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Abstract 

The effectiveness of treatments for degenerative spine conditions, where the primary 

symptom is back pain, is typically determined using patient-reported quality of life (QoL) 

measures. However, patients may adjust their internal standards when scoring QoL based 

on factors other than their health. This response shift phenomenon could confound the 

interpretation of study data and impact effectiveness conclusions. In the current study, 

response shift was examined using structural equation modeling (SEM) and previously 

collected clinical trial data comparing 2 minimally invasive medical devices in lumbar 

spinal stenosis patients through 1 year postintervention. In subject QoL results, 

reprioritization shift between 3 months and 12 months that could confound standard 

analysis was identified. Treatment group did not influence response shift identified at 12 

months. SEM provided an effective and practical tool for clinical investigators to assess 

response shift in available clinical study data. As response shift could lead to invalid 

conclusions when QoL measures are analyzed, clinical investigators should include 

response shift assessment in the design of clinical trials. This research into how response 

shift phenomenon can impact clinical trial results improves the ability of clinical 

investigators to interpret clinical trial data, potentially preventing erroneous conclusions.  

This research may also assist researchers and government regulators in the identification 

and reimbursement of beneficial, cost-effective medical treatments for patients 

worldwide.  For clinical research designers, this study demonstrates a practical 

application of response shift assessment.      
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Chapter 1: Introduction to the Study 

Health care reform, with its emphasis on evidence-based medicine, has focused 

increased attention on the findings of clinical trials. Study conclusions influence multiple 

aspects of health care including not just physicians selecting best treatment options, but 

also regulators determining marketing approvals, and insurers making reimbursement 

decisions. When objective biological or physiological markers are not practical or 

available, clinical trials often rely on patient-reported outcomes (Hamidou, Dabakuyo, & 

Bonnetain, 2011). These measures, captured through quality of life (QoL) and function 

questionnaires, can introduce new challenges to data interpretation. Response shift 

phenomenon, the adaptation over time in the way an individual perceives and scores his 

or her health quality based on life events, can confound the comparison of longitudinal 

scores and mask true change in trial data (Donaldson, 2005; Ring, Hofer, Heuston, 

Harris, & O’Boyle, 2005).  

Current researchers of response shift phenomenon have identified response shift 

in a wide variety of conditions including cancer, stroke, and orthopedic pain (Copay et 

al., 2010; Oort, Visser, & Sprangers, 2005; Mayo, Scott, Dendukuri, Ahmed, & Wood-

Dauphinee, 2008), included theory and definitions (Razmjou, Schwartz, Yee, & 

Finkelstein, 2009; Sprangers & Schwartz, 1999), and outlined a number of methodologies 

for response shift identification (Ahmed, Mayo, Wood-Dauphinee, Hanley, & Cohen, 

2005; McPhail & Haines, 2010b; Schwartz et al., 2011). However, the clinical 

significance and practical assessment of response shift in randomized clinical trial data 

has not been sufficiently investigated (Barclay-Goddard, Lix, Tate, Weinberg, & Mayo, 
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2009). To provide clinical investigators with an enhanced ability to interpret clinical trial 

data, research on the relative effect of response shift in comparative clinical trial results is 

needed.   

This chapter contains an outline of a research study of response shift phenomenon 

in a randomized clinical trial that compared two interventions for lumbar spinal stenosis, 

a degenerative spine condition. This summary includes an overview of the response shift 

phenomenon body of knowledge, the research problem statement and purpose, and study 

assumptions and limitations. More detailed study information including a literature 

review and detailed study methodology can be found in Chapters 2 and 3.  

Background 

Clinical trials often use patient-reported outcomes, such as QoL measures, to 

compare the efficacy and value of medical treatments (Houweling, 2010; Kvam, Wisløff, 

& Fayers, 2010). However, when patient-reported outcome measures were included in 

clinical trials, researchers identified paradoxical and illogical findings, such as ill patients 

reporting the same QoL as healthy individuals (Li & Rapkin, 2009; Wilson, 1999). 

Researchers have identified that response shift phenomenon, when individuals adapt the 

way they score their health-related QoL based on factors other than treatment, can 

complicate the interpretation of clinical trial results (Bernhard, Hürny, Maibach, 

Herrmann, & Laffer, 1999; Hamidou et al., 2011; Osborne, Hawkins, & Sprangers, 2006; 

Schwartz & Finkelstein, 2009). Specifically, this adaptation in the way an individual 

understands and rates his or her well-being has been identified as a confounding factor in 
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longitudinal studies of medical interventions (Donaldson, 2005; McPhail & Haines, 

2010a; Razmjou et al., 2009; Schwartz et al., 2006).  

In health care and QoL research, response shift has been defined as a change in 

the meaning of self-reported outcome measures as a result of recalibration, 

reprioritization, or reconceptualization (Sprangers & Schwartz, 1999, p. 1508). 

Recalibration is the adaptation of an individual’s internal measurement standards. 

Reprioritization occurs when the values of a respondent change and reconceptualization 

is when a subject reinterprets a QoL concept that is used in the construct. As a natural 

coping process in individuals, response shift can be either the goal of a behavioral 

intervention, that is, improved adaptation to a chronic disease or disability; or a 

confounding factor in medical research, that is, when patient-reported outcome measures 

are compared pre- and postintervention (Schwartz, Andresen, Nosek, Krahn, & RRTC 

Expert Panel on Health Status Measurement, 2007; Wilson, 1999).  

Health care researchers have investigated response shift in a wide variety of 

diseases and conditions. They have identified this phenomenon as an important 

behavioral aspect of health care delivery for rehabilitation, geriatrics, and palliative care 

(Osborne et al., 2006; Yardley & Dibb, 2007). Response shift has also been explored and 

identified in specific disease conditions including cancer (Bernhard et al., 1999; Hamidou 

et al., 2011; King-Kallimanis et al., 2012; King-Kallimanis, Oort, Visser, & Sprangers, 

2009; Kvam et al., 2010), multiple sclerosis (King-Kallimanis, Oort, Nolte, Schwartz, & 

Sprangers, 2011; Schwartz et al., 2011), dental treatment (Ring et al., 2005), and 

orthopedic conditions (Haro, Maekawa, & Hamada, 2008; Razmjou, 2009). The effect of 
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response shift on study data has ranged from small to moderate but has been shown to 

have the ability to change clinical conclusions (Ring et al., 2005; Schwartz & Sprangers, 

1999; Schwartz et al., 2006).  

A variety of methods have been implemented to identify and quantify response 

shift—design approaches including the then-test, individualized methods, preference-

based methods, and statistical approaches (Schwartz & Sprangers, 1999). Because 

statistical methods allow simultaneous testing of multiple response shift hypotheses and 

require only the study QoL instruments with no additional patient input, researchers have 

used these techniques to examine available clinical trial data. The advanced technique of 

structural equation modeling (SEM) has been successfully used to investigate response 

shift phenomenon. Based on covariance multivariable regression, SEM has the ability to 

explore all three components of response shift individually—reconceptualization, 

reprioritization, and recalibration (Oort, 2005a). The SEM approach has also been applied 

to address multiple timepoints and exogenous factors (Kline, 2011; King-Kallimanis, 

Oort, & Garst, 2010; Oort et al., 2005). In health care, SEM has been used to explore 

response shift in stroke, multiple sclerosis, and cancer (Barclay-Goddard, Lix, et al., 

2009; King-Kallimanis et al., 2012; King-Kallimanis et al., 2011, Oort et al, 2005)  

This review of response shift phenomenon has highlighted that clinical 

investigators typically do not evaluate response shift when assessing trial results and do 

not understand the potential clinical significance of this phenomenon. While there has 

been noteworthy research into this phenomenon, it is been addressed primarily from a 

QoL perspective and not in a way that translates this information into current clinical trial 
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design for randomized clinical trials or spine interventions. Therefore, further 

examination of response shift with an emphasis on clinical significance and measurement 

methodologies is needed to help guide comparative medical research and interpretation of 

clinical trial data.  

Problem Statement 

In order to improve care and decrease costs, health care reform has increased 

reliance on evidence-based medicine. For degenerative spine conditions where back pain 

is the primary symptom, effectiveness is measured by patient-reported health care QoL. 

However, the internal standards patients use to assess their QoL adapt over time and as a 

result of their disease. While the scholarly literature has documented this phenomenon in 

spine conditions (Copay et al., 2010), the clinical significance in randomized medical 

device clinical trials has not been investigated. Specifically, there have been no studies 

exploring the potential impact of response shift phenomenon in comparative spine 

intervention studies when the decision endpoint is 1 year after the intervention. 

Purpose of Study 

The purpose of this study was to explore the impact on clinical trial conclusions 

of response shift in lumbar spinal stenosis patients at 1 year postintervention. I evaluated 

the relationship between the latent variables, physical QoL (PQoL) and mental QoL 

(MQoL); and observed QoL variables from the Zurich Claudication Questionnaire 

(ZCQ), Short Form General Health Survey (SF-12), Oswestry Disability Index (ODI) and 

the pain Visual Analog Scale (VAS), in a structural equation model to assess response 

shift. Using secondary data from baseline, 3 months, and 1 year, I explored the clinical 
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significance of response shift by comparing this phenomenon between 3 months and 1 

year and between two treatment groups.  

Nature of Study 

I used a quantitative longitudinal confirmatory modeling research design and QoL 

data collected at three timepoints to support the investigation of the clinical significance 

of response shift. The data used for this investigation were a subset of the data collected 

as part of a randomized clinical trial comparing two lumbar spine medical devices. To 

evaluate response shift, I performed confirmatory SEM techniques as a secondary 

analysis on previously collected experimental data. By comparing response shift between 

3 and 12 months and determining if there was a difference in the phenomenon identified 

between these two points in time, I gained insights into the importance of considering 

response shift in clinical data interpretation. In addition, investigating differences in 

response shift at different timepoints increased my understanding of the role time plays in 

this phenomenon. By evaluating response shift between treatment groups at 12 months, I 

explored if a randomized clinical trial design changed the importance of considering 

response shift in clinical studies. I selected this research study design because the study 

population and modeling technique were aligned with the research requirements and the 

methodology could be applied to existing data as a secondary analysis. By implementing 

SEM techniques, I also assessed the practicality and usefulness of using this methodology 

for response shift investigation.  

To effectively investigate response shift, a population where response shift can be 

expected was required. Spine treatment research has documented inconsistencies 
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consistent with response shift phenomenon (Copay et al., 2010; Schwartz & Finkelstein, 

2009). Patients who receive a lumbar spinal stenosis surgical intervention also meet the 

criteria for a health state catalyst as defined by Sprangers and Schwartz (1999). A change 

in health state is expected because the intervention is designed to relieve vertebral 

pressure and reduce symptoms in patients currently experiencing debilitating back and 

leg pain. Finally, as lumbar spinal stenosis is a progressive disease that interventions do 

not fully resolve, the treatment effect is often partial and not total. Incomplete resolution 

has also been identified as a factor in populations where responses shift is more likely to 

be found (Finkelstein, Razmjou, & Schwartz, 2009).  

This research also required an evaluation technique that supported the integration 

of multiple observed variables and was sufficiently sensitive to identify the phenomenon 

of interest. The statistical analytical approach of SEM met this criterion. When compared 

to other available statistical techniques, SEM can address both measurement and 

conceptual issues in a single model (Oort et al., 2009), can identify all three components 

of response shift (Schwartz et al., 2011), and can address multiple follow-up timepoints 

(Hamidou et al., 2011). This method does not require response shift specific data 

collection and has been demonstrated in the literature (Barclay-Goddard, Lix, et al., 2009; 

King-Kallimanis et al., 2011; Oort et al., 2005). Because few current comparative clinical 

trials have addressed response shift directly, the ability to apply this methodology to 

previously collected data increased the value of the research to on-going clinical trials. 

For these reasons, a SEM technique using data from an on-going spine intervention study 

was identified to support this investigation.  



8 

 

Instead of independent and dependent variables, in structural equation models the 

variables are termed latent and observed variables. The latent variables, factors not 

directly measured, for this research included PQoL and MQoL. Observed variables 

included the scores from QoL measures including the ZCQ, SF-12, ODI, and the pain 

VAS. The exogenous variable of primary interest, a factor external to the model, was 

treatment group, either the control or the investigational intervention. Additional 

exogenous variables that were included in the exploratory analysis included age at time 

of surgery, body mass index (BMI), gender, and number of levels treated (1 or 2).  

The observed variables were provided from an on-going prospective, randomized, 

controlled, multicenter trial titled Investigating Superion™ Interspinous Spacer in Spinal 

Stenosis (ISISS). The ISISS study enrolled approximately 470 patients who (a) were at 

least 45 years of age, (b) experienced moderate symptoms of neurogenic claudication 

secondary to lumbar spinal stenosis, and (c) had documented stenosis at one or two 

contiguous levels from L1 to L5 (VertiFlex, 2013). The ISISS trial completed enrollment 

in 2012 and the data were submitted to the U.S. Food and Drug Administration (FDA) as 

part of a premarket application. In the ISISS study, subjects who met all eligibility 

criteria were randomized to either the investigational or a control device (1:1 ratio) and 

had a medical device implanted. At each follow-up (6  weeks, 3 months, 6 months, 12 

months, 18 months, and 24 months), study sites collected subject adverse event 

information, radiographic images, a neurological assessment, and subject function and 

QoL questionnaires. For this secondary research into response shift, only QoL data 

through 12 months were included in the dataset and the specific treatment group 
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(investigational or control) was blinded (coded as A or B) to safeguard the results of the 

comparative performance of the two medical devices.  

I used the SEM technique as presented by Oort (2005b) and King-Kallimanis et 

al. (2010) to test for response shift in the ISISS prospectively collected data. Patient-

reported QoL and function data from subjects enrolled in the trial, that had a device 

implanted, and were followed for 12 months were used in the three-step process. First, a 

measurement model was established using SEM best practices (Kline, 2011). Then, I 

tested the model for invariance across the measurement occasions of baseline, 3, and 12 

months to identify response shift. Finally, I tested the model for invariance with respect 

to the exogenous variables. The response shift results from the SEM analysis were then 

used to address the research questions and hypotheses. Details of the research questions 

and hypotheses are found in Chapter 3. 

Research Questions 

This study was designed to answer the following research questions: 

1. Do treated back pain patients experience a difference in response shift 

between baseline and 3 months and between baseline and 12 months 

postintervention?  

2. Does response shift phenomenon influence the clinical comparison of patient-

reported outcomes between baseline and 12 months in a randomized clinical 

trial for a spine intervention?  
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Hypothesis 1  

H01: Response shift at 12 months is not different from response shift at 3 months.  

 RS12 = RS3 

Ha1: Response shift at 12 months is different from response shift at 3 months. 

RS12 ≠ RS3 

Hypothesis 2  

H02: Response shift found in the patient-reported outcome results for treatment 

group A at 12 months is not different from the response shift in treatment group B at 12 

months.  

 RSA = RSB 

Ha2: Response shift found in the patient-reported outcome results for treatment 

group A at 12 months is different from the response shift in treatment group B at 12 

months. 

RSA ≠ RSB  

Theoretical Foundation 

This research was based on two foundational concepts—response shift theory and 

SEM. Response shift, a psychological adaptation to situations, was first identified in the 

1970s in research in management science and educational training (Schwartz, Sprangers, 

& Fayers, 2005). Modern investigation of response shift was facilitated in the 1990s by 

the updated theory proposed by Sprangers and Schwartz (1999) that translated research 

into QoL measures associated with the evaluation of disease progression and assessment 

of medical treatments. The earliest descriptions of response shift focused on internal 
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changes in an individual’s standards of measurement (Howard & Dailey, 1979) and 

separating true change from changes in internal standards and meaning (Golembiewski, 

Billingsley, & Yeager, 1976). Sprangers and Schwartz expanded these concepts to 

provide a working definition of response shift with a goal of supporting the development 

of reliable and valid measures for assessing changes in QoL measures. Response shift 

addresses the paradoxical and counter-intuitive research findings in the QoL literature 

including consistent discrepancies between clinical measures and patient-reported QoL. 

Grounded in control theory and self-regulating systems, the theoretical model included a 

dynamic feedback loop where an individual’s behavioral processes used to handle life 

events (mechanisms) worked with the individual’s characteristics (antecedents) in a way 

that resulted in a QoL result that differed from the expectations based on objective 

criteria (response shift). Catalysts in this theory included changes in the patient’s health 

status, either positive or negative. Antecedents are a person’s stable characteristics such 

as gender and personality, and mechanisms refer to cognitive processes that the patient 

uses to adjust to life changes. Finally, QoL is the measurement construct that scores the 

patient’s feelings about his or her life and response shift is a person’s change in 

perspective when evaluating his or her QoL. QoL researchers have identified 

recalibration, reprioritization, and reconceptualization as components of response shift 

(Sprangers & Schwartz, 1999). The theoretical foundation of response shift is explored in 

more detail in Chapter 2.  

Modeling provides the methodological foundation for this research. SEM is a 

family of multivariate analysis procedures that focus on means, variances, and 
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covariances to explore relationships between observed and latent (unobserved) variables. 

Confirmatory factor analysis, a SEM model, is used to determine if collected data fit a 

theory-based measurement model. Based on covariance, the procedure is designed to 

accomplish two goals: (a) to understand the patterns of covariance and (b) to use the 

researcher-specified model to explain as much of the variation as possible (Kline, 2011). 

SEM is implemented by hypothesizing a causal model, depicting the model as a path 

diagram, and testing the model using empirical data. This technique incorporates 

measurement error as latent variables and allows variables to be indicated by multiple 

measures. The combination of structural path models, factor analysis, and covariance 

analysis enables SEM to address the complex interactions typical in social science 

research questions. 

The variables that can be included in a structural equation model support the 

complexity of social science research. Variables may be observed or unobserved (latent) 

with some of the latent variables representing measurement error (Kline, 2011). The scale 

of a latent variable is arbitrary and the researcher must set the value in the model. By 

setting the variance of a latent variable to 1, the scale can be standardized. Alternatively, 

the variable may take on the scale of one of its indicator variables (Lei & Wu, 2007). 

These conventions allow for simplification because when fixed in either manner, the 

variables are not estimated from the data. Similarly, because for endogenous variables all 

effects are included in the model, no unanalyzed associations occur between these 

variables (Kline, 2011).  
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When applied to response shift and health care research, SEM strengths include 

the ability to incorporate multiple variables into the model, the inclusion of measurement 

error, and the fact that this technique can be applied without additional data collection. 

Finally, because in the social sciences the magnitude of the effect is often most important 

and not the specific result of the statistical test, SEM provides better estimates of effect 

size for observed variables than many other mathematical techniques (Kline, 2011). 

Additional discussion of SEM and a detailed methodology for this research study are 

included in Chapter 3. 

Definitions 

Correlation matrix: Representation of data in a structural equation model for 

programming and model specification (Kline, 2011, pp. 48-49). 

Endogenous variable: A model component (variable) that is influenced by another 

variable in the model—a dependent variable (Kline, 2011, p. 96).  

Exogenous variable: A model component (variable) not influenced by another 

variable in the model—an independent variable (Kline, 2011, p. 95). 

Health-related quality of life (QoL): “A multidimensional concept that usually 

includes self-report of the way in which physical, emotional, social, or other domains of 

well-being are affected by a disease or its treatment” (Calvert et al., 2013, p. 815). 

Latent variable: A model component (variable) that is not directly measured or 

observed. Latent variables can also be called factors (Ullman, 2006, p. 36).  

Measurement model: A system depiction (model) that relates measurement 

variables to latent variables (Ullman, 2006, p. 37).  
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Observed variable: A model component (variable) that is directly observed or 

measured. Observed variables can also be called indicators, measured variables, or 

manifest variables (Ullman, 2006, p. 36).  

Response shift phenomenon: A change in the meaning of an individual’s self-

reported outcome measures such as QoL and function. Specifically, “a change in the 

meaning of one’s self-evaluation of a target construct as a result of: (a) a change in the 

respondent’s internal standards of measurement (scale recalibration, in psychometric 

terms); (b) a change in the respondent’s values (i.e. the importance of component 

domains constituting the target construct); or (c) a redefinition of the target construct (i.e. 

reconceptualization)” (Sprangers & Schwartz, 1999, p 1508).  

Structural equation modeling (SEM): A set of modeling techniques based on 

correlation and matrixes with the potential to differentiate between observed and latent 

variables (Kline, 2011, pp. 7-9). This research focuses on a common SEM technique, 

confirmatory factor analysis (CFA), that integrates a measurement and a structural model.  

Structural model: A system depiction (model) that documents the hypothesized 

relationships between all the variables of the model (Ullman, 2006, p. 37). 

Quality of life (QoL): “The general well-being of a person or society, defined in 

terms of health and happiness, rather than wealth” (Collins English Dictionary, n.d.).  

Scope of Research  

Through this research, I explored the potential impact of response shift 

phenomenon in a comparative spine intervention with a decision endpoint 1 year after the 

intervention. The primary ISISS study represented the population of patients in the 
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United States that is seeking minimally invasive treatment for radiographically confirmed 

moderate lumbar spinal stenosis. Lumbar spinal stenosis is the most common indication 

for spinal surgery in adults over age 65 with lumbar spinal stenosis in 20% of U.S. adults 

over age 60 and 80% in those over age 70 (Loguidice, Bini, Shabat, Miller, & Block, 

2011). This response shift research, a secondary evaluation, represented the same 

population as data from all subjects that completed 12-month follow-ups as of February 

2012 were included in the analysis.  

Delimitations 

Data from a single lumbar spinal stenosis intervention study were used to support 

this research. All subjects were enrolled between June 2008 and Feb 2012 from 32 

geographically dispersed sites in the United States (Loguidice et al., 2011; VertiFlex, 

2013). Generalization concerning response shift in other intervention studies, other spine 

conditions, and other diseases were not considered. Additionally, adverse event 

information, radiographic, and neurological evaluation results were not be correlated with 

QoL data because it was beyond the scope of the research.  

Assumptions 

A key assumption of this research was that the primary clinical study data from 

ISISS were high quality and could be used to support this response shift research. As a 

subset of previously collected data, the limited dataset has the same quality 

characteristics as the original research. Because the ISISS study was designed to provide 

data for an FDA submission for commercialization, it included compliance with good 

clinical practice and all federal regulations associated with medical device clinical studies 
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including 21 Code of Federal Regulations (CFR) Parts 50, 54, 56, and 812 (VertiFlex, 

2013). The electronic case report form data collection system was in compliance with 21 

CFR Part 11. As required by 21 CFR 812 and good clinical practice, quality control 

techniques, periodic site monitoring, and source data verification were included in the 

data collection process.  

Another assumption was that the methodology used to assess response shift was 

sufficiently sensitive to the phenomenon. Because sample size and power analysis are not 

applicable to advanced modeling techniques such as SEM to determine sensitivity, other 

support was required. A comparative evaluation of three statistical techniques for 

measuring response shift identified SEM as being the most successful and providing 

interpretable findings (Schwartz et al., 2011). Best practices for implementing SEM were 

integrated into the analysis process and are addressed in more detail in Chapter 3.  

Limitations 

This research was based on secondary analysis of previously collected 

experimental clinical trial data. As such, this research design did not drive the data 

collection. Additionally, the data for this research were collected prior to final quality 

checks so there was a possibility of data entry errors. These concerns have been mitigated 

by ensuring that the source data were collected in accordance with good clinical 

practices, included electronic data entry with built-in edit checks, and had been monitored 

by the sponsor. Additionally, data screening and cleaning procedures were used prior to 

analysis.  
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Advanced modeling also introduces limitations to a research design. Consistent 

with standard modeling techniques, the determination of goodness of fit and 

respecification of the structural equation model is dependent on the researcher’s 

subjective judgment. The research design minimized this limitation by prespecifying 

alternative models and ensuring all model adjustments were supported by theoretical 

justifications (Kline, 2011).  

Significance of Study  

This research provides clinical investigators with a practical application of a 

response shift assessment in a clinical trial and adds to the body of knowledge on 

response shift phenomenon. For clinical investigators, especially spine researchers, the 

role of response shift in study findings is highlighted and instruments most likely to be 

impacted by response shift are identified. This increased knowledge on how to improve 

clinical trial design to enable the separation of true change from patient adaptation will 

result in clinical investigators making more accurate conclusions and enhance clinical 

decision-making. This improved clinical evidence would support the approval and 

reimbursement of effective, cost-effective treatments and interventions.  

This evaluation of response shift in a lumbar spinal stenosis population provides 

QoL researchers with additional data from patients with a chronic condition and 

addresses the impact of time as a catalyst variable. The demonstration of a practical 

methodology supported the integration of response shift assessment into clinical trial 

design. The results supported better understanding of how patients respond to changes in 

their health state and enable physicians to support improved QoL adjustment for 
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individuals living with chronic diseases or disabilities. Enhanced understanding of QoL 

results and a practical methodology could also be translated back to management research 

where patient-reported QoL information was included in the analysis.  

Summary  

Response shift phenomenon, changes in a patient’s internal standards when 

assessing health-related QoL over time, may impact clinical trial results and conclusions 

used to support health care decision-making. This chapter examined response shift, 

including current theory, methods of evaluation, and the potential impact of response 

shift on the data interpretation, and presented a research study to explore this 

phenomenon. I identified the use of mathematical modeling, specifically SEM, as one 

method to assess and determine the incidence and impact of response shift in clinical 

data. The research problem, hypotheses, assumptions, potential limitations, and research 

definition were outlined. A review of the significance of this research to society 

concluded the chapter. Further explanation and clarification will be found in subsequent 

chapters.  

Response shift may present a significant confounding factor in clinical trials that 

use patient-reported outcomes as primary endpoints. However, much remains to be 

characterized about this phenomenon. This research into the impact of response shift in a 

spine intervention clinical trial provides valuable information to health care and QoL 

researchers and includes a practical methodology for response shift assessment. To 

explore the body of knowledge on response shift phenomenon in more depth, Chapter 2 

contains a comprehensive literature review of this phenomenon. In Chapter 3, I outline 
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the detailed methodology and provide the results of the analysis in Chapter 4. Finally, I 

discuss the findings and provide practice and future research recommendations in 

Chapter 5. 
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Chapter 2: Literature Review 

To translate new medical research and technologies into effective treatments and 

enhanced patient care, clinical trials play a pivotal role. However, when patient-reported 

outcomes serve as the primary study endpoints, confounding factors may complicate or 

even invalidate the interpretation of study results (Donaldson, 2005; Hamidou et al., 

2011). One potential influencing factor is response shift phenomenon—the fact that, over 

time and based on life events, individuals can change the way they perceive and report 

their well-being based on factors unrelated to their health state (Sprangers & Schwartz, 

1999). To draw effective conclusions from randomized, comparative health care data, 

researchers must understand the impact and clinical significance of this phenomenon. 

Studies of degenerative spine treatments, where pain is the primary symptom and 

effectiveness is measured by patient-reported health care QoL measures, may be 

impacted by response shift (Don & Carragee, 2008; Schwartz & Finkelstein, 2009). Only 

by incorporating the assessment of response shift into clinical trial design will clinical 

investigators and researchers be able to consistently and effectively assess the best, most 

effective treatment options for patients.  

To explain paradoxical and counterintuitive findings between objective measures 

and patient-reported outcomes, QoL researchers developed response shift theory 

(McPhail & Haines, 2010a; Schwartz et al., 2006). In health care research, this 

phenomenon has been identified in a wide variety of conditions including cancer (Oort et 

al., 2005), stroke (Mayo et al., 2008), and lumbar spinal stenosis (Copay et al., 2010). In 

separate comprehensive overviews, Schwartz and Sprangers (1999), Ahmed et al. (2005), 
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McPhail and Haines (2010a), and Schwartz et al. (2011) identified a number of 

methodologies used to investigate and quantify response shift including design 

approaches, individualized methods, preference-based methods, and statistical 

techniques. The mechanisms and processes of response shift have been researched in 

many ways though the clinical significance to randomized clinical trial data and the 

effective transfer of assessing this phenomenon have not yet been supported. A promising 

approach is the statistical method of SEM (King-Kallimanis et al., 2010; Kline, 2011; 

Oort et al, 2005). Based on the working definition proposed by Schwartz and Sprangers 

(1999), this review analyzes response shift in health care research. The key aspects 

associated with this phenomenon include the theory and foundations, response shift in 

health care and spine research, measurement approaches, and SEM as applied to response 

shift. This review provides insights to assist clinical investigators, clinical trial designers, 

and health care professionals to understand the clinical importance of response shift and 

to effectively integrate the assessment of response shift into trials thereby improving the 

quality of care for patients. 

I conducted a comprehensive literature search to support this review. Using three 

primary databases, EBSCO Academic Search Premier, ProQuest Complete, and Science 

Direct, I searched for articles using the terms response shift, health related QoL, patient-

reported outcomes, measurement bias, SEM, statistical analysis, longitudinal data, 

orthopedics, and spine clinical trials and combined these terms using Boolean operators 

to better target relevant articles. I gave preference to peer-reviewed articles published 

between 2008 and 2014; however, I also included earlier foundational research, 
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specifically from 2005 and 1999. I screened the bibliographies of the research articles to 

identify additional sources, key words, and relevant concepts and used Zotero, a 

bibliography management program, to categorize and document articles.  

Response Shift Theory 

Experiencing and responding to change is part of every individual’s life 

experience. In the past 15 years, physicians and medical researchers have become 

increasingly interested in the way a person’s health state affects his or her QoL 

perception, especially changes from treatment or disease progression. Sprangers and 

Schwartz (1999) defined response shift phenomena as the adaptation of a respondent’s 

internal standards, values, and conceptualization of life quality due to changing health or 

other life events. Used to understand and explain unanticipated or illogical relationships 

between objective measures and patient-reported health care QoL, the discipline of 

response shift is still in an early developmental stage. The complexities of response shift 

phenomenon and researchers’ conceptual and operational confusion have created 

challenges in research. Despite this, the body of knowledge is diverse and has supported 

multiple theories, a variety of assessment methodologies, and increased understanding of 

the clinical significance of response shift in clinical trials, especially in the area of QoL 

assessment. 

Origin of Response Shift Theory 

Howard and Dailey (1979) first identified response shift bias while documenting 

the benefits of educational training programs. Envisioned as an instrumentation effect, 

the researchers argued that because the purpose of a training program was to change a 
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subject’s knowledge of a specific variable, typically an attribute being measured, a 

successful program would alter the individual’s perspective and impact self-evaluations. 

With a change in a respondent’s internal measurement standards and scales, the 

assumption of a common yardstick for the two assessments would be violated. The 

individual’s adaption could then confound or even invalidate the standard technique of 

direct comparison of pre- and posttraining self-evaluations. Recognizing the same 

phenomenon in organizational research, other early theorists classified and defined types 

of change. Golembiewski et al. (1976) postulated three types of change—alpha, beta, and 

gamma. Alpha change was identified as true change, the goal of the treatment or 

intervention. Beta and gamma change were potential bias factors that indicated scale 

recalibration and construct reconceptualization. Through statistical analysis, the authors 

concluded that a single concept of change was not appropriate and noted that failure to 

account for individual adaptation could result in inaccurate data interpretation and 

erroneous conclusions.  

Building upon these foundations, Sprangers and Schwartz (1999) translated 

response shift into health care research and developed a theoretical model based on 

control theory. An individual’s psychological adaptation to illness was modeled as a 

continuous feedback system with the goal being the individuals feeling as good as 

possible about themselves and their life. The model included five primary variables—

catalysts, antecedents, mechanisms, response shift, and perceived QoL. Catalysts were 

the changes in an individual’s health state, regardless of source or direction. These 

changes could be the result of sudden onset of illness, initial diagnosis, disease 
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progression, or treatment. Antecedents were the built-in, existing characteristics of the 

individual such as gender, personality, and spiritual identity. Mechanisms were the 

processes the individual would use to respond to the catalyst including coping, social 

support, and goal reordering. Response shift was the adaptation of the person’s meaning 

of QoL resulting from changes in internal standards, values, or well-being concepts. 

Perceived QoL was the final multidimensional construct of the person’s well-being that 

incorporated physical, mental, social, and other aspects of living. Sprangers and Schwartz 

theorized that when faced with a change in health status (catalyst), an individual will use 

known mechanisms influenced both directly and indirectly by antecedents to trigger 

response shift. The divergence of reported QoL from objective criteria-based 

expectations would therefore be directly impacted by response shift. The model, 

highlighting the feedback loop within the individual, is presented in Figure 1.  

  

Figure 1. Sprangers and Schwartz response shift feedback loop. Based on description in 
“Integrating response shift into health-related quality of life research: A theoretical 
model,” by M. Sprangers and C. Schwartz, 1999, Social Science & Medicine, 48, pp. 
1507-1515.  
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Alternative theories of response shift have also been proposed. Carver and Scheier 

(2000) described a theory for the recalibration component of response shift based on 

adaptive self-regulation. In the model, when an individual experienced a health state 

adversity associated with distress that could not be resolved, the individual’s well-being 

reference point would scale back or down. For example, a person who ran competitive 

10K races would not expect to compete while they were healing from a broken leg. By 

reducing expectations and aspirations, the person would again experience both positive 

and negative feelings around the new set point replacing the mostly negative feelings 

based on the old reference. Carver and Scheier viewed the change as automatic, outside 

of voluntary control, and relatively slow. The authors supported the importance of human 

response shift by arguing that without recalibration, individuals would not be able to 

overcome life-changing adversity and concluded that human well-being was tied to 

having purpose in life, and purpose was supported by response shift. Addressing response 

shift differently, Wilson (1999) proposed investigating how the dimensions of subject 

well-being including biological measures, symptoms, functioning, and general health 

perceptions, change relative to each other. In this construct, response shift would be 

considered an effect that cannot be attributed to the disease or to known mechanisms, 

therefore a placebo effect. Wilson also identified that response shift was a goal of routine 

clinical practice since it supported the physician or non-conventional practitioner in 

allowing the patient to cope with their current health state. Despite the alternative 

viewpoint, the author validated the importance of response shift in clinical care and 



26 

 

concluded that producing response shift involved understanding the context of the illness, 

could be impacted by the physician-patient relationship, and could improve patient QoL. 

As an early discipline, the conceptual and operational definitions of response shift 

theory are still being explored. Complementary and competing theories, such as crisis 

theory and implicit theories including recall bias, impression management, and effort 

justification have been identified (Mayo et al., 2008; Sprangers & Schwartz, 1999). 

Researchers have proposed multiple directions for future research to address theory, 

application, and reporting. Multiple researchers identified a requirement to build a 

consensus on terminology (Barclay-Goddard, Epstein, & Mayo, 2009, Reeve, 2010; 

Schwartz et al., 2005). Schwartz et al. (2005) also highlighted that exploring the timing 

and nature of catalysts and investigating the relationship between the components of 

response shift would support expanded theory. Integration into health care clinical trials 

would benefit from research into surrogate markers, additional measurement and 

adjustment techniques, optimal follow-up timepoint identification, and bias-minimizing 

study designs (Hamidou et al., 2011). Standard reporting of critical response shift 

parameters to include data on effect size, sample size and response rates, and details of 

instrument psychometrics would support the transfer of knowledge both within and 

across disciplines (Schwartz et al., 2006). Finally, Schwartz et al. (2006) emphasized that 

researchers should always provide information on how the study results could impact 

future research and, if applicable, provide clear interpretation guidelines for 

generalization.  
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Definition of Response Shift 

Sprangers and Schwartz (1999) provided a working definition of response shift 

that has grounded most health care research into this phenomenon. The authors specified 

that response shift referred to a change in the meaning of self-reported outcome measures 

as a result of recalibration, reprioritization, or reconceptualization (p. 1508). 

Recalibration occurs when an individual changes their internal measurement standards, 

i.e. the worst pain imaginable reference point gets higher after the patient experiences 

kidney stones. Reprioritization ensues when an individual changes what they value, i.e. 

family support and social connections become more important than appearance after 

chemotherapy results in hair loss. Reconceptualization transpires when an individual 

changes how they interpret a specific concept, i.e. originally physical function and mental 

health were primary components of QoL, after disease diagnosis and treatment the level 

of fatigue experienced better defines a good day. This definition has provided a 

foundation for the investigation and understanding of response shift in health care.  

Response shift researchers have been challenged by the complexity of the 

phenomenon and potential overlap with other coping phenomena. Schwartz et al. (2005) 

felt the need to address a very basic question—is response shift an umbrella term for 

different phenomena that should be studied separately or is it an important new concept 

for QoL research? While noting further research and theory were required, the authors 

pointed out that if response shift could explain away all paradoxical or unexpected results 

from patient-reported data then it would have no meaning. Consequently, the researchers 

recommended that alternative theories should be explored before labeling a finding as 
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response shift. In the QoL research community, a wide variety of operational definitions 

have been associated with response shift even when the same working definition was 

applied. To support analysis, Schwartz et al. identified six primary areas of dispute 

concerning the dimensions of response shift. These areas covered how best to define 

response shift and what uniquely identified the phenomenon. The issues were not 

mutually exclusive and are outlined in Table 1.  

Table 1 

Response Shift Perspectives 

 Perspective 1 Perspective 2 

1 
Bias  

(to be corrected for) 

Meaningful change  

(worth investigation) 

2 
Measurement characteristic 

(error in instrument selection) 

Subject characteristic 

 

3 
Ad hoc explanation  

(for illogical findings) 

Phenomenon  

(to be studied) 

4 
Temporary change Permanent change 

5 
Result of a catalyst Result of passage of time 

6 
Events unrelated to health state may 

be relevant to response shift 

Only health-related events are 

relevant to response shift 

 
Highlighting that when comparing two QoL scores the goal of QoL researchers 

was to determine what was change in QoL and what was measurement error, Ubel, 

Peeters, and Smith (2010) proposed that the term response shift be replaced with 

something less ambiguous. Arguing that since response shift as currently used lumped 

together measurement error and true QoL changes, Ubel et al. claimed the use of a single 

term impeded QoL research by creating conceptual confusion. The researchers also 

identified logical circularity since the operationalization of the mechanism was the same 
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as the operationalization of response shift and that there was an implied connotation that 

response shift was a threat to the validity of self-reported data. Other researchers 

including Sprangers and Schwartz (2010) and Reeve (2010) agreed that there was 

conceptual confusion surrounding response shift but disagreed with the primary 

recommendation of abandoning the term. Sprangers and Schwartz highlighted that 

abandoning response shift terminology would not resolve the outlined problems as it 

mixed human adaptation processes and measured outcomes and that new approaches, 

some already in press, could address areas of concern. Reeve concurred with Sprangers 

and Schwartz that a change of terms was not the solution but agreed with Ubel et al. that 

there was confusion surrounding the phenomenon. Reeve’s recommendations included 

focusing on educating researchers on terms and the implications of incorporating QoL 

change as endpoint variables. Researchers could improve research quality by including in 

study planning an assessment of (a) the QoL construct, (b) the measurement instrument, 

(c) research study design, (d) the subjects participating in the study, and (e) the 

investigator interpretation of the data.  

Expansion to Theory  

Expansions to response shift theory have focused on the methods individuals use 

to grade their well-being (the appraisal process) and classifying the measurement and 

explanation components of response shift.  Rapkin and Schwartz (2004) adapted a 

psychological adjustment process to create a four-step procedure for determining an 

individual’s appraisal process included (a) assessing the frame of reference, (b) 

identifying a subjective sampling strategy, (c) recognizing standards of comparison, and 
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(d) understanding the combinatory algorithm. The authors concluded that recognizing the 

appraisal process was a step in relating patient-reported outcomes to external observer 

perspectives and was an important aspect of understanding response shift phenomena. In 

related research by the same authors, Schwartz and Rapkin (2004) created a psychometric 

model integrating the appraisal process into QoL true score assessment and evaluation of 

questionnaire properties. To improve research, the authors proposed designing new 

instruments that included appraisal aspects, using appraisal features to stratify subjects, 

and including appraisal constructs into clinical trials as moderating variables.  

In another theory expansion, Oort et al. (2009) explored and defined the concepts 

of response shift as either measurement or explanation bias, two separate but related ideas 

researchers have used to classify response shift. From a measurement perspective, 

response shift would be a special case of measurement bias. Measurement bias involved 

the idea that the instrument used, the questionnaire, does not perfectly measure the 

attribute of interest. Therefore due to this mismatch, changes in the test results were not 

fully determined by changes in the characteristic of interest. This would identify response 

shift as a difference in the scores that was not explained by true differences but was also 

not random, a violation of measurement invariance. From a conceptual perspective, 

response shift would be a special case of explanation bias. Here there was a distinction 

between predictors of the construct and other variables that might impact the construct. 

This perspective identified response shift as variance in the scores that was not explained 

by the model variables but was also not random, a violation of explanation invariance. 

Oort et al. identified that the primary difference in these two perspectives would impact 
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the classification of the type of response shift that had been realized in a specific 

situation—recalibration, reprioritization, or reconceptualization. The researchers 

concluded that since both perspectives had meaning and value, response shift 

measurement methodologies that addressed both aspects would be preferred for response 

shift investigation, especially if the components of response shift could be investigated 

both jointly and separately. By investigating and classifying these perspectives, response 

shift theorists have distinguished different schools of thought concerning response shift, 

helped to resolve confusion in the research community, and highlighted different research 

methodologies.  

Response Shift in Health Care 

Any instrument that captures self-reported data from individuals may be impacted 

by response shift (Wilson, 1999). And with the importance of evidence driving the 

integration of QoL assessments into clinical research and paradoxical findings indicating 

that further exploration was required (Oort et al., 2009; Sprangers & Schwartz, 1999), the 

health care research community has been motivated to explore this phenomenon in 

greater detail. Reviewing the role of the QoL research community, use in behavioral 

research, and disease specific studies will provide important background for response 

shift investigation.  

QoL Research 

As treatment and intervention decisions are increasingly guided by evidence-

based medicine, physicians and clinical researchers have developed methods to assess 

how patients perceive their care and well-being. Health-related QoL has been used to 
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assess the clinical benefit of interventions and recognized as a valid clinical endpoint by 

the medical community (Barclay-Goddard, Epstein, et al., 2009). In cancer research, the 

U.S. FDA has recommended that health-related QoL assessments be included in clinical 

research since 1985 (Hamidou et al., 2011). As patient-reported outcomes have grown to 

encompass patient symptoms, functioning, perceptions of health status, and overall well-

being, the QoL research subspecialty has developed to increase knowledge in this 

discipline. In order to explain counterintuitive QoL findings, researchers from this 

discipline introduced response shift and have supported significant research into this 

phenomenon in health care (Sprangers & Schwartz, 1999; Wilson, 1999). Questions 

asked by the community (Oort et al., 2009; Schwartz et al., 2005) include  

• Is response shift associated with measurement or subject characteristics? 

• Should response shift be corrected for or studied?  

• Is response shift an ad hoc explanation for counterintuitive findings?  

• What initiates response shift? 

Schwartz et al. (2005) identified three primary reasons that response shift phenomenon 

should be measured. First, failure to account for response shift could lead to inaccurate 

treatment effect conclusions in clinical trials. Second, response shift could impact 

determination of minimal clinical significant change. This concept used to identify 

thresholds for meaningful improvement recognized that just because change was 

measureable did not mean it was useful or valuable to individuals. Finally, measuring 

response shift would provide insight into the human adaptation process resulting in more 

ways to support patients in effective chronic diseases and disabilities accommodation.  
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With a focus on the phenomenon of response shift itself, the body of research has 

been primarily academic. Empirical and clinical data have been presented to illustrate 

relevant response shift concepts and not to develop practical methods of incorporating 

response shift into clinical trial design (Barclay-Goddard, Epstein, et al., 2009; Schwartz 

et al., 2006).  

Behavioral Research 

An important aspect of clinical care has been determining how effective 

interventions have been in modifying the behavior and medical outcomes of patients. 

This was also an area where response shift was first identified. Health care researchers 

have therefore explored response shift in a variety of applications including modification 

of behavior and coping with chronic conditions.  

Behavior modification for fall prevention, pulmonary rehabilitation, and cancer 

survivor intervention has been examined for the presence and impact of response shift. 

McPhail and Haines (2010b) evaluated response shift in a study of hospitalized patients 

participating in a fall prevention program. Two QoL questionnaires were completed, one 

within 3 days of hospital admission and one immediately prior to discharge. This older 

population, mean age of 73.3 years, had a median length of stay of 38 days (range 20-60). 

Three methods of measuring change were used to analyze the results—a standard pre-

test/post-test comparison, a patient perceived change rating method, and a perceived 

change adjusted for recall bias. The comparison identified a difference between the 

methods. With 83.2% of the individuals reporting a clinically significant discrepancy 

between the direct comparison and perceived scores, the authors concluded inaccurate 
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representation of change in patient self-reported health states could result in unsupported 

conclusions. In the evaluation of a pulmonary rehabilitation and self-management 

program for chronic obstructive pulmonary disease (COPD) patients, Ahmed, Bourbeau, 

Maltais, and Mansour (2009) identified response shift between baseline and 12 months 

with one statistical method but not with a second. The unadjusted model underestimated 

average change in physical health though the effect was small. Ahmed et al. found that 

even small response shift biases could impact effect size—moving the results from small 

to moderate or moderate to large. The researchers concluded that response shift should be 

identified and accounted for before study results could be accurately interpreted. 

Schwartz, Feinberg, Jilinskaia, and Applegate (1999) examined response shift in 

young cancer survivors who participated in a 3-day training program. Using an age 

matched cohort of healthy subjects, a comparison of pre-test to post-test collected 

immediately after the training and 3 months later, suggested that there was an immediate 

gain in QoL with a significant decline at the 3-month follow-up. The analysis supported 

the hypothesis that the results were influenced by response shift. Adjusting for the shift, 

the researchers found that the intervention changes the survivor’s concept of QoL so that 

it more closely matched the healthy controls. In behavior modification research, the 

identification of response shift has been mixed. Most studies indicated some level of 

response shift, with one study reporting both response shift and no response shift 

depending on the measurement tool (Ahmed, Bourbeau, Maltais, and Mansour, 2009). 

While effect size was not specifically measured in these studies, in Schwartz et al., when 
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response shift was considered, the impact of the intervention was adapted from negative 

to positive.  

The management of chronic conditions is another area where response shift has 

been researched. Nolte, Elsworth, Sinclair, and Osborne (2009) explored response shift in 

a group-based chronic disease self-management program population. Specifically, the 

researchers used measurement invariance tests to compared pre-test to post-test and 

retrospective rating to post-test data. QoL was measured at the start of the course and at 

the end of the course, typically 6 weeks. The researchers concluded that response shift 

was indicated in the retrospective rating to post-test data and not in the pre-test to post-

test data. This was contrary to the study hypothesis and to response shift theory. Nolte et 

al. concluded that using a pre-test to post-test comparison was appropriate for assessing 

the change in this population over 6 weeks and that response shift need not be considered. 

Yardley and Dibb (2007) identified response shift in a subpopulation of subjects 

with Meniere’s disease, a moderately disabling chronic illness, by analyzing QoL data 

measured 10 months apart. The subpopulation with severe symptoms demonstrated 

response shift while patients with moderate symptoms did not. An individual’s social 

comparison results predicted greater response shift and longer time since diagnosis, 

higher self-esteem, and increased optimism were associated with less response shift in 

this population. Osborne et al. (2006) identified response shift in an arthritis chronic 

disease management program population and developed a paper-based questionnaire to 

measure response shift. Using individualized interviews as the gold standard and QoL 

input from 2 to 10 months post course for 121 participants, the researchers validated the 
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measurement instrument and identified that response shift occurred in approximately 

50% of the replies. Of these respondents, 30% realized during the course they had scored 

their original QoL too high, negative response shift, and 20% realized they had scored 

their original QoL too low, positive response shift. Both Yardley and Dibb and Osborne 

et al. concluded that response shift could confound pre-test to post-test assessments and 

potentially obscure true treatment effects. 

In an investigation of traumatic brain injury, Blair, Wilson, Gouick, and 

Gentleman (2010) identified that, contrary to expectations, there was no significant 

difference between current and retrospective judgment of past QoL. Researchers asked 

subjects directly about their change in QoL. Individual differences in responses existed 

with some subjects reporting that prior to their injury, QoL was better and some that their 

QoL was worse. When analyzed based on current disability status, a majority of subjects 

who were not disabled reported no change in their QoL before and after the injury. On 

the other hand, patients who were disabled reported changes in their QoL with 

approximately 60% reporting lower QoL while 40% reported increased QoL. Blair et al. 

identified response shift as the most likely reason for the change in QoL reported. In the 

area of disabled patients, Schwartz et al. (2007) identified that most QoL measures equate 

function with health resulting in lower QoL in patients with disabilities regardless of their 

individual perception of health.  

In chronic diseases, the effect of response shift has been mixed. The phenomenon 

was identified in three studies that investigated longer timeframes, though in one study 

only a specific subpopulation demonstrated measureable response shift. In a study that 
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measured response after 6 weeks, no response shift was identified. Details of effect size 

were not specifically evaluated or reported for these studies.  

Disease and Condition Research  

Response shift has also been researched in a variety of specific diseases and 

conditions including cancer (Bernhard et al., 1999; Hamidou et al., 2011; King-

Kallimanis et al., 2009, Kvam et al., 2010), stroke (Ahmed et al., 2005; Barclay-Goddard, 

Epstein, et al., 2009; Mayo et al., 2008) and multiple sclerosis (Schwartz et al., 2011). 

While most studies focused on determining the existence of response shift, some also 

specifically investigated effect size, recalibration, reprioritization, and 

reconceptualization.  

As cancer studies often include QoL instruments, several cancer studies have been 

used to investigate response shift. In a research overview, Hamidou, Dabakuyo, and 

Bonnetain (2011) identified ten clinical trials published between 1999 and 2010 that 

illustrated response shift and covered cancer populations with colon, prostate, breast and 

multiple myeloma. Methods of treatment including surgery and chemotherapy were 

highlighted as potential catalysts to the phenomenon. The review examined response shift 

measurement techniques and found that 80% of the trials incorporated the then-test, a 

technique that explored response shift by having respondents assess their current and 

retrospective QoL at each follow-up. In a colon cancer study, Bernhard et al. (1999) 

identified that patients reframed their perception of QoL but that that side effects of 

chemotherapy did not induce greater response shift. Patients assessed QoL before 

surgery, after surgery, and after randomized follow-up therapies using retrospective 
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ratings. Bernhard et al. found that despite the negative impact of chemotherapy, change in 

subject perceptions was not significantly impacted by treatment and that adjusting for 

response shift diluted the treatment effect but amplified overall improvement in most 

QoL indicators.  

King-Kallimanis et al. (2009) identified response shift using a measurement 

perspective but no response shift in an explanation view in newly diagnosed lung, 

pancreatic, esophageal, and cervical cancer patients who were scheduled for surgery. 

Using a QoL questionnaire completed prior to and 3 months after surgery, patients 

changed the way they conceptualized bodily pain and general health after surgery. The 

researchers noted that the general health construct, derived from questions that were 

general in nature, seemed to be vulnerable to bias. Using explanation bias guidelines, 

optimism and upward comparison variables impacted reported mental well-being, 

however because the effect was consistent across the measurement timepoints, this bias 

was not interpreted as response shift. In a multiple myeloma population, Kvam et al. 

(2010) examined minimally important clinical difference estimates and identified 

response shift changes in both magnitude and direction. At baseline and 3 months, 239 

subjects who self-identified as either improved or deteriorated, completed QoL 

questionnaires. The results of the two groups were compared and researchers found pain, 

fatigue, and physical function were retrospectively perceived by deteriorating subjects as 

higher at baseline—subjects minimized their prior QoL. On the other hand, improving 

subjects had no significant changes in their responses and the authors concluded that for 

this group the results were robust with no requirement to account for response shift. 
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Adjusting the deteriorating subject group for response shift would have increased the 

resulting change in QoL results between baseline and 3 months by 12 points. These 

findings were consistent with other research comparing improving and deteriorating 

subjects and identified that response shift may impact study subpopulations differently. 

Though the effect may be concentrated in specific subpopulations, response shift has 

often been identified in cancer studies. Surgery and longer follow-up timepoints seem to 

be associated with identification of this phenomenon.  

Stroke populations have also been investigated for response shift. Mayo et al. 

(2008) identified response shift in a third of the subjects using data from a longitudinal 

stroke study of 387 subjects that collected data at 1, 3, 6, and 12 months post-stroke. The 

study, which compared response shift methodologies, found that 67% of the subjects 

showed no response shift, 15% negative response shift (expected a higher functional level 

than immediately post-stroke), and 13% had a positive response shift (adapted to a lower 

normal functional level). Based on validation against retrospective ratings and simulation 

analysis, the authors concluded that ignoring response shift could yield an acceptable 

model over 12 months post-stroke. Because the methodology used was group based, the 

subgroups that experienced response shift would need to be large and in the same 

direction to be identified. Because the goal of post-stroke rehabilitation was to provide 

subjects with the coping tools to regain their wellbeing, Mayo et al. noted that identifying 

that 80% of the population either experienced no response shift or raised their criteria for 

QoL could be a negative finding since patients were not adjusting to their new health 

status and limitations.  
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Using data from a post-stroke study that investigated the effectiveness of at-home 

treatments, Ahmed et al. (2005) found conflicting response shift estimates when 

comparing three response shift methodologies—SEM, retrospective ratings, and 

individualized tests. Based on the retrospective rating and individualized tests, response 

shift was identified. The SEM method did not identify response shift. On the other hand, 

Barclay-Goddard, Lix, et al. (2009) used SEM to identify response shift at both 6 and 12 

months using data from stroke patients. Focusing on the mental health components of 

QoL, data from 677 participants who completed five QoL questionnaires at 1, 3, 6, and 

12 months post-stoke was analyzed. The researchers identified that this population 

demonstrated response shift in one aspect of the scale at 6 months and five aspects of the 

same scale at 12 months. Barclay-Goddard, Lix et al. concluded that recalibration 

response shift occurred, however effect size was not estimated. These results indicate that 

clinical significance and effect size of response shift in stroke populations has been 

varied.  

Response shift has also been assessed in multiple sclerosis and other medical 

conditions. Schwartz et al. (2011) used outcome data from multiple sclerosis patients to 

investigate and compare three statistics-based response shift quantification techniques—

SEM, latent trajectory analysis, and recursive partitioning analysis. Data from 3,008 

subjects in the North American Research Committee on Multiple Sclerosis (NARCOMS) 

data set were classified as relapsing, stable, and progressive without relapse based on the 

last 2 years of data and current thinking on disease progression. The authors concluded 

that the detection of response shift was dependent on the technique used. Researchers 
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using recursive partitioning identified all three aspects of response shift, SEM researchers 

identified only recalibration, and those using latent trajectory analysis concluded that 

99% of the population did not experience response shift. In general, the research found 

little evidence of response shift in the multiple sclerosis population. The limited response 

shift findings were unexpected since this population was selected for this research 

because as a chronic and progressive neurological disease, it was considered likely to 

include response shift. Schwartz et al. highlighted that these null findings could reflect a 

true absence of response shift or could be a limitation in the research design or methods. 

Research by Li and Rapkin (2009) supported the existence of response shift in an 

HIV population. A qualitative evaluation of HIV choices in care study provided insights 

into response shift through an assessment between baseline and 6 months of individual 

appraisal characteristics (Rapkin & Schwartz, 2004). The researchers identified nine 

subgroups of respondents that provided insight into cognitive assessment and response 

shift. King-Kallimanis et al. (2010) also investigated the measurement of response shift 

using data from HIV/AIDS patient QoL data. Using questionnaires completed every 6 

months for 2 years, the authors identified four examples of measurement bias 

representing three findings of response shift. However, the researchers could not identify 

any theoretical justification or explanation for these findings so concluded these findings 

could represent chance results. King-Kallimanis et al. noted that the data did not include a 

catalyst event, required by current response shift theory, and that could impact response 

shift.  
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In a medical device study, Ring et al. (2005) did identify response shift that 

impacted treatment effect. In this investigation, the researchers compared implanted 

versus conventional dentures using baseline and 3-month follow-ups measured by two 

response shift methodologies. The researchers identified both reconceptualization and 

reprioritization response shift and found that with traditional analysis no treatment effect 

was demonstrated while adjusting for response shift identified a significant treatment 

effect.  

A significant number of investigations into a variety of health care conditions 

have been conducted. Researchers have identified a wide variety of findings with follow-

up timing and measurement technique seeming to impact the results. However, while 

literature provides sufficient evidence to indicate that response shift occurs, no consensus 

has been reached on the impact of the phenomenon on clinical trials data interpretation.  

Spine Research and Response Shift 

Spine and orthopedic conditions present a unique population for response shift 

research because no biologic or radiographic markers have been found to effectively 

assess the result of spine treatment (Don & Carragee, 2008). Therefore the primary, and 

often only, goal of treatment is the reduction of pain and improvement of QoL with spine 

clinical investigators using function and QoL questionnaires as primary research 

endpoints (Copay et al., 2010). Standard practice has been for investigators to compare 

patient-reported function and QoL before and after an intervention and provide several 

years of QoL follow-up to comply with FDA requirements. Based on a clinically relevant 

threshold value, an intervention was interpreted as successful if the level is met. 



43 

 

Measuring QoL in spine trials may be complicated. First, it is often not possible to blind 

patients to their treatment. In particular, medical device trials must address the ethics and 

subject expectations when one arm of the study involves surgery and the other 

conservative therapy. Additionally, subjects may be provided with new information and 

strategies for coping with the consequences of their degenerative condition when follow-

up covers longer periods of time. Finally, as an elderly population, the comorbidities of 

aging may also impact perceptions. Adaptation of a patient’s QoL reference standards for 

any of these reasons may complicate the interpretation by eliciting response shift. 

Researchers have identified paradoxical results that suggest response shift may need to be 

considered in spine clinical trial interpretation (Anderson & Gerbing, 1988; Copay et al., 

2010).  

Spine Research  

Common in North America, chronic low back pain is becoming an increased 

burden on the health care system (Don & Carragee, 2008). However, despite its 

prevalence, and probably as a result of the complexity of the condition, there are no 

standard clinical practice guidelines for surgical intervention. Researchers have evaluated 

a wide variety of measurement instruments including condition-specific, disease-specific, 

and general health-related QoL tools. To identify the most effective instruments, Walsh, 

Hanscom, Lurie and Weinstein (2003) analyzed ODI, Musculoskeletal Outcomes Data 

Evaluation and Management System (MODEMS), and short form general health survey 

(SF-36) results completed at baseline and 3 months. After classifying subjects as 

improved, worsening, and no change and using receiver operating characteristic (ROC) 
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curve analysis, the researchers concluded that pain scales have been more responsive than 

function scales and there was no significant difference between condition-specific and 

general health scales. Therefore, the general SF-36 may be sufficient for low back pain 

studies and there was no requirement for condition-specific instruments. Copay et al. 

(2008) investigated minimum clinically important change in this population and validated 

minimum detectable change for the ODI as 12.8 points, for the physical component score 

(a subscale of the SF-36) as 4.9 points, for VAS back pain as 1.2 points and for VAS leg 

pain as 1.6 points.  

Spine researchers have reported inconsistencies in their research. When 

comparing multiple instruments in the same spine population, Copay et al. (2010) found 

subjects showed considerable inconsistency with 60% reporting conflicting results 

between ODI, SF-36, back pain VAS, and leg pain VAS collected at baseline and 1 year. 

However based on an overall change index, the subjects’ opinions on their treatment were 

strongly correlated and the authors concluded that the inconsistencies did not invalidate 

the QoL measurements. Copay et al. hypothesized that the threshold of tolerable pain 

could be translated into meaningful information and noted that the inconsistency between 

QoL instrument results should be taken into account when outcomes were evaluated and 

clinical relevance assessed. Haro et al. (2008) compared objective measures and QoL 

instrument results in spine surgery patients at baseline and 24-months post-surgery. The 

objective measures correlated with the leg pain VAS but not with the back pain VAS or 

ODI. The SF-36 indicated significant postoperative improvement, in both physical and 

mental component summaries. However, the objective measures were significantly lower 
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than the mental health subscale and significantly higher than the physical health subscale. 

Noting that VAS scores assessed physical health better than mental health and that ODI 

was most indicative of a patient’s symptoms, the authors concluded that patient 

subjective assessments were important in the evaluation of treatments that focused on the 

improvement of QoL.  

Researchers and theorists have identified response shift as a potential explanation. 

Using a case study, Schwartz and Finkelstein (2009) outlined basic response shift 

concepts and applied them to spine research including an assessment of disease trajectory 

where the treatment resulted in a partial and not a total cure. In spine conditions, 

resolving one set of symptoms may unmask other pre-existing symptoms, for example 

the resolution of leg pain exposes back pain. Overestimation of baseline disability may 

have no clinical significance when a total cure has been realized; however with only a 

partial cure bias in the baseline may impact measured treatment effect. Anderson, 

Carreon, and Glassman (2009) also identified incomplete recovery and progressive 

degeneration as factors in spine conditions that could impact subject satisfaction and 

cause them to underestimate the effectiveness of an intervention. Finkelstein et al. (2009) 

also highlighted the potential impact of a partial cure in commentary on orthopedic 

surgery results. With one group underestimating their baseline measure of impairment 

and the other overestimating this same baseline, the authors identified two directions of 

response shift recalibration. Finally, in a study of total knee replacement, Razmjou et al. 

(2009) directly investigated the existence, direction, and effect of response shift at 6 

months and 12 months postintervention. Using both disease specific and general QoL 
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instruments, the researchers identified response shift at both timepoints with an increase 

identified from 6 to 12 months. The change was particularly pronounced in the mental 

component of the SF-36 QoL results. Traditional analysis did not indicate any 

improvement in mental state as a result of the treatment at either timepoint. However, the 

values adjusted for response shift demonstrated a statistically significant difference at 12 

months.  

ISISS Study  

The ISISS study is a U.S. investigational device exemption (IDE) pivotal study 

that used a prospective, randomized, multicenter trial design to compare the safety and 

efficacy of a minimally invasive spine implant in the treatment of lumbar spinal stenosis 

(Loguidice et al., 2011; VertiFlex, 2013). Lumbar spinal stenosis is a progressive 

degenerative spine condition that is experienced by the patient as low back pain with leg 

pain and weakness during standing and walking. These symptoms result in impaired 

mobility, limitations in daily activities, loss of independence, and reduced QoL. As a 

degenerative disease, lumbar spinal stenosis symptoms can be treated both medically and 

surgically but cannot be cured. Therefore, the primary goal of treatment is to maximize 

function and maintain QoL.  

 Subjects at least 45 years old who had experienced a minimum of 6 months of 

moderate spinal stenosis symptoms and were unresponsive to conservative care were 

enrolled into the ISISS study (VertiFlex, 2013). After signing an informed consent, 

subjects were randomized (1:1) to either the investigational or the control device. The 

device was implanted and subjects were scheduled for follow-up visits approximately 
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every 6 months for a period of at least 24 months. At follow-up visits, subjects were 

assessed for neurological function and adverse events, had radiographic imaging, and 

completed QoL and function questionnaires including the ZCQ, ODI, SF-12, and VAS 

for back and leg pain. The primary endpoint was success at 24 month based on clinically 

significant patient improvement as determined by the ZCQ and if postintervention 

treatment was required. Secondary endpoints are improvement denoted by satisfaction 

score, ODI, VAS, and general health status. Data quality was supported by electronic 

case report forms with built-in error checks and regular site and data monitoring in 

accordance with good clinical practice and FDA regulations. The ISISS study was 

approved by Western IRB (central) or local site IRBs and all subjects provided informed 

consent for their data to be used for research purposes. Western IRB determined that the 

dataset provided for this analysis met all the criteria for a deidentified dataset and that no 

additional approval from the subjects was required for this secondary analysis. 

Measuring Response Shift 

In discipline overview articles, Schwartz and Sprangers (1999) and Barclay-

Goddard, Epstein, et al. (2009) identified a wide variety of methods that had been 

implemented to investigate response shift. The methodologies can be grouped into 

prospective approaches, where response shift assessment is incorporated into the research 

design, and statistical approaches, that can be implemented as a secondary analysis. 

Prospective approaches include retrospective ratings, individualized methods, and 

preference-based methods. Statistical approaches include ANOVA analysis, growth 

curves interpretation, latent trajectory analysis, and SEM. An overview and assessment of 
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these methods will be presented. Due to the early stage of response shift development, 

not all methods have the same level of implementation or empirical evidence.  

Retrospective Ratings 

One of the first and most commonly applied design approaches for assessing 

response shift has been retrospective ratings, commonly called the then-test (Barclay-

Goddard, Epstein, et al., 2009; Schwartz & Sprangers, 1999). In this method, subjects 

complete the QoL instrument at baseline (the pre-test) and at follow-up (the post-test). In 

addition, at follow-up the respondent provides a retrospective assessment of their baseline 

QoL, the then-test. This method has been based on the concept that since the post-

treatment QoL and reassessed baseline QoL would be completed at the same time, the 

respondent would be using the same QoL internal standards, values, and concepts. A 

comparison of the post-test and then-test would minimize any bias and indicate 

unconfounded treatment effect. The difference between the baseline (the pre-test) and the 

retrospective score (the then-test) indicate the level and direction of response shift, 

specifically recalibration (Ahmed et al., 2005; Schwartz et al, 2005, Schwartz & 

Sprangers, 1999). The then-test methodology was initially developed to assess 

educational training programs but has been adapted to be used in health care (Schwartz & 

Sprangers, 1999).  

Health care researchers in a number of medical conditions have used the then-test 

to explore response shift including studies of cancer (Hamidou et al., 2011; Jansen, 

Stiggelbout, Nooij, Noordijk, & Kievit, 2000; Kvam et al., 2010; Schwartz, Feinberg, 

Jilinskaia, and Applegate,1999; Visser, Oort & Sprangers, 2005), stroke (Ahmed et al., 
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2005, chronic disease (Yardley and Dibb, 2007), orthopedics (Razmjou et al., 2009), and 

dental implants (Ring et al., 2005). The researchers documented that retrospective ratings 

were relatively easy to administer and to interpret. The reliability of the then-test 

approach is similar to the original measurement tool so most instruments with strong 

psychometric properties can be used (Schwartz & Sprangers, 1999). The body of 

literature supports the value and usefulness of integrating then-tests into response shift 

research.  

Despite extensive usage, researchers have also identified potential concerns with 

the then-test. As patients may not be able to accurately recall their health from months 

earlier and so incorrectly report prior health, investigators have been concerned that this 

technique may identify both recall bias and response shift. In an investigation of patient 

care facilities, McPhail and Haines (2010b) identified a clinically meaningful change 

between longitudinal results and patient retrospective results in 83.2% of the subjects. 

However, when the data was adjusted for recall bias, the change was reduced to 7.9%. 

Based on a review of studies, Barclay-Goddard, Epstein, et al. (2009) identified that how 

the individual considers the renewed judgment of prior health can impact the findings. If 

the respondent recalls their prior health state and answers based on that information, the 

then-test would be accurate. However, if the respondent internally calculates prior health 

based on perceived change, as predicted by implicit theories of change, the result may be 

biased. Adding to the mixed results, Nolte et al. (2009) tested the psychometric 

performance of the then-test in chronic disease management and concluded that while the 
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standard pre-test/post-test was robust, the performance of the then-test/post-test could be 

influenced by implicit theory of change, social desirability, and recall bias.  

Other considerations when using the then-test include the requirement for subjects 

to complete multiple questionnaires and for the additional instruments to be incorporated 

into initial study design (Barclay-Goddard, Epstein, et al., 2009). Finally, the tested 

population is also required to meet minimum cognitive and memory ability requirements 

(Ahmed et al., 2005; Schwartz & Sprangers, 1999). Based on these concerns, Reeve 

concluded in a 2010 commentary on response shift that QoL researchers agreed that 

better methodologies than the then-test existed for the assessment of response shift.  

Individualized Approaches 

Individualized methods are measurement techniques that enable the respondent to 

define and assess the aspects of QoL that are the most relevant to them by integrating 

subject feedback with specific QoL factors. Instruments, such as the Schedule for the 

Evaluation of Individual Quality of Life (SEIQoL) and Patient Generated Index (PGI) are 

most often formatted as semi-structured interviews where the subject selects their five 

most relevant QoL domains and scores them (Schwartz & Sprangers, 1999). Subjects 

may identify the domains on their own or select from a reference list. After treatment or 

over time, the subjects reaccomplish the assessment. Hamidou et al. (2011) highlighted 

that using these tools researchers could generate an overall index, document the relative 

importance of each domain at each timepoint, and identify changes in relevant domains 

over timepoints.  
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Used by researchers to evaluate response shift in a range of health care situations 

including cancer (Hamidou et al., 2011), head injury (Ahmed et al., 2005; Blair, Wilson, 

Gouick, and Gentleman, 2010), comparison of treatment (Ring et al., 2005), and disease 

self-management (Osborne et al., 2006), the primary advantage of individualized 

approaches is the focus on the unique, individualized construct of QoL perception. Each 

participant can identify the aspects of QoL that are relevant to them at the time of the 

assessment. By comparing changes in domains and weights, researchers can identify 

specific differences over time and explore more about the meaning of the response shift 

(Barclay-Goddard, Epstein, et al., 2009; Schwartz et al., 2005). However, the complexity 

of the individualized assessments may restrict the populations that can be tested since 

subjects need to have significant cognitive ability to be able to provide relevant input 

(Blair et al., 2010). Additional disadvantages of this methodology include converting 

results into numerical values can be difficult (Barclay-Goddard, Epstein, et al., 2009), 

effective comparison can be challenging since context is changing (Schwartz & 

Sprangers, 1999), and the time-consuming interview requirement can make the approach 

impractical for larger studies and some disease states ( Hamidou et al., 2011).  

Preference-Based Methods 

Related to individualized approaches, preference-based methods of assessing 

response shift ask respondents to rate the value of specific health states such as the 

acceptable tradeoffs between longevity and a specific health aspect. This approach 

includes the Q-Twist method, preference mapping, and the ideal scale approach 

(Hamidou et al., 2011; Schwartz & Sprangers, 1999). In the ideal scale approach, patients 
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are asked to report both their current and ideal QoL on the same scale. Hamidou et al. 

(2011) noted that when repeated at different timepoints, researchers could compare the 

ideal results and identify recalibration and reprioritization response shift.  

Preference-based approaches have been used to evaluate response shift in cancer 

(Hamidou et al., 2011; Visser et al., 2005) and AIDS/ HIV patients (Schwartz et al., 

2005). However, while labeled a promising approach in 1999 (Schwartz & Sprangers), 

only a small number of researchers have used preference-based techniques to investigate 

response shift in current health care literature. Ease of implementation and resistance to 

recall bias are advantages of preference-based approaches (Schwartz et al., 2005). 

However, difficulties of this methodology include the potential for ceiling effects that 

may limit the results and interpretation may be complicated since both recalibration and 

reconceptualization are integrated into a single construct (Hamidou et al., 2011). 

Implementation also often requires advanced statistical techniques (Schwartz & 

Sprangers, 1999). This approach can also be time intensive for both participants and 

clinical investigators.  

Statistical Approaches 

Statistical approaches are the final general methodological classification used by 

researchers to evaluate response shift. These techniques use statistical tools to identify 

trends in research data. Statistical techniques have been as simple as paired t-tests 

(McPhail & Haines, 2010b) and as advanced as SEM (Barclay-Goddard, Epstein, et al., 

2009). Additional statistical techniques have included growth curves, regression trees, 

and latent trajectory analysis. Growth curves techniques have been used to compute and 



53 

 

compare individual slopes on variables of interest. The flexibility of this method and 

ability to assess relationships between two or more curves enabled growth curves to 

support complex problems (Barclay-Goddard, Epstein, et al., 2009; Schwartz & 

Sprangers, 1999). Regression tree analysis used repeated classification techniques to 

divide the research population into subpopulations that were more homogenous (Li & 

Rapkin, 2009). These subgroups enabled researchers to gain increased insight into 

response shift. Latent trajectory analysis created a predictive General Health model and 

examined discordances between predicted and observed results (Mayo et al., 2008).  

Statistical approaches have been used by researchers to evaluate response shift in 

a variety of medical conditions including cancer (King-Kallimanis et al., 2009; King-

Kallimanis et al., 2012; Oort et al., 2005; Visser et al., 2005), stroke (Ahmed et al., 2005; 

Barclay-Goddard, Lix, et al., 2009), multiple sclerosis (Schwartz et al., 2011), COPD 

(Ahmed et al., 2009), and HIV/AIDS (Li & Rapkin, 2009). Being model based has 

provided statistical approaches with a key benefit since it allowed researchers to test 

multiple response shift hypotheses at the same time (Schwartz & Sprangers, 1999). Data 

collection and research design were also simplified as only data from standard QoL 

instruments already included in the study were required. The ability to perform response 

shift analysis after the data has been collected, as secondary research, provides another 

significant benefit since comparative clinical trials that did not originally incorporate 

response shift assessment may investigate this phenomenon. The disadvantages of 

statistical approaches include results that may not be easily interpretable for non-

statisticians (Schwartz & Sprangers, 1999) and the potential for the components of 
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response shift to be integrated in a way that makes disentangling the results difficult 

(Mayo et al., 2008). Additionally, statistical techniques, such as SEM, often require fairly 

significant samples sizes (Kline, 2011) and the required focus on group-level results may 

mask important individual or subgroup effects (Barclay-Goddard, Epstein, et al., 2009).  

In investigating response shift, researchers have proposed and implemented a 

number of measurement techniques. However no single technique has become standard 

for the discipline. As with all research, the specific research problem should direct the 

methodology. Since response shift assessment has not been incorporated into most health 

care clinical trials, to best support the response shift integration into practice a technique 

that can be performed as a secondary analysis of existing data would be preferred. SEM, 

a statistical approach, meets that criterion.  

SEM 

Based on the exploration of the structure of means, variances, and covariances of 

variables of interest, health care researchers have used a statistical modeling technique, 

SEM, to explore response shift. This family of related multivariate analysis procedures 

includes path analysis, confirmatory factor analysis, and structural regression (Kline, 

2011). SEM enables researchers to study and test complex linear relationships between 

both observed and latent (unobserved) variables and allows variables to be indicated by 

multiple measures. Primarily a confirmatory technique, the SEM process involves a 

researcher hypothesizing the causal model, depicting it as a path diagram, and then 

testing the model using empirical data. The flexibility of specifications and requirement 
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for theoretical justification enable SEM to be used to effectively to address and model the 

complexity of health care and response shift.  

 SEM Overview  

SEM is a collection of multivariate analysis procedures that focus on means, 

variances, and covariances to explore relationships between observed and latent 

(unobserved) variables. Confirmatory factor analysis, a SEM model, is used to determine 

if collected data fit a theory-based measurement model. Based on covariance, the 

procedure is designed to accomplish two goals—to understand the patterns of covariance 

and to use the researcher-specified model to explain as much of the variation as possible 

(Kline, 2011). The variables that can be included in a structural equation model support 

the complexity of social science research. Variables may be observed or unobserved 

(latent) with some of the latent variables representing measurement error. The scale of a 

latent variable is arbitrary and must be set in the model by the researcher. By setting the 

variance of a latent variable to 1, the scale can be standardized. Alternatively, the variable 

may take on the scale of one of its indicator variables (Lei & Wu, 2007). These 

conventions allow for model simplification since when fixed in either manner, the 

variables are not estimated from the data. Similarly, since for endogenous variables all 

effects are included in the model, no unanalyzed associations occur between these 

variables (Kline, 2011). 

Kline (2011) identified six steps typical of SEM—specify the model, confirm 

model identification, select measures and collect data, estimate the model, respecify the 

model, and report the results. In the first step of the process, researchers create a 
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hypothesis of the relationships of interest and their interconnections based on literature, 

observations, and logical reasoning. A good model should be theoretically justifiable, 

simple and straightforward, and reproduce the correlation matrix based on the constraints. 

In the identification step, the researcher verifies that it is theoretically possible for a 

computer to derive a unique estimate for every model parameter. The third step of this 

technique is to collect the data and prepare the dataset. Preparation and screening of the 

data will ensure that if no SEM solution is produced, the null result is a function of an 

invalid model and not data issues. With the data available and verified, the researcher 

uses a SEM computer tool to conduct the analysis. This step, called estimation, includes 

evaluating model fit, interpreting the parameter estimates, and considering equivalent 

(and near-equivalent) models. The chi-square test can be used to test the null hypothesis; 

however, this test is sensitive to sample size and may reject a reasonable data fit based on 

a large number of samples (Lei & Wu, 2007). Alternative goodness-of-fit indices have 

been created to adjust for this effect and SEM experts recommend that multiple indices 

be considered when overall model fit is being evaluated (Kline, 2011; Lei & Wu, 2007). 

The fifth step in the SEM process is respecification, the reworking of the model to 

address any issues identified in earlier steps (Kline, 2011). A key consideration of 

respecification is that changes should be guided by rational considerations and Kline 

recommended that researchers identify theoretically justifiable changes in the original 

Step 1 model specification. The final step in the SEM research is to document the 

analysis completely and accurately. Building on the earlier steps of the SEM process, 

reported results should include a comprehensive review of the specification of the model, 
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documented validation of identification, complete characterization of the sample data, 

listing of SEM program and assumptions, review of the estimation, and discussion of any 

respecification required. Confirmation bias should be addressed and the implications of 

the analysis, whether the model was retained or not, should be highlighted.  

Due to its focus on covariance and since standard error may not be accurate with 

small samples, SEM is a large sample technique. This requirement can have significant 

impact on the research questions that can be addressed. Because SEM can produce both 

simpler and more complex models, there is no universal guideline for sample size. 

Researchers have proposed that the ratio of cases to the number of model parameters be 

set at between 10 and 20:1 (Kline, 2011). However in practice the typical sample size for 

SEM studies is about 200 cases, the approximate median sample size of peer-reviewed 

articles published in psychology and management science journals that used SEM 

techniques. The flexibility available from SEM can provide researchers with an excellent 

tool for understanding complex social situations including response shift. A number of 

QoL researchers including Hamidou et al. (2011), Oort (2005b), and Schwartz et al. 

(2011) identified SEM as the most pragmatic method of integrating response shift into 

clinical practice since it addresses multiple variables simultaneously and it does not 

increase effort or time commitment from the subject or clinical investigator during data 

collection. 

SEM for Response Shift 

While a variety of factor analysis and covariance methods have been proposed, 

the use of SEM has emerged as a promising response shift assessment technique. Two 
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methods have been demonstrated in the literature, the Schmitt method and the Oort 

method. While both SEM, there are differences in both the theory and methodology. The 

Schmitt method begins with an unconstrained model and adds constraints, retaining only 

those constraints that work. Conversely, the Oort method begins with a fully constrained 

model and releases constraints that are untenable. Ahmed et al. (2009) directly compared 

the Schmitt and Oort SEM techniques in a COPD population that participated in a self-

management program. Using two QoL instruments and data from baseline and 1 year, the 

Schmitt method did not identify any response shift while the Oort method found 

significant changes. The authors concluded that these subjects did experience response 

shift that underestimated change in physical health and that the Oort procedure was more 

sensitive in detecting response shift than the Schmitt method.  

The body of work to support the Oort SEM methodology for response shift 

assessment includes publications that address the theory, application of the SEM 

technique to clinical data, and mathematical correlations to recalibration, reprioritization, 

and reconceptualization (Oort, 2005a; Oort, 2005b; Oort et al., 2005). Ahmed et al. 

(2005) investigated response shift in a post-stroke population at 6 months, comparing 

three techniques—SEM, the then-test, and an individualized approach. The results were 

mixed with the then-test and individualized approach identifying response shift and the 

SEM not showing any response shift. Visser et al. (2005) also compared three methods of 

assessing response shift in a cancer study with QoL collected at baseline and 3 months 

post-surgery. The methods included the then-test, a preference-based approach, and SEM. 

In the study, all three methods identified response shift with the then-test and SEM 
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results largely comparable. The preference-based approach also identified response shift 

but in different domains and in a divergent direction. The authors concluded that due to 

the limitations of the preference-based test, the time required and the qualitative nature of 

the data, the then-test and SEM approaches were preferred for future research.  

King-Kallimanis et al. (2009) explored the difference in measurement and 

conceptual perspectives of response shift by applying SEM to a cancer population 

undergoing surgery. Five measurement response shift biases were identified but no 

explanation response shifts were identified. This application successfully added the 

exogenous factors of cancer site, health status, sex, age, optimism, and social comparison 

to the SEM methodology. In a further expansion of the Oort method, Barclay-Goddard, 

Lix, et al. (2009) evaluated response shift over multiple occasions in a post-stroke 

population. Response shift was identified at both 6 and 12 months though the shifts were 

not identical at these timepoints. The authors validated the SEM modeling technique for 

response shift and illustrated the usefulness of the information. Schwartz et al. (2011) 

compared three statistical methods for evaluating response shift, including SEM. Only 

small response shift effect sizes were identified in the multiple sclerosis population by all 

methods. However, the research did support the operationalization, interpretability, and 

data usage of the techniques. While based on the range of results a definitive best method 

could not be selected, in the comparison SEM yielded the clearest findings, effectively 

compared disease-specific to generic outcomes, and was determined to be the most 

successful.  
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When applied to response shift and health care research, SEM strengths include 

the ability to incorporate multiple variables into the model, the inclusion of measurement 

error, and the fact that this technique can be applied without additional data collection. 

Finally, since in the social sciences the magnitude of the effect is often most important 

and not the specific result of the statistical test, SEM provides better estimates of effect 

size for observed variables than many other mathematical techniques (Kline, 2011). A 

detailed methodology for this research study based on the Oort SEM technique is 

included in Chapter 3. 

Conclusion 

The use of patient-reported outcomes to support clinical trials and evidence-based 

medicine have highlighted the potential impact response shift phenomenon can have on 

study interpretation and conclusions. When individuals report their QoL at different 

timepoints, the results may be affected by changes in the individual’s internal standards, 

values, or conceptions. This can complicate the evaluation of longitudinal data and result 

in under- or overestimation of treatment effects. In this review I have outlined the 

theoretical foundation of response shift and presented current research in health care 

including the diversity of findings in specific medical conditions and over different 

timeframes. Researchers have explored a variety of techniques to identify and quantify 

response shift including retrospective rating, individualized approaches, and statistical 

methods. While the scholarly literature has explored response shift, the significance in 

comparative clinical trials of medical devices has not been extensively studied.  
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Investigating the clinical significance in a randomized clinical trial comparing two 

spine interventions, a population expected to experience response shift, would support the 

translation of response shift research into practical guidance for investigators and clinical 

trial designers. By using SEM, a statistical method sensitive to all components of 

response shift and appropriate for secondary analysis, any differences in response shift 

impact on the control and test groups at different timepoints could be explored. A 

practical application of response shift assessment would support clinical investigators, 

health care professionals, and QoL researchers in determining if response shift analysis 

should be incorporated into comparative trials using patient-reported outcomes. Chapter 3 

contains the specifics of the study design, clinical data, and modeling techniques to 

investigate response shift in the ISISS spine intervention study (VertiFlex, 2013). 
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Chapter 3: Research Method 

In spine interventions, clinical investigators typically compare subject-reported 

QoL scores from pre- and postintervention to document the effectiveness of treatments. 

However, subjects can adjust the way they score their QoL based on factors unrelated to 

the intervention including changing individual internal standards, values, and 

prioritizations. These changes, called response shift, could invalidate direct comparison 

of the QoL scores. Using data from a spine intervention trial and applying SEM 

techniques, I used a quantitative study design to explore response shift phenomenon and 

analyze the potential impact on comparative clinical trial data interpretation. Evaluating 

changes in response shift over time and determining if there was a difference in response 

shift between treatment groups will provide researchers with insight into the clinical 

significance of response shift for this subject population. This chapter contains an outline 

of the research design, data preparation, study population, the data analysis plan, and 

modeling framework for this research.  

Research Design 

Using data from a randomized clinical trial comparing the effectiveness of two 

medical devices and SEM, I explored response shift through 12 months using a 

longitudinal confirmatory modeling research design. Data from four lumbar spinal 

stenosis and spine QoL and function questionnaires were used to address the following 

research questions:  
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1. Do treated back pain patients experience a difference in response shift 

between baseline and 3 months and between baseline and 12 months 

postintervention?  

2. Does response shift phenomenon influence the clinical comparison of patient-

reported outcomes between baseline and 12 months in a randomized clinical 

trial for a spine intervention?  

Answering these research questions supported understanding of response shift in a 

variety of ways. First, by exploring response shift over time, I provided information about 

the existence of response shift and potential catalyst events in a spinal intervention 

population. If response shift was not detected, then spine investigators could continue to 

implement standard research designs with an increased level of confidence that their 

results were not biased by this phenomenon. If response shift could be detected, then 

investigators would be aware of this potential bias and could incorporate this knowledge 

into their clinical trial data interpretation. I supported the identification of catalyst events 

by characterizing differences in response shift between postintervention and later 

occasions. By addressing the second research question, I focused on clinical trial 

comparisons and response shift. To minimize bias, researchers often prefer study designs 

in which subjects are blinded to their treatment. However, in medical device clinical trials 

involving surgery, it is often difficult to prevent subjects from knowing which 

intervention they received. This knowledge has an unknown impact on expectations and 

therefore could influence response shift. Determining if response shift impacted two 

treatment groups differently could influence the confidence investigators have in their 
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study conclusions. Finally, performing this research using SEM supports the assessment 

of the practicality of implementing this methodology for response shift investigation.  

The ISISS study, the source of the data, was designed to determine the 

equivalence between the control and investigational devices (Treatments A and B) by 

comparing the number of successful interventions at 24 months. Researchers defined a 

successful intervention based on the improvement in patient-reported outcomes collected 

by the ZCQ, ODI, SF-12, and VAS for back, right leg, and left leg pain. Investigators 

focused secondary endpoint analysis on comparisons of patient health status pre- and 

postintervention using clinical difference thresholds and t tests. However, these statistical 

comparative techniques assume that at every timepoint subjects used the same internal 

standards, values, and conceptualization to assess their QoL. QoL researchers have 

identified that response shift phenomenon may invalidate this assumption but that QoL 

instruments are not designed to determine the impact of response shift (Razmjou et al., 

2009; Schwartz et al., 2006; Sprangers & Schwartz, 1999; Wilson, 1999). Therefore, an 

alternative analysis technique was required. Through my analysis of the literature, I 

identified SEM, an advanced modeling technique, as an effective tool for investigating 

the phenomenon and employed it for this research.  

Modeling techniques have been used effectively to create theory, to describe 

cause-and-effect relationships between variables, and to predict system output based on 

inputs. In an alternative application of modeling, Oort et al. (2005) demonstrated that 

evaluating variable invariance in a SEM model could detect and provide insights into 

response shift. After an appropriate measurement model was developed, constraints were 



65 

 

added and removed systematically. The fit and equivalence of the resulting models were 

evaluated. If the constraints significantly changed the model’s goodness of fit, then 

response shift associated with the constrained variables was identified and could be 

investigated in more detail.  

In this research, I created a theoretically justified structural equation model using 

subject-reported QoL responses to validate and optimize the model. As SEM terminology 

replaces dependent and independent variables used in other statistical methods with 

observed and latent variables, I incorporated these variables in a confirmatory path model 

to represent subject QoL reporting. I selected the observed variables from the 

questionnaire data provided from the QoL instruments and designated the latent 

variables, the unmeasurable true physical and mental states of the respondents, as PQoL 

and MQoL. Due to inherent measurement error and the many ways QoL concepts are 

interpreted by individuals, latent variables cannot be directly collected by behavior 

instruments. When an adequate model was supported, I systematically adjusted the 

constraints and analyzed the results using LISREL 9.1 SEM software (Scientific Software 

International, 2013). To determine if response shift was present, I evaluated the 

invariance of the model, direct effects, and variable responses. In order to address the 

research questions, I tested the constraints associated with measurement occasions (3 

months, 12 months) and the exogenous variable treatment group (A or B). Further details 

of the analysis are outlined in the Data Analysis Plan section.  

I selected a statistical approach, SEM, for this research to maximize the 

generalizability and value to health care clinical investigators. Other alternatives, such as 
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retrospective ratings and individualized approaches, require response shift investigation 

to be included in the original study design as an additional input. Because of the added 

research complexity and subject burden, few current comparative clinical trials have 

incorporated this data collection into their research. Statistical techniques only require 

data from QoL instruments used in the primary analysis and so can be effectively used 

for secondary analysis. Additionally, SEM addresses both measurement and conceptual 

issues in a single model, can identify all three components of response shift, and can 

address multiple follow-up timepoints (Hamidou et al., 2011; Oort et al., 2009; Schwartz 

et al., 2011). This method has also been demonstrated in the literature (Barclay-Goddard, 

Lix et al., 2009; King-Kallimanis et al., 2011, King-Kallimanis et al., 2012; Oort et al, 

2005). For these reasons, I identified a SEM technique using data from an on-going spine 

intervention study to support this investigation.  

Data and Instrumentation 

Statistics & Data Corporation (SDC), the ISISS study sponsor’s data manager, at 

the direction of the sponsor, VertiFlex, Inc., provided me with the limited dataset in an 

Excel format. VertiFlex obtained permissions to use all instruments as part of the ISISS 

study including authorization for secondary analysis (Appendix A). As the ISISS study 

was designed and conducted to support a premarket application for the FDA, the sponsor 

employed quality control techniques to ensure the validity of the data including (a) 

electronic case report forms (eCRFs) that included built-in edit checks, (b) on-site 

monitoring, and (c) general quality control. Based upon the quality control measures in 

place, I accepted the assumption that data accuracy was sufficient to support this 
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research. The research dataset was formatted as an Excel file. I will maintain the limited 

dataset provided by VertiFlex for audit purposes in compliance with Walden University 

policies.  

Instruments 

Four primary lumbar spinal stenosis and spine QoL and function questionnaires 

were used to collect data for the ISISS study—the ZCQ, ODI, SF-12, and VAS for back, 

right leg, and left leg pain. Each of these instruments was previously validated in spine 

and back conditions. The details of the validations can be found in the literature and are 

outlined in the individual instrument descriptions that follow.  

ZCQ. The ZCQ is a condition-specific instrument for lumbar spinal stenosis. It is 

a self-administered three-section patient survey covering symptom severity, physical 

functioning, and patient satisfaction with treatment. Satisfaction with treatment, Part 3, is 

only scored after an intervention has been performed. Items are scored with a 5-point 

Likert scale for symptom severity and a 4-point Likert scale for physical function and 

satisfaction. The results are calculated by subscale and expressed as a percentage of the 

maximum possible score with higher scores representing increased disability or 

dissatisfaction. As the result for each subscale is expressed as a percentage of the 

maximum possible based on questions answered, missing answers have been addressed in 

the scoring. Validity, reliability, and predictive ability have been well studied (Pratt, 

Fairbank, & Virr, 2002; Stucki, Daltroy, Liang, Fossel, & Katz, 1995; Stucki et al., 1996) 

 ODI. The ODI is a condition-specific instrument for spine disorders and low 

back pain. Composed of 10 items, the self-administered questionnaire is designed to 
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evaluate how spine issues, specifically back or leg pain, are impacting the respondent’s 

ability to handle everyday life. Items are scored on a 6-point Likert scale with the final 

score calculated as a percentage with lower scores representing minimal disability and 

higher scores increased disability. As one of the most commonly used outcome measures 

in spine issues, validity, reliability, and predictive ability have been well studied 

(Fairbank, Couper, Davies & O’Brian, 1980; Fairbank & Prysent, 2000; Pratt et al., 2002; 

Walsh et al., 2003).  

SF-12. The SF-12 is a multi-purpose health survey that measures functional 

health and well-being using 12 questions. Commonly called the SF-12, this instrument 

does not target a specific population or disease and measures multiple health domains 

including physical and mental components. Respondents report on physical and social 

activities that can be accomplished, how often they are performed, and the level of 

difficulty associated with them. The SF-12 is an adaption of the longer 36 question SF-36 

survey and was designed to be easier and faster for patients to complete. This instrument 

is recommended for large studies and for group comparisons; however the more granular 

SF-36 is preferred for individual decision-making (Resnik & Dobrzykowski, 2003) 

The SF-12 scale includes two primary subscales, a physical composite subscale 

(PCS) and a mental composite subscale (MCS), and eight domains. The subscales and 

domains are generated by scoring, combining, weighting and normalizing test item 

responses. The specific scoring formula is proprietary, however the developer, Quality 

Metric, provided the subscale and domain results as part of the licensing agreement. The 

scales have a range of 0 – 100 with norms set by the developer based on a mean of 50 and 
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standard deviation of 10. Norms therefore vary and are uniquely associated with 

population age groups. In the U.S. general population, PCS normal decreases with age 

and MCS normal increases with age. The physical score is made up of four individual 

domains—Physical Function (PF), Role Physical (RP), Bodily Pain (BP), and General 

Health (GH). The mental score is also composed of four domains—Mental Health (MH), 

Role Emotional (RE), Social Functioning (SF), and Vitality (VT). The validity and 

reliability of the SF-12 subscales and domains have been well established for both 

general and low back pain patient populations (Jenkinson et al., 1997; Luo et al., 2003; 

Resnik & Dobrzykowski, 2003; Ware, Kosinski & Keller, 1996).  

VAS. The VAS is a single item measurement tool for patient pain severity. 

Respondents report their pain by marking their pain level on a 100 mm line. No pain is 

the anchor at the left extreme and worst pain possible is the scale of the right extreme. 

The score is determined by measuring the number of millimeters between the left starting 

point and the patient’s mark. Outcomes are between 0 and 100 with higher scores 

indicating increased pain. The VAS is the most frequently used pain outcome measure for 

back pain and validity and reliability have been demonstrated (Litcher-Kelly, Martino, 

Broderick, & Stone, 2007; Moore, Moore, McQuay, & Gavaghan, 1997; Olaogun, 

Adedoyin, Ikem & Anifaloba, 2004). 

Data Collection and Preparation  

I requested a limited dataset containing demographic and QoL information from 

the ISISS study at an in-person meeting with Steve Reitzler, Vice-President Regulatory 

and Clinical Affairs, VertiFlex, Inc. After input from Western IRB who determined that 
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the dataset met all the criteria for a deidentified dataset and that no additional approval 

from the subjects was required for secondary analysis, Mr. Reitzler directed the ISISS 

data management provider, Statistics & Data Corporation (SDC), to e-mail a dataset to 

me for use in my dissertation (Appendix A). To further deidentify the data and ensure no 

negative impact on the ISISS study, subject identification codes were converted from a 

site-subject format to a subject only format, treatment group was blinded, and only 12-

month and earlier follow-ups were included in the data.  

As of May 2012, 476 subjects had been enrolled in the ISISS study with 288 

subjects having received an implant and reached 12 months post device surgery. To 

support the structural equation model, only subjects who had data from the 12-month 

follow-up were included in the analysis dataset. The data collected in the ISISS study, 

provided in the limited dataset, and required for the research dataset are outlined in Table 

2.  

I created a raw data file limited to all subjects who met the inclusion criteria. I 

ensured the variables could be implemented by the LISREL 9.1 software and compared 

the source and LISREL datasets to each other to ensure accurate transfer and formatting. 

After error checking was complete, I saved the file and made backups. Backups were 

stored separately and as part of an offsite backup service (Carbonite, Boston, MA). The 

dataset was screened for extreme collinearity, outliers, missing data, and multivariate 

normality in accordance with Kline (2011) and LISREL 9.1 program guidelines.  
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Table 2 

Data Collection for the ISISS Study and Research Data Set 

Data Collected 
ISISS Study 

Scheduled Data 
Collection 

Limited Data Set 
Research Data 

Set 

Demographic Info Baseline Baseline Baseline 

Randomization  Surgery Surgery Surgery 

Spine X-rays 

Baseline, Discharge,  

6 weeks, 3, 6, 12,  

18 & 24 months 

- - 

Neurological status 

Baseline, Discharge,  

6 weeks, 3, 6, 12,  

18 & 24 months 

- - 

Adverse events 

(hospitalizations, 

death) 

Baseline, Discharge,  

6 weeks, 3, 6, 12,  

18 & 24 months 

- - 

QoL Instrument – 

Patient Satisfaction 

6 weeks, 3, 6, 12,  

18 & 24 months 
- - 

QoL Instrument - ZCQ 
Baseline, 6 weeks,  

3, 6, 12, 18 & 24 months 

Baseline, 6 weeks,  

3, 6 & 12 months 

Baseline,  

3 & 12 months 

QoL Instrument - ODI 
Baseline, 6 weeks,  

3, 6, 12, 18 & 24 months 

Baseline, 6 weeks,  

3, 6 & 12 months 

Baseline,  

3 & 12 months 

QoL Instrument - SF-

12 

Baseline, Discharge,  

6 weeks, 3, 6, 12,  

18 & 24 months 

Baseline, 

Discharge, 6 

weeks, 3, 6 & 12 

months 

Baseline,  

3 & 12 months 

QoL Instrument - VAS 

Baseline, Discharge,  

6 weeks, 3, 6, 12,  

18 & 24 months 

Baseline, 

Discharge, 6 

weeks, 3, 6 & 12 

months 

Baseline,  

3 & 12 months 

 



72 

 

Modeling Dataset  

I included the variables listed in Table 3 in the research dataset for use in 

assessing and optimizing the SEM model. In accordance with Kline’s (2011) 

recommendation that scales be used as source data for SEM and as these outputs would 

be more representative of the results used for clinical interpretation, I did not include 

individual item responses in the dataset.  
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Table 3 

Modeling Dataset Variables 

Variables Description 

Age in years at time of surgery 

Race  

Gender  

Vertebral levels 1 level or 2 consecutive levels 

BMI  

Treatment group coded as A or B - investigational device (VertiFlex Superion™) or 

control device (X-Stop®).  The assignment of code to specific 

treatment has been blinded. 

Occasion Baseline, 3-month follow-up, 12-month follow-up 

ZCQ part 1 score Symptom severity 

ZCQ part 2 score Physical function 

ZCQ part 3 score Satisfaction with treatment - for follow-up intervals only 

ODI score  

PCS Physical Component Subscore of SF-12 

MCS Mental Component Subscore of SF-12 

PF Physical function domain  of SF-12 

RP Role physical domain of SF-12 

BP Bodily pain domain of SF-12 

GH General health domain of SF-12 

V Vitality domain of SF-12 

SF Social functioning domain of SF-12 

RE Role Emotional domain of SF-12 

MH Mental health domain of SF-12 

VAS back pain score  

VAS leg pain score Right leg and left leg scores added together to create one variable 

 

Note. BMI = Body Mass Index; ZCQ = Zurich Claudication Questionnaire; ODI = 
Oswestry Disability Index; SF-12 = Short form general health survey; VAS = Visual 
Analog Scale for pain. 
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Study Population  

This study involved secondary analysis of data collected to support a pre-

marketing approval of a minimally invasive spinal implant, the ISISS study (VertiFlex, 

2013). Data were collected from June 2008 through May 2012.  

ISISS Population  

The ISISS study used a prospective, randomized, multicenter trial design to 

compare the safety and efficacy of a minimally invasive spine implant for treatment of 

lumbar spinal stenosis (Loguidice et al., 2011; VertiFlex, 2013). As a degenerative 

disease, lumbar spinal stenosis symptoms can only be treated but not cured. Therefore, 

the primary goal of treatment is to maximize function and maintain QoL. The ISISS 

study recruited subjects from 32 sites in the United States. Clinical investigators 

identified potential subjects from their patient populations who met study inclusion 

criteria of being at least 45 years old, had experienced a minimum of 6 months of 

moderate spinal stenosis symptoms, and been unresponsive to other treatments. These 

patients were presented with the opportunity to enroll in the ISISS clinical trial 

(VertiFlex, 2013). If they agreed and after signing informed consent, subjects were 

randomized to either the control or the investigational device groups with half the 

subjects assigned to receive the control device (X-Stop®) and half to receive the 

investigational device (Superion™). The subjects had the surgery performed and the 

device implanted. Subjects returned to the investigator’s sites for follow-up and 

completion of QoL questionnaires at regular intervals through 24 months. The data from 
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these follow-ups were collected in 21 CFR part 11 compliant data systems that included 

electronic case report forms with built-in error checks.  

Sample Size 

The ISISS study used a non-inferiority hypothesis between the two treatment 

groups and a Bayesian adaptive approach for sample size selection with the final number 

of subjects enrolled equal to 463. As of May 2012, when the dataset was created, 288 

subjects had completed their 12-month follow-up visit. I combined the data into a single 

data file suitable for import into LISREL 9.1, a SEM software package.  

Kline (2011) instructed that sample size for SEM is dependent on the specifics of 

the model so no universal guidelines exist. The number of parameters in the final model, 

specific estimation algorithm, and distributional characteristics of the data all impact 

required sample size. Researchers have proposed that the ratio of cases to the number of 

model parameters be set at between 10:1 and 20:1. In this research, the model used to 

assess response shift had a ratio of 18:1 cases to parameters. However, this guidance is a 

rule of thumb and cannot be rigorously tested since the details of each model and data 

characteristics have a significant impact on power estimates. In practice the typical 

sample size for SEM studies published in peer-reviewed literature is about 200 subjects 

(Kline, 2011). Using a representative model with parameter numbers similar to the model 

used in this research, Oort (2005b) calculated the sample size required to detect 

reprioritization change. Reprioritization represented the sample size required for the Oort 

SEM analysis as recalibration and reconceptualization have a larger impact on observed 

means and covariances and therefore require fewer cases. Oort reported that for a 
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statistical power of 80%, a sample size of 170 was required and to increase the power to 

90%, a sample size of 228 was sufficient. Therefore, a sample size of 263 complies with 

SEM established practice and was adequate to identify SEM tested response shift for my 

research.  

Data Analysis Plan 

Using SEM techniques and LISREL 9.1 modeling software, I investigated 

response shift in QoL data reported in the ISISS study to address the following research 

questions:  

1. Do treated back pain patients experience a difference in response shift 

between baseline and 3 months and between baseline and 12 months 

postintervention?  

2. Does response shift phenomenon influence the clinical comparison of patient-

reported outcomes between baseline and 12 months in a randomized clinical 

trial for a spine intervention?  

This analysis plan contains an overview of the SEM methodology, study hypotheses with 

acceptance criteria, an explanation of the initial model, and model respecification 

alternatives.  

SEM Process 

To investigate response shift, I implemented the three-step SEM process 

described by King-Kallimanis et al. (2010): 

1. Establish a measurement model. 

2. Test invariance across measurement occasions. 
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3. Add exogenous variables and test direct effects.  

Step 1: Measurement model. In the first step I developed a confirmatory factor 

analysis (CFA) model that was an appropriate measurement model with good fit and 

clear interpretation of the data. As recommended by Kline (2011), goodness of fit was 

evaluated using two indicators—chi-square and root mean square error of approximation 

(RMSEA). The chi-square value represents the equivalence of the model predicted 

means, variances, and covariances compared to the observed means, variances, and 

covariances and supports the assessment of a model’s overall goodness-of-fit. In general, 

a good fit is indicated if the chi-square value is not significant. However since chi-square 

values are a measure of exact fit, the results can exhibit significant sample size sensitivity 

where in large samples even very small differences may be identified as significant. 

Adding RMSEA, an index of approximate fit, to the evaluation overcomes this limitation. 

RMSEA of < 0.08 was interpreted as a reasonable fit and < 0.05 as a close fit (Barclay-

Goddard et al., 2009; King-Kallimanis et al., 2011).  

When initial fit was not acceptable, the model was respecified according to 

theoretical associations outlined later in this chapter (Respecification Alternatives). I 

repeated the respecification process until I obtained a model with reasonable fit values.  

Step 2: Invariance across measurement occasions. Next, I used the SEM model 

and a two-stage process to evaluate response shift. In the first stage, I assessed overall 

response shift. Then I evaluated the model to detect the specific response shift 

components of reconceptualization, reprioritization, and recalibration.  
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Step 2, Stage 1: Overall response shift assessment. In the first stage, I assessed 

invariance of the model across the study follow-up timepoints by constraining all factor 

loadings and intercepts to be equal across baseline, 3-months, and 12-months. Using a 

chi-square difference test, the new model was compared with the model from Step 1. The 

chi-square difference statistic tests the hypothesis that two nested or hierarchical models 

are equal (Kline, 2011). A significant result indicates the models are not equal and the 

model with more free parameters fits the data better. Hierarchical models are those where 

one model is related to the second model only by the addition or elimination of free 

parameters. A significant chi-square difference result between the unconstrained (step 1) 

and constrained (step 2) models indicates response shift (King-Kallimanis et al., 2010; 

King-Kallimanis et al., 2011; King-Kallimanis et al., 2012).  

To expand on this conclusion, recall that latent variables represent the true value 

of the unmeasured attributes (i.e., wellbeing associated with physical aspects of life, 

PQoL). Based on data covariance and means matrices, the unconstrained model (final 

model from Step 1) provides a valid representation of the importance and contribution of 

the observed variables (pain, function) on the latent variable. Oort’s (2005b) response 

shift methodology focuses on these relationships. When multiple occasions are included 

in the model, the use of validated instruments supports the assumption that the 

relationship between the observed variables and the latent variables remains the same 

across all occasions. For example, if pain explains 60% of PQoL at 3 months, pain should 

also explain 60% of PQoL at 12 months even if the actual observed values of pain are 

different at these two occasions. So when the variable relationships are the same at every 



79 

 

occasion, changes in latent variable means will be fully explained by changes in the 

observed variable means. Therefore, mathematically adding this assumption to the model 

by including across occasion equality constraints should not significantly decrease the fit 

of the model. When assessing the invariance of SEM models, Oort (2005b) identified 

response shift when models were not equivalent and no response shift when the models 

were equivalent. Therefore, a chi-square difference test that supports that the 

unconstrained and constrained models are not equivalent also supports the finding of 

response shift in the observed data.  

Step 2, Stage 2: Evaluation of response shift components. The second stage of 

invariance testing requires the sequential removal of constraints on individual variables to 

assess the response shift components and detect their location (King-Kallimanis et al., 

2011; King-Kallimanis et al., 2012; Oort, 2005b). Working in iterative series addressing 

each observed variable separately, I removed the equality constraints on factor loadings 

and intercepts at all measurement occasions and assessed the fit using the chi-square 

difference test. A significant chi-square difference was interpreted as response shift in the 

associated parameter (Barclay & Tate, 2014; Oort, 2005b). To guard against family-wise 

errors, I based significance of the chi-square difference test on Bonferroni adjusted levels 

of significance (King-Kallimanis et al., 2011; King-Kallimanis et al., 2012). For each 

series, the freed variable that was both significant and produced the largest chi-square 

difference was retained to create an improved model. The process was repeated until the 

model’s goodness of fit could not be further optimized.  
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Oort (2005b) described and supported relationships between the three components 

of response shift and changes in structural equation models. These relationships are 

outlined in Table 4 and were used to guide the response shift component evaluation.  

Table 4 

Oort SEM Correlation to Response Shift Components 

SEM findings over intervals Response shift component 

Factor-loading patterns  • Reconceptualization 

Factor-loading magnitude • Reprioritization 

Residual factor variances • Recalibration - nonuniform 

Intercept changes  • Recalibration - uniform 

 

In Step 2, Stage 2, I evaluated the model components based on the Stage 1 

optimized model and assessed response shift in the following order (a) 

reconceptualization, (b) reprioritization, and (c) recalibration. In accordance with Oort 

(2005b), reconceptualization analysis was based on the evaluation of the pattern of factor 

loadings. Changes from zero to non-zero or positive to negative between measurement 

occasions identified reconceptualization response shift. Reprioritization was based on a 

comparison of the magnitude of factor loadings across occasions. Using standardized 

factor loadings, I calculated the difference between each set of measurement occasions by 

subtracting one from the other. Standardized factor loadings are correlation estimates 

between the observed and latent variables and when squared (R2) are proportions of 

explained variance. Consistent with King-Kallimanis et al. (2011) and SEM standard 

practice (Kline, 2011), I interpreted a difference in factor loadings of 0.10 as significant. 

Similarly, to identify recalibration, changes in residual factor variances (nonuniform 
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recalibration) and intercepts (uniform recalibration) across measurement occasions were 

assessed.  

The requirement to characterize response shift components was guided by the 

specific hypotheses tested in this research. Since the identification of at least one 

component of response shift resolved the hypothesis, I ended the identification of 

components after this occurred.  

Step 3: Add exogenous variables. In the final step, I tested exogenous variable 

invariance and investigated direct effects on the observed indicator variables. First, I 

added the exogenous variable of interest, treatment group, to the model and assessed the 

model for goodness of fit. Treatment group was free to correlate with PQoL and MQoL 

while all direct effects were fixed to zero. To test observed variable invariance, I created 

a series of models where the relationship between treatment group and the observed 

variables were individually freed. A significant chi-square difference test and a parameter 

change of at least 0.10 suggested a lack of invariance and a potential direct effect of the 

exogenous variable on the observed variable (King-Kallimanis et al., 2010; King-

Kallimanis et al., 2011; King-Kallimanis et al., 2012). In each series, the parameter 

associated with the largest significant improvement denoted a direct effect and was left 

free to be estimated. I repeated the process until no further significant direct effects were 

identified.  

 To identify potential chance findings and remain consistent with the methods of 

other response shift researchers, I repeated the assessment for direct effects on a model 

that included all available exogenous variables that could induce bias in QoL scores. The 
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exogenous variables added were treatment group, age, gender, number of vertebral levels 

treated, and BMI. I repeated the evaluation for direct effects using the new model. As the 

purpose of this testing was to gain additional insights, I used this information to further 

explain the results of the first Step 3 modeling assessment and not for hypothesis testing.  

Hypotheses  

H01: Response shift at 12 months is not different from response shift at 3 months.  

RS12 = RS3 

Ha1: Response shift at 12 months is different from response shift at 3 months. 

RS12 ≠ RS3 

where  

 RS12 is response shift of study population between baseline and 12 months, and  

 RS3 is response shift of study population between baseline and 3 months. 

I evaluated the difference between response shift at 3 months and 12 months 

based on the methodology outlined in SEM process, Step 2. After a SEM model with 

good fit was determined from the research data (Step 1), the invariance of the model with 

respect to measurement occasions was tested (Step 2, Stage 1) and response shift 

components evaluated (Step 2, Stage 2).  

For Stage 1, I added equality constraints and reassessed the model for goodness of 

fit using LISREL software. I evaluated the results based on the following criteria  

• If the chi-square difference test between the constrained and unconstrained 

models was not significant, the two models were interpreted as equivalent. If 
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the models were equivalent then no response shift across any timepoints was 

identified and the null hypothesis was retained. 

• If the chi-square difference test between the constrained and unconstrained 

models was significant, the models were not equivalent and response shift was 

identified. However, since this test detects response shift over the entire model 

(all three measurement occasions), additional analysis was required to assess 

if there was a difference between the two timepoints of interest (the 3-month 

and 12-month occasions). If required, I performed this Stage 2 analysis.  

For Stage 2, I tested the model as described in SEM process, Step 2 and assessed 

the components of response shift based on Oort’s (2005b) SEM correlation to response 

shift components (Table 4). The null hypothesis was rejected if I identified any 

component of response shift between the 3- and 12-month occasions. The null hypothesis 

was retained if I identified no response shift between the 3- and 12-month occasions. 

Response shift identified between other occasions was not used to address the hypothesis. 

I discontinued evaluation of response shift once the hypothesis was addressed.  

The three components of response shift (reconceptualization, reprioritization, and 

recalibration) were assessed as follows. To determine reconceptualization, I reviewed the 

factor loading patterns across occasions in the final model and evaluated the results based 

on the following criteria. 

• If the pattern of factor loadings between 3 months and 12 months changed 

(i.e. from non-zero to zero), reconceptualization was identified.  
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• If the pattern of factor loadings did not change, reconceptualization was not 

identified.  

 For reprioritization, I calculated the difference in factor loadings across occasions 

in the final model and evaluated the results based on the following criteria.  

• If the factor loading difference between occasions was at least 0.10, 

reprioritization was identified in that parameter. 

• If the factor loading difference was less than 0.10, reprioritization was not 

identified. 

 For recalibration, I calculated the difference in residual factor variances across 

occasions in the final model and evaluated the results based on the following criteria. 

• If the residual factor variance difference between occasions was at least 0.10, 

nonuniform recalibration was identified in that parameter. 

• If the residual factor variance difference was less than 0.10, nonuniform 

recalibration was not identified. 

H02: Response shift found in the patient-reported outcome results for treatment 

group A at 12 months is not different from the response shift in treatment group B at 12 

months.  

 RSA = RSB 

Ha2: Response shift found in the patient-reported outcome results for treatment 

group A at 12 months is different from the response shift in treatment group B at 12 

months. 

RSA ≠ RSB  
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where  

 RSA is response shift of treatment group A at 12 months, and  

 RSB is response shift of treatment group B at 12 months. 

I evaluated the impact of response shift between Treatment A and Treatment B 

subgroups at 12 months based on the methodology outlined in SEM process, Step 3. With 

treatment group added as an exogenous variable, the model was assessed for goodness of 

fit and evaluated for direct effects. I used the following criteria to assess Hypothesis 2.  

• If the optimized model included a direct effect for the exogenous variable 

treatment group that varied between measurement occasions, the null 

hypothesis was rejected.  

• If no direct effect was demonstrated or the direct effect was equivalent 

between measurement occasions, the null hypothesis was retained. 

Model Parameters  

The first step of the SEM was creating a confirmatory factor analysis model that 

associated latent and observed variables. For this research, I identified the latent, 

observed, and exogenous variables as follows:  

Latent variables. Two latent variables were used in the SEM model, PQoL and 

MQoL. These variables are consistent with general QoL research and the design of the 

SF-12 (Oort et al., 2005). 

Observed variables. Observed variables were provided by the QoL and function 

instruments collected in the ISISS study—the ZCQ, ODI, SF-12, and VAS for back and 
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legs. Continuous variables such as scales and domains were preferred over item 

responses in accordance with SEM best practices (Kline, 2011).  

Exogenous variables. The primary exogenous variable was treatment group to 

support the testing of hypothesis 2. Additional exogenous variables (age, gender, number 

of vertebral levels treated, and BMI) were also evaluated to better understand potential 

demographic and surgical confounding factors.  

Initial Model 

Based on instrument design, literature sources (King-Kallimanis et al., 2011), and 

theory, I created an initial model that contained six observed variables for PQoL (ZCQ 

Parts 1 and 2, ODI, PCS of the SF-12, back VAS and leg VAS) and three observed 

variables for MQoL (ZCQ Part 3 for 3-month and 12-month follow-ups, Mental Health 

and Role Emotional domains of the SF-12) included. The measures and their scales are 

summarized in Table 5. 
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Table 5 

QoL Indices Used in Initial SEM Model 

Instrument Item Scale 

ZCQ -  Lumbar spinal 

stenosis specific  

• Part 1: Symptom severity 

• Part 2: Physical function 

• Part 3: Satisfaction 

0 – 100; % of maximum, higher 

scores indicate increased 

symptoms, decreased function, 

decreased satisfaction 

 

ODI - Spine disorders 

specific  

• Disability composite 

 

 

0 – 100; % of maximum, higher 

scores indicate increased 

disability 

 

SF-12 -Generic health 

profile 

• PCS: Physical composite subscore 

 

• MH: Mental health domain  

• RE: Role emotional domain 

 

0 – 100; higher scores indicate 

better physical health  

 

0 – 100; higher scores indicate 

better mental status 

Pain VAS - Pain 

severity measure 

• Back pain severity 

 

• Leg pain severity – addition of 

right and left leg VAS scores to 

create one variable 

0 – 100; higher scores indicate 

increased pain 

 

0 – 200; higher scores indicate 

increased pain 

 
The relationships between the latent variables and observed variables were based 

on the instrument design with physical and pain measures associated with PQoL and 

mental components associated with MQoL. The resulting path diagram is presented in 

Figure 2.  
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Figure 2. Path diagram of 12-month follow-up. ZCQ1 = Zurich claudication 
questionnaire-symptom severity, ZCQ2 = Zurich claudication questionnaire-physical 
function, ODI = Oswestry disability index, PCS = physical component of SF-12, BVAS 
= back visual analog scale, LVAS = leg visual analog scale, ZCQ3 = Zurich claudication 
questionnaire-satisfaction, MH = mental health domain of SF-12, and RE = role 
emotional domain of SF-12. 
 

Since multiple intervals were included in the model, the final path model included 

three timepoints. The resulting initial model is represented by Figure 3. 

 

Figure 3. Path diagram for initial model. Note: Baseline timepoint has one less observed 
variable for Mental QoL as ZCQ3, Satisfaction with treatment, is not completed at 
baseline.  
 
Respecification Alternatives 

Model building was guided by theory and empirical results from previous 

research. In accordance with best practices for SEM, the following respecification 
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alternatives were documented prior to estimating the initial structural equation model. 

First, due to the potential for overlap in variables that measure either pain or physical 

function parameters, theory supports correlation between variables that would make the 

inclusion of multiple variables redundant. Kline (2011) recommended that redundant 

variables be removed from the model to support parsimony. If modification indices and 

standardized residuals support fewer indicators, the removal or substitution of indicators 

within the attribute groups in Table 6 would be supported by theory.  

Incidental correlations when two indicators have more in common than the 

common factors are also theoretically justified (Oort, 2005c). Additionally, relationships 

may exist between theoretically related factors. King-Kallimanis et al. (2011) identified 

covariance in an SF-12 SEM model between mental health (MH) and role emotional 

(RE).  

Table 6 

Model Indicators Grouped by Attribute 

Attribute Indicators 

Pain ZCQ1 (symptom severity scored by ZCQ) 
BVAS (back pain scored by VAS) 
LVAS (leg pain scored by VAS) 
BP (bodily pain scored by SF-12) 
 

Physical Function 
 

ZCQ2 (physical function scored by ZCQ) 
ODI (disability scored by ODI) 
PCS (physical component score of SF-12) 
PF (physical function scored by SF-12) 
RP (role physical scored by SF-12) 
GH (general health scored by SF-12) 
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Another alternative to simplify the model would be to remove the indicators 

associated with pain. Symptom severity and pain scores, especially 12 months after an 

intervention and in an older population, may be attributed to factors other than spine 

issues. Some may be chronic while others transient, e.g. subjects overexerted by playing 

36 holes of golf in the days prior to the follow-up visit. Therefore, pain may not be as 

relevant as physical function when evaluating back issues. Removal of the pain indicators 

would be theoretically justified if a simpler model was required.  

Human Subject Protection and Research Validity 

Walden University Institutional Review Board approved this research under IRB 

approval #05-08-14-0201068. As secondary analysis of data collected in a separate 

clinical trial, this research included no direct access to the human subjects. The original 

data continues to be maintained by VertiFlex and does not contain names or other subject 

unique identifiers, instead using unique subject screening numbers. For this research, the 

original screening number was replaced with a new identification number known only to 

VertiFlex to further enhance privacy protection. Human protection of subjects enrolled in 

the primary ISISS study was conducted in compliance with 21 CFR 56 where clinical 

investigators and the study sponsor, VertiFlex, verified that prior to study enrollment IRB 

approval was granted and all subjects signed informed consents. For this secondary 

analysis, I used the limited dataset only as permitted by this plan and as required by law 

and implemented safeguards to prevent inappropriate use or disclosure of the dataset. 

When the dataset is no longer required, I will destroy it in compliance with the Walden 
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University dissertation support requirements. I will also ensure that all Walden IRB 

requirements and conditions are met.  

Threats to external validity, inappropriate generalization to populations not 

included in the research, have been mitigated by highlighting the research patient 

population as subjects in the United States who suffered from moderate lumbar spinal 

stenosis, who agreed to implantation of a minimally invasive medical device and were 

followed for 12 months. As health care literature has identified divergent response shift 

based on patient condition, outcomes, and follow-up interval, the results of this research 

may not be generalizable to other patient populations or other intervals. As secondary 

research based on experimental data from a randomized clinical trial, the design of the 

primary ISISS study addressed internal validity threats. Selection bias, differences in the 

study population, and experimenter bias have been mitigated by the use of required 

inclusion criteria and randomization. Additionally, instrument and study procedures were 

prescribed in detail and maintained throughout the study. Finally, the inability of the 

measurement instrument to measure the variables of interest, construct validity, has been 

mitigated by the use of advanced modeling techniques. SEM integrates multiple variables 

into the same model. Comparing changes in response shift and not characterizing the 

specific response shift, enabled any construct issues to be excluded from the analysis. 

Overall, while internal and external validity are always important, the design of this 

research has mitigated the potential impact of these research issues.  
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Summary 

Changes in the internal standards, values, and priorities that patients use to assess 

health related QoL over time, response shift, could impact the results and conclusions of 

medical device clinical trials that use patient-reported outcome measures as primary 

endpoints. I used SEM to evaluate response shift using data from a randomized clinical 

trial of a spine intervention comparative study. The three-step SEM framework presented 

by King-Kallimanis et al. (2010) was used to evaluate response shift in the data. Overall, 

this chapter contained the research study design, study population, instrumentation, and a 

practical and effective SEM methodology to evaluate response shift in longitudinal 

comparative clinical trial data.  
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Chapter 4: Results 

The purpose of this research was to explore the impact of response shift on 

clinical trial data interpretation at 1 year in an interventional spine clinical trial. 

Specifically, I investigated the difference in response shift experienced by patients 

between two measurement occasions. I also researched if the intervention the subject was 

randomly assigned impacted response shift in a way that could influence clinical 

interpretation. To investigate response shift, I developed a confirmatory path model and 

used it to test invariance over measurement occasions and the direct effect of patient 

characteristics. This chapter contains the results of the research including a data 

summary, the measurement model with goodness of fit results, and hypothesis testing.  

Results 

Population 

From the ISISS study data collected between June 2008 and May 2012, I 

identified 288 subjects who had received a study interspinous medical device and had 

reached 12-month enrollment. Of these, 263 subjects reported 12-month QoL results. As 

the ISSIS study was designed to collect a representative sample of lumbar spinal stenosis 

subjects, this research subset should also be representative of this spine population.  Data 

were limited only by 12-month follow-up data availability as I performed no sampling. 

The number of subjects unavailable (8.6%) was also consistent with the study expected 

loss to follow-up rate of 10%. The research population had an average age of 67.1 years, 

was 63% male, and 54% had two vertebral levels treated (Table 7). Ninety-seven percent 

of the subjects had data for all three timepoints (baseline, 3 months, and 12 months).  
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Table 7 

Demographics 

Variable  

Subjects (n =) 263 

Age:  Mean (SD) 67.1 (9.6) years 

Race:  95% White 

 2% African American 

 2% Other 

Gender 63% Male 

37% Female 

Vertebral levels treated 46% 1 Level 

54% 2 Levels 

BMI:  Mean (SD) 29.7 (4.7) 

Treatment Group 45% Group A 

55% Group B 

Intervals 97% Baseline, 3- & 12-month 

  3% Baseline & 12-month  

Baseline ZCQ:  Mean (SD) 3.28 (0.61) – ZCQ1 

2.67 (0.43) – ZCQ2 

Baseline ODI: Mean (SD) 39.51 (12.82) 

Baseline VAS:  Mean (SD) 56.75 (25.84) – Back (max = 100) 

99.50 (48.39) – Legs (max = 200) 

Baseline SF-12: Mean (SD) 28.53 (8.24) – PCS 

49.86 (13.05)– MCS 

 

Note. ZCQ = Zurich Claudication Questionnaire; VAS = Visual Analog Scale for pain; 
ODI = Oswestry Disability Index; SF-12 = Short form general health survey; PCS = 
Physical Composite Subscale; MCS = Mental Composite Subscale. 
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I prepared the data using LISREL 9.1 software (Scientific Software International, 

2013). To consolidate the Excel datasets into a single dataset, I separated the variables 

based on follow-up interval, converted ordinal and alpha data into numbers, and renamed 

labels to comply with LISREL software requirements. I imported the raw data into 

LISREL and ran the LISREL Statistics Data screening function to summarize the data. 

The LISREL standard full information maximum likelihood (FIML) estimation method 

was used to address missing data.  

Across Occasion Response Shift  

 Hypothesis 1 testing required two steps—identifying an appropriate measurement 

model and testing for across occasion invariance as outlined in Chapter 3, SEM Process, 

Steps 1 and 2. To perform this analysis, I created and evaluated a series of models. Table 

8 contains the association of observed variables with latent variables for these models and 

Table 9 presents the results of goodness of fit assessments.  
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Table 8 

Observed and Latent Variables for Each Research Model 

Model  
 

PQoL         MQoL 
Exogenous 
Variables  

1.0 Initial Model  
 

ZCQ1, ZCQ2, 
ODI, PCS, 

BVAS, LVAS 
 

ZCQ3, 
MH, RE 

none Figure 3 

1.1 Initial Model 
with ZCQ3 
removed  
 

ZCQ1, ZCQ2, 
ODI, PCS, 

BVAS, LVAS 
 

MH, RE none - 

 1.2F Modified Model 
- Final  
 

ZCQ2, BVAS, 
PF, BP, RE 

MH, RE none - 

2.1 Across occasion 
factor loadings -
constrained equal 
 

ZCQ2, BVAS, 
PF, BP, RE 

MH, RE none - 

2.2F Factor loadings 
freed  
 

ZCQ2, BVAS, 
PF, BP, RE 

MH, RE none - 

3.0 Model 2.2F plus 
Treatment group  
 

ZCQ2, BVAS, 
PF, BP, RE 

MH, RE Treatment Group - 

3.1 Model 2.2F plus 
all exogenous 
variables 
 

ZCQ2, BVAS, 
PF, BP, RE 

MH, RE Treatment 
Group, Age, 

Gender, Levels 
Treated, BMI 

Figure 4 

 

Note. F denotes final model for steps 1 and 2.  PQoL = Physical Quality of Life; MQoL = 
Mental Quality of Life; ZCQ1 = Zurich Claudication Questionnaire Part 1; ZCQ2 = 
Zurich Claudication Questionnaire Part 2; ZCQ3 = Zurich Claudication Questionnaire 
Part 3; ODI = Oswestry Disability Index; PCS = Physical Composite Subscale; BVAS = 
Back Visual Analog Scale; LVAS = Leg Visual Analog Scale; PF = Physical Function; 
BP = Bodily Pain; RE = Role Emotional; MH = Mental Health; BMI = Body Mass Index.  
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Table 9 

Overall Goodness of Fit and Chi-square Difference Test Results 

  Goodness of fit parameters 

Model  

 

χ
2 

(df)        

RMSEA 
(90% conf 

int) 

χ
2 

DIFF 
(df)        p 

 

Models 
Compared 

1.0 Initial Model  
 

1104.5 
(284) 

 

0.105 
(0.098; 0.111) 

  None   

1.1 Initial Model with 
ZCQ3 removed  
 

931.1 
(237) 

0.106 
(0.098; 0.113) 

173.4 
(47) 

<0.0001 
 

1.1 vs. 1.0 

 1.2F Modified Model - 
Final  
 

282.3 
(114) 

0.075 
(0.068; 0.089) 

648.8 
(123) 

<0.0001 
 

1.2 vs. 1.1 

2.1 Across occasion 
factor loadings -
constrained equal 
 

426.7 
(128) 

0.096 
(0.087; 0.107) 

144.4 
(14) 

 

<0.0001 
 

2.1 vs. 1.2 

2.2F Factor loadings 
freed - ZCQ2, PF, 
BVAS, BP, & RE 
 

302.5 
(116) 

0.078 
(0.068; 0.089) 

124.2 
(12) 

<0.0001 
 

2.2 vs. 2.1 

3.0 Model 2.2F plus 
Treatment group 
 

297.5 
(128) 

0.071 
(0.060; 0.081) 

  Not 
applicable 

3.1 Model 2.2F plus  
all exogenous 
variables 
 

370.3 
(176) 

0.065 
(0.056; 0.074) 

  Not 
applicable 

 

Note. F denotes final model for steps 1 and 2.  RMSEA = root mean square error of 

approximation; χ2DIFF = chi-square difference.        
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Model 1.0. First, I reviewed the theoretically justified structural equation model 

outlined in Chapter 3 (Figure 3). In this model, the observed variables ZCQ1, ZCQ2, 

ODI, PCS, BVAS, and LVAS were associated with PQoL. Variables ZCQ3, MH, and RE 

were associated with MQoL (Table 8, Model 1.0). Based on chi-square and RMSEA 

statistics, this model was not a good fit to the data (Table 9, Model 1.0). King-Kallimanis 

et al. (2011) highlighted that in longitudinal models the pattern of factor loadings must be 

consistent across all occasions. As Model 1.0 did not meet this criterion, I removed 

ZCQ3 from loading on MQoL at the 3- and 12-month occasions. ZCQ3 could not be 

added to the baseline timepoint as the instrument did not include ZCQ3 prior to an 

intervention.  

Model 1.1. By testing the adjusted Model 1.1 using LISREL 9.1 software, I found 

the model did not fit the data (Table 9, Model 1.1) as the chi-square test was significant 

and RMSEA was greater than 0.08 (RMSEA = 0.108).  

Model 1.2F. Using the pre-specified adjustments outlined in Chapter 3 

Respecification Alternatives, I investigated a number of alternative models by 

substituting, replacing, and removing observed variables. Through this process, I tested 

an updated model that associated the observed variables of ZCQ2, BVAS, PF, and BP 

with PQoL; and RE and MH with MQoL (Table 9, Model 1.1). The fit was unsatisfactory 

(RMSEA = 0.106). Inspection of the modification indices suggested cross-loading of RE 

onto PQoL (including role emotional in both PQoL and MQoL assessments) and the 

addition of an error covariance between BVAS and PF (back pain and general physical 

function). I determined these associations to be theoretically sound. No other suggested 
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modifications could be supported by theory and so I did not include them. The changes 

produced a model with satisfactory fit (Table 9, Model 1.2F) where even though the chi-

square test was significant, the RMSEA was less than 0.08 indicating the model had 

reasonable fit. The path diagram and output files are found in Appendix B. The final 

model was theoretically justified as condition-specific and general wellbeing QoL scores 

documenting observed function, pain, and mental from several instruments were 

combined. As the model fit was satisfactory and interpretation clear, I proceeded to the 

next step.  

Model 2.1. To evaluate across occasion response shift, I constrained all factor 

loadings and intercepts to be equal across the three measurement occasions and created 

Model 2.1. The fit of this model was significantly worse when compared to Model 1.2F 

(χ2 DIFF = 144.4, df = 14, p = <0.0001, α = 0.05) indicating that response shift existed 

between measurement occasions (Table 9, Model 1.2F). This analysis supported the first 

stage of Hypothesis 1 testing. To comply with the hypothesis testing plan further 

evaluation of individual response shift components was required so I conducted the next 

stage of assessments.  

Model 2.2F. To identify the magnitude and type of response shift at the 3- and 

12-month occasions, I optimized the model by removing the equality constraints from 

each variable independently and comparing the fit of the resulting model. In each series, I 

freed the observed variable that was both significant and yielded the largest 

improvement. This process was repeated until no models in the next series showed 

significant improvement in the chi-square difference parameter. I created and assessed a 
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total of 30 models (Appendix C). To minimize family-wise error and reduce chance 

findings in this iterative testing, I determined significance using the Bonferroni adjusted 

level of significance α* = αf/(nznt) where αf was the family-wise level of significance, nz, 

was the number of factor loadings fixed at zero for a single measurement occasion, and nt 

was the number of measurement occasions (King-Kallimanis, 2010).  

Based on this iterative assessment, I identified that freeing RE, BP, ZCQ2, 

BVAS, and PF would improve model fit and confirmed that response shift existed in 

these variables across measurement occasions. Comparison of the final Model 2.2F to 

Model 2.1 indicated that Model 2.2F was improved (χ2 DIFF = 124.2, df = 12, p = 

<0.0001, α = 0.05). I performed this analysis to develop the model rather than to conduct 

hypothesis tests. I then continued my evaluation by assessing individual response shift 

components.  

For detection of reconceptualization and using Model 2.2F, I assessed the factor-

loading patterns between 3 and 12 months and identified no change (Table 10). 

Therefore, no reconceptualization between 3 months and 12 months was demonstrated.  
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Table 10 

Standardized Factor Loadings for Model 2.2F 

 PQoL MQoL 
 ZCQ2 BVAS PF BP RE RE MH 

Baseline Factor Loadings 0.66 0.36 -0.64 -0.60 -0.19 0.61 0.93 

3-month Factor Loadings 0.81 0.66 -0.77 -0.85 -0.19 0.43 0.97 

12-month Factor Loadings  0.87 0.83 -0.83 -0.87 -0.42 0.36 1.03 
 

        
Baseline and 3-month 
Factor Loadings Difference  

0.15 0.30 0.13 0.25 0 0.18 0.04 

Baseline and 12-months 
Factor Loadings Difference  

0.21 0.47 0.19 0.27 0.23 0.25 0.10 

        
3-month and 12-month 
Factor Loadings Difference  

0.06 0.17 0.06 0.02 0.23 0.07 0.06 

 

Note. Differences in factor loadings > .10 are in boldface.  PQoL = Physical Quality of 
Life; MQoL = Mental Quality of Life; ZCQ2 = Zurich Claudication Questionnaire Part 2; 
BVAS = Back Visual Analog Scale; PF = Physical Function; BP = Bodily Pain; RE = 
Role Emotional; MH = Mental Health.          

 
Testing for reprioritization, I compared the magnitude of factor loadings between 

measurement occasions (Table 10). Reprioritization response shift was identified between 

baseline and both follow-up timepoints as multiple loadings differed by at least 0.10. All 

observed variables were impacted between baseline and 12 months and a majority of 

variables (71%) were impacted between baseline and 3 months. Since I did not identify 

significant response shift in MH in Stage 1, the borderline factor-loading difference in 

this variable at 12 months could be a chance finding.  

 For assessment of Hypothesis 1, I focused on the differences between the 3-

month and 12-month timepoints and identified a change in factor-loading magnitude of at 
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least 0.10 for two variables—the BVAS standardized factor loadings differed by 0.17 and 

RE loadings on PQoL differed by 0.23 (Table 10). Therefore, the change in factor-

loading magnitude was significant and indicated reprioritization response shift between 3 

month and 12 months.  

Based on the two-stage Hypothesis 1 analysis, I rejected the null hypothesis. In 

Stage 1, response shift was identified based on the comparison of Model 1.2F and Model 

2.1. Specifically, the chi-square difference test was significant (p = <0.0001, α = 0.05) 

denoting the models were not equivalent. In Stage 2, I identified reprioritization response 

shift between 3 months and 12 months based on a difference of at least 0.10 in the factor 

loading magnitude of two observed variables, BVAS and RE. Based on the rejection of 

the null hypothesis, I concluded that response shift at 12 months was different than 

response shift at 3 months. As no further testing of hypothesis 1 was required, I moved on 

to the analysis of hypothesis 2 and did not evaluate the model for recalibration response 

shift components.  

Influence of Treatment Group on Response Shift 

Hypothesis 2 testing required the addition of exogenous variables, specifically 

treatment group, to the final Step 2 model to assess the direct effects of patient and 

surgical characteristics. To support this analysis, I created and assessed two additional 

models, Model 3.0 and 3.1 (Table 8). Consistent with earlier analysis, model goodness of 

fit was assessed based on chi-square and RMSEA. Direct effects were assessed based on 

chi-square difference statistics using Bonferroni adjusted levels of significance. 
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Model 3.0. To create Model 3.0, I added the treatment group variable to Model 

2.2F and allowed it to correlate with PQoL and MQoL. I fixed all direct effects on the 

observed variables to zero. The fit of Model 3.0 was satisfactory (χ2 = 297.5, df = 128, 

RMSEA = 0.071). Since the relationship between Model 3.0 and Model 2.2F was not 

hierarchical, the chi-square difference test was not a valid test statistic and was not 

assessed (Kline, 2011). 

To test for direct effects, I created a series of models associating treatment group 

with each observed variable separately. The series contained six models and I assessed 

significance based on α* = 0.0083. In this series when I associated treatment group and 

MH, the LISREL software produced illogical results and the warning that the covariance 

matrix was not positively definitive. As the estimation methods employed by the LISREL 

software require a positive definite matrix, I determined that this result was 

uninterpretable and could not support the finding of a direct effect. The variable MH was 

removed from the analysis procedure.  

I did not identify any direct effects based on treatment group as no unconstrained 

models met the criteria of a significant chi-square difference test (at adjusted significance 

levels) and parameter changes greater than 0.10. Based on these data, I did not reject the 

null hypothesis that subjects who received treatment A did not experience a difference in 

response shift from subjects who received treatment B between any measurement 

occasions. Since I detected no response shift bias based on treatment group, I further 

determined that there was no evidence to support that response shift influenced the direct 

comparison of QoL data between baseline and 12 months in the ISISS study.  
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Model 3.1. To provide additional information concerning the impact of 

exogenous variables on the study results, I added age, gender, levels treated, and BMI to 

Model 3.0 to create Model 3.1 (Table 8). Exogenous variables were allowed to correlate 

with latent variables while all direct effects on the observed variables were fixed to zero 

(Figure 4). While available, I did not include race as an exogenous variable as my review 

of the demographic data found the population to be almost homogenous at 95% white 

(Table 7).  

 

Figure 4. Graphical display of Model 3.1 showing first occasion variables only. QoL = 
quality of life; BMI = body mass index; ZCQ2 = Zurich claudication questionnaire part 
2; BVAS = back visual analog scale; PF = physical function; BP = bodily pain; RE = role 
emotional; MH = mental health. 
 

The fit of Model 3.1 was satisfactory (χ2 = 370.3, df = 176, RMSEA = 0.065). 

The path diagram and output files are found in Appendix D. In my review of the resulting 

covariance matrix (Table 11), I confirmed that treatment group had an extremely small 

covariance with PQoL and MQoL across all occasions. I interpreted this as not 

contradicting the previous finding that treatment group had no direct effect even when 

multiple exogenous factors were included in the model.  
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Table 11 

Model 3.1 Covariances 

 
PQoL 

T1 
MQoL 

T1 
PQoL 

T2 
MQoL 

T2 
PQoL 

T3 
MQoL 

T3 

PQoL -T1 1      

MQoL -T1 -0.37 1     

PQoL –T2 0.46 -0.18 1    

MQoL –T2 -0.22 0.47 -.050 1   

PQoL –T3 0.47 -0.18 0.73 -0.43 1  

MQoL –T3 -0.18 0.42 -0.30 0.49 -0.47 1 

Treatment group -0.04 0.03 0.03 -0.02 -0.01 -0.01 

Age -0.03 1.72 1.71 0.73 1.80 0.10 

Gender 0.13 -0.07 0.06 -0.04 0.04 -0.03 

Levels treated 0.06 0.01 0.03 0.002 0.03 -0.01 

BMI 1.10 -0.46 0.33 -0.53 -0.07 -0.09 

 

Note. PQoL = Physical Quality of Life; MQoL = Mental Quality of Life; BMI = Body 
Mass Index. 

 
To detect significant direct effects in this updated model, I repeated the analysis 

process outlined for Model 3.0 by created a series of iterative models. The series 

contained 30 models and significance was assessed based on α* = 0.016. As in the earlier 

Step 3 analysis, models created to assess MH for all exogenous variables were 

uninterpretable and removed from consideration for being freed. In the first series, no 

significant direct effects were associated with treatment group at any occasion. 

Significant direct effects of age and gender on RE were suggested but as the results from 
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this series supported no direct effect of treatment group, I did not follow-up with the 

additional testing to fully characterize the model’s direct effects. I concluded that the 

analysis of adding additional exogenous factors to the model did not raise any questions 

concerning the retention of the null hypothesis for Hypothesis 2 and provided additional 

support for the previous findings.  

Summary 

I concluded that the answer to research question 1 was that back pain patients in 

the ISISS study did experience a difference in response shift between baseline and 3 

months and between baseline and 12 months postintervention based on the rejection of 

the null hypothesis. I rejected the null hypothesis as a result of my detection of response 

shift in the overall model (Stage 1 test) in addition to the identification of reprioritization 

response shift between 3 months and 12 months (Stage 2 test). Specifically in Stage 1, the 

chi-square difference test between models 1.2F and 2.1 was significant (p = <0.0001, α = 

0.05) indicating that the models were not equivalent and overall response shift was 

detected. In Stage 2, my comparison of the magnitude of factor-loading values between 

occasions identified a difference greater than 0.10 between the 3 month and 12 month 

measurement occasions that I interpreted as reprioritization response shift between these 

two follow-ups.  

For research question 2, I found there was insufficient evidence to conclude that 

response shift phenomenon impacted the clinical comparison of patient-reported 

outcomes between baseline and 12 months in the ISISS study based on the failure to 

reject the null hypothesis. I did not reject the null hypothesis that subjects who received 
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treatment A did not experience a difference in response shift from subjects who received 

treatment B between any measurement occasions as a result of my SEM analysis into 

direct effects using Model 3.1. Specifically, I identified no unconstrained models in my 

iterative analysis of treatment group that met the criteria of a significant chi-square 

difference test (α = 0.0083) and parameter changes greater than 0.10. Therefore since a 

difference in response shift between the two treatment groups was not detected, I 

determined ISISS investigators could conduct direct clinical comparison of the treatment 

group results without accounting for differing response shift influences. In Chapter 5, I 

present further discussion of the results of this modeling study and implications for the 

integration of response shift analysis in the clinical interpretation of clinical data. I also 

explore how this research can result in positive social change and make recommendations 

for practice and future research.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

In this research, I investigated the impact of response shift phenomenon in a 

lumbar spinal stenosis population after receiving a surgical intervention. Using SEM 

techniques, I identified reprioritization at both 3 and 12 months with this response shift 

changing between the two follow-up timepoints. In my analysis of exogenous factor 

influence on response shift, I found that treatment group did not significantly impact the 

QoL reporting at 12 months. These findings add to the response shift body of knowledge 

by documenting that response shift was found in a spinal intervention population, 

reprioritization was different at different timepoints, and that direct comparisons between 

treatment groups can be made with no requirement to adjust for response shift. In this 

chapter, I expand on the interpretation of the findings, discuss other aspects of the 

research, and make recommendations for practice and future research.  

Interpretation 

In the evaluation of the clinical data, I identified response shift that differed 

between the 3- and 12-month follow-ups. The change in factor loadings between 

measurement occasions supported the finding that reprioritization response shift impacted 

BVAS (back pain as measured by the VAS pain scale) and RE (role limitations based on 

emotional issues). As reprioritization represents a change in the way a patient values 

specific aspects of his or her health, this change indicated that the back pain the patients 

experienced at 12 months had a greater influence on their perceived physical well-being 

than it did at 3 months. Likewise, I found that the correlation between RE and the 

patient’s PQoL scores increased between the 3- and 12-month follow-ups. The 
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correlation was negative because, unlike the other scales that make up PQoL, increased 

SF-12 measures indicated improved patient status. Reprioritization change in back pain 

could indicate that patients at 3 months may not have considered themselves fully healed 

from their surgery and so they associated less of their physical wellbeing to their back 

pain. It is also possible that the general reduction in pain and the fact that some patients 

may still have been medicated for surgical pain could also influence the relationship 

between back pain and overall QoL. Conversely, most patients at 12 months had accepted 

that the level of pain they were experiencing had stabilized. This realization could 

influence them to assign more importance to the pain they were experiencing when 

scoring their QoL.  

In a similar way, physical limitations due to emotional conditions such as 

depression and anxiety may be included in the patient’s general QoL scores differently at 

3 and 12 months. Because patients were completing the instruments on a regular basis 

and, in general, their physical status was improving, it is also possible that the 

respondents were better able to differentiate between emotional and physical causes for 

limitations in their day-to-day lives. These factors could also support reprioritization 

response shift. It is interesting to note that RE retained similar importance, no 

reprioritization, when predicting MQoL between these two follow-ups. These easily 

understood explanations can be used to support the reasoning that the response shift 

identified in the data was not a chance finding.  

In the evaluation of patient and surgical characteristics on response shift, the 

addition of exogenous variables in both Models 3.0 and 3.1 improved the model fit to the 
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data (Table 9). However, unlike in drug trials where both patient and investigator can be 

blinded to treatment arm, many device trials, especially those that involve surgical 

implants, cannot keep this information from the subject. Receiving the experimental or 

control treatment may influence a patient’s expectations for recovery and symptom 

resolution, as the potential benefits of the new treatment are covered extensively in the 

informed consent phase of a clinical trial. Disappointment in treatment assignment, an 

expectation of faster or miraculous healing if the experimental treatment was received, or 

other differences in expectations could influence QoL reporting and thereby bias a direct 

comparison of the outcome measures. Finding no direct effects of treatment group on 

response shift supported the direct comparison of the two study arms. While randomized 

clinical trial designs implemented by experienced research staff should reduce treatment 

group bias significantly, having an additional tool for confirmation could increase 

confidence in the clinical conclusions made by investigators. In this research, the 

identification of a potential direct effect associated with age and gender could be used to 

better understand specific subpopulations, direct future research, and prevent inaccurate 

ad hoc conclusions concerning the results.  

Discussion 

The response shift theoretical model includes the requirement for a catalyst, 

defined as a change in an individual’s health state regardless of source or direction 

(Sprangers & Schwartz, 1999). Therefore, the identification of a significant difference in 

response shift between 3 and 12 months supported time, in addition to the intervention, as 

a catalyst event in this spine intervention population. This finding was consistent with a 
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previous orthopedic intervention study that identified response shift between 6 and 12 

months after surgery and found response shift confounded the accurate measurement of 

patient recovery (Razmjou et al., 2009). However, when evaluating response shift in 

other medical conditions, researchers have documented varied results. In multiple 

sclerosis patients followed for 18 months, King-Kallimanis et al. (2011) identified only a 

small response shift. As the population was selected based on an expectation of large 

response shift, this finding was unexpected and the researchers identified the lack of a 

catalyst event as one of the reasons for the findings. In a study of an HIV/AIDS 

population that covered 2 years, King-Kallimanis et al. (2010) found minimal response 

shift. The researchers again highlighted the lack of a specific catalyst event such as a new 

diagnosis or an intervention as a study limitation. Conversely, in a longitudinal study of 

older men who both had strokes and were stroke free, reprioritization response shift was 

identified in all groups (Barclay & Tate, 2014). Covering 4 years, these results could 

indicate that time did serve as a sufficient catalyst event in the stroke-free older male 

population. The limited body of knowledge related to response shift and catalyst events 

does not provide any actionable results. However, whether time serves as a trigger for 

response shift could have significant implications for medical research as, if confirmed, 

this finding could invalidate accepted conclusions from previous longitudinal trials. 

Increased understanding of the impact in different acute and chronic conditions could 

also require significant changes in accepted clinical trial design and expectations.  

While theoretically complex, I was able to assess response shift in patient-

reported outcome measurements effectively from a comparative clinical trial by applying 
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SEM techniques. The process was fairly time consuming but the final results were 

interpretable and credible. By tailoring the process to focus on aspects relevant to 

comparative clinical trials, I was able to simplify the technique to a small degree. The 

primary challenge I had implementing SEM was in identifying an adequate starting 

measurement model because no other researchers had validated a SEM QoL model for a 

lumbar spinal stenosis surgical population. One early decision I had to make was whether 

to include only one or multiple instruments in the model. Literature did not provide any 

recommendations as both single and multiple instrument models had been used 

successfully (Ahmed et al., 2009; Barclay & Tate, 2014; Barclay-Goddard et al., 2009; 

King-Kallimanis et al., 2010). I elected to incorporate multiple instruments because five 

instruments were used in the ISISS study to support the analysis of primary and 

secondary endpoints. In addition, it was not feasible to use only the primary assessment 

instrument, the ZCQ, as the limited number of parameters violated model identification 

requirements. I did try to include at least one ZCQ variable in the final model as this 

instrument was critical to the primary treatment comparison and it was the only disease 

specific measurement tool. Because researchers had identified that even in the same 

studies, spine patients reported diverse and conflicting results when different instruments 

were used (Copay et al., 2010; Schwartz & Finkelstein, 2009), the difficulty in 

identifying a starting model was not unexpected. Another decision I made in the SEM 

process was whether to require reasonable fit (RMSEA < 0.08) or close fit (RMSEA < 

0.05) goodness of fit criteria. I selected reasonable fit as sufficient because the purpose of 

my research was to assess response shift in the context of interpreting comparative 
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clinical data and not to determine cause and effect relationships or to quantify true 

change. Other researchers had made the same decision (Ahmed et al., 2009; Barclay & 

Tate, 2014).  

In the health care literature, I found a general consensus on the importance of 

assessing response shift when QoL endpoints were used to support clinical efficacy 

decisions (Ahmed et al., 2005; Barclay & Tate, 2014; Hamidou et al., 2011; King-

Kallimanis et al., 2012; Razmjou et al., 2009; Schwartz et al., 2006). However, there was 

significant variability in the ability of different methods to identify the same response 

shift. In direct comparisons, different methods yielded discrepant results in type of 

response shift, effect size, clinical significance, or a combination of these (Ahmed et al., 

2005; Nagl & Farin, 2012; Visser et al., 2005). Therefore, with no validated or standard 

methodology for determining true change, how should investigators address response 

shift when it is identified? How can the potential for response shift bias be minimized as 

part of the clinical study design? In some cases, an evaluation of response shift will 

confirm that this phenomenon does not invalidate a direct comparison. In this research, 

the finding that treatment group did not influence the data at 12 months provided an 

example of this and the ISSIS investigator would be correct in implementing standard 

comparative analysis. However, investigators cannot count on the absence of significant 

response shift and therefore methods to address this phenomenon should be included in 

the initial study design. Techniques used to address other potential biases could be 

adapted such as including prespecified decision points and significance levels in study 

procedures and analysis plans. To do this, investigators would need to consider and 
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document the potential relationships between the types of response shift and research 

questions, study design, data structure, and specific QoL instruments. This could be a 

monumental task since relevant parameters increase exponentially when complex 

relationships are modeled. An additional complication with this approach would be that 

when response shift was identified, the investigator would need to report specifically how 

the information was integrated into the clinical interpretation. At a minimum, this should 

include the impact of recalibration, reprioritization, and reconceptualization.  

Alternatively, given the lack of accepted response shift adjustment information, 

investigators could select a clinical study design to minimize the potential impact of 

response shift. Eliminating the requirement to adjust QoL measures for response shift 

could be accomplished by using an equivalency or non-inferiority hypothesis in place of 

a direct comparison or superiority analysis. However, these equivalency designs could 

impose significant restrictions since a comparison treatment that was both equivalent and 

ethically valid would be required. Additionally, treatments that were superior to existing 

options, a typical goal of new interventions, often would not meet equivalency criteria.  

Limitations of the study 

During analysis, I did not identify any additional limitations to this research. 

However, the previously identified limitations remained. First, the study design was 

based on secondary analysis of previously collected experimental clinical trial data and as 

such the design did not drive data collection. However, sufficient data to support the 

SEM methodology was available so this restriction did not have a negative impact on the 

study. Data screening and cleaning procedures did not identify any significant data issues. 
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The mitigation of the source data being collected in accordance with good clinical 

practices that included electronic data entry with built-in edit checks and regular 

monitoring by the sponsor reduced concerns associated with the fact that the data was 

collected prior to final quality checks.  

The potentially subjective nature of advanced modeling procedures also did not 

introduce any unexpected research limitations. The evaluation methodology and 

goodness of fit criteria outlined prior to the analysis were implemented without 

adjustment. By prespecifying alternative models and variables, the potential for 

significant bias to be introduced into model respecification was minimized. Additionally, 

all model adjustments were able to be theoretically justified.  

Recommendations 

Instead of being isolated in QoL research, incorporating response shift assessment 

into clinical study design would benefit all clinical investigators that use patient-reported 

outcomes as endpoints. Due to the potential for response shift phenomenon to invalidate 

efficacy and treatment effect conclusions, this recommendation applies across research 

disciplines. An initial step would be to continue to communicate to researchers the 

potential confounding effect of response shift on standard clinical trial design and to 

provide tools to detect response shift in specific datasets. Publication in peer-reviewed 

journals outside of the QoL discipline would be beneficial. These articles would also 

serve to educate regulatory agencies, reimbursement professionals, and medical societies 

on the importance of considering response shift in clinical data interpretation. 

Additionally, as the body of knowledge concerning response shift adjustment is so 
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limited with no validated methodologies available, clinical study designers should give 

preference to equivalency and non-inferiority study designs over direct comparisons and 

superiority hypotheses. This runs counter to the current emphasis by physicians and 

governments on comparative effectiveness research. Equivalence designs often do not 

identify a clear treatment preference and the resulting increase in treatment options could 

increase rather than decrease health care costs. However, since the trade-off would be 

between investigators providing accurate clinical conclusions and the preference of 

regulatory and reimbursement professionals, patients would be best served by study 

designs that minimize response shift bias until investigators can accurately and 

consistently support true change comparisons.  

I also advocate additional research into the entire response shift discipline. 

Despite being explored for the past decade, response shift phenomenon research is still in 

an early stage. Research into the catalysts, antecedents, and mechanisms of response shift 

and how to identify and measure these variables would support the theory and foundation 

of this phenomenon. To expand the body of knowledge on response shift methodologies, 

comparisons of approaches, the validation of methods to accurately adjust for response 

shift, and the application of new and existing methods to varied QoL instruments and 

medical conditions are needed.  Of particular value would be research that directly 

compares multiple techniques for response shift identification and quantification in a 

population where response shift had been previously characterized.  Studies to expand 

SEM and other statistical methods that use secondary data analysis, the development of 

consistent reporting standards, and validated clinical practice guidelines would support 
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the practical integration of response shift into research disciplines outside of QoL. My 

identification of reprioritization in spine intervention subjects demonstrates that response 

shift is important to the accurate interpretation of patient-reported QoL outcome data so I 

recommend further research into all aspects of the phenomenon.  

Implications for Social Change 

The findings of this research provided support for including response shift 

evaluation into the clinical interpretation of QoL data to prevent false or inaccurate 

conclusions. The understanding that time can serve as a catalyst for response shift in a 

spine intervention population will support improved QoL adjustments for individuals 

living with chronic spine conditions. This study also provided clinical investigators 

outside of the QoL discipline with a practical methodology for evaluating the clinical 

significance of response shift on previously collected data. These additions to the 

response shift body of knowledge support an increased understanding of how this 

phenomenon can confound or invalidate accepted clinical study data interpretation. This 

insight can support physicians in coming to accurate clinical conclusions and enhance 

clinical decision-making. The incorporation of response shift evaluation into clinical 

study design will support the accurate interpretation of clinical trial data and translate into 

improved health outcomes for patients worldwide.  

Conclusion 

Using this research, I investigated the impact of response shift on the clinical 

interpretation of comparative data in a spine intervention clinical study. Response shift 

phenomenon can interfere with clinical data interpretation when patients adjust the 
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framework they use to score their QoL at different occasions. While response shift has 

been identified in health care data, the impact in interventional spine studies had not been 

studied. Using SEM, which could be applied to previously collected data, I identified a 

significant difference in response shift between the 3-month and 12-month follow-ups; a 

finding that could invalidate conclusions based on a direct comparison of QoL scores at 

these timepoints. However, since no difference in response shift associated with 

treatment group at 12 months was identified, a direct comparison of the results was 

appropriate. These findings should be considered when assessing ISISS secondary 

endpoints but do not impact the primary study analysis as intervention success by patient 

served as the primary outcome variable.  Success was determined based on a combination 

of individual clinically significant improvement, postintervention treatments, and adverse 

events.    

When treatment effects are being quantified based on patient-reported measures, 

clinical investigators should incorporate the assessment of response shift into the 

interpretation of the clinical data. Failure to investigate this phenomenon could result in 

inaccurate conclusions due to under- or overestimating treatment effects. SEM can be 

used to perform this assessment and to further explore the impact of response shift on 

clinical study results and conclusions.  
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Appendix C: Fit Indices for Model 2.1 

 

Model 

Model 

Change χ
2 df RMSEA  

χ
2 

DIFF 

df 

DIFF p 

2.1 All variables 
constrained 

426.7 128 0.096  
   

 
Comparison to Model 2.1  

Level of significance = α* =  αf/(nznt);  0.05/6 = 0.0083 
2.1.1a ZCQ2 freed  411.60 126 0.093  15.05 2 0.0005* 
2.1.1b BVAS freed 410.43 126 0.093  16.22 2 0.0003* 
2.1.1c PF freed 417.09 126 0.094  9.56 2 0.0084 
2.1.1d BP freed 405.30 126 0.092  21.35 2 <0.0001* 
2.1.1e RE freed 395.26 124 0.091  31.39 4 <0.0001* 
2.1.1f MH freed  410.96 126 0.093  15.69 2 0.0004* 

Variable RE freed 
 

Comparison to Model 2.1.1e  
Level of significance = α* =  αf/(nznt);  0.05/5 = 0.01 

2.1.2a ZCQ2 freed  381.18 122 0.090  14.08 2 0.0009* 
2.1.2b BVAS freed 379.63 122 0.090  15.63 2 0.0004* 
2.1.2c PF freed 386.81 122 0.091  8.43 2 0.0146 
2.1.2d BP freed 375.72 122 0.089  19.54 2 <0.0001* 
2.1.2e MH freed 387.52 122 0.091  7.74 2 0.0209 

Variable BP freed 
 

Comparison to Model 2.1.2d  
Level of significance = α* =  αf/(nznt);  0.05/4 = 0.0125 

2.1.3a ZCQ2 freed  350.09 120 0.085  25.63 2 <0.0001* 
2.1.3b BVAS freed 357.34 120 0.087  18.38 2 <0.0001* 
2.1.3c PF freed 361.16 120 0.087  14.56 2 0.0007* 
2.1.3d MH freed 368.36 120 0.089  7.36 2 0.0252 

Variable ZCQ2 freed 
 

Comparison to Model 2.1.3a  
Level of significance = α* =  αf/(nznt);  0.05/3 = 0.0167 

2.1.4a BVAS freed 321.94 118 0.081  28.15 2 <0.0001* 
2.1.4b PF freed 321.81 118 0.080  28.28 2 <0.0001* 
2.1.4c MH freed 343.98 118 0.085  6.11 2 0.0471 

Variable PF freed 
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Model 

Model 

Change χ
2 df RMSEA  

χ
2 

DIFF df p 

 
Comparison to Model 2.1.4b  

Level of significance = α* =  αf/(nznt);  0.05/2 = 0.025 
2.1.5a BVAS freed 286.05 116 0.075  35.76 2 <0.0001* 
2.1.5b MH freed 316.93 116 0.081  4.88 2 0.0872 

Variable BVAS freed 
 

Comparison to Model 2.1.5a  
Level of significance = α* =  αf/(nznt);  0.05/1 = 0.05 

2.1.6a MH freed 282.32 114 0.075  3.73 2 0.1549 

Variable MH not freed - χ2 DIFF not significant 
 

Note. ZCQ2 = Zurich Claudication Questionnaire Part 2; BVAS = Back Visual Analog 
Scale; PF = Physical Function; BP = Bodily Pain; RE = Role Emotional; MH = Mental 

Health; RMSEA = root mean square error of approximation; χ2DIFF = chi-square 
difference; df DIFF = degree of freedom difference. 

* p significant at adjusted level. 
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Appendix D: Model 3.1F LISREL Standardized Path Diagram and Output File 
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