 

the ability to generalize these models to specific cities or counties remains problematic. 

Ozdenerol et al. (2013) conducted a comprehensive review of literature on WNv 

spatio-temporal dynamics and patterns. Covering 14 years of studies, this work 

categorized 47 WNv research papers into nine categories: 

• Spatial analysis of human case incidence 

• Spatial-temporal analysis of bird species 
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• Spatial analysis of horses 

• Spatial modeling of mosquito pools 

• Real-time geographic information systems (GIS) studies for WNv surveillance 

• Habitat-based studies 

• Remote sensing (RS) studies for early warning systems 

• Spatial analysis of genetic variation 

• Spatial uncertainty analysis 

Ozdenerol et al. (2013) identified a dynamic and complex WNv decision-space 

related to these nine categories. The interconnected relationships between environmental, 

anthropological, and biological entities describe a system-level view of WNv that 

consists of endogenous and EEVs that are difficult, if not impossible, to capture in a 

single model. A wide range of spatial tools such as GIS, RS, and SaTScan were also 

identified, as statistical analysis techniques including Multiple Criteria Decision Analysis 

(MCDA), principal component analysis (PCA), discriminant analysis (DA), Local 

Moran’s I, and applied regression models.  

While the Ozdenerol et al. (2013) study specifically focused on spatial-temporal 

studies, several findings were relevant to my research. First, the dynamic synthesis of 

environmental, biological, and ecological antecedents is key to the spread of the virus. 

Public health officials and decision makers are “increasingly challenged to assess the 

prevalence and to determine common risk factors, as well as to track trends over time” (p. 

5420). Aligned with the geographic area of this study, Ozdenerol et al. (2013) found that 
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climate and temperature patterns contribute to Culex Quinquefasciatus (the common 

southern house mosquito) presence and the spread of the virus. Finally, the researchers 

stated that additional research over longer timescales is required to determine the efficacy 

of the EEVs used in the studies reviewed. 

An ongoing challenge to the development and sustainment of mixed models lies 

in the access to, completeness, and timing of EID data. Current EVS techniques include 

the clinical testing of dead birds, mosquito pools, sentinel chickens, equine, and humans. 

According to Hobson-Peters (2012), while these procedures provide managers with a 

high degree of accuracy related to the presence of WNv, there is latency associated with 

collection and testing that opposes dynamic, predictive modeling for the use of early 

warning, decision support, and disease prevention. For example, the CDC (2013) stated 

that the “determination that a sentinel chicken has seroconverted occurs typically 3-4 

weeks after the transmission event has occurred and reporting of a positive chicken may 

not precede the first local case of human disease caused by WNv” (p. 22). WNv models 

using this type of endogenous data to predict outbreaks would affect timely predictions. 

Presenting itself asymptomatically, WNv can be masked by a low-grade fever or 

body aches attributable to different medical causes. Because of this, the CDC and local 

health organizations have developed reporting metrics that provide only positive 

incidents of WNv that have been diagnosed through serological sampling. Rochlin et al. 

(2011) found that incidents of WNv are likely greater and so the statistics associated with 

this EID phenomenon are conservative. 



61 

 

This conservative approach can be problematic for researchers. Using human 

outbreaks alone is problematic in that data over the study period yielded only 72 WNv 

incidents between 1999 to 2016 in SC. With the understanding that each incident 

represents a potential risk for human outbreaks of WNv, I elect to use all positive 

incidences of WNv (human, equine, mosquito pools, and sentinel animals) in a county to 

provide a broader collection of WNv presence. This number highlights clinical aspects of 

how the virus presents itself in humans and why sample sizes for these data sets are 

historically low. 

According to Reiner et al. (2013), few studies have focused on the benefits of a 

regionally tailored decision support model that examines the predictability of WNv 

presence using a combination of web-based, exogenous antecedents. Within the United 

States, most of these studies were conducted in high WNv incidence areas within the 

Great Plains states, Texas, and California and were oriented to disease prediction using 

historical EEVs. Few studies have solely addressed the rich contextual environment 

associated with WNv resource decisions. The southeastern United States provided the 

appropriate level of ecological, environmental, and anthropological complexity for the 

analysis of the contextual decision-space associated with EID resource management. The 

ecosystems of the southern states and their longitudinal data provided a scientifically 

useful test environment for this study. 

Summary and Conclusions 

In this chapter, I first examined DT using Simon’s (1960) decision-making 
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process as a grounded theoretical framework. Snowden and Boone’s (2007) CYNEFIN 

construct was then interwoven into the Simon’s (1960) framework to show how 

intelligence and design worked iteratively to identify and develop ordered, unordered, 

and disorders contexts. Uncertainty was also introduced as a contributing factor to course 

of action development and action in general. I then examined the literature associated 

with the predictive modeling of WNv. I looked at the presence and prediction of WNv 

and the key variables and concepts.  

Past studies associated with the predictive modeling of EIDs were examined to 

determine how and what variables were used in past research. The accurate and timely 

prediction of an EID event was consistently highlighted as a critical component of public 

and environmental health management. Decisions informed by event likelihood result in 

critical resource allocation and preventive measures. Historically, the likelihood of EID 

outbreaks has been determined by biologically oriented statistical tools using historical 

EPS and EVS factors captured in field surveillance activities or in post-treatment 

scenarios. However, the CDC highlighted shortfalls in this approach: 

Despite these documented associations with a variety of biotic and abiotic factors, 

and recognition that certain regions experience more frequent outbreaks and 

higher levels of human disease risk, no models have been developed to provide 

long-term predictions of how and where these factors will combine to produce 

outbreaks. (CDC, 2013, p. 7)  
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The literature review revealed that despite the availability of medical data, 

environmental surveillance tool sets, and heightened public awareness, reliable 

methods for predicting WNv outbreaks remain elusive (Manore et al., 2014). 

According to Manore et al. (2014) and Chevalier et al. (2014), statistical 

predictions of local WNv outbreaks with the reliability and timeliness required for 

EHMs to make pro-active public health decisions is increasingly problematic. 

Existing research also identified shortfalls in current EID predictive models due to 

a lack of robust empirical data, longitudinal analysis, and research exploring the 

exclusive use of EEVs (see, for example, Liu et al., 2009; Manore et al., 2014; 

Rochlin et al., 2011). 

The literature highlighted system-level WNv variables that were classified as 

spatial, temporal, environmental, ecological, biological, and demographic. The review 

also highlighted studies that used a combination of EPS and EVS explanatory variables, 

but no studies have exclusively used EEVs to determine the likelihood of the presence of 

WNv in SC localities. The shortfalls identified in the literature were compounded by the 

fact that no current mechanism, model, or algorithm exists for the accurate and timely 

prediction of WNv outbreaks without robust EPS and EVS data (Chevalier et al., 2014; 

Manore et al., 2014). Specifically, there was a lack of understanding of the predictive 

power of EEVs when used by themselves or in combination when robust EPS and EVS 

data are unavailable. 



64 

 

Suthar et al. (2013) highlighted the fact that a lack of vaccine and approved 

therapy exists for WNv. This has caused EHMs around the world to seek decision 

support tools that can predict human outbreaks of WNv within the timeframes necessary 

to take preventive measures. According to Pirofski and Casadevall (2012), current tools 

remain problematic due to the dynamic interdependencies of the pathogenic, ecological, 

and anthropological components. The ability to gather real-time data and develop 

actionable intelligence on these dynamic interdependencies is like the complex 

environments faced by decision makers in many different disciplines. From a practical 

perspective, EHMs require more holistic, accurate, and timely decision tools for 

predicting the outbreak of EIDs like WNv. From a theoretical perspective, the integrated 

synthesis and application of DT, the CYNEFIN construct, and systems-thinking may 

offer an alternative approach to the WNv decision-making process. 

Collectively, each of these topics contributed to the analysis to address the 

research questions. As the decision maker considers a decision-space, they construct a 

mental model that is more inclusive and holistic than traditional mechanistic and 

reductionist approaches. An expansion of the EHM decision-making process which more 

broadly incorporates exogenous data provided a broader frame of discernment in EID 

decision-spaces, particularly when EPS and EVS is lacking. Theoretically, this type of 

approach drives the decision maker to a system-level orientation; an approach better 

suited to the systems biology of EIDs (Gatherer, 2010). 
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In Chapter 3, I describe the research methods associated with this study. The 

findings in this chapter are carried into the study methodology, as are the EEVs revealed 

in past studies. The next chapter will specifically address the research question, 

hypothesis, data collection, sampling procedures, and data analysis. 
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Chapter 3: Research Method 

The purpose of this ex post facto quantitative research was to examine the use of 

EEV data in predicting outbreaks of WNv in SC when robust EPS and EVS data are 

unavailable. In this chapter, I operationalize the study by connecting the purpose and 

hypotheses to specific research design and methodology. To fully develop the overall 

study framework, I address the sampling approach, data collection and EDA, regression 

model development and fit, threats to validity, and ethical procedures. The chapter 

includes a review of the potential alternative study designs leading to the selection of a 

quantitative approach to test the research hypotheses. 

Research Design and Rationale 

Using a correlation design enabled through BLR and GZLM regression, I 

examined the importance of exogenous EEVs in providing decision-making context in 

complex environments associated with EIDs. With WNv as the focus EID, I sought to 

develop five models using 0-, 30-, 60-, 90-day lags and a 90-day moving average time 

interval for predicting the presence of the virus in a locality through the sole use of EEVs. 

Candidate EEVs were identified through a systems-level review of the WNv decision-

space, which revealed historical and new EEVs. All EEV data were checked against the 

underlying assumptions required of a linear model, and the specified models were then 

developed with presence of WNv as the DV. The five models were compared using 

goodness-of-fit statistics (e.g., various forms of R2), mean absolute error (MAE) and the 

root mean square error (RMSE). 
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To examine the use of EEVs in the complex EID decision-space, I developed a 

number of predictive models in the context of the SC ecosystem. I did this for two 

reasons. First, SC is representative of the broader ecosystem of the southeast United 

States, having coastal, lowlands, marsh, lake, and mountainous terrain. This makes the 

applicability of results from this research generalizable to other temperate regions. 

Second, in 2012, SC led all states in the southeast region with a 290% increase in 

incidents of WNv, marking it as a research region of interest (CDC, 2018; SC DHEC, 

2013). 

Quantitative analysis was used to examine the statistical relationships between the 

DV and the EEVs. Due to the historical nature of the data, I chose an overall 

nonexperimental, ex post facto research design. This type of design is particularly well 

suited to areas of research that study naturally occurring cause and effect relationships 

such as the effectiveness of ongoing health programs (Vassar & Holzmann, 2013). A 

retrospective look allowed me to isolate an historic effect and examine the potential 

causes of that outcome. 

Hypotheses and Research Questions 

The following research questions examined the statistical utility of EEVs in 

predicting outbreaks of WNv in SC. In this research, a WNv incident is the positive 

identification of the virus in a locality in either a human, mosquito, bird, equine, or 

sentinel animal. 
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RQ1: In the absence of robust EPS and EVS data, which EEVs accurately predict 

incidents of WNv in SC in a current month? 

H01: When used alone or in combination, EEVs do not accurately predict 

incidents of WNv in SC in the same month.  

Ha1: At least one EEV accurately predicts incidents of WNv in SC in the same 

month. 

RQ2: In the absence of robust EPS and EVS data, which EEVs accurately predict 

incidents of WNv in SC in the future? 

H02: When used alone or in combination, EEVs do not predict incidents of WNv 

in SC 30 days later.  

Ha2: At least one EEV predicts incidents of WNv in SC 30 days later. 

H03: When used alone or in combination, EEVs do not predict incidents of WNv 

in SC 60 days later. 

Ha3: At least one EEV predicts incidents of WNv in SC 60 days later. 

H04: When used alone or in combination, EEVs do not predict incidents of WNv 

in SC 90 days later. 

Ha4: At least one EEV predicts incidents of WNv in SC 90 days later. 

Study Variables 

To characterize the impact of EEVs on EID decision making, I collected 

longitudinal data (1999 to 2016) on incidents of WNv in SC and then developed and 

validated predictive models using BLR and GZLM regression. The EEVs are described 
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here for clarification. For more detailed information on the study variables, see Appendix 

A. 

Exogenous Explanatory Variables 

To test the research hypotheses, nine independent, contextually derived EEVs 

were examined based on a systems-level review of the WNv decision-space. All nine 

EEVs were examined through simple correlation and stepwise regression analysis. Of the 

nine EEVs, EV1ATM, EV2ARN, EV6AWS, EV8USE, and EV9POP were identified in past 

studies and are considered historical predictors of WNv.  

The EEVs are defined as follows: 

Average 30-day temperature in degrees Fahrenheit (0F; EV1ATM): Average 

temperature data for each county seat by year and month from 1999 to 2016. 

Average 30-day rainfall (inches; EV2ARN): Average rainfall data for each county 

seat by year and month from 1999 to 2016. 

Average 30-day dew point in degrees Fahrenheit (0F; EV3ADP): Average dew 

point data for each county seat by year and month from 1999 to 2016. 

Average 30-day snow depth (inches; EV4ASD): Average snow depth data for each 

county seat by year and month from 1999 to 2016. 

Average 30-day barometric pressure (millibars; EV5ABP): Average barometric 

data for each county seat by year and month from 1999 to 2016. 

Average 30-day wind speed (MPH; EV6AWS): Average wind speed data for each 

county seat by year and month from 1999 to 2016. 
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Topology (elevation in feet; EV7ELV): Elevation data were extracted from the 

South Carolina Aeronautics Commission (2011) website, which lists elevations for all 

county airports. The airport locations were matched with the county seats to provide a 

standard measure of county elevation. 

Land use per county (EV8USE): County land use was recorded as a numerical 

variable—either agricultural (0) or industrial (1)—based on population density and 

housing density as reported by the 2010 United States Census Bureau (USCB) for each 

county. 

Urbanization (population per square mile; EV9POP): County populations were 

collected from USCB data and converted to a ratio using county square miles data. The 

population density ratio provided a measure of county urbanization. 

Dew point depression in degrees Fahrenheit (0F; EV10ADD): Average dew point 

depression data for each county seat by year and month from 1999 to 2016. 

Dependent Variables 

The DVs were developed as DVPRESENCE and DVCOUNT. DVPRESENCE indicated if 

WNv of any quantity occurred in a locality while DVCOUNT was the count of WNv 

incidents for a specific locality. The DVs for RQ1 were computed using no time lag. The 

DVs for RQ2 were computed using 0-, 30-, 60-, 90-day, and 90-day moving average 

interval data (time lags). This resulted in four sets of hypotheses and five predictive 

models. I tested the significance of each predictive model using an F test and its 

associated p value and the significance of EEVs using a t test and its associated p value. I 
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evaluated final models using adjusted R2, MAE, and RMSE (or, standard error of the 

estimate). The DVs were defined as follows: 

DVPRESENCE and DVCOUNT (DV1): The presence and count of SC WNv incidents in 

a current month and a county. 

DVPRESENCE and DVCOUNT (DV2): The presence and count of SC WNv incidents 30 

days after (later than) the month. 

DVPRESENCE and DVCOUNT (DV3): The presence and count of SC WNv incidents 60 

days later. 

DVPRESENCE and DVCOUNT (DV4): The presence and count of SC WNv incidents 90 

days later. 

DVPRESENCE and DVCOUNT (DV5): The presence and count of SC WNv incidents 

over a 90-day moving average. 

Methodology 

I used an incremental process to examine the research questions and hypotheses. 

This methodology included data collection and preparation, EDA of EEVs to address 

BLR and GZLM regression assumptions, and data analysis (model development, 

comparison, and validation). In this section, I detail the study population, sampling 

procedures, procedures for data collection to include systems-level and archival data. 
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Population 

The target population was all reported monthly WNv incidents within each county 

of SC from 1999 until 2016, N = 9,936 (18 years x 12 months x 46 counties). In this 

study, I used three terms to further describe the data that comprise the study population: 

1. WNv case: A WNv case is equivalent to 1 month of EEV data as well as 

reported WNv event data for one county. There were 9,936 WNv cases 

between 1999 and 2016. A WNv case may or may not have a reported event 

in a case. 

2. WNv event: A case that has one or more reported WNv incidents. Of the 

9,936 cases, there were 360 WNv events reported between 1999 and 2016. 

3. WNv incident: A single reported WNv incident. Among the 360 events 

reported between 1999 and 2016, there were 902 reported WNv incidents.  

Representing the total of statewide WNv incidents over the 18-year period, the 

data were compiled from publicly available sources and as all personal data are masked, 

all individuals associated with the human cases of WNv were protected. Reporting of 

these cases was done monthly by the CDC and includes all reported positive WNv events 

in humans, equines, birds, surveillance animals, and mosquito pools. Publicly available 

CDC and SC DHEC data provided the 216 months of data for both the DV and EEVs 

across all 46 SC counties.  
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Sampling and Sampling Procedures 

I included the entire population in this research. Therefore, no sample or 

randomized sampling technique was required. I expanded WNv events to include all 

reported incidents of WNv in a county; the total number of positive incidents of WNv 

across the 46 SC counties from 1999 to 2016 was 902. 

Procedures for Recruitment, Participation, and Data Collection (Primary Data) 

The EEV data associated with WNv outbreaks were extracted from real-time, 

publicly accessible data bases to include the United States Geological Survey National 

Land Cover Database 2006 for topographical information, intercensal population 

estimates created by the Federal State Cooperative Program for Population Estimates 

obtained from the U.S. Census Bureau, the U.S. Geological Survey disease maps (1999 to 

2016), and the Old Farmer’s Almanac. These data were initially compiled via MS Excel 

worksheets to create a source of EEV data by year, month, day, and county. Once the 

collected data were compiled in MS Excel, the data preparation process began. 

To prepare the data for use in SPSS, daily averages for each of the nine EEVs 

were summed and averaged for each month between 1999 and 2016. These EEV monthly 

averages were then recorded with the monthly reported incidents of WNv. The result was 

an MS Excel worksheet row (or case) depicting the monthly average of each EEV and the 

reported incidents of WNv for that month and for each and every month from 1999 to 

2016. Following this process, the data were checked for errors and omissions. Outcome 
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data were created as the data for each month is recorded and as appropriate into the DV1-

5 columns. 

Frankfort-Nachmias and Nachmias (2008) described the editing process as 

occurring during and after the coding process to check for errors and omissions in the 

complied data. Once editing was complete and reviewed for completeness, the data were 

cleansed to correct errors and to detect inconsistent coding. Data cleansing involved a 

second independent party review of the data. When data editing and cleansing were 

complete, the validated study data were entered into SPSS. 

Within SPSS, each record constituted of a row entry by record number, county, 

date, date code, EEV (9) and outcome data (DV1-5). Administrative data consisted of a 

record number (1-9936), county code (01-46), and the serial MS Excel DATE Function 

for year, month, and day. System-level data consisted of a binary (0, 1) entry for land use 

and numerical entries for urbanization, topology, average monthly temperature, average 

monthly rainfall, average monthly dew point, average monthly snow depth, average 

monthly wind speed, average monthly barometric pressure, and the four DVs. 

Administrative, system-level, and outcome data were available for each month, by 

county, from 1999 until 2016. While the administrative data are self-explanatory, an 

additional explanation of the system-level data are required.  

System-Level Contextual Data Collection and Preparation 

The study’s system-level data represented the contextual EEVs of interest based 

on the literature review. In this research, I constrained system-level EEVs to data readily 
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available to a decision maker. This required two criteria. First, the data must have been 

accessible via the internet or social media. Second, the data did not require 

transformation. For example, I calculated simple averages for data associated with 

rainfall and temperature, but I did not transform the data into gradients such as "growing 

degree days" as this would transform the collected data to another measurement. 

Archival Data 

The historical data used in this research were archived by several different private 

and government organizations (see Table 2). WNv incident data come from two primary 

sources, the CDC and SC DHEC. An assumption of my research was that all data were 

publicly accessible and explicit permissions for use were not required. For reliability, the 

archival data were obtained from government sources first and then private sources. If 

required, private sources of data are identified within the study.  

Instrumentation and Operationalization of Constructs 

I used SPSS Version 25 to conduct my regression analysis. The SPSS tool is 

widely used in quantitative research requiring predictive modeling. The SPPS software is 

provided by Walden University to its students and thus permission had already been 

obtained by the institution. 
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Table 2 

Web-Based Publicly Accessible Data Resource 

Research data Site name URL 

Federal Information 

Processing Series (FIPS) 

United States Census 

Bureau; Geography 

http://www2.census.gov/geo/docs/reference/codes/files/st45_sc_

cou.txt 

 

County name United States Census 

Bureau 

http://www2.census.gov/geo/docs/reference/codes/files/st45_sc_

cou.txt 

County seat SC Association of 

Counties 

http://www.sccounties.org/municipalities 

County seat elevation SC Aeronautics http://www.scaeronautics.com/AirportList.asp 

County square miles  http://www.census.gov/data/tables/time-series/dec/cph-

series/cph-t/cpht-1.html 

County population (2000-

2010) 

United States Census 

Bureau; Population 

Estimates  

https://www.2census.gov/datasets/time-

series/demo/popest/intercensal-2000-2010-counties.html 

 

County population (2010-

2019) 

United States Census 

Bureau; Population 

Estimates 

https://www.2census.gov/datasets/time-

series/demo/popest/2010-counties-total.html 

 

Land Use United States Census 

Bureau 

https://www.census.gov/quickfacts/fact/table/SC/LND110210 

Temperature 

Dew Point 

Rainfall 

Snow Depth 

Wind Speed 

Barometric Pressure 

Old Farmer’s Almanac https://www.almanac.com/weather/history/SC 

Temperature 

Dew Point 

Rainfall 

Snow Depth 

Wind speed 

Barometric Pressure 

Weather Underground https://www.wunderground.com/history 

http://www2.census.gov/geo/docs/reference/codes/files/st45_sc_cou.txt
http://www2.census.gov/geo/docs/reference/codes/files/st45_sc_cou.txt
http://www2.census.gov/geo/docs/reference/codes/files/st45_sc_cou.txt
http://www2.census.gov/geo/docs/reference/codes/files/st45_sc_cou.txt
http://www.sccounties.org/municipalities
http://www.scaeronautics.com/AirportList.asp
http://www.census.gov/data/tables/time-series/dec/cph-series/cph-t/cpht-1.html
http://www.census.gov/data/tables/time-series/dec/cph-series/cph-t/cpht-1.html
https://www.2census.gov/datasets/time-series/demo/popest/intercensal-2000-2010-counties.html
https://www.2census.gov/datasets/time-series/demo/popest/intercensal-2000-2010-counties.html
https://www.2census.gov/datasets/time-series/demo/popest/2010-counties-total.html
https://www.2census.gov/datasets/time-series/demo/popest/2010-counties-total.html
https://www.census.gov/quickfacts/fact/table/SC/LND110210
https://www.almanac.com/weather/history/SC
https://www.wunderground.com/history
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Data Analysis Plan 

The data analysis process for this research consisted of EDA, model development 

using BLR and GZLM regression, model comparison, and validation. Data analysis was 

planned using the SPSS Analyze/Regression/ Binary Logistic Regression and 

Analyze/Generalized Linear Model functions. During EDA, I checked for assumptions 

associated with BLR and GZLM regression and examined relationships between the 

EEVs and the DV. The data assumptions are covered in detail in Chapter 4. 

Multiple Regression Analysis 

 The analysis used in this study consisted of variations of multiple regression 

analysis (specifically, BLR and GZLM regression). Provided here are the basic 

components of multiple regression analysis, adapted and used in this study. 

The linear regression model is the following (see Equation 1): 

Y = 0 + 1X1  + kXk +  () 

where 

Y = the DV 

0 = the Y intercept for the population 

k = the slope for the population (the coefficient for the EV, Xk) 

Xk = the kth EV 

 = random error in Y. 
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Hypotheses 

Null hypothesis: The hypothesis for the significance of the overall multiple 

regression model, regarding the influence of the Xs on Y, is there is no linear relationship 

between the DV and the EVs, depicted mathematically as follows: 

H0: 1 = 2 = … = k = 0  

Alternative hypothesis: There is a linear relationship between the DV and at least 

one EV, depicted as follows: 

Ha: at least one k ≠ 0. 

The hypothesis is tested against the overall model to see if there is a significant 

relationship between the DV and the entire set of EVs using the F test (and its associated 

p value). The F test assesses whether the set of EVs predicts the DV.  

R2, the coefficient of determination, indicates the extent to which the set of EVs 

contributes to the variance in the DV (the portion of variation in the DV that can be 

attributed to variation of the model). A t test determines the significance of each EV, 

independently, when the overall model is significant (i.e., the F test of the aggregate 

regression model is significant).  

Model-Building 

In this study, I used both automated and manual stepwise model-building 

approaches in combination with subject matter expertise to develop, evaluate, and 

compare various predictive models (different set of EVs). The stepwise regression 

approach to model-building is used to evaluate various regression models when 
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considering the influence of individual EVs, including the two-factor interactions (2FIs) 

between EVs, and their contribution to the strength of the overall regression model. The 

stepwise process selectively adds or eliminates EVs to produce a model that is the best 

predictive model using adjusted R2, which accounts for the number of EVs in the model. 

SPSS Automated Stepwise Method 

In the BLR regression process, I used all six of the automatic stepwise methods to 

inform my evaluation of time lagged DVs and early model development using EVs only. 

These methods included the SPSS Forward Stepwise Conditional (FS COND), 

Likelihood Ratio (FS LR), Wald (FS WALD), Backward Elimination Conditional (BE 

COND), Likelihood Ratio (BE LR), and Wald (BE WALD). All automated stepwise 

methods run automatically through an iterative sequence of models making choices for 

adding or eliminating predictors until it reaches the best model according to defined 

criterion; thus, for each method and DV, there is only one run, and the final model in 

each run is, by definition, the best model that SPSS chose at the end of the process. 

The forward stepwise method enters EVs that are not in the equation using the 

smallest p value of F. Subsequently, EVs are removed if F becomes larger. The method 

concludes when there are no more variables for inclusion or removal. The backward 

elimination stepwise method begins with all EVs. EVs are then removed based on the 

significance of their correlation with the DV. The method concludes when there are no 

more variables that meet the removal criteria. 
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Manual Stepwise Method 

I primarily used the SPSS Enter method in both the BLR and GZLM regression 

process. In this method, all variables are entered in a single block, with each run 

producing a single regression model based on the predictors chosen. When each run was 

complete, I evaluated the model goodness-of-fit statistics as well as other evidence to 

determine the best model from among many runs. Between runs, I would eliminate 

predictors based on their p value in relation to the specified α. 

When I reached a model where all predictors had met the p value criterion, I then 

reviewed all models for that stage and selected the best predictive model using a 

combination of subject matter expertise and best goodness-of-fit statistic. This entire 

process is what SPSS automates in the other methods, but they can be flawed depending 

on the order in which predictors are added or eliminated; the manual process is a bit less 

impacted from that error because it adds analysis judgment and the strategic assessment 

of various combinations of EVs. 

Final Predictive Model 

The final predictive model includes EVs and significant 2FI terms. In the 

predictive model, 𝑌 ̂increases or decreases by the coefficients (bj) for a unit increase for 

each EV. The final predictive regression model is the following (see Equation 2): 

𝑌̂ = b0 + b1X1 + b2X2 + bkXk (2) 

where 

𝑌̂ = the predicted value of the DV 
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b0 = the Y intercept for the population 

bj = the slope or coefficient for the EV Xj including 2FI terms 

Xj = the jth EV. 

Model Evaluation and Validation 

There were several tasks in evaluating and validating the models for estimating 

the presence of WNv: 

Task 1: Test assumptions for the data set such as (for MLR) homogeneity of 

variance, linearity, independence (auto correlation and multicollinearity), and normality 

of residuals. 

Task 2: Compare regression models for each DVj, to decide which is the best 

predictor of incidents of WNv; essentially, determining which is the best DV since they 

are different measures (time lags) for the same response.  

Task 3: Select the best model for any given DV (DVj); essentially, what is the best 

set of Xis that predicts DVj? This required a stepwise regression model-building process 

to select the best predictive model for DVj. The hypothesis test (significance) for any 

regression model was the F test and its associated p value. Adjusted R2 = coefficient of 

determination (or a suitable version) was used to evaluate the goodness of fit of any 

model. Adjusted R2 reports the proportion of variation in Y that is explained by the 

regression model (the entire set of Xs). It is a tool for selecting the best set of Xs for any 

one of the DVs.  
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Task 4: Validate the chosen model to ensure that the predictive model of WNv is 

reasonable, plausible, and usable. 

Task 5: Re-test assumptions for the final model. 

Threats to Validity 

Generalizability and control are two components of research design related to 

validity and were important to this study (Frankfort-Nachmias & Nachmias, 2008). 

Generalizability addresses the validity of an inference or finding to a broader population. 

Control ensures that an inference or finding is as free as possible from extrinsic and 

intrinsic factors (2008). To mitigate these threats to validity, the researcher must design 

and conduct the experiment in such a way that any statistical inferences gained from the 

results are as free from external and internal control issues as possible.  

External Validity 

Reliable data allow a researcher to draw inferences and conclusions from a 

sample that can then be generalized to a broader population. Known as external validity, 

this design component can be strengthened by having representative, random samples 

within the experiment. This requires the research population to reflect the general 

characteristics of a study group (Frankfort-Nachmias & Nachmias, 2008). 

Because of the historical nature of ex post facto research, the research data in this 

study was prearranged rather than randomly selected and there was no manipulation of 

the EEVs for the purposes of then measuring the DV (as in an experiment). This 
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ultimately affected the ability to generalize results of this study to a broader community 

and required mitigation measures.  

For this research, I collated data from different publicly available sources to 

create the data sets. In retrospective studies, challenges can occur with the validity of the 

collected data. In this research, specific indicator data had been collected by different 

government agencies over three decades. The means of collection and the measurement 

tools used were historical and I could not control but relied on the accuracy of an external 

collection and analysis methodology. The objective of my study was to use publicly 

available data to develop a system-level context to a complex problem and so the 

externally derived data were assumed to be accurate and, even if not, represented the data 

that would be available to a decision maker to use in a predictive model.  

To validate my findings, I mitigated external validity through two actions. First, 

census data derived from a contextual process ensured that alignment of the overall study 

variables with the larger system-level population of variables was used. These variables 

were also empirical, being associated with WNv across many counties within South 

Carolina. This required an understanding of how the data were collected and recorded. 

The preponderance of the data came from historical sources and required a heightened 

level of content analysis during data collection. Second, I used government data that have 

been subject to standardized collection metric and tools, subsequently reducing recall bias 

and ensuring the reliability and accuracy of the data.  
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Internal Validity 

Internal validity is concerned with the reliability of data, the control of study 

factors, and with the validity of the resultant findings associated with factor/criterion 

analysis. In this research, I sought to determine the likelihood of WNv presence and 

incident counts based on several contextual factors. The selection of one factor over 

another can lead to selection bias and confounding factors. I mitigated these risks by 

qualifying the EEVs, first through review of past studies and secondly through cross 

tabulation and bivariate regression analysis to determine correlation strength with the 

DVs. The backward step-wise process was used in the regression and reduced the 

possibility of confounding factors.  

Finally, as a retrospective study, all data were historical. While this presented 

external validity challenges, the use of archival data controlled internal problems with 

selection bias, mortality, and self-reporting data.  

Construct Validity 

Construct validity addresses the ability of an operationalized study methodology 

to answer the research question. A part of construct validity, convergent validity ensures 

the study methodology executed will yield results similar to past research and/or tests. In 

tandem, discriminant validity ensures that results are suitably discriminant to separate 

outcomes. This study benefited from a retrospective approach as it used historical data, 

validated EEVs, and a statistical tool well suited to predictive modeling. The use of 

historical data and EEVs provided good fidelity to the overall study. 



85 

 

Ethical Procedures 

This research was conducted under the protocols required by the Walden 

University Institutional Review Board (IRB). The IRB approval number for this study is 

08-20-19-0102708. There were no ethical concerns related to data collection as all data 

will be extracted from publicly available sources. All human incidences of WNv were 

masked by the CDC in the reporting data and so there are no vulnerabilities to 

individuals. 

During the data collection and analysis phase of the research, all data were stored 

on a separate hard drive and will be protected by computer antivirus software. At the 

completion of the research, the data were saved to hard drive and stored in a secure space 

for five years to facilitate review. This research was not conducted within my workplace 

environment and so there will be no conflicts of interest. 

Summary 

Due to the nature of the data, a longitudinal ex post facto design was planned to 

examine the research question and hypotheses. Archival data are collected for the years 

1999 to 2016 (N=9,936) to support model development and testing. MLR was planned to 

perform the regression with a level of significance of p < α = .20. Hypothesis testing was 

conducted using appropriate goodness-of-fit tests and associated p values. To compare 

the effectiveness of one regression model compared to another for any one of the five 

DVs, I evaluated the fitness of a model for each DV using adjusted R2 to indicate the 

amount of variation in the DV attributed to the model. The regression models were 
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developed with 2002 to 2016 data. I then compared the best predictive model for each 

DV using goodness-of-fit metrics, to determine the best overall predictive model of 

WNv. 

To minimize threats to external and internal validity, several mitigation steps were 

taken. Census data collected for this research was based on a contextually derived process 

that ensures alignment of the overall study variables with the larger system-level 

population of variables that are historically recognized as being associated with WNv. 

This consisted of the entire population of reported WNv events, enhancing both external 

and construct validity. Second, I used government data that have been subject to 

standardized collection metric and tools, subsequently reducing recall bias and ensuring 

the reliability and accuracy of the data. 

Internal validity is concerned with covariance and confounding factors that will 

affect any casual inference drawn from research results. I mitigated these risks by 

qualifying the EEVs, first through review of past studies and secondly through cross 

tabulation and bivariate regression analysis to determine correlation strength with the 

DVs. MLR was chosen as the planned statistical tool which also assumes linearity of 

data. 

  



87 

 

Chapter 4: Results 

The purpose of this ex post facto quantitative research was to examine the use of 

EEV data in predicting outbreaks of WNv in SC when robust EPS and EVS data are 

unavailable. To address the research gap of accurate and timely predictive modeling of 

WNv, I developed two RQs and supporting hypotheses to examine the statistical utility of 

EEVs in predicting outbreaks of WNv in SC. The two RQs were developed to address 

both the presence and count of WNv: 

RQ1: In the absence of robust EPS and EVS data, which EEVs accurately predict 

incidents of WNv in SC in a current month? 

RQ2: In the absence of robust EPS and EVS data, which EEVs accurately predict 

incidents of WNv in SC in the future? 

To address these RQs, I posited nine EEVs: (a) average 30-day temperature 

(EV1ATM), (b) average 30-day rainfall (EV2ARN), (c) average 30-day dew point 

(EV3ADP), (d) average 30-day snow depth (EV4ASD), (e) average 30-day barometric 

pressure (EV5ABP), (f) average 30-day wind speed (EV6AWS), (g) elevation (EV7ELV), 

(h) land use (EV8USE), and (i) urbanization (EV9POP; see Table 1). The nine EEVs 

were proposed based on a systems-level review of the WNv decision-space and with the 

requirement that they be available from publicly accessible data sets. Two DVs were used 

to represent WNv outcomes in this study: DVPRESENCE and DVCOUNT, numerical variables 

suited to the selected research statistical tools of BLR and GZLM regression. 



88 

 

In this chapter, I provide the results of my data collection and analysis. 

Specifically, I address any changes to the previously defined data collection plan, provide 

descriptive analysis, describe the BLR and GZLM regression model-building process, 

and address hypotheses testing and the resultant findings.  

Data Collection 

All WNv incident data were approved through an internal SD DHEC IRB process 

(SC DHEC IRB #19-011; see Figure 4). Following approval of both the Walden 

University and SC DHEC IRBs, data were collected from August 2019 through April 

2020. EEV data used within the study were collected within the same timeframe through 

the internet from several primary sources that are readily accessible to the public, a 

primary assumption of this study.  

During the EEV data collection process, more than one internet source was 

required to collect information on the proposed weather-related EEVs as data were 

sometimes missing for a particular city or region. While the Old Farmer’s Almanac was 

used as the primary source for publicly accessible weather data, there were instances 

where Weather Underground (see Table 2) data were required as a secondary source. 

There were also instances where weather reports for a specific time period and region 

were not recorded. In these cases, the data from the next closest weather station were 

used to supplement the data. 
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Figure 4 

Numbers of Reported WNv Incidents for All SC Counties, 2002 to 2016 

 

Note. SC recorded WNv 360 events totaling 902 incidents. Land use determined by 

population per square mile. 

 

The WNv incident and EEV data were collected for a 17-year period (1999 to 

2016) resulting in N = 9,936 cases. Each of the 9,936 cases represented a month of 

reported WNv incidents (either zero or positive counts) and the associated EEV data 

(e.g., average temperature, average rainfall, elevation) for a single county. Figure 4 shows 

a global summary of WNv incidents by county in SC. Figure 5 shows the frequency of 
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WNv incidents by year over the 15-year period. This descriptive statistic guided 

subsequent decisions on data analysis in this study. 

Data were collected for the nine EEVs, and the SC DHEC provided truth data for 

reported WNv events and incidents in SC from 2002 to 2016. During that time period, the 

state reported 360 WNv events consisting of 902 WNv positive incidents. These incidents 

are reported by year (Figure 5) and month (Figure 6). Data for the years of 2002 (81), 

2003 (344), 2005 (80), and 2012 (130) accounted for 70% of reported WNv incidents. 

When the data were examined by monthly counts, July through October accounted for 

90% of reported incidents and constituted the main grouping of WNv incidents over the 

study time period (Figure 6). 

Figure 5 

Histogram Showing WNv Incidents by Year, 2002 to 2016 
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Figure 6 

Histogram Showing SC WNv Incidents by Month, 2002 to 2016 

 

Changes to the Planned Data Analysis 

When all WNv data were recorded for the 9,936 cases, I performed EDA to check 

the assumptions associated with the planned analysis. As a result of the EDA, I found that 

the assumption of linearity could not be met due to the distribution of the DV. The data 

showed that 96% of the WNv cases resulted in a “0” count, resulting in a positively 

skewed (18.23), platykurtic (460.50) distribution (see Figure 7 and 8). Having violated 

the linearity assumption, I could not proceed with my initial plan of MLR without 

changes to the planned analysis. 

Kurz (2017) remarked on this distribution problem in an article on health care 

utilization cost data. Kurz highlighted that health care data can be problematic because 
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“the non-negative response variable is often zero because of non-users, while the positive 

realizations are usually right-skewed” (p. 1). He recommended a modeling approach to 

overcome this problem by combining binary and nonlinear probability distributions (e.g., 

Poisson distributions) using the family of Tweedie distributions (p. 2). The Tweedie 

distribution falls within the exponential family of distributions. 

 Ozaltin and Iyit (2016) stated that “generalized linear models (GZLMs) include 

regression models based on the exponential family of distributions” (p. 1). Slavkovik 

(2020) highlighted several advantages of GZLMs in Pennsylvania State University’s 

online statistics course, STAT 504, an introduction to GZLMs. First, there is no 

requirement to transform the DV to achieve a normal distribution, GZLMs do not assume 

a linear relationship between the DV and the EEVs, and the homogeneity of variance 

does not need to be satisfied. Also, with GZLMs, errors need to be independent but not 

normally distributed, they rely on large sample approximations, and goodness-of-fit 

measures rely on sufficiently sized samples. Based on my WNv data set and this 

information, I changed my planned data analysis to incorporate Kurz’s (2017) thoughts 

on combining binary and nonlinear probability distribution in the modeling process.  

Using Kurz (2017) as a guide, I restructured my analysis to use BLR to predict the 

presence of WNv (RQ1) and GZLM regression to predict WNv incident counts (RQ2). I 

modified the approach originally proposed and documented in Chapter 1 in three ways. 

First, I refined the data structures for each type of regression by first removing the cases 

(1,656) associated with the years 1999 to 2001 as SC did not collect WNv data in those 
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years. This left a master data set of 8,280 cases with 360 events consisting of 902 

reported incidents of WNv. Secondly, I created a new set of DVs to reflect the separation 

of events (presence) from the number of incidents (count) and to support prediction of 

WNv in the future. Finally, I tested an expanded set of hypotheses to account for the 

modified data sets and DVs. As BLR and GZLM regression were not discussed in 

Chapter 3, I include a description of each in the following subsections. 

BLR Overview 

BLR is particularly useful in health care research when determining the likelihood 

that a patient has a particular disease. BLR predicts a probability of a binary outcome, 

using a dichotomous categorical DV, as a function of a set of continuous and categorical 

EVs. I used BLR to predict the presence of WNv in a county (DVPRESENCE). Within the 

data set, DVPRESENCE was coded dichotomously: No WNv present = 0, WNv present = 1.  

 Field (2013) stated that “logistic regression is based on this principle: it expresses 

the multiple linear regression equation in logarithmic terms (called the logit) and thus 

overcomes the problem of violating the assumption of linearity” (p. 762). In logistic 

regression, the probability of Y is predicted given the known values of the EEVs and 

factors. The logistic regression equation is expressed by Equation 3: 

Logit = Li = B0 + B1X1 + . . . + BKXK (3) 

In this study, the logit was the natural log of the odds of the dichotomous response 

(an outbreak of WNv), see Equation 4: 

𝐿𝑖 = 𝑙𝑛 [
𝑝

1−𝑝
] (4) 
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where 𝑝̂ (p-hat) was the predicted probability of an outbreak. 

The predicted probability of an outbreak was calculated using Equation 5: 

𝑝𝑖 =
𝑒𝐿𝑖

1+𝑒𝐿𝑖
 (5) 

To interpret and evaluate the models produced in logistic regression, and for 

overall fit and model comparison, SPSS provides a number of statistical measures: -2LL 

(log likelihood) chi square statistics, Cox and Snell’s R2, and Nagelkerke’s pseudo R2, the 

Hosmer and Lemeshow test, the Wald statistic, coefficient values and associated 

significance, EXP(b) odds ratio, and the 95% confidence level. SPSS also allows the user 

to capture regression residuals for diagnostic purposes. 

Based on Field’s (2013) recommendation, I elected to use the pseudo R2
Nagelkerke 

rather than R2
Cox and Snell as my primary goodness-of-fit metric. Throughout my analysis, I 

followed and recorded the R2
Cox and Snell and the R2

Hosmer and Lemeshow statistic tests for 

completeness and consistency with the SPSS model outputs.  

GZLM Overview 

Javaras and Vos (2020) and Ozaltin and Iyiy (2018) stated that GZLM regression 

should be considered in situations where the DV values are greater than zero, the data are 

heavily skewed, and variables are not normally distributed. Due to the distribution of the 

nonnegative and positive count WNv data, I determined that statistical tools that address 

forms of nonlinear data such as Poisson or the Tweedie distributions could be used.  



95 

 

Within SPSS, GZLM regression appeared to be the appropriate analysis tool as it 

would allow for analysis of distributions other than normal and where the relationships 

between DVs and EEVs would not need to take on a simple linear form.  

Javaras and Vos (2002) described GZLM regression as consisting of three 

components performing specific functions within the model: random component, link 

function, and systematic component. These are described as follows: 

• The random component addresses the probability distribution of the DVs Y1, 

Y2, . . . ,Yn and is given by (see Equation 6) 

 𝐸(𝛾1 ) = 𝜇𝑖 (6) 

• The systematic component produces a linear predictor ɳ of the covariates X1, 

X2, . . . , Xp given by (see Equation 7) 

ɳ=  ∑ 𝑥𝑗𝛽𝑗
𝑝
𝑖−1                             (7) 

• The link component describes how the systematic and random components are 

related and is given by (see Equation 8) 

ɳ = g(𝜇1), where 𝜇1 = 𝐸(𝛾1 )             (8) 

Within SPSS, I structured the random component of the GZLM regression as a 

custom model, with a Tweedie distribution mean-variance power parameter (MVP) 

initially set at 1.5, and the link function set at Log ƒ(x) = ln(x). While the link function 

remained the same for all GZLM regression runs, I changed the Tweedie MVP when an 

interim or final model was produced. SPSS allows the researcher to set the MVP between 

1.1 and 1.9 to best fit the data distribution. According to Ozaltin and Iyit (2018), the 
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Tweedie distribution is appropriate for variables that take on nonnegative values and can 

mass at a single value such as zero. The log link is good for any distribution (IBM 

Knowledge Center, n.d.). 

To enable the GZLM analysis, I created a data set that included only cases for 

which there was at least one recorded positive WNv incident. The GZLM data set was 

used to examine DVCOUNT, predicting the presence of WNv by count for each county 

using the 0- (DV01), 30- (DV02), 60- (DV03), 90-day (DV04) lags, and 90-day moving 

average (DV05) time interval. 

The Analysis Process 

The analysis process was accomplished in three stages (Table 3). Modeling for 

DVPRESENCE was accomplished with BLR in Stage A. Modeling for DVCOUNT was 

accomplished with GZLM regression in Stages B and C. Each stage followed an iterative 

process that addressed EDA, tests of assumptions, current and time lagged DV selection, 

and predictive modeling. 

Stages A2 and B2 determined which time lagged DVs would be used for the 

respective BLR and GZLM regression modeling using SPSS Automated Stepwise 

Methods (SASMs) and the SPSS Manual Stepwise Method (SFEM). In Stages A2 and 

A4, SASMs were used to compare and then identify the best time lagged DV using EEVs 

only. Once I determined that the different time-lagged DVs were capable of developing 

significant models, based on their R2
Nagelkerke and LL Ratio χ2 scores, the remainder of the 

DVPRESENCE analysis used the best time-lagged DV with all EVs (Stages A3 and A5). 
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In Stage B2, I compared the time lagged DVs (DV2, DV3, DV4, DV5) to select 

the best DVCOUNT variable using EEVs as the only predictors. Once I determined that the 

different time-lagged DVs were capable of developing significant models, the remainder 

of the DVCOUNT analysis used the best time-lagged DV with all EVs. Although the model-

building process used the same α values as Stage A, GZLM regression required the 

random and link components of the tool to be set. To compare the DVCOUNT outcomes in 

the final GZLM regression results, I ran two separate GZLM regression analyses in 

Stages B and C. I then compared the results of each stages’ best model. 

While Stages B and C both addressed the GZLM modeling efforts using DV5, 

Stage C was an excursion with GZLM regression that started with the Stage A5 final 

terms. The rationale for Stage C was, if the BLR model terms could predict a WNv event, 

could the same EEVs then be used to determine, with an acceptable degree of accuracy, 

the number of WNv incidents (DVCOUNT) for that event. In theory, such a process would 

allow a simple, straightforward approach for EHMs to determine local DVPRESENCE and 

DVCOUNT outcomes using the same set of EEVs, but with different coefficients and 

different DVs. 

This rationale was challenging because the BLR and GZLM regression analyses 

are and were vastly different. Each used a different best DV and had different data sets. It 

would be unlikely for two separate regression analyses to develop a final model with the 

same EEVs, when the data set and the DV are different. 
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Table 3 

The Study Analysis Process by Stages 

Stage Description Models α 

A1 DVPRESENCE Descriptive Statistics, EDA, and 

Assumptions 

  

A2 DVPRESENCE Analysis for Current Month, EEVs Only 

(SASM) 

1-6 .20 

A3 DVPRESENCE Analysis with DV1 (SFEM) 7-38 .20 

A4 DVPRESENCE Analysis for Best Time-lagged DV 

Selection, EEVs Only (SASM) 

39-56 .20 

A5 DVPRESENCE Analysis with DV2, All EVs (SFEM) 57-90 .20 

A6 DVPRESENCE Analysis with DV2, All EVs (SFEM) 91-100 .05 

B1 DVCOUNT Descriptive Statistics, EDA, and Assumptions   

B2 DVCOUNT Analysis with DV1 (SFEM) 101-103 .20 

B3 DVCOUNT Analysis with DV1 (SFEM) 104-135 .05 

B4 DVCOUNT Analysis for Best Time-lagged DV Selection 

(SFEM) 

136-152 .20 

B5 DVCOUNT Analysis with DV5 (SFEM) 153-182 .20 

B6 DVCOUNT Analysis with DV5, All EVs, α = .05 

(SFEM) 

183-185   .05 

C1 DVCOUNT Analysis using DVPRESENCE Final Model Terms 

(SFEM) 

182, 185 .05 

C2 Comparison of DVCOUNT Stage B and C Models  
 

Note. SPSS Automated Stepwise Methods = SASM, SPSS Force Entry Method = SFEM 

  



99 

 

Moreover, beginning the model-building process with an arguably arbitrary set of 

EEVs is inconsistent with rigorous automated or manual stepwise model-building 

processes for which the outcome (final predictive model) is composed of a set of EEVs 

that are highly dependent on their order of elimination. Therefore, I performed both 

GZLM analyses with the intent to compare their final models in terms of their 

predictability with an understanding of the challenges. 

Although I used different statistical tools for modeling DVPRESENCE and DVCOUNT, 

the general process was the same. The BLR Stages A2 to A5 interim models were 

developed using α = .20, R2
Nagelkerke for goodness-of-fit, individual EV significance (p 

value compared to α = .20), and SME judgement. When models had the same or 

comparable R2
Nagelkerke scores, I would also consider the model χ2 statistic (to compare the 

significance of the models to the null hypothesis) as well as additional measures in the 

SPSS output. Using these criteria, each stage began with all nine EEVs, moving 

iteratively through build stages (Table 3) adding and eliminating EVs, using a 

combination of SASM and SFEM until an interim model was developed using α = .20 

(i.e., to be included, an EEV’s p < .20). The model was then examined at α = .05 (Stage 

A6) and compared to the interim models to determine the best and final stage model.  

The choice of α = .20 initially was based on the philosophy that when trying to 

find the best predictive model (set of EEVs), the overriding criterion is the overall model 

goodness of fit, not the significance of individual EEVs. This process is more likely to 

produce a better goodness of fit, even if some of the terms were not individually 
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statistically significant. This is especially appropriate since the data were a census and not 

a sample of the population. This philosophy also acknowledges that the true significance 

of any one EEV is, in fact, highly dependent on the presence of other EEVs. In other 

words, there are many subtle, multi-variate interactions at work in the real world, 

rendering a judgment on the significance of any one EEV somewhat meaningless when 

trying to find the best predictive model. The danger in such an approach is to over-

specify the model with too many EEVs whose influence was in fact somewhat random. 

The check on this problem was to make many, manual model changes and to evaluate 

each of them for goodness of fit and for the consistent presence of EEVs throughout the 

analysis.  

The GZLM interim models were also developed using α = .20. I assessed 

Deviance (D), Akaike Information Criterion (AIC), and LL Ratio χ2 scores for goodness-

of-fit along with individual EEV significance (i.e., p value compared to α = .20), and 

used SME judgement. The GZLM modeling required MVP and link settings, which were 

initially set at 1.5 and Log respectively. Using these criteria, each stage began with the 

EEVs, moving iteratively using the SFEM through build stages (Table 3) adding 

predictors (2FIs and Months) until an interim model at α = .20 was achieved. The GZLM 

interim model underwent an additional step that allowed for the fine tuning of the 

Tweedie distribution by changing the MVP to enhance the D value. The model was then 

examined at α = .05 and compared to the interim model to determine the best and final 

stage model. Once a model (BLR or GZLM) was determined to be the final (and best) 
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model, residuals were captured, and the models expressed in a regression equation. 

Finally, model accuracy statistics were computed (MAE and RMSE). 

It is important to note that SPSS was the only statistical tool used during the 

study. This meant I was reliant on either SASM (backward, forward, etc.) or the SFEM (a 

series of Enter method regression runs) to assess different model compositions based on 

pre-specified criteria (goodness-of-fit; and term significance, relative to α); or a 

combination of these. This made the final model composition highly dependent on the 

starting EEVs.  

Analysis Results 

This section presents the results for the DVPRESENCE and DVCOUNT analysis by 

stage. Each stage of analysis is addressed separately and is indexed in Table 3 by the 

model numbers associated with that stage of the model building process. Each stage in 

DVPRESENCE and DVCOUNT sections are also supported by tables and figures that describe 

how interim models were developed. More descriptive versions of those tables which 

provide more detail on the modeling process are included at Appendices B (Stages A2 to 

A6, Tables B1 to B12), C (Stages B2 to B6, Tables C1 to C8), and D (Stage C1, Table 

D1). Selected Stages A to C SPSS parameter output estimates are also provided in 

Appendix E (Tables E1 to E5). The study variables for all stages of modeling are shown 

at Table 4. 
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DVPRESENCE Results 

The next section begins with the Stage A1 DVPRESENCE descriptive statistics, EDA, 

and assumptions. Stage A1 sets the stage for the deeper level of regression analysis 

required in Stages A2 to A4. Following the BLR assumptions, the DVPRESENCE analyses 

are provided. 

Stage A1 DVPRESENCE Descriptive Statistics, EDA, and Assumptions 

The Stage A variables consisted of DVPRESENCE, nine EEVs, and one EV (Table 4). 

Measures of central tendency and associated variances, frequencies, and percentages are 

also presented as they provide valuable insights into the subsequent regression analysis 

and model-building process (Table 5). Figures 7 through 16 provide histograms 

illustrating the distribution of values for the study variables. 

Stage A1 Descriptive Statistics and EDA. During the Stage A1 EDA, I 

determined an unacceptable collinearity between two variables representing temperature 

(EV1ATM) and dew point (EV3ADP). To overcome this challenge, I eliminated EV3ADP 

as an EEV and created an additional EEV (EV10ADD) from the baseline data collected 

for EV1ATM and EV3ADP. 

The variable EV10ADD was calculated as EV1ATM minus EV3ADP providing a 

scale value tied to temperature. This variable is also known in the literature as dew point 

depression or dew point deficit and is defined as the “difference in degrees between the 

air temperature and the dew point” (American Meteorological Society, 2012). It is a  
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measure of humidity—a dew point deficit of zero would equate to a moisture-saturated 

environment (humid conditions) whereas a large dew point deficit indicates dry 

conditions. 

Table 4 

Updated Study Variables 

Variable 

type 

Description Label Scale Measure 

Dependent Presence of 

WNv 

DVPRESENCE Categorical 0 (No WNv present) 

1 (WNv present) 

Dependent WNv Incident 

Count 

DVCOUNT Interval Count of WNv incidents 

Independent Average 

Temperature 

EV1ATM Ratio Average 30-day County 

temperature in degrees 

Fahrenheit (oF) 

Independent Average 

Rainfall 

EV2ARN Ratio Average 30-day County 

rainfall in (inches) 

Independent Average Snow 

Depth 

EV4ASD Ratio Average 30-day snow depth 

in inches 

Independent Average 

Barometric 

Pressure 

EV5ABP Ratio Average 30-day County 

barometric pressure in 

inches of mercury (HG) 

Independent Average Wind 

Speed 

EV6AWS Ratio Average 30-day County 

wind speed in miles per hour 

(MPH) 

Independent Topology EV7ELV Ratio County seat elevation in 

(feet) 

Independent Land Use EV8USE Categorical 0 (Agricultural) 

1 (Industrial/Commercial) 

Independent Urbanization EV9POP Ratio Population density by 

County in (square miles) 

Independent Average Dew 

Point Deficit 

EV10ADD Ratio Average 30-day County dew 

point difference in degrees 

Fahrenheit (oF) 

Independent Months EVMonth Categorical 0 (Month not associated 

with case data) 

1 (Month is associated with 

case data) 
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The Stage A1 descriptive statistics revealed a very low mean of .002 inches for 

EV4ASD (Table 5). An exploratory analysis of the EV4ASD variable showed that 108 of 

the 8,280 cases (1%) had recorded snow depth values greater than zero. Further evidence 

showed that only 19 of 46 counties recorded snow depth data more than once over the 

study period. These 19 counties were evenly distributed across the state. I elected to 

retain EV4ASD based on the collinearity and VIF scores but monitored it during Stage A. 

Table 5 

DVPRESENCE Descriptive Statistics for Post-EDA EEVs, BLR Dataset 

EEV N Minimum Mean Maximum SD 

EV1ATM 8280 23.57 63.39 97.98 13.30 

EV2ARN 8280 0.00 0.14 10.52 0.30 

EV4ASD 8280 0.00 0.00 1.00 0.03 

EV5ABP 8280 977.02 1017.31 1025.25 4.38 

EV6AWS 8280 1.51 5.20 11.57 1.33 

EV7ELV 8280 10.00 353.91 1093.00 292.87 

EV8USE 8280 0.00 0.50 1.00 0.50 

EV9POP 8280 25.53 119.18 574.72 119.18 

EV10ADD 8280 0.00 3.89 34.09 3.89 

EVMonth 8280 0.00 0.50 1.00 0.50 

Note. The BLR dataset included 8,280 cases. 

 

During the descriptive statistics analysis, I noted that reported WNv incidents 

were heavily skewed (61%) to one reported incident per event (Figure 7). This frequency 

was important as I compared the GZLM WNv count results to the census data. To 

account for any autocorrelation or seasonal pattern in the time series data, I added coded 
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variables for the months January to December for each case in the data sets for BLR and 

GZLM regression. For example, if the WNv case was associated with the month of 

January, the variable January would be coded as a 1 and the rest of the months would be 

coded 0. 

Figure 7 

Reported WNv Incidents by Frequency and Incident Count 

 

 

Average Temperature EEV (EV1ATM). The mean monthly temperature was 

63.39 (SD = 13.30). The minimum temperature recorded was 23.57 and the maximum 

was 97.97, indicating a range of 74.40 (Figure 8). 
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Figure 8 

Histogram Showing the Distribution of EV1ATM  

 

 

Average Rainfall (EV2ARN). The mean rainfall across all years of the study was 

0.14 (SD = .296). The minimum rainfall recorded was 0.00 and the maximum was 10.52, 

indicating a range of 10.52 (Figure 9). 
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Figure 9 

Histogram Showing the Distribution of EV2ARN 

 

 

Average Snow Depth (EV4ASD). The mean snow depth across all years of the 

study was 0.002 (SD = .032). The minimum snow depth recorded was 0.00 and the 

maximum was 1.00, indicating a range of 1.00 (Figure 10). 
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Figure 10 

Histogram Showing the Distribution of EV4ASD 

 

 

Average Barometric Pressure (EV5ABP). The mean barometric pressure in 

millibars across all years of the study was 1017.30 (SD = 4.38). The minimum barometric 

pressure recorded was 977.02 and the maximum was 1025.25, indicating a range of 48.23 

(Figure 11).  
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Figure 11 

Histogram Showing the Distribution of EV5ABP 

 

 

Average Wind Speed (EV6AWS). The mean wind speed in knots across all 

years of the study was 5.20 (SD = 1.33). The minimum wind speed recorded was 1.51 

and the maximum was 10.06, indicating a range of 8.55 (Figure 12). 
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Figure 12 

Histogram Showing the Distribution of EV6AWS 

 

 

Elevation Variable (EV7ELV). The mean elevation in feet across all 46 county 

seats was 353.91 (SD = 292.87). The minimum county elevation recorded was 10 and the 

maximum was 1093, indicating a range of 1083. This range reflects the rise of elevation 

from the southeastern coastal low country to the northwestern hills of SC (Figure 13). 

 



111 

 

Figure 13 

Histogram Showing the Distribution of EV7ELV  

 

 

Land Use (EV8USE). Land use was a categorical variable coded as 0 = 

Agricultural and 1 = Industrial Use in SPSS. This variable was calculated through the 

function of population per square mile. The descriptive statistics showed that based on 

the function above, agricultural land use accounted for 3,960 (47.8%) of the cases and 

industrial land use accounted for 4,320 (52.2%) cases (Figure 14). 
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Figure 14 

Histogram Showing the Distribution of EV8USE  

 

 

Population (EV9POP). The mean population (x1000) across all 46 county seats 

included in the study timeframe was 131.65 (SD = 119.18). The minimum county 

population recorded was 25.53 and the maximum was 574.72, indicating a range of 

549.19 (Figure 15).  
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Figure 15 

Histogram Showing the Distribution of EV9POP 

 

 

Dew Point Deficit (EV10ADD). The mean dewpoint deficit was 11.734 (SD = 

3.89). The minimum dewpoint deficit recorded was 0.00 and the maximum was 34.09, 

indicating a range of 34.09 (Figure 16). 
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Figure 16 

Histogram Showing the Distribution of EV10ADD 

 

 

Stage A1 BLR Assumptions. BLR has five assumptions that required 

examination to ensure the correct statistical tool was being used: 

1. One DV that is dichotomous (i.e., a nominal variable with two outcomes).  

2. One or more EEVs that are numerical.  

3. A linear relationship between the continuous EEVs and the logit 

transformation of the DV 

4. Little or no collinearity among the EEVs. 

5. Independence of observations: the categories of the dichotomous DV and all 

continuous EEVs should be mutually exclusive and exhaustive. 
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Assumptions one and two were met without requiring further analysis. The DV, 

DVPRESENCE, was dichotomous and all EEVs were numerical, either continuous or 

discrete; categorical variables were converted to numerical dummy variables. 

Assumption five was also met in that the DV was dichotomous and each of the EEVs 

were exclusive. 

Linearity of the continuous variables with respect to the logit of the DV was 

assessed via the Box-Tidwell (1962) test. This is a test that ensures that for every one 

unit increase in a continuous EEV, that the logit of the DV increases by a constant 

amount (Laerd Statistics, 2017). This test requires the creation of natural log 

transformations of the continuous EEVs which are then included as interaction terms in 

the subsequent test. In the Box-Tidwell test, if the natural log interaction term results in 

a statistically significant value (p < α = .05), then the continuous variable violates the 

assumption of linearity. The Box-Tidwell results for this study showed that all variables 

met the assumption of linearity test at p > α = .05 and did not require further analysis. 

The assumption of no collinearity was met using tolerance values and Variable 

Inflation Factor (VIF) outputs from SPSS. Field (2013) stated that “tolerance values less 

than .01 and VIF values greater than 10 indicate a problem” (p. 795). The test results 

revealed no evidence of multicollinearity (Table 6).  
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Table 6 

BLR Collinearity Assumption Test 

Variable Tolerance VIF 

EV1ATM .833 1.184 

EV2ARN .966 1.035 

EV4ASD .985 1.015 

EV5ABP .870 1.149 

EV6AWS .799 1.252 

EV7ELV .760 1.315 

EV8USE .515 1.941 

EV9POP .522 1.915 

EV10ADD .872 1.147 

Note. EV3ADP removed from regression based on EDA. 

 

Stage A2 DVPRESENCE Analysis for Current Month, EEVs Only 

I began the DVPRESENCE analysis by examining whether the combination of the 

nine study EEVs (EV1ATM, EV2ARN, EV4ASD, EV5ABP, EV6AWS, EV7ELV, EV8USE, 

EV9POP, EV10ADD) could predict the presence of WNv in the same month. DV1 (0-

day) was the only outcome variable supporting this DVPRESENCE analysis. I used two SPSS 

stepwise methods to analyze DV1, SASM first and then SFEM. This approach allowed 

me to observe DV1 model composition using all six SASM techniques while avoiding the 

dangers of incorrect model specification due to the criteria used by the individual 

selection methods or the arbitrariness of the order of selection or elimination (Field, 

2013). 



117 

 

 All six DV1 SASM models (Table 7) produced the same result, R2
Nagelkerke = .171, 

LL Ratio 2(8) = 436.763, p < .001 The following EEVs were retained in each model, 

EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, EV8USE, EV9POP, EV10ADD. In 

each of the SASM models, EV4ASD was not significant at p < α = .20. This corroborated 

the EDA findings and informed the Stage A SFEM analyses. This analysis was followed 

by an examination of DV1 using the SFEM method.  

Table 7 

Stage A2 DVPRESENCE Analysis With DV1 Using EVs Only 

DVPRESENCE Stepwise method R2
Nagelkerke LL Ratio 2 

DV1 Model 1 FS (COND) .171 2(8) = 436.763, p < .001 

DV1 Model 2 FS (LR) .171 2(8) = 436.763, p < .001 

DV1 Model 3 FS (WALD) .171 2(8) = 436.763, p < .001 

DV1 Model 4 BE (COND) .171 2(8) = 436.763, p < .001 

DV1 Model 5 BE (LR) .171 2(8) = 436.763, p < .001 

DV1 Model 6 BE (WALD) .171 2(8) = 436.763, p < .001 

 

Prior to the DV1 SFEM analysis, I ran diagnostics on the DV1 residuals. The 

studentized residuals (SRE) for DV1 were within limits, with 2.5% of the cases falling 

outside ±1.96 and .006% of the cases falling outside ±2.58. Cook’s Distance was also 

checked and was 0.003, within the < 1.0 limit. 
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Stage A3 DVPRESENCE Analysis With DV1 and EEVs Only 

 Two models were produced in the first step of the DV1 SFEM model building 

process with the results mirroring Stage A2, R2
Nagelkerke = .171, LL Ratio 2(8) = 436.763, 

p < .001 (Table 8). The interim model predictors at p < α = .20 were EV1ATM, EV2ARN, 

EV5ABP, EV6AWS, EV7ELV, EV8USE, EV9POP, EV10ADD. These predictors and their 

2FIs were carried into the 2FI step of DV1 model building. 

Table 8 

Stage A3 SFEM With DV1 and EEVs Only 

DVPRESENCE R2
Nagelkerke LL Ratio 2  

DV1 Model 7 .171 2(9) = 436.929, p < .001 

DV1 Model 8 .171 2(8) = 436.763, p < .001 

 

Stage A3 DVPRESENCE With DV1, EEVs, and 2FIs 

The addition of the relevant 2FIs added 28 predictors to this step of the DV1 

model (Table 9). These additional EVs increased the model goodness-of-fit.  
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Table 9 

Stage A3 2FIs 

 EV1ATM EV2ARN EV5ABP EV6AWS EV7ELV EV8USE EV9POP EV10AD

D 

EV1ATM ** X X X X X X X 

EV2ARN ** ** X X X X X X 

EV5ABP ** ** ** X X X X X 

EV6AWS ** ** ** ** X X X X 

EV7ELV ** ** ** ** ** X X X 

EV8USE ** ** ** ** ** ** X X 

EV9POP ** ** ** ** ** ** ** X 

Note. X = 2FI interaction analysis performed, ** = redundant 

Eighteen models were produced using the eight EEVs and 2FIs with Model 20 

providing the most parsimonious and best interim results at R2
Nagelkerke = .202, LL Ratio 

2(23) = 517.625, p < .001 (Table 10). Model 20 retained the following predictors at p < 

α = .20: EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, EV2·EV5, EV2·EV7, 

EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9. 

These predictors were carried into the final step of DV1 model building where the Months 

EVs were added. 
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Table 10 

Stage A3 DVPRESENCE With DV1, EEVs, and 2FIs 

DVPRESENCE R2
Nagelkerke LL Ratio 2 

DV1 Model 9 .202 2(34) = 519.047, p < .001 

DV1 Model 10 .202 2(33) = 519.047, p < .001 

DV1 Model 11 .202 2(32) = 519.045, p < .001 

DV1 Model 12 .202 2(31) = 519.013, p < .001 

DV1 Model 13 .202 2(30) = 518.943, p < .001 

DV1 Model 14 .202 2(29) = 518.877, p < .001 

DV1 Model 15 .202 2(28) = 518.787, p < .001 

DV1 Model 16 .202 2(27) = 518.662, p < .001 

DV1 Model 17 .202 2(26) = 518.419, p < .001 

DV1 Model 18 .202 2(25) = 518.144, p < .001 

DV1 Model 19 .202 2(24) = 517.905, p < .001 

DV1 Model 20 .202 2(23) = 517.625, p < .001 

DV1 Model 21 .201 2(22) = 517.012, p < .001 

DV1 Model 22 .201 2(21) = 516.266, p < .001 

DV1 Model 23 .201 2(20) = 515.617, p < .001 

DV1 Model 24 .201 2(19) = 515.617, p < .001 

DV1 Model 25 .200 2(18) = 514.286, p < .001 

DV1 Model 26 .200 2(17) = 512.694, p < .001 

 

Stage A3 DVPRESENCE Analysis With DV1, All EVs 

Thirteen models (Models 26-38) were produced in the final step of the DV1 

modeling (Table 11). The best overall DV1 model was Model 36 at R2
Nagelkerke = .285, LL 

Ratio 2(25) = 739.250, p < .001. Model 36 consisted of the following final EVs at p < α 
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= .20, EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, EV10ADD, EV1·EV2, 

EV1·EV5, EV1·EV7, EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV10, 

EV7·EV10, EV8·EV9, April, May, June, July, August, September, October, November. 

Table 11 

Stage A3 DVPRESENCE Analysis With DV1 and All EEVs 

DVPRESENCE R2
Nagelkerke LL Ratio 2 

DV1 Model 26 .285 2(34) = 743.225, p < .001 

DV1 Model 27 .285 2(34) = 743.225, p < .001 

DV1 Model 28 .285 2(33) = 743.221, p < .001 

DV1 Model 29 .285 2(32) = 743.194, p < .001 

DV1 Model 30 .285 2(31) = 743.103, p < .001 

DV1 Model 31 .285 2(30) = 742.924, p < .001 

DV1 Model 32 .285 2(29) = 742.863, p < .001 

DV1 Model 33 .285 2(28) = 742.323, p < .001 

DV1 Model 34 .285 2(27) = 741.539, p < .001 

DV1 Model 35 .285 2(26) = 740.692, p < .001 

DV1 Model 36 .285 2(25) = 739.250, p < .001 

DV1 Model 37 .284 2(24) = 738.117, p < .001 

DV1 Model 38 .283 2(23) = 737.226, p < .001 

 

Stage A3 DV1 Final Model 

DV1 model development produced 38 models. Model 36 at R2
Nagelkerke = .285, LL 

Ratio 2(25) = 739.250, p < .001, retained six of the eight SASM EVs while EV4ASD, 
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EV6AWS, and EV7ELV were removed at p < α = .20. The final DV1 model was expressed 

as follows (see Equation 9): 

Ŷ = 214.881 + (-4.371∙EV1ATM) + (234.861∙EV2ARN) + (-

0.145∙EV5ABP) + (-0.67∙EV8USE) + (0.015∙EV9POP) + (-

0.151∙EV10ADD) +(0.192∙EV1·EV2) + (0.004∙EV1·EV5) + 

(0.000067∙EV1·EV7) + (-0.247∙EV2·EV5) +(0.003∙EV2·EV7) + (-

1.168∙EV2·EV8) + (-0.000008∙EV5·EV7) + (-0.064∙EV5·EV8) + (-

0.016∙EV6·EV10) + (0.000215∙EV7·EV10) + (-0.012∙EV8·EV9) + 

(1.386∙April) (1.597∙May) + (1.652∙June) + (3.361∙July) + (4.158∙August) 

+ (4.360∙September) + (3.401∙October) + (2.577∙November)        (9) 

The DV1 final model produced a MAE = .072 and RMSE = .847 which compared 

favorably to later modeling with DV2. When Model 36 predicted probability results were 

plotted against the actual WNv events, model accuracy was good, but the model's 

precision was poor (Figure 17). As a result, only 4% of WNv events were correctly 

identified at the SPSS default classification cutoff value (CCV) of .500. At a CCV of 

.250, 23% of WNV events within the predicted group range, highlighting the future role 

of the EHM in any local configuration settings. 

Based on these results, I rejected the RQ1 DVPRESENCE null hypothesis (H01) at p < 

α = .05. I concluded there was evidence that at least one coefficient in the final regression 

model was not equal to zero and that the final model was a statistically significant 

predictor of DV1 (the likelihood of a WNv event in the current month). The operationally 
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significant predictors associated with the final model can account for 28% of the variance 

of DV1, providing reasonable accuracy of WNv incident occurrence in the same month. 

Figure 17 

DV1 Actual WNv Events Versus Final Model Probability 

 

 

Stage A4 DVPRESENCE Analysis for Best Time-lagged DV Selection, EVs Only 

In the Stage A4 DVPRESENCE analysis, I initially examined the time-lagged DVs, 

30- (DV2), 60- (DV3), and 90-day (DV4) to identify the best DV for Stage A5. The initial 

analysis employed the six SASM methods: FS (COND), FS (LR), FS (WALD), BE 

(COND), BE (LR), and BE (WALD). This approach allowed me to observe and compare 

the results of all time-lagged DVs using SASM techniques prior to Stage A5. 

This analysis was conducted with the nine post-EDA study EEVs at α = .20. 

Goodness-of-fit and LL Ratio ꭓ2 scores were used to select the best model. Eighteen 
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models (Appendix B, Tables B5-B7) were produced in this step with DV2 outperforming 

the other outcome variables (Table 12). 

Model 44 produced the best Stage A4 model at R2
Nagelkerke = .257, LL Ratio ꭓ2(6) = 

661.645, p < .001, with all predictors significant (p < α = .20). EV4ASD (p = .990) and 

EV7ELV (p = .290) were removed from DV2 Model 44. Model 50 produced the best DV3 

model at R2
Nagelkerke = .247 with all predictors significant (p < α = .20). EV4ASD (p = 

.991), EV7ELV (p = .829), and EV2ARN (p = .281) were removed from Model 50. Model 

54 produced the best DV4 model at R2
Nagelkerke score = .163. EV4ASD (p = .990) was 

removed from Model 54. EV2ARN (p = .314), EV6AWS (p = .221), and EV5ABP (p = 

.223) remained in the model but were not significant (p < α = .20). 

Table 12 

Stage A4 Comparison of the DVPRESENCE Time-Lagged DVs  

DVPRESENCE R2
Nagelkerke LL Ratio χ2 

DV2 Model 44 .257 ꭓ2(6) = 661.645, p < .001 

DV3 Model 50 .245 ꭓ2(5) = 634.453, p < .001 

DV4 Model 54 .162 ꭓ2(5) = 412.961, p < .001 

 

In a comparison of the time-lagged DVs (Models 44, 50, and 54), DV2 produced 

the best goodness-of-fit scores with six EEVs only. Although, DV3 and DV4 were not 

selected as the best time-lagged DVs, the R2
Nagelkerke and LL Ratio χ2 scores showed that 

the RQ2 DVPRESENCE null hypotheses for 60- and 90-day time-lags could be rejected based 

on the use of EEVs alone at p < α = .20. Based on the results of the Stage A modeling, I 
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was confident that the addition of the remaining 2FIs and Months EVs would continue to 

enhance the goodness-of-fit scores for DV3 and DV4 as they did for DV2.  

The time lagged DV analysis also provided additional context for the rest of the 

Stage A DV2 analysis. For example, the variable EV4ASD was not significant (p < α = 

.20) in any of the models, corroborating the EDA findings. Additionally, EV1ATM, 

EV8USE, EV9POP, and EV10ADD were the only EEVs present in all of the Stage A4 

DVPRESENCE analyses. 

Based on these results, I selected DV2 as the best time lagged DV for answering 

RQ2. I then examined the DV2 residuals. The studentized residuals (SRE) were within 

limits, with 2.5% of the cases falling outside ±1.96 and .006% of the cases falling outside 

±2.58. Cook’s Distance.  

Stage A5 DVPRESENCE Analysis With DV2, All EVs  

In the Stage A5 analysis, I used the SFEM and began with DV2 and the nine 

EEVs. Predictors were removed from the model after each run based on the R2
Nagelkerke 

score, significance at p < α = .20, and subject matter expertise. This allowed for a more 

inclusive model-building process throughout Stage A5. 

Model 59 produced the best model in Stage A5 based on a goodness-of-fit value 

of R2
Nagelkerke = .257 and considering Stage A4 results (Table 13). While the remaining 

seven EEVs were significant, the removal of EV4ASD (p = .990) and EV7ELV (p = .290) 

had little effect on the Model 59 ꭓ2 statistic at ꭓ2 (7) = 665.685, p < .001. This meant that 
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without these predictors, the model still significantly outperformed the constant-only 

model. 

Table 13 

Stage A5 DVPRESENCE Analysis With DV2, EEVs Only 

Model R2
Nagelkerke LL Ratio ꭓ2 

57 .257 ꭓ2(9) = 667.271, p < .001 

58 .257 ꭓ2(8) = 666.817, p < .001 

59 .257 ꭓ2(7) = 665.685, p < .000 

  

In Stage A1, the EV4ASD descriptive statistics revealed a very low mean of .002 

inches for the entirety of 8,280 WNv cases. In Models 57, EV4ASD showed no strength 

of association between the predictor and DV2. At this point, I decided to remove the 

EV4ASD from the Stage A5 modeling.  

In Model 58, EV7ELV did not reach the required significance level and produced 

the lowest strength of association with DV2 of all the remaining model predictors. 

Combined with the results of Stage A4, I elected to also eliminate EV7ELV from the 

remaining Stage A5 analysis. 

Stage A5 DVPRESENCE Analysis With DV2, EEVs, 2FIs 

The Stage A5 analysis began with the seven remaining EEVs (EV1ATM, 

EV2ARN, EV5ABP, EV6AWS, EV8USE, EV9POP, EV10ADD) and 21 2FIs (Table 14). 

The EEV and 2FI analysis significance criterion remained the same at p < α = .20.  
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Table 14 

Stage A5 DV2 Two-Factor Interactions 

 EV1ATM EV2ARN EV5ABP EV6AWS EV8USE EV9POP EV10ADD  

EV1ATM ·· X X X X X X  

EV2ARN · · ·· X X X X X  

EV5ABP · · · · ·· X X X X  

EV6AWS · · · · · · ·· X X X  

EV8USE · · · · · · · · ·· X X  

EV9POP · · · · · · · · · · ·· X  

Note. X = 2FI interaction analysis performed, = not applicable, ··= redundant  

 

 With the inclusion of the 2FIs variables, the Stage A5 R2
Nagelkerke and LL Ratio ꭓ2 

values increased significantly. The Stage A5 modeling process produced 15 models (Table 

15). I continued the modeling process until all EVs were at p < α = .20, regardless of the 

R2
Nagelkerke score. I then evaluated all models in the stage to determine the best model.  

Fourteen EVs were removed using the p < α = .20 criterion. Four of these 

variables were original EEVs (EV2ARN, EV5ABP, EV8USE, EV10ADD). The predictors 

EV2ARN, EV5ABP, and EV8USE were also removed in several Stage A4 models using 

the SASM method. In Stage A5, the removal of these predictors had little effect on the 

Stage A5 overall model LL Ratio ꭓ2 statistic. However, EV10ADD was removed late in 

the Stage A4 modeling (Model 69) at p = .203. This EV was retained in the Stage A 
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modeling, as I selected Model 67 as the best Stage A5 interim model with a goodness-of-

fit value at R2
Nagelkerke = .275, LL Ratio ꭓ2(20) = 713.352, p < .001. 

Table 15 

Stage A5 DVPRESENCE Analysis With DV2, EEVs, 2FIs 

Model R2
Nagelkerke LL Ratio χ2 

60 .275 ꭓ2(27) = 713.876, p < .001 

61 .275 ꭓ2(26) = 713.875, p < .001 

62 .275 ꭓ2(25) = 713.873, p < .001 

63 .275 ꭓ2(24) = 713.862, p < .001 

64 .275 ꭓ2(23) = 713.839, p < .001 

65 .275 ꭓ2(22) = 713.714, p < .001 

66 .275 ꭓ2(21) = 713.574, p < .001 

67 .275 ꭓ2(20) = 713.352, p < .001 

68 .274 ꭓ2(19) = 713.309, p < .001 

69 .274 ꭓ2(18) = 712.878, p < .001 

70 .274 ꭓ2(17) = 712.379, p < .001 

71 .274 ꭓ2(16) = 711.688, p < .001 

72 .273 ꭓ2(15) = 710.292, p < .001 

73 .273 ꭓ2(14) = 710.292, p < .001 

74 .273 ꭓ2(13) = 708.378, p < .001 

 

 

Stage A5 DVPRESENCE Analysis With DV2, All EVs 

The analysis began with the Model 67 with the addition of the Month EVs (Table 

13), EV1ATM, EV6AWS, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV8, 

EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, 
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EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, January, February, March, April, May, June, 

July, August, September, October, November, December. 

 In this part of the Stage A5 analysis, 16 models were developed. During the 

model-building process, EV10ADD, five 2FIs, and eight Month EVs were removed at p > 

α = .20. For completeness, I continued the modeling process until all predictors were at p 

< α = .20, regardless of the R2
Nagelkerke score. I then evaluated all models in the stage to 

determine the best model.  

Model 84 was the best Stage A5 model with a R2
Nagelkerke = .293 (Table 16). The 

model included the following predictors: EV1ATM, EV6AWS, EV9POP, EV1·EV5, 

EV1·EV6, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, 

EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, May, June, August, September, 

October, November. Although May only had 8 reported incidents, it was statistically 

significant based on the census data used in this study. The Stage B2 interim model also 

excluded the month of July, as was the case here. In the EDA, the month of July 

accounted for 108 WNv incidents. However, in both sets of analysis, the July EV was 

removed very early for lack of significance (p < α = .20) after the Month EVs were 

added to the model. This occurred with both the DVPRESENCE and DVCOUNT datasets and 

with different statistical tools. I decided to follow the statistics produced by SPSS and 

remove the July EV in both cases. 
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 Based on the strength and consistency of predictors, and as Model 84 was 

developed with the SFEM and subject matter expertise, I selected Model 84 as the DV2 

best interim model at R2
Nagelkerke = .293, LL Ratio ꭓ2(23) = 762.344, p < .001 at α = .20. 

Table 16 

Stage A5 DVPRESENCE With DV2, All EVs  

Model R2
Nagelkerke LL Ratio χ2 

75 .293 ꭓ2(31) = 763.626, p < .001 

76 .293 ꭓ2(31) = 763.626, p < .001 

77 .293 ꭓ2(30) = 763.626, p < .001 

78 .293 ꭓ2(29) = 763.622, p < .001 

79 .293 ꭓ2(28) = 763.608, p < .001 

80 .293 ꭓ2(27) = 763.454, p < .001 

81 .293 ꭓ2(26) = 763.271, p < .001 

82 .293 ꭓ2(25) = 763.095, p < .001 

83 .293 ꭓ2(24) = 762.793, p < .001 

84 .293 ꭓ2(23) = 762.344, p < .001 

85 .292 ꭓ2(22) = 761.838, p < .001 

86 .292 ꭓ2(21) = 761.838, p < .001 

87 .292 ꭓ2(20) = 760.093, p < .001 

88 .291 ꭓ2(19) = 760.093, p < .001 

89 .291 ꭓ2(18) = 758.244, p < .001 

90 .291 ꭓ2(17) = 758.244, p < .001 
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Stage A6 DVPRESENCE Analysis With DV2, All EVs, α = .05 

Stage A6 analysis (Table 17) of the EEVs, 2FIs, and Months variables began 

using the Model 84 predictors excluding the month of November (p = .491), EV1ATM, 

EV6AWS, EV9POP, EV1·EV5, EV1·EV6, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, 

EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, 

May, June, August, September, October. For this stage of modeling, I used p < α = .05 to 

raise the threshold for predictor inclusion (for a simpler model, with less chance of over-

specification) and to provide a comparison of the previous stage models using R2
Nagelkerke 

scores as well.  

Table 17 

Stage A6 DVPRESENCE Analysis With DV2, EEVs, 2FIs, and Months, α = .05 

Model R2
Nagelkerke LL Ratio χ2 

91 .292 ꭓ2(22) = 761.838, p < .001 

92 .292 ꭓ2(21) =761.270, p < .001 

93 .292 ꭓ2(20) = 760.093, p < .001 

94 .291 ꭓ2(19) = 759.069, p < .001 

95 .291 ꭓ2(19) = 758.244, p < .001 

96 .291 ꭓ2(17) = 756.960, p < .001 

97 .290 ꭓ2(16) = 755.020, p < .001 

98 .289 ꭓ2(15) = 753.069, p < .001 

99 .287 ꭓ2(15) = 746.698, p < .001 

100 .285 ꭓ2(13) = 750.953, p < .001 
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In the Stage A6 analysis, 10 models were developed at α = .05. During the model-

building process, the months of November (Model 91), September (Model 93), August 

(Model 44), and seven 2FIs were removed at p > .05. For completeness, I continued the 

modeling process until all predictors were at p < α = .05, regardless of the R2
Nagelkerke 

score. I then evaluated all models in the stage to determine the best model.  

 Model 93 was the best Stage A7 model with a R2
Nagelkerke = .292. The model 

included the following predictors, EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10, May, June, August, September, October. While producing the best 

Stage A6 R2
Nagelkerke score, it also included key Month EVs based on the data provided in 

the descriptive statistics.  

DVPRESENCE Final Model Selection 

To select a final DVPRESENCE model, I compared the best interim models from 

Stages A4 through A6 using R2
Nagelkerke as my primary goodness-of-fit metric, LL Ratio χ2 

as a supporting metric, and subject matter expertise to consider issues such as predictor 

inclusion and model parsimony. The Stage A5-6 results reflected the iterative model 

building process (i.e., EEVs only, then 2FIs EVs, and then Month EVs) using the SFEM 

at p <α =.20. Stage A6 was a continuation of Model 84 using p < α = .05. 

In the subsequent analysis of the Stage A5 and A6 models, I found Model 84 to 

be the most compelling from a statistical and subject matter expert perspective (Table 

18). First, Stage A5 (Model 59) and A5 (Model 67) produced R2
Nagelkerke values consistent 
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with the EVs included in those stages. Model 67 contained a more complete set of EVs of 

interest than earlier stages and this was reflected in a higher R2
Nagelkerke value. Model 93, 

while more parsimonious than Model 84, had a lower R2
Nagelkerke value.  

Model 84 was achieved using all EVs at p < α = .20 While Model 56 retained 

more of the EEVs, EV7ELV, EV8USE, and EV10ADD using the SASM approach, they 

had also been removed at various stages of the modeling process. EV7ELV had been 

removed from all the Stage A4 DV2 and DV3 models (Models 39-50) and was removed 

at p = .990 in Stage A4 Model 58. EV8USE had been removed in Stage A5 Model 65 and 

EV10ADD also been removed in Model 72 at p = .203. While all three EEVs were 

retained in the SASM method, I determined their exclusion in the SFEM process to be 

guided by an appropriate combination of variable removal criterion and subject matter 

expertise. 

Based on these results, I selected Model 84 as final model for the Stage A 

DVPRESENCE analysis because it produced the best R2
Nagelkerke value and included the 

months of May, June, August, September, October, and November. Although May only 

had 8 reported incidents, it was statistically significant based on the census data used in 

this study. 
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Table 18 

Comparison of Stages A5-A6 Best Models 

Stage Model R2
Nagelkerke LL Ratio χ2 

A5 59 .257 ꭓ2(7) = 665.685, p < .001 

A5 67 .275 ꭓ2(20) = 713.352, p < .001 

A5 84 .293 ꭓ2(23) = 762.344, p < .001 

A6 93 .292 ꭓ2(20) =760.093, p < .001 

 

Following this analysis, I performed a diagnostic test on the final model residuals 

checking Cook’s Distance (COO·1), leverage (LEV·1), absolute values of the 

standardized residual (ZRE·1), and deviance (DEV·1). The diagnostic test revealed no 

unusually high values of Cook’s distance (mean = 0.003). All 8,280 case values of the 

leverage residual (LEV1) were less than 1 (mean = .0029). The ZRE·1 (.02) and DEV·1 

(.006) absolute values were also within the 5% limit at ± 1.96 and 1% limit for ±2.58. 

Based on the diagnostic test results, I confirmed Model 84 as the final Stage A 

DVPRESENCE model. The final model resulted in the following forecast accuracies: MAE = 

0.072, RMSE = 0.192. The final logistic regression model was expressed as follows (see 

Equation 10): 

Ŷ = -13.277 + (-8.380∙EV1ATM) + (78.978∙EV6AWS) + (0.397∙EV9POP) 

+ (0.008∙EV1·EV5) + (-0.005∙EV1·EV6) + (0.001304·EV1·EV10) + (-

0.332∙EV2·EV6) +(0.183∙EV2·EV10) + (-0.077∙EV5·EV6) + 

(0.004∙EV5·EV8) + (-0.0004∙EV5·EV9) + (-0.0002∙EV5·EV10) + (-
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0.420∙EV6·EV8) + (0.000640∙EV6·EV9) + (-0.033∙EV6·EV10) + (-

0.019∙EV8·EV9) + (0.0002∙EV9·EV10) + (-1.629∙May) + (-0.449∙Jun) + 

(0.200∙August) + (0.163∙September) + (0.659∙October) + (-

0.355∙November) (10) 

When Model 84 predicted probability results were plotted against the actual DV2 

WNv events, model accuracy was good, but the model's precision was poor (Figure 18). 

Reported WNv events are shown in black, representing any incident of WNv that 

occurred in a case. Predicted probability of WNv events are shown in red by case.  

The results show that while the predicted probabilities show good correlation with 

actual events, the ability of the predictors to meet the default model classification cut-off 

value (CCV) of .500 was lacking. Environmental health decision makers have the 

flexibility to set a prediction threshold based on historical data or on risk level. In this 

study, lowering the CCV to .250 would have resulted in 13% of the WNv incidents being 

correctly identified.  
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Figure 18 

DV2 Actual Events Versus BLR Final Model Probability 

 
Note. WNv Present (Actual) = Black, WNv Predicted Probability= Red. The red dashed 

line depicts the SPSS default .500 classification cutoff determination. 

 

Based on these results, I rejected the RQ2 DVPRESENCE null hypothesis at p < α = 

.05. I concluded there was evidence that at least one coefficient in the final regression 

model was not equal to zero, and that the final model was a statistically significant 

predictor of DV2 (which was the best DV for predicting the likelihood of a future WNv 

event). The operationally significant predictors associated DV2 model can account for 

29% of the variance of the WNv outcome variable, providing reasonable accuracy of 

WNv incident occurrence in the same month. 
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DVPRESENCE Final Model 2FI Analysis 

 Upon completion of the Stage A6, I conducted an analysis of the final model 14 

2FIs: EV1·EV5, EV1·EV6, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. The three 

EEVs that were not in the final model individually but exerted moderating effects on the 

other predictors were EV5ABP, EV8USE, and EV10ADD. I include four of the most 

interesting interactions in Figures 19 to 26. 

The relationship between EV5ABP and DV2 was influenced by minimum, mean, 

and maximum average temperatures. Figure 19 shows that when average temperature was 

high and the average barometric pressure increased above 1000.0, the probability of an 

occurrence of WNv rose sharply. As the temperature decreased from mean to minimum 

values, the probability of occurrence was at or near zero for all levels of barometric 

pressure. 
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Figure 19 

EV1ATM Influence on the Relationship Between EV5ABP and DV2 

 
Note. EV1ATM values, minimum (23.57°F), mean (63.39°F), and maximum (97.97°F). 

 

The relationship between EV1ATM and DV2 was influenced by minimum, mean, 

and maximum average barometric pressures (Figure 20). When average barometric 

pressure was at its maximum value, the probability of WNv occurrence increased sharply 

as average temperature rose past 450F. When average barometric pressure was at its 

minimum value, the probability of WNv occurrence decreased with rising temperatures. 

When average barometric pressure was at its mean, the probability of WNv occurrence 

also increased as temperature rose above 450F but at a lower rate than when average 

barometric pressure was at its maximum value. While average barometric pressure itself 

did not contribute to the model goodness-of-fit, it did exert a moderating effect on 

temperature as a predictor of probability of occurrence. 
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Figure 20 

The Influence of EV5ABP on the EV1ATM and DV2 Relationship 

 
Note. EV5ABP values, minimum (972.12), mean (1017.30), and maximum (1025.25). 

 

The relationship between EV5ABP and DV2 was influenced by minimum, mean, 

and maximum average wind speeds (Figure 21). When average barometric pressure was 

at its maximum value and wind speed average wind speed was rising, the probability of 

WNv occurrence decreased sharply. When average barometric pressure was at its mean 

value and wind speed was rising, WNv occurrence decreased moderately. When average 

barometric pressure was at its minimum value and wind speed rose, the probability of the 

occurrence of WNv increased sharply above five knots average wind speed. 

The interaction showed that when pressure was high, probability of outbreak 

decreases with increases in wind speed, and when pressure is low, probability of outbreak 

increases with increases in wind speed. While pressure was not a significant predictor by 



140 

 

itself, it did exert a moderating effect on wind speed as a predictor of probability of WNv 

occurrence.  

Figure 21 

The Influence of EV6AWS on the EV5ABP and DV2 Relationship 

 
Note. EV5ABP values, minimum (972.12), mean (1017.30), and maximum (1025.25). 

  

The relationship between EV6AWS and DV2 was influenced by minimum, mean, 

and maximum average barometric pressure (Figure 22). When average wind speed was at 

its maximum value and the average barometric pressure rose, the probability of WNv 

occurrence decreased sharply. When average wind speed was at its mean or minimum 

values, there were low probabilities of WNv occurrence, which decreased slightly with 

increases in average barometric pressure. This interaction showed that when wind speed 

was high, the probability of an outbreak decreased sharply with increases in pressure. 
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When the winds are average or low, barometric pressure was not influential on the 

probability of WNv occurrence. 

Figure 22 

The Influence of EV5ABP on the EV6AWS and DV2 Relationship 

 

Note. EV6AWS values, minimum (1.51), mean (5.20), and maximum (10.06). 

 

The relationship between EV5ABP and DV2 was influenced by minimum, mean, 

and maximum average dewpoint deficits (Figure 23). When the dew point deficit was at 

its maximum value, the probability of WNv occurrence was low and remained low 

irrespective of changes in average barometric pressure. When the dew point deficit was at 

its minimum, the probability of WNv occurrence decreased with an increase in average 

barometric pressure. When the dew point deficit was at its mean value, the probability of 

WNv decreased at a lower rate when average barometric pressure increased. 
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When the dew point deficit was low (indicating humid conditions), probability of 

an event decreased as average barometric pressure increased. The lower the dew point 

deficit the more influential barometric pressure was on the probability of WNv 

occurrence. While neither dew point deficit nor pressure alone were significant 

predictors, their interaction was a significant predictor of the probability of WNv 

occurrence. 

Figure 23 

EV10ADD Influence on the Relationship Between EV5ABP and DV2 Relationship 

 

Note. EV10ADD values, minimum (0.00), mean (11.73), and maximum (34.09). 

 

The relationship between EV10ADD and DV2 was influenced by minimum, mean, 

and maximum average barometric pressures (Figure 24). When average barometric 

pressure was at its maximum value, the probability of WNv occurrence decreased sharply 

as the average dew point deficit increased. When average barometric pressure was held to 
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either its mean or minimum values, the probability of WNv occurrence was low and 

decreased slightly with an increase in average dew point deficit. 

Predicted probability decreased with higher dew point deficits (drier conditions) 

but that decrease was more pronounced the higher the barometric pressure. While 

barometric pressure and dew point deficit were not by themselves significant predictors, 

the interaction between the two predictors was a significant influence on the probability 

of WNv occurrence. 

Figure 24 

EV5ABP Influence on the Relationship Between EV10ADD and DV2 Predicted 

Probability 

 

Note. EV5ABP values, minimum (972.12), mean (1017.30), and maximum (1025.25). 

 

The relationship between EV8USE and DV2 was influenced by minimum, mean, 

and maximum average populations (Figure 25). When population density was at its 
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maximum value and land use was agricultural, the probability of WNv occurrence was at 

its highest. When land use is industrial and the population density was at its minimum or 

mean values, the probability of WNv occurrence remained low.  

 In this interaction, when population density was high, the probability was 

significantly higher in agricultural land use counties than in industrial counties. When 

population density was moderate or low, land use was not influential on probability. 

Figure 25 

EV9POP Influence on the Relationship Between EV8USE and DV2 Predicted Probability 

 

Note. EV9POP values, minimum (25.53), mean (131.68), and maximum (574.72). 

  

The relationship between EV9POP and DV2 was influenced by minimum, mean, 

and maximum average land use (Figure 26). When county land use was classified as 

agricultural (minimum value of 0), the probability of a WNv occurrence increased with 
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an increase in population density. When a county land use was predominantly industrial, 

population density was not significantly influential to the probability of a WNv 

occurrence. While land use itself was not a significant predictor, the interaction with 

population density did produce an influential effect on probability of WNv occurrence. 

That probability was the highest in more densely populated agricultural areas. 

Figure 26 

EV8USE Influence on the Relationship Between EV9POP and DV2 Predicted Probability 

 

Note. EV8USE values, minimum (0.00) and maximum (1.0). 

 

DVPRESENCE Additional Findings 

The DVPRESENCE analysis produced a DV2 final model that included three 

operationally significant predictors: average temperature, average wind speed, and 
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average population. There were 10 2FIs in final model. The final model produced 

additional findings relevant to its operationally significant EVs. 

Average Temperature (DVPRESENCE). Manore et al. (2014) and Ozdenerol et al. 

(2013) identified the importance of temperature in the life cycle of WNv. In my study, 

the census mean average temperature was an operationally significant predictor. The final 

model average temperature coefficient (β = -8.380), showed a negative influence on the 

presence of WNv; for every one-unit increase in average temperature, the odds of the 

presence of WNv decreased by -.0002 (see Appendix E for selected DVPRESENCE SPSS 

parameter estimates).  

Average Wind Speed (DVPRESENCE). Average wind speed was an historical EEV 

gleaned from the literature, and it was an operationally significant predictor for 

DVPRESENCE. In the final model SPSS parameter estimates, the average wind speed 

coefficient (β = 78.978) showed a significant positive correlation between average wind 

speed and DVPRESENCE.  

The census mean was 5.20 knots (SD = 1.33), with a minimum (1.51) and 

maximum (10.06) average wind speed. In the years reporting 50 or more WNV events 

(for all counties and all months: 2002, 2003, 2005, 2006, 2007, 2012), the yearly average 

wind speed values were all within one SD of the census mean. For the 360 WNv events, 

average wind speeds fell between a minimum and maximum of 1.64 to 9.95 (mean = 

4.51). In 27 percent of the high-count cases, average wind speed was at or above the 

mean.  
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Population (DVPRESENCE). Ozdenerol et al. (2013) and Manore et al. (2014) 

found that population and population densities were operationally significant predictors 

of a WNv occurrence. In my study, the population census means (x1,000) was 131.65 

(SD = 119.18), with minimum and maximum values of 25.53 and 574.72 respectively. In 

years reporting 50 or more WNv incidents (2002, 2003, 2005, 2006, 2007, 2012), the 

yearly minimum population values were all consistent with the census means except for 

2012. The year 2012, was the first year of increased WNv incidents since the 2010 census 

and the mean population for that year exceeded the census mean by 9.44. As the 

population in SC increased during the 2003 to 2012 timeframe, this increase was 

foreseeable. 

In the DVPRESENCE final model, population was an operationally significant 

predictor at β = .397, EXP(B) = 1.485. The odds ratio showed that for every one-unit (or 

1,000 people) increase in population, the odds of the presence of WNv increased by 1.5. 

Throughout this study, population proved to be an operationally significant predictor of 

WNv in SC, confirming its worth as a predictor variable for DVPRESENCE. 

Average Barometric Temperature and Average Temperature Interaction 

(DVPRESENCE). In the interaction between average temperature and average barometric 

pressure, barometric pressure moderated the effect of temperature on the DV. When the 

average barometric pressure was at its maximum value (1025.25), the probability of WNv 

occurrence increased sharply as the average temperature rose past 45oF. When average 

barometric pressure was at its minimum value (972.12) and with rising temperatures, the 
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probability of WNv occurrence decreased. When average barometric pressure was at its 

mean (1017.30) and the temperature rose past 450F, the probability of WNv occurrence 

also increased but at a lower rate than when the average barometric pressure was at its 

maximum value. The barometric pressure interaction had a moderate to significant effect 

on the DV for temperature ranges > 450F. 

Average Barometric Pressure and Average Wind Speed Interaction 

(DVPRESENCE). When average barometric pressure was at its maximum value (1025.25) 

and wind speed rose above 1 MPH, the probability of WNv occurrence decreased 

sharply. When average barometric pressure was at its mean value (1017.30) and wind 

speed rose, WNv occurrence decreased moderately. When average barometric pressure 

was at its minimum value (972.12) and wind speed rose, WNv occurrence increased 

sharply between 5-9 MPH average wind speed. This interaction shows that when wind 

speed was high and barometric pressure at its minimum, the probability of an WNv 

outbreak increased. When the winds were average or low, barometric pressure was not as 

influential on WNv event occurrence. 

Average Barometric Pressure and Dew Point Deficit Interaction 

(DVPRESENCE). When average barometric pressure was at its maximum value (1025.25), 

the probability of a WNv occurrence decreased sharply as the average dew point deficit 

increased. When average barometric pressure was held to either its mean or minimum 

values, the probability of a WNv occurrence was low and decreased slightly with an 

increase in average dew point deficit. In this interaction, the probability of a WNv 
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occurrence was highest when average barometric pressure was high and the values for 

average dew point deficit were low. When the barometric pressure was moderate or low, 

dew point deficit was not a significant influence on probability. 

Month EV (DVPRESENCE). In the final model, the months of May, June, August, 

September, October, and November were significant at p < α = .05. The coefficients and 

associated odds ratios for each of the months increased from May to October in the final 

model estimates; May (𝛽 = -1.63, Exp(B) = .196), June (𝛽 = -0.449, Exp(B) = 0.638), 

August (𝛽 = 0.199, Exp(B) = 1.221), September (𝛽 = 0.163, Exp(B) = 1.177), October (𝛽 

= .659, Exp(B) = 1.933) and November (𝛽 = -0.354, Exp(B) = 0.702). The increasing 

odds ratios for the months June through October tracked with the EDA that found 96% of 

WNv occurring in these months. The months of May, June, and November were the only 

months correlated negatively to the DV. May had only seven WNv events over the study 

timeframe from 2002-2016. 

DVCOUNT Results 

The section begins with the DVCOUNT descriptive statistics, EDA, and 

assumptions. Stage B1 sets the stage for the deeper level of regression analysis required 

in Stages B2 to B4. Following the GZLM assumptions, the DVCOUNT analyses are 

provided. 

Models for DVCOUNT were examined with a SFEM process using goodness-of-fit 

statistics for EVs. The primary goodness of fit statistics was D (Deviance). Buro (2020) 

stated that “the Deviance of a model is based on the difference between the log-likelihood 
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of the model of interest, LM, and the log-likelihood of the most complex model that 

perfectly fits the data (one parameter per “measurement”, saturated model), LS” (p. 17). 

Deviance = -2(LM – LS) 

Deviance is a χ2 statistic that can be used to test if the saturated model gives a 

better model fit than a proposed model. A D value of 1.0 would reflect a perfect fit of the 

data. Values of < 1.0 or > 1.0 would reflect under and overdispersion of the data. For 

completeness, I also monitored and documented the Pearson Chi Square (ꭓ2
P) and the 

omnibus test Log Likelihood Ratio Chi Square (LL2 Ratio ꭓ2) statistics.  

In Stage B, models for each DV were evaluated using a Tweedie MPV of 1.5 with 

the Log link function selected. When all of a model’s EEVs were significant (p < α = 

.20), I compared the D, LL2 Ratio ꭓ2 scores, and conducted a subject matter expert review 

of the model composition. 

Stage B1 DVCOUNT Descriptive Statistics, EDA, and Assumptions 

To build to a final DVCOUNT model for the current month and time-lagged DVs, I 

used the same data collection, preparation, data analysis, regression model-building, and 

validation process described earlier for the DVPRESENCE analysis. I created a DVCOUNT data 

set from the study master data set to include only cases for which there was a count of at 

least one recorded positive WNv incident. This approach varied from Kurz (2017) in that 

I excluded all zero count cases to focus my analysis on the specific WNv positive count 

data. This resulted in a DVCOUNT data set of 970 cases and 360 events that included 902 

incidents.  
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DVCOUNT Dataset Descriptive Statistics and EDA. While the descriptive 

statistics (Table 19) and distributions for this data set (Figures 27 to 36) were a necessary 

component of the Stage B analysis, they also provided a comparison of the DVPRESENCE 

(BLR) and DVCOUNT (GZLM) datasets. Within the descriptive statistics, the ΔMean values 

represented the differences in mean values between the two data sets which included 

8,280 and 970 cases respectively.  

Table 19 

Descriptive Statistics for the DVCOUNT (GZLM) Dataset 

EEV Mean Minimum Maximum SD ΔMean 

EV1ATM 72.84 36.99 92.01 8.76 9.48 

EV2ARN 0.14 0.00 0.48 0.09 0.00 

EV4ASD 0.00 0.00 0.28 0.01 0.00 

EV5ABP 1016.61 979.57 1023.80 2.73 6.49 

EV6AWS 5.04 1.64 11.57 1.61 -.06 

EV7ELV 349.19 10.00 1093.00 317.84 4.72 

EV8USE 0.50 0.00 1.00 0.50 0.00 

EV9POP 197.64 27.47 574.72 142.41 78.46 

EV10ADD 10.32 0.00 33.43 3.89 6.43 

EVMonth 0.50 0.00 1.0 0.50 0.00 

 

The statistics showed that the average temperature used in the DVCOUNT analysis 

was higher for cases with recorded WNv incidents than in the population of all cases. 

There was also a considerable difference in the average population means. In the 
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DVCOUNT analysis, the sample average population was higher. These findings informed 

the Stage B analysis. 

Average Temperature (EV1ATM). The mean monthly temperature was 72.57 

(SD = 9.02). The minimum temperature recorded was 36.99 and the maximum was 

92.01, indicating a range of 55.02 (Figure 27). 

Figure 27 

GZLM Dataset EV1ATM Histogram 

 

 

Average Rainfall (EV2ARN). The mean monthly rainfall was .140 (SD = .09). 

The minimum rainfall recorded was 0.00 and the maximum was 0.48, indicating a range 

of 0.48 (Figure 28). 
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Figure 28 

GZLM Dataset EV2ARN Histogram 

 

 

Average Snow Depth (EV4ASD). The mean snow depth was zero (SD = .009). 

The minimum snow depth recorded was zero and the maximum was 0.28, indicating a 

range of 0.28 (Figure 29). 
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Figure 29 

GZLM Dataset EV4ASD Histogram 

 

 

Average Barometric Pressure (EV5ABP). The mean barometric pressure was 

1016.64 (SD = .2.74). The minimum barometric pressure recorded was 979.57 and the 

maximum was 1023.78, indicating a range of 44.21 (Figure 30). 
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Figure 30 

GZLM Dataset EV5ABP Histogram 

 

 

Average Wind Speed (EV6AWS). The mean wind speed was 4.93 (SD = 1.50). 

The minimum wind speed recorded was 1.64 and the maximum was 9.96, indicating a 

range of 8.32 (Figure 31). 
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Figure 31 

GZLM Dataset EV6AWS Histogram 

 

 

Average Elevation (EV7ELV). The mean elevation was 349.10 (SD = 318.20). 

The minimum elevation recorded was 10 and the maximum was 1093, indicating a range 

of 1083 (Figure 32). 
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Figure 32 

GZLM Dataset EV7ELV Histogram 

 

 

Land Use (EV8USE). Land use was classified as Agricultural (29%) and 

Industrial (71%) based on population per square mile (Figure 33).  
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Figure 33 

GZLM Dataset EV8USE Histogram 

 

 

Average Population (EV9POP). The mean population was 196.24 (SD = 

141.96). The minimum population recorded was 27.48 and the maximum was 574.72, 

indicating a range of 547.24 (Figure 34). 
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Figure 34 

GZLM Dataset EV9POP Histogram 

 

 

Average Dew Point Deficit (EV10ADD). The mean dew point deficit was 10.35 

(SD = 3.90). The minimum dew point deficit recorded was 0.00 and the maximum was 

33.43, indicating a range of 33.43 (Figure 35). 
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Figure 35 

GZLM Dataset EV10ADD Histogram 

 

 

 DVCOUNT GZLM Assumption Testing. Although less restrictive than MLR, 

GZLM regression relies upon assumptions that required examination to ensure the correct 

statistical tool was being used (Javaras & Vos, 2002): 

1. The data Y1, Y2, . . . ,. , Yn are independent (i.e., cases are independent). 

2. The DV does not need to be normally distributed, but it typically assumes a 

distribution from an exponential family (e.g., binomial, Poisson, multinomial, 

etc.). 

3. There is a linear relationship between the transformed response (using the link 

function) and the explanatory variables. 

4. The homogeneity of variance does not need to be satisfied. 
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5. Residuals need to be independent but do not need to be normally distributed. 

6. The regression relies on large sample approximations. 

Assumptions 1 and 5 were met based on the independence of the observations 

used to collect the overall WNv data. To test this assumption, I plotted the raw residuals 

against all of the continuous EEVs and noted no patterns in the plots (Figure 36).  

Assumption 2 was met during the EDA where I discovered that the data were 

heavily skewed, favoring a Poisson distribution. The assumption of linearity (Assumption 

3) is modified with GZLM. In describing GZLM regression assumptions, Javaras and 

Vos (2002) stated that, “the essence of linear models is that the response variable is 

continuous and normally distributed: here we relax these assumptions and consider cases 

where the response variable is non-normal and in particular has a discrete distribution” 

(p. 1). 



162 

 

Figure 36 

GZLM Test for Independence of Observations 

 

Note. Panel A-F scatterplots related to continuous EEVs used in GZLM analysis. 

 

To meet this assumption, I transformed the DV data and then assessed the 

relationship between the transformed data and the EEVs. The results are provided in 
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scatterplots in Figures 37 to 43. Assumption 6 was met as the GZLM dataset included all 

reported incidents of WNv from the census population. 

Figure 37 

Scatterplot for Test of Linearity Between EV6 and the DV 
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Figure 38 

Scatterplot for the Test of linearity Between EV2ARN and the DV 

 

 

Figure 39 

Scatterplot for the Test of Linearity Between EV5ABP and the DV 

 



165 

 

Figure 40 

Scatterplot for the Test of Linearity Between EV6AWS and the DV 

 

 

Figure 41 

Scatterplot for the Test of Linearity Between EV7ELV and the DV 
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Figure 42 

Scatterplot for the Test of Linearity Between EV9POP and the DV 

 

 

Figure 43 

Scatterplot for the Test of Linearity Between EV10ADD and the DV 
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Stage B2 DVCOUNT Current Month DV Selection 

As DV1 was the only current month (0-day) outcome variable, an initial 

comparative analysis of DVs was not required. The Stage B2 analysis began with the 

following nine EEVs: EV1ATM, EV2ARN, EV4ASD, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, and EV10ADD.  

Stage B2 DVCOUNT for Current Month With DV1 and EVs 

Three models were developed in the initial step of the model building process 

(Table 20). Model 102 was the best model of the three with a D = 3.271. Although, this D 

was the lowest of the three it reflected overdispersion of the data. EV6AWS (p = .756) 

and EV4ASD (p = .289) were removed under the p < α = .20 criterion. 

Table 20 

Stage B2 DVCOUNT Analysis With DV1 and EVs 

DVCOUNT Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

DV1 Model 101 1.5 3.274 4519.157 2608.507 71.917 9 .000 

DV1 Model 102 1.5 3.271 4522.391 2606.603 71.820 8 .000 

DV1 Model 103 1.5 3.272 4533.620 2606.779 70.645 7 .000 

 

 

Stage B2 DVCOUNT for Current Month with DV1, EEVs, and 2FIs 

This step of model development required the addition of the 21 2FI predictors 

(Table 21).  
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Table 21 

Stage B DV1 2FIs 

 EV1ATM EV2ARN EV5ABP EV7ELV EV8USE EV9POP EV10ADD 

EV1ATM ** X X X X X X 

EV2ARN ** ** X X X X X 

EV5ABP ** ** ** X X X X 

EV7ELV ** ** ** ** X X X 

EV8USE ** ** ** ** ** X X 

EV9POP ** ** ** ** ** ** X 

 

The Stage B2 analysis with DV1, EEVs, and 2FIs produced 20 models (Table 22). 

Model 117 was the best interim model at D = 3.146, LL2 Ratio χ2(15) = 108.206, p < 

.001. The model was composed of the following EVs: EV1ATM, EV7ELV, EV8USE, 

EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV8, EV2·EV9, 

EV5·EV7, EV5·EV10, EV7·EV10, EV8·EV10, EV9·EV10. EV10ADD (p = .911), EV2ARN 

(p = .493), EV9POP (p = .697), EV5ABP (p = .433), EV7ELV (p = .209). 
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Table 22 

Stage B2 DVCOUNT Analysis With DV1, EVs, and 2FIs 

DVCOUNT Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

DV1 Model 104 1.5 3.171 4153.884 2605.794 112.629 28 .000 

DV1 Model 105 1.5 3.168 4157.235 2603.806 112.617 27 .000 

DV1 Model 106 1.5 3.164 4171.766 2601.839 112.584 26 .000 

DV1 Model 107 1.5 3.161 4174.960 2599.881 112.543 25 .000 

DV1 Model 108 1.5 3.158 4175.527 2597.934 112.490 24 .000 

DV1 Model 109 1.5 3.155 4194.011 2596.090 112.334 23 .000 

DV1 Model 110 1.5 3.153 4195.498 2594.384 112.039 22 .000 

DV1 Model 111 1.5 3.151 4247.277 2592.761 111.662 21 .000 

DV1 Model 112 1.5 3.150 4284.068 2591.261 111.163 20 .000 

DV1 Model 113 1.5 3.149 4288.419 2589.736 110.688 19 .000 

DV1 Model 114 1.5 3.148 4268.160 2588.434 109.990 18 .000 

DV1 Model 115 1.5 3.149 4283.300 2587.449 108.974 17 .000 

DV1 Model 116 1.5 3.146 4274.052 2585.601 108.823 16 .000 

DV1 Model 117 1.5 3.146 4265.900 2584.217 108.206 15 .000 

DV1 Model 118 1.5 3.148 4287.538 2583.711 106.712 14 .000 

DV1 Model 119 1.5 3.151 4283.710 2583.312 105.112 13 .000 

DV1 Model 120 1.45 2.805 4187.574 2535.911 128.793 15 .000 

DV1 Model 121 1.5 3.155 4194.011 2596.090 112.334 25 .000 
 

1.30 2.597 4131.719 2520.495 152.767 15 .000 

DV1 Model 122 1.15 2.442 4087.575 2579.901 216.068 15 .000 

DV1 Model 123 1.1 2.421 4083.084 2638.255 253.262 15 .000 
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Stage B2 DVCOUNT for Current Month With DV1, All EVs 

This final step in the DV1 produced six models (Table 23). The months of 

December (p = .951), July (p = .951), and January (p = .527) were removed at p < α = 

.20 along with two 2FIs. Model 129 was the best model at D = 1.898, LL2 Ratio χ2(22) = 

582.309, p < .001. The model was composed of the following EEVs: EV1ATM, EV7ELV, 

EV8USE, EV1·EV2, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, 

EV5·EV10, EV7·EV10, EV8·EV10, EV9·EV10, February, March, April, May, June, 

August, September, October, November.  

Table 23 

Stage B2 DVCOUNT Analysis With DV1, All EVs 

DVCOUNT Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

DV1 Model 124 1.1 1.902 3060.265 2328.891 584.626 26 .000 

DV1 Model 125 1.1 1.902 3060.265 2328.891 584.626 26 .000 

DV1 Model 126 1.1 1.900 3060.049 2326.895 584.623 25 .000 

DV1 Model 127 1.1 1.899 3057.706 2325.309 584.209 24 .000 

DV1 Model 128 1.1 1.899 3081.439 2324.941 582.576 23 .000 

DV1 Model 129 1.1 1.898 3081.895 2323.209 582.309 22 .000 

 

This Stage B2 interim model also excluded the month of July, as was the case in 

the DVPRESENCE modeling. In the EDA, the month of July accounted for 108 WNv 

incidents. However, in both sets of analysis, the July EV was removed very early for 

significance when the Month EVs were added to the model. This occurred with both the 
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DVPRESENCE and DVCOUNT datasets and with different statistical tools. I decided to follow 

the statistics produced by SPSS and remove the July EV in both cases. 

Stage B3 DVCOUNT for Current Month Final Model, α = .05 

The analysis of DV1 at α = .05 produced six models (Table 24). The month EVs 

of March (p = .142) and February (p = .146) were removed at p < α = .05 along with two 

2FIs. Model 132 was the best model at D = 1.898, LL2 Ratio χ2(20) = 579.499, p < .001. 

This model retained the months of March and February. The final model was composed 

of the following EEVs: EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, EV1·EV8, 

EV2·EV5, EV2·EV9, EV5·EV10, EV7·EV10, EV8·EV10, February, March, April, May, 

June, August, September, October, November. 

Table 24 

Stage B3 DVCOUNT Analysis With DV1, All EVs, α = .05 

DVCOUNT Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

DV1 Model 130 1.1 1.898 3081.895 2323.209 582.309 22 .000 

DV1 Model 131 1.1 1.899 3062.322 2323.304 580.213 21 .000 

DV1 Model 132 1.1 1.898 3062.937 2022.018 579.499 20 .000 

DV1 Model 133 1.1 1.901 3067.056 2322.826 576.692 19 .000 

DV1 Model 134 1.1 1.903 3061.548 2323.877 573.648 18 .000 

DV1 Model 135 1.1 1.903 3077.320 2323.045 572.472 17 .000 
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DVCOUNT for Current Month Final Model 

After reviewing all the Stages B2 to B3 models, I selected Model 129 as the final 

model at D = 1.898, LL2 Ratio χ2 = 582.309 (22), p < .001. Following this analysis, I 

performed a diagnostic test on the residuals checking Cook’s Distance (COO1), and 

leverage (LEV1). There were no unusually high values of Cook’s distance (mean = 

0.0026). All 970 case values of the leverage residual (LEV1) were less than 1 (mean = 

.023). Based on the results of the diagnostics test, I used this version of the regression 

analysis to select my final Stage A model. The final model resulted in the following 

forecast accuracies: MAE = 1.074, RMSE = 2.490. The final logistic regression model 

was expressed as follows: 

The final model consisted of the following EEVs: EV1ATM, EV7ELV, EV8USE, 

EV1·EV2, EV1·EV7, EV1·EV8, EV2·EV5, EV2·EV8, EV2·EV9, EV5·EV10, EV7·EV10, 

EV8·EV10, February, March, April, May, June, August, September, October, November. 

The final model was expressed as (see Equation 11): 

Ŷ = -4.936+ (-0.029∙EV1ATM) + (0.003∙EV7ELV) + (2.929∙EV8USE) + 

(0.332∙EV1·EV2) + (-0.00007∙EV1·EV7) + (0.030∙EV1·EV8) + 

(0.00003∙EV1·EV9) +(-0.028∙EV2·EV5) + (0.009∙EV2·EV9) + (-

0.00012∙EV5·EV10) + (0.00008∙EV7·EV10) + (-0.123∙EV8·EV10) + (-

0.0002∙EV9·EV10) + (-0.019∙February) + (1.853∙March) + (1.328∙April) + 

(1.940∙May) + (2.202∙June) + (-0.930∙August) + (-1.157∙September) + (-

0.952∙October) + (-0.905∙November) (11) 
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Based on these results, I rejected the RQ1 DVCOUNT null hypothesis (H01) at p < α 

= .05. I concluded there was evidence that at least one coefficient in the final regression 

model was not equal to zero, and that the final model was a statistically significant 

predictor of DV1 for incident counts in the current month. 

An examination of actual DV1 WNv incident counts versus the predicted counts 

from the final model equation reveals a very low predicted count mean of .499 (Figure 

44). Actual WNv incident counts are shown in black by case. The final model predicted 

counts of WNv incidents are shown in red by case. 

Figure 44 

DV1 Actual WNv Counts Versus Predicted WNv Counts, All Counties 
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Stage B4 DVCOUNT Time-Lagged DV Selection 

 Stage B4 began with the following EEVs: EV1ATM, EV2ARN, EV5ABP, 

EV6AWS, EV7ELV, EV8USE, EV9POP, and EV10ADD. This stage was conducted to 

determine which of the time-lagged DVs (DV2 through DV5) produced the best model 

goodness-of-fit and LL Ratio χ2 scores. These were the same time-lagged DVs I 

examined in Stage A, with the addition of DV5 which was computed as a 90-day moving 

average. 

 Stage B4 produced 17 models for comparison (Models 136-152). Comparing the 

interim models for each DV (Table 25), Model 152 (DV5) provided the best result at D = 

1.023 and with an AIC = 1731.274. The Model 88 build process removed EV4ASD (p = 

.928) and EV5ABP (p = .782). 

Final models for all the DVs excluded EV4ASD for a lack of significance. I ran a 

separate GZLM analysis of EV4ASD with DV5 and found that EV4ASD was not 

significant at p = .928. EV5ABP was also excluded in Model 86 at p = .782, as it was 

earlier in Model 80 by DV3 at p = .962. Based on the EDA findings and the Stage B2-3 

results, I elected to remove EV4ASD and EV5ABP in the Stage B4 modeling. Based on 

these results, I selected DV5 for Stage B4. Model 152 consisted of the following EEVs: 

EV1ATM, EV2ARN, EV6AWS, EV7ELV, EV8USE, EV9POP, and EV10ADD. 
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Table 25 

Stage B4 DVCOUNT Time-Lagged Model Results Using EEVs Only 

Model DV Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

141 DV2 1.5 2.825 3824.156 2426.375 190.984 7 .000 

145 DV3 1.5 2.952 4226.178 2527.626 145.55 4 .000 

147 DV4 1.5 3.104 4559.273 2569.364 112.038 8 .000 

152 DV5 1.5 1.023 1731.274 2471.097 424.903 8 .000 

 

 Based on the Stage B4 results, I rejected the RQ2 DVCOUNT null hypotheses for 

each of the time lagged DVs (H02 H03, H04) at p < α = .05. I concluded there was 

evidence that at least one coefficient in the final regression model was not equal to zero 

and that the final model was a statistically significant predictor of DVCOUNT. I continued 

with DV5 to examine the best DVCOUNT model for future WNv count prediction. 

Stage B5 DVCOUNT Analysis With DV5, EEVs, and 2FIs 

Stage B5 began with seven significant EEVs for DV5: EV1ATM, EV2ARN, 

EV6AWS, EV7ELV, EV8USE, EV9POP, and EV10ADD. Along with these seven EEVs, 

21 2FIs were added (Table 26).  
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Table 26 

Stage B5 DVCOUNT DV5 2FIs 

 EV1ATM EV2ARN EV6AWS EV7ELV EV8USE EV9POP EV10ADD  

EV1ATM · X X X X X X  

EV2ARN   X X X X X  

EV6AWS    X X X X  

EV7ELV     X X X  

EV8USE      X X  

EV9POP       X  

 

Modeling in Stage B4 was done using SFEM (Table 27). At each step, EEVs 

(EV6AWS, IV7ELV, IV9POP) were eliminated based on an p < α = .20, as well as the 

model goodness of fit (D). When all predictors were at p < α = .20, I ran a series of model 

runs to adjust the Tweedie MVP. Model 169 produced the best model at Tweedie MVP = 

1.44 with a D = .999 and AIC = 2487.825. This model consisted of the following EEVs: 

EV1ATM, EV2ARN, EV8USE, EV10ADD, EV1·EV2, EV1·EV6, EV1·EV8, EV1·EV10, 

EV2·EV7, EV2·EV9, EV6·EV7, EV6·EV10, EV7·EV8, EV7·EV9, EV8·EV10, EV9·EV10. 

The interim Model 169 predictors were moved into Stage B5 with all EVs. 

  



177 

 

 

Table 27 

Stage B5 DVCOUNT Analysis With DV5, EEVs, and 2FIs 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

153 1.5 0.981 1555.298 2433.181 504.819 28 .000 

154 1.5 0.980 1554.768 2431.187 504.813 27 .000 

155 1.5 0.979 1554.717 2429.206 504.794 26 .000 

156 1.5 0.978 1555.581 2427.324 504.676 25 .000 

157 1.5 0.977 1561.365 2425.522 504.478 24 .000 

158 1.5 0.976 1563.805 2423.921 504.079 23 .000 

159 1.5 0.975 1563.087 2422.156 503.843 22 .000 

160 1.5 0.975 1563.464 2420.635 503.365 21 .000 

161 1.5 0.974 1559.727 2419.144 502.856 20 .000 

162 1.5 0.974 1565.207 2417.839 502.161 19 .000 

163 1.5 0.973 1570.098 2416.673 501.327 18 .000 

164 1.5 0.973 1575.309 2416.107 499.893 17 .000 

165 1.5 0.973 1571.462 2414.268 499.732 16 .000 

166 1.45 0.995 1598.914 2475.274 513.636 16 .000 

167 1.40 1.019 1627.926 2539.175 531.239 16 .000 

168 1.43 1.006 1613.221 2506.868 521.876 16 .000 

169 1.44 0.999 1604.589 2487.825 516.812 16 .000 

 

Stage B5 DVCOUNT Analysis with DV5, All EVs; α = .20 

This step of the analysis began with the Model 169 predictors and added the 

Months EEVs: EV1ATM, EV2ARN, EV8USE, EV10ADD, EV1ATM·EV2ARN, 
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EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV10ADD, 

EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, January, February, 

March, April, May, June, July, August, September, October, November, December. The 

Tweedie MVP was set at 1.44 and significance level remained at p < α = .20. 

Table 28 

Stage B5 DVCOUNT Results for DV5, All EVs 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

170 1.44 .984 1482.918 2475.447 551.190 27 .000 

171 1.44 .984 1482.918 2475.447 551.190 27 .000 

172 1.44 .983 1482.900 2474.448 551.190 26 .000 

173 1.44 .982 1484.133 2471.659 550.979 25 .000 

174 1.44 .981 1485.264 2469.775 550.862 24 .000 

175 1.44 .980 1485.510 2467.936 550.701 23 .000 

176 1.44 .979 1487.497 2466.097 550.540 22 .000 

177 1.44 .979 1492.014 2464.508 550.129 21 .000 

178 1.44 .978 1491.176 2462.855 549.782 20 .000 

179 1.44 .978 1492.774 2462.272 548.365 19 .000 

180 1.44 .969 1481.610 2437.651 541.793 19 .000 

181 1.40 .997 1515.908 2512.804 563.609 19 .000 

182 1.40 .997 1523.859 2512.378 562.035 18 .000 

Stage B5 produced Models 170 to 182 (Table 28). The following EVs were not 

significant at p < α = .20 and were removed from the model in the following order: 



179 

 

January, December, November, March, February, October, September, August, July, 

EV2·EV7.  

The removal of Months EVs was of particular interest. From a subject matter 

expertise perspective, the months were removed in the correct order leaving the months 

of April, May, and June. These three months would logically establish the environmental 

antecedent conditions for the development of WNv. Model 182 was selected as the best 

model with a D = .997 and AIC = 2512.378, and consisted of the following terms: 

EV1ATM, EV2ARN, EV8USE, EV10ADD, EV1·EV2, EV1·EV6, EV1·EV8, EV1·EV10, 

EV2·EV9, EV6·EV7, EV6·EV10, EV7·EV8, EV7·EV9, EV8·EV10, EV9·EV10, Apr, May, 

June. 

Stage B6 DVCOUNT Analysis With All EVs, α = .05 

In Stage B6, the significance level changed to α = .05 and the Tweedie MVP 

started at 1.40 (Table 29). It began with the Model 182 predictors except for the removal 

of EV1·EV8 (p = .061) which was not significant at p < α =.05. The purpose of this stage 

and the change in significance level was to assess models with a more stringent 

requirement for EV significance, for comparison to previous models, and to ensure that 

the final model was not over-specified with EVs contributing very little to goodness-of-

fit. 

In this stage of modeling, only the 2FI, EV1ATM·EV8USE, was not significant at 

p < α =.05. and was removed from the model. The removal of this 2FI had a small but 

positive effect on the D score as the model progressed with Tweedie MVP adjustments at 
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1.39 and 1.395. Model 185 was the best model with the following scores: D = 1.000 and 

AIC = 2520.159. Model 185 consisted of the following EEVs: EV1ATM, EV2ARN, 

EV8USE, EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June. 

Table 29 

Stage B6 DVCOUNT Analysis With DV5, EVs, 2FIs, and Months, α = .05 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

183 1.400 .998 1533.391 2513.754 558.659 17 .000 

184 1.390 1.003 1539.083 2526.590 563.058 17 .000 

185 1.395 1.000 1536.228 2520.159 560.828 17 .000 

 

Comparison of DVCOUNT Stage B5 and B6 Models 

The Stage B6 analysis looked at the best interim models in Stages B5 and B6. 

Models 182 and 185 included all but one of the same predictors, (EV1·EV8), which was 

removed in Stage B4 Model 182. Based on the goodness-of-fit statistics, I selected the 

Stage B6 Model 185 as the final DVCOUNT model with D = 1.000 and LL Ratio χ2 560.828 

(17), p < .001 (Table 30). This model consisted of the following terms: EV1ATM, 

EV2ARN, EV8USE, EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, 

EV1ATM·EV10ADD, EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, 
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EV6AWS·EV7ELV, EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, 

EV9POP·EV10ADD, April, May, June. Model 185 produced the following measures: 

MAE = 0.895, RMSE = 2.199. 

Based on these results, I rejected the RQ2 DVCOUNT null hypothesis at p < α = .05. 

I concluded there is evidence that at least one coefficient in the final regression model is 

not equal to zero, and that the final model is a statistically significant predictor of DV5 

(the best DV for predicting the count of WNv incidents in the future). 

Table 30 

Comparison Of Stage B5 and B6 Models 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

182 1.400 .997 1523.859 2512.378 562.035 18 .000 

185 1.395 1.000 1536.228 2520.159 560.828 17 .000 

 

Stage C1 DVCOUNT Analysis Using DVPRESENCE Final Model EVs 

In the Stage C excursion, I started with the DVPRESENCE final model predictors 

(Model 84): EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, EV1·EV10, EV2·EV6, 

EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10, May, June, August, September, October, November. As in Stages A 

and B, I used a significance level of p < α = .20 and compared the D values. Thirteen 

models were produced (Models 186-201) in the model building process. When all 
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predictors were significant, I then adjusted the Tweedie MVP. The best model for Stage 

C was Model 190, D = 1.000 and LL Ratio χ2(19) =468.833, p < .001 (Table 31). 

Table 31 

Stage C1 DVCOUNT With DVPRESENCE Final Model EVs 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

186 1.5 1.004 1559.274 2458.608 469.392 23 .000 

187 1.5 1.003 1559.212 2456.608 469.391 22 .000 

188 1.5 1.002 1561.148 2454.658 469.341 21 .000 

189 1.5 1.000 1563.837 2452.930 469.070 20 .000 

190 1.5 1.000 1562.524 2451.161 468.833 19 .000 

191 1.5 .999 1564.192 2449.426 468.574 18 .000 

192 1.5 .998 1564.231 2447.783 468.216 17 .000 

193 1.5 .998 1563.929 2445.957 468.043 16 .000 

194 1.5 .997 1574.935 2444.426 467.574 15 .000 

195 1.5 .996 1575.527 2442.851 467.148 14 .000 

196 1.5 .996 1580.569 2442.352 466.151 13 .000 

197 1.5 .996 1584.252 2440.697 465.503 12 .000 

198 1.5 .995 1583.150 2439.738 464.262 11 .000 

199 1.4 1.041 1640.38 2565.422 494.991 11 .000 

200 1.395 1.044 1643.344 2572.033 496.955 11 .000 

201 1.45 1.017 1610.892 2501.028 477.882 11 .000 
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Stage C2 Comparison Stage B and C DVCOUNT Final Models 

To complete the DVCOUNT analysis, I examined the Stage B and Stage C1 final 

models (Table 32). While the Stage C1 model (same predictors as the final BLR model) 

result was better than I had expected, considering the differences in data sets and 

statistical tools, I retained the Stage B Model 185 as the final model for several reasons. 

Model 185 was vetted through the entire GZLM analysis process, retaining a more 

inclusive set of EEVs and predictors. The D was virtually the same as Model 185, 

although the Stage C model had a much lower LL Ratio χ2 score. The Model 185 

significance when compared to the null model was better than the Stage C model. 

Table 32 

Stage C2 Comparison of Stage B and C Final Models 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

185 1.395 1.000 1536.228 2520.159 560.828 17 .000 

190 1.450 1.000 1562.524 2451.161 468.833 19 .000 

  

I also compared the two models using MAE and RMSE. Model 185 produced the 

following error metrics: MAE = 0.895, RMSE = 2.199. The difference between the MAE 

and RMSE scores (1.304) is reflective of the variance of error in the sample (Eumetrain, 

2017). Model 190 produced the following: MAE = 0.875, RMSE = 2.227. The difference 

between MAE and RMSE scores was 1.352. Both error metrics are considered to be 

better when the score is lower. In this instance, Model 185 outperformed Model 190.  
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Finally, from a subject matter perspective, I found the Stage B model to be more 

robust with regards the predictors of interest. The final DVCOUNT model remained Model 

185 which had the following predictors: EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June.  

DVCOUNT Final Model 2FI Analysis 

Upon selection of the final DVCOUNT Model 185, I conducted an analysis of the 

final model 2FIs of interest. Four EEVs were significant (p < .05) and contributed to the 

model goodness-of-fit (D = 1.000). Three EEVs (EV6AWS, EV7ELV, and EV9POP) were 

not in the final model but exerted moderating effects on the other EVs because they were 

part of 2FIs in the final model. In this section I address five of the 10 2FIs as they are 

directly related to the remaining four EEVs (Figures 45-52). 

The relationship between EV2ARN and DV5 was influenced by minimum, mean, 

and maximum average temperature (Figure 45). When the average temperature was at its 

minimum, the predicted number of WNv incidents remained low as average rainfall 

increased. When the average temperature was at its mean, the predicted number of WNv 

incidents rose but remained steady as the average rainfall increased. When the average 

temperature was at its maximum, the predicted number of WNv incidents rose sharply as 

rainfall increased. 
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Figure 45 

Predicted DV5 WNv Count as a Function of EV1ATM for EV2ARN 

 

 

The relationship between EV1ATM and DV5 was influenced by minimum, mean, 

and maximum average rainfall (Figure 46). When EV2ARN was at its minimum, mean, 

and maximum values, the predicted number of WNv incidents increased sharply as the 

average temperature exceeded 400F. 
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Figure 46 

Predicted DV5 WNv Count as a Function of EV2ARN for EV1ATM 

 

 

The relationship between EV10ADD and DV5 was influenced by minimum, mean, 

and maximum average temperature (Figure 47). When the average temperature was its 

minimum, predicted WNv incidents rose sharply with an increase in dew point deficit. 

When the average temperature was at its mean, predicted WNv incidents decreased as the 

dew point deficit increased. When the average temperature was at its maximum value, 

predicted WNv incidents decreased sharply as the dew point deficit increased. 

 



187 

 

Figure 47 

Predicted DV5 WNv Count as a Function of EV10ADD for EV1ATM 

 

 

The relationship between EV1ATM and DV5 was influenced by minimum, mean, 

and maximum average dew point deficit (Figure 48). When the average dew point deficit 

was at its minimum value, predicted WNv incidents rose sharply as the temperature 

exceeded 550F. When the average dew point deficit was at its mean, the count of 

predicted WNv incidents increased as the average temperature increased. When the 

average dew point deficit was at its maximum value, the count of predicted WNv 

incidents remained low (< 2.0) as temperature increased. This reflects the importance of 

moisture and relative humidity (lower dew point deficits) in the WNv environment. 
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Figure 48 

Predicted DV5 Count as a Function of EV1ATM for EV10ADD 

 

 

The relationship between EV9POP and DV5 was influenced by minimum, mean, 

and maximum average rainfall (Figure 49). When average rainfall was at its minimum 

value, the count of predicted WNv incidents increased sharply as the average population 

increased. When average rainfall was at its mean, the count of predicted WNv incidents 

increased slightly as the average population increased. When average rainfall was at its 

maximum value, the count of predicted WNv incidents remained low as the average 

population increased. In summary, light to moderate average rainfall appeared to provide 

a better environment for WNv, particularly in more largely populated areas. 
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Figure 49 

Predicted DV5 WNv Count as a Function of EV9POP for EV2ARN 

 

 

 The relationship between EV2ARN and DV5 was influenced by minimum, mean, 

and maximum average population (Figure 50). When the average population was at its 

minimum value, the count of predicted WNv incidents remained stable as the average 

rainfall increased. When the average population was at its mean, the count of predicted 

WNv incidents rose as the average rainfall increased. When the average population was 

at its maximum value, the count of predicted WNv incidents increased sharply as the 

average rainfall increased. In summary, the relationship between average rainfall and 

predicted WNv incidents was positively affected by larger average populations. 
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Figure 50 

Predicted DV5 WNv Count as a Function of EV2ARN for EV9POP 

 

 

The relationship between EV10ADD and DV5 was influenced by minimum, mean, 

and maximum wind speed (Figure 51). When the average wind speed was at its 

minimum, mean, and maximum values, the count of predicted WNv incidents decreased 

as the average dew point deficit increases. In summary, average wind speed negatively 

moderated the relationship between predicted WNv count and average dew point deficit. 
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Figure 51 

Predicted DV5 WNv Count as a Function of EV10ADD for EV6AWS 

 

 

The relationship between EV6AWS and DV5 was influenced by minimum, mean, 

and maximum average dew point deficit (Figure 52). When the average dew point deficit 

was at its minimum and mean value, the count of predicted WNv incidents rose slightly 

with higher average wind speed. When the average dew point deficit was at its maximum, 

the count of predicted WNv incidents decreased dramatically with higher average wind 

speeds > 6 mph. In summary, the relationship between predicted WNv incidents and 

average wind speed was moderated by average dew point deficit in two ways, 1) higher 

humidity positively affected the relationship between relationship between the outcome 
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variable and average wind speed, 2) lower humidity had a negative effect on the 

relationship. 

Figure 52 

Predicted DV5 WNv Count as a Function of EV6AWS for EV10ADD 

 

 

DVCOUNT Final Model 

 Model 185 (D = 1.000, AIC =2520.159) was selected as the final model. I 

revisited the underlying assumptions for the GZLM regression and found all assumptions 

associated with the EEVs that had been previously checked to hold true. The final model 

consisted of these terms: EV1ATM, EV2ARN, EV8USE, EV10ADD, EV1ATM·EV2ARN, 

EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV10ADD, 

EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, April, May, June. 
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The final model equation predicting the DVCOUNT was as follows (see Equation 

12): 

DVCOUNT = -4.368 + (0.051∙EV1ATM) + (-12.111∙EV2ARN) + 

(0.629∙EV8USE) + (0.184∙EV10ADD) (0.142∙EV1ATM·EV2ARN) + (-

0.003∙EV1·EV6) + (-0.0037∙EV1·EV10) + (0.007∙EV2·EV9) + (-

0.0002∙EV6·EV7) + (-0.013∙EV6·EV10) + (0.000∙EV7·EV8) + (-

0.000002∙EV7·EV9) + (-0.070∙EV8·EV10) + (-0.003∙EV9·EV10) + (-

0.489∙April) + (-0.404∙May) + (-0.282∙June) (12) 

DVCOUNT Results 

Based on the final model, I examined all cases with positive WNv counts. This is 

depicted in Figure 53 where DV5 actual WNv counts (blue) are plotted against the 

predicted WNv counts (red). Like the findings in the DVPRESENCE modeling, the use of 

EEVs alone resulted in predictions of the DVCOUNT across the 902 incidents when and 

where they occurred, but the ability to accurately predict specific counts > 4 was not 

achieved with the final model predictors. High counts of WNv incidents in the 2002, 

2003, 2005, 2006, and 2012 were not predicted accurately by the model. While these 

high-count cases were unusual across the entirety of the study timeframe, they likely 

reflect the limitations of the current model accuracy using the chosen EEVs alone. 
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Figure 53 

DV5 Actual WNv Counts Versus Predicted WNv Counts, All Counties 

 

Note. DV5 WNv actual counts (blue) versus predicted counts (red). 

  

To visualize the results of the DVCOUNT data, I constructed 2003, 2012, and 2016 

scatterplots for the counties of Aiken, Charleston, Dorchester, Greenville, Horry, and 

Richland (Appendix F). These counties reported the highest numbers of WNv incidents 

in SC over the years 2002-2016. Figure 54 is an example of that analysis for Richland 

County. In the years 2002-2016, 70 incidents were reported in the county. The Model 184 

maximum prediction count was 3.06, falling below the actual count numbers. This was 

representative of the other counties which predicted maximum counts from 1.79 to 4.05. 

Although the DVCOUNT regression final model accurately predicts incident counts of WNv 
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< 4.0 over the total of WNv incidents, these were consistently lower than actual DV5 

incident counts. This was also consistent with the low DV1 incident counts. 

Figure 54 

DV5 Actual WNv Incident Count Versus Predicted WNv Incident Count for Richland 

County 2002-2016 

 
Note. DV5 Actual vs Predicted Incident Count Richland County 2003, 2012, 2016. 

Incidents were reported in 2003, 2012, and 2016. Stage B Model 121, Tweedie 1.395. 

 

DVCOUNT Additional Findings 

The DVCOUNT final model included four operationally significant predictors: 

average temperature, average rainfall, land use, and average dew point deficit. In the 

GZLM final model, EV7ELV and EV9POP did not contribute to the model goodness-of-

fit but did exert moderating effects on model EEVs as a predictor of probability of WNv 
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occurrence. In this section, I summarize the more interesting interactions from the 

DVCOUNT final model. 

Average Temperature (DVCOUNT). The GZLM regression final model average 

temperature coefficient (𝛽 = 0.051, p < .05) using the 90-Day moving average DV5, 

showed a slightly positive correlation on the presence of WNv with a .0002 odds ratio. 

The average temperature descriptive data showed the GZLM regression parameters 

captured the influence of temperature on the DV across a smaller temperature range 

(36.98–92.01) versus that of the BLR model (23.57–97.97). The difference in means 

72.84 (GZLM regression) and 63.40 (BLR) coupled with different regression types and 

different time lags would have contributed to the different BLR and GZLM regression 

model outcomes.  

Average Rainfall (DVCOUNT). Average rainfall was an historical EEV gleaned 

from literature, and it was an operationally significant predictor for DVCOUNT only. In the 

GZLM final estimates, the average rainfall (β = -12.11, p < .05) was derived from 970 

cases. In the GZLM modeling, the mean for average rainfall was 0.14 inches (SD = 0.09) 

with minimum and maximum values of 0.00 and 0.48 respectively. In the years reporting 

50 or more WNv incidents (2002, 2003, 2005, 2006, 2007, 2012), the mean was 0.14 

inches (SD = .08) with minimum and maximum values of 0.00 and 0.46 inches 

respectively.  

Although, average rainfall was not a significant predictor in the DVPRESENCE 

modeling, it did interact as a moderator of the relationships between the DV and two EVs 
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in the final model. In the relationship between DV5 and average wind speed, average 

rainfall was negatively correlated to the DV (β = -0.332, EXP(B) = 0.717). In the 

relationship between DV5 and average dew point deficit, average rainfall was positively 

correlated to the DV (β = 0.182, EXP(B) = 1.200). 

Land Use (DVCOUNT). Land use was coded as agricultural use (24%) and 

industrial use (76%). In the years reporting 50 or more WNv incidents (2002, 2003, 2005, 

2006, 2007, 2012), 83% percent of all WNv incidents occurred. Within that percentage, 

industrial land use accounted for 71% of the WNv incidents while agricultural land use 

accounted for 12%. The GZLM final model produced a land use β = 0.63, EXP (B) = 

1.86, showing a positive correlation between land use and DVCOUNT. 

Land use was based on population per square mile in this study and as 71% of all 

WNv incidents occurred in land coded as industrial use, I found that areas of dense 

human activity promoted the occurrence of WNv incidents. 

Dew Point Deficit (DVCOUNT). Dew point deficit was a new variable introduced 

for this study. It was defined as the “difference in degrees between the air temperature 

and the dew point” (American Meteorological Society, 2012). Dew point deficit values 

reflect levels of moisture saturation in the air. When the dew point deficit is 5 units of ºϜ 

different or lower, the air moisture content is nearly saturated. Higher dew point deficit 

values reflect dryer conditions. 

The census mean for average dew point deficit was 11.73, with the minimum and 

maximum values at 0.00 and 34.09 respectively. In the years reporting 50 or more WNv 
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incidents (2002, 2005, 2006, 2007, 2012), the dew point deficit mean (10.06) was lower 

than the census mean, as was the maximum value (26.33). This would mean that in the 

high-count years for WNv, the air moisture content would have been higher in high count 

years than the overall census means. This environmental predictor could support the 

genesis and maturation of WNv in those high producing years. 

Months (DVCOUNT). In the GZLM final model, the months of April (𝛽 = .489, 

Exp(B) = 1.630), May (𝛽 = .404, Exp(B) = 1.497), and June (𝛽 = .282, Exp(B) = 1.326), 

were all positively correlated with the DV. The β values and the odds ratio decreased 

steadily from April to June. While May and June were operationally significant 

predictors in the BLR and GZLM analysis, the months of August, September, October 

and November were not included in the GZLM analysis. After reviewing the model 

building process, the months of August, September, and October were the last predictors 

to be removed from the model (p < α = .20). These results are likely grounded in the 

differences in the data sets and time lagged DV. 

Average Temperature and Average Rainfall Interaction (DVCOUNT). When the 

average temperature was at its minimum, the predicted number of WNv incidents 

remained low as average rainfall increased. When the average temperature was at its 

mean, the predicted number of WNv incidents rose but remained steady as the average 

rainfall increased. When the average temperature was at its maximum, the predicted 

number of WNv incidents rose sharply as rainfall increased. 
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When average rainfall was at its minimum, mean, or maximum values, the 

predicted number of WNv incidents increased sharply as the average temperature 

exceeded 400F.  

Average Temperature and Average Dew Point Dewpoint Interaction 

(DVCOUNT). When the average temperature was its minimum, predicted WNv incidents 

rose sharply with an increase in dew point deficit (Figure 44). When the average 

temperature was at its mean, predicted WNv incidents decreased as the dew point deficit 

increased. When the average temperature was at its maximum value, predicted WNv 

incidents decreased sharply as the dew point deficit increased. 

When the average dew point deficit was at its minimum value, predicted WNv 

incidents rose sharply as the temperature exceeded 550F (Figure 45). When the average 

dew point deficit was at its mean, the count of predicted WNv incidents increased as the 

average temperature increased. When the average dew point deficit was at its maximum 

value, the count of predicted WNv incidents remained low (< 2.0) as temperature 

increased. This reflects the importance of moisture and relative humidity (lower dew 

point deficits) in the WNv environment. 

Urbanization and Average Rainfall Interaction (DVCOUNT). When average 

rainfall was at its minimum value, the count of predicted WNv incidents increased 

sharply as average population increased (Figure 46). When average rainfall was at its 

mean, the count of predicted WNv incidents increased slightly as the average population 

increased. When average rainfall was at its maximum value, the count of predicted WNv 
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incidents remained low as the average population increased. In summary, light to 

moderate average rainfall appeared to provide a better environment for WNv, particularly 

in more largely populated areas. 

Average Wind Speed and Average Dew Point Deficit Interaction (DVCOUNT). 

When the average wind speed was at its minimum, mean, and maximum values, the 

count of predicted WNv incidents decreased as the average dew point deficit increases. In 

summary, average wind speed negatively moderated the relationship between predicted 

WNv count and average dew point deficit. 

When the average dew point deficit was at its minimum and mean value, the 

count of predicted WNv incidents rose slightly with higher average wind speeds (Figure 

49). When the average dew point deficit was at its maximum, the count of predicted 

WNv incidents decreased dramatically with higher average wind speeds > 6 mph. In 

summary, the relationship between predicted WNv incidents and average wind speed was 

moderated by average dew point deficit in two ways, 1) higher humidity positively 

affected the relationship between relationship between the outcome variable and average 

wind speed, 2) lower humidity had a negative effect on the relationship.  

Land Use and Dew Point Deficit (DVCOUNT). In the land use and average dew 

point deficit interaction, when average dew point deficit was at its maximum value 

(33.48), the predicted number of WNv occurrences increased slightly when land use was 

industrial. When average dew point deficit was at its minimum value (0.00), the predicted 

number of WNv occurrences increased moderately when land use was classified 
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industrial. In summary, average dew point deficit had a moderating effect on the 

relationship between the DV and land use. The predicted number of WNv occurrences 

increased significantly when land use was classified as agricultural, and the dew point 

deficit was at its minimum value. 

Summary 

 The purpose of this ex post facto quantitative research was to examine the use of 

EEV data in predicting outbreaks of West Nile Virus in South Carolina when robust EPS 

and EVS data are unavailable. The research questions were formulated to understand the 

effects of the EEVs on the DVs, examining the statistical utility of EEVs in predicting 

outbreaks of WNv in SC. In this research, a WNv incident was the positive identification 

of the virus in a locality in either a human, mosquito, bird, equine, or sentinel animal.  

To address the research gap of accurate and timely predictive modeling of WNv, I 

posited 10 EEVs: (a) average 30-day temperature, (b) average 30-day rainfall, (c) average 

30-day dew point, (d)average 30-day snow depth, (e) average 30-day barometric 

pressure, (f) average 30-day wind speed, (g) elevation, (h) land use, (i) urbanization and 

(j) average dew point deficit. During EDA, average dew point was removed, and average 

dew point deficit was added. Nine EEVs were subsequently used in the DVPRESENCE and 

DVCOUNT regression analyses based on a systems-level review of the WNv decision-space 

in the literature and the requirement for all predictors to be readily available from 

publicly accessible data sets. 
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Historical EEV data were collected from publicly accessible sites while WNv 

incident data were collected from SC DHEC. The complete data set consisted of 9,936 

cases covering 1999 to 2016. Each case included monthly EEV and WNv incident data. 

Following review of the data, cases for the years 1999 to 2001 were excluded as no WNv 

incident reporting occurred in SC during those years SC. The final data set consisted of 

8,280 cases (46 counties x 15 years x 12 months). From that population, there were 902 

reported incidents of WNv associated with 360 events across all counties in the years 

2002-2016.  

The distribution of the data required a change to the planned analysis, moving the 

study away from MLR toward a combination of BLR (for the presence of WNv) and 

GZLM (for the count of WNv incidents). For the DVPRESENCE analysis, the predicted 

outcome was oriented to the likelihood of the presence of WNv in an environment. The 

DVCOUNT regression outcome was oriented to the count of WNv incidents in 46 SC 

counties. The DVPRESENCE analysis was performed on a modified data set of 970 cases 

which were extracted from the data set for the DVCOUNT analysis, focusing only on those 

cases for which there was a WNv event.  

RQ1 was, in the absence of robust EPS and EVS data, which EEVs are predictors 

of incidents of WNv in SC in a current month? Based on the regression models 

developed for DVPRESENCE and DVCOUNT, I rejected the RQ1 null hypothesis and 

concluded there was evidence that at least one coefficient in the final regression models 
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was not equal to zero and that each of the final models was a statistically significant 

predictor of DVPRESENCE and DVCOUNT. 

RQ2 was, in the absence of robust EPS and EVS data, which EEVs accurately 

predict incidents of WNv in SC in the future? I rejected the RQ2 null hypotheses and 

concluded there was evidence that at least one coefficient in the final regression model 

was not equal to zero and that each of the final models was a statistically significant 

predictor of DVPRESENCE and DVCOUNT. 

Among the candidate predictors, EV1ATM was the only operationally significant 

EEV for both DVPRESENCE and DVCOUNT. The following EEVs were not operationally 

significant predictors of WNv: average snow depth, average barometric pressure, and 

elevation.  

 In both the BLR and GZLM regression analyses, I found that EEVs alone can 

predict DVPRESENCE. In the study findings, I considered predictors that were included in 

mathematical models that proved to be good predictors of the response, as operationally 

significant predictors of the response. Both regression methods highlighted the 

significance of certain EEVs in predicting the DVPRESENCE and DVCOUNT. The variables 

EV1ATM, May, and June were operationally significant in both types of regression and 

throughout the model-building process.  

Within the GZLM analysis, I took an excursion which started with the BLR final 

model predictors and ended with a comparison of GZLM model outcomes. While the 

results of a predictive model of WNv incident counts using the same predictors as the 
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final BLR model for predicting WNv events was better than I had expected, considering 

the differences in data sets and statistical tools, I considered the final model developed 

through the entire GZLM analysis process to be superior. It retained a more inclusive set 

of predictors, and the measurement accuracy was better than the model consisting of only 

the predictors from the BLR final model.  

As a result of the study analysis, I found that specific combinations of 

operationally significant EEVs can predict WNv presence in the environment and provide 

count data with good precision but with lower accuracy. Both regression methods 

highlighted the significance of average temperature in predicting DVPRESENCE and 

DVCOUNT.  

I interpret these findings in Chapter 5, expanding on the study limitations, the 

generalizability of the final models, as well as recommendations for future use of EEVs 

in predicting the presence of WNv. I also include recommendations for future research 

and the implications of the study for practice and social change. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

The purpose of this ex post facto quantitative research was to examine the use of 

EEV data in predicting outbreaks of WNv in SC when robust EPS and EVS data are 

unavailable. The study analysis revealed three key findings. First, in the absence of EVS 

using sentinel animals and human EPS data, EEV data captured from publicly available 

sources can provide useful predictions of the presence and count of WNv in SC prior to 

an outbreak. Based on some EHM-determined threshold, this level of awareness could 

provide an early indication of WNv in local environments to take steps to mitigate the 

severity of the outbreak.  

Second, although the BLR and GZLM tools were used to examine different data 

sets and measures of WNv outbreaks in SC, some predictors were operationally 

significant in both types of regression. The data collection process and subsequent 

regression analysis reflected past findings with regards to the importance of 

locally/regionally derived data. The predictors average temperature and the months of 

May and June were included in predictive models throughout the respective model-

building process. 

Third, in SC, I found the complexity of the WNv lifecycle to be influenced by 

complex interdependencies. This finding corroborated the widely accepted viewpoint that 

the significance of individual predictors is heavily dependent on the other predictors in 

any regression model.  
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 This chapter includes a summary of key findings and interpretation of findings. I 

describe limitations of the study and offer recommendations for future research. I 

conclude with implications for positive social change and recommendations for practice. 

Interpretation of Findings 

The key findings are addressed in three sections below. The interpretations and 

narrative of the findings flow from a broad general finding to more specific lessons 

learned. Together, they address the challenges of accurately predicting the presence of 

WNv in the state of SC. 

A Novel Process for Predicting WNv 

Predicting outbreaks in SC required a longitudinal approach to data collection. As 

the state first started to record WNv incidents in 2002, my data collection efforts spanned 

the 2002 to 2016 timeframe. I aligned count data received from SC DHEC in cases by 

county, year, and month. Each case contained variables and predictors with data 

associated to the month in question. This resulted in 8,280 cases to be used in the 

regression analysis. These cases were also organized by 0-, 30-, 60- and 90-day time-lags 

to account for any serial correlation. 

The nine EEVs chosen for the study were either historical or new to previous 

WNv research. Average temperature, rainfall, snow depth, elevation, land use, and 

population EEVs were either directly related to past studies or were variations of the 

same (see Cotar et al., 2016; Ozdenerol et al., 2013; Rochlin et al., 2011; Young et al., 

2013). Average wind speed, barometric pressure, and dew point deficit were new to the 



207 

 

research topic. In both the BLR and GZLM, these EEVs, their 2FIs, and the Month EVs 

acted as the set of contextual variables for predicting the presence and count of WNv in 

SC. 

The study design resulted in a two-step approach to analysis using BLR and 

GZLM. This was required because the empirical data set distribution was not as expected 

and based on the nature of the EID was most probably incomplete (meaning that it was 

highly probable that there were WNv incidents over time not reported or recorded). As a 

result, the data set was highly skewed, with most response values equal to zero. For the 

purposes of this study, the data could not support classic MLR or satisfy its assumptions. 

The nature of the data forced an alteration of the original plan into two directions with 

two modified data sets using BLR to predict the probability of an outbreak of any 

dimension and GZLM using the Tweedie distribution to predict the magnitude of an 

outbreak. 

The new plan was to use BLR analysis (DVPRESENCE) and modeling technique to 

give decision makers an indication, based on a predictive, mathematical model composed 

of a set of EEVs, that sometime in the future an outbreak was likely. Then, given a likely 

outbreak, the GZLM (DVCOUNT) analysis and modeling technique would provide an 

indication of the magnitude of an outbreak (in terms of a predicted number of incidents). 

Because the empirical data provided by the state were flawed, the precision with 

which to predict an outbreak or its magnitude could not be any better than the accuracy of 

the data upon which the models were developed. However, the BLR predictive model 
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was capable of accounting for 29% of the variance of the outcome variable. This 

provided a reasonably useful prediction of the probability of WNv presence 30 days in 

advance of an outbreak. Practically, if the predicted probability of an outbreak, based on 

values for the EEVs, exceeds some EHM applied threshold, decision makers would have 

the evidence to act on that probability of an outbreak and take steps to mitigate the 

severity. 

Likewise, the GZLM regression model could provide a useful prediction of the 

number of incidents in any month, given the values for the EEVs. Realizing the GZLM 

regression model relied on empirical data for which incidents were most likely 

underreported, the magnitude of the underreporting could be quantified so that 

predictions of the number of incidents based on values for the EEVs might be adjusted to 

reflect a more accurate prediction of the expected number. 

In addition, given the lack of accuracy in the GZLM regression model predictions, 

the GZLM prediction could be characterized by categories of severity—for example, by 

quartile: low intensity, moderate, high, and severe (without trying to pin down exact 

predicted numbers based on flawed empirical data); but providing a good indicator 

nevertheless would be useful to EHMs. It would be possible to quantify the error in each 

of the severity quartiles, perhaps demonstrating less error in the low numbers as the 

predictions are likely closer to the empirical data. 

It is important to note that the analysis showed the best predictive models included 

a time lag, meaning models consisting of a set of EEVs were most effective at predicting 
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an outbreak or the number of incidents 30 days in the future. This seems logical because 

the environmental conditions, described by the EEVs, are likely to spawn and spread the 

virus, not immediately, but over time.  

Predicting the Presence and Counts of WNv in SC 

In SC, I found that in the years 2002 to 2016, the WNv life cycle was most active 

between the months of July and November and was most prevalent in counties with 

133,000 or more inhabitants. To support the mosquito-borne virus, the average 

temperature needed to range between 40.00F and 95.10F (4.40C to 35.00C). WNv 

incidents were greater when average rainfall remained at or close to 0.14 inches per 

month. Average barometric pressures above 1,000.00 millibars increased WNv counts 

when temperature was above 45.00F (7.20C).  

I also found that positive WNv events in SC occurred across a range of wind 

speeds from 1.64 to 9.95 mph. A quarter or more of the incidents were associated with 

wind speeds greater than 5 mph and by the influence of barometric pressure above 

1,000.00 millibars at increased wind speeds. Wind speeds between 4.39 and 5.29 mph 

affected WNv incident counts like past research findings (see Cheong et al., 2013). 

Cheong et al. (2013) found that rising windspeeds increased WNv mosquito dispersion 

while decreasing the number of blood meals. Land classified as industrial use was also 

positively correlated to WNv outcomes. Finally, in the years in which the virus was most 

active in the state, the average dew point deficit pointed to more humid conditions. All of 

these conditions acted as antecedents to the presence of WNv. 
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In combination, the study EEVs defined a contextual decision-space for EHMs 

when considering the complexities of predicting the presence of WNv. Many of the 

findings directly correlate with previous studies. Cotar et al. (2016), Ozdenerol et al. 

(2013), and Rochlin et al. (2011) found that temperature was an operationally significant 

predictor of WNv. In SC, average temperature was a significant predictor of WNv in both 

the BLR and GZLM analysis. In years reporting 50 or more WNv incidents (2002, 2003, 

2005, 2006, 2007, 2012), the WNV ecosystem in SC thrived within an average 

temperature of 40.00F to 95.10F.  

This finding is like a 2020 study examining temperature-dependence on mosquito-

borne diseases (see Shocket et al., 2020). The researchers found mosquitoes, such as the 

SC native Culex Quinquefasciatus, were biologically temperature-dependent within a 

range of 50.00F to 78.00F. When temperatures were within this range, vector-borne 

diseases were supported by the environment. Consequently, in future modeling of WNv 

in SC, EHMs could refine their preventive activities to average temperatures within the 

interval 40.00F to 95.10F. This range of temperature would also affect the predictors’ 

relationship with the outcome variable depending on the temperature means of the 

months in question. This would explain why temperature within the BLR final model was 

negatively correlated with the DV, while the GZLM model had a positive correlation. 

The influence of average temperature on WNv was moderated by average 

barometric pressure. When barometric pressure is high, WNv incidents are highly 

correlated with temperature, but at low temperatures, the relationship between WNv and 
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temperature is less pronounced. When average barometric pressure was decreasing and 

temperatures rose, the probability of WNv occurrence decreased. This barometric 

pressure interaction had a moderate to significant effect on the DV for temperature ranges 

> 45.00F. This interaction was new to WNv research. 

The mean average rainfall in the most productive WNv years was consistent with 

the census mean and may suggest that rainfall is more important to the genesis and 

maturation of mosquito larvae development than it is to the virus transmission. In fact, 

once the virus is mature and resident in the female mosquito, increased amounts of 

rainfall may hinder the spread of WNv vector. Similar findings were highlighted by Paull 

et al. (2016) where they posited increased rainfall could either increase or decrease 

mosquito abundance. 

An interval of average wind speeds between 4.38 and 5.29 existed where WNv 

cases were recorded as either positive or negative. These results appear to be supported 

by a 2013 study where both decreases and increases in wind speed increased the relative 

risk of dengue fever cases (see Cheong et al., 2013). In this 2013 study, wind speed was 

examined over 0, 30, 60, and 90-day time lags. Depending on the time lag, the relative 

risk of dengue fever rose and fell with decreases and increases in wind speed. The 

researchers found that lower wind speeds supported oviposition (expulsion of the egg into 

the environment) and contact with humans raising the risk of dengue fever (Cheong et al., 

2013). However, higher wind speeds also supported mosquito vector dispersion 
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(potentially to more populated areas) and oviposition (2013). In both instances, the 

relative risk of dengue fever rose within certain wind speed ranges. 

There was also an interaction between barometric pressure and wind speed. When 

wind speed was high and barometric pressure was at its minimum, the probability of an 

WNv outbreak was highest. When the winds were average or low, barometric pressure 

was not as influential on WNv event occurrence. 

Land use and population were connected in this study. Exploratory data analysis 

revealed that six SC counties accounted for 56% (504/902) of all reported WNv 

incidents. Each of these counties met the coding classification of industrial land use, a 

reflection of population per square mile in this study. Thus, in addition to the weather 

related EEVs used in this study, areas with greater populations (>133,000 per county) 

were more susceptible to the WNv incidents. This was true also for agricultural areas 

with denser populations. 

In the interaction between average barometric pressure and dew point deficit, the 

probability of a WNv occurrence was highest when average barometric pressure was high 

and the values for average dew point deficit were low. When the barometric pressure was 

moderate or low, dew point deficit was not a significant influence on probability. This 

finding was new to WNv research. 

The increasing odds ratios for the months June through October tracked with the 

EDA that found 96% of WNv occurring in these months. The month of May and 

November correlated negatively to the DV. May had only seven WNv events over the 
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study timeframe from 2002 to 2016 while November represented the end of the WNv 

cycle for the years of the study.  

The GZLM approach to determine the magnitude of that presence through the 

prediction of WNv incident counts was useful but mixed with the predictors used in this 

study. Although the final model was precise with regards to the occurrence of WNv, it 

could not accurately predict counts greater than four. This was likely due to incomplete 

empirical data, which lacked precision, partly as a result of a lack of accurate reporting 

and accounting. 

Petersen et al. (2013) found that within the United States, biological footprints can 

vary within the diverse ecological conditions in individual states. Reiner et al. (2013) 

found inherent problems with current mathematical models of mosquito-borne pathogens 

like WNv. As seen in my study, the ability to adequately define biological and ecological 

factors remained difficult. While nine EEVs were used as contextual variables in 

examining the abiotic conditions necessary for WNv, the BLR final model R2
Nagelkerke 

statistic of 29% reflected the complexities found in previous studies and highlights the 

limitation of defining the correct EEVs in a complex environment such as WNv.  

WNv Interdependencies and the Complex Nature of Predictor Selection 

The complex nature of the WNv introduces potential pathogenic, ecological, and 

anthropological predictors that need to be captured within a regional or local context. In 

other words, the influence of any individual EEV is moderated by many local/regional 

interactions between and among multiple EEVs. This is particularly true when the 
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researcher tries to capture the context surrounding a complex problem such as WNv. 

Some of these interactions are quantified, but there are many more subtle and complex 

real-world interactions that influence (moderate) the effect any one variable has on the 

response. That was the case in this study. 

Limitations of the Study 

My findings showed that predictive modeling of WNv in the state of SC requires 

accurate and persistent reporting of WNv incidents (of all categories) and environmental 

data to provide the robust truth data to train a contextually driven predictive model. I used 

WNv incident truth data captured by SC DHEC, but the low counts of reported WNv 

events likely reveals a combination of reporting constraints such as asymptomatic 

presentation by the virus, as well as a lack of consistent and persistent surveillance 

activities that are equally relevant to other states and geographic areas. This is reflective 

of the findings of previous studies such as Rochlin et al. (2011). 

Although the climate and topography of the region is like other temperate areas, 

the ability to generalize the study was limited by the use of regionally focused publicly 

accessible data (Liu et al., 2009; Ozdenerol et al., 2013). The scope of my study was 

limited to the state of SC, and the data collected were primarily historical, raising issues 

of external validity about the numerous means of collection as well as accuracy. Hence, 

any attempt to infer results beyond the scope of this study should be done with caution. 

The analysis of the best time lagged DV for both BLR and GZLM regression was 

limited. The BLR DV was selected only by comparing the R2
Nagelkerke and LL Ratio χ2 
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scores for models using the post-EDA EEVs; no other predictors were included in the 

initial analysis. The GZLM regression DV was selected by comparing D and LL Ratio χ2 

scores adjusted for different Tweedie distributions.  

Generalizability and Trustworthiness 

The analytical process used in this longitudinal study could potentially generalize 

to another state or geographic area that enjoys a temperate climate. The use of a decision-

theory construct which expands decision data to include contextual elements is also 

generalizable to topics outside of emerging infectious diseases. The EEV data were 

collected each month over a 15-year time period in all 46 SC counties. All data were 

accessed through public means using standard, acceptable measures. I found that EEVs 

such as average temperature, average rainfall, average wind speed, land use, population 

and dew point deficit, can be significant predictors of an otherwise complex biological 

phenomenon. 

The most vexing problem with WNv is that many of the cases are asymptomatic. 

Using a very inclusive incident definition (human, equine, mosquito pools, birds, other 

mammals), over a 15-year period, resulted in only 902 reported events. This highlights 

the importance of WNv incident reporting and analysis for purposes of prediction. It also 

raises the question of trustworthiness due to accuracy in the reported data. 

The CDC’s and other studies have highlighted the importance of local 

environmental conditions to the biology of the WNv. This means that EEVs used in the 

southeast United States may not be the same or have the same relevance for the virus in 
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other geographic regions. I also found that the reporting of environmental factors is not 

without errors and missing data. In many instances, I found environmental data to be 

missing for a particular county during a specific time period. This required the use of 

secondary sources to confirm the missing data. 

Validity and Reliability 

As planned, I used publicly accessible sources for EEV capture and WNv incident 

truth data from the SC DHEC. While the metrics for collecting the data are standardized, 

the collection means are not. In some county locations, data were not collected for certain 

time periods, and I was required to use a secondary source. However, I found that 

contextually rich environmental data are readily available to the public through several 

publicly accessible government and private websites. 

Recommendations 

Results of this study suggest that a model composed of contextually derived EEVs 

can provide operationally significant predictors of the presence of WNv in SC. The final 

models, generated through BLR and GZLM regression, could predict when WNv was 

likely to be present but the ability to predict the count of WNv incidents was limited to 

counts of three and below. Future researchers should consider the following: 

• Expand EEVs to include additional predictor variables that are contextually 

related to WNv. For example, data associated with storm drains would be 

interesting to explore in an EEV-only study. 
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• Given the lack of accuracy in the GZLM regression model predictions, 

another approach to interpreting the GZLM predictions could have been to 

categorize the results by levels of severity – for example by quartiles: low 

intensity, moderate, high, and severe. 

• Explore the benefits of a network centric Service Oriented Architecture (SOA) 

that would automatically collect EEVs based on predictive modeling 

requirements. 

• Conduct a more robust analysis of time lagged DV selection 

• Explore the use of artificial intelligence and machine learning to predict WNv 

incidents. 

Implications 

Positive Social Change Implications 

The social change resulting from this study provides EHMs with another 

approach to EID predictive modeling, particularly when EVS and EPS data are latent or 

not available. Using a tailored, contextual approach to decision making would allow 

EHMs to supplement current modelling capabilities using publicly available data in a 

near real-time fashion. The ability to understand when WNv outbreaks may occur would 

allow preventive actions to occur in a more pro-active and resource friendly manner.  

The use of contextually derived EEV data may also generalize to other EID 

predictive modeling efforts such as the Zika virus. Although, the epidemiological cycle 

associated with WNv incubation, transport, and transmission reflects stochastic 
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ecological and environmental conditions that differ from region to region, the framework 

developed in this study could be adapted to include those EEVs that were relevant to a 

specific locality. 

Methodological, Theoretical, and Empirical Implication 

In this research, I examined the relationship between DT, decision-making 

context (CYNEFIN), and systems theory to understand the impact of exogenous data on 

complex decision making. The tenets of these theories were combined to provide a 

theoretical framework that challenges traditional linear-causal approaches to decision 

making, to expand the manager’s perception of the decision-space, and to provide greater 

fidelity to the design and choice phases of the decision-making process.  

This theoretical approach was accomplished using an emphasis on data 

intelligence and specifically the use of systems-level exogenous data to provide context 

and reduce uncertainty in the decision-making process. The expansion of contextually 

related variables for the predictive modeling of WNv can provide EHMs and public 

health officials with another method to implement preventive measures in a timely 

fashion. 

Implications for Practice 

Managers of all professions are required to make decisions daily. These decisions 

are made within decision-spaces that range from simple to chaotic (Snowden & Boone, 

2007). The ability for a manager to make decisions when dealing with complicated and 
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complex decision-spaces is dependent on their ontological understanding, breadth of 

intelligence, and analytic support.  

This research used a contextually based theoretical foundation that leveraged the 

dynamic presence of publicly accessible data in forming intelligence collection strategies 

for decision making for WNv. The theoretical foundation approached the decision-space 

in a way that allows EHM practitioners to make decisions when empirical data are not 

available. In this study, I found that contextually derived EEV data could account for 

some variance in a WNv outcome. The use of DT, the CYNEFIN construct, and system-

thinking can provide EHMs with different approach to predicting WNv in a locality. 

Conclusions 

The outcomes of this analysis were revealing and important, based on a rigorous 

application of sound mathematical techniques. The original objective was achieved. It is 

possible to predict an outbreak of WNv based on a set of EEVs. Moreover, it is possible 

to predict with some confidence both the likelihood of an outbreak (of any magnitude) 

and the severity of an outbreak, based on external, environmental conditions. This may 

also be an analytical process that can be used in similar situations, to predict other real-

world phenomena based on external, environmental factors. 

This analysis also corroborated the widely accepted viewpoint that the significance 

of individual predictors is heavily dependent on the other predictors in any regression 

model. In other words, the influence of any individual EEV is moderated by many 

complex interactions between and among multiple EEVs. Some of these interactions are 



220 

 

quantified, but there are many more subtle and complex real-world interactions that 

influence (moderate) the effect that any one variable has on the response.  

Historically, the timely and accurate prediction of WNv in a locality requires 

robust EPS and EVS programs. These programs produce surveillance data that populate 

predictive models allowing EHMs to make informed decisions on preventive measures 

(Manore et al., 2014). With EIDs like WNv and more recently Zika, simple, reliable 

predictive tools are required to ensure public health measures can be taken before an 

outbreak occurs. To address this scholarly gap, I examined the accuracy and timeliness of 

contextually based exogenous explanatory data in predicting outbreaks of WNv in South 

Carolina. In doing so, I also examined the importance of context and system-level 

thinking in decision making. 

I had three key findings in this study. First, in the absence of EVS and EPS data, 

EEVs captured from publicly available sources can provide indications of the presence of 

WNv in SC 30 days prior to an incident. The final BLR model which consisted of three 

predictor variables (EV1ATM, EV6AWS, EV9POP) and the monthly factors (May, June, 

August, September, October, November) explained 29% of the variation in DVPRESENCE. 

This level of awareness could provide EHMs with an early indication of WNv in the local 

environment. It is important to note that the analysis showed the best predictive models 

included a time lag; meaning, models consisting of a set of EEVs were most effective at 

predicting an outbreak or the number of incidents 30 days into the future. This seems 
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logical since the environmental conditions, described by the EEVs, are likely to spawn 

and spread the virus, not immediately, but sometime in the future. 

The GZLM approach to determine the magnitude of that presence through the 

prediction of WNv incident counts was mixed. Although the best DVCOUNT model was 

precise with regards to the occurrence of WNv, it could not accurately predict counts 

greater than 4.0 with any consistency. This was likely due to incomplete empirical data, 

which could have only provided the precision and accuracy resident in the study data. 

Second, while the BLR and GZLM tools were used to examine different RQs and 

used different data sets, it should be noted that the variable average temperature remained 

an operationally significant predictor (p < α = .05) in both regression types and 

throughout the respective model-building process. This was consistent with past study 

findings associated with using temperature as a WNv predictor. 

Third, is that the study findings also corroborated the widely accepted viewpoint 

that the significance of individual predictors is heavily dependent on the other predictors 

in any regression model. In other words, the influence of any individual EEV is 

moderated by many complex interactions between and among multiple EEVs. This is 

particularly true when the researcher tries to capture the context surrounding a complex 

problem such as WNv. Some of these interactions are quantified, but there are many 

more subtle and complex real-world interactions that influence (moderate) the effect that 

any one variable has on the response. Therefore, in the study findings, I considered 

predictors that are included in a mathematical model (i.e., a set of predictors) and prove 
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to be good predictors of the response, as operationally significant predictors of the 

response. 

Management tools that predict trends and services need to adapt to the complexity 

of today’s information environment and to the systems-level data it produces. A systems-

level, context driven approach to the complex decision-space of WNv offers an answer to 

these data challenges. When required, this practical approach can allow EHMs to place a 

decision within a broader systems-level context, using exogenous data to enrich and 

define a less ordered decision-space. This is particularly relevant for decision makers and 

managers who work within the complex field of EIDs.  

The findings of the study may prove useful to environmental health decision 

makers in understanding the role of EEVs in the dynamic temporal and spatial 

interdependencies of the pathogenic, ecological, and anthropological components of the 

virus (Pirofski & Casadevall, 2012). These interdependencies currently present a complex 

decision-space for EHM decision makers. 

The findings may also prove valuable for decision makers across several 

professions. The complex decision-space presented by WNv, and the contextual 

framework used to address the predictability of the virus in this study, is directly 

transferable to the complicated, complex, and chaotic decision spaces identified by 

Snowden and Boone (2007). The use of contextual elements to frame and clarify a 

complex decision-space in new ways contributes to DT. 
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Appendix A: Research Data Overview 

State Overview 

Located in the southeast region of the United States, South Carolina is organized 

into 46 counties (Figure A1) incorporating land mass and water areas totaling 32,020 

square miles (United States Census Bureau, 2018). Within the state boundaries, 30,061 

square miles (94% of the state) are measured as land mass (2018). The remaining 1,960 

square miles (6%) are divided into inland (1,064 square miles), coastal (110 square 

miles), and territorial waters (786 square miles) (2018). 

Figure A1 

The State of South Carolina 

 

Note. The State of South Carolina (United States Census Bureau, 2012). This map shows 

the distribution of the urban areas and urban clusters within the state. 
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In the last U.S. census of 2010, the total population of South Carolina was 

recorded as 4,625,364 (United States Census Bureau, 2012). As seen in Figure A1, the 

majority of the population is distributed across urban areas (population > 50,000) in 23 of 

the 46 counties. The 2010 census attributes 3,067,809 or 66.3% of the South Carolina 

population to these areas. Of interest to this study, 1,875,097 (40%) of the population 

total was recorded as being greater than 44 years of age (Howden & Meyer, 2011). 

Previous studies and reports place this population segment as an at-risk group for WNv. 

Research Data Overview 

For this longitudinal study, I collected data to populate values for the DV and 

EEVs over the period 1999 to 2016. This required the creation of a data set that recorded 

the following information by row according to its variable symbol, math variable, type of 

variable (e.g., numerical, categorical, etc.), and number of variables. Data were entered 

into the spreadsheet using the following column headings:  

1. Data Record Number (DRN). Numerical entry value (1-9936). 

2. SC County (CTY). Categorical entry value (e.g., Aiken). 

3. Date of Record (DOR). Numerical entry value (19990101-20161231). 

4. Land Use (LAN). Categorical entry value (agricultural, industrial). 

5. Converted Land Use (USE). Numerical entry value (0=agricultural, 

1=industrial) 

6. Topology (TOP). Numerical value (county seat elevation in feet) 
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7. West Nile Virus events by county  

8. Average 30-Day Temperature in degrees Fahrenheit (oF) by county 

9. Average 30-Day Rainfall in inches by county 

10. Average 30-Day Dew Point in degrees Fahrenheit (oF) by county 

11. Average 30-Day Snow Depth in (inches) by county 

12. Average 30-Day Wind Speed in (mile per hour) by county 

13. Average 30-Day Barometric Pressure in (millibars) by county 

14. Housing Units per (square mile) by county 

15. Population density per (square miles) by county 

This archival data was collected in a single spreadsheet which acted as the 1999 

to 2016 data repository for each of the data sets above. The next section provides specific 

information on the administrative and SPSS data sets. 

Data Record Number (DRC) - SC County Names, FIPS codes, County Seat 

Locations, and Square Mileage 

County names and FIPS codes are readily available from the USCB. County seat 

locations are available from the South Carolina Association of Counties website. The 

data was combined into two data field entries for each of the eleven archival data sets in 

the previous section. 

Federal Information Processing Series (FIPS). These codes are standardized 

numeric or alphabetic codes issued by the American National Standards Institute Codes 

(ANSI) to ensure uniform identification of geographic entities and are readily available 
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from the USCB website (United States Census Bureau, 2020). Within these standardized 

codes, ANSI uses the Federal Information Processing Series (FIPS). While FIPS codes 

are no longer the standard, they are still used within ANSI and provide historical 

continuity for this research providing a catalogue number for data collection.  

 I extracted FIPS information for each county to manage data entries over a 15-

year period. The data will be recorded in the following format: 

State Postal Code – SC 

State FIPS Code – 45 

County FIPS Code – NNN (e.g., Abbeville County – 001) 

County Name – Abbeville County 

County Seat. County seats were identified using the South Carolina Association 

of Counties website and will provide the county centroid for mapping purposes (South 

Carolina Association of Counties, n.d.). The 46 county seats will be cross-referenced with 

the Department of Commerce, Bureau of Census, Qualifying Urban Area for the 2010 

and 2000 (United States Census Bureau, 2019) census to determine whether a county seat 

was classified as an urban or rural area (2019). 

County Square Miles. This USCB data provided information on the square miles 

associated with each county. This was used to form ratio data for population density and 

housing density. These two ratios were used to populate the Land Use and Urbanization 

variables. 
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West Nile Virus Events by County 

This data came directly from the South Carolina Department of Health and 

Environmental Control (SC DHEC) and cross checked with total numbers from the 

federal CDC. The data was provided in the form of positive West Nile Virus events by 

year, month, county, and type (i.e., human, equine, mosquito pool, dead bird, sentinel 

animal, other). These data reflected WNv events that have been recorded over the 2002-

2016 timeframe. These data will be matched to the monthly entries for each county by 

year of data and logged by number of WNv events. 

Climate Data 

Historical climate data came from three sources, the websites of the Weather 

Underground, Old Farmer’s Almanac, and the South Carolina Department of Natural 

Resources (DNR). An IBM company, the Weather Underground mission “is to provide 

climate data to every person in the world” (Weather Underground, 2016). Using a system 

called BestForecastTM, Weather Underground collects weather data from over 180,000 

proprietary weather stations and compares that data to the National Weather Service’s 

National Digital Forecast Database (NDFD). Weather Underground also provides 

historical climate data by county for each year of the proposed study. Old Farmer’s 

Almanac provides historical data by county for the United States. The South Carolina 

DNR will be used as a tertiary source for missing or incomplete data. 
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Average 30-Day Temperature in Degrees Fahrenheit (0F) by County. Average 

30-Day temperature data was aligned to the county seat by year and month from 1999 to 

2016. 

Average 30-Day Rainfall in (inches) by county. Average 30-day rainfall data 

was aligned to the county seat by year and month from 1999 to 2016. 

Average 30-Day Dew Point in degrees Fahrenheit (0F) by county. Average 30-

day dew point data was aligned to the county seat by year and month from 1999 to 2016. 

Average 30-Day Snow Depth in (inches) by county. Average 30-day snow 

depth data was aligned to the county seat by year and month from 1999 to 2016. 

Average 30-Day Barometric Pressure in (millibars) by county. Average 30-

day barometric data was aligned to the county seat by year and month from 1999 to 2016. 

Elevation in (Feet) For Each County Seat 

Elevation data was extracted from the South Carolina Aeronautics Commission 

website which lists elevations for all county airports (South Carolina Aeronautics 

Commission, 2011). The airport locations were matched with the county seats to provide 

a standard measure of elevation. 

Housing Units Per (Square Mile) by County 

These data came from the USCB 2000 and 2010 census. Housing units per square 

mile were computed for each census. The variation between the 2000 and 2010 figures 

will be computed and then extrapolated for the years 2000 to 2009 and for 2010 to 2015. 
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These data were used by year to compute housing per square mile metrics as entry 

criteria for the Land Use variable.  

Population Density Per (Square Miles) by County 

County populations were collected and converted to a ratio using the total county 

square mile data. The population density ratio provided a measure of county urbanization. 

compared to the 2010 U.S. Census Bureau national average of 88.4 people/square mile. 

County population estimates were captured for the years 1999 to 2016 from data 

available through the USCB. The USCB uses a program that annually estimates 

population and housing by nation, state, and county based on the last decennial census. 

For the period 2010 to 2018, the USCB used a cohort component methodology 

(Population Estimate = Base population + Births – Deaths + Net domestic migration) for 

computing national and county population estimates (United States Census Bureau, 

2021). 
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Appendix B: Stage A Model Building Process 

Stage A2 DVPRESENCE Analysis for Current Month (SASM) 

Table B1 

Stage A2 DVPRESENCE Analysis with DV1 using EVs Only (SASM) 

DVPRESENCE Stepwise Method R2
Nagelkerke LL Ratio 2 

DV1 Model 1 FS (COND) .171 2(8) = 436.763, p < .001 

DV1 Model 2 FS (LR) .171 2(8) = 436.763, p < .001 

DV1 Model 3 FS (WALD) .171 2(8) = 436.763, p < .001 

DV1 Model 4 BE (COND) .171 2(8) = 436.763, p < .001 

DV1 Model 5 BE (LR) .171 2(8) = 436.763, p < .001 

DV1 Model 6 BE (WALD) .171 2(8) = 436.763, p < .001 

 

Stage A3 DVPRESENCE Analysis, DV1, EVs (SFEM) 

Table B2 

Stage A3 DVPRESENCE Analysis with DV1 and EVs Only 

DVPRESENCE R2
Nagelkerke LL Ratio 2 

DV1 Model 7 .171 2(9) = 436.929, p < .001 

DV1 Model 8 .171 2(8) = 436.763, p < .001 

a. Model 7 Predictors: (Constant), EV1ATM, EV2ARN, EV4ASD, EV5ABP, EV6AWS, 

EV7ELV, EV8USE, EV9POP, EV10ADD. EV4ASD not significant at p = .644. 

b. Model 8 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD. All predictors significant at p < .20. 
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Table B3 

Stage A3 Results with DV1, EVs, and 2FIs 

DVPRESENCE R2
Nagelkerke LL Ratio 2 

DV1 Model 9 .202 2(34) = 519.047, p < .001 

DV1 Model 10 .202 2(33) = 519.047, p < .001 

DV1 Model 11 .202 2(32) = 519.045, p < .001 

DV1 Model 12 .202 2(31) = 519.013, p < .001 

DV1 Model 13 .202 2(30) = 518.943, p < .001 

DV1 Model 14 .202 2(29) = 518.877, p < .001 

DV1 Model 15 .202 2(28) = 518.787, p < .001 

DV1 Model 16 .202 2(27) = 518.662, p < .001 

DV1 Model 17 .202 2(26) = 518.419, p < .001 

DV1 Model 18 .202 2(25) = 518.144, p < .001 

DV1 Model 19 .202 2(24) = 517.905, p < .001 

DV1 Model 20 .202 2(23) = 517.625, p < .001 

DV1 Model 21 .201 2(22) = 517.012, p < .001 

DV1 Model 22 .201 2(21) = 516.266, p < .001 

DV1 Model 23 .201 2(20) = 515.617, p < .001 

DV1 Model 24 .201 2(19) = 515.617, p < .001 

DV1 Model 25 .200 2(18) = 514.286, p < .001 

DV1 Model 26 .200 2(17) = 512.694, p < .001 

a. Model 9 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV1·EV10, EV2·EV5, EV2·EV6, EV2·EV7, EV2·EV8, EV2·EV9, EV2·EV10, 

EV5·EV6, EV5·EV7, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV7, EV6·EV8, EV6·EV9, 

EV6·EV10, EV7·EV8, EV7·EV9, EV7·EV10, EV8·EV9, EV8·EV10. EV2·EV6 not 
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significant at p = .989. 

b. Model 10 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV1·EV10, EV2·EV5, EV2·EV7, EV2·EV8, EV2·EV9, EV2·EV10, EV5·EV6, 

EV5·EV7, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV7, EV6·EV8, EV6·EV9, EV6·EV10, 

EV7·EV8, EV7·EV9, EV7·EV10, EV8·EV9, EV8·EV10. EV2·EV10 not significant at p 

= .989. 

c. Model 11 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV1·EV10, EV2·EV5, EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV6, EV5·EV7, 

EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV7, EV6·EV8, EV6·EV9, EV6·EV10, EV7·EV8, 

EV7·EV9, EV7·EV10, EV8·EV9, EV8·EV10. EV7·EV9 not significant at p = .859. 

d. Model 12 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV1·EV10, EV2·EV5, EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV6, EV5·EV7, 

EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV7, EV6·EV8, EV6·EV9, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9, EV8·EV10. EV5·EV6 not significant at p = .791. 

e. Model 13 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV1·EV10, EV2·EV5, EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV7, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV7, EV6·EV8, EV6·EV9, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9, EV8·EV10. EV1·EV10 not significant at p = .796. 

f. Model 14 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV2·EV5, EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV7, EV5·EV8, EV5·EV9, 

EV5·EV10, EV6·EV7, EV6·EV8, EV6·EV9, EV6·EV10, EV7·EV8, EV7·EV10, 

EV8·EV9, EV8·EV10. EV5·EV10 not significant at p = .765. 

g. Model 15 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 
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EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV2·EV5, EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV7, EV5·EV8, EV5·EV9, 

EV6·EV7, EV6·EV8, EV6·EV9, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, 

EV8·EV10. EV5·EV9 not significant at p = .723. 

h. Model 16 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV2·EV5, EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV7, EV5·EV8, EV5·EV10, 

EV6·EV7, EV6·EV8, EV6·EV9, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, 

EV8·EV10. EV2·EV9 not significant at p = .622. 

i. Model 17 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV5·EV10, EV6·EV7, 

EV6·EV8, EV6·EV9, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, EV8·EV10. 

EV6·EV9 not significant at p = .600. 

j. Model 18 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV5·EV10, EV6·EV7, 

EV6·EV8, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, EV8·EV10. EV6·EV8 not 

significant at p = .625. 

k. Model 19 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV8, 

EV1·EV9, EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV5·EV10, EV6·EV7, 

EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, EV8·EV10. EV1·EV8 not significant at p 

= .598. 

l. Model 20 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9. EV5·EV8 not significant at p = .437. 
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m. Model 21 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV10, EV6·EV7, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9, EV8·EV10. EV6·EV7 not significant at p = .387. 

n. Model 22 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV10, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9, EV8·EV10. EV2·EV7 not significant at p = .420. 

o. Model 23 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV8, EV5·EV7, EV5·EV10, EV6·EV10, EV7·EV8, EV7·EV10, 

EV8·EV9, EV8·EV10. EV5·EV7 not significant at p = .413. 

p. Model 24 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV8, EV5·EV10, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, 

EV8·EV10. EV2·EV8 not significant at p = .412. 

q. Model 25 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV5·EV10, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, EV8·EV10. 

EV7·EV8 not significant at p = .214. 

r. Model 25 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV5·EV10, EV6·EV10, EV7·EV10, EV8·EV9, EV8·EV10. All predictors 

significant at p < .20. 
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Table B4 

Stage A3 DVPRESENCE Analysis with DV1 and All EEVs 

DVPRESENCE R2
Nagelkerke LL Ratio 2 

DV1 Model 26 .285 2(34) = 743.225, p < .001 

DV1 Model 27 .285 2(34) = 743.225, p < .001 

DV1 Model 28 .285 2(33) = 743.221, p < .001 

DV1 Model 29 .285 2(32) = 743.194, p < .001 

DV1 Model 30 .285 2(31) = 743.103, p < .001 

DV1 Model 31 .285 2(30) = 742.924, p < .001 

DV1 Model 32 .285 2(29) = 742.863, p < .001 

DV1 Model 33 .285 2(28) = 742.323, p < .001 

DV1 Model 34 .285 2(27) = 741.539, p < .001 

DV1 Model 35 .285 2(26) = 740.692, p < .001 

DV1 Model 36 .285 2(25) = 739.250, p < .001 

DV1 Model 37 .284 2(24) = 738.117, p < .001 

DV1 Model 38 .283 2(23) = 737.226, p < .001 

a. Model 26 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9, January, February, March, April, May, June, July, August, 

September, October, November, December. March not significant at p = .951. 

b. Model 27 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9, January, February, April, May, June, July, August, September, 

October, November, December. December not significant at p = .951. 
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c. Model 28 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9, January, February, April, May, June, July, August, September, 

October, November. January not significant at p = .869. 

d. Model 29 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, 

EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, 

EV7·EV10, EV8·EV9, February, April, May, June, July, August, September, October, 

November. EV7ELV not significant at p = .764. 

e. Model 30 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV8USE, 

EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, EV2·EV5, 

EV2·EV7, EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, EV7·EV10, 

EV8·EV9, February, April, May, June, July, August, September, October, November. 

EV6AWS not significant at p = .672. 

f. Model 31 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV7, EV1·EV9, EV2·EV5, EV2·EV7, 

EV2·EV8, EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, 

February, April, May, June, July, August, September, October, November. EV1·EV6 

not significant at p = .806. 

g. Model 32 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV9, EV2·EV5, EV2·EV7, EV2·EV8, 

EV5·EV7, EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, February, 

April, May, June, July, August, September, October, November. EV1·EV9 not 

significant at p = .464. 

h. Model 33 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV7, EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, 

EV5·EV8, EV6·EV7, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, February, April, 
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May, June, July, August, September, October, November. EV6·EV7 not significant at 

p = .375. 

i. Model 34 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV7, EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, 

EV5·EV8, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, February, April, May, June, 

July, August, September, October, November. EV7·EV8 not significant at p = .363. 

j. Model 35 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV7, EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, 

EV5·EV8, EV6·EV10, EV7·EV8, EV7·EV10, EV8·EV9, February, April, May, June, 

July, August, September, October, November. February not significant at p = .301. 

k. Model 36 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV7, EV2·EV5, EV2·EV7, EV2·EV8, EV5·EV7, 

EV5·EV8, EV6·EV10, EV7·EV10, EV8·EV9, April, May, June, July, August, 

September, October, November. EV2·EV8 not significant at p = .281. 

l. Model 37 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV7, EV2·EV5, EV2·EV7, EV5·EV7, EV5·EV8, 

EV6·EV10, EV7·EV10, EV8·EV9, April, May, June, July, August, September, October, 

November. EV5·EV8 not significant at p = .354. 

m. Model 38 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV7, EV2·EV5, EV2·EV7, EV5·EV7, EV6·EV10, 

EV7·EV10, EV8·EV9, April, May, June, July, August, September, October, November. 

All predictors significant at p < .20. 
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Stage A4 DVPRESENCE Analysis for Future Months (SASM) 

Table B5 

Stage A4 DVPRESENCE Analysis for Best Time-lagged DV Selection, DV2 

DVPRESENCE SASM R2
Nagelkerke LL Ratio χ2 

DV2 Model 39 FS (COND) .255 ꭓ2(6) = 661.645, p < .001 

DV2 Model 40 FS (LR) .255 ꭓ2(6) = 661.645, p < .001 

DV2 Model 41 FS (WALD) .255 ꭓ2(6) = 661.645, p < .001 

DV2 Model 42 BE (COND) .257 ꭓ2(7) = 665.685, p < .001 

DV2 Model 43 BE (LR) .257 ꭓ2(7) = 665.685, p < .001 

DV2 Model 44 BE (WALD) .257 ꭓ2(6) = 661.645, p < .001 

a. Model 39 Predictors: (Constant), EV1ATM, EV5ABP, EV6AWS, EV8USE, EV9POP, 

EV10ADD. 

b. Model 40 Predictors: (Constant), EV1ATM, EV5ABP, EV6AWS, EV8USE, EV9POP, 

EV10ADD. 

c. Model 41 Predictors: (Constant), EV1ATM, EV5ABP, EV6AWS, EV8USE, EV9POP, 

EV10ADD. 

d. Model 42 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV8USE, 

EV9POP, EV10ADD. 

e. Model 43 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV8USE, 

EV9POP, EV10ADD. 

f. Model 44 Predictors: (Constant), EV1ATM, EV5ABP, EV6AWS, EV8USE, EV9POP, 

EV10ADD. 

 

 

 

 

 



257 

 

Table B6 

Stage A4 DVPRESENCE Analysis for Best Time-lagged DV Selection, DV3 

DVPRESENCE SASM R2
Nagelkerke LL Ratio χ2 

DV3 Model 45 FS (COND) .245 ꭓ2(5) = 634.453, p < .001 

DV3 Model 46 FS (LR) .245 ꭓ2(5) = 634.453, p < .001 

DV3 Model 47 FS (WALD) .245 ꭓ2(5) = 634.453, p < .001 

DV3 Model 48 BE (COND) .245 ꭓ2(5) = 634.453, p < .001 

DV3 Model 49 BE (LR) .245 ꭓ2(5) = 634.453, p < .001 

DV3 Model 50 BE (WALD) .245 ꭓ2(5) = 634.453, p < .001 

a. Model 45 Predictors: (Constant), EV1ATM, EV5ABP, EV8USE, EV9POP, EV10ADD. 

b. Model 46 Predictors: (Constant), EV1ATM, EV5ABP, EV8USE, EV9POP, EV10ADD. 

c. Model 47 Predictors: (Constant), EV1ATM, EV5ABP, EV8USE, EV9POP, EV10ADD. 

d. Model 48 Predictors: (Constant), EV1ATM, EV5ABP, EV8USE, EV9POP, EV10ADD. 

e. Model 49 Predictors: (Constant), EV1ATM, EV5ABP, EV8USE, EV9POP, EV10ADD. 

f. Model 50 Predictors: (Constant), EV1ATM, EV5ABP, EV8USE, EV9POP, EV10ADD. 
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Table B7 

Stage A4 DVPRESENCE Analysis for Best Time-lagged DV Selection, DV4 

DVPRESENCE SASM R2
Nagelkerke LL Ratio χ2 

DV4 Model 51 FS (COND) .161 ꭓ2(4) = 410.104, p < .001 

DV4 Model 52 FS (LR) .161 ꭓ2(4) = 410.104, p < .001 

DV4 Model 53 FS (WALD) .161 ꭓ2(4) = 410.104, p < .001 

DV4 Model 54 BE (COND) .162 ꭓ2(5) = 412.961, p < .001 

DV4 Model 55 BE (LR) .161 ꭓ2(5) = 412.961, p < .001 

DV4 Model 56 BE (WALD) .161 ꭓ2(5) = 412.961, p < .001 

a. Model 51 Predictors: (Constant), EV1ATM, EV8USE, EV9POP, EV10ADD. 

b. Model 52 Predictors: (Constant), EV1ATM, EV8USE, EV9POP, EV10ADD. 

c. Model 53 Predictors: (Constant), EV1ATM, EV8USE, EV9POP, EV10ADD. 

d. Model 54 Predictors: (Constant), EV1ATM, EV7ELV, EV8USE, EV9POP, EV10ADD. 

e. Model 55 Predictors: (Constant), EV1ATM, EV7ELV, EV8USE, EV9POP, EV10ADD. 

f. Model 56 Predictors: (Constant), EV1ATM, EV7ELV, EV8USE, EV9POP, EV10ADD. 

 

Stage A5 DVPRESENCE Analysis (SFEM) 

Table B8 

Stage A5 DVPRESENCE Analysis with DV2 and EVs 

DVPRESENCE R2
Nagelkerke LL Ratio χ2 

DV2 Model 57 .257 ꭓ2(9) = 667.271, p < .001 

DV2 Model 58 .257 ꭓ2(8) = 666.817, p < .001 

DV2 Model 59 .257 ꭓ2(7) = 665.685, p < .001 

a. Model 57 Predictors: (Constant), EV1ATM, EV2ARN, EV4ASD, EV5ABP, EV6AWS, 

EV7ELV, EV8USE, EV9POP, EV10ADD. EV4ASD not significant at p = .990. 

b. Model 58 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV7ELV, 

EV8USE, EV9POP, EV10ADD. EV7ELV not significant at p = .990. 

c. Model 59 Predictors: (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV8USE, 

EV9POP, EV10ADD. All variables significant (p < α = .20). 
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Table B9 

Stage A5 DVPRESENCE Analysis with DV2, EVs, and 2FIs  

Model R2
Nagelkerke LL Ratio ꭓ2 

DV2 Model 60 .275 ꭓ2(27) = 713.876, p < .001 

DV2 Model 61 .275 ꭓ2(26) = 713.875, p < .001 

DV2 Model 62 .275 ꭓ2(25) = 713.873, p < .001 

DV2 Model 63 .275 ꭓ2(24) = 713.862, p < .001 

DV2 Model 64 .275 ꭓ2(23) = 713.839, p < .001 

DV2 Model 65 .275 ꭓ2(22) = 713.714, p < .001 

DV2 Model 66 .275 ꭓ2(21) = 713.574, p < .001 

DV2 Model 67 .275 ꭓ2(20) = 713.352, p < .001 

DV2 Model 68 .274 ꭓ2(19) = 713.309, p < .001 

DV2 Model 69 .274 ꭓ2(18) = 712.878, p < .001 

DV2 Model 70 .274 ꭓ2(17) = 712.379, p < .001 

DV2 Model 71 .274 ꭓ2(16) = 711.688, p < .001 

DV2 Model 72 .273 ꭓ2(15) = 710.292, p < .001 

DV2 Model 73 .273 ꭓ2(14) = 710.292, p < .001 

DV2 Model 74 .273 ꭓ2(13) = 708.378, p < .001 

a. Model 60 Predictors, (Constant), EV1ATM, EV2ARN, EV5ABP, EV6AWS, EV8USE, 

EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV9, EV1·EV10, 

EV2·EV5, EV2·EV6, EV2·EV8, EV2·EV9, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, 

EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV8·EV10, EV9·EV10. 

EV2ARN not significant at p = .979. 

b. Model 61 Predictors, (Constant), EV1ATM, EV5ABP, EV6AWS, EV8USE, EV9POP, 

EV10ADD, EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV9, EV1·EV10, EV2·EV5, 

EV2·EV6, EV2·EV8, EV2·EV9, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, 

EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. EV5ABP not significant at p = 

.919. 

c. Model 62 Predictors, (Constant), EV1ATM, EV6AWS, EV8USE, EV9POP, EV10ADD, 

EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV9, EV1·EV10, EV2·EV5, EV2·EV6, 
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EV2·EV8, EV2·EV9, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, 

EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. EV2·EV8 not significant at p = .920. 

d. Model 63 Predictors, (Constant), EV1ATM, EV6AWS, EV8USE, EV9POP, EV10ADD, 

EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV9, EV1·EV10, EV2·EV5, EV2·EV6, 

EV2·EV9, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, 

EV6·EV10, EV8·EV9, EV9·EV10. EV1·EV9 not significant at p = .879. 

e. Model 64 Predictors, (Constant), EV1ATM, EV6AWS, EV8USE, EV9POP, EV10ADD, 

EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV5, EV2·EV6, EV2·EV9, 

EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10. EV2·EV9 not significant at p = .723. 

f. Model 65 Predictors, (Constant), EV1ATM, EV6AWS, EV8USE, EV9POP, EV10ADD, 

EV1·EV2, EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV5, EV2·EV6, EV2·EV10, 

EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, 

EV9·EV10. EV8USE not significant at p = .707. 

g. Model 66 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, EV1·EV2, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV5, EV2·EV6, EV2·EV10, EV5·EV6, 

EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. 

EV2·EV5 not significant at p = .641. 

h. Model 67 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, EV1·EV2, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. EV1·EV2 

not significant at p = .838. 

i. Model 68 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, EV1·EV5, 

EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, 

EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. EV1·EV8 not 

significant at p = .508. 

j. Model 69 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, EV1·EV5, 

EV1·EV6, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, 

EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. EV1·EV10 not significant at p = 

.473. 

k. Model 70 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, EV1·EV5, 

EV1·EV6, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, 

EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. EV1·EV6 not significant at p = .397. 

l. Model 71 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, EV1·EV5, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, 

EV6·EV10, EV8·EV9, EV9·EV10. EV2·EV10 not significant at p = .253. 
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m. Model 72 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, EV1·EV5, 

EV2·EV6, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10. IV10ADD not significant at p = .203. 

n. Model 73 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV2·EV6, 

EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, 

EV9·EV10. IV5·IV10 not significant at p = .464. 

o. Model 74 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV2·EV6, 

EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10. 

All predictors significant at p < .20. 

 

Table B10 

Stage A5 DVPRESENCE Analysis With DV2, All EVs, α = .20 

Model R2
Nagelkerke LL Ratio ꭓ2 

DV2 Model 75 .293 ꭓ2(31) = 763.626, p < .001 

DV2 Model 76 .293 ꭓ2(31) = 763.626, p < .001 

DV2 Model 77 .293 ꭓ2(30) = 763.626, p < .001 

DV2 Model 78 .293 ꭓ2(29) = 763.622, p < .001 

DV2 Model 79 .293 ꭓ2(28) = 763.608, p < .001 

DV2 Model 80 .293 ꭓ2(27) = 763.454, p < .001 

DV2 Model 81 .293 ꭓ2(26) = 763.271, p < .001 

DV2 Model 82 .293 ꭓ2(25) = 763.095, p < .001 

DV2 Model 83 .293 ꭓ2(24) = 762.793, p < .001 

DV2 Model 84 .293 ꭓ2(23) = 762.344, p < .001 

DV2 Model 85 .292 ꭓ2(22) = 761.838, p < .001 

DV2 Model 86 .292 ꭓ2(21) = 761.838, p < .001 

DV2 Model 87 .292 ꭓ2(20) = 760.093, p < .001 

DV2 Model 88 .291 ꭓ2(19) = 760.093, p < .001 

DV2 Model 89 .291 ꭓ2(18) = 758.244, p < .001 

DV2 Model 90 .291 ꭓ2(17) = 758.244, p < .001 
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a. Model 75 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, January, 

February, March, April, May, June, July, August, September, October, November, 

December. July not significant at p = .985. 

b. Model 76 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, January, 

February, March, April, May, June, August, September, October, November, 

December. December not significant at p = .985. 

c. Model 77 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, January, 

February, March, April, May, June, August, September, October, November. March 

not significant at p = .953. 

d. Model 78 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, January, 

February, April, May, June, August, September, October, November. February not 

significant at p = .905. 

e. Model 79 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, January, 

April, May, June, August, September, October, November. January not significant at 

p = .710. 

f. Model 80 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, April, 

May, June, August, September, October, November. EV1·EV2 not significant at p = 

.679. 

g. Model 81 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, 

EV1·EV5, EV1·EV6, EV1·EV8, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, 

EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, April, 

May, June, August, September, October, November. EV1·EV8 not significant at p = 

.673. 
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h. Model 82 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV10ADD, 

EV1·EV5, EV1·EV6, EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, 

EV5·EV10, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, April, May, June, 

August, September, October, November. EV10ADD not significant at p = .572. 

i. Model 83 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, 

EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, April, May, June, August, 

September, October, November. April not significant at p = .514. 

j. Model 84 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, 

EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, May, June, August, September, 

October, November. November not significant at p = .491. 

k. Model 85 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, 

EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, May, June, August, September, 

October. EV1·EV10 not significant at p = .443. 

l. Model 86 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, 

EV6·EV10, EV8·EV9, EV9·EV10, May, June, August, September, October. EV5·EV10 

not significant at p = .281. 

m. Model 87 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10, May, June, August, September, October. September not 

significant at p = .309. 

n. Model 88 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10, May, June, August, October. August not significant at p = .363. 

o. Model 89 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10, May, June, October. EV1·EV6 not significant at p = .253. 

p. Model 90 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV2·EV6, 

EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, 

EV9·EV10, May, June, October. All predictors significant at p < 𝛼 = .20 
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Stage A6 DVPRESENCE Analysis with DV2, All EVs, α = .05 

Table B11 

Stage A6 DVPRESENCE Analysis with DV, All EVs, α = .05 

Model R2
Nagelkerke LL Ratio ꭓ2 

DV2 Model 91 .292 ꭓ2(22) = 761.838, p < .001 

DV2 Model 92 .292 ꭓ2(21) =761.270, p < .001 

DV2 Model 93 .292 ꭓ2(20) = 760.093, p < .001 

DV2 Model 94 .291 ꭓ2(19) = 759.069, p < .001 

DV2 Model 95 .291 ꭓ2(19) = 758.244, p < .001 

DV2 Model 96 .291 ꭓ2(17) = 756.960, p < .001 

DV2 Model 97 .290 ꭓ2(16) = 755.020, p < .001 

DV2 Model 98 .289 ꭓ2(15) = 753.069, p < .001 

DV2 Model 99 .287 ꭓ2(15) = 746.698, p < .001 

DV2 Model 100 .285 ꭓ2(13) = 750.953, p < .001 

a. Model 91 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV1·EV10, EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, 

EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, May, June, August, September, 

October. EV1·EV10 not significant at p = .443. 

b. Model 92 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV5·EV10, EV6·EV8, EV6·EV9, 

EV6·EV10, EV8·EV9, EV9·EV10, May, June, August, September, October. EV5·EV10 

not significant at p = .281. 

c. Model 93 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10, May, June, August, September, October. September not 

significant at p = .309. 

d. Model 94 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10, May, June, August, October. August not significant at p = .363. 



265 

 

e. Model 95 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV1·EV6, 

EV2·EV6, EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, 

EV8·EV9, EV9·EV10, May, June, October. EV1·EV6 not significant at p = .253. 

f. Model 96 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV2·EV6, 

EV2·EV10, EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, 

EV9·EV10, May, June, October. EV2·EV10 not significant at p = .195. 

g. Model 97 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV2·EV6, 

EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, EV9·EV10, 

May, June, October. EV9·EV10 not significant at p = .195. 

h. Model 98 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV2·EV6, 

EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, May, June, 

October. EV2·EV6 not significant at p = .114. 

i. Model 99 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, EV5·EV6, 

EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, May, June, October. 

EV6·EV9 not significant at p = .062. 

j. Model 100 Predictors, (Constant), EV1ATM, EV6AWS, EV9POP, EV1·EV5, 

EV5·EV6, EV5·EV8, EV5·EV9, EV6·EV8, EV6·EV9, EV6·EV10, EV8·EV9, May, June, 

October. All predictors significant at p < α = .05. 

 

DVPRESENCE Final Model Selection 

Table B12 

Comparison of Stages A5-A6 Best Models 

Stage Model R2
Nagelkerke ꭓ2 

A5 59 .257 ꭓ2(7) = 665.685, p < .001 

A5 67 .275 ꭓ2(20) = 713.352, p < .001 

A5 84 .293 ꭓ2(23) = 762.344, p < .001 

A6 93 .292 ꭓ2(20) =760.093, p < .001 
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Appendix C: Stage B2-B5 Model Building Process 

Stage B2 DVCOUNT Analysis with DV1, All EVs, α = .20 

Table C1 

Stage B2 DVCOUNT Analysis with DV1 and EVs 

DVCOUNT Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

DV1 Model 101 1.5 3.274 4519.157 2608.507 71.917 9 .000 

DV1 Model 102 1.5 3.271 4522.391 2606.603 71.820 8 .000 

DV1 Model 103 1.5 3.272 4533.620 2606.779 70.645 7 .000 

a. Model 101 Predictors: Constant, EV1ATM, EV2ARN, EV4ASD, EV5ABP, EV6AWS, 

EV7ELV, EV8USE, EV9POP, EV10ADD. EV6AWS not significant at p = .756. 

b. Model 102 Predictors: Constant, EV1ATM, EV2ARN, EV4ASD, EV5ABP, EV7ELV, 

EV8USE, EV9POP, EV10ADD. EV4ASD not significant at p = .289. 

c. Model 103 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV10ADD. All predictors significant at p < α = .20. 
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Table C2 

Stage B2 DVCOUNT Analysis with DV1, EVs, and 2FIs 

DVCOUNT Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

DV1 Model 104 1.5 3.171 4153.884 2605.794 112.629 28 .000 

DV1 Model 105 1.5 3.168 4157.235 2603.806 112.617 27 .000 

DV1 Model 106 1.5 3.164 4171.766 2601.839 112.584 26 .000 

DV1 Model 107 1.5 3.161 4174.960 2599.881 112.543 25 .000 

DV1 Model 108 1.5 3.158 4175.527 2597.934 112.490 24 .000 

DV1 Model 109 1.5 3.155 4194.011 2596.090 112.334 23 .000 

DV1 Model 110 1.5 3.153 4195.498 2594.384 112.039 22 .000 

DV1 Model 111 1.5 3.151 4247.277 2592.761 111.662 21 .000 

DV1 Model 112 1.5 3.150 4284.068 2591.261 111.163 20 .000 

DV1 Model 113 1.5 3.149 4288.419 2589.736 110.688 19 .000 

DV1 Model 114 1.5 3.148 4268.160 2588.434 109.990 18 .000 

DV1 Model 115 1.5 3.149 4283.300 2587.449 108.974 17 .000 

DV1 Model 116 1.5 3.146 4274.052 2585.601 108.823 16 .000 

DV1 Model 117 1.5 3.146 4265.900 2584.217 108.206 15 .000 

DV1 Model 118 1.5 3.148 4287.538 2583.711 106.712 14 .000 

DV1 Model 119 1.5 3.151 4283.710 2583.312 105.112 13 .000 

DV1 Model 120 1.45 2.805 4187.574 2535.911 128.793 15 .000 

DV1 Model 121 1.5 3.155 4194.011 2596.090 112.334 25 .000 
 

1.30 2.597 4131.719 2520.495 152.767 15 .000 

DV1 Model 122 1.15 2.442 4087.575 2579.901 216.068 15 .000 

DV1 Model 123 1.1 2.421 4083.084 2638.255 253.262 15 .000 

a. Model 104 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV10ADD, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV1·EV10, 

EV2·EV5, EV2·EV7, EV2·EV8, EV2·EV9, EV2·EV10, EV5·EV7, EV5·EV8, EV5·EV9, 
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EV5·EV10, EV7·EV8, EV7·EV9, EV7·EV10, EV8·EV9, EV8·EV10, EV9·EV10. 

EV10ADD not significant at p = .911. 

b. Model 105 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV1·EV10, EV2·EV5, 

EV2·EV7, EV2·EV8, EV2·EV9, EV2·EV10, EV5·EV7, EV5·EV8, EV5·EV9, EV5·EV10, 

EV7·EV8, EV7·EV9, EV7·EV10, EV8·EV9, EV8·EV10, EV9·EV10. EV2·EV10 not 

significant at p = .856. 

c. Model 106 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV1·EV10, EV2·EV5, 

EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV7, EV5·EV8, EV5·EV9, EV5·EV10, EV7·EV8, 

EV7·EV9, EV7·EV10, EV8·EV9, EV8·EV10, EV9·EV10. EV5·EV8 not significant at p 

= .839. 

d. Model 107 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV1·EV10, EV2·EV5, 

EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV7, EV5·EV9, EV5·EV10, EV7·EV8, EV7·EV9, 

EV7·EV10, EV8·EV9, EV8·EV10, EV9·EV10. EV8·EV9 not significant at p = .818. 

e. Model 108 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV1·EV10, EV2·EV5, 

EV2·EV7, EV2·EV8, EV2·EV9, EV5·EV7, EV5·EV9, EV5·EV10, EV7·EV8, EV7·EV9, 

EV7·EV10, EV8·EV10, EV9·EV10. EV2·EV8 not significant at p = .693. 

f. Model 109 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV1·EV10, EV2·EV5, 

EV2·EV7, EV2·EV9, EV5·EV7, EV5·EV9, EV5·EV10, EV7·EV8, EV7·EV9, EV7·EV10, 

EV8·EV10, EV9·EV10. EV1·EV10 not significant at p = .588. 

g. Model 110 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV7, 

EV2·EV9, EV5·EV7, EV5·EV9, EV5·EV10, EV7·EV8, EV7·EV9, EV7·EV10, 

EV8·EV10, EV9·EV10. EV2·EV7 not significant at p = .540. 
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h. Model 111 Predictors: Constant, EV1ATM, EV2ARN, EV5ABP, EV7ELV, EV8USE, 

EV9POP, EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, 

EV5·EV7, EV5·EV9, EV5·EV10, EV7·EV8, EV7·EV9, EV7·EV10, EV8·EV10, 

EV9·EV10. EV2ARN not significant at p = .493. 

i. Model 112 Predictors: Constant, EV1ATM, EV5ABP, EV7ELV, EV8USE, EV9POP, 

EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, 

EV5·EV9, EV5·EV10, EV7·EV8, EV7·EV9, EV7·EV10, EV8·EV10, EV9·EV10. 

EV7·EV8 not significant at p = .441. 

j. Model 113 Predictors: Constant, EV1ATM, EV5ABP, EV7ELV, EV8USE, EV9POP, 

EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, 

EV5·EV9, EV5·EV10, EV7·EV9, EV7·EV10, EV8·EV10, EV9·EV10. EV7·EV9 not 

significant at p = .403. 

k. Model 114 Predictors: Constant, EV1ATM, EV5ABP, EV7ELV, EV8USE, EV9POP, 

EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, 

EV5·EV9, EV5·EV10, EV7·EV10, EV8·EV10, EV9·EV10. EV5·EV9 not significant at p 

= .312. 

l. Model 115 Predictors: Constant, EV1ATM, EV5ABP, EV7ELV, EV8USE, EV9POP, 

EV1·EV2, EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, 

EV5·EV10, EV7·EV10, EV8·EV10, EV9·EV10. EV9POP not significant at p = .697. 

m. Model 116 Predictors: Constant, EV1ATM, EV5ABP, EV7ELV, EV8USE, EV1·EV2, 

EV1·EV5, EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, 

EV7·EV10, EV8·EV10, EV9·EV10. EV5ABP not significant at p = .433. 

n. Model 117 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10. EV1·EV7 not significant at p = .220. 

o. Model 118 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10. EV7ELV not significant at p = .209. 
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p. Model 119 Predictors: Constant, EV1ATM, EV8USE, EV1·EV2, EV1·EV5, EV1·EV8, 

EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, EV8·EV10, 

EV9·EV10. All predictors significant at p < α =.20. 

q. Model 120 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10. All predictors significant at p < α =.20. 

r. Model 121 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10. All predictors significant at p < α =.20. 

s. Model 122 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10. All predictors significant at p < α =.20. 

t. Model 123 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10. All predictors significant at p < α =.20. 
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Table C3 

Stage B2 DVCOUNT Analysis with DV1, All EVs, α = .20 

DVCOUNT Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

DV1 Model 124 1.1 1.902 3060.265 2328.891 584.626 26 .000 

DV1 Model 125 1.1 1.902 3060.265 2328.891 584.626 26 .000 

DV1 Model 126 1.1 1.900 3060.049 2326.895 584.623 25 .000 

DV1 Model 127 1.1 1.899 3057.706 2325.309 584.209 24 .000 

DV1 Model 128 1.1 1.899 3081.439 2324.941 582.576 23 .000 

DV1 Model 129 1.1 1.898 3081.895 2323.209 582.309 22 .000 

a. Model 124 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10, January, February, March, April, May, June, July, August, 

September, October, November, December. December not significant at p = .951. 

b. Model 125 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10, January, February, March, April, May, June, July, August, 

September, October, November. July not significant at p = .951. 

c. Model 126 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10, January, February, March, April, May, June, August, 

September, October, November. January not significant at p = .527. 

d. Model 127 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV5, 

EV1·EV7, EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10, February, March, April, May, June, August, September, 

October, November. EV1·EV5 not significant at p = .204. 
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e. Model 128 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, 

EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV7, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10, February, March, April, May, June, August, September, 

October, November. EV5·EV7 not significant at p = .590. 

f. Model 129 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, 

EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV9, EV5·EV10, EV7·EV10, EV8·EV10, 

EV9·EV10, February, March, April, May, June, August, September, October, 

November. All EEVs significant at p < α = .20. 
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Stage B3 DVCOUNT Analysis with DV1, All EVs, α = .05 

Table C4 

Stage B3 DVCOUNT Analysis with DV1, All EVs, α = .05 

DVCOUNT Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

DV1 Model 130 1.1 1.898 3081.895 2323.209 582.309 22 .000 

DV1 Model 131 1.1 1.899 3062.322 2323.304 580.213 21 .000 

DV1 Model 132 1.1 1.898 3062.937 2022.018 579.499 20 .000 

DV1 Model 133 1.1 1.901 3067.056 2322.826 576.692 19 .000 

DV1 Model 134 1.1 1.903 3061.548 2323.877 573.648 18 .000 

DV1 Model 135 1.1 1.903 3077.320 2323.045 572.472 17 .000 

a. Model 130 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, 

EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV8, EV2·EV9, EV5·EV10, EV7·EV10, 

EV8·EV10, EV9·EV10, February, March, April, May, June, August, September, 

October, November. EV9·EV10 not significant at p = .150. 

b. Model 131 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, 

EV1·EV8, EV1·EV9, EV2·EV5, EV2·EV8, EV2·EV9, EV5·EV10, EV7·EV10, 

EV8·EV10, February, March, April, May, June, August, September, October, 

November. EV1·EV9 not significant at p = .397. 

c. Model 132 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, 

EV1·EV8, EV2·EV5, EV2·EV8, EV2·EV9, EV5·EV10, EV7·EV10, EV8·EV10, 

February, March, April, May, June, August, September, October, November. March 

not significant at p = .142. 

d. Model 133 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, 

EV1·EV8, EV2·EV5, EV2·EV8, EV2·EV9, EV5·EV10, EV7·EV10, EV8·EV10, 

February, April, May, June, August, September, October, November. February not 

significant at p = .146. 
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e. Model 134 Predictors: Constant, EV1ATM, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, 

EV1·EV8, EV2·EV5, EV2·EV8, EV2·EV9, EV5·EV10, EV7·EV10, EV8·EV10, April, 

May, June, August, September, October, November. EV1ATM not significant at p = 

.271. 

f. Model 135 Predictors: Constant, EV7ELV, EV8USE, EV1·EV2, EV1·EV7, EV1·EV8, 

EV2·EV5, EV2·EV8, EV2·EV9, EV5·EV10, EV7·EV10, EV8·EV10, April, May, June, 

August, September, October, November. All predictors significant at p = .146. 

 

Stage B4 DVCOUNT Analysis for Best Time-lagged DV Selection 

Table C5 

Stage B4 DVCOUNT Time-Lagged Model Results Using EEVs Only 

Model DV Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

141 DV2 1.5 2.825 3824.156 2426.375 190.984 7 .000 

145 DV3 1.5 2.952 4226.178 2527.626 145.55 4 .000 

147 DV4 1.5 3.104 4559.273 2569.364 112.038 8 .000 

152 DV5 1.5 1.023 1731.274 2471.097 424.903 8 .000 
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Stage B5 DVCOUNT Analysis with DV5, All EVs, α = .20 

Table C6 

Stage B5 DVCOUNT Analysis with DV5, EEVs, and 2FIs 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

153 1.5 0.981 1555.298 2433.181 504.819 28 .000 

154 1.5 0.980 1554.768 2431.187 504.813 27 .000 

155 1.5 0.979 1554.717 2429.206 504.794 26 .000 

156 1.5 0.978 1555.581 2427.324 504.676 25 .000 

157 1.5 0.977 1561.365 2425.522 504.478 24 .000 

158 1.5 0.976 1563.805 2423.921 504.079 23 .000 

159 1.5 0.975 1563.087 2422.156 503.843 22 .000 

160 1.5 0.975 1563.464 2420.635 503.365 21 .000 

161 1.5 0.974 1559.727 2419.144 502.856 20 .000 

162 1.5 0.974 1565.207 2417.839 502.161 19 .000 

163 1.5 0.973 1570.098 2416.673 501.327 18 .000 

164 1.5 0.973 1575.309 2416.107 499.893 17 .000 

165 1.5 0.973 1571.462 2414.268 499.732 16 .000 

166 1.45 0.995 1598.914 2475.274 513.636 16 .000 

167 1.40 1.019 1627.926 2539.175 531.239 16 .000 

168 1.43 1.006 1613.221 2506.868 521.876 16 .000 

169 1.44 0.999 1604.589 2487.825 516.812 16 .000 

a. Model 153 Predictors: Constant, EV1ATM, EV2ARN, EV6AWS, EV7ELV, EV8USE, 

EV9POP, EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV7ELV, 

EV1ATM·EV8USE, EV1ATM·EV9POP, EV1ATM·EV10ADD, EV2ARN·EV6AWS, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV2ARN·EV10ADD, 

EV6AWS·EV7ELV, EV6AWS·EV8USE, EV6AWS·EV9POP, EV6AWS·EV10ADD, 
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EV7ELV·EV8USE, EV7ELV·EV9POP, EV7ELV·EV10ADD, EV8USE·EV9POP, 

EV8USE·EV10ADD, EV9POP·EV10ADD. EV6AWS not significant at p = .941. 

b. Model 154 Predictors: Constant, EV1ATM, EV2ARN, EV7ELV, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV7ELV, 

EV1ATM·EV8USE, EV1ATM·EV9POP, EV1ATM·EV10ADD, EV2ARN·EV6AWS, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV2ARN·EV10ADD, 

EV6AWS·EV7ELV, EV6AWS·EV8USE, EV6AWS·EV9POP, EV6AWS·EV10ADD, 

EV7ELV·EV8USE, EV7ELV·EV9POP, EV7ELV·EV10ADD, EV8USE·EV9POP, 

EV8USE·EV10ADD, EV9POP·EV10ADD. EV2ARN·EV6AWS not significant at p = 

.889. 

c. Model 155 Predictors: EV1ATM, EV2ARN, EV7ELV, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV7ELV, 

EV1ATM·EV8USE, EV1ATM·EV9POP, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV2ARN·EV10ADD, EV6AWS·EV7ELV, 

EV6AWS·EV8USE, EV6AWS·EV9POP, EV6AWS·EV10ADD, EV7ELV·EV8USE, 

EV7ELV·EV9POP, EV7ELV·EV10ADD, EV8USE·EV9POP, EV8USE·EV10ADD, 

EV9POP·EV10ADD. EV2ARN·EV10ADD not significant at p = .732. 

d. Model 156 Predictors: Constant, EV1ATM, EV2ARN, EV7ELV, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV7ELV, 

EV1ATM·EV8USE, EV1ATM·EV9POP, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV8USE, 

EV6AWS·EV9POP, EV6AWS·EV10ADD, EV7ELV·EV8USE, EV7ELV·EV9POP, 

EV7ELV·EV10ADD, EV8USE·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. 

EV6AWS·EV9POP not significant at p = .656. 

e. Model 157 Predictors: Constant, EV1ATM, EV2ARN, EV7ELV, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV7ELV, 

EV1ATM·EV8USE, EV1ATM·EV9POP, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV8USE, 
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EV6AWS·EV10ADD, EV7ELV·EV8USE, EV7ELV·EV9POP, EV7ELV·EV10ADD, 

EV8USE·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. EV7ELV not 

significant at p = .528. 

f. Model 158 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV7ELV, 

EV1ATM·EV8USE, EV1ATM·EV9POP, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV8USE, 

EV6AWS·EV10ADD, EV7ELV·EV8USE, EV7ELV·EV9POP, EV7ELV·EV10ADD, 

EV8USE·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. EV1ATM·EV7ELV 

not significant at p = .627. 

g. Model 159 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, 

EV1ATM·EV9POP, EV1ATM·EV10ADD, EV2ARN·EV7ELV, EV2ARN·EV8USE, 

EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV8USE, EV6AWS·EV10ADD, 

EV7ELV·EV8USE, EV7ELV·EV9POP, EV7ELV·EV10ADD, EV8USE·EV9POP, 

EV8USE·EV10ADD, EV9POP·EV10ADD. IV6AWS·EV8USE not significant at p = 

.489. 

h. Model 160 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, 

EV1ATM·EV9POP, EV1ATM·EV10ADD, EV2ARN·EV7ELV, EV2ARN·EV8USE, 

EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV10ADD, EV7ELV·EV8USE, 

EV7ELV·EV9POP, EV7ELV·EV10ADD, EV8USE·EV9POP, EV8USE·EV10ADD, 

EV9POP·EV10ADD. EV1ATM·EV9POP not significant at p = .475. 

i. Model 161Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV9POP, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV8USE, EV7ELV·EV9POP, EV7ELV·EV10ADD, 
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EV8USE·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. EV7ELV·EV10ADD 

not significant at p = .404. 

j. Model 162 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, 

EV1ATM·EV10ADD, EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, 

EV6AWS·EV7ELV, EV6AWS·EV10ADD, EV7ELV·EV8USE, EV7ELV·EV9POP, 

EV8USE·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. EV2ARN·EV8USE 

not significant at p = .361. 

k. Model 163 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, 

EV1ATM·EV10ADD, EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, 

EV6AWS·EV7ELV, EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV9POP, 

EV8USE·EV10ADD, EV9POP·EV10ADD. EV8USE·EV9POP not significant at p = 

.231. 

l. Model 164 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV9POP, 

EV10ADD, EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, 

EV1ATM·EV10ADD, EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, 

EV6AWS·EV7ELV, EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, 

EV9POP·EV10ADD. EV9POP not significant at p = .688. 

m. Model 165 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. 

All predictors significant (p < α = .20). 

n. Model 166 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 
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EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. 

Tweedie MVP adjusted to 1.45. All predictors significant (p < α = .20). 

o. Model 167 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. 

Tweedie MVP adjusted to 1.40. All predictors significant (p < α = .20). 

p. Model 168 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. 

Tweedie MVP adjusted to 1.43. All predictors significant (p < α = .20). 

q. Model 169 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD. 

Tweedie MVP adjusted to 1.44. All predictors significant (p < α = .20). 
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Table C7 

Stage B5 DVCOUNT Results for DV5, All EVs 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

170 1.44 .984 1482.918 2475.447 551.190 27 .000 

171 1.44 .984 1482.918 2475.447 551.190 27 .000 

172 1.44 .983 1482.900 2474.448 551.190 26 .000 

173 1.44 .982 1484.133 2471.659 550.979 25 .000 

174 1.44 .981 1485.264 2469.775 550.862 24 .000 

175 1.44 .980 1485.510 2467.936 550.701 23 .000 

176 1.44 .979 1487.497 2466.097 550.540 22 .000 

177 1.44 .979 1492.014 2464.508 550.129 21 .000 

178 1.44 .978 1491.176 2462.855 549.782 20 .000 

179 1.44 .978 1492.774 2462.272 548.365 19 .000 

180 1.44 .969 1481.610 2437.651 541.793 19 .000 

181 1.40 .997 1515.908 2512.804 563.609 19 .000 

182 1.40 .997 1523.859 2512.378 562.035 18 .000 

a. Model 170 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

January, February, March, April, May, June, July, August, September, October, 

November, December. January not significant at p = .997. 

b. Model 171 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 
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February, March, April, May, June, July, August, September, October, November, 

December. December not significant at p = .997. 

c. Model 172 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

February, March, April, May, June, July, August, September, October, November. 

November not significant at p = .646. 

d. Model 173 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

February, March, April, May, June, July, August, September, October. March not 

significant at p = .733. 

e. Model 174 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

February, April, May, June, July, August, September, October. February not 

significant at p = .687. 

f. Model 175 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June, July, August, September, October. October not significant at p = 

.689. 

g. Model 176 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 
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EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June, July, August, September. September not significant at p = .522. 

h. Model 177 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June, July, August. August not significant at p = .556. 

i. Model 178 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June, July. July not significant at p = .234. 

j. Model 179 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June. All predictors significant (p < α = .20). 

k. Model 180 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June. Tweedie MVP adjusted to 1.46. All predictors significant (p < α = 

.20). 

l. Model 181 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 
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April, May, June. Tweedie MVP adjusted to 1.40. EV2ARN·EV7ELV not significant 

at p = .210. 

m. Model 182 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV8USE, EV1ATM·EV10ADD, 

EV2ARN·EV7ELV, EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, 

EV6AWS·EV10ADD, EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, 

April, May, June. All predictors significant (p < α = .20). 

  



284 

 

Stage B6 DVCOUNT Analysis with DV5, All EVs, α = .05 

Table C8 

Stage B6 DVCOUNT Analysis with DV5, EVs, 2FIs, and Months, α = .05 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

183 1.400 .998 1533.391 2513.754 558.659 17 .000 

184 1.390 1.003 1539.083 2526.590 563.058 17 .000 

185 1.395 1.000 1536.228 2520.159 560.828 17 .000 

a. Model 183 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV10ADD, 

EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, April, May, June. All 

predictors remained significant at p < .05. 

b. Model 184 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV10ADD, 

EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, April, May, June. 

Tweedie MVP adjusted to 1.39. All predictors remained significant at p < .05. 

c. Model 185 Predictors: Constant, EV1ATM, EV2ARN, EV8USE, EV10ADD, 

EV1ATM·EV2ARN, EV1ATM·EV6AWS, EV1ATM·EV10ADD, EV2ARN·EV7ELV, 

EV2ARN·EV8USE, EV2ARN·EV9POP, EV6AWS·EV7ELV, EV6AWS·EV10ADD, 

EV7ELV·EV9POP, EV8USE·EV10ADD, EV9POP·EV10ADD, April, May, June. 

Tweedie MVP adjusted to 1.395. All predictors remained significant at p < .05. 
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Appendix D: Stage C Analysis 

Stage C DVCOUNT Analysis using DVPRESENCE Final Model Terms, α = .05 

Table D1 

Stage C DVCOUNT with DVPRESENCE Final Model EVs 

Model Tweedie 

MPV 

D ꭓ2
P AIC LL2 

Ratio ꭓ2 

df .sig 

186 1.5 1.004 1559.274 2458.608 469.392 23 .000 

187 1.5 1.003 1559.212 2456.608 469.391 22 .000 

188 1.5 1.002 1561.148 2454.658 469.341 21 .000 

189 1.5 1.000 1563.837 2452.930 469.070 20 .000 

190 1.5 1.000 1562.524 2451.161 468.833 19 .000 

191 1.5 .999 1564.192 2449.426 468.574 18 .000 

192 1.5 .998 1564.231 2447.783 468.216 17 .000 

193 1.5 .998 1563.929 2445.957 468.043 16 .000 

194 1.5 .997 1574.935 2444.426 467.574 15 .000 

195 1.5 .996 1575.527 2442.851 467.148 14 .000 

196 1.5 .996 1580.569 2442.352 466.151 13 .000 

197 1.5 .996 1584.252 2440.697 465.503 12 .000 

198 1.5 .995 1583.150 2439.738 464.262 11 .000 

199 1.4 1.041 1640.38 2565.422 494.991 11 .000 

200 1.395 1.044 1643.344 2572.033 496.955 11 .000 

201 1.45 1.017 1610.892 2501.028 477.882 11 .000 
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Appendix E: Stage A–C Final Model Estimates 

Table E1 

Stage A3 DV1, All EVs SPSS Parameter Estimates, α = .20 

 

Note: Model 36, R2
Nagelkerke = .285, 2(25) = 739.250, p < .001. 

 

 

 

 

B S.E. Wald df Sig. Exp(B)

IV1ATM -4.371 1.695 6.645 1 0.010 0.013

IV2ARN 234.861 163.438 2.065 1 0.151 9.97E+101
IV5ABP -0.145 0.117 1.552 1 0.213 0.865

IV8USE(1) -67.000 60.045 1.245 1 0.264 0.000

IV9POP 0.015 0.008 3.481 1 0.062 1.015

IV10ADD -0.151 0.038 15.432 1 0.000 0.860

IV1_IV2 0.192 0.084 5.177 1 0.023 1.211

IV1_IV5 0.004 0.002 6.433 1 0.011 1.004

IV1_IV7 0.000 0.000 10.094 1 0.001 1.000

IV2_IV5 -0.247 0.159 2.396 1 0.122 0.781

IV2_IV7 0.003 0.002 1.779 1 0.182 1.003

IV2_IV8 -1.618 1.500 1.164 1 0.281 0.198

IV5_IV7 0.000 0.000 28.581 1 0.000 1.000

IV5_IV8 -0.064 0.059 1.189 1 0.276 0.938

IV6_IV10 -0.016 0.004 12.801 1 0.000 0.984

IV7_IV10 0.000 0.000 18.452 1 0.000 1.000

IV8_IV9 -0.012 0.008 1.957 1 0.162 0.989

Apr 1.386 0.644 4.629 1 0.031 3.999

May 1.597 0.711 5.046 1 0.025 4.938

Jun 1.652 0.857 3.718 1 0.054 5.216

Jul 3.361 0.821 16.750 1 0.000 28.811

Aug 4.158 0.799 27.079 1 0.000 63.950

Sep 4.360 0.690 39.883 1 0.000 78.254

Oct 3.401 0.502 45.859 1 0.000 29.988

Nov 2.577 0.362 50.717 1 0.000 13.159

Constant 214.881 100.505 4.571 1 0.033 2.09E+93

Variables in the Equation

Step 1a

a. Variable(s) entered on step 1: IV1ATM, IV2ARN, IV5ABP, IV8USE, IV9POP, IV10ADD, IV1_IV2, 

IV1_IV5, IV1_IV7, IV2_IV5, IV2_IV7, IV2_IV8, IV5_IV7, IV5_IV8, IV6_IV10, IV7_IV10, IV8_IV9, Apr, May, Jun, 

Jul, Aug, Sep, Oct, Nov.



287 

 

Table E2 

Stage A5 DV2, All EVs SPSS Parameter Estimates, α = .20 

Note: Model 84, R2
Nagelkerke = .293, χ2 (23)= 762.344, p < .001. 

 

 

 

 

 

 

Lower Upper

IV1ATM -8.380146 1.526 30.143 1 0.000                                                                                                                                                          0.000 0.005

IV6AWS 78.978139 17.674 19.969 1 0.000 1.99421E+34 1.80213E+19 2.20675E+49

IV9POP 0.396894 0.239 2.753 1 0.097 1.487 0.931 2.377

IV1_IV5 0.008365 0.002 30.898 1 0.000 1.008 1.005 1.011

IV1_IV6 -0.005448 0.006 0.967 1 0.325 0.995 0.984 1.005

IV1_IV10 0.001304 0.002 0.612 1 0.434 1.001 0.998 1.005

IV2_IV6 -0.332218 0.197 2.838 1 0.092 0.717 0.487 1.056

IV2_IV10 0.182601 0.133 1.872 1 0.171 1.200 0.924 1.559

IV5_IV6 -0.076861 0.017 19.765 1 0.000 0.926 0.895 0.958

IV5_IV8 0.003656 0.001 20.475 1 0.000 1.004 1.002 1.005

IV5_IV9 -0.000374 0.000 2.545 1 0.111 1.000 0.999 1.000

IV5_IV10 -0.000175 0.000 1.290 1 0.256 1.000 1.000 1.000

IV6_IV8 -0.419742 0.147 8.153 1 0.004 0.657 0.493 0.877

IV6_IV9 0.000640 0.000 3.535 1 0.060 1.001 1.000 1.001

IV6_IV10 -0.033318 0.015 5.016 1 0.025 0.967 0.939 0.996

IV8_IV9 -0.018761 0.008 5.128 1 0.024 0.981 0.966 0.997

IV9_IV10 0.000245 0.000 3.401 1 0.065 1.000 1.000 1.001

May -1.628505 0.430 14.348 1 0.000 0.196 0.084 0.456

Jun -0.449369 0.216 4.328 1 0.037 0.638 0.418 0.974

Aug 0.199673 0.169 1.402 1 0.236 1.221 0.877 1.699

Sep 0.163101 0.176 0.861 1 0.353 1.177 0.834 1.661

Oct 0.659320 0.225 8.590 1 0.003 1.933 1.244 3.005

Nov -0.354533 0.514 0.475 1 0.491 0.702 0.256 1.922

Constant -13.277192 2.823 22.118 1 0.000 0.000

Step 1a

a. Variable(s) entered on step 1: IV1ATM, IV6AWS, IV9POP, IV1_IV5, IV1_IV6, IV1_IV10, IV2_IV6, IV2_IV10, IV5_IV6, IV5_IV8, IV5_IV9, 

IV5_IV10, IV6_IV8, IV6_IV9, IV6_IV10, IV8_IV9, IV9_IV10, May, Jun, Aug, Sep, Oct, Nov.

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)
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Table E3 

Stage A6 DV2, All EVs SPSS Parameter Estimates, α = .05 

 

Note: Model 93, R2
Nagelkerke = .292, χ2 (20) = 760.095, p < .001. 

 

 

 

 

Lower Upper

IV1ATM -8.35886 1.500 31.073 1 0.000 0.000 0.000 0.004

IV6AWS 79.44608 17.215 21.297 1 0.000 3.18416E+34 7.06698E+19 1.43468E+49

IV9POP 0.42669 0.235 3.288 1 0.070 1.532 0.966 2.430

IV1_IV5 0.00836 0.001 31.922 1 0.000 1.008 1.005 1.011

IV1_IV6 -0.00588 0.005 1.205 1 0.272 0.994 0.984 1.005

IV2_IV6 -0.31451 0.193 2.668 1 0.102 0.730 0.501 1.065

IV2_IV10 0.16639 0.132 1.594 1 0.207 1.181 0.912 1.529

IV5_IV6 -0.07717 0.017 21.009 1 0.000 0.926 0.896 0.957

IV5_IV8 0.00369 0.001 20.967 1 0.000 1.004 1.002 1.005

IV5_IV9 -0.00040 0.000 3.054 1 0.081 1.000 0.999 1.000

IV6_IV8 -0.42944 0.147 8.545 1 0.003 0.651 0.488 0.868

IV6_IV9 0.00067 0.000 3.908 1 0.048 1.001 1.000 1.001

IV6_IV10 -0.04770 0.007 42.046 1 0.000 0.953 0.940 0.967

IV8_IV9 -0.01866 0.008 5.076 1 0.024 0.982 0.966 0.998

IV9_IV10 0.00020 0.000 2.340 1 0.126 1.000 1.000 1.000

May(1) 1.60548 0.428 14.055 1 0.000 4.980 2.151 11.529

Jun(1) 0.43281 0.216 4.014 1 0.045 1.542 1.009 2.354

Aug(1) -0.20634 0.169 1.499 1 0.221 0.814 0.585 1.132

Sep(1) -0.17622 0.173 1.034 1 0.309 0.838 0.597 1.177

Oct(1) -0.70619 0.212 11.138 1 0.001 0.494 0.326 0.747

Constant -16.14772 2.319 48.469 1 0.000 0.000

Step 1a

a. Variable(s) entered on step 1: IV1ATM, IV6AWS, IV9POP, IV1_IV5, IV1_IV6, IV2_IV6, IV2_IV10, IV5_IV6, 

IV5_IV8, IV5_IV9, IV6_IV8, IV6_IV9, IV6_IV10, IV8_IV9, IV9_IV10, May, Jun, Aug, Sep, Oct.

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

95% C.I.for EXP(B)
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Table E4 

Stage B3 DVCOUNT DV1, All EVs SPSS Parameter Estimates, α = .05 

 

Note: Model 129, Tweedie MVP = 1.5, D = 1.898, χ2(22) = 582.309, p < .001. 

 

 

Lower Upper

Wald Chi-

Square df Sig. Lower Upper

(Intercept) -4.936 2.1071 -9.065 -0.806 5.487 1 0.019 0.007 0.000 0.447

IV1ATM -0.029 0.0169 -0.062 0.004 2.887 1 0.089 0.972 0.940 1.004

IV7ELV 0.003 0.0012 0.001 0.006 7.509 1 0.006 1.003 1.001 1.006

[IV8USE=0] 2.929 1.1384 0.698 5.161 6.622 1 0.010 18.717 2.010 174.263

[IV8USE=1] 0a 1

IV1_IV2 0.332 0.0808 0.174 0.491 16.909 1 0.000 1.394 1.190 1.633

IV1_IV7 -6.564E-05 1.6972E-05 -9.891E-05 -3.238E-05 14.959 1 0.000 1.000 1.000 1.000

IV1_IV8 0.030 0.0144 0.002 0.059 4.472 1 0.034 1.031 1.002 1.060

IV1_IV9 3.222E-05 1.9349E-05 -5.708E-06 7.014E-05 2.772 1 0.096 1.000 1.000 1.000

IV2_IV5 -0.028 0.0062 -0.040 -0.016 20.480 1 0.000 0.972 0.961 0.984

IV2_IV9 0.009 0.0035 0.002 0.016 6.695 1 0.010 1.009 1.002 1.016

IV5_IV10 0.000 4.2568E-05 0.000 -4.215E-05 8.703 1 0.003 1.000 1.000 1.000

IV7_IV10 7.685E-05 3.6785E-05 4.750E-06 0.000 4.364 1 0.037 1.000 1.000 1.000

IV8_IV10 -0.123 0.0510 -0.223 -0.023 5.856 1 0.016 0.884 0.800 0.977

IV9_IV10 0.000 0.0001 0.000 5.993E-05 2.068 1 0.150 1.000 1.000 1.000

[Feb=0] 1.853 1.1033 -0.310 4.015 2.820 1 0.093 6.377 0.734 55.430

[Feb=1] 0a 1

[Mar=0] 1.218 0.8264 -0.402 2.838 2.172 1 0.141 3.380 0.669 17.075

[Mar=1] 0a 1

[Apr=0] 1.328 0.5343 0.280 2.375 6.174 1 0.013 3.772 1.324 10.749

[Apr=1] 0
a 1

[May=0] 1.940 0.4267 1.104 2.777 20.676 1 0.000 6.960 3.016 16.063

[May=1] 0a 1

[Jun=0] 2.202 0.3755 1.466 2.938 34.381 1 0.000 9.040 4.331 18.871

[Jun=1] 0a 1

[Aug=0] -0.930 0.1385 -1.201 -0.658 45.017 1 0.000 0.395 0.301 0.518

[Aug=1] 0a 1

[Sep=0] -1.157 0.1438 -1.439 -0.875 64.775 1 0.000 0.314 0.237 0.417

[Sep=1] 0a 1

[Oct=0] -0.952 0.1981 -1.341 -0.564 23.126 1 0.000 0.386 0.262 0.569

[Oct=1] 0a 1

[Nov=0] -0.905 0.2886 -1.471 -0.339 9.831 1 0.002 0.405 0.230 0.712

[Nov=1] 0a 1

(Scale) 1.493b 0.0349 1.426 1.563

Dependent Variable: DV1

Model: (Intercept), IV1ATM, IV7ELV, IV8USE, IV1_IV2, IV1_IV7, IV1_IV8, IV1_IV9, IV2_IV5, IV2_IV9, IV5_IV10, IV7_IV10, IV8_IV10, IV9_IV10, a. Set to zero because this parameter is redundant.

b. Maximum likelihood estimate.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Exp(B)

95% Wald Confidence 

Interval for Exp(B)
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Table E5 

Stage B6 DVCOUNT DV5, All EVs SPSS Parameter Estimates, α = .05 

 

Note: Model 185, Tweedie = 1.395, D = 1.000, LL2 Ratio χ2(17) = 560.828, p < .001. 

  

Lower Upper

Wald Chi-

Square df Sig. Lower Upper

(Intercept) -4.368 0.8942 -6.120 -2.615 23.856 1 0.000 0.013 0.002 0.073

IV1ATM 0.051 0.0122 0.028 0.075 17.832 1 0.000 1.053 1.028 1.078

IV2ARN -12.111 3.9636 -19.880 -4.343 9.337 1 0.002 5.496E-06 2.324E-09 0.013

[IV8USE=0] 0.629 0.2434 0.152 1.106 6.681 1 0.010 1.876 1.164 3.022

[IV8USE=1] 0a 1

IV10ADD 0.184 0.0782 0.031 0.338 5.548 1 0.019 1.202 1.031 1.402

IV1_IV2 0.142 0.0511 0.042 0.242 7.752 1 0.005 1.153 1.043 1.274

IV1_IV6 0.003 0.0007 0.002 0.005 24.927 1 0.000 1.003 1.002 1.005

IV1_IV10 -0.004 0.0009 -0.005 -0.002 17.688 1 0.000 0.996 0.995 0.998

IV2_IV9 0.007 0.0019 0.003 0.010 13.539 1 0.000 1.007 1.003 1.011

IV6_IV7 0.000 5.8973E-05 0.000 -7.922E-05 10.911 1 0.001 1.000 1.000 1.000

IV6_IV10 -0.013 0.0056 -0.024 -0.002 5.620 1 0.018 0.987 0.976 0.998

IV7_IV8 0.001 0.0003 0.001 0.002 21.585 1 0.000 1.001 1.001 1.002

IV7_IV9 -2.264E-06 7.9127E-07 -3.815E-06 -7.131E-07 8.186 1 0.004 1.000 1.000 1.000

IV8_IV10 -0.070 0.0260 -0.121 -0.019 7.165 1 0.007 0.933 0.886 0.982

IV9_IV10 0.000 3.9912E-05 4.499E-05 0.000 9.530 1 0.002 1.000 1.000 1.000

Apr 0.489 0.1545 0.186 0.792 10.006 1 0.002 1.630 1.204 2.207

May 0.404 0.0916 0.224 0.583 19.418 1 0.000 1.497 1.251 1.792

Jun 0.282 0.0740 0.137 0.427 14.518 1 0.000 1.326 1.147 1.532

(Scale) .728b 0.0233 0.684 0.775

Dependent Variable: DV5

Model: (Intercept), IV1ATM, IV2ARN, IV8USE, IV10ADD, IV1_IV2, IV1_IV6, IV1_IV10, IV2_IV9, IV6_IV7, IV6_IV10, IV7_IV8, IV7_IV9, IV8_IV10, a. Set to zero because this parameter is redundant.

b. Maximum likelihood estimate.

Parameter Estimates

Parameter B Std. Error

95% Wald Confidence 

Interval Hypothesis Test

Exp(B)

95% Wald Confidence 

Interval for Exp(B)
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Appendix F: GZLM Count Data 

Figure F1 

Actual versus Predicted WNv Count, Aiken County 2002-2016 

 

Note. Stage B Model 185, Tweedie 1.395 

 

Figure F2 

Actual versus Predicted WNv Count, Charleston County 2002-2016 

 

Note. Stage B Model 185, Tweedie 1.395 
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Figure F3 

Actual versus Predicted WNv Count, Dorchester County 2002-2016 

 

Note. Stage B Model 185, Tweedie 1.395 

 

Figure F4 

Actual versus Predicted WNv Count, Greenville County 2002-2016 

 

Note. Stage B Model 185, Tweedie 1.395 
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Figure F5 

Actual versus Predicted WNv Count, Horry County 2002-2016 

 

Note. Stage B Model 185, Tweedie 1.395 

 

Figure F6 

Actual versus Predicted WNv Count, Richland County 2002-2016 

 

Note. Stage B Model 185, Tweedie 1.395 
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