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Abstract 

The less-than-nationwide use of electronic health record (EHR) systems to send, receive, 

and integrate (SRI) patient summary of care (PSC) records limits the ability of hospital 

administrators to maximize efficiency and improve quality in the continuum of care. 

Despite obvious differences in state health information exchange (HIE) consent policies, 

there is no known research that has determined if and what aspects of state-level HIE 

legislation affect the use of EHR systems to SRI PSC records. Guided by the unified 

theory of acceptance and use of technology (UTAUT), the purpose of this quantitative 

cross-sectional research study was to examine the relationship between one independent 

variable (type of HIE consent policy) and three dependent variables: percent of 

nonfederal acute care hospitals that electronically (a)send (b) receive (c) integrate PSC 

records from and into their EHR from outside providers respectively. Data analysis using 

multivariate analysis of variance (MANOVA) statistical test found that Opt-in policy 

states had the lowest percentage of hospitals engaging in the three domains. The study 

also found that the use of EHR systems was most rampant in states with relatively less 

stringent HIE policies., there was a non-statistically significant relationship between HIE 

policy type and the dependent variable. However, the relationship between year (secular 

trend) and the dependent variable was statistically significant as there was incremental 

changes in the independent variable between 2015 and 2017. The study contributes to 

positive social change by providing increased research within the (HIE) field aiming to 

promote government and private sector investment to understand and address 

technological, practice, and policy barriers regarding EHR-to-EHR system integrations. 
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Section 1: Foundation of the Study 

Introduction 

An electronic health record (EHR) is a digital format of patients’ medical 

information, which includes physical examinations, health history, treatment, and 

investigations (Lim et al., 2018). Hospitals are increasingly adopting EHR technology 

due to the benefits associated with it. In the United States, the federal government has 

been encouraging the adoption of EHR technology through an EHR incentive program 

authorized by the Health Information Technology for Economics and Clinical Health 

(HITECH) Act of 2009 (Health IT, 2020). The incentive program provides payments to 

eligible professionals and hospitals for adopting and meaningfully using certified EHR 

technology. Certified EHR technology has capabilities that allow healthcare providers to 

organize and integrate patients’ health information among healthcare providers such that 

the information can be accessed from multiple sources. Despite these benefits and 

political support for the meaningful use of certified EHR systems, many (about 59%) 

nonfederal acute care hospitals in the country do not use their EHR systems to send, 

receive, and integrate patient summary of care (PSC) records for patients transitioning 

from one setting of care or provider to another (Eval, 2016; Office of the National 

Coordinator for Information Technology [ONC], 2017; Riordan et al., 2015; World 

Health Organization [WHO], 2017). This has led to an increased gap in the continuum of 

care, especially for people with chronic health conditions (De Regge et al., 2017; Waibel 

et al., 2016). 
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Over the years, stakeholders have raised concerns over the privacy and 

confidentiality of the information they share with their healthcare providers. These 

concerns appear to have increased with the push for interoperability of electronic health 

records (EHRs). As a result, the federal government developed the Health Insurance 

Portability and Accountability Act (HIPAA) privacy rule (Health IT, 2020). This is the 

federal law that sets the bar for the protection of health information. At the state level, 

there are also privacy regulations that require healthcare providers to obtain patients’ 

written permission before disclosing information to other organizations or other people, 

even when the purpose of disclosure is treatment. It is commonly assumed that the 

HIPAA privacy rule preempts or overrides other state laws that are not as protective 

(Health IT, 2020), but the influence of state legislatures regarding patient consent for 

information exchange on the meaningful use of certified EHR systems to receive, share 

and integrate PSC records is not clear (Henry et al., 2016; Klosek, 2011; ONC 2013; 

Palabindala et al., 2016; Weiser, 2019). 

In this section, I discuss the research problem, purpose, core questions, and 

approach. I also present a summary of observations from my review of the literature on 

the relationship between state Health Information Exchange (HIE) consent policies and 

the meaningful use of certified EHR systems among nonfederal acute care hospitals. I 

discuss the theoretical foundation of the study, as well as studies related to the variables 

and methodology used in this study. I conclude by presenting a summary of what is 

known, controversial, and unknown regarding the variables in focus for this study. 
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Problem Statement 

The problem is that the U.S. government has made significant investments to 

promote the meaningful use of certified electronic health records (EHR) systems, yet 

many (about 59%) nonfederal acute care hospitals in the country do not use their EHR 

systems to send, receive, and integrate summary of care records for patients transitioning 

from one setting of care or provider to another (Eval, 2016; ONC, 2017; Riordan et al., 

2015; WHO, 2017). The lack of the meaningful nationwide use of certified EHR systems 

to send, receive, and integrate PSC records limits the ability of hospital administrators to 

maximize delivery of patient-centered e-health solutions, increase efficiency, improve 

quality of patient care, and facilitate the transformation of healthcare organizations into 

learning centers (Centers for Disease Control [CDC], 2019; Eval, 2016; Haux et al., 

2018; Lin et al., 2018). In 2019, for example, the Office of the National Coordinator for 

Information Technology (ONC) reported from the HINT survey that about one in 20 

individuals who had been to the doctor the year before reported having to redo a test or 

procedure because their prior data were unavailable. About one in five individuals also 

had to bring prior test results to an appointment (HINT, 2018; ONC, 2019). 

Another problem that exists due to a lack of nationwide meaningful use of 

certified EHR systems to transfer and receive patient information between different levels 

of care and locations is an increased gap in the continuum of care, especially for people 

with chronic health conditions (De Regge et al., 2017; Mansukhani et al., 2015; Waibel et 

al., 2016). The gaps in the continuum of care contribute to increases in healthcare 

administrative errors such as poor transitions and miscommunication among care 
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providers, cause confusions regarding treatment plans, increase duplicative testing, 

discrepancies in medications, missed physician follow-up, fragmented treatment, patient 

dissatisfaction, and increased healthcare cost (Mansukhani et al., 2018; Waibel et al., 

2016). 

In addition, researchers who explored the factors that influence the adoption and 

meaningful use of EHRs highlighted cost, lack of industry collaboration, a culture of 

fragmentation, and physician burden as important factors that affect the meaningful use 

of EHR systems in hospitals (Council for Affordable Quality Healthcare, 2020; Reisman, 

2017). These factors have been more organizational, structural, and environmentally 

centered than they have been policy and patient-centered. There has been little research 

emphasis on the role of state policies related to patient consent for information exchange, 

even though such policies exist and differ from state to state (Henry et al., 2016; Klosek, 

2011; ONC, 2013; Palabindalaet al., 2016; Weiser, 2019). Despite the obvious 

differences in state HIE consent policies, there is no known research that has determined 

whether and what aspects of state-level HIE legislation affect the meaningful use of EHR 

systems to send, receive, and integrate PSC records. 

Purpose of the Study 

The purpose of this quantitative cross-sectional research study was to determine if 

there are significant differences in the percentage of nonfederal acute care hospitals that 

send, receive, and integrate patient summary of care (PSC) records electronically in U.S. 

states that identify as implementing opt-in health information exchange (HIE) policies 

versus those that implement opt-out policies. I examined the relationship between one 
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independent variable (type of HIE consent policy) and three dependent variables (percent 

of nonfederal acute care hospitals that electronically send PSC records, percent of 

nonfederal acute care hospitals that electronically receive PSC records from outside 

providers, and percent of nonfederal acute care hospitals that electronically integrate PSC 

records into their EHR from outside providers). Points about whether HIE consent 

policies affect the use of certified EHR systems to send, receive, and integrate patient 

summary of care PSC records can provide context for healthcare administrators on how 

and where policy development and investments can streamline the complexity of 

exchange and address barriers to interoperability. This can, in turn, contribute to 

promoting wider use of certified EHR systems by healthcare administrators in acute care 

settings to send, receive and integrate PSC records, and corresponding improvements in 

quality of care. 

Research Questions and Hypothesis 

Research Question 1 (RQ1): What is the association between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals in that state 

that electronically send patient “summary of care” (PSC) records to outside providers, as 

reported in the American Hospital Association (AHA) survey between 2015 and 2017? 

Null Hypothesis (H01): There is no statistically significant correlation between the 

type of HIE consent policy in a state and the percent of nonfederal acute care hospitals 

that electronically send PSC records to outside providers, as reported in the AHA survey 

between 2015 and 2017. 
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Alternative Hypothesis (Ha1): There is a statistically significant correlation 

between the type of HIE consent policy in a state and the percent of nonfederal acute care 

hospitals that electronically send PSC records to outside providers, as reported in the 

AHA survey between 2015 and 2017. 

Research Question (RQ2): What is the association between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically receive PSC records from outside providers, as reported in the AHA survey 

conducted between 2015 and 2017? 

Null Hypothesis (H02): There is no statistically significant correlation between the 

type of HIE consent policy in a state and the percent of nonfederal acute care hospitals 

that electronically receive PSC records from outside providers, as reported in the AHA 

survey conducted between 2015 and 2017. 

Alternative Hypothesis (Ha2): There is a statistically significant correlation 

between the type of HIE consent policy in a state and the percent of nonfederal acute care 

hospitals that electronically receive PSC records from outside providers, as reported in 

the AHA survey conducted between 2015 and 2017. 

Research Question 3 (RQ3): What is the association between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically integrate into their EHR PSC records received from outside providers, as 

reported in the AHA survey conducted between 2015 and 2017? 

Null Hypothesis (H03): There is no statistically significant correlation between the 

type of HIE consent policy in a state and the percent of nonfederal acute care hospitals 
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that electronically integrate into their EHR PSC records received from outside providers, 

as reported in the AHA survey conducted between 2015 and 2017. 

Alternative Hypothesis (Ha3): There is a statistically significant correlation 

between the type of HIE consent policy in a state and the percent of nonfederal acute care 

hospitals that electronically integrate into their EHR PSC records received from outside 

providers, as reported in the AHA survey conducted between 2015 and 2017. 

Theoretical Foundation for the Study 

The theoretical framework for this study was the unified theory of acceptance and 

use of technology (UTAUT). The UTAUT model was put forth by Venkatesh et al. 

(2003). The theory seeks to explain the intentions of users in adopting an information 

system (IS) and the behaviors that follow. The theory identifies four fundamental 

constructs as the determinants of information system (IS) usage intention and action. The 

primary constructs include effort expectancy, performance expectancy, social influence, 

and facilitating conditions (Khalilzadeh et al., 2017; Venkatesh et al., 2003). Effort 

expectancy, performance expectancy, and social influence directly influence usage 

intention while facilitating conditions directly influence user behavior (Lai, 2017). 

Venkatesh et al. (2003) posited that gender, experience, age, and voluntariness of use 

moderate the impact of the four central constructs identified by the theory. The theory 

was a result of a review and consolidation of constructs that had already been employed 

by earlier models. The other eight models had earlier explained the usage behavior of an 

IS (Khalilzadeh et al., 2017). The early IS models include the technology acceptance 

theory, motivational model, the theory of reasoned action, the theory of planned behavior, 
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the combined theory of planned behavior and technology acceptance, diffusion of 

innovation theory, social cognitive theory, and the model of personal computer use (Lai, 

2017). In a longitudinal study to validate the UTAUT model, Venkatesh et al. (2003) 

found that it makes up 70% of the variance in usage intention. 

The Main Theoretical Proposition of the UTAUT 

The UTAUT has three main constructs and five facilitating conditions. The first 

major construct is performance expectancy. This construct is defined by the extent to 

which an individual perceives that the use of technology benefits him or her (Venkatesh 

et al., 2003). It refers to the perception of usefulness a user has of an IS, the intrinsic 

motivation one has to implement a technology, its usefulness to the related job, and the 

relative advantage compared to other technologies (Lai, 2017). Performance expectancy 

also relates to extrinsic motivation to use a technology an individual has, such as 

expected improved performance and other benefits that the technology is likely to bring 

into a job or workplace if implemented (Khalilzadeh et al., 2017). The second construct 

of the UTAUT is called effort expectancy. This is the level of easiness related to the 

adoption of the IS. It is the perceived complexity and ease of implementation (Venkatesh 

et al., 2003). Perceived ease tests the level one considers the implementation of a system 

as extra effort. Perceived complexity, on the contrary, involves examining the extent to 

which users find an IS complex to understand and implement (Khalilzadeh et al., 2017). 

The third construct of the UTAUT is the social influence construct. This construct refers 

to a person’s belief that other people with influence believe he or she should adopt new 

technology (Venkatesh et al., 2003). This construct includes subjective norms, image 



9 

 
 

factors, and social factors. When a user decides to adopt an IS due to the opinion of 

someone they perceive to be important, they are said to be influenced by the subjective 

norm (Khalilzadeh et al., 2017; Lai, 2017). Social factor refers to a situation in which a 

person’s decision to adopt a technology is based on the influence of the prevailing social 

situation. Lastly, the image factor occurs when a user’s decision to use an innovation is 

influenced by the perception that doing so will enhance their status in society (Lai, 2017). 

Social influence includes the analysis of the role that organizational and technical 

infrastructures play in the decision to adopt new technology (Venkatesh et al., 2003). It 

offers additional information about the surrounding environment, which includes the rule 

and technical aspects that may encourage or discourage an individual from adopting a 

new IS. Social influence consists of the compatibility factor, which refers to the 

compatibility of the IS to existing structures, and includes the values, experiences, and 

needs of the users (Lai, 2017). The four main facilitating conditions proposed in the 

UTAUT theory are gender, age, experience, and voluntariness. 

Gender influences effort expectancy, performance expectancy, and social 

influence. It has been established that men have higher performance expectations than 

women because they are task-oriented and consider task achievement to be important 

(Brauner et al., 2017; Venkatesh et al., 2003). Men develop this inclination through 

socialization and the gender roles in the societies in which they are raised. They are most 

likely to accept a technology when they perceive that the technology will enhance their 

performance or task outcomes (He & Freeman, 2019). He and Freeman argued that 

women tend to be influenced more by effort expectancy than men. The difference is 
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caused by gender roles in society (Brauner et al., 2017). As a result, women will readily 

accept a technology when they expect that it will lead to a reduction in the effort required 

to meet their goals. Women also tend to be more sensitive to what other people say, 

which means that social influence is a significant factor in the adoption of technology 

among women compared to men (Brauner et al., 2017; Venkatesh et al., 2003). Social 

influence is about how other people in society perceive the technology, their opinion, and 

how they perceive users of the technology. Women adopt technology to gain social 

influence, acceptance by peers, or improve their image in the social system. Men are less 

likely than women to be influenced by these factors, meaning that social influence is a 

weak determinant among men (Brauner et al., 2017; Venkatesh et al., 2003). 

Age influences all the four primary constructs of UTAUT. Young people are 

more likely to be motivated by extrinsic rewards than old people, which affects the 

performance expectancy determinant (Brauner et al., 2017; Lai, 2017; Venkatesh et al., 

2003). External rewards such as the use of less effort, improving one’s social image, 

improved job performance, and hence promotion or higher-earning, are among the factors 

that can make younger people accept innovation. Effort expectancy is higher among older 

people, and therefore, it is a significant determinant in the adoption of technology among 

older people. They are likely to accept a new technology when they perceive that they 

require little effort to implement and when the technology is expected to increase the ease 

of their work (Lai, 2017). Old people are also likely to view social influence as important. 

However, the effect of this determinant declines with experience (Brauner et al., 2017). 

Finally, old people are more impacted by their environments than others because their 
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learning depends on experience and is passive (Brauner et al., 2017). Therefore, 

facilitating factors is a significant determinant of the adoption of new technology. 

Experience affects effort expectancy and social influence. For relatively 

inexperienced users of technology, effort expectancy is a major determining factor of 

their behavioral intention. Inexperienced users of technology are likely to adopt new 

technology when they perceive that doing so will require no extra effort (Brauner et al., 

2017). However, effort expectancy may not have much effect if the experience is at later 

stages. This is because, in later stages, the users have mastered the use of the technology, 

making it easy to implement (Brauner et al., 2017; Venkatesh et al., 2003). 

The same effect is observed in social influence. The construct has a more 

significant impact when the experience is at earlier stages. Relatively inexperienced users 

are likely to accept a new technology to improve their social image. As people gain 

experience with new technology, the effect of social influence fades because the 

technology is normalized in the social system (Brauner et al., 2017). Facilitating factors 

determine behavioral intention as users’ experience with the technology increases, and 

obstacles in the environment can be removed (Venkatesh et al., 2003). 

Voluntariness is the degree to which the use of technology is perceived to be done 

out of free will or voluntary. It only mediates the social influence factor in the UTAUT 

model. In a mandatory implementation of technology, social influence has the highest 

influence on behavioral intention. According to Venkatesh et al. (2003), the social 

influence factor is the degree to which users perceive that others of importance believe 

they should adopt the technology. Therefore, when an individual perceives that the 
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implementation of the technology is not voluntary, they are likely to adopt the technology 

because of those advocating or enforcing the implementation of the new technology (Lai, 

2017). However, it is unlikely to influence users’ behavioral intentions in a voluntary 

implementation context (Lai, 2017; Venkatesh et al., 2003). Based on Venkatesh et al.’s 

(2003) definition of the social influence factor, voluntary implementation lacks the 

correct effect due to the opinions of other important members of society or an 

organization. Hence, there is no motivation for people to voluntarily accept the 

technology. 

Rationale for Choice of Theory 

My goal was to identify the relationship between state consent policies and EHR 

implementation among nonfederal acute care hospitals. Two considerations made the 

UTAUT suitable for this study to determine the influence of state EHR consent policies 

on the percentage of nonfederal acute care hospitals that use their EHR system 

electronically SRI PSC records to outside providers. Firstly, the UTAUT construct of 

social influence, was of relevance to this study Venkatesh et al. (2013) defined social 

influence as the degree to which an individual perceives that important others believe he 

or she should use the new system. The central tenet of this assumption aligned with the 

purpose of this study because, in this case, the type of EHR patient consent policy present 

in a state may be considered a form of important others. UTAUT social influence 

constructs suggest that healthcare administrator’s use of an EHR system to SRI PSC 

records may be determined by the degree to which they perceive that patients consent 

legislature should involve the use of EHR systems to electronically transfer, receive, and 
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integrate PSC records. The findings of this study support, refute, and add to the UTAUT 

assumption. 

Secondly, the UTAUT has been extensively used since its inception on studies 

that explain factors affecting individuals’ adoption and use of emerging technologies 

(Venkatesh et al., 2013). These studies have focused on innovations in multiple fields, 

including healthcare, education, international business, and communication. Cimperman 

et al. (2016) applied the UTAUT model in the analysis of older users’ behavior of 

accepting home telehealth services. The researchers sought to develop and test factors 

that affect the reception of home telehealth services among elderly people. Effort 

expectancy was found to be negatively influenced by computer anxiety, and the doctor’s 

opinion was found to influence performance expectancy. The researchers established that 

social influence is irrelevant as a predictor of technology acceptance among elderly users. 

Researchers in the education sector mainly focus on adopting e-learning to 

determine why technology is either adopted or rejected. In the healthcare industry, the 

theory is mostly applied in relation to the adoption of electronic medical records 

technologies. Ishola et al. (2016) used UTAUT in modeling the behavioral intention of 

adopting broadband technology adoption among youths. In this research, the scholars 

proposed the use of the UTAUT model for measuring intentions to adopt broadband 

technology among teenagers in Malaysia. According to Ishola et al. (2016), youths are 

frequent users of mobile internet carriers.  
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Logical Connection Between Key Elements of the UTAUT 

According to Venkatesh (2013), UTAUT theory is that four constructs directly 

determine the acceptance and use of technology: (a) performance expectancy, (b) effort 

expectancy, (c) social influence, and (d) facilitating conditions. According to Venkatesh 

et al. (2013), the first three constructs are direct determinants of usage intention, and the 

fourth is a direct determinant of user behavior. Four other mediating factors (age, gender, 

experience, and voluntariness of use) moderate the four central constructs of the theory. 

Figure 1 below presents a graphical illustration of the UTAUT theory. 

  



15 

 
 

Figure 1 

 
Graphical Representation of UTAUT Theory 

 

 

Source: Venkatesh et al. (2003) 

 

Relationship with Study Approach 

In this quantitative cross-sectional study, I sought to determine the extent to 

which HIE policies predict the meaningful use of EHR technology. The theory illustrates 

predictors of IS acceptance and usage. These predictors pinpoint key decision-making 

considerations for the adoption and use of innovations (Venkatesh et al., 2013). Also, 

offer guidance on facilitating wider adoption and use of new or existing innovation (Lai, 

2017; Muraina et al., 2016; Venkatesh et al., 2013). I designed the research questions to 

focus on the relationship between the consent policies in a state and the percentage of the 

acute care hospitals in the specific state that SRI patient information through an EHR. 
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The independent variable of this study, state consent policies, falls under the social 

influence, effort expectancy, and facilitating conditions construct of UTAUT. 

Application of the UTAUT to Similar Studies 

Jewer (2018) used UTAUT to examine patients’ intention in the adoption of 

online postings of emergency department (ED) wait times. The study provided empirical 

support for the modified UTAUT model in the context of a patient’s intention to use the 

ED technology. The author sought to adopt the model to the context of online ED wait 

times acceptance. The findings revealed that the modified UTAUT model significantly 

affected performance expectancy and facilitated people’s intention to use the ED online 

postings. Hoque and Sorwar (2017) sought to understand the elements affecting the 

adoption of mobile health by the elderly. The authors aimed to develop a model based on 

UTAUT and testing it empirically for suitability in the determination of basic factors that 

influence the adoption of m-banking. According to the study, performance expectancy, 

effort expectancy, social influence, technology anxiety, and resistance to change are key 

determinant factors of users’ behavioral intention to adopt m-health services. 

  Al-Qeisi et al. (2015) also examined the feasibility of UTAUT in non-Western 

contexts. The researchers examined the plausibility of UAUT in predicting the behavior 

intentions of adopters of mobile banking technology in developing countries. The results 

show that the effects of facilitating conditions variable on behavioral intent are 

insignificant. Additionally, the authors established that social influence was a weak 

determinant of usage behavior. They demonstrated that effort expectancy is the major 

determinant of mobile banking adoption and that this determinant is influenced by 
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experience. Kim et al. (2015) also analyzed the factors that influence healthcare 

professionals to adopt mobile electronic medical record (EMR) technologies in tertiary 

hospitals. The study used UTAUT to confirm the users’ intentions to adopt and use ISs in 

healthcare. The study established that the intention to use EMRs was high because of the 

influence of performance expectancy on users’ attitudes. Both doctors and nurses used 

the system to view inpatient lists, patients’ clinical data, and alerts with a high frequency. 

The authors suggested that when determining EMR systems implementation, functions 

related to workflow and can enhance performance should be considered first. 

  Venugopala et al. (2016) cross-validated UTAUT in the examination of user 

acceptance of EHR. The authors compared the healthcare systems of India and the United 

States, revealing the gaps that still exist in the Indian healthcare system. The authors 

suggest that using technology can help in bridging the gap in healthcare. The authors aim 

to identify the perception of doctors in the adoption of the use of EHR. The study notes 

that in a qualitative study of the factors influencing the adoption of EHR systems, direct 

interviews would be enough. However, in the quantitative study, the authors empirically 

validate the UTAUT model by administering a questionnaire to doctors and analyze the 

data to identify the purpose. The authors concluded that the success of an EHR depends 

on the positive mindsets of hospital employees. Finally, Alsyouf and Ishak (2018) seek to 

create an understanding of factors that impact nurses’ sustained intention to implement 

the EHR system in Jordan. The authors justify their focus on nurses by arguing that 

nurses are the key healthcare providers and the primary users of the ISs. They argue that 

nurses’ reception and implementation of the EHR is key to its success. The framework of 
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the study was based on an extended UTAUT model and the Top Management Support. A 

fully implemented EHR system in public hospitals was surveyed using a cross-sectional 

survey. The results reveal that performance expectancy, effort expectancy, and 

facilitating conditions positively influence nurses’ continuance intention to use the EHR. 

They also reveal that the connection between social influence and continuance of 

implementation is insignificant. 

The UTAUT model has been criticized for being inflexible, making it difficult to 

adapt to different contexts (Lai, 2017). The theory poses a challenge when there is a 

difference in culture, meaning that it cannot be modified to fit into a situation in a culture 

different from the culture in which it is applied initially (Al-Qeisi et al., 2015). Critics 

also say that given that the theory is applied initially to Western countries, it can be 

challenging to apply it in Middle Eastern countries with different values and beliefs (Al-

Qeisi et al., 2015; Lai, 2017). Despite these critics, UTAUT remains suitable for the 

study because, despite its inflexibility, it is comparable to a complete model. This is 

because the theory is a product of the experience drawn from previous theories of IS 

technology. Because it unifies constructs from other theories, it provides a more accurate 

explanation of the determinants of behavioral intentions and usage (Lai, 2017). As 

established by Venkatesh et al. (2003), the theory has the highest rate of accuracy in 

explanation compared to other technology acceptance theories. With an accuracy rate of 

up to 70%, UTAUT remains the best choice for use in the current study. 

Additionally, the limitation of the theory, as highlighted in the literature, does not 

change the decision to use the theory because the theory has been applied to various 
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industries. It can be applied to e-commerce, education, and healthcare (Lai, 2017). The 

multidisciplinary application of the theory makes it suitable as the topic under 

investigation is in the healthcare industry. The context of the current study is the United 

States, which is a Western country. The identified limitation of the theory, therefore, does 

not affect the present study.  

Nature of the Study 

The nature of this study will be based on a quantitative cross-sectional research 

design consistent with assessing the association of HIE consent policies on the percent of 

nonfederal acute care hospitals that use HIE systems to send, receive, and integrate 

patient summary of care PSC records nationwide. A MANCOVA statistical test was used 

to identify the relationship between state HIE consent policy types and the percentage of 

nonfederal acute care hospitals that use EHR systems to send, receive, and integrate 

patient summary of care (PSC) records in the United State between 2015 and 2017. The 

approach of this study will be to examine the percentage of nonfederal acute care 

hospitals that send, receive, and integrate PSC records using their EHR systems in that 

state and study if the type of HIE consent policy present in a state affects the percentage. 

The results of this study may inform the administrators of provisions in state EHR policy 

that stand as facilitators or barriers to the meaningful use of EHR systems to foster 

interoperability in nonfederal acute care. 

Literature Search Strategy 

The publications that I examined in this review included scholarly peer-reviewed 

journal articles published within the last 5 years and a few nonpeer-reviewed publications 
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relevant to the topic. I located relevant literature by searching the following databases: 

Academic Source Premier, EBSCOhost, ProQuest, Hein Online, Emerald, Sage, and 

Business Source Premier, Questia, and Google Scholar. The keywords employed for the 

search included: EHR, interoperability, meaningful use, HIE, HIE policies, HIE and 

EHR, EHR privacy, EHR security, EHR adoption, EHR benefits, history of EHR 

technology, Unified theory of adoption, and use of technology. 

Literature Review Related to Key Concepts 

Historical Background of EHR Meaningful Use 

The electronic health records (EHR) technology started to gain prominence in the 

1960s and 1970s when developments were made in the computer technology fields 

(Evans, 2016). At that time, the Institute of Medicine called for a shift from the paper 

system of medical records to the use of EHR. The EHRs were developed first as part of 

clinical policies aimed at improving Medicare and research work in the healthcare sector 

(Entzeridou et al., 2018). Their use was based on different merits, such as the ease of 

storing and reading patients’ medical records from any location in the world (Entzeridou 

et al., 2018). 

At its inception, most of the EHR was developed in mainframe computers and 

rarely used with minicomputers. This presented many drawbacks to such records: there 

was limited storage because practitioners had to use the parts and tapes of the removable 

disk for purposes of extra storage. The systems experienced downtime and proved 

ineffective in backing up data. Physicians were also not trained to use and access the 

EHRs. They relied on clerical officers to input such information, which led to significant 
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data entry errors (Entzeridou et al., 2018). Getting data from such records was done 

through pulling charts, which became complicated when some records were stored 

electronically while others were in paper formats (Kruse et al., 2016). Accessing patients’ 

medical records in one institution by other institutions was also relatively difficult 

because providers had to copy emails or use fax to transfer the information. Juhlin et al. 

(2015) further reported that earlier EHR systems were viewed as a hybrid of paper and 

electronic data. They were mainly used for purposes of billing, scheduling, and handling 

clinical systems. The personal computers equipped with graphics were used as monitors, 

and data entry was mainly through the keyboards and mouse. EHR systems relied on 

local area networks and the minimal web-based systems applied to them, and this meant 

that they were exposed to fewer security risks (Juhlin et al., 2015). The format in which 

medical records and health data are kept in EHR systems have since changed (Evans, 

2016). 

Despite advances in the use of EHR technology, limitations remain. Physicians 

and hospitals still struggle to share, receive, and integrate patients’ records electronically. 

Reasons cited for this include the fact that records are hosted in different technological 

platforms that have fully or partially different systems standards or contain errors that 

make the records nontransferable (Juhlin et al., 2015). Despite the presence of electronic 

records technology, many stakeholders are not willing to share the data without 

regulations that compel individuals to do so (Kruse et al., 2016). Many medical providers 

are not willing to share their data. For them, the information is proprietary and something 

of high commercial value (Ratwani et al., 2015). Notwithstanding these limitations, there 
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has been remarkable growth in the use of EHR, and now it has become part of the 

universal medical language (Juhlin et al., 2015). EHR technologies are now used on a 

wide area network, and this has led to the development of regulations on how the EHRs 

and related systems should be handled. 

With the increasing use of EHR technology, there was a need for prudent 

standards and regulations on how they should ensure stakeholder rights are not violated. 

Independent EHR systems had resulted in more access to people’s medical information 

by third-party applications (Shull, 2019). To ensure privacy and confidentiality of the 

information shared through these systems, there arose a call for the development of 

specific standards and interfaces that can be viewed as interoperable. The industry 

required a consistent message format to be used, and all protocols were to be observed 

before the information was shared within the systems.  The first standards developed in 

the United States were the health level seven (HL7) while the IEEE (Institute of 

Electrical and Electronic Engineers) P1157 became the primary interface standards for 

regulating EHR use. The HL7 standards were useful in reducing the ambiguity related to 

data element definitions (Evans, 2016). They were later refined and expanded to other 

domains to aggregate the ancillary systems associated with the medical sector. The 

ancillary systems are the laparotomy, electrocardiogram, microbiology, 

echocardiography, which should all operate through the central EHR systems (Hammer et 

al., 2019). The EHR message format should have standardized dictionary codes of 

semantics to be able to communicate with other systems (Hammer et al., 2019). 

Accordingly, the National Librarians of Medicine and Universal Medical Language 
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Systems have been working on developing the semantic that can be used in EHR. Juhlin 

et al. (2015) argued that the process of developing the semantics to be used within EHR 

is a continuous process and will be part of the standardization process now and in the 

future. 

At the federal level, the Insurance Portability and Accountability Act of 1996 and 

the Recovery Act section dealing with information technology guide nationwide 

utilization of the EHR (Evans, 2016; Shull, 2019). States also have varying laws that deal 

with consent issues on the utilization of the information contained in EHR systems and 

how HIE. The Milken Institute School of Public Health (2016) provided a summary of 

the state HIE consent policies. The laws were enacted via legislators and agencies 

governing HIE in those states. The policies fall under the opt-out or opt-in policies. With 

opt-in policies, the patients can automatically enroll within the HIE. However, they are 

provided with the chance to opt out. Opt-out policies require individuals to consent to 

their data being stored or disclosed by the provider. Policies in some states fall outside 

these two broad categories, and under such circumstances, the descriptions of such 

policies are provided in addition to the federal ones. With the implementation of 

standards and a legislative framework, the digital records from patients should move 

seamlessly from one healthcare provider to and another. 

Studies Related to the Constructs of Interest 

Multiple researchers have examined the current state of EHR adoption, the 

meaningful use thereof, and the factors that influence it. The influence of physician 

perspectives, hospital and patient characteristics, laws, and policies are among the major 
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buckets that researchers examined. For instance, Heath and Porter (2019), Asan (2017), 

and Iqbal et al. (2013) studied physician perspectives about EHR use as well as their 

usage intentions and how this influences the extent and prevalence of EHR use. They also 

examined the influence of hospital and patient characteristics. Scholars have also 

explored the role of government policies and incentives on EHR adoption and meaningful 

use (Cohen, 2016; De Pietro, 2018; Dranove et al., 2015; Wani & Maholtra, 2018). The 

specific legislative considerations that have been discussed include the HITECH Act in 

2009 and corresponding incentives. Other researchers examined the role of resource 

availability, vendor characteristics, and market competitiveness in the extent of EHR 

meaningful use in the United States (Holmgren et al., 2017; Rumball-Smith et al., 2018; 

Sherer et al., 2016; Sorace et al., 2020). 

Earlier researchers also focused on developing models, frameworks, and tools to 

guide research on EHR technology and meaningful use, and support practice focused 

efforts to expand adoption and improve the usability of EHR technology (Azarm et al., 

2017; Gomes et al., 2018; McGeorge et al., 2015; Legaz-García et al., 2016; O’Sullivan, 

2018; Plastiras & Rasmy et al., 2019; Zhu et al., 2019 ). Other types of models and 

frameworks that researchers have explored include those for improving implementation 

of interoperable EHR systems, strengthening the security, privacy, efficient use, and 

management of EHR (Baskar et al., 2020; Cui et al., 2018; Dagher et al., 2018; 

Karapiperis et al., 2019; Mačinković & Aničić, 2016). Some researchers have also 

proposed models for examining the capability, impact, and privacy of EHR systems and 

data. 
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The impact of the interoperable EHR systems has also gained much attention. In 

this regard, researchers assessed the impact of interoperable EHR systems on healthcare 

safety, physician experience and productivity, and hospital effectiveness and efficiency. 

Although the authors of some studies focused on examining the beneficial impact of 

interoperable EHR systems (Austin et al., 2020; Finet et al., 2018; Wilson-VanMeter & 

Courtney, 2019), others explored the disadvantages of implementing of these systems. 

However, both categories of investigations have examined interoperable EHR systems’ 

effects on telemedicine, data quality, safety and quality of care, professional satisfaction, 

and clinical decision making. These studies have also explored the effects of these 

systems on patient processes and flows and financial performance in resource-constrained 

settings. 

Some literature includes an analysis of why EHR projects fail or stall, and what 

strategies may be implemented to address EHR implementation roadblocks, improve 

interoperability of EHR systems, and expand meaningful use of these systems (Aldosari, 

2017; Khajouei et al., 2018; Kirkendall, 2016; Maxhelaku & Kika, 2019; Rangachari, 

2018; Rangachari & Rethemeyer, 2017; Rey, 2015, Shahnaz et al., 2019). Some 

researchers discuss approaches for integrating EHR data electronically. These studies 

explore evidence-based strategies and approaches for making EHR integrable and 

interoperable (Jiang et al., 2020; O’Connor et al., 2017; Sun et al., 2015). Some studies 

have particularly explored and proposed approaches and methods to utilize and manage 

EHR data in research and practice (Agrawal et al., 2019; Juhn & Liu, 2020; Krahe et al., 

2019; Taggart et al., 2015). 
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Finally, there has been considerable emphasis on the landscape of EHR privacy, 

security, and consent policies and how they affect current and future levels of EHR 

adoption and the interoperable functionality of EHR systems. Some researchers have 

proposed tools and techniques for preserving EHR privacy and maintaining record 

security in healthcare. They propose approaches like automated privacy auditing, 

semantic privacy frameworks, e-consent tools, computational modeling, and a hybrid 

technique (Carter, 2020; Hathaliya & Tanwar, 2020; Iwaya et al., 2019; Kundalwal et al., 

2019; Lu & Sinnott, 2018). Some researchers also examined HIE preferences, including 

patient and public attitudes toward different informed consent models (Apathy & 

Holmgren, 2020; Riordan et al., 2015; Turvey et al., 2020). Researchers examined the 

mechanisms and practices used to protect EHR privacy. Some mechanisms discussed 

include hospital internal ISs, EHR publishing, blockchain-based secure EHR system 

(Huang et al., 2019; Stablein et al., 2018; Tseng et al., 2016; Wang et al., 2019; 

Yogarajan et al., 2018). Another aspect of EHR security, privacy/consent policies, 

meaningful use minimally researched relates to the impact of privacy regulation on EHR 

interoperability and meaningful use. 

Methodologies in Studies that are Consistent with the Scope of Research 

Three types of study designs were commonly used in the studies I reviewed: 

quantitative, qualitative, and interventional designs. The quantitative studies were more 

often experimental or quasi-experimental analyses of data than primary surveys. For 

instance, Rasmy et al. (2019) used a dataset that included over 150,000 heart failure 

patients and over 1,000,000 controls from nearly 400 hospitals and demonstrated the 
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power of more expressive deep learning models for EHR predictive modeling that can be 

applied to other hospitals with only about 3.6% of reduction of AUC. Sorace et al. (2020) 

similarly determined the Part A and Part B Medicare-expenditure weighted market shares 

of EHR vendors and estimated the rate of attestation of meaningful use (MU) for EHRs 

among Medicare Part A & B providers from 2011 to 2016. They then calculated the 

Herfindahl–Hirschman index based on the data they obtained to quantify the 

competitiveness of the EHR market and the number of vendors’ individual Medicare 

beneficiaries’ medical records that were stored from 2014 through 2016. 

In addition, Karapiperis et al. (2019) proposed four methods. The first method, 

SkipBloom efficiently, involves summarizing the participating datasets, using their 

blocking keys to allow for very fast comparisons among them. The second method, 

BlockSketch, summarizes a block to achieve a constant number of comparisons for a 

submitted query record, during the matching phase. The third method, SBlockSketch, 

operates on data streams, where the entire dataset is unknown a-priori but, instead, there 

is a potentially unbounded stream of incoming data records. The fourth method, 

PBlockSketch, adapts BlockSketch to privacy-preserving settings. 

Concerning their preferred approaches to data analysis, similar cross-sectional 

studies applied multivariate logistic regression and MANOVA. Rumball-Smith et al. 

(2018) applied multivariable logistic regression models to estimate the odds of the 

outcomes of interest, controlling for key covariates with a study sample of 17,163 

children under 13 years of age evaluated at one of 13 EDs within the University of 

Pittsburgh Medical Center health system. Weech-Maldonado et al. (2018) also applied 
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survey data on EHR implementation among a national sample of 242 high-Medicaid 

nursing homes in 2017 merged with secondary data (LTCFocus, area resource file, and 

Medicare cost reports) and performed data analysis using multivariable regression with 

state fixed effects. Shu et al. (2014) applied the model of EHR grading to assess the level 

of EHR adoption across 848 tertiary hospitals. Shu et al. (2014) applied multivariate 

analysis to explore the factors that influence total score (including hospital characteristics 

and information technology [IT] investment) and the scores for nine roles. 

Studies that used the MANOVA include those of Zhu et al. (2019), who applied a 

methodology that included the construction of communication networks among 

healthcare professionals (HCPs). In each patient’s virtual care team, the measurement of 

communication linkages between HCPs, social network analysis, and nonparametric 

MANOVA with 100 surgical colorectal cancer patients as the sample size. Yogarajan et 

al. (2018) similarly applied an e-mailed questionnaire survey, using New Zealand’s 

Official Information Act to request information on the policies and practices of each 

DHB: 19/20 DHBs (95%) responded to the survey, one of which reported that it did not 

provide patient information for research. 

Ways Researchers Have Approached the Problem 

The implications of stand-alone EHR systems can be far-reaching into the future. 

The poor coordination that arises due to the lack of interoperability can have detrimental 

impacts on the efficiency of the larger healthcare systems due to poor coordination of 

patient care records. It is difficult to guarantee high-quality care services unless patient 

data, such as medical history, is available to healthcare practitioners throughout the entire 
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healthcare system (Patel & Chatterji, 2015). The lack of a coordinated healthcare 

database also means limited or lack of access to the data needed for research and 

monitoring of public health patterns. On the contrary, an integrated electronic health 

system will go a long way in ensuring patient safety and improved quality of care. An 

integrated EHR system could mean that healthcare facilities will have an organized and 

secure way to capture, store, retrieve, and utilize patient data for optimal outcomes 

(Shull, 2019). The current state of EHR indicates a need to improve and strengthen the 

capacity of EHR systems to send, receive, and integrate a PSC records. The need for 

nationwide adoption of systems with this level of functionality is also evident. 

To address the issue of the low nationwide meaningful use (MU) of EHR systems, 

many researchers have examined various operational, administrative, and research 

dimensions of EHR systems and their use. There has been a significant emphasis on 

developing and testing models, frameworks, and tools for facilitating the wide adoption 

and functionality of EHR systems. Many researchers have also paid attention to 

examining the extent of EHR adoption and MU, the impact of EHR systems on the 

quality of care and research, and strategies for managing electronic health records. They 

have also studied the landscape of EHR security, privacy/consent policies, and MU and 

how these dimensions of EHR use relate to each other. EHR implementation roadblocks 

and strategies for expanding the MU of EHR systems are also discussed extensively. 

However, the influence of HIE consent policies on the use of EHR for SRI PSC records 

is unknown. The paragraphs that follow the sections on these dimensions are presented in 
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additional detail, along with the methodological approaches that researchers implemented 

in related studies. 

Current Trends in the Adoption and Meaningful Use (MU) of EHR Technology 

EHR adoption rates have been studied in different countries and across levels of 

healthcare institutions. Some researchers also focused on determining and predicting the 

extent of EHR adoption and use. These studies have particularly explored the prevalence 

and rate of EHR adoption and factors that influence these rates. The extent of user 

adoption and use patterns, practices, effectiveness, and usability problems have also been 

frequently studied (Sahama et al., 2019). Some studies in this regard examined the 

availability and use of inpatient EHR systems in hospitals and physician offices located 

in developed countries, including China and Saudi Arabia (Qazi et al., 2018; Sahama et 

al., 2019). Others examined the use pattern of EHR systems among office-based 

physicians’ practices (Ekezue et al., 2019) while others determined the extent to which 

EHR systems meet MU criteria. Another aspect of EHR use investigated those related to 

the usability, effectiveness, acceptance, and use continuance of EHR systems (Aldosari, 

2017). Researchers investigated the usability problems commonly encountered by 

physicians across healthcare sectors (Amoah et al., 2017; Kiapio et al., 2017) and the 

effectiveness of EHR systems in improving the quality and efficiency of care (Amoah et 

al., 2017). Some researchers also assessed the extent of EHR acceptance among 

physicians and their continuance intentions (Ayanso et al., 2015; Steininger & Stiglbauer, 

2015). 

Adoption and Meaningful Use (MU) Rates 
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Despite the near-nationwide adoption of EHR, it had not been meaningfully used 

for clinical intervention and research outcomes (Agrawal et al., 2019). Mukherjee et al.’s 

(2019) findings indicate an acceleration in EHR adoption rates in different countries, 

including the United States (Shu et al., 2014). Even as the current trends and projections 

about the use and adoption of healthcare electronic systems have shown an upward 

trajectory, Shu et al. (2014) also observed low adoption rates across tertiary hospitals in 

China. Hospitals ineligible for incentives also experience lower adoption rates than 

eligible hospitals (Walker et al., 2016). Additionally, existing research suggests that the 

rich array of machine learning, predictive analytics, data analysis, and wellness 

applications that could drive the intended outcomes might not feature EHR systems. 

Currently, EHR systems are majorly encounter-based systems that are incapable 

of supporting real-time point-of-care health and clinical decisions. The systems are not 

built to support the analysis needed before resorting to a given clinical decision or choice 

(Patel & Chatterji, 2015). For instance, Thompson and Graetz (2019) suggested that only 

a small proportion of hospitals had implemented all six PI3 MU functionalities: to find, 

SRI information throughout the entire healthcare system. Walker et al. (2016) also 

asserted that throughout the United States, only about 50% of all healthcare facilities 

have reported their intentions and taken the initiative to implement EHR systems with the 

capacity for integration. Parasrampuria and Henry (2019) noted that the current design of 

EHR systems might require major redesigns for integration with many of the other digital 

resources needed for seamless recording, storage, transmission, and interpretation of 

clinical data. Policymakers and health system executives are consistently exploring the 
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issue of interoperability, given that the limitations of the traditional EHR systems are 

rather obvious. 

Models, Framework, and Tools 

Many researchers developed, tested, or proposed models, frameworks, and tools 

to guide research on EHR technology and MU, and support practice focused efforts to 

expand adoption and improve the usability of EHR technology (Azarm et al., 2017; 

Gomes et al., 2018; Legaz-García et al., 2016; McGeorge et al., 2015; Plastiras & 

O’Sullivan, 2018; Rasmy et al., 2019; Zhu et al., 2019). Other types of models and 

frameworks explored include those that improve implementation of interoperable EHR 

systems, strengthen EHR security, privacy, and the efficient use and management of EHR 

(Baskar et al., 2020; Cui et al., 2018; Dagher et al., 2018; Karapiperis et al., 2019; 

Mačinković & Aničić, 2016). Some researchers have also proposed models for 

examining the capability, impact, and privacy of EHR systems and data. These models 

can be applied to EHR research and practice settings, and are discussed in the following 

paragraphs:  

The Semantic/Harmonization Framework 

Speaking on the importance of semantic frameworks, Cornet (2017) observed that 

EHR infrastructure depends on legal, technical, and semantic aspects that are frequently 

reciprocally related. Sun et al. (2015) also proposed the use of semantics for the 

synchronization of large-scale data. Jaulent et al. (2018) discussed how semantics could 

improve information sharing and address the problem of data mediation with domain 

ontologies. They introduced the main steps for building domain ontologies as they could 
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be implemented in the context of forensic and legal medicine. Semantic interoperability 

can be improved by applying a formal concept analysis method (Detro et al., 2016). 

These models appear to emphasize the importance of standardizing EHR data semantics 

as this can facilitate data sharing and synchronization across hospitals and physician 

offices. Integration of semantics frameworks into EHR systems can enable 

synchronization of large-scale data and improve information sharing (Jaulent et al., 2018; 

Sun et al., 2015). The finding suggests that formal concept analysis should be applied to 

improve semantic interoperability (Detro et al., 2016). Other models that may aid in the 

processing and storage of large-scale data include MongoDB, which allows for the easy 

storage of structured and unstructured data to foster heterogeneity (Dodeja et al., 2018). 

The capability of RNN for use in predictive modeling with large heterogeneous EHR data 

was determined (Ramsy et al., 2019). 

Models for Improving EHR Interoperability 

Models to improve EHR interoperability, specifically those related to supporting 

the exchange, integration, and preservation of health records are proposed. Li et al. 

(2019) proposed the novel model of distributed noise contrastive estimation (D-NCE) for 

learning from multiple databases and building predictive models based on distributed 

noise contrastive estimation (NCE). According to them, the D-NCE can preserve the 

model structure, achieve comparable prediction accuracy, and build predictive models in 

a distributed manner with privacy protection. The model has also been implemented as a 

stand-alone Python library available on Github. Mishra et al. (2016) proposed a prototype 

that can be used to edit different fields in the patient file and add comments to the CDA 



34 

 
 

document while preserving the validity of the documents. They observed that other 

systems could parse the generated CDA documents while the semantic meaning and 

structure is preserved, which provided proof of the efficacy of the interoperability 

approach. An enactment model has also been proposed to address the required level of 

institutional cross-boundary collaboration in healthcare (Chiahsu et al., 2019). Jiang et al. 

(2016) proposed a harmonization with the models developed in HL7 Fast Healthcare 

Interoperability Resources (FHIR) and Clinical Information Modeling Initiatives (CIMI) 

to enhance the QDM specification and enable the extensibility and better coverage of the 

data element repository (DER). They also demonstrated the scalability and extensibility 

of the DER-based approach by comparing it with the existing QDM implementation 

utilized within the measure authoring tool. These frameworks improve EHR 

interoperability by preserving the model structure, achieving comparable prediction 

accuracy, and building predictive models in a distributed manner with privacy protection 

(Li et al., 2019), enabling editing of patients’ records and addition of comments while 

preserving the validity of the documents (Mishra et al., 2016). 

Models for Managing Large-Scale Data 

 Models to manage large-scale EHR data are also proposed. These models focus 

on processing large-scale heterogeneous data, preserving data, and evaluating the quality 

and fitness of data. Dodeja et al. (2018) proposed using MongoDB because it allows for 

easy storage of structured and unstructured data to aid heterogeneity. Sun et al. (2015) 

proposed using semantic data visualization for processing large-scale EHR data. Ramsy 

et al. (2019) also demonstrated the capability of RNN for predictive modeling with large 
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heterogeneous EHR data. Loft and Greene (2018) had presented findings of a data and 

fitness evaluation framework. These models reveal the capacity of interoperability 

models to process and store large-scale data in EHR systems. 

Models for Assessing Interoperable EHR Systems 

These frameworks and tools support evaluating the social impact of EHR, EHR 

acceptance, EHR communication capabilities, and changes in complex practices 

proposed. Steininger and Stiglbauer’s (2015) model can be used to explain physicians’ 

acceptance of EHR systems and identify social influences to EHR experience and the 

perception of the usefulness of EHR systems. Belaryan et al. (2019) derived model 

identifies factors that influence behavioral attitudes to novel technology. Alkureishia et 

al. (2018) validated the use of e-CEX as a reliable tool for assessing patient-centered 

EHR communication capabilities. Rangachari (2018) noted integrating the SKN tool as a 

reporting tool in the EHR system and the SKN ability to enable interprofessional 

learning. The presence of clinical ethics consultation notes has been identified as the 

basis of the process of EHR systems (Russo et al., 2018). These models reveal the need to 

evaluate factors that influence EHR MU. These Frameworks and tools support evaluation 

of EHR social impact and acceptance. They can explain physicians’ acceptance of novel 

technology and identify social influences to EHR experience and perception of the 

usefulness of EHR systems (Belaryan et al., 2019; Steininger & Stiglbauer, 2015). Tools 

like the CEX are reliable tools with which to assess patient-centered EHR 

communication. The integration of the SKN tool as a reporting tool within the EHR 
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system could enable interprofessional learning (Alkureishia et al. 2018; Rangachari, 

2018; Russo et al., 2018). 

Tools for Improving EHR Capabilities 

Tools that may improve EHR usability and achieve more precise and user-centric 

results have also been identified. Yip et al. (2019) demonstrated that NoSQL systems 

such as Neo4j graph databases have more technical and financial advantages than 

relational database systems and are suitable for data visualization, data storage, and the 

management of large-scale data-intensive applications, such as EMR database systems. 

Kanade et al. (2019) found out that an HL7 parser can be designed to achieve highly 

precise and user-centric results. They also noted the vital role analytics plays in 

maintaining health records. To improve EHR capabilities, the NoSQL and HL7 tools 

improve precision and user-centric results because they allow for the data visualization 

and management of data-intensive EHR systems (Kanade et al., 2019; Yip et al., 2019). 

Improving EHR System Usability 

The usability of EHR systems may be determined by factors of EHR system 

brand, safety, training, and user experience. Kiapio et al. (2018) found that EHR system 

usability may be determined by differences in EHR brands and differences between 

healthcare sectors. Aldosari (2017) highlighted the importance of properly training 

physicians in the use of EHR safety functions to avoid medical errors that can be fatal. 

Jiang et al. (2020) proposed that the LATTE (a knowledge-based method for 

transforming various expressions of laboratory test results into a normalized and 

machine-understandable format) may effectively transform various expressions of patient 
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records for effective EHR sharing and for supporting EHR-based applications. Their 

study demonstrates the effectiveness of LATTE for normalizing various expressions of 

laboratory test results in free-text EHRs and facilitating EHR-based applications such as 

patient clustering, cohort querying, and machine learning. Training physicians about the 

safety functions of EHR can reduce the possibility of fatal medical errors (Aldosari, 

2017). The proposed use of the LATTE model may normalize laboratory test results and 

facilitate EHR-based application (Jiang et al., 2020). 

Strengthening the security of EHR 

Shoja and Maraka (2019) indicated that hospitals with complementary IT 

applications were less likely to experience security failures than other hospitals. Security 

breach patterns were observed to change as a result of MU and IT investments. They also 

proposed the use of multi-expert ABE (MA-ABE), which allows for the authorization of 

individual access to improve the security of health records (Sowmya & Suresh, 2019). 

Another approach proposed for strengthening the security of EHR data is the DEM, 

which was proposed by Kundalwal et al. (2019). This privacy preservation technique can 

protect EHRs from inference attacks, linking attacks, and impersonation attacks. They 

simulated the proposed technique and showed that the average processing time per tuple 

and the amount of information loss were lower than those of other techniques. The use of 

blockchain technology in EHR systems was also proposed to secure the storage of 

electronic records and ensure regulated access to records. Huang et al. (2019) noted that 

blockchain-enabled MedBloc enables the regulation of access to patient records using 
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encryption mechanisms. Shahnaz et al. (2019) also propose a framework that implements 

blockchain technology into EHR to secure electronic records. 

The models reveal that implementing blockchain technology into EHR systems 

could improve the security of the system and could be a potentially scalable and secure 

solution to interoperability. These models reveal the use of EHR systems in preserving 

data and in interoperability. To strengthen EHR security, stakeholders consider the 

complementary use of EHR with IT systems in the hospitals may reduce risks of data 

breaches (Shoja & Maraka, 2019). The use of MA-ABE and DEM can also preserve 

privacy and protect EHR from attacks (Kundalwal et al., 2019; Sowmya & Suresh, 2019). 

The use of blockchain technology in EHR systems was also proposed to secure the 

storage of electronic records and act as a scalable and secure solution to interoperability 

issues (Huang et al., 2019; Shahnaz et al., 2019). 

The EHR models, frameworks, and tools presented in earlier studies appear 

focused on advancing interoperability in practice. They specifically tend to tilt toward 

supporting the capability of EHR systems for real-time sharing of EHRs and addressing 

privacy and security concerns. The multitude of these kinds of models and frameworks 

discussed in the literature suggests that researchers and practitioners alike still struggle to 

find the right framework to foster EHR interoperability, ensure the data privacy, security, 

management, and assessments, and examine the capabilities, impact, and privacy of EHR. 

The need for guidance on the most effective and efficient approach for adopting, 

implementing, and maximizing the power of interoperable EHR systems is evident. 
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The Impact of EHR Technology 

Establishing the integrated system of EHRs, however, has proven a tall order. The 

existence of more barriers than facilitators to the MU of EHR in primary care and rural 

practices has also been observed (Holden & Davidson, 2017). Several researchers find 

the discussion on the benefits and disadvantages of EHR systems interesting. They have 

assessed the impact of interoperable EHR systems on healthcare safety, physician’s 

experience and productivity, and the hospital’s effectiveness and efficiency. Although 

some researchers focused on examining the beneficial impact of interoperable EHR 

systems (Austin et al., 2020; Finet et al., 2018; Wilson-VanMeter & Courtney, 2019), 

others explored negative outcomes associated with the implementation of these systems. 

However, both categories of investigations have examined interoperable EHR systems’ 

effects on telemedicine, data quality, safety and quality of care, professional satisfaction, 

and clinical decision making. 

Researchers have also explored the impact of these systems on patient processes 

and flows and financial performance in resource-constrained settings. Finet et al. (2018), 

for instance, showed the benefits of EHR interoperability in telemedicine while Austin et 

al. (2020) determined EMR interventions that improved the safety and quality of 

therapeutic anticoagulation in an inpatient hospital setting. Wilson-VanMeter and 

Courtney (2019) also described the positive impact of EHR by linking patient data to 

patient outcomes and explained its role as a communication tool between healthcare 

providers and staff. The relationship between EHRs and data quality was investigated by 

Darko-Yawson and Ellingsen (2016) in the Pentecost Hospital Madina-Ghana. Lastly, 
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Ayaad et al. (2019) identified the quality of healthcare services’ differences between 

adopted EMR and paper-based record hospitals and how the quality of electronic medical 

records affects the quality of healthcare services. 

Regarding the impact of EHR interoperability on clinician decision making, 

patient processes flow on records and errors, Ben-Assul et al. (2015) evaluated the effects 

of accessing EHR in an ED on improved decision making by clinicians while Jacobs et 

al. (2019) studied the number of disruptions in patient processes in a radiotherapy center 

after the replacement of an EHR. Bushelle-Edghill et al. (2017) discussed the effects of 

EHR implementation on patient flow by investigating EHR implementation on patient 

flow for operations within a pediatric practice. Yabut et al. (2017) confirmed the positive 

impact of EHR on childhood obesity. 

Benefits of EHR technology. Overall, many researchers assert that EHR 

technology benefits physicians’ work processes, patient flow, and hospital performance. 

Bushelle-Edghill et al. (2017) observed significant improvements in patient flow after an 

EHR system was adopted, and this resulted in improved operational efficiency. EHR also 

supports effective knowledge-sharing among employees as well as training (Bushelle-

Edghill et al., 2017). EHR implementation and functionalities were also associated with 

positive financial performance in one study (Weech-Maldonado et al., 2018). 

EHR Benefit to Quality of Care 

Several researchers have identified EHR benefits to the quality of healthcare. 

Ayaad et al. (2019) observed that the adoption of high-quality EMR has a significant 

impact on improving the quality of healthcare services. Rey (2015) also noted that as 
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more small physician practices integrate into the EHR system, the implications for social 

change are that the quality of healthcare may increase. Their positive influence on 

diagnostic metrics, treatment plan development, healthcare providers’ productivity, and 

improved survival rates have been highlighted. Kevin et al. (2019) noted that physicians 

participating in an EHR program for a single year had better cancer-screening metrics 

than others while those who participated for multiple years reported having better 

medication-related metrics and chronic disease management metrics than others. Cheriff 

et al. (2010) indicate that provider productivity as measured by patient visit volume, 

charges, and RVUs modestly increased for a cohort of multispecialty providers that 

adopted a commercially available ambulatory EHR. They also suggested that there were 

fundamental differences between the adopters and non-adopters. Findings also indicate 

the use of EHR data to develop treatment plans (Walji et al., 2014). Han et al. (2016) also 

observed a survival benefit following EHR implementation with computerized physician 

order entry in a critical care setting and a concomitant decrease in severe medication 

errors. Austin et al. (2020) observed the presence of limited benefits and indicated that 

optimal, evidence-based methods have not been determined to improve EMR utilization. 

EHR Interoperability Benefits 

As a benefit, EHR systems could support patient record sharing, improve health 

synergy, and interoperability. Information sharing can improve services and reduce 

misunderstandings in healthcare systems (Mačinković & Aničić, 2016). Also, the use of 

interoperability standards for telemedicine systems might enable the development of 

platforms with multiple medical devices (Finet et al., 2018). Wu et al. (2016) provided 
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evidence that increased integration efforts drive e-health synergy and have overall effects 

on hospital performance. 

Benefits of EHR Use in Data Management and Research 

The benefit of using EHRs as a tool for measuring, accessing, and capturing data 

in social settings has been identified. Researchers identify the use of EHR databases in 

social care systems, assessing trends, measuring ECNs, and population outcomes. 

Rumball-Smith et al. (2018) report that the integration of child screening tools hero the 

EHR system ensured positive screening and improved reporting in child protective 

services. Rashotte et al. (2016) used MCICS as an assessment tool to identify the 

consequences of EHR deployment in clinical social settings. Zhu et al.’s (2019) findings 

reveal that EHR access log data can be used to measure and examine electronic 

communication networks and to propose models that capture salient communication 

patterns in care teams. Amoah et al.’s (2017) findings about the cyclical trends of BP 

control and their associations with diabetic patients demonstrated that her use is 

beneficial in determining health population outcomes. 

EHR Benefit to Data Quality, Physician Efficiency, Herd Effectiveness 

EHR also supports improved data quality and interpretation for improved clinical 

decisions. The researchers highlighted that EHR systems help improve health records 

quality, interpretability, and clinical decisions, and treatment quality. Horton et al. (2019) 

noted the improvement in data quality obtained from EHR compared to administratively-

sourced data and stated that such data is the better indicator of health status between the 

two. The findings from another study indicate that using EHR can improve physicians’ 
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treatment efficacy and data interpretability (Hoang & Ho, 2019). Ben-Assul et al. (2015) 

highlighted the benefit of easy EHR data access and its resultant increase in the quality of 

clinical diagnosis and decisions. However, Taggart et al. (2015) indicated that although 

the presence of feedback and structured data quality reports (SDQRs) improve the 

recording of patient data, it does not improve the quality of data. 

EHR technology benefits hospitals’ performance, quality of care, data 

management research, and physician efficiency. The adoption of EHR improves medical 

care metrics, provider productivity, quality of healthcare, and aid development of 

treatment plans (Cheriff et al., 2010; Khern et al., 2019). EHR technology also improves 

hospital performance, which is demonstrated by improved patient flow and financial 

performance (Weech-Maldonado et al., 2018; Bushelle-Edghill et al., 2017). 

Interoperability standards may also enable the development of multiple-access 

telemedicine platforms. The integration of EHR systems could also enable information 

sharing and e-health synergy, which have overall effects on hospital performance (Finet 

et al., 2018; Mačinković & Aničić, 2016; Wu et al., 2016). The use of EHR was also 

noted in improved data records, data collection, assessment, and capture in social settings 

(Rumball-Smith et al., 2018). Physicians’ efficiency also improves with EHR use, as do 

improvements in diagnostic metrics, treatment plan development, the productivity of 

healthcare providers, patient survival rates, and consequently improved quality of 

healthcare (Ayaad et al., 2019; Han et al., 2016; Rey, 2015; Walji et al., 2014). 

EHR Disadvantages and Drawbacks 
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Researchers also attempted to understand why EHR projects fail or stall, and what 

strategies may be implemented to address EHR implementation roadblocks. Khajouei et 

al. (2018) identified the errors and causes of communication failures between hospital ISs 

and EHRs systems. Aldosari (2017) similarly investigated EHR project managers’ 

practices to understand why EHR projects fail or stall. Khennou et al. (2018) also 

presented a case study of the implementation process of an EHR-based Open EHR and 

investigated the adoption of health analytics in each step of the methodology. Jaulent et 

al. (2018) discussed the challenges of enforcing EHR interoperability standards in 

forensic and legal medicine. 

Similarly, Rey (2015) presented the challenges that small physician practices in 

the Central Valley, California Region face in implementing EHR systems. Kuziemsky 

and Peyton (2016) identified process interoperability issues in a two-year case study of a 

palliative care IS (PAL-IS) to understand process interoperability and health IT. 

Aldosari’s investigated why the authors of EHR projects failed to write about the 

development of practices for EHR implementation success. 

The findings from the above studies indicate that there are disadvantages to using 

EHR technology. Obstruction to physicians’ efficiency, loss of interprofessional 

understanding of the patient’s story, and threats to security and privacy account for EHR 

disadvantages. According to Varpio et al. (2015), physicians’ uses of EHR obstructed 

their ability to build the patient’s story by fragmenting data interconnections. They also 

observed that limited numbers and sizes of free-text spaces available for narrative notes 

inhibit clinicians’ ability to read the why and how interpretations of clinical activities 
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from other team members. These limitations result in the loss of shared interprofessional 

understanding of the patient’s story and increased time required to build the patient’s 

story. The integration of medical information can improve the quality of care at a serious 

risk of privacy and security (Heart et al., 2017). McGeorge et al. (2015) also showed that 

EHRs did not consistently improve efficiency or eliminate paper use from work 

processes. The disadvantages to EHR technology relate to its tendency to obstruct 

physicians’ efficiency when building a patient’s story, and this may result in losses of 

interprofessional understanding of a patient’s situation (Varpio et al., 2015). The 

integration of EHR technology was also observed to not completely improve efficiency 

and lead to serious privacy and security risks (Heart et al., 2017; McGeorge et al., 2015). 

Strategies for Improving and Expanding EHR MU 

In one study, Eliadou et al. (2019) discussed the characteristics/architecture of 

EHR that allows for interoperable functionality. Weiner (2019) recommended the use of 

other strategies for improving the current state of EHRs. Shahnaz et al. (2019) 

emphasized how blockchain technology can be used to transform the EHR systems and 

could be a solution for issues regarding data security, integrity, and management. 

Maxhelaku and Kika (2019) analyzed standards for improving interoperability and 

integration of patient data between different hospital services. To understand why EHR 

projects fail, researchers worked to identify errors and causes of EHR systems 

communication failures. They also examined the practices of EHR project managers and 

observed EHR implementation processes in small physician offices (Aldosari, 2017; 

Khajouei et al., 2018; Khennou et al., 2018; Rey, 2015). 
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Other researchers examined strategies that relate to improving the workflow 

process and data quality of EHRs technology that implement MU functionality. Spooner 

and Kirkendall (2016) summarized efforts to create standard quality measures and 

discussed the rise in EHR-based registry systems as one of such strategies. Other 

approaches to facilitating the MU of EHR discussed in the literature include addressing 

Technology and SKN implementation. For instance, Rangachari and Rethemeyer (2017) 

investigated the role of SKN Technology-based strategy for promoting/facilitating MU 

and successful implementation of EHR. Similarly, Rangachari (2018) examined user 

engagement in the SKN system and the associations between “SKN use” and 

“meaningful use” Risk Management and Healthcare Policy. Rangachari et al. (2019) go 

further to describe AU Health’s experiences with the novel initiative to pilot an SKN 

system for enabling MU of EHR MedRec technology and discussed lessons learned 

regarding the potential of an SKN system to enable interprofessional learning and 

practice improvement in the context of EHR MedRec. 

To achieve the desired level of EHR sharing, receiving, and integration, EHR 

systems must be interoperable. Shull (2019) notes that, at its core, interoperability is 

primarily about aggregating the crucial and rich data generated from health plans, 

vendors, health systems, and patients and leveraging it to improve clinical processes, 

such as patient diagnosis, prescriptions, and treatment. The rich data from health systems, 

vendors, health plans, and patients are generated through analytic systems, EHRs, 

biometric recordings, and any other digital system in place. Essentially, interoperability is 

desirable because it is the key determinant of whether clinicians through the healthcare 
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system can optimize current and emerging technologies for better or improved healthcare 

outcomes (Moor et al., 2015). The desired level of optimization cannot be achieved 

unless the digital systems used in different clinical systems can exchange, interpret, and 

use electronic information without necessarily requiring the user’s intervention, in this 

case, the healthcare personnel. 

An integrated electronic health system must save time and enable nurses and other 

healthcare practitioners to spend additional time with patients. Parasrampuria and Henry 

(2019) insist that the need for improved efficiency necessitated the shift from the 

traditional systems, which were primarily manual and involved a great deal of paperwork, 

to an electronic or automated one. Whether at the sending or receiving end, users of EHR 

systems must be able to access, retrieve, and use data and information for clinical 

purposes (Patel & Chatterji, 2015). Importantly, the systems must be flexible enough to 

receive and send data or information from third-party systems such as independent IT 

vendors. EHR integration also entails having seamless automatic access to patient’s 

healthcare records and other types of clinical information from within and without the 

healthcare system (Parasrampuria & Henry, 2019). Importantly, integrated systems are a 

key factor in improved patient outcomes. According to Shull (2019), integrating 

electronic health systems, which culminates into a higher level of interoperability, can 

turn out as the enabler of a global population-based payment system, patient data, and 

information harmonization, delivery forms, and performance measurement metrics. 

To expand the adoption and MU of EHR technology, Sahama et al. (2019) 

proposed the application of OECD data and ITS analysis for creating simulations. 
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Cohen’s (2016) demonstrated that HITECH financial incentives accelerated EHR 

adoption among small practices in the United States. However, small healthcare practices 

are less likely than others to qualify for incentives and meet the MU of EHR criteria 

(Ekezue et al., 2019). Reform policies that make EHR adoption requirements for 

hospitals and allow for voluntary adoption by private practice may influence EHR 

adoption (De Pietro, 2018), even though the evidence also revealed growth in EHR 

adoption rate in the absence of incentives (Dranove et al., 2015). 

Factors that Influence EHR Adoption and MU 

Multiple researchers have also explored factors that influence EHR adoption and 

MU. The influence of physician perspectives, hospital, and patient characteristics, laws, 

and policies are among the major buckets that researchers examined. For instance, Heath 

and Porter (2019), Asan (2017), and Iqbal et al. (2013) examined physicians’ 

perspectives on EHR use as well as their usage intentions and how this influences the 

extent and prevalence of EHR use. They also examined the influence of hospital and 

patient characteristics. 

Physicians’ perception and user intentions can influence the adoption and MU of 

EHR technology. Jacobs et al. (2019) observe that the initial experiences of physicians 

may influence the MU of EHRs. Other factors that may influence physicians’ use of EHR 

are social influence, work experience, medical specialty, and resistance to change (Al-

Rayes et al., 2019). Iqbal et al. (2013) identified the intention to use EHR, perceived 

usefulness, and ease to use primary care physicians as key factors to EHR adoption. This 

finding was substantiated by Abdekhoda et al.’s (2015) findings that point to perceived 
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ease of use (PEOU), perceived use (PU), and organizational contextual factors influence 

physicians’ attitudes toward EMRs. In Swedish hospitals, the slow rate of adoption of 

EHR technology despite government requirements has been attributed to a lack of 

agreement and financing strategy by stakeholders (De Pietro, 2018). Organization-level 

seems to have no significant impact on physicians’ adoption of EHR systems in Quebec 

(Gagnon et al., 2016). Sharp and Steven (2019) identified other factors that contribute to 

EHR use experience to include undue clerical burden, loss in sense of autonomy, 

excessive time with computer interactions, fewer meaningful interactions, inadequate 

proficiency, and changing relationships with patients. They noted the sparse availability 

of evidence for interventions that would specifically improve physician wellness. 

Although there has been significant acceleration in the rate of EHR adoption, challenges 

remain, especially for small and rural clinics and hospitals. The perception of physicians, 

as well as their intentions, significantly affect rates of EHR adoption. Physician 

perceptions and use intentions are influenced by multiple factors, including perceived 

usefulness, ease of use, and organizational level dynamics in hospitals and practices. 

Policies, incentives, and data may be instrumental in facilitating the wider adoption of 

EHR systems. 

Facilitators of EHR Use 

Facilitators of EHR usage among physicians’ have been identified as the 

perception of ease of use, perceived usefulness, MU certification, government laws, 

incentives, and CDSS interoperability. MU and PU of EHR have been attributed to 

physicians’ continued use of EHR (Ayanso et al., 2015; Holmgren et al., 2017; Peterson 
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et al., 2015; Sherer et al., 2016). Barriers to EHR interoperability in health institutions 

relate more to external factors beyond the hospital’s control. Complexities of medicine 

and clinical terminologies and errors in communication were also noted to limit 

interoperability usage and hamper communication between EHR systems (Braunstein, 

2018; Khajouei et al., 2018). EHR capacity for documentation is sometimes inefficient 

and may enable inconsistency and undesirable variations with resultant effects on clinical 

care (Walton et al., 2019; Weiner, 2019). Physicians’ use of EHR systems may also be 

deterred by factors such as stringent MU criteria, resource availability, and perception 

about the MU of EHRs. For instance, costs associated with upgrading MU-certified EHR 

systems may prevent family physicians with MU-certified EHRs from meeting the 

successively stringent MU criteria. Physicians also continue to express negative beliefs 

about the MU of EHRs (Peterson et al., 2015; Stuttgart, 2017). 

Barriers to EHR Use 

Researchers have also highlighted some barriers to EHR use. Stringent MU 

criteria, resource availability, and physicians’ perception about the MU of EHR might 

deter the use of EHR systems. For instance, Peterson et al. (2015) observed that costs 

associated with upgrading MU-certified EHR systems prevent family physicians with 

MU-certified EHRs from meeting the successively stringent MU criteria. Stuttgart (2017) 

found that only one-fifth of the physicians in their study believed that the MU of the EHR 

would improve the quality of care, patient-centeredness of care, or the care they provide. 

Stuttgart (2017) also noted that primary care physicians expressed more negative beliefs 

about the MU of the EHR in Stage 2 than in Stage 1. Another barrier to EHR use 
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highlighted relates to the issue of compromising interoperability standards during EHR 

integration. Yuksel et al. (2016) observed that it is impossible to sustain the integration of 

EHRs with other healthcare IT systems in a proprietary way without exploiting promising 

interoperability standards and profiles. Holmgren et al. (2017) also noted that a nontrivial 

proportion of variation in hospital MU performance is explained by vendor choice. 

Certain vendors are more often associated with better MU performance than others. 

Complexities of medicine and clinical terminologies and errors in communication 

have been identified as limitations to interoperability usage and sharing of data. 

Braunstein’s (2018) findings, for instance, reveal that a large extent of the limitations in 

the use of EHR to share, receive, and integrate patients’ records can be attributed to the 

complexity of medicine and clinical terminologies. Khajouei et al. (2018) identified a 

large number of system and operator-dependent errors hampering communication of 

information from HIS to SEPAS and obtained results that revealed that the same hospital 

ISs used in different hospitals could face dissimilar types and levels of errors when 

communicating with other ISs. 

EHR systems also suffer from gaps that limit their efficiency as documentation 

tools. Inconsistencies in the functional capability of EHR systems account for its 

limitation as a documentation tool. Walton et al. (2019) report that the poor capturing of 

genomic data by the EHR systems accounts for ineffective clinical care for patients 

requiring such documentation. Weiner (2019) also noted that current EHR systems are 

still far from being effective documentation tools for facilitating the effective healthcare 

of individuals and populations. Weiner (2019) identified the inefficiencies of EHR 
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systems to include their ability to enable inconsistency and potentially undesirable 

variation in the documentation and, sometimes, even the clinical care associated with it. 

These findings reveal that the capability of current EHR systems is limited in their 

insufficient ability to record genomic health data and effectively facilitate documentation 

of health records. 

EHR adoption and MU by health institutions may be influenced by factors of 

practice size, financial incentives, and complete use of EHR functionalities. For instance, 

despite an acceleration in EHR adoption, challenges to its use exist notably in a small and 

rural hospital. Shu et al. (2014) also observed low adoption rates across tertiary hospitals 

in China. This may be substantiated with findings that reveal that organization-level 

seems to have no significant impact on physicians’ adoption of EHR systems in Quebec 

(Gagnon et al., 2016). Also, only a small proportion of hospitals have effectively utilized 

all functionalities in the EHR system. Compliance to government reform policies and 

financial incentives have also been observed to influence adoption rates (Cohen, 2016; 

Dranove et al., 2015; De Pietro, 2018). Physicians’ perceptions, which may be influenced 

by their initial experience with EHR systems, PEOU, EOU, and poor user experience, 

could influence the continued use of EHRs (Jacobs et al., 2019). These researchers, 

however, present different findings on the influence of incentives on the EHR adoption 

rates. While Cohen (2016) identified the influence of HITECH financial incentives in 

accelerating EHR adoption among small practices in the United States, this contrasts with 

evidence about the growth of EHR adoption in the absence of financial incentives 
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(Dranove et al. (2015). Sharp and Steven (2019) noted the availability of sparse evidence 

for interventions that will specifically improve physician wellness. 

EHR Data Privacy and Security 

Evidence from mobile health applications shows insufficient attention to privacy 

policy despite privacy regulations (Parker et al., 2019). Robillard et al.’s (2019) findings 

also reveal information collection on mental health applications that do not include a PP 

or ToA. Flaumenhaft and Ben-Assuli (2018) observed existing variance in government 

policies such as the EU’s general data protection regulation (GDPR) concerning the 

degree of compliance to EHR service systems. These findings demonstrate the presence 

of weak data policies, which might not be adhered to if variance in legal terminologies 

and adoption of privacy regulations issues are not addressed. Kalesanwo (2019) identified 

location-based information access by third parties without user consent as a data privacy 

violation. Hecht (2019) highlighted possible data breaches as an area of concern in the 

use of EHRs. Data breaches of sensitive healthcare data may occur if secure techniques 

for healthcare are not implemented. Common threats to data loss and theft are identified 

as third-party disclosures, which are said to have increased with the advent of electronic 

IT (George & Bhila, 2019). Campbell et al. (2019) observed that participants voiced 

concerns about balancing patient safety with 42 CFR Part 2 privacy protections. 

Numerous workarounds have been deployed to manage communication and care within 

hospitals. EHR privacy and security may be threatened by a lack of attention to privacy 

policies and regulations, the presence of weak data policies, and noncompliance to these 

policies. For instance, the nonadherence of mental applications to privacy regulations and 
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variances in government policies concerning EHR system compliance may pose risks to 

EHR privacy and security. Concerns have also been noted in balancing patients’ safety 

with some privacy regulations, such as the CFR Part 2 privacy protections (Campbell et 

al., 2019; Flaumenhaft & Ben-Assuli, 2018; Parker et al., 2019; Robillard et al., 2019). 

Implementing insecure techniques and third-party disclosures, which lead to data 

breaches and unauthorized access to sensitive data, were also considered areas of concern 

to EHR use (George & Bhila, 2019; Hecht, 2019; Kalesanwo, 2019). 

Protecting EHR Privacy 

Privacy concerns and consent rules may influence health record efficiency, 

increase administrative burdens, and affect personal health information disclosure and 

care. To address these concerns, Zhang et al. (2018) highlighted that coping appraisals 

and threat appraisals influence privacy concerns. Shen et al. (2019) also found that 

patients’ perceptions of healthcare may mitigate privacy concerns. Findings from studies 

on the use of e-Consent tools indicate its importance in providing users awareness of 

consent policy (Iwaya et al., 2019), which in turn, helps allay related concerns. Krahe et 

al. (2019) indicated that user willingness to share data is dependent on the type of data, 

and information sharing is influenced by trust. In addressing concerns of EHR privacy, 

measures and tools have been proposed to identify the influences of privacy concerns. 

Coping and threat appraisals, patient perceptions of healthcare, and use of e-Consent 

tools may influence and mitigate privacy concerns (Iwaya et al., 2019; Shen et al., 2019; 

Zhang et al., 2018). Trust and data types may also determine the user’s willingness to 

share data.  
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Approaches to protecting data privacy and guarding against violations of data 

privacy have been proposed in several studies. McSherry (2018) highlighted measures by 

government bodies, such as the European Union, to regulate automated profiling of large 

databases and Australia’s introduction of a data breach notification scheme for cases 

where personal information held by an organization is lost or subjected to unauthorized 

access or disclosure. They also reviewed and summarized the known approaches reported 

in the literature, specifically concerning the integration of EHRs. Jiang et al. (2020) 

similarly developed a knowledge-based method, LATTE, for transforming various 

expressions of laboratory test results into a normalized and machine-understandable 

format. Jiang et al. (2016) also developed and evaluated a DER to provide machine-

readable QDM data element service APIs. They used ISO/IEC 11179 metadata standards 

to capture the structure for each data element and leverage semantic web technologies to 

facilitate semantic representation of the metadata. An approach to integrating EHRs from 

heterogeneous resources and generating integrated data in different data formats or 

semantics to support various clinical research applications was presented by Sun et al. 

(2015). A novel way of visualizing and linking EMR data by developing a NoSQL graph 

database using Neo4j was proposed by Yip et al. (2019). O’Connor et al. (2017) also 

proposed practical approaches that should be considered when designing and developing 

IoT for data collection and data sharing within the health domain. 

Some researchers particularly explored and proposed approaches and methods to 

utilize and manage EHR data in research and practice. Juhn and Liu (2020), for instance, 

reviewed the literature on the secondary use of electronic health record data for clinical 
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research concerning allergy, asthma, and immunology and highlighted their approaches 

to advancing EHR research. Agrawal et al. (2019) discovered that obstructive sleep apnea 

and related comorbidities are clinically correlated. An approach for applying EHR data 

analytics was discovered in the process of their study. Taggart et al. (2015) also examined 

how structured data quality reports (SDQR) and feedback sessions with practice 

principals and managers can improve the quality of routinely collected data in EHRs. 

Patients Perceptions regarding the use of personal health information for research were 

assessed by Krahe et al. (2019). They determined that investigating EHR data usage plays 

a key role in EHR adoption. They also proposed the Artificial intelligence approach that 

uses natural language processing to advance EHR-based clinical research and highlighted 

the secondary use of electronic health record data. 

Sher et al.’s (2017) evaluation of privacy policy compliance by Health IT staff 

indicated that health records are handled without behavioral intentions, deterrent 

approaches to ensure compliance has also been observed by nursing staff. Taylor and 

Wilson (2019) argued that conformity with a reasonable expectation of privacy provides 

an alternative account for the lawful disclosure of CPI and may provide a more 

sustainable and authentic approach to meeting obligations under the law of confidence 

than the standard account. To guard against privacy violations, government bodies have 

put measures to regulate automated database profiling and have introduced the use of 

schemes that notify users about data breaches or losses or unauthorized access to data 

(McSherry, 2018). Measures to ensure health staff comply to privacy regulations include 
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the use of deterrent approaches and the evaluation of privacy policy compliance among 

health IT staff (Sher et al., 2017). 

Tools, models, and frameworks are also proposed to ensure privacy and data 

protection in EHR systems. The integration of confidentiality codes, semantic 

frameworks, cloud-based solutions, and middleware solutions are examples of tools and 

frameworks that researchers propose. For example, Tseng et al. (2016) observed that the 

use of confidentiality codes on Taiwan’s EMRs ensured stronger security in personal 

health record exchange, even though it increased healthcare professionals’ workloads. Lu 

and Sinnott (2018) suggested that the use of semantics frameworks helped to preserve 

EHRs. They demonstrated this through their use of eXtensible Access Control Markup 

Language (XACML) with semantic framework to improve access control and risk 

disclosure functions. Yesmin and Carter (2020) also evaluated the performance of tools 

that monitor audited user access. Karapiperis et al. (2019) proposed a framework for 

integrating EHR can perform privacy preservation of large-scale data in healthcare, 

Cloud-based solutions for management and securing of patient information have been 

highlighted to provide improved data protection (Chirilla et al., 2015). Middleware 

solutions compatible with EHR or PHR could strengthen EHR user access privacy 

(Plastiras & O’Sullivan, 2018). 

Additionally, Campbell et al. (2019) indicated that use of sensitive note 

designation in the healthcare system “breaks the glass” technology. Yogarajan et al. 

(2018) noted compliance to privacy ethics in research use and data sharing among DHBs, 

use of confidentiality agreements, encryption, and cybersecurity procedures were also 
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highlighted as measures to ensure compliance. Badr et al. (2018) proposed PBE-DA 

framework is also aimed at enabling patient’s private access and updating of sensitive 

data on EHR systems. Privacy protection within the EHR system may be achieved 

through the use of confidentiality codes, integration of semantic frameworks, proposed 

frameworks, cloud-based and middleware solutions. For instance, the use of proposed 

frameworks, semantic models, and cloud-based solutions could ensure preservation and 

security of large-scale data as well as strengthen user access privacy (Chirilla et al., 2015; 

Karapiperis et al., 2019; Lu & Sinnott, 2018; Plastiras & O’Sullivan, 2018; Tseng et al., 

2016). Health systems have also been observed to ensure compliance to privacy 

regulations and ethics in research use and data sharing (Badr et al., 2018; Yogarajan et 

al., 2018). 

Studies Related to HIE Consent Policies 

There has been significant emphasis on the landscape of EHR privacy and consent 

policies and how these affect current and future levels of EHR adoption and interoperable 

functionality of EHR systems. Earlier researchers proposed the use of tools and= 

techniques for preserving EHR privacy and maintaining record security in healthcare. 

They propose approaches like automated privacy auditing, semantic privacy frameworks, 

e-consent tools, computational modeling, and a hybrid technique (Carter, 2020; Hathaliya 

& Tanwar, 2020; Iwaya et al., 2019; Kundalwal et al., 2019; Lu & Sinnott, 2018). Some 

studies have also examined the HIE preferences, including patient and public attitudes 

toward different types of informed consent models (Turvey et al., 2020; Apathy & 

Holmgren, 2020; Riordan et al., 2015). There are also studies that examined mechanisms 
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and practices used to protect EHR privacy. Some mechanisms discussed include hospital 

internal ISs, EHR publishing, blockchain-based secure EHR system (Huang et al., 2019; 

Stablein et al., 2018; Tseng et al., 2016; Wang et al., 2019; Yogarajan et al., 2018). 

The findings of these studies suggest that consent and privacy policies may 

impact HIEs. Existing privacy policies, compliance to these policies, and legal variance 

in data policies influence EHR adoption and MU. Kosseff (2019) noted that privacy law 

limits companies’ collection, use, sharing, and retention of personal information. Mulder 

and Tudorica (2019) highlight obscure processing activities of privacy laws in Europe 

and the gaps that exist between privacy policy regulations and practical reality. However, 

some regulations experience gaps in legal variance and practical compliance, which may 

influence HIE, EHR adoption, and MU (Mulder & Tudorica, 2019). 

Patients’ privacy concerns can also influence patients’ confidence and use of EHR 

systems. They have been observed to limit data sharing and EHR usage. Xu’s (2019) 

findings indicated that privacy concerns for HIaaS significantly affect patients’ trust 

belief, perceived privacy risk, and consent intention. On the contrary, Park and Shin et al. 

(2020) observed that privacy concerns and confidence had weak effects on people’s 

behavior. Stablein et al. (2018) also noted that confidentiality concerns due to EHR’s 

longevity increased access and multidimensional use. Zhang et al. (2018) also observed 

that health information privacy concerns significantly influence personal health 

information disclosure, and the fear of data breach of sensitive medical information may 

impact patients’ confidence in seeking treatment. Spooner (2016) noted the challenging 

security and privacy concerns of adolescents’ data. Complex privacy and security 
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challenges exist in children adolescents’ health record privacy and may affect how data is 

stored in EHR systems (Spooner, 2016). Privacy concerns have been observed to limit 

confidence in data sharing and EHR usage. For instance, confidentiality concerns have 

been observed to influence personal health information disclosure, and one’s confidence 

to seek treatment may be influenced by fears about the loss of sensitive data. Clemens 

(2012) also noted privacy and security concerns are more noted in data records of minors 

and adolescents. This may affect data storage in EHR systems. Findings that reveal how 

privacy concerns of EHR systems affect patients’ trust, belief, perceived privacy risks, 

and consent intention (Xu, 2019) contrasts with findings that observed weak behavioral 

effects of privacy concerns and confidence (Park & Shin et al., 2020). 

Studies Related to Research Questions 

Opt-in privacy rules have been observed to create administrative burdens that are 

borne by hospitals that are not technologically advanced (Apathy & Holmgren, 2020). 

Gaps in care continuity by demographics indicate an influence of consent policy 

preferences (Turvey et al., 2020). Aldjerid et al. (2016) noted that privacy regulation 

alone can result in a decrease in planning and operational HIEs and that, when coupled 

with incentives, could positively impact the development of HIE efforts. Anwar et al. 

(2015) observed the challenges of cross-country data protection to EHR interoperability. 

Goldstein et al. (2020) observed that although providers were aware of the confidential 

features within their EHR systems, they lacked training on how to ensure confidentiality 

of patients’ records and had low confidence in their EHR’s ability to maintain 

confidentiality. These findings reveal factors that facilitate and impede the usability of 
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EHR. Regulations like opt-in privacy rules have been found to place administrative 

burdens on hospitals that are not technologically advanced. Privacy regulations could also 

be coupled with incentives to positively impact HIE (Apathy & Holmgren, 2020; 

Aldjerid et al., 2016). Providers were also observed to lack training on how to ensure 

confidentiality of patients’ records despite being aware of EHR confidential features. 

Navigating the Consent Policy Barrier 

Findings from some studies indicate that the development of EHR schemes might 

outpace stringent privacy measures and consent policies and lessen the effects of 

stringent privacy regulations (Riles, 2020). Edward et al. (2019) observed the use of well-

written consent forms as well as blanket consent treatment forms in pediatric 

departments. Riordan et al. (2015), for instance, reported that although a large patient 

population in the UK was unaware of EHRs, the requirement of consent to use EHRs was 

strongly preferred in populations that were previously aware of EHRs. O’Connor et al. 

(2017) expressed concerns about the challenges the IoT may cause in the informed 

consent process. The importance of full awareness of the extent of consent is further 

emphasized by privacy requirements associated with the forthcoming GDPR. Secure 

techniques in healthcare can provide satisfaction to patients and healthcare givers 

(Hathaliya & Tanwar, 2020). Barriers to consent policy were addressed through the use 

of blanket consent at pediatric departments, lessening the effects of privacy regulations, 

and challenges the IoT may also influence the informed consent process. Improving 

awareness of consent is considered an important requirement in forthcoming regulations, 

such as the GDPR. 
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Definitions 

Basic EHR System 

An EHR system with at least a basic set of EHR functions (typically 10 core 

functionalities are determined to be essential to an EHR system, including clinician notes, 

as defined in Table 1) (Blumenthal et al., 2006; Henry et al., 2016). 

Certified EHR System 

A certified EHR is EHR technology that meets the technological capability, 

functionality, and security requirements adopted by the Department of Health and Human 

Services. This includes the capability to securely work with other certified EHR systems 

to share information (interoperability). The “possession” of certified EHR technology is 

considered to be either the physical possession of the medium on which a certified EHR 

system resides or a legally enforceable right by a healthcare provider to access and use, at 

its discretion, the capabilities of a certified EHR system. Table A1 shows the electronic 

functions required for hospital adoption of a Basic or Comprehensive EHR system, which 

a consensus expert panel established (Blumenthal et al., 2006; Henry et al., 2016). 

EHR 

An EHR is a digital version of a patient’s paper chart. EHRs are real-time, 

patient-centered records that make information available instantly and securely to 

authorized users. One of the key features of an EHR is that health information can be 

created and managed by authorized providers in a digital format capable of being shared 

with other providers across more than one healthcare organization (Health IT, 2020). 
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EHR MU 

MU is defined by the use of certified EHR technology that connects with other 

EHR technologies to provide for the electronic sharing, receiving, and integration of 

health information between both technologies to improve the quality of care. MU sets the 

specific objectives that eligible professionals and hospitals must achieve to participate in 

the national EHR incentive programs (CDC, 2020; Center for Medicare and Medicaid 

Services, 2020). 

Interoperability 

Interoperability is the capability to securely work with other certified EHR 

systems to share information (interoperability) (Henry et al., 2016). 

Nonfederal Acute Care Hospital 

This category includes acute care general medical and surgical, general children’s, 

and cancer hospitals owned by private/not-for-profit, investor-owned/for-profit, or 

state/local government and located within the 50 states and District of Columbia. The 

inclusion of children’s general and cancer hospitals in this category makes this definition 

different from that in previous peer-reviewed research. However, it is consistent with the 

population of hospitals eligible for federal Health IT adoption incentives (Blumenthal et 

al., 2006; Henry et al., 2016). 

PSC Records 

Patient Summary care records are electronic records of important patient 

information created from GP medical records. They can be seen and used by authorized 

staff in other areas of the health and care system involved in the patient’s direct care. 
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Type of State HIE Consent Policy 

This refers to the respective state-designated HIE policy adopted. Broadly, these 

policies fall under two categories: opt-in and opt-out. Opt-out-patients may be 

automatically enrolled in the HIE but are given the opportunity to opt-out of having their 

information stored and/or disclosed by the HIE while with opt-in, patient consent is 

required for patient health information to be stored and/or disclosed by the HIE (ONC, 

2019c). 

Assumptions 

Five assumptions underpin this study. The first assumption is that the theoretical 

framework accurately reflects the hypothesis being tested in this study. The second 

assumption of this study is that the variables of state EHR consent policy have been 

clearly defined and are measurable. Thirdly, it is assumed that the participants who 

participated in the primary survey from which data is being drawn for this study are 

representative of the population and responded to questions honestly without biases. This 

assumption is necessary to make because I used information from a reliable source. The 

fourth assumption is that the results of this study will be generalizable beyond the sample 

of nonfederal acute care hospitals being studied. 

Scope and Delimitations 

Delimitations are conditions deliberately imposed by the researcher to limit the 

scope of a study. According to Bloomberg and Volpe (2012), a researcher can achieve 

delimitation by establishing the parameters for the participants and location of the study. 

Kirkwood and Price (2013) supported this view. The present study includes only U.S. 
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nonfederal acute care hospitals that (a) specifically reported on the extent to which they 

share, receive, and integrate PSC records were collected between 2015 and 2017, and (b) 

are located in states that fall within the two broad HIE opt-in or opt-out policies. 

Nonfederal acute care hospitals that do not report on the extent to which they share, 

receive, and electronically integrate PSC records between 2015 and 2017 will not be 

included in the study to maximize standardization of data utilized for analysis. 

 Limitations 

The limitations of a study refer to gaps in the feasible intent and procedural 

weaknesses of the study (Morse, 2015). A limitation anticipated in this study relates to 

the validity and generalizability of the study’s findings (Katz, 2015). Because I drew 

conclusions about the phenomenon without empirically analyzing primary data or the 

direct participation of physicians and patients from all U.S. nonfederal acute care 

hospitals, questions regarding generalizability may arise. Despite these limitations, 

findings from this study may contribute to the body of knowledge regarding the effects of 

EHR consent policies on the MU of EHR systems, specifically for SRI PSC records. 

Another limitation anticipated for this study relates to the availability of a recent dataset 

on state EHR policies. The most recent data on EHR consent policies were collected in 

2016 and did not include data on when policies were enacted. As a result, the findings 

from this study may not reflect policy changes that may have occurred within the last 

three years. However, to address the problem of lack of information on when policies 

were enacted, web pages of institutions that manage implementations of these policies 

will be reviewed to determine the year they were enacted. Another limitation relates to 
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the scarce availability of recent studies on the role of consent policies on provider 

adoption of EHR systems. The scarcity of evidence in this regard may affect the 

robustness of findings from the literature to support or refute findings from this study. 

Significance, Summary, and Conclusion 

The U.S. government has made significant investments to promote the MU of certified 

EHR systems, yet many (about 59%) nonfederal acute care hospitals in the country do 

not use their EHR systems to SRI PSC records for patients transitioning from one setting 

of care or provider to another (Eval, 2016; ONC, 2017; Riordan et al., 2015; WHO, 

2017). 

What is Known 

Wider EHR adoption and MU by health institutions may be influenced by factors 

of practice size, financial incentives, and effective use of EHR functionalities. For instance, 

despite the acceleration in EHR adoption rates, challenges involved in the use of EHRs 

notably exist in small and rural hospitals. Low adoption rates have also been observed 

across tertiary hospitals in China and may substantiate the findings that organization-level 

seems to have no significant impact on physicians’ adoption of EHR systems in Quebec 

(Gagnon et al., 2016; Shu et al., 2014). Furthermore, all functionalities of the EHR system 

are only effectively used in a small proportion of hospitals. Compliance to government 

reform policies and financial incentives have also been observed to influence adoption rates 

(Cohen, 2016; Dranove et al., 2015; De Pietro, 2018). Physicians’ perceptions, which may 

be influenced by their initial experience with EHR systems, PEOU, EOU, and poor user 

experiences, can influence their continued use of EHR technology (Jacobs et al., 2019). 



67 

 
 

One proposed way to expand EHR adoption and MU is the application of OECD data and 

ITS analysis to the creation of simulations (Sahama et al., 2019). 

The impact of EHR technology on healthcare quality, patients, and medical 

personnel is apparent from earlier studies. EHR technology benefits hospitals’ 

performance, quality of care, data management research, and physician efficiency. The 

adoption of EHR technology was observed to improve medical care metrics, provider 

productivity, quality of healthcare, and aid development of treatment plans. For instance, 

improved hospital performance, which is associated with improved patient flow and 

financial performance, was observed upon adoption of EHR (Bushelle-Edghill et al., 2017; 

Weech-Maldonado et al., 2018). Physician efficiency was also observed to improve with 

EHR use. Improvements in diagnostic metrics, treatment plan development, the 

productivity of healthcare providers, and patient survival rates, which also contribute to 

improving the quality of healthcare was also found to be associated with EHR adoption 

(Ayaad et al., 2019; Han et al., 2016; Rey, 2015; Walji et al., 2014). Furthermore, an 

increase in provider productivity, measured by patients’ visit volumes and charges, 

indicates the benefits of EHR adoption over non-adoption (Cheriff et al., 2010; Kevin et 

al., 2019). The use of EHR also improves data collection, assessment, and capture in social 

settings (Rashotte et al., 2016; Rumball-Smith et al., 2018). EHR interoperability standards 

may enable the development of multiple-access telemedicine platforms. The integration of 

EHR systems could also enable information sharing and e-health synergy, which have 

overall effects on hospital performance (Finet et al., 2018; Mačinković & Aničić, 2016; 

Wu et al., 2016). Despite these many benefits, EHR technology can obstruct physicians’ 
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efficiency. In one study, EHR systems were found to make it difficult for physicians to 

build comprehensive patient stories, which in turn, limited interprofessional 

understandings of patients’ medical situations (Varpio et al., 2015). The integration of EHR 

technology did not completely improve efficiency and poses serious privacy and security 

risks (Heart et al., 2017; McGeorge et al., 2015). 

Regarding facilitators and barriers, factors such as how physicians perceived the 

ease of use of EHRs, EHR usefulness, and MU can facilitate EHR adoption. Other factors 

are MU certification, differences in EHR brands, government laws, and incentives. MU 

and positive PU of EHR are attributed to physicians’ continued use of EHR (Ayanso et al., 

2015; Holmgren et al., 2017; Peterson et al., 2015; Sherer et al., 2016). Furthermore, 

barriers to EHR interoperability in health institutions were also identified in primary care 

institutions; complexities of medicine and clinical terminologies and errors in 

communication can limit interoperability usage and hamper communication between EHR 

systems (Braunstein, 2018; Khajouei et al., 2018; Kiapio et al., 2018) EHR capacity for 

documentation was noted to be inefficient. For instance, findings agree that EHR was 

incapable of capturing relevant genomic data and can enable inconsistency and undesirable 

variations with resultant effects on clinical care (Walton et al., 2019; Weiner, 2019). 

Factors such as stringent MU criteria, resource availability, and perception about the MU 

of EHR can deter physicians’ use of EHR systems. For instance, costs associated with 

upgrading MU-certified EHR systems can prevent family physicians with MU-certified 

EHRs from successively meeting stringent MU criteria. Physicians also continue to express 

negative beliefs about the MU of the EHR (Peterson et al., 2015; Stuttgart, 2017). 
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Approaches that improve EHR implementation and interoperability functions 

include system integration approaches that are responsive to organizational change, and 

the utilization of generic HISs is essential to EHR adoption efforts (Currie et al., 2016; 

Sharp & Steven, 2019). The adoption of web service technology may solve EHR 

interoperability problems, which in turn reduce costs and errors incurred by hospitals. Also, 

the use of developed PHIPs was found to have strong capacities for HIE (Zeinali et al., 

2016; Zhang et al., 2017). Semantics was identified as integral to EHR infrastructure 

(Cornet, 2017). The integration of semantics frameworks into EHR systems is proposed to 

enable synchronization of large-scale data and improve information sharing (Jaulent et al., 

2018; Sun et al., 2015). Detro et al. (2016) suggested the application of formal concept 

analysis to improve the semantic interoperability of EHR systems. Other models that aid 

in the processing and storage of large-scale data include MongoDB, which allows for the 

easy storage of structured and unstructured data to aid heterogeneity (Dodeja et al., 2018). 

The capability of RNN for predictive modeling with large heterogeneous EHR data was 

also determined in this study (Ramsy et al., 2019). Models that improve EHR 

interoperability have also been proposed. For instance, proposed novel models of 

distributed noise contrastive estimation (distributed NCE) can preserve model structure, 

achieve comparable prediction accuracy, and build predictive models in a distributed 

manner with privacy protection (Li et al., 2019). Proposed prototypes can also enable the 

editing of patient records and the addition of comments while preserving the validity of the 

documents (Mishra et al., 2016). Proposed harmonization of FHIR and CIMI could enable 
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the QDM specification and enable better coverage of DER, DER-based approaches have 

been demonstrated as extensible and scalable (Jiang et al., 2016). 

Models and tools that support the evaluation of EHR social impact and acceptance 

are proposed. Models can explain physicians’ acceptance of novel technology and identify 

social influences of EHR experience, as well as the perception of the usefulness of EHR 

systems (Belaryan et al., 2019; Steininger & Stiglbauer, 2015). Tools such as the e-CEX 

have also been validated as reliable tools for assessing patient-centered EHR 

communications. The integration of the SKN tool as a reporting tool within the EHR 

system can enable interprofessional learning (Alkureishia et al., 2018; Rangachari, 2018; 

Russo et al., 2018). To improve EHR capability, tools that achieve more precise and user-

centric results, such as the HL7 parser, have been identified (Kanade et al., 2019). The use 

of Neo4j database systems was found to enable additional data visualization and the 

management of data-intensive EHR systems (Yip et al., 2019). The proposed use of the 

LATTE model may normalize laboratory test results and facilitate EHR-based application 

(Jiang et al., 2020). 

EHR privacy and security are threatened by the lack of attention to privacy policies 

and regulations, the presence of weak data policies, and noncompliance to these policies. 

For instance, nonadherence of mental applications to privacy regulations and variances in 

government policies regarding EHR system compliance poses a risk to EHR privacy and 

security. Concerns have also been noted in balancing patients’ safety with some privacy 

regulations, such as the CFR Part 2 privacy protections (Campbell et al., 2019; Flaumenhaft 

& Ben-Assuli, 2018; Parker et al., 2019; Robillard et al., 2019). Implementation of insecure 
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techniques and third-party disclosures, which lead to data breaches and unauthorized 

access to sensitive data, are also considered areas of concern to EHR use (George & Bhila, 

2019; Hecht, 2019; Kalesanwo, 2019). 

To strengthen the security of EHR, several measures and tools have been proposed. 

For instance, the complementary use of EHRs with IT systems in hospitals may reduce the 

risk of data breaches (Shoja & Maraka, 2019). The use of MA-ABE and DEM was 

observed to preserve privacy and to protect EHR from attacks (Kundalwal et al., 2019; 

Sowmya & Suresh, 2019). The use of blockchain technology in EHR systems was also 

proposed to secure the storage of electronic records and act as a scalable and secure solution 

to interoperability issues (Huang et al., 2019; Shahnaz et al., 2019). Privacy protection 

within the EHR system may also be achieved with the use of confidentiality codes, 

integration of semantic frameworks, proposed frameworks, and cloud-based and 

middleware solutions. For instance, proposed frameworks, semantic models, and cloud-

based solutions can ensure preservation and security of large-scale data and strengthen user 

access privacy (Chirilla et al., 2015; Karapiperis et al., 2019; Lu & Sinnott, 2018; Plastiras 

& O’Sullivan, 2018; Tseng et al., 2016). Privacy regulations can also be coupled with 

incentives to positively impact HIE (Aldjerid et al., 2016; Apathy & Holmgren, 2020). To 

guard against privacy violations, government bodies have implemented measures to 

regulate automated database profiling. They have introduced the use of schemes that notify 

users of data breaches, losses, and unauthorized access to sensitive information (McSherry, 

2018). 
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The use of health systems can also ensure compliance with privacy regulations and 

ethics in research use and data sharing (Badr et al., 2018; Yogarajan et al., 2018). Measures 

to ensure compliance to privacy regulations by health staff include the use of deterrent 

approaches and evaluations of privacy policy compliance among Health IT staff (Sher et 

al., 2017). To address or mitigate concerns of EHR privacy, measures like coping and threat 

appraisals, responding to patient perceptions of healthcare, and the use of e-Consent tools 

may be helpful (Iwaya et al., 2019; Shen et al., 2019; Zhang et al., 2018). Proactively 

building trust can also determine the user’s willingness to share data. 

Regulations like opt-in privacy rules were observed to place administrative burdens 

on less technologically advanced hospitals (Apathy & Holmgren, 2020). Providers were 

also observed to lack training on how to ensure confidentiality of patients’ records despite 

being aware of EHR confidential features (Goldstein et al., 2020). Barriers to consent 

policy implementation were addressed in the use of blanket consent policies at pediatric 

departments, lessening effects of privacy regulations, and challenges related to the IoT may 

also influence the informed consent process (Edward et al., 2019; O’Connor et al., 2017; 

Riles, 2020). Improving consent awareness is considered an essential requirement in 

forthcoming regulations such as the GDPR (O’Connor et al., 2017). 

What is Controversial  

The literature review revealed that there were mixed findings about the influence 

of her use on healthcare quality. Findings from some studies indicate that EHR improves 

hospitals’ performance and increased efficiencies. For instance, Ayaad et al. (2019) 

observed that the adoption of high-quality EMR has a significant impact on improving the 



73 

 
 

quality of healthcare services. The findings of Kruse et al. (2016), however, indicate that 

although EHR functionalities improve the quality of care, it also reduces the quality of 

patient-physician interactions. 

EHR capacity for documentation was noted to be inefficient. For instance, findings 

show that EHR was incapable of capturing relevant genomic data and enabling inconsistent 

and undesirable variations with resultant effects on clinical care (Walton et al., 2019; 

Weiner, 2019). Different findings are also presented on the quality of data obtained from 

EHR systems. For instance, Horton et al.’s (2019) findings indicate that EHR use improves 

data quality and is more indicative of health status than administratively-sourced data. In 

contrast, Taggart et al. (2015) argued that although the presence of feedback and SDQRs 

improved the recording of patient data, they do not improve the quality of data. This is 

substantiated by evidence of EHR’s limited effect on data quality (Darko-Yawson & 

Ellingsen, 2016). The following study presents different findings about the influence of 

incentives on the EHR adoption rates. For instance, Cohen (2016) indicated that HITECH 

financial incentive accelerates EHR adoption among small practices in the United States, 

this contrasts with evidence of growth in EHR adoption in the absence of financial 

incentives (Dranove et al., 2015). Findings that reveal how privacy concerns of EHR 

systems affect patients’ trust, belief, perceived privacy risks, and consent intention (Xu, 

2019) contrasts with findings that observed weak behavioral effects of privacy concerns 

and confidence (Park & Shin et al., 2020). 
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Gaps in the Literature 

Earlier studies that explore factors that influence the adoption and MU of electronic 

health records have highlighted cost, lack of industry collaboration, a culture of 

fragmentation, and physician burden as important factors that affect the MU of EHR 

systems in hospitals (Council for Affordable Quality Healthcare, 2020; Reisman, 2017). 

These factors have been more organizational, structural, and environmentally centered than 

they have been policy and patient-centered. Several researchers suggested that there is a 

relationship between state policies and increased administrative burden on healthcare 

practitioners, but little is known about whether these burdens influence the use of EHR 

systems and the sending, receiving, and use of PSC records. HIE consent policies exist and 

differ from state to state (Henry et al., 2016; Klosek, 2011; ONC, 2013; Palabindala, 

Parmarthy, & Johnnalagadda, 2016; Weiser, 2019). Despite the obvious differences in state 

HIE consent policies, there is no known research that has determined if and what aspects 

of state-level HIE legislation affect the MU of EHR systems to SRI PSC records. 

The study addresses the under-researched area of the use of EHR systems for 

transferring and receiving PSC records among nonfederal acute care hospitals in the United 

States. The study was not limited to a specific health condition, a single state, or federal 

privacy legislation as found in related studies (Klosek, 2011; Weiser, 2009). Rather, it 

covered a broader scope in comparing state-level differences in EHR consent policies to 

differences in the percentage of nonfederal acute care hospitals that SRI PSC records using 

their EHR systems. Pointers to whether or not patient consent policies affect the use of 

certified EHR systems to SRI PSC records can provide context for healthcare 
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administrators on how and where policy development and investments can streamline the 

complexity of exchange and address barriers to interoperability. This can, in turn, 

contribute to promoting wider use of certified EHR systems by healthcare administrators 

in acute care settings to SRI PSC records. 

The study contributes to positive social change by providing evidence that could 

help healthcare administrators, advocates, and policymakers address current gaps in the 

continuum of care that have been amplified by the 59% of nonfederal acute care hospitals 

that do not use their EHR systems to SRI PSC records (De Regge et al., 2017; Eval, 2016; 

Mansukhani et al., 2015; ONC, 2017; Riordan et al., 2015; Waibel et al., 2016; WHO, 

2017). These stakeholders may be able to leverage the evidence from this study to (1) 

addresses policy-related barriers to nationwide use of interoperable systems for sharing, 

receiving, and integrating PSC records and (2) promote patient consent policies that could 

support wider use of EHR systems for the said purpose. These could, in turn, increase gains 

in the quality and efficiency of care delivered (Henry, Pylypchuk, Searcy, & Patel, 2016).  

The rationale, purpose of this study, research strategy, and sources of information 

for the literature review were part of this section on earlier studies on EHR adoption and 

MU, influencing factors, and the security architectures emplaced to protect EHRs. This 

section also contains a description of the theoretical framework that will serve as the lens 

through which the results of this study will be interpreted. The relevance of the theoretical 

framework was analyzed and synthesized. I concluded this section with a discussion of 

what is known, controversial, and unknown regarding the role of privacy policies on EHR 

MU. In Section 2, I discuss the research methodology of the study. 
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Section 2: Project Design and Process 

Introduction 

The purpose of this quantitative cross-sectional research study was to determine if 

the type of HIE consent policy present in a state influence the percentage of nonfederal 

acute care hospitals in that state that (a) send patients’ summary of care (PSC) records, 

(b) receive PSC records, and (c) integrate PSC records using their EHR systems. The 

study examined whether differences exist with the percentage of nonfederal acute care 

hospitals that send, receive, and integrate patients' PSC records in states that implement 

opt-in HIE policies versus states with opt-out HIE policies. 

In this section, I present the methods I used to implement this quantitative cross-

sectional study analysis. I begin with a brief review of my purpose statement, research 

question, and hypotheses. A description of the method and design and advantages and 

disadvantages of the method and design follows. I then discuss the dataset, variables I 

used for data analysis, as well as my plan for ensuring reliability, validity, and addressing 

missing data. I describe the statistical test I used for the secondary data analysis and 

discuss data analysis assumptions, including the implications for violating highlighted 

assumptions and corrective measures. Finally, I discuss the sampling procedure used 

during primary data collection, as well as the ethical considerations that guided the study, 

procedures for storing and protecting data, and data identity. 
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Methods and Design 

Methods 

The research question and null and alternative hypothesis for this quantitative 

analysis are as follows: 

What is the correlation between the type of HIE consent policy in a state and the 

percent of nonfederal acute care hospitals that electronically (a) send (b) receive(c) 

integrate PSC records from outside providers as reported in the American Hospital 

Association (AHA) survey between 2015 and 2017?  The null hypothesis (H01) is that 

there is not a statistically significant relationship between the type of HIE consent policy 

in a state and the percent of nonfederal acute care hospitals that electronically (a) send (b) 

receive (c) integrate PSC records from outside providers as reported in the AHA survey 

between 2015 and 2017? The alternative hypothesis (Ha1) is that here is a statistically 

significant relationship between the type of HIE consent policy in a state and the percent 

of nonfederal acute care hospitals that electronically (a) send (b) receive (c) integrate 

PSC records from outside providers as reported in the (AHA) survey between 2015 and 

2017? 

Research Design and Rationale 

The research problem for this study was that the predictive influence of state HIE 

consent policies on healthcare administrator’s use of EHR systems for sending, receiving, 

and integrating PSC records electronically in U.S. nonfederal acute care hospitals is not 

clearly understood. The independent variable for this study was “HIE consent policy 

type.” This variable is a categorical variable with four categories: exclusively opt-in, 
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exclusively opt-out, both opt-in and opt-out, and no HIE policy. The no HIE policy 

served as the base case for this study. The dependent variables were the percentage of 

nonfederal acute care hospitals in that state that (a) send PSC records, (b) receive PSC 

records, and (c) integrate PSC records using their EHR systems. The covariate or 

confounding variable was the year in which the survey was conducted (i.e., 2015 and 

2017). 

I used a cross-sectional quantitative correlational research to statistically 

determine whether a statistically significant relationship exists between the variables 

discussed above. Correlational designs are nonexperimental research designs researchers 

use to assess the statistical relationship between two or more quantitative variables 

without manipulating the independent variable (Paul et al., 2015; Setia, 2016). An 

important characteristic of correlational studies is that they are easy to conduct, generally 

inexpensive, and involve few ethical concerns (Paul et al., 2015). However, this design is 

limited due to its inability to establish causation. Despite this limitation, with this 

correlational research design, researchers can determine the strength and direction of a 

relationship between variables. Additional experimental studies can be conducted to build 

on findings to determine causation (Paul et al., 2015). The authors of this study used a 

correlational research design with a cross-sectional approach because this approach 

enables researchers to get an accurate representation of the general population. With 

cross-sectional studies, researchers get a snapshot of a wide area and strengthen the 

external validity of their study. However, the cross-sectional design is limited because it 

does not consider what happens before or after the snapshot is taken (Seita, 2016). 
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Another research design I considered using in this study was the quasi-

experimental controlled before and after design. The controlled before and after design is 

a between-subject design in which I compared changes in the dependent variable between 

two groups before and after introducing or varying the independent variables (Campbell 

& Stanley, 2015). Because the controlled before and after design is a quasi-experimental 

design, it has better internal validity than observational studies and can result in improved 

estimates of the cause and effect relationship between the independent and dependent 

variable than observational studies. The design is also cheaper, more time- and cost-

saving, and less complicated than traditional experimental designs because it does not 

require randomization (Bernard & Bernard, 2012; Trochim, 2006). However, this design 

was not suitable for this study because the purpose of the study was not to assess the 

impact or effect of the independent variable on the dependent variable but to examine the 

relationship between both variables. The design is also not suitable because the 

prospective approach of the controlled before and after design (Campbell and Stanley, 

1963; Creswell, 2013) requires the collection of data at multiple points before, during, 

and after the independent variable (HIE consent policy) is introduced to study groups 

(nonfederal acute care hospitals that send/do not send, receive/do not receive, 

integrate/do not integrate PSC records using their EHR systems). The scope of this study 

does not include the analysis of nonfederal acute care hospitals that SRI PSC records 

using their EHR systems prior to when their state HIE consent policy was instituted. For 

this reason, I did not use the quasi-experimental controlled before and after research 

design in this study. 
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Methodology 

Population 

The population for this study was U.S. states that identify as implementing opt-in, 

opt-out, both opt-in and opt-out, or neither opt-in nor opt-out HIE consent policies. I 

examined the percentage of nonfederal acute care hospitals in the above categories. This 

included children’s and cancer hospitals, acute general medical and surgical hospitals 

owned by private/not-for-profit, investor-owned/for-profit, or state/local government 

located within the 50 U.S. states and District of Columbia. According to the American 

Hospital Directory (AHD), there were about 3,906 nonfederal acute care hospitals in the 

United States as of 2019 (AHD, 2020). The AHD categorizes a hospital as acute care 

based on the last four digits of its Center for Medicare and Medicaid Services (CMS) 

certification number, as reported in Medicare cost reports. 

Sampling and Sampling Procedures 

Sampling Strategy 

In this study, I used a deidentified panel of publicly available datasets containing 

measures of adoption and use of interoperable EHR systems as well as the characteristics 

of state privacy legislation related to EHR adoption and use will be extracted from the 

ONC database (ONC, 2019a; ONC, 2019b). However, the original dataset was collected 

in a survey that was fielded from 2015 to 2017. The AHA used purposive convenience 

sampling methods in the primary study. The use of purposive sampling enables the 

researcher to select participants who meet certain inclusion criteria (Frankfort-Nachmias 

& Nachmias, 2008; Palinkas et al., 2015). Convenience sampling is a nonrandom 
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sampling technique in which only participants that can practically participate in the study 

do so (Ilker et al., 2016). With convenience sampling, members of the target population 

that meet practical criteria like accessibility, availability, geographic proximity, and 

willingness can participate in the study. Both purposive and convenience sampling 

techniques are effective at anthropological studies and are two of the most efficient and 

least expensive sampling approaches (Saunders et al., 2012). However, because 

convenience samples can underrepresent the general population, the study may have 

insufficient power to detect differences between population subgroups. In turn, this can 

introduce considerable amounts of variation and produce unstable statistical influence in 

the analysis (Marc et al., 2013). In the primary study, the AHA purposively sampled 

hospitals that met the inclusion criteria of being a nonfederal acute care hospital. Only 

representatives from these hospitals who were available and willing to participate in the 

study were surveyed. 

Sample size calculation. An appropriate sample size strengthens the validity of a 

study (Burkholder, 2009). Researchers consider four criteria in determining the sample size 

for a study: (a) Population size (i.e., the number of people in the target population that meet 

the eligibility criteria for participating in a study) (b) the margin of error or confidence 

interval (i.e., the amount of error between the sample mean, and the population that the 

researcher is willing to accommodate) (c) the confidence level (i.e., how confident the 

researcher wants to be that the actual/sample mean falls within the margin of error) (d) 

standard deviation (i.e., an estimate of how much each participant’s response varies from 

each other and from the mean number) (Trochim, 2006).  
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All 50 U.S. states met the eligibility criteria for this study because they had an 

opt-in, opt-out, both opt-in and opt-out, or no HIE consent policy (Milken Institute 

School of Public Health, 2016). I used the sample size online calculator at survey 

systems.com to estimate the minimum sample size for this study. The margin of error or 

confidence interval for this study was set to 5% while the confidence level and standard 

deviation were set to 95% and 0.5, respectively, to ensure that the sample size was large 

enough. Statistical power is the probability of obtaining a statistic that is large enough to 

reject the null hypothesis when it is false (Rebecca, 2013). Using G*Power software to 

estimate the statistical power for this study, I estimated the beta (i.e., Type II error at 

100% power) value to be 20% (i.e., 0.2), and the statistical power value to be set at 80% 

(i.e., 0.80). For a test, the predetermined effect size or the power estimation was set at a 

small level (i.e., 0.2). I also set the parameters in the tool to (a) test family = F test, 

statistical test = MANOVA, and alpha = 0.05. Based on these parameters, the minimum 

sample size proposed for this study was 44 U.S. states. The Type II error and power were 

the criteria used to assess whether the sample size was sufficient for the statistical 

analysis. 

Procedures for recruitment, participation, and primary data collection. In the 

primary survey, the chief executive officers of all nonfederal acute care hospitals in the 

United States were invited to participate in the survey regardless of AHA membership 

status. The person who was most knowledgeable about the hospital’s health IT (typically 

the chief information officer) was asked to provide the information via a mail survey or 
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secure online site. No respondents received follow-up mail or phone calls to encourage 

them to respond. 

Secondary data access. I submitted an application to the Walden University 

institutional review board (IRB) prior to accessing the raw dataset for this study. The 

application included information regarding the purpose of the study and the strategies I 

implemented to address ethical concerns in the research and protect the safety and 

privacy of participants and their data. Upon approval of the IRB, secondary data were 

accessed from the online publicly accessible database located on the website of the Office 

of the National Coordinator on Health Information Technology United States. 

For this study, dataset containing measures of adoption and the use of 

interoperable EHR systems, as well as the characteristics of state privacy legislation 

related to EHR adoption and use, was extracted from the ONC database (ONC, 2019b; 

ONC, 2019c). Data published on the ONC websites were extracted from the AHA 

Annual Survey/Health IT Supplement implemented from 2011 to 2017. The survey was 

carried out with nonfederal acute care hospitals from all 50 U.S. states (ONC, 2019a). 

However, data that specifically report on sharing, receiving, and integrating PSC records 

were collected in 2015 and 2017. The dataset on adoption and MU of EHR systems in 

hospitals include measures for EHR adoption, patient HIE, including measures of 

interoperable exchange, and patient engagement capabilities. 

The Office of the National Coordinator collected data on the type of state consent 

policies for Health IT in coordination with Clinovations and the George Washington 

University Milken Institute of Public Health (ONC, 2019c). The ONC and its partners 
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collected the data through research of state government and health information 

organization websites. The dataset provides information on the type of consent policy 

that the respective state-designated HIE has adopted. Broadly, these policies fall under 

two categories: opt-out patients may be automatically enrolled in the HIE but are given 

the opportunity to opt-out of having their information stored and/or disclosed by the HIE, 

and opt-in patient consent is required for patient health information to be stored and/or 

disclosed by the HIE. However, some state policies fall outside of these two broad 

categories in which case descriptions of the policies are included (ONC, 2019c). 

One advantage of conducting a secondary analysis of archived data is that doing 

so enables a researcher to analyze large samples of data without the cost and hassle of 

contacting potential participants directly, and this, in turn, limits ethical concerns (Cheng 

& Phillips, 2014; Kelder, 2005). A downside to this, however, is that because data 

collected were not originally collected specifically to answer the research questions for 

the study, data may be incomplete (Cheng & Phillips, 2014). 

Instrumentation and Operationalization of Constructs 

The Independent Variable 

Because secondary data were used in this study, there was no researcher-created 

or published instrument used to collect data. However, in the primary survey, the 

independent variable—the type of consent policy that the respective state-designated HIE 

has adopted broadly—fit into four categories. Opt-out -patients may be automatically 

enrolled in the HIE but are given the opportunity to opt-out of having their information 

stored and/or disclosed by the HIE. Opt-in patient consent is required for patient health 
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information to be stored and/or disclosed by the HIE. Both opt-in and opt-out have 

regulations that allow healthcare facilities that implement one of opt-in or opt-out in the 

state. Below are the operationalizations for the independent variables that was used in this 

study (see Table 2). 

Table 2  

Operationalization of the Independent Variables 

Variable Coding 

Type of HIE consent policy 1 = opt-out 
2 = opt-in 
3 = Both opt-in and opt-out 
4 = Neither opt-in nor opt-out (No HIE 
policy) 

 

The Dependent Variables 

The measure for the independent variables was calculated from answers to the 

following questions asked during primary data collection: 

1. When a patient transitions to another care setting or organization outside your 

hospital system, how does your hospital routinely send and/or receive a PSC 

records? Only responses c through e were used to determine the electronic 

transmission or receipt of the care record. Mail or fax and eFax using EHRs were 

not included in the definition of EHR. 

2. When a patient transitions from another care setting or organization to your hospital 

system, how does your hospital routinely receive and/or send PSC records? Only 
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responses c through e were used to determine electronic transmission or receipt of 

the care record. Mail or fax and eFax using EHR were not included in the definition. 

3. Does your EHR integrate the information contained in PSC records that are 

received electronically (not eFax) without the need for manual entry? 

The AHA aggregated responses c through e and presented them as percentages in 

the raw dataset that was used for analysis in this study. Below are operationalizations for 

each of the above dependent variables that will be used in this study: 

● Percent of nonfederal acute care hospitals that receive PSC records electronically 

using an EHR system 

● Percent of nonfederal acute care hospitals that send PSC records electronically 

using an EHR system 

● Percent of nonfederal acute care hospitals that integrate PSC records 

electronically using an EHR system 

Control Variable 

Secular trends can confound association analysis (Greenland & Neutra, 1980). 

Accordingly, in this study, I will control for the effect of secular trends using calendar 

time. This study examines the percent of nonfederal acute care hospitals that SRI PSC 

records electronically as reported by the AHA between 2015 to 2017. I examined the 

mean differences in the outcome variables in Year 1(2015) and Year 2 (2017). 

Data Analysis Plan 

Data analysis was carried out to answer the following research questions and 

hypothesis: 
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RQ1: What is the association between the type of HIE consent policy in a state 

and the percent of nonfederal acute care hospitals in that state that electronically send 

PSC records to outside providers, as reported in the AHA survey between 2015 and 

2017? 

H01: There is no statistically significant correlation between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically send PSC records to outside providers, as reported in the AHA survey 

between 2015 and 2017. 

Ha1: There is a statistically significant correlation between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically send PSC records to outside providers, as reported in the AHA survey 

between 2015 and 2017. 

RQ2: What is the association between the type of HIE consent policy in a state 

and the percent of nonfederal acute care hospitals that electronically receive PSC records 

from outside providers, as reported in the AHA survey conducted between 2015 and 

2017? 

H02: There is no statistically significant correlation between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically receive PSC records from outside providers, as reported in the AHA survey 

conducted between 2015 and 2017. 

Ha2: There is a statistically significant correlation between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 
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electronically receive PSC records from outside providers, as reported in the AHA survey 

conducted between 2015 and 2017. 

RQ3: What is the association between the type of HIE consent policy in a state 

and the percent of nonfederal acute care hospitals that electronically integrate into their 

EHR PSC records received from outside providers, as reported in the AHA survey 

conducted between 2015 and 2017? 

H03: There is no statistically significant correlation between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically integrate into their EHR PSC records received from outside providers, as 

reported in the AHA survey conducted between 2015 and 2017. 

Ha3: There is a statistically significant correlation between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically integrate into their EHR PSC records received from outside providers, as 

reported in the AHA survey conducted between 2015 and 2017. 

The data for this study were analyzed using IBM SPSS Statistics, Version 26. This 

software was used in compliance with policies and guidelines established by Walden 

University. Data analysis was carried out with the following steps: 

Variable Extraction and Labeling 

I extracted the variables in focus for this study from the ONC databases for HIE 

consent policies and nonfederal acute care hospitals EHR adoption and implementation 

records. Data were then uploaded into IBM SPSS version 26 for analysis. To gain a clear 

understanding of each variable, I gave each one a name and label that made sense and could 
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be easily linked to the research question. Next, I checked whether the values for the 

independent categorical variable (type of HIE consent policy) were appropriately labeled. 

Each independent and dependent variable was also designated to an appropriate type (e.g., 

numeric and string). In this study, the independent and dependent variables will be 

designated as numeric variables (Sweet & Grace-Martin, 1999). 

Data Cleaning 

Errors within a given dataset may occur during data collection, exploration, and 

peer review activities (Osborne, 2013). Thus, Frankfort-Nachmias and Nachmias (2008) 

recommend that researchers should clean and edit raw data prior to conducting analysis of 

the same (Frankfort-Nachmias & Nachmias, 2008). Accordingly, I carried out the above 

procedures to the extent possible through repeated cycles of validation and verification 

(Van den Broek et al., 2005). After extracting and labeling relevant variables from the 

database, I inspected the dataset to identify or determine system missing values and/or user-

defined missing values. System missing values are values (typically presented as a dot or 

period in SPSS) that are automatically recognized as missing by SPSS because a response 

was not collected or reported in the dataset. User-defined missing values are values that are 

either present but unlikely based on the general pattern observed in the entire dataset, 

unwanted for analysis (as with some categorical variables), or absent (as with string 

variables). To inspect the dataset for missing values, I ran a frequency distribution analysis 

on each variable. For missing system variables, based on the observed patterns of missing 

values, I skipped/deleted cases or responses when I determined they could result in high 
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numbers of missing values or assign values to the missing data. For user-defined missing 

responses, I recoded or assigned responses as missing accordingly. 

Descriptive Statistics 

Descriptive statistics were used to understand the characteristics of the study 

sample. This included the frequencies of each dependent variable for each independent 

variable group (i.e., opt-in states, opt-out states, states that identify as allowing both opt-in 

and opt-out, and states that are neither opt-in nor opt-out). The percent, mean, and standard 

deviation of nonfederal acute care hospitals that a) send, b) receive, c) integrate PSC 

records electronically were independently determined and for each independent variable 

group (on the bases of group mean). 

One-way MANOVA 

One-way MANOVA is used to determine whether there are significant differences 

between independent groups on more than one continuous dependent variable (Huberty, 

Olejnik, 2006). In this regard, it differs from a one-way ANOVA, which only measures 

one dependent variable. It is only appropriate to carry out a one-way MANOVA if the data 

passes eight assumptions that are required for a one-way MANOVA (Huberty & Olejnik, 

2006; Keselman et al., 1998; Nayanajith et al., 2019). Below, I discuss these assumptions, 

my early analysis of how the data for this study aligns with the assumption and steps I took 

if data failed certain assumptions: 

Assumption 1. Your two or more dependent variables should be measured at the 

interval or ratio level (i.e., they are continuous). In this study, the dependent variables (i.e., 
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the percentage of nonfederal acute care hospitals that a) send (b) receive, c) integrate PSC 

records electronically in 2015, and 2017) are continuous variables. 

Assumption 2. The independent variable should consist of at least one categorical 

variable with two or more levels or independent groups. The independent variable for this 

study (type of HIE consent policy in the state) is a categorical variable with two 

independent groups of opt-in and opt-out states. 

Assumption 3. There should be independence of observations, which means that 

there is no relationship between the observations in each group or between the groups 

themselves. In the United States, states adopt either the opt-in HIE policy, the opt-out, both 

opt-in and opt-out HIE policy. Therefore, the characteristics of the independent variable 

for this study meets the independence of observations assumption. 

Assumption 4. The study has an adequate sample size. Although the larger the 

sample size is, the better the results will be, for MANOVA, it is important that there are 

more cases in each group than the number of dependent variables you are analyzing. This 

study had three dependent variables and about 25 cases (i.e., approximately 18 states that 

identity as opt-out states and seven states that identify as opt-in states with varying 

statewide applicability; others were neither opt-in or opt-out or both opt-in and optout 

states) (Milken Institute School of Public Health, 2016). 

Assumption 5. The fifth assumption was that the data had normal distribution with 

no univariate or multivariate outliers. The dependent variable should be normally 

distributed within groups. Overall, the F test is robust to non-normality when the non-

normality is caused by skewness rather than outliers. Tests for outliers should be run before 
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performing a MANOVA, and outliers should be transformed or removed. Therefore, prior 

to performing a MANOVA test, I checked to determine that the “normal distribution” 

assumption is met by plotting a histogram and examining the skewness ratio. If the 

histogram demonstrates that there are outliers, then outliers will be transformed or 

removed. 

Assumption 6. I assumed there was linearity in the data. Conducting MANOVA 

involves assuming that all the dependent variables are linearly related to each other. I will 

test for this assumption by plotting a scatterplot matrix for each group of the independent 

variable. To do this, I will split my data file in SPSS Statistics before generating the 

scatterplot matrices for each group. 

Assumption 7. I assumed the variances were homogeneous. The MANOVA test 

assumes homogeneity of variance. Homogeneity of variances means that the dependent 

variables exhibit equal levels of variance across the range of predictor/independent 

variables. I used Levene’s test to check for homogeneity of variance. A p-value of less than 

0.05 indicates a violation of the assumption. When a violation occurred, I conducted the 

nonparametric equivalent of the MANOVA analysis—ANOVA. 

Assumption 8. There is no multicollinearity. Multicollinearity generally occurs 

when there are high correlations between two or more independent variables. In this study, 

I only focus on one predictor variable. 

Once I determined that my dataset met the above eight assumptions, I conducted a 

one-way MANOVA test in SPSS to determine whether there is a significant difference in 

the mean percent of nonfederal acute care hospitals that SRI PSC records electronically 



93 

 
 

based on the “type HIE policy” in a state. If the Wilk’s Lambda row of the MANOVA test 

results table showed a p-value of less than or equal to 0.05, then I concluded that the type 

of state HIE policy significantly influences the percentage of nonfederal acute care 

hospitals that SRI PSC records electronically, and will reject the null hypothesis. If not, 

then I concluded otherwise, accept the null hypothesis, and did not conduct a follow-up 

analysis. 

Post Hoc Test 

Because the one-way MANOVA is an omnibus test statistic that is used to identify 

which specific groups were significantly different from each other, I planned to use a post 

hoc test to determine where the mean percent difference comes from if the one-way 

MANOVA shows a statistically significant result (Huberty & Olejnik, 2006). Specifically, 

Tukey - Kramer test was to be used as the post hoc test. Tukey’s test compares the means of 

all treatments to the mean of every other treatment. 

Controlling for Confounding Variables 

Separating the influence of extraneous variables from those of the independent variable 

under study is one way to strengthen the validity of the study (Greenland & Neutra, 1980). 

Secular trends can confound association analysis. Accordingly, in this study, I controlled for 

the effect of secular trends using calendar time (i.e., Year 1, 2015, and Year 2, 2017). 

Threats to Validity 

External Validity 

External validity is the degree to which the findings and conclusions from a study 

would hold for other populations, settings, and times beyond those of the study (Steckler 
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& McLeroy, 2008l Trochim, 2006). Threats to external validity may arise from the fact-

finding on the relationship between state HIE consent policies, and nonfederal acute care 

hospitals may not truly represent the relationship between both variables in the broader 

acute care hospital community nor the EHR utilization practices in U.S. acute care hospitals 

because this study is limited to only nonfederal acute care hospitals. However, to strengthen 

the external validity of the results, I ensured that a large enough sample size was used for 

the study.  

Internal Validity 

Internal validity is a gage of the strength of the methods used in a research study. 

The internal validity of this research may be influenced by the presence of possible 

confounding variables, which cannot be accounted for given that data that will be used for 

analysis is from secondary sources, and the data were collected for a different purpose. 

Although the American Health Association performs data quality checks at the time of data 

collection, checks cannot be verified. It was not possible to draw a random sample because 

all study cases were included in the study (Creswell, 2013). However, the fact that the data 

for the independent variables were collected independent of the predictor variable (i.e., all 

nonfederal acute care hospitals, regardless of the type of HIE consent policy states identify 

with, were invited to participate in the study) suggested minimal or nonexistent chances of 

bias and considerable strength in the internal validity of the study. 

Construct and/or Statistical Conclusion Validity 

Construct and/or statistical validity is “the degree to which a test measures what it 

claims, to be measuring.” It also refers to the degree to which a researcher can legitimately 
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draw inferences from the operationalization of a study to the statistical tests used (Trochim, 

2006). To strengthen the construct validity of the study, I went beyond analyzing the 

association between opt-in and opt-out states to assess the mean differences in the 

percentage of nonfederal acute care hospitals that SRI PSC records in states that were 

identified as implementing opt-in, opt-out, both opt-in and opt-out, and neither opt-in nor 

opt-out HIE consent policy. I also ensured that the choice of statistical test used for analysis 

is corroborated by sufficient evidence of its appropriateness from prior studies. I also 

ensured that the assumptions of the statistical test chosen corresponded with the peculiarity 

of the dataset that has been chosen for this study. 

Ethical Considerations 

Because this was a secondary analysis of archived data, I did not have direct contact 

with study participants. Therefore, there were limited ethical concerns or opportunities to 

cause potential harm to study participants (Tripathy, 2013). However, to strengthen the 

ethicality of this study, data for this study was not extracted without seeking and obtaining 

prior approvals from Walden University IRB. The dataset used for this study was 

deidentified, and I ensured that they are stored, and password protected on my laptop. 

Passwords were only known by me, and plans were put in place to ensure that all data 

extracted will be discarded 5 years after data collection is completed. 

Summary 

In Section 2, I presented an overview of the research design, rationale, methodology, 

and threats to validity. I also discussed the ethical considerations I plan to undertake, as 

well as plans for data analysis. In Section 3, results of data analysis are presented and 
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discussed while the interpretation of findings, study limitations, recommendations, and 

implications are presented in Section 4.  
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Section 3: Presentation of the Results and Findings 

Sample Characteristics 

The sample size consisted of 102 cases, one from each of the 50 states plus the 

District of Columbia per year data were available (2015 and 2017). There were two cases 

with missing data: Missouri 2017 (no percentage for send, receive, or integrate) and 

Wyoming 2017 (no percentage for receive or integrate). These data were collected from 

the website of the National Coordinator for Health Information Technology. Three cases 

were identified as outliers via a review of the histograms constructed for each dependent 

variable, and these cases were removed from the dataset (Arizona 2015, Hawaii 2015, 

and Missouri 2015). This resulted in 99 total cases. Of these cases, 12 had a flexible HIE 

policy, 40 had no HIE policy, 10 had an opt-in policy, and 37 had an opt-out policy 

(Table 1). 

Table 2 

HIE Policy Descriptive Statistics 

 Frequency Percent 

Valid Flexible 12 12.1 

No policy 40 40.4 

Opt-In 10 10.1 

Opt-Out 37 37.4 

Total 99 100.0 
 

Nationally, the percent of nonfederal acute care hospitals that SRI PSC records 

increased from 85% in 2015 to 88% in 2017. Hospitals that receive PSC records 

increased from 65% in 2015 to 74% in 2017. Hospitals that integrate PSC records 

increased from 38% in 2015 to 53% in 2017. Between the two time periods, additional 
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hospitals reported sending and receiving PSC records than integrating the same. 

However, changes between both years were greater (15%) among hospitals that 

integrated PSC records compared to those that send (3%) and received 95%) same 

(Figure 2). 

Figure 2 

Percent of Nonfederal Acute Care Hospitals that sent, received, and integrated PSC 

Reports between 2015 and 2017 

 

Statistical Assumptions 

The data must meet the following conditions to be used in MANOVA: (1) interval 

or ratio level-dependent variables, (2) a categorical independent variable with at least two 

or more levels or independent groups, (3) independence of observations, (4) an adequate 

sample size, (5) normal distribution, (6) linearity of the dependent variables, (7) 

homogeneity of variance, (8) absence of multicollinearity. These assumptions were 

checked for the remaining dataset of 99 cases. 
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The first assumption was that the dependent variables were measured at the 

interval or ratio level. The dependent variables were measured as percentages, meaning 

they were, indeed, measured at the ratio level. The second assumption was that the 

independent variable is categorical with at least two or more levels. The independent 

variable, in this case, is the HIE policy type, of which there are four levels (flexible, no 

policy, opt-in, and opt-out). This assumption was also met. The third assumption was that 

the observations are independent of one another. These observations refer to the 

percentages of hospitals that SRI patient summary records in each state plus the District 

of Columbia. Because the states and Washington D.C. are free to set their own policies, 

the assumption of independence was met. The fourth assumption is that there is an 

adequate sample size. Given the sample size of 99 cases, this assumption was met with 

more than three cases in each group. The fifth assumption is that the data are normally 

distributed. A histogram was constructed for each dependent variable, along with a 

normal curve for comparison. The distributions were all relatively normal. For the send 

variable or percentage of hospitals that send patient summary records data, most cases 

were between 70% and 100%, with an uptick at 100%. These data were relatively 

normally distributed (Figure 3). 
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Figure 3 

Histogram for Dependent Variable Send 

Note. Mean = 0.881523111. St. Dev. = 0.082838305. N = 98 

 

For the receive variable (i.e., the percentage of hospitals that received PSC data) 

most cases were between 60 and 90%, and the data were relatively normally distributed 

(see Figure 4). 
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Figure 4 

Histogram for Dependent Variable Receive 

 

Note. Mean = 0.719959724. St. Dev. = 0.127476353. N = 97 

 

For the integrate variable, or percentage of hospitals that integrate patient 

summary records data, most cases were between 30% and 60%, with a few cases at 

100%. These data were also considered normally distributed (Figure 5). 
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Figure 5 

Histogram for Dependent Variable Integrate 

 

Note. Mean = 0.471053753. St. Dev. = 0.163517578. N = 97 

 

The skewness and kurtosis values of each dependent variable were calculated to 

further investigate the normality of the data. The skewness values were between -1 and 1 

for each variable, and the kurtosis values were between -2 and 2 for each variable. These 

results are shown in Table 3. 
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Table 3 

Descriptive Statistics of Dependent Variables 

 Send Receive Integrate 

N Valid 98 97 97 

Missing 1 2 2 
Mean 0.882 0.720 0.471 
Skewness -0.900 -0.049 0.602 
Std. Error of Skewness 0.244 0.245 0.245 
Kurtosis 1.745 -0.681 0.310 
Std. Error of Kurtosis 0.483 0.485 0.485 

 
The skew and kurtosis were within reasonable ranges expected for normality. 

These values, along with the histograms show a relatively normal distribution for each 

dependent variable, indicate that the assumption of normality has been met. 

The sixth assumption was that the dependent variables are linearly related. A 

scatterplot matrix was constructed to check for linearity between dependent variables. As 

Figure 6 shows, the relationship between each dependent variable can be roughly 

expressed as a line. Thus, these variables are linearly related. 
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Figure 6 

Scatterplot Matrix of Dependent Variables 

 
 

 

 

The scatterplot matrix shows that each dependent variable has a linear 

relationship with each other dependent variable, meaning that the assumption of linearity 

held true. 
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The seventh assumption was about the homogeneity of variance. To check for 

homogeneity of variance, Levene’s statistic was calculated for each dependent variable. 

None of the statistics reached significance at the 0.05 level for any of the dependent 

variables (Table 4). Based on the mean, variance was homogeneous for send (F (3,94) = 

1.078, p = 0.362), for receive (F (3,93) = 1.611, p = 0.192), and for integrate (F (3,93) = 

0.957, p = 0.416). 

Table 4 

Test of Homogeneity of Variances 

 Levene Statistic df1 df2 Sig. 

Send Based on Mean 1.078 3 94 0.362 

Based on Median 0.839 3 94 0.476 

Based on Median and with adjusted df 0.839 3 80.505 0.476 

Based on trimmed mean 0.960 3 94 0.415 
Receive Based on Mean 1.611 3 93 0.192 

Based on Median 1.513 3 93 0.216 
Based on Median and with adjusted df 1.513 3 91.820 0.216 
Based on trimmed mean 1.602 3 93 0.194 

Integrate Based on Mean 0.957 3 93 0.416 
Based on Median 0.984 3 93 0.404 
Based on Median and with adjusted df 0.984 3 85.736 0.404 
Based on trimmed mean 0.998 3 93 0.397 

 
In each case, Levene’s statistic did not reach statistical significance (p < 0.05). Thus, the 

assumption of homogeneity of variance was met. 

The eighth and final assumption is of the absence of multicollinearity. 

Correlations were calculated to check for possible multicollinearity. All three dependent 

variables were correlated at the p < 0.05 level, but none of the correlations were strong 

(0.8 or greater). Year was found to be positively correlated to the receiving (r = 0.297, p 
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= 0.003) and integration of EHRs (r = 0.484, p < 0.001), but again, the correlations were 

weak to moderate. These results indicate that the percentage of hospitals that SRI data are 

correlated. Those that engage in one of the dependent variables (sending, receiving, and 

integrating PSC records) are also more likely than others to engage in the other two 

dependent variables. In addition, the positive correlations with year indicate that hospitals 

were more likely to SRI patient summary records in 2017 than they were in 2015. See 

Table 5 for correlations. 

Table 5 

Correlations Between the Dependent Variables and Year 

 Send Receive Integrate Year 

Send Pearson Correlation 1 0.656** 0.307** 0.135 

Sig. (2-tailed)  0.000 0.002 0.187 

N 98 97 97 98 
Receive Pearson Correlation 0.656** 1 0.485** 0.297** 

Sig. (2-tailed) 0.000  0.000 0.003 
N 97 97 97 97 

Integrate Pearson Correlation 0.307** 0.485** 1 0.484** 
Sig. (2-tailed) 0.002 0.000  0.000 
N 97 97 97 97 

Year Pearson Correlation 0.135 0.297** 0.484** 1 
Sig. (2-tailed) 0.187 0.003 0.000  

N 98 97 97 99 
**. Correlation is significant at the 0.01 level (2-tailed). 

Given the reasonable, moderate correlations between the three dependent 

variables, the assumption of absence of multicollinearity is also met. 
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Results of the Statistical Analysis 

Given the data met the assumptions required for a MANOVA, I conducted a 

MANOVA with the three variables of SRI as the dependent variables and HIE policy 

type as the independent variable, with year as the control variable. Table 6 shows the 

variables that were included in the MANOVA. 

  



108 

 
 

Table 6 

Between-Subjects Factors for the MANOVA 

 N 

HIE Policy Flexible 12 

No policy 38 

Opt-in 10 

Opt-out 37 
Year 2015 48 

2017 49 
 

The MANOVA resulted in a non-statistically significant result for HIE policy 

type (F (9, 212) = 0.497, p = 0.875; Wilk’s Λ = 0.950, partial η2 = 0.017). This indicates 

that HIE policy type does not impact the percentages of hospitals that SRI patient 

summary records. However, the year variable was significant (F (3, 87) = 8.463, p < 

0.001, Wilk’s Λ = 0.774, partial η2 = 0.226), meaning that year did significantly impact 

the dependent variables. 

Because the HIE policy did not significantly impact the dependent variables, 

between-subjects tests were not conducted for this variable or for the interaction. Results 

of the multivariate tests are shown in Table 7. 

  



109 

 
 

Table 7 

Multivariate Tests of the MANOVA 

Effect Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Intercept Wilks’ 
Lambda 

0.009 3,123.749 3.000 87.000 0.000 0.991 

HIE Policy Wilks’ 
Lambda 

0.950 0.497 9.000 211.886 0.875 0.017 

Year Wilks’ 
Lambda 

0.774 8.463 3.000 87.000 0.000 0.226 

HIE Policy 
* Year 

Wilks’ 
Lambda 

0.958 0.421 9.000 211.886 0.923 0.014 

 

RQ1: What is the association between the type of HIE consent policy in a state 

and the percent of nonfederal acute care hospitals that electronically send PSC records to 

outside providers as reported in the AHA survey between 2015 and 2017? 

H01: There is no statistically significant association between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically send PSC records to outside providers. The alternative hypothesis is that 

there is a statistically significant association between the type of HIE consent policy and 

the percent of hospitals that electronically send patient records. 

Descriptive statistics were calculated for the percentage of hospitals sending PSC 

records and HIE policy. All groups had five or more cases. In each group, the mean was 

larger in 2017 than in 2015, suggesting that hospitals were more likely to send patient 

summary records in 2017 than in 2015 (Table 8). 
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Table 8 

Descriptive Statistics for the Percent of Hospitals Electronically Sending PSC Records 

 
HIE Policy Year Mean Std. Deviation N 

Send Flexible 2015 0.870 0.089 6 

2017 0.921 0.044 6 

Total 0.896 0.072 12 

No policy 2015 0.874 0.079 19 

2017 0.891 0.075 19 

Total 0.883 0.077 38 

Opt-In 2015 0.894 0.079 5 

2017 0.934 0.132 5 

Total 0.914 0.105 10 

Opt-Out 2015 0.859 0.071 18 

2017 0.892 0.064 19 

Total 0.876 0.068 37 

Total 2015 0.870 0.075 48 

2017 0.899 0.075 49 

Total 0.885 0.076 97 
 
However, the results of the MANOVA for HIE policy type were not significant (F (9, 

212) = 0.497, p = 0.875; Wilk’s Λ = 0.950, partial η2 = 0.017). This indicates that the null 

hypothesis that HIE policy type does not impact the percentage of hospitals that send 

patient summary records must be accepted. 

RQ2: What is the association between the type of HIE consent policy in a state 

and the percent of nonfederal acute care hospitals that electronically receive PSC records 

from outside providers as reported in the AHA survey conducted between 2015 and 

2017? 
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H02: There is no statistically significant association between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically receive PSC records from outside providers, as reported in the AHA survey 

conducted between 2015 and 2017. The alternative hypothesis is that there is a 

statistically significant association between the type of HIE consent policy and the 

percent of hospitals that electronically receive patient summary records. 

Descriptive statistics were calculated for the percentage of hospitals electronically 

receiving PSC records and HIE policy. All groups had five or more cases, and, in each 

group, the mean was larger in 2017 than in 2015. This suggests that hospitals become 

increasingly likely to electronically receive PSC records as time passes (Table 9). 

Table 9 

Descriptive Statistics for the Percent of Hospitals Electronically Receiving Patient 

Summary Records 

 
HIE Policy Year Mean Std. Deviation N 

Receive Flexible 2015 0.645 0.141 6 
2017 0.796 0.065 6 
Total 0.720 0.131 12 

No policy 2015 0.693 0.108 19 
2017 0.742 0.130 19 
Total 0.718 0.120 38 

Opt-In 2015 0.694 0.148 5 
2017 0.815 0.189 5 
Total 0.755 0.172 10 

Opt-Out 2015 0.679 0.102 18 
2017 0.745 0.137 19 
Total 0.713 0.124 37 

Total 2015 0.682 0.112 48 
2017 0.757 0.132 49 
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Total 0.720 0.127 97 
 
Because the results of the MANOVA indicated that the HIE policy type did not have 

statistically significantly impacts on the percentage of hospitals that electronically 

received PSC records (F (9, 212) = 0.497, p = 0.875; Wilk’s Λ = 0.950, partial η2 = 

0.017), the null hypothesis must also be accepted for RQ2. 

RQ3: What is the association between the type of HIE consent policy in a state 

and the percent of nonfederal acute care hospitals that electronically integrate into their 

EHR PSC records received from outside providers as reported in the AHA survey 

conducted between 2015 and 2017? 

H03 is that there is no statistically significant association between the type of HIE 

consent policy in a state and the percent of nonfederal acute care hospitals that 

electronically integrate PSC records from outside providers, as reported in the AHA 

survey conducted between 2015 and 2017. The alternative hypothesis is that there is a 

statistically significant association between the type of HIE consent policy and the 

percent of hospitals that electronically integrate patient summary records. 

Descriptive statistics were calculated for the percentage of hospitals electronically 

integrating PSC records and HIE policy. All groups had five or more cases. In each 

group, the mean was larger in 2017 than in 2015, suggesting that hospitals were more 

likely to electronically integrate patient summary records in 2017 than they were in 2015 

(see Table 10). 
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Table 10 

Descriptive Statistics for the Percentage of Hospitals Integrating PSC Records 

 
HIE Policy Year Mean Std. Deviation N 

Integrate Flexible 2015 0.355 0.135 6 
2017 0.637 0.133 6 
Total 0.496 0.195 12 

No policy 2015 0.393 0.107 19 
2017 0.521 0.142 19 
Total 0.457 0.140 38 

Opt-In 2015 0.380 0.068 5 
2017 0.514 0.180 5 
Total 0.447 0.146 10 

Opt-Out 2015 0.405 0.131 18 
2017 0.558 0.197 19 
Total 0.484 0.183 37 

Total 2015 0.391 0.115 48 
2017 0.549 0.168 49 
Total 0.471 0.164 97 

 
Although means slightly differed by group, the results of the MANOVA showed that HIE 

policy type did not significantly impact the percentage of hospitals electronically 

integrating patient summary records (F (9, 212) = 0.497, p = 0.875; Wilk’s Λ = 0.950, 

partial η2 = 0.017). Thus, the null hypothesis must be accepted for RQ3. 

Alternative Variable: Year (Secular Trend) 

Although there were differences between the percentage of hospitals that send, 

receive and integrate patient summary of care records in states with opt in, opt out, and 

flexible HIE policies, the differences were not statistically significant. However, year was 

found to have a statistically significant impact on the percentage of hospitals that sent, 

received, and/or integrated records (F (3, 87) = 8.463, p < 0.001; Wilk’s Λ = 0.774, 
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partial η2 =.226). This suggest a general trend toward sending, receiving, and integrating 

patient summary records as means were higher in 2017 than in 2015 for each of the three 

dependent variables (see Table 11). 

Table 11 

Means by Dependent Variable and Year 

Dependent Variable Year Mean 

Send 2015 0.870 
2017 0.899 

Receive 2015 0.682 
2017 0.757 

Integrate 2015 0.391 
2017 0.549 

 
Because year was found to have a statistically significant impact on the percent of 

hospitals that send, receive, and/or integrate patient summary records, tests of between-

subjects effects were conducted. These tests show that year had a statistically significant 

effect on the percentage of hospitals that electronically receive patient summary records 

(F (1, 89) = 10.216, p = 0.002, partial η2 = 0.103) and electronically integrate patient 

summary records (F (1, 89) = 24.276, p < 0.001, partial η2 = 0.214), but not on the 

percentage of hospitals that electronically send patient summary records (F (1, 89) = 

3.572, p = 0.062, partial η2 = 0.039). This indicates that with time, more hospitals choose 

to electronically receive and integrate PSC records. See Table 12 for additional 

information. 
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Table 12 

Tests of Between-Subjects Effects 

Source 
Dependent 
Variable 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Corrected 
Model 

Send 0.037a 7 0.005 0.912 0.501 0.067 

Receive 0.182b 7 0.026 1.680 0.124 0.117 

Integrate 0.683c 7 0.098 4.610 0.000 0.266 
Intercept Send 53.779 1 53.779 9,239.308 0.000 0.990 

Receive 35.642 1 35.642 2,302.111 0.000 0.963 
Integrate 14.962 1 14.962 706.904 0.000 0.888 

HIE Policy Send 0.013 3 0.004 0.762 0.518 0.025 
Receive 0.015 3 0.005 0.313 0.816 0.010 
Integrate 0.025 3 0.008 0.389 0.761 0.013 

Year Send 0.021 1 0.021 3.572 0.062 0.039 
Receive 0.158 1 0.158 10.216 0.002 0.103 
Integrate 0.514 1 0.514 24.276 0.000 0.214 

HIE Policy 
* Year 

Send 0.003 3 0.001 0.188 0.905 0.006 
Receive 0.030 3 0.010 0.638 0.592 0.021 
Integrate 0.056 3 0.019 0.888 0.451 0.029 

Error Send 0.518 89 0.006    

Receive 1.378 89 0.015    

Integrate 1.884 89 0.021    

Total Send 76.516 97     

Receive 51.839 97     

Integrate 24.090 97     

Corrected 
Total 

Send 0.555 96     

Receive 1.560 96     

Integrate 2.567 96     

a. R Squared = 0.067 (Adjusted R Squared = -0.006)  

b. R Squared = 0.117 (Adjusted R Squared = 0.047)  

c. R Squared = 0.266 (Adjusted R Squared = 0.208)  
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Summary 

The purpose of this quantitative cross-sectional research study is to determine if 

there are significant differences in the percentage of nonfederal acute care hospitals that 

SRI PSC records electronically in U.S. states that identify as implementing opt-in HIE 

policies versus those that implement opt-out policies. I used a deidentified panel of publicly 

available datasets containing measures of adoption and use of interoperable EHR systems 

and the characteristics of state privacy legislation related to EHR adoption and use, which 

will be extracted from the ONC database (ONC, 2019b; ONC, 2019c). 

I examined the relationship between one independent variable (i.e., type of HIE 

consent policy) and three dependent variables (i.e., percent of nonfederal acute care 

hospitals that electronically send PSC records, percent of nonfederal acute care hospitals 

that electronically receive PSC records from outside providers, and percent of nonfederal 

acute care hospitals that electronically integrate PSC records into their EHR from outside 

providers). 

As noted above, the results of the MANOVA indicated that the HIE policy type did 

not have a statistically significant impact on the percentage of hospitals electronically 

sending, receiving, and integrating PSC records, meaning the interaction between HIE 

policy type and year was also not statistically significant. These results indicated that HIE 

policy type and year did not have any significant interaction effects on hospitals. 

In Section 4, I provide my interpretation of the findings of the study, discuss the 

limitations of the study, make recommendations based on the results and the existing 
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literature, and discuss implications of the study results as they pertain to positive social 

change and the practice of healthcare administration.   
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Section 4: Discussion, Conclusion, and Recommendations 

Introduction 

Despite efforts made by the United States Government to promote adoption and 

MU of EHR systems in U.S. hospitals, many nonfederal acute care hospitals in the 

country do not use their EHR systems to send, receive, or PSC records for patients 

transitioning from one setting of care or provider to another (Eval, 2016; ONC, 2017; 

Riordan et al., 2015; WHO, 2017). Over the years, stakeholders have raised concerns 

over the privacy and confidentiality of the information they share with their healthcare 

providers. These concerns appear to have increased with the push for interoperability of 

EHRs. At the state level, privacy regulations require healthcare providers to obtain 

patients’ written permission before disclosing information to other organizations or other 

people, even when the purpose of disclosure is treatment. However, the influence of state 

legislatures regarding patient consent for information exchange on the MU of certified 

EHR systems to receive, share, and integrate PSC records is not clear (Henry et al., 2016; 

Klosek, 2011; ONC 2013; Palabindala et al., 2016; Weiser, 2019). 

In this study, descriptive statistics and MANOVA statistical test was used to 

determine the relationship between the type of state HIE consent policy and percent of 

nonfederal acute care hospitals that use EHR systems to SRI PSC records in the United 

States between 2015 and 2017. Results from descriptive statistics demonstrate that of the 

99 acute care hospitals assessed across all 50 U.S. states, 12 had a flexible HIE policy, 40 

had no HIE policy, 10 had an opt-in policy, and 37 had an opt-out policy (Table 1). 

Additionally, nationally, the percent of nonfederal acute care hospitals that SRI PSC 
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records increased between 2015 and 2017, with the greatest incremental changes seen in 

the percentage of hospitals integrating PSC records. The results of the MANOVA 

indicated that the HIE policy type did not statistically significantly impact the percentage 

of hospitals electronically sending, receiving, and integrating patient summary records. 

However, year was found to have a statistically significant impact on the percentage of 

hospitals that send, receive, and/or integrate patient summary records. 

Interpretation of the Findings 

Information sharing can improve services and reduce misunderstandings in 

healthcare systems (Mačinković & Aničić, 2016). The findings of this study show 

increases in the percentage of nonfederal acute care hospitals that engaged in all three 

EHR interoperability domains over time. The majority of the hospitals that I assessed 

engaged in the three interoperability domains to facilitate health data exchange: sending, 

receiving, and integrating. This finding confirms Mukherjee et al. (2019) and Shu et al. 

(2014) observation that there has been an upward trajectory in the adoption and MU of 

electronic systems in different countries, including the United States. It further supports 

arguments that EHR, which has become part of the universal medical language (Juhlin et 

al., 2015), and interoperability, are desirable because they are the key determinants of 

whether clinicians through the healthcare system can optimize current and emerging 

technologies for better or improved healthcare outcomes (Moor et al., 2015). 

Interoperability is primarily about aggregating the crucial and rich data generated 

from health plans, vendors, health systems, and patients, and leveraging it to improve 

clinical processes, such as patient diagnosis, prescriptions, and treatment. This study 
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demonstrates that fewer hospitals electronically integrate PSC records than those that 

electronically send and receive. The relatively lower number of hospitals that 

electronically integrate patients’ summary illustrates concerns expressed in the literature 

regarding the EHR system to EHR system integration and communication barriers related 

to complexities of medicine and clinical terminologies, errors in communication, and 

heightened risk of compromising interoperability standards during EHR integration 

(Braunstein, 2018; Khajouei et al., 2018). Yuksel et al. (2016) for instance, observed that 

it is impossible to sustain the integration of EHRs with other healthcare IT systems in a 

proprietary way without exploiting the promising interoperability standards and profiles. 

The finding also justifies recent research and resource investments into the development 

of models for improving EHR interoperability, including HL7 standards and standardized 

dictionary codes of semantics that are useful in reducing the ambiguity related to data 

element definitions and EHR message format and facilitating communication with other 

EHR systems (Evans, 2016; Hammer et al., 2019). 

States that adopt the opt-in policy regulation recorded the lowest percentage of 

hospitals engaging in health data exchange through EHR systems. States adopting opt-in 

policies require patients to give permission before their data may be exchanged with 

other healthcare facilities. This finding confirms Apathy and Holmgren’s (2020) and 

Aldjerid et al.’s (2016) observation that opt-in privacy regulations impede EHR usability 

due to the administrative burdens it places on some hospitals that are not technologically 

advanced. According to them, privacy regulation alone can result in a decrease in 

planning and operating HIEs. 
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Furthermore, Parasrampuria and Henry (2019) observed that the current design of 

EHR systems might require major redesigns for integration with many of the other digital 

resources needed for the seamless recording, storage, transmission, and interpretation of 

clinical data. I found that more hospitals engaged in the sending and receiving domains of 

EHR interoperability than the integrating domain, substantiating the findings of 

Parasrampuria and Henry (2019). 

In addition to confirming knowledge in the discipline, some findings from this 

study disconfirm certain knowledge in the discipline as presented in peer-reviewed 

literature. For instance, Thompson and Graetz (2019) suggested that only a small 

proportion of hospitals had implemented all six PI3 MU functionalities to find, SRI 

information throughout the entire healthcare system. Walker et al. (2016) also asserted 

that throughout the United States, only about 50% of all healthcare facilities have 

reported their intentions and taken the initiative to implement EHR systems with the 

capacity for integration. In contrast, this study’s findings suggest that a considerably 

higher percentage of hospitals electronically sent (85% in 2015 to 88% in 2017), received 

(65% in 2015 to 74% in 2017), and integrated (38% in 2015 to 53% in 2017) PSC records 

in 2017 than 2015. 

Another area in which this study disconfirms knowledge from earlier studies 

relates to the extent to which privacy laws impact MU of EHR systems. The MONOVA 

analysis results in this study demonstrated that no significant difference was found 

between the policy type and the percentage of hospitals engaging in EHR interoperability 

domains. However, previous studies suggest that the privacy law limits companies’ 
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collection, use, sharing, and retention of personal information (Cohen, 2016; De Pietro, 

2018; Dranove et al., 2015; Kosseff, 2019) mentioned that compliance to government 

reform policies and financial incentives influence adoption rates. Kosseff (2019) asserted 

that consent and privacy policies may impact HIE. Existing privacy policies, compliance 

to these policies, and legal variance in data policies influence EHR adoption and MU. 

Mulder and Tudorica (2019) also highlighted the obscure processing activities of privacy 

laws in Europe, as well as the gaps that exist between privacy policy regulations and 

practical reality. 

Earlier studies that explored factors that influence the adoption and MU of EHRs 

have highlighted cost, lack of industry collaboration, a culture of fragmentation, and 

physician burden as important factors that affect the MU of EHR systems in hospitals 

(Council for Affordable Quality Healthcare, 2020; Reisman, 2017). These factors have 

been more organizational, structural, and environmentally centered than they have been 

policy and patient-centered. By highlighting the influence of time, and the differences in 

the percentage of nonfederal acute hospitals that send, receive, and integrate PSC records, 

this study extends the knowledge on factors that influence adoption and MU of EHR 

systems in the United States 

Furthermore, earlier researchers suggested that only a small proportion of 

hospitals have effectively utilized all functionalities in the EHR system. This study 

extends this knowledge in demonstrating that the proportion of hospitals that 

meaningfully use their EHR system has grown significantly. The growth observed in 

recent years may serve as evidence for anticipating the EHR landscape in coming years 
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and making related healthcare policy and practice accommodations. Additionally, it is 

evident from peer-reviewed literature that factors of practice size may influence wider 

EHR adoption and MU by health institutions, financial incentives, ease of use, and 

effectiveness in the use of EHR functionalities (Gagnon et al., 2016; Shu et al., 2014). 

Findings from this study add an important element of time as a predictor of wider MU of 

EHR systems to SRI PSC records. 

Additionally, HIE consent policies exist and differ from state to state. A handful 

of studies suggest a relationship between state policies and increased administrative 

burden on healthcare practitioners, but little was known about if these burdens influence 

the use of EHR systems to SRI PSC records (Henry et al., 2016; Klosek, 2011; ONC 

2013; Palabindala et al., 2016; Weiser, 2019). This study adds to the body of knowledge 

on the influence of state consent policies on interoperability by revealing that although 

considerable differences in the percentage of hospitals that send, receive, and integrate 

PSC records in states with opt-in regulations and those with no regulations, opt-out 

regulations, the type of consent policy in a state may not be as burdensome as to 

influence MU of EHR systems. The findings corroborate the observations of Rile’s 

(2020), Edward et al.’s (2019), and O’Connor et al.’s (2017) that practitioners reduced 

the effects of privacy regulations and addressed barriers to consent policy by using 

blanket consent at pediatric departments. Finally, by highlighting that fewer hospitals 

integrate PSC records than send and receive them, this study extends current knowledge 

on where opportunities to strengthen the MU of EHR systems in the United States exist. 
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The UTAUT Model and Study Findings 

The findings of this study revealed that there is no significant correlation between 

state consent policy type and EHR adoption. State consent policy type was theorized to 

fall under the social influence, effort expectancy, and facilitating conditions construct of 

UTAUT. Findings of this study suggest that social influence, effort expectancy, and 

facilitating conditions do not significantly affect the intention to use EHR technology. 

Researchers appear to have mixed views regarding the plausibility of the UTAUT model 

to predict intentions and use of technology. For instance, although Alsyouf and Ishak 

(2018) Al-Qeisi et al. (2015), and Kim et al. (2015) determined that performance 

expectancy, effort expectancy, and positively influence intention and attitude toward the 

use of EHR systems. Hoque and Sorwar (2017) posited that noting that performance 

expectancy, effort expectancy, and social influence, alongside technology anxiety, and 

resistance to change are key determinant factors of users’ intentions and behavior toward 

new technology. 

The absence of a statistically significant difference between the type of state 

consent policy and MU of EHR systems observed in this study may not completely 

negate the position of the UTAUT model, but may, in fact, lend credibility to the model. 

Similar to Kim et al.’s (2015) findings, an observation from this study is that states with 

opt-out policies had more nonfederal acute care hospitals using an EHR system to SRI 

PSC information compared to those with opt-in and mixed policies. This suggests some 

level of influence of state consent policies on intention, attitude, and behavior toward MU 

of EHR and in so doing, support the UTAUT model. 
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Limitations of the Study 

First, the study design was cross-sectional in nature. This makes it impossible to 

draw a causal conclusion from the findings. The sampling strategy from which the 

secondary data were drawn utilized a purposive convenience sampling method. The 

reality that estimates might have been affected by selection bias based on certain 

inclusion criteria that fit into the aim of the primary survey was inherent in this sampling 

method. However, the study had sufficient power to detect differences in subgroups and 

the ability to introduce considerable amounts of variation to produce unstable statistical 

influence in the analysis. 

This study was limited to nonfederal acute care hospitals. Therefore, the 

relationship between the state HIE policies and nonfederal acute care hospitals may not 

truly represent or be applicable to other care settings. Furthermore, respondents in the 

primary study were health administrators rather than doctors or other trained physicians. 

This allowed me to have a narrow perspective of EHR adoption and MU. 

Due to time and financial resource limitations, secondary data were used for this 

study. The use of secondary data limited the scope of the study as only a limited number 

of predictive factors (policy and time) identified in the literature could be investigated. 

Furthermore, I highlighted that time is an important predictor of MU of EHR systems in 

nonfederal acute care hospital settings. In this regard, this study is limited because it does 

not explain how time influences observed changes. 
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Recommendations for Further Research 

Research and practice in healthcare administration can benefit from the same 

study that takes a more robust methodology to investigate the relationship between HIE 

policies and MU of EHR to send, receive, and integrate PSC records. A random sampling 

or a mixed-methods design that includes healthcare settings beyond nonfederal acute care 

hospitals, will not only provide a more accurate picture of interoperability in U.S. 

hospitals, but it will also provide explanatory information about the complex interplay 

between privacy policies and interoperability in the United States. Other researchers 

could advance this study by comparatively examining the interplay between privacy 

policies and interoperability in other clinical settings including rural vs academic medical 

centers vs urban hospitals, vs community hospitals vs specialty hospitals.  

Based on the strength of the current study, states adopting the opt-in policy were 

found to have the lowest proportion of hospitals that electronically send, receive, and 

integrate PSC records. States without consent policies and those that had opt-out policies 

were found to have the highest proportions of hospitals that electronically send, receive 

and integrate PSC records. Because this study suggests a nonsignificant relationship 

between both variables, further research should examine what other factors present in 

states with opt-out policies influence the higher percentage of hospitals that send, receive 

and integrate PSC records compared to those in states with opt-in policies. Finally, the 

effect of time (years) on interoperability, as demonstrated by this study, can be further 

explained in future studies. Other researchers may be able to answer questions such as: 

are early adopters who test out the EHR technology responsible for influencing other 
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practitioners’ use of the technology? Are there other policy and practice interventions, 

like financial incentives, vendor marketing, and so on, that have occurred over time, 

which may have influenced growth in MU of EHR systems? 

Implications for Professional Practice and Social Change 

Implications for Professional Practice 

For healthcare administration researchers, the findings of this study provide 

evidence for additional research into the dimension of time as a predictor of 

interoperability. For health administrators, the study findings provide context for 

healthcare administrators on how and where policy development and investments can 

streamline the complexity of exchange and address barriers to interoperability. Research, 

policy, and private sector investment into understanding and addressing technological, 

practice, and policy barriers to EHR-to-EHR system integration may be critical to 

ensuring universal MU of certified EHR systems to SRI PSC records. 

Implications for Positive Social Change 

The study contributes to positive social change by providing evidence that could 

help healthcare administrators, advocates, and policymakers address current gaps in the 

continuum of care that has been amplified by the percent of nonfederal acute care 

hospitals that do not use their EHR systems to SRI PSC records. These stakeholders may 

be able to leverage the evidence from this study to address time and policy-related 

barriers to nationwide use of interoperable systems for sharing, receiving, and integrating 

PSC records. These could, in turn, increase gains in the quality and efficiency of care 

delivered (Henry et al., 2016). 
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Conclusion 

Despite the obvious differences in state HIE consent policies, there is no known 

research that has determined if and what aspects of state-level HIE legislation affect the 

MU of EHR systems to SRI PSC records. Grounded on the UTAUT, descriptive statistics 

and MANOVA statistical test was used to determine the relationship between the type of 

state HIE consent policy used and the percent of nonfederal acute care hospitals that used 

EHR systems to SRI PSC records in the United States between 2015 and 2017. 

Most of the hospitals assessed in this study engaged in the three interoperability 

domains–sending, receiving, and integrating to facilitate health data exchange. However, 

more hospitals engaged in the sending and receiving domains of EHR interoperability, 

compared to those engaging in the integrating domain. Nationally, the percent of 

nonfederal acute care hospitals that SRI PSC records increased between 2015 and 2017, 

with the most remarkable incremental changes seen in the percentage of hospitals 

integrating PSC records. The majority of nonfederal acute care hospitals assessed (40 out 

of 99) were located in states that had no HIE policy. States that adopted the opt-in policy 

regulation recorded the lowest percentages of hospitals engaging in health data exchange 

through EHR systems. 

These findings confirm the earlier observation that EHR has become part of the 

universal medical language, interoperability is desirable, and there has been an upward 

trajectory in adopting and MU of electronic systems in different countries, including the 

United States. They also confirm the accuracy of the observation that opt-in privacy 

regulations impede EHR usability due to the administrative burdens it places on some 
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hospitals that are not technologically advanced. By demonstrating that there was a 

considerable increase in the number of hospitals that meaningfully used EHR systems, the 

findings of this study disconfirm earlier studies that suggest that only a small proportion of 

hospitals had implemented all six PI3 MU functionalities—to find, SRI information 

throughout the entire healthcare system. Additionally, in demonstrating that no significant 

difference was found between the policy type and the percentage of hospitals engaging in 

EHR interoperability domains, findings from this study also disconfirm previous studies 

that suggest that the privacy law limits companies’ collection, use, sharing, and retention 

of personal information. However, year was found to have a statistically significant impact 

on the percent of hospitals that send, receive, and/or integrate patient summary records. 

The practice of healthcare administration could benefit from similar studies that 

incorporate healthcare settings beyond nonfederal acute care hospitals and implement a 

rigorous research design that will also provide a highly explanatory picture of 

interoperability in U.S. hospitals. 
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