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Abstract 

Hyperlipidemia caused by a diet high in saturated fat can lead to visceral fat weight gain, 

obesity, and metabolic syndrome.  Being over-weight from visceral fat has been linked to 

increased risk of developing most age-related diseases and disability, along with a lower 

income potential and quality of life.  However, researchers are just beginning to 

understand the biological mechanisms that regulate the conversion of excess calories into 

visceral fat storage rather than glycogen or muscle.  Epidemiological studies have 

repeatedly shown a comorbid association between age-related diseases involving 

hyperlipemia and circulating levels of uric acid, but not a direct association. This study 

utilized archival data from 31 healthy, middle-aged adults, who participated in a 

randomized, double-blind, crossover clinical trial on blood markers of lipidemia and 

inflammation following a high saturated fat (HSF) verses a “healthy” polyunsaturated fat 

(PUFA) meal.  This primary study was conducted and funded by the National Institute on 

Aging.  A secondary analysis of this data using Pearson’s correlation with least squares 

(2-tailed) regression modeling found that when stratified by gender, baseline uric acid 

level was an independent and significant predictor of the lipemic response from the HSF, 

but not the PUFA meal.  The linear regression plots indicated that males with uric acid 

levels above 4.5, and females above 3.0 mg/dL, had a progressively increased lipemic 

response to the HSF meal.  The public health utility of this finding may include the 

clinical use of the gender-specific linear regression plots of uric acid values to identify 

and advise individuals at risk for hyperlipidemia from a diet high in saturated fats.  
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Chapter 1:  Introduction 

Because of the recent epidemic in weight gain, today’s youth are the first 

generation to have a shorter and less productive projected lifespan with more years of 

disability than their parents (Piernas & Popkin, 2011a).  Epidemiological data show that 

the increase in weight gain started around 1985, due to the accumulation of drastic 

environmental changes in the availability of affordable high sugar and high fat foods that 

make up what has been termed, “the Western diet” (Schlosser, 2002).  These changes in 

increased caloric density of the American diet, along with decreases in physical exercise, 

are thought to be the main contributors to the highest level of visceral fat weight gain 

ever recorded within a general population, with nearly 68% of the adults in the United 

States being overweight or obese in 2010 (Fortuna, 2012).  

One animal model for the development of visceral fat weight gain towards 

obesity, insulin resistance, and metabolic syndrome using a single variable is the feeding 

of a 33% sucrose diet to a common lab rat (strains: Wistar, Lewis, or Sprague Dawley; 

Stranahan et al., 2008).  The initial metabolic changes from the sucrose diet are 

elevations in insulin levels, followed by elevations in de novo lipid synthesis (Stranahan, 

Cutler, Button, Telljohann, & Mattson, 2011).  It is the increase of endogenous 

lipogenesis that initiates the expansion of visceral fat with paralleled increases in stored 

and circulating levels of sphingolipids, triglycerides, and cholesterol.  The most 

consistent diet used to cause weight gain in animal models utilizes a combination of high 

sugar (particularly fructose) and saturated fats (Dekker, Su, Baker, Rutledge, & Adeli, 

2010). 
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Uric acid (UA) levels have been positively associated as a possible independent 

risk factor for developing lipidemia and associated diseases (e.g. insulin resistance, 

diabetes, cardiovascular disease; Nakagawa et al., 2006).  However, epidemiological 

studies have only focused on the association of UA after weight gain, and not its role, if 

any, in the mechanism initiating weight gain.  In this study, UA was assessed for its 

potential effect in enhancing postprandial endogenous lipogenesis (lipemic response) 

after a single high in saturated fats (HSF) fast food modeled meal (a known inducer of de 

novo triglyceride and cholesterol synthesis; Lin et al., 2005).  By utilizing archival data 

from normal weight (e.g. body mass index, BMI< 25 kg/m2), insulin sensitive [2-hour 

oral glucose tolerance test (OGTT) blood glucose level below 140 mg/dL], and healthy 

renal functioning [blood creatinine < 1.4 mg/dL] middle-aged adults (Table 1), this study 

tested if baseline UA levels affect their postprandial lipemic response to a single HSF 

meal.  Each participant in the study longitudinally served as his or her own control (Table 

2), which included a crossover low in saturated fat meal, consisting of an equal 

nutritional profile (i.e., protein, carbohydrates, and fat) as the HSF meal, but substituting 

saturated fats with polyunsaturated fats (PUFA) as a negative control (Table 3).  The 

rationale for this study was from previous reports that UA correlated with hyperlipidemia 

diseases, including cardiovascular disease, type 2 diabetes, and metabolic syndrome.  The 

mechanism through which UA is thought to increase de novo lipid synthesis is through 

the AMP-activated protein kinase (AMPK) pathway, but no clinical studies have been 

published to support these liver cell culture findings (Lanaspa, Cicerchi, et al., 2012).   

The hypothesis tested in this study was that baseline levels of UA predict the 

postprandial lipemic response (i.e., percent change of VLDL over time) after a single 
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high fat meal. The next morning, fasted serum was also analyzed for a possible link 

between postprandial lipemic response and an acute change in insulin sensitivity 

(HOMA2 test from fasted insulin/glucose levels; Levy, Matthews, & Hermans, 1998).  

Regression modeling was used to analyze the predictive power of baseline levels of UA 

verses other previously studied factors involved in the regulation of postprandial lipemic 

response (i.e., baseline: lipids, markers of inflammation, insulin hormones, and insulin 

sensitivity).  Correlation of all independent variables was also tested for codependence 

with UA for the presence of potential serial correlation bias errors.   

Background 

Approximately 68% of adults in the United States were overweight or obese.  

Over the past 25 years, the prevalence of obese adults (i.e. BMI > 30) has grown from 

14.5% to 35.7% (Fortuna, 2012).  Many epidemiological studies have shown that excess 

body fat leads to decreases in work productivity and long-term quality of life, and 

increased risk for developing cancer, cardiovascular disease, diabetes, and most of the 

other age-related degenerative diseases (Liu et al., 2013).  Epidemiological survey data 

show that an over-eating epidemic started in the United States around 1985 (Blasbalg, 

Hibbeln, Ramsden, Majchrzak, & Rawlings, 2011). 

History of the Western Diet 

Factors that led to the development of the Western diet include the industrial 

revolution, mechanized farming, fertilizers, pesticides, and agricultural genetic 

engineering (Blasbalg et al., 2011).  In reaction to the Great Depression and World War 

II, the U.S. government established laws for agriculture and consumer food shopping 

subsidies (e.g. corn, meat, and dairy) to establish food security for public health.  These 
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initiatives resulted in a glut of available and inexpensive agricultural products that have 

been pushed onto consumers by an ever-growing food industry (Eichhorn & Nagel, 2010; 

Fields, 2004).  This era marks the beginning of the recent and drastic environmental 

changes in the availability of affordable, high sugar and fat foods that make up the 

Western diet.  In addition to the changes in dietary choices towards higher processed and 

calorically dense foods, caloric consumption also increased (Blasbalg, et al., 2011).  One 

contributing factor for increased caloric consumption has been the environmental changes 

in mass communication (i.e. television and radio commercials) from the food industry.  

These advertisements most often encourage purchasing unhealthy foods, which over time 

has led many consumers to believe that a cheeseburger, French fries, and a milk shake are 

a good meal choice (Grotz, 2006).  Since the 1970s, the U.S. population has increased 

their average consumption of sugar by 36% (i.e. 80 to 109 pounds per year) and meat by 

80% (i.e. 112.5 to 203.7 pounds per year), where women had an average increase of 335, 

and men 168 calories per day (Daniel, Cross, Koebnick, & Sinha, 2011).  Most of these 

extra calories have come from increased consumption of high fructose corn syrup found 

in sweetened beverages, which currently accounts for about 25% of daily caloric intake in 

the United States.  Since 1977, the daily consumption of fructose has gone up from a 

mean of 37 to 54.7 grams/day, an increase of 49% (Vos, Kimmons, Gillespie, Welsh, & 

Blanck, 2008).  High fructose consumption is associated with increased de novo hyper-

lipogenesis, insulin resistance, and weight gain.  Dietary fructose has been found to 

increase blood triglycerides by 186%, whereas intake of the same amount of glucose did 

not have this effect (Janevski et al., 2012).  High dietary consumption of fructose has also 

been shown to increase UA levels through increased purine (e.g. ATP) catabolism, and as 
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a competitive inhibitor of kidney excretion through the Glut-9 receptor.  Fructose 

consumption has been found to be a risk factor linked to the recent increased incidence 

rate of gout (i.e. high uric acid [> 7.0 mg/dL] levels form crystals and inflammatory 

response; Nakagawa, et al., 2006).  

Regulation of Lipogenesis 

Excessive caloric intake activates transcription factor SREBP-1c in liver and 

adipose cells to initiate protein synthesis of all fatty acid and cholesterol synthesis 

enzymes, and constitutes the macro regulatory mechanism of endogenous lipogenesis 

(Shao & Espenshade, 2012).  Postprandial induced endogenous lipogenesis is reflected 

by the acute percent changes in circulating VLDL (i.e. lipemic response).  Activators of 

SREBP-1c transcription and maturation into mature protein include insulin hormones, 

pro-inflammation cytokines, and saturated fatty acids (e.g. C16:0; Lin, et al., 2005).  The 

initial and rate-limiting step enzyme for fatty acid synthesis is acetyl-CoA carboxylase 

(ACC), and for cholesterol is 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA).  

Micro regulation of the activity of SREBP-1c, ACC, and HMG-CoA is achieved by 

phosphorylation of active sites by AMPK, which turns “off” transcription of the enzymes, 

and enzymatic activity of lipid synthesis (Hardie, 2004; Winder & Hardie, 1999).  

Insulin, TNFα (a pro-inflammation cytokine), and ceramides activate protein 

phosphatase-2A (PP2A) and glutamate-activated protein phosphatase (GAPP), which 

both dephosphorylate and activate transcription and enzyme activity (de Mello et al., 

2009; Poppitt et al., 2008). 

At the juncture of regulation for anabolic fatty acid lipid synthesis and catabolic 

beta-oxidation of fatty acids is acetyl-CoA carboxylase (ACC), which is the rate-limiting 
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step of saturated fatty acid synthesis.  Activated ACC catalyzes the carboxylation of 

acetyl-CoA to form malonyl-CoA, which is the natural metabolic inhibitor of carnitine 

acyltransferase-mediated shuttling of fatty acids into the mitochondria for catabolic beta-

oxidation of free fatty acids.  Therefore, ACC is a key metabolic switch between anabolic 

fatty acid synthesis and catabolic fatty acid beta-oxidation (McCarty, 2001).  Several 

animal models have shown that inhibition of ACC acts to protect mice from weight gain, 

insulin resistance, and lipotoxicity (e.g. fatty liver disease) from a high saturated fat diet.  

These ACC knockdown mice also had the advantage of increased spontaneous exercise 

and better performance in learning and memory tasks (Dzamko et al., 2008a; McCarty, 

2001; Turdi et al., 2010) 

Effect of Food Choices on Visceral Fat Weight Gain 

A confounding issue is the discovery that elevated lipids (particularly saturated 

free fatty acid C16:0) actually act to self-perpetuate higher levels of de novo fatty acid 

synthesis due to the feed-forward genetic and biochemical mechanism of the SREBP-1c 

pathway (Lin et al., 2005).  Excess caloric intake relative to energy expenditure is the 

primary modifiable risk factor for the latest observed increases in visceral fat weight gain.  

This is made worse by food choices of high caloric density saturated fats and fructose 

that acts independently to hyper-activate lipid synthesis via the SREBP-1c pathway 

(Magne et al., 2010).  However, food choices high in polyunsaturated fatty acids (PUFA; 

C18:2 high in nuts), as used in this study’s control diet, have been shown not to hyper-

activate lipogenesis (Jimenez-Gomez et al., 2009). 
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The Pros and Cons of Uric Acid on Health and Visceral Fat Weight Gain 

Urate oxidase is an enzyme involved in purine metabolism, which is found in all 

living organisms.  Although humans have the urate oxidase gene, it has been rendered 

nonfunctional due to a series of independent mutational events during early primate 

evolution, making UA the end product of purine catabolism.  It has been proposed that 

the biochemical pathway regressive loss of urate oxidase has been advantageous to 

hominids by increasing levels of UA, which has specific antioxidant and nitric oxide-

buffering properties, along with a positive association in protection of brain damage in 

stroke and muscle damage from exercise (Cutler, 1984; Haberman et al., 2007; Pan et al., 

2013; Wu et al., 2013).  Epidemiological data suggests that UA may reduce the risk of 

multiple sclerosis, Parkinson’s, amyotrophic lateral sclerosis, and cancers, and may also 

preserve muscle strength, bone density and cognition during aging (Kataoka, Kiriyama, 

Kobayashi, Horikawa, & Ueno, 2013; Macchi et al., 2008; Molino-Lova et al., 2013; Wu 

et al., 2013).  However, the beneficial aspects of UA most often follow a bell-shaped 

curve, where long-term hyperuricemia has been linked to hypertension, cardiovascular 

disease, type 2 diabetes Mellitus, metabolic syndrome, and gout (Soltani, Rasheed, 

Kapusta, & Reisin, 2013). 

UA is mainly derived from de novo metabolic catabolism of ATP into adenosine, 

RNA turnover, and DNA catabolism from cell death and mitochondria turnover, with 

approximately 30% coming from the diet (Nieto, Iribarren, Gross, Comstock, & Cutler, 

2000; Rock, Kataoka, & Lai, 2013).  Local and systemic levels of UA acutely spike as a 

result of released purines caused by tissue damage (e.g. physical injury, exercise), 

inflammation, chemotherapy and starvation catabolysis (Rock et al., 2013).  That UA is 
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produced quickly and at the site of metabolic stress and injury indicates a potential for its 

use as a first response factor to buffer damage (i.e. antioxidant and nitric oxide), as an 

immune homing and repair signal, and at higher levels as an inducer of apoptosis.  

Previous mouse studies have shown roles for purine-mediated signaling (e.g. adenosine, 

guanosine) in the repair and apoptosis responses from ischemia or trauma, but little work 

has been done in models with inactive urate oxidase (Parkinson, Sinclair, Othman, 

Haughey, & Geiger, 2002).   

Humans have also evolved a relatively high renal reabsorption (63%) of UA 

compared to other animals, due to differences in levels of URAT1, GLUT9, and OAT1, 

3, & 4, suggesting that it may be biologically viewed as beneficial factor, rather than as a 

waste product (Alvarez-Lario & Macarron-Vicente, 2010).  To protect against over-

production and gout, humans have repressed both xanthine oxidase transcription and core 

promoter activity, resulting in lower production of UA, in addition to having higher 

albumin levels that increase UA solubility (Xu, LaVallee, & Hoidal, 2000).  Circulating 

and storage levels of triglyceride and cholesterol are also strongly correlated with species 

and within species UA levels (Zhao, Huang, Song, & Song, 2013).  The hypothesis for 

this proposed correlation, and the basis for this study, was that UA modulated metabolic 

efficiency by acting as sensitizer of postprandial lipemic response.  The proposed 

mechanism of how UA acts acting to increase postprandial lipemic response is as an 

inhibitor of AMPK, the major negative regulator of SREBP-1c, resulting in an increased 

sensitivity of lipogenesis activation (Lin, et al., 2005; Nakagawa et al., 2006).  However, 

direct measures of AMPK and SREBP-1c in response to levels of UA were outside of the 

scope of this research study. 
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The Inflammation and Visceral Fat Weight Gain Cycle 

Chronic inflammation is commonly observed with obesity and fatty liver disease, 

where the major source of circulating C-reactive protein and pro-inflammatory cytokines 

TNF-α, and interleukin 1 and 6 are released by inflamed adipose tissue (Harvie et al., 

2011; Vgontzas, Bixler, Papanicolaou, & Chrousos, 2000).  Chronic elevation of pro-

inflammatory cytokines target the liver, pancreas, heart, or blood vessels, where it is 

thought to significantly contribute to the chronic inflammation observed in weight gain 

leading to metabolic syndrome and type 2 diabetes (Vgontzas et al., 2000).  Inflammatory 

cytokines (i.e. TNF-α) have been shown to increase ceramide levels and cause insulin 

resistance (Boon et al., 2013; Dekker et al., 2013).  High insulin levels and glucose from 

insulin resistance activate SREBP-1c and increase sensitivity towards visceral fat weight 

gain from excess caloric intake as reflected in postprandial changes in VLDL (C. Liu et 

al., 2013).  The cyclic nature between the release of visceral fat pro-inflammatory 

cytokines and hyper-lipogenesis is perpetually fueled by the continuation of excess 

caloric intake.  Weight loss studies have shown rapid drops in these cytokines with 

subsequent improvements in all markers of associated diseases during fasting or a low 

calorie diet (Gerner, Wieser, Moschen, & Tilg, 2013).  A better understanding of the 

mechanism and risk factors for visceral fat weight gain is needed by all stakeholders in 

the push to lower the public health burden of the current epidemic in visceral fat weight 

gain, obesity, and associated diseases. 
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Problem Statement 

Prevention of diseases affecting public health has long focused on the reduction of 

modifiable risk factors, which depends on being able to accurately identify and rank the 

most influential and modifiable risk factors.  The incidence and prevalence of weight gain 

leading to obesity has risen almost exponentially over the last 20 years (Toth, Potter, & 

Ming, 2012).  The prevalence of this epidemic points to drastic increases in caloric intake 

and lower usage of calories from physical exercise.  The current increases in incidence 

and prevalence of weight gain have led to parallel increases in obesity, as well as early 

onset and progression of most age-related diseases, which has impacted United States 

society by decreasing productivity and increasing the cost of healthcare (Akbaraly et al., 

2013; Kahn, Robertson, Smith, & Eddy, 2008).  Most experts in the field have considered 

this to be the most detrimental, but modifiable, public health issue currently affecting the 

United States (Carlezon & Chartoff, 2007; Fisher & Kral, 2008).  A review of the 

literature has revealed that a major gap in knowledge was the underlying mechanism and 

risk factors initiating lipemic response and weight gain in healthy people (Akbaraly, et 

al., 2013).  This study was designed to utilize a healthy middle-aged adult population (i.e. 

normal BMI, insulin sensitivity, blood lipid levels, inflammation) with no comorbid 

health issues.  The participants were subjected to a known risk factor for initiating 

lipidemia and weight gain (i.e. a high in saturated fat fast food modeled meal), where 

changes in serum triglycerides and cholesterol were measured at intervals for 8-hours 

post meal.  The primary end-point (i.e. postprandial lipemic response: the percent of 

change from baseline with time of very low density lipoproteins [VLDL]) was used as the 

dependent variable to develop a scatter plot distribution of the data and one-way analysis 
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of variance (repeated measures; ANOVA).  The postprandial lipemic response data were 

also used to group participants into an ordered distribution tertile consisting of low, 

median, and high risk for developing lipidemia. 

The next stage of the study tested the hypothesis that baseline (pre-HSF meal) 

levels of uric acid (UA) can predict the outcome of the postprandial lipemic response.  

Independent/predictor variables (i.e. baseline: UA, lipids, markers of inflammation, 

insulin hormones and insulin sensitivity) utilized the Pearson’s correlation with least 

squares (two-tailed) regression modeling for the predictive power of the postprandial 

lipemic response (the dependent variable).  In addition, UA was analyzed for a Pearson’s 

correlation with all of the other independent variables for the presence of potentially 

cooperative or confounding interrelationships. 

Purpose of the Study 

Prevention is the primary goal of public health initiatives.  This study examined 

data on UA, lipids, insulin hormones, and markers of inflammation from healthy middle 

aged human blood serum samples measured before and at time points after ingestion of a 

HSF meal, and a crossover negative control, high in PUFA meal.  The HSF meal 

consisted of 2 times the amount of lipogenic activating palmitic acid (C16:0) over the 

PUFA diet, which substituted palmitic acid with non-lipogenic activating linoleic acid 

(C18:2).  The purpose of this study was to quantitatively measure (via regression 

modeling) the effects that baseline serum UA levels (the independent variable) have on 

the peak and sustained changes in circulating blood lipids (i.e. lipemic response; the 

dependent variable) and insulin sensitivity (the covariant variable) after a single HSF 

meal.  Comparisons of the correlative predictive power of UA levels with the 
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postprandial lipemic response were compared to other known risk factors involved in the 

development of visceral fat weight gain, obesity, and metabolic syndrome (i.e. baseline 

levels of: lipids, markers of inflammation, insulin hormones, and insulin sensitivity).  

Uric Acid as a Sensitizer of Postprandial Lipid Synthesis Response 

A vast number of clinical studies have reported a positive association of UA with 

circulating levels of triglyceride, cholesterol, and glucose (Soltani et al., 2013).  One 

hypothesis for the metabolic advantage to animals that lack functional urate oxidase is to 

increase UA during stress (e.g. exercise), where it acts as an antioxidant and enhances 

anabolic repair and recovery processes by suppressing AMPK-mediated catabolic 

pathways (i.e. mTOR autophagy, and suppression of SREBP-1c).  However, the cost for 

blocking autophagy could potentially explain why humans and closely related primates 

are more susceptible to certain age-related neurological diseases such as stroke (via 

atherosclerosis), Alzheimer disease, and Parkinson disease, which are not naturally found 

in animals with active urate oxidase (LaFerla & Green, 2012).  Furthermore, other human 

neurological diseases (i.e. Amyotrophic lateral sclerosis) has been shown to occur in lab 

animals when infected with viruses that harbor a reservoir in neurons (e.g. herpes simplex 

virus 1 and 2).  These viruses act to preserve their presence by shutting down autophagy, 

the main mechanism for flushing out viral infections in neurons (Santana, Bullido, 

Recuero, Valdivieso, & Aldudo, 2012; Santana, Recuero, Bullido, Valdivieso, & Aldudo, 

2012).  Further support for the role of autophagy in neurological diseases is the finding 

that the incidence of a dementia symptomatically similar to Alzheimer disease has been 

found to be significantly higher in humans infected with neuron reservoir viruses (e.g. 
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HSV-1 and HIV), thereby giving evidence that autophagy is a common factor in the 

development of these diseases (Cutler et al., 2004; Salminen et al., 2013). 

Theoretical Framework for the Study 

The theoretical basis for this archival study was to test the hypothesis that the 

driving evolutionary advantage for the mutational of functional urate oxidase in humans 

was to increase UA, which, in turn, acts to increase metabolic postprandial visceral fat 

synthesis and storage efficiency (i.e. VLDL lipemic response).  The proposed biological 

mechanism of how UA increases sensitivity of postprandial lipemic response was by 

suppression of AMPK-mediated catabolism and autophagy (Lanaspa, Sanchez-Lozada, et 

al., 2012).  Direct measures of the effect of UA on AMPK and SREBP-1c were outside 

the scope of this study, but are key for future study.  The modeled framework used to test 

this hypothesis utilized blood serum UA data from a healthy middle-aged population to 

see if the differences in levels could statistically predict lipemic response after eating a 

single HSF meal.   

The theoretical framework of this study proposal was for the analysis of archival 

serum sample data from a completed double blind longitudinal crossover clinical trial, 

consisting of 31 participants who completed all six visits.  The study design was broken 

up into three periods, where the repeated measures of the independent, dependent and 

covariates were collected at baseline, 4 hours post intervention meal, and the next day 

after intervention meal.  The key independent and dependent variables were baseline 

blood levels of UA and acute changes in de novo lipemic response, respectively, after a 

HSF and PUFA test meal.  Baseline blood levels of lipids, insulin hormones, 2-hour 

OGTT glucose insulin sensitivity, and markers of inflammation were analyzed as 
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secondary independent variables or possible covariates with UA.  The rationale for the 

design was to increase the statistical accuracy of the repeated measures by using the 

participant as his/her own longitudinal control, thereby limiting confounding covariates.  

Changes due to the intervention meals were analyzed as the percent change from their 

baseline levels.  The rationale for randomizing the participants and the 10-day washout 

period interval between the cross-over intervention meals was designed to limit possible 

carry-over effects of first meal on the outcome of the second cross-over meal.  The 

analysis methodology of the data looked at the relationships between the independent and 

dependent variables using one-way repeated measures ANOVA, and Pearson’s 

correlation with least squares (two-tail) regression modeling to test the research questions 

of this dissertation. 

Nature of the Study 

The archival serum sample data from a completed primary double blind 

randomized longitudinal crossover clinical trial conducted and funded by the National 

Institute on Aging (NIA, a branch of the National Institutes of Health), who privately 

holds the data, were used for this study.  As a full-time employee (research scientist) of 

the NIA, I obtained anonymized (participant code identification number, with no 

personally identifiable information) data from the completed study: Assessment of the 

Effects of Fast-Food on Inflammatory Markers (ClinicalTrials.gov ID: NCT00233311).  

The rationale for the longitudinal crossover design was to have each participant serve as 

his or her own control, so that differences could be presented as percent change from 

their baseline values.  The benefit of this design was a lower number of participants 

required to reach statistical significance.  Another key aspect of the original study design 
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was to use a healthy middle-aged adult population (i.e. normal BMI, insulin sensitivity, 

blood lipid levels, inflammation) with no comorbid health issues.  The participants were 

subjected to a known method for initiating lipidemia and weight gain (i.e. a high in 

saturated fat fast food modeled meal), where changes in serum glucose, lipids, 

inflammation, and insulin hormones were measured at intervals for 8-hours post 

intervention meal (HSF and PUFA-control) and the next morning (fasted). 

The primary independent variable for my secondary analysis of the data was the 

baseline levels of UA, which were used to calculate the power to predict the postprandial 

lipemic response (the primary dependent variable) from a single HSF meal.  Lipemic 

response for each participant was the calculated area under the curve of the percent 

change in VLDL, which yielded a single value.  VLDL is assembled in the liver from 

endogenously synthesized triglycerides, cholesterol, and phospholipids before being 

released into circulating blood.  Acute changes in VLDL from the test meals were used in 

this study as a measure of endogenous lipogenesis in response to a meal and were not a 

direct measurement of the exogenous lipids absorbed from the diet (e.g. LDL; Faeh et al., 

2005).  Single time point blood serum VLDL levels were collected at timed intervals over 

an 8.5-hour time period postprandial of PUFA and HSF meals.  Baseline levels of other 

previously published independent markers of lipemic response were analyzed for their 

predictive power verses UA, as well as a covariant.   

These secondary independent markers included cholesterol, triglycerides, high 

density lipoprotein (HDL), low density lipoprotein (LDL), very low density lipoprotein 

(VLDL), HDL/LDL ratio, quantitative insulin sensitivity calculation (HOMA2), 2-hour 

OGTT glucose, inflammation (i.e. C-reactive protein (CRP), white blood cell count, and 
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albumin/globulin ratio), inflammation cytokines (i.e. IL-6 and TNF-α), and insulin 

hormones (insulin, C-peptide, and insulin growth factor-1 (IGF-1).  The lipemic response 

from the PUFA meal was used as a negative control for each of the aforementioned 

research questions. 

Definitions 

Insulin hormones:  Consist of insulin, C-peptide (pro-insulin protein), and IGF-1.  

Insulin and C-peptide were used as independent variables and to test for changes in next-

day insulin responses from the diets.  C-peptide was substituted for insulin in HOMA2 

formula to validate the insulin data.  IGF-1 is a hormone similar in structure and activity 

to insulin, but does not fluctuate with diet like insulin.  It was used in this study as an 

independent and possible confounding variable. 

Lipemic response:  Defined for this study as the percent change from baseline 

with time of serum VLDL levels.  The area under the curve gave a single value that was 

used to indicate de novo lipogenesis as the dependent variable in the analysis of the data.  

VLDL is a lipoprotein made in the liver that transports only endogenously produced 

triglycerides, cholesterol, and phospholipids to cells for energy use or storage.  Therefore, 

VLDL was a good indicator to measure de novo lipid synthesis. 

Lipogenesis: The de novo lipid synthesis of free fatty acids, phospholipids, 

triglycerides, and cholesterol that is mediated by activation of the SREBP-1c pathway.  

SREBP-1c is activated by insulin through mTOR, and by saturated fatty acids (e.g. 

C16:0) through the PGC-1β and LXRα pathway.  Down regulation of mTOR, ACC, and 

HMG-CoA activity is through AMPK phosphorylation.  Postprandial-induced lipogenesis 

was directly reflected by acute changes in circulating VLDL. 
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Markers of inflammation: C-reactive protein, cytokines (i.e. tumor necrosis factor-

α, interleukin-6), white blood cell count, and the albumin/globulin ratio, were analyzed as 

secondary independent variables and as possible confounding variables in this study.  

Homeostatic model assessment (HOMA) 2: A new and improved computer model 

of the original HOMA calculation used to quantify insulin resistance and beta cell 

function.  HOMA-IR and HOMA-β are calculated from fasted glucose and insulin serum 

values.  It was measured from fasted morning draw data, pre and post (next morning) 

meal interventions as an outcome dependent variable, possibly linking lipemic response 

with insulin resistance.  The nomenclature for output from the calculator, which was also 

used in this study’s tables and figures, is as follows: %B = steady state beta cell function; 

%S = insulin sensitivity; and IR = insulin resistance.  

Uric acid (UA): The end product of purine metabolism in humans due to 

mutational inactivation of urate oxidase.  Baseline values of UA were used as the primary 

independent variable for its potential as a predictor of lipemic response. 

Weight gain: Defined as the increase in visceral fat body weight from adipocyte 

expansion and hypertrophy caused by excess caloric intake activation of lipogenesis. 

Research Questions and Hypothesis 

The following research questions were derived from observed gaps in knowledge 

after an extensive review of the current literature in the field.  Currently there is not 

agreement among scientists for the environmental advantages driving the mutational 

knockout of urate oxidase.  Two of the leading hypotheses behind the driving 

evolutionary pressures for increasing UA have been as an antioxidant response to protect 

against metabolic stress (e.g. exercise), and as a 24-hour circadian rhythm regulator of 
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nitric oxide.  However, more recent data indicated that UA may also act to enhance 

stress-induced anabolic recovery by suppression of AMPK-mediated catabolism and 

autophagy.  The hypothetical model tested in this study was that UA increases the 

activation sensitivity of anabolic pathways (i.e. lipemic response).  If true, then UA levels 

would be a prominent risk factor of lipidemia and visceral fat weight gain from eating 

excess calories.  Diets high in purines and/or fructose also increase levels of UA, 

independent of exercise.  However, with no exercise to burn off triglycerides, high UA 

and caloric intake leads to a net increase of circulating and stored lipids.  The HSF fast 

food modeled meal used in this study has the same amounts of saturated fat as a typical 

(and the most popular) McDonald’s corporation Big Mac sandwich.  As a negative 

control, participants were also fed a crossover healthy meal, consisting of equal calories, 

carbohydrates, proteins, and fat as the HSF meal, but replaced saturated fats with PUFA.  

Research Question 1: Can baseline levels of UA be used in a regression model to 

predict postprandial lipemic response to a HSF meal?  It was expected that UA is acting 

as a natural enhancer of VLDL synthesis (i.e. lipemic response) when activated by a HSF 

meal. 

Ho1: There is no positive correlation between baseline UA levels and postprandial 

lipemic response to a HSF meal. 

Ha1: There is a positive correlation between baseline UA levels and postprandial 

lipemic response to a HSF meal. 

The following sets of questions were designed to confirm and compare previously 

reported independent and covariant variables of lipemic response and insulin sensitivity 
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relative to UA.   The covariant variables were analyzed just like UA for their power to 

predict lipemic response and compared to UA. 

Research Question 2: How do baseline levels of lipids (i.e. triglycerides, 

cholesterol, HDL, LDL, VLDL, and HDL/LDL ratio) compare with UA in a regression 

model to predict postprandial lipemic response to a HSF meal?  Because saturated fatty 

acids are a known activator of VLDL synthesis through SREBP-1c in a feed forward 

mechanism, it was possible that, within normal range, variations of baseline circulating 

lipids may lead to a higher postprandial lipemic response to a HSF meal, and constitute a 

confounding variable. 

Ho1: There is a positive correlation between baseline lipid levels and postprandial 

lipemic response to a HSF meal. 

Ha1: There is no positive correlation between baseline lipid levels and 

postprandial lipemic response to a HSF meal. 

Research Question 3: How do baseline levels of markers of inflammation (i.e. C-

reactive protein and pro-inflammatory cytokines TNF-α, and interleukin-6, white blood 

cell count, and albumin/globulin ratio) compare with UA in a regression model to predict 

postprandial lipemic response to a HSF meal?  Because increased inflammation-mediated 

oxidative stress and ceramides (primary causes of insulin resistance) have been shown to 

modulate VLDL lipogenesis, it was possible that upper normal range variations of 

baseline circulating inflammation may lead to differences in postprandial lipemic 

response to a HSF meal, and constitute a confounding variable. 

Ho1: There is a positive correlation between baseline markers of inflammation 

and postprandial lipemic response to a HSF meal. 
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Ha1: There is no positive correlation between baseline markers of inflammation 

and postprandial lipemic response to a HSF meal. 

Research Question 4: How do baseline 2-hour OGTT glucose levels compare with 

UA in a regression model to predict postprandial lipemic response to a HSF meal?  

Because insulin resistance (i.e. high circulating insulin and glucose; HOMA2) has been 

shown to modulate lipogenesis, it was possible that upper normal range variations in 

baseline 2-hours OGTT may lead to a higher postprandial lipemic response to a HSF 

meal, and constitute a confounding variable. 

Ho1: There is a positive correlation between 2-hour OGTT glucose levels and 

postprandial lipemic response to a HSF meal. 

Ha1: There is no positive correlation between 2-hour OGTT glucose levels and 

postprandial lipemic response to a HSF meal. 

Research Question 5: Does postprandial lipemic response (now the independent 

variable) after a HSF meal correlate with next morning fasting insulin sensitivity 

(HOMA2 insulin/glucose test; the dependent variable)?  Participants with a high 

postprandial lipemic response to the HSF meal were expected to have a negative 

correlation with next morning fasting insulin sensitivity.  Although this research did not 

directly involve UA, the outcome of this question was key for linking lipemic response 

(which may be correlated with UA in this study) with risk for diabetes type 2, a major 

concern in public health and implications for positive social change from this study. 

Ho1: There is no negative correlation between postprandial lipemic response to a 

HSF meal and next morning fasting insulin sensitivity. 
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Ha1: There is a negative correlation between postprandial lipemic response to a 

HSF meal and next morning fasting insulin sensitivity. 

Research Question 6: Are there any co-dependence correlations between the baseline 

levels of UA and the other independent variables that could indicate the presence of a 

serial correlation bias error in the results from Research Questions 1 - 5?  Each 

independent variable was tested against UA for a Pearson’s correlation, which could have 

revealed a co-dependence relationship.   There was the potential for this analysis to also 

show that a multivariate combination of the independent variables might provide a higher 

power of prediction with postprandial lipemic response than UA alone. 

Ho1: There are correlations between baseline UA and the other independent 

variables. 

Ha1: There are no correlations between baseline UA and the other independent 

variables. 

Assumptions 

Caloric and fat loads from the intervention meals were the same for each 

participant and assumed to be the same dose.  However, because of the differences in 

body weights (e.g. male verses female), the dose responses from the meals were likely to 

be different.  Therefore, in the analysis of the data, I split male and female, as well as 

normalized the meal dose per body weight by multiplying lipemic response with BMI.  

Clinical chemistry values found to be below the detection limit of the assay were 

assumed to be at the set detection limit (e.g. < 4 would be changed to = 4) for the data 

analysis.  It was assumed that changes in inflammation and/or UA levels were not due to 

acute infection or sudden changes in exercise routine between the baseline date and meal 
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dates.  However, if time-0 right before meal was 20% higher or lower than the first visit 

baseline value for any of the inflammation markers or UA, the participant’s data were 

considered as an outlier and dropped from the analysis. 

Scope and Delimitations 

This study’s aim was to add to the knowledge of the mechanism and regulating 

agonists of lipemic response.  The focus was to test if UA is a sensitizer of feeding-

induced lipemic response.  To date, there is a gap in knowledge as to why UA is 

correlated with being overweight, and gaps as to why some people have a propensity to 

gain visceral body fat, while others do not.  The boundaries of the proposed study were to 

use a healthy middle-aged population to test if baseline blood serum UA levels can 

statistically predict lipemic response and, therefore, propensity to gain weight from over-

eating during a single meal.  The participant inclusion, eligibility, exclusion, and 

withdraw criteria followed by the primary study is briefly described below. 

Limitations 

For reasons still being investigated, ingesting high amounts of saturated fatty 

acids does not always result in the acute induction of inflammation pathways.  For 

example, when given as a dietary supplement along with moderate to heavy exercise, 

saturated fats did not result in increased inflammation (Roberts et al., 2007).  However, 

critics of this study pointed out that the heavy exercise (as done in the cited study) could 

have plateaued the release of stored fats, such that additions of circulating fats from the 

diet were negligible.  However, in the majority of the studies in the field, high amounts of 

saturated fats has been shown to fuel inflammatory pathways in sedentary old-aged 

people, and people with type 2 diabetes, obesity, cardiovascular disease, arthritis, auto-
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immune disorders, and other conditions where preexisting inflammation was present 

(Calder, 2008). 

Significance 

Cost and Benefit Analysis of Preventing Visceral Fat Weight Gain 

Disability-adjusted life year (DALY) is a tool yielding a single number that was 

developed in 1990 at Harvard University for the World Bank to measure overall disease 

burden (Arnesen & Nord, 1999).  A DALY score is calculated by the sum of years lost 

from illness, disability, or early death relative to current Japanese life expectancy 

statistics (Saika & Matsuda, 2013).  DALYs can reflect the economic productivity of an 

individual or group.   A similarly used tool is Quality-adjusted life year (QALY), 

developed in 1956 by Cundell and McCartney, which is also a measure of disease burden, 

but includes both quality and the quantity of life for the individual (Reidpath, Allotey, 

Kouame, & Cummins, 2003).  Both of these weighted matrix tools can be used to 

produce a single value reflecting the public health impact (morbidity and mortality) of a 

current health issue, and the value for money in performing informational, legal, or 

medical interventions.  Many countries with socialized medicine programs use DALY 

and QALY in the cost-utility analysis to allocate limited healthcare resources (Kahn, et 

al., 2008).  In one study, the burden of disease caused by obesity in the United States 

from 1993 to 2008 showed that QALYs lost due to obesity has more than doubled.  

During the same time period, the prevalence of obesity increased by 89.9% (Jia & 

Lubetkin, 2010a).  The latest data showed that overweight and obesity, particularly when 

associated with type 2 diabetes, cardiovascular disease, disability, and premature death, 

have surpassed smoking as the leading modifiable health risk in the United States (Jia & 
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Lubetkin, 2010b).  The cost of Medicare and Medicaid spending on obesity-related 

conditions, which is largely preventable, is currently over $61 billion per year 

(Finkelstein, DiBonaventura, Burgess, & Hale, 2010).  QALYs have been used by policy 

makers to calculate the economic impact and gains (particularly when applied to 

children) from developing an effective intervention to prevent visceral fat weight gain.   

Trasande (2010) showed that even the most conservative interventions in childhood 

obesity of a 1% decrease is cost effective, saving over $1 billion annually in attributable 

medical expenses for every QALY gained.  However, effective interventions in 

prevention have not been readily identified.  This is because the problem is likely 

multifaceted, with genetics, affordability (i.e. time and money) of healthy food choices, 

media marketing pressures, and nutritional education, all playing a role (Trasande, 2010). 

The implications for my study to cause social change lie in providing the research 

community with a better understanding of the ranking of risk prediction factors in 

regulating lipogenesis and visceral fat weight gain.  This added knowledge could lead to 

the development of a public health awareness campaign to disseminate information about 

the relationship between blood serum UA levels and postprandial lipemic response to 

dietary saturated fats.  

Summary 

The aim of this study was to test the utility of using baseline UA levels as a 

predictor of lipemic response to a single dose of a dietary model of a typical fast food 

high in saturated fats meal.  One-way repeated measures ANOVA and Pearson’s 

correlation with regression modeling were used to test for the most significant 

relationships between lipemic response with pre-intervention baseline blood levels of 
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UA, lipids, markers of inflammation, insulin hormones, and insulin sensitivity (i.e. 

HOMA2).  At the end of this study, the analysis was able to identify and rank the power 

of each independent variable to predict postprandial lipemic response, and, therefore, risk 

factors for visceral fat weight gain from excess caloric intake.  The public health 

implications from this study: (a) provide evidence to the public health and medical 

community about specific blood components (i.e. UA) that could be used to assess risk 

for weight gain; and (b) provide evidence to scientific researchers regarding potential 

mechanisms that initiate weight gain to identify dietary risk factors, and screen natural 

food factors for the purpose of prevention.  In the next chapter, a comprehensive 

literature review highlights the current state of knowledge in the field and the gaps of 

knowledge needed to be answered in order to help the public prevent visceral fat weight 

gain and risk of associated diseases. 

Chapter 2: Literature Review 

Introduction 

The aim of this study was to test the hypothesis that the driving evolutionary 

advantage for the mutational inactivation of urate oxidase in humans was to increase UA, 

which in turn acts to increase the metabolic efficiency and enhance anabolic recovery by 

suppression of AMPK-mediated catabolism and autophagy (Lanaspa, Sanchez-Lozada, et 

al., 2012).  Over the past 40 years, most modern societies have been experiencing 

dramatic increases in visceral fat weight gain of their population, causing overweight and 

obesity levels to trigger an epidemic status in weight gain (e.g. 64% of US population).  

The result is that today’s youth are the first generation to have a shorter and less 

productive projected lifespan than their parents (Piernas & Popkin, 2011a).  Many factors 
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are thought to be involved in this common public health issue which include 

environmental changes in the availability of affordable high-sugar and high-fat foods and 

increasingly sedentary work and home environments (Fortuna, 2012; Schlosser, 2002).  

Previously published epidemiology studies have discovered other contributing factors, 

including many polymorphic changes in genes that contribute to a higher propensity of 

weight gain and development of associated diseases. 

The next chapter discusses my literature search strategy for choosing, reading, 

and citing the most accepted as high quality research studies, key search terms, 

theoretical foundations, background and scope of the problem.  This chapter details the 

current state of knowledge regarding the biological risk factors for visceral fat weight 

gain.  This study’s aim was to try to replicate a cell culture finding that UA is an inhibitor 

of AMPK and thereby increases metabolic efficiency as measured by lipemic response to 

a high in saturated fat meal in a human clinical trial. 

Literature Search Strategy 

Methods for Reading and Citing the Most Accepted as High Quality Research 

Studies 

Over the past few years, the number of open access on-line scientific journals has 

exploded and, with it, fraud and the publication of low-quality papers that should not 

have been accepted for publication (Butler, 2013).  There are over 4,000 journals that are 

now on many search engines’ (e.g. PubMed) block list due to little to no peer review 

process, and an almost 100% acceptance rate as long as the fees are paid (Beall, 2013; 

Kolata, 2013).  In doing literature searches using engines like Google Scholar, it can 

become problematic to know if the study one is reading and citing is accepted as high 
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quality by one’s peers in the field (e.g. did one miss an obvious flaw that affected the 

results and conclusions).  Recently, I came up with an approach to filter out poor quality 

studies.  By utilizing the Web of Knowledge search engine, one can sort the results by the 

number of citations; the higher number of citations indicates that most experts in the field 

agree with the methods and conclusions of the study.  However, this method only really 

works well for publications that are over 2 years old.  For newly published studies one 

has to know the reputation (e.g. impact factor) of the peer-reviewed journal and fully read 

and evaluate the study results for one’s self before citing.  Unfortunately, Walden 

University’s licensed version of Web of Knowledge only goes back to 2005, so my 

method was handicapped and not very useful with this database.  Google Scholar does 

show the number of times cited, and cite number is heavily weighted in the Sort By 

Relevance algorithm, but one cannot sort the results by number of times cited.  In my 

literature review and citations, I used the Web of Knowledge search engine through my 

NIH licensed account.  The databases included: Web of Science™ Core Collection, 

MEDLINE®, and SciELO Citation Index, with the Timespan setting of all years (i.e. 

1900 – current e-pub before publication).   

The key search terms used included visceral fat weight gain; lipemia; lipemic 

response; saturated and polyunsaturated fat diets; SREBP; triglycerides; cholesterol; 

HDL; LDL; VLDL; obesity; diabetes; inflammation; metabolic syndrome; aging; 

atherosclerosis; uric acid; insulin resistance; HOMA; OGGT; creatinine; omega-3 and 

6; linoleic acid (C18:2n6); polyunsaturated; motivation to exercise; PGC-1beta; gout; 

evolution; adenosine; urate oxidase; lipid metabolism; hypertension; antioxidant; 

oxidative stress; nitric oxide; peroxynitrite; circadian rhythm; U.S. public health issues; 
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Alzheimer’s; ALS; Parkinson’s; disability; economics and disability; cancer; palmitic 

acid; arachidonic acid; diet nuts and meat; exercise; endurance fuel; fructose; AMPK; 

portion control; over eating; CRP; cytokines; inflammation; autophagy; 

phosphofructokinase; BMI; Western diet; fast food industry; endocannabinoids.  I used 

the method described above to choose which primary data and meta-analysis studies to 

cite, and only cited reviews for well-accepted concepts and background in the field.  I 

also self-cited many of my own publications to show that this study is a continuation of 

my ongoing research interests. 

Theoretical Foundation 

UA has been found to be independently correlated with visceral fat weight gain 

and the diagnosis of cardiovascular disease.  One hypothesis for the driving evolutionary 

pressure for genetic mutations aimed at increasing UA in humans (i.e. knockout of UOX 

and increase of URAT1) is to increase metabolic efficiency and enhance anabolic 

recovery by suppression of AMPK-mediated catabolism and autophagy (Lanaspa, 

Sanchez-Lozada, et al., 2012).  The hypothetical model tested in this study was that UA 

decreases the activation energy of anabolic pathways (i.e. lipemic response).  The 

proposed increase in anabolic response would act to increase the risk of lipidemia and 

visceral fat weight gain from excess caloric intake, thereby making UA a potential 

indicator and modifiable risk factor for visceral fat weight gain.   

The environmental selection for mutations leading to knocking out functional 

urate oxidase in humans is also thought to be for its benefits as an antioxidant and 

cognitive response to stress (Cutler, 1984; Sutin et al., 2013).  While higher UA levels 

were clearly beneficial in low to moderate caloric density environments, with today’s 
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Western diet, it may be acting to predispose the population to weight gain, obesity, and 

metabolic syndrome (Wang et al., 2012; Zhao et al., 2013). 

One practical outcome and utility of this study is preliminary evidence supporting 

the clinical practice of checking patient UA levels as an indicator of likely response to a 

diet and exercise program.  If UA does decrease the energy of activation for fatty acid 

synthesis and storage, then it would provide more insight as to why some people have an 

increased propensity towards visceral weight gain (Gallant, Lundgren, & Drapeau, 2012; 

Spaeth, Dinges, & Goel, 2013).  Increased understanding of the factors involved in UA, 

AMPK, and SREBP-1c feed forward mechanism of lipid synthesis and storage will 

identify points of interventions that could be used to break the cycle of weight gain (e.g. 

lowering UA, AMPK agonists, SREBP-1c antagonists). 

Literature Review Related to Key Variables 

Antagonistic Pleiotropy of the Western Diet 

During the evolutionary emergence of Homo sapiens sapiens about 200,000 years 

ago, fat, sugar, and salt were scarce in available food sources.  This drove the selection of 

genes to seek and biologically store these nutrients for survival.  With the advent of 

modern farming and global trade, access to these sought-after items has become 

pervasive throughout modern societies.  This is particularly the case in Western cultures, 

where daily diets have increased percentages and portions of saturated fats, simple 

sugars, and salt, as they have become more accessible (Fields, 2004).  The birth of the 

fast food industry in the 1950s has made access to these items unprecedentedly and 

unnaturally available to the U.S. population (Grotz, 2006).  Although humans have been 

very successful in changing the environment towards increased food availability, the 
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genes that drove us to seek high fat, sugar, and salty foods have now become maladaptive 

(i.e. antagonistic pleiotropy) to our health (Meisel & Wardle, 2013).  Excess consumption 

of saturated fats, simple sugars, and salt, as found in the most sought-after fast food menu 

items, has been blamed as a primary cause for the current epidemic of heart disease, 

obesity, diabetes, and many cancers (Cotti & Tefft, 2013; Daniel, Cross, Koebnick, & 

Sinha, 2011; Mattson, Duan, & Guo, 2003).  

Genetic Factors Affecting Risk of Visceral Fat Weight Gain 

Recent changes in our environment (e.g. dietary intake of fructose, meat, milk, 

and decreased physical exercise), are thought to be the leading cause behind the current 

epidemic of visceral fat weight gain over the last 27 years (Schlosser, 2002).  

Epidemiological studies have shown that there are several genes with polymorphisms that 

make people more susceptible to weight gain and developing type 2 diabetes (e.g. leptin, 

Mrap2, Transcription factor 7-like 2 (T-cell specific, HMG-box), also known as 

TCF7L2)(Halaas et al., 1995; Liu, Elmquist, & Williams, 2013; Meisel & Wardle, 2013).  

The unanswered questions of what genetic factors produce increased visceral fat weight 

gain in the majority of the population and how these factors are interacting with our new 

environmental changes signify a large gap in knowledge of the field (Meisel & Wardle, 

2013).  

Age-Related Increases in Inter- and Extra-Cellular Lipidemia 

Diets high in saturated fatty acids are associated with visceral fat weight gain, 

obesity, insulin resistance, metabolic syndrome, and a higher risk, onset and progression 

of most age-related degenerative diseases (e.g. cardiovascular, type 2 diabetes, cancer, 

macular degeneration, Alzheimer disease)(Liu, et al., 2013).  Circulating blood and 
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cellular levels of triglycerides and cholesterol have been shown to increase linearly with 

normal aging (Jousilahti, Vartiainen, Tuomilehto, & Puska, 1996).  Central to the 

mechanism for excess caloric intake and the age-related increase of these lipids is the 

transcription factor SREBP-1c, and subsequent activation of acetyl-CoA carboxylase 

(ACC) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMB-CoA)(Shao & 

Espenshade, 2012).  The two major activating factors for SREBP-1c are glucose via the 

insulin, AKT pathway, and free fatty acid oleate (C18:1) from dietary saturated fats and 

de novo synthesis.    The observed increased activation of SREBP-1c that leads to cellular 

triglyceride and cholesterol loading with aging has been shown to be caused by the 

presence of a micro RNA (i.e. miR-33b) intron within the SREBP-1c gene that is spliced 

out during RNA maturation.  miR-33b has been shown to directly inhibit transcription 

levels of 5' adenosine monophosphate-activated protein kinase (AMPK; which 

deactivates SREBP-1c) and 5' adenosine triphosphate-binding cassette transporter 

(ABCA1: cholesterol and phospholipid efflux) causing a feed forward mechanism of 

increasing SREBP-1c protein, activation, and cellular lipid loading (Najafi-Shoushtari, 

2011).  Stearoyl-CoA desaturase-1 (SCD1) desaturates C18:0 into C18:1, which is 

necessary for triglyceride, cholesterol ester, and ceramide synthesis.  Down regulation of 

SCD1, through genetic or drug inhibitors has been shown to reduce the weight gain, fatty 

liver, and insulin resistance caused by a high calorie saturated fat diet.  Contrary to in 

vivo studies, dietary intake high in saturated fatty acids (i.e. C10:0 to C16:0) are the most 

potent activators of SREBP-1c, through intercellular elongation and desaturation 

pathways (Miyazaki et al., 2004). 
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The Role of Saturated Fats in the Development of Insulin Resistance and Metabolic 

Syndrome 

Epidemiology studies have identified metabolic syndrome as a combination of 

medical disorders that, when combined together, multiply rather than add towards the risk 

of developing cardiovascular and type 2 diabetes (Grundy et al., 2005).  Metabolic 

syndrome, as defined by the International Diabetes Federation, is clinically diagnosed 

when a patient presents with obesity and any two of the following four conditions: raised 

triglycerides [>150 mg/dL]; reduced HDL cholesterol [<40 mg/dL] male, [<50 mg/dL] 

female; raised blood pressure (systolic>130 or diastolic>85 mm Hg); or raised fasting 

blood glucose [>100 mg/dL](Alberti, Zimmet, & Shaw, 2006).  Recent studies indicate 

that the prevalence of metabolic syndrome in the United States is about 25% of the 

population.  The risk for developing metabolic syndrome increases with age, where it 

affects 44% of people over 50 years old.   The prevalence of patients diagnosed with 

cardiovascular disease who are also diagnosed with metabolic syndrome is approximately 

50% (Ford, 2005). 

The mechanisms that lead to metabolic syndrome have only been partially 

elucidated.  The two major independent risk factors are age and obesity.  Insulin 

resistance and type 2 diabetes have been shown to be independent, but common 

pathophysiological consequences of aging and obesity (Ford, Giles, & Dietz, 2002).  

Both of these health states corresponds to increased levels of ceramides, which have been 

shown to be a common mediator (Yang et al., 2009).  Sphingolipids (e.g. ceramides, 

sphingomyelins, and gangliosides) play a central role in the mechanisms linking 

lipidemia with inflammation-induced insulin resistance (Holland et al., 2007).  Known as 
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the antisocial lipids, sphingolipids are very hydrophobic, which causes them to bond 

together to make-up cellular membrane lipid rafts that bring together and house cell 

surface receptor components (e.g. insulin receptor) for activation.  Under conditions 

when plasma membrane sphingolipid levels are high (i.e. lipidemia or inflammation), 

these cell surface rafts enlarge, thereby expanding the distance and energy needed for 

assembly and activation of receptor components (i.e. lower insulin receptor response 

resulting in insulin resistance)(Gill & Sattar, 2009).  Ceramide has also been shown to be 

able to directly activate protein phosphatase-2A (PP2A), which inhibits AMPK, therefore 

turning on the SREBP-1c lipid synthesis pathway (Dobrowsky, Kamibayashi, Mumby, & 

Hannun, 1993).  A recent report has indicated that the rate-limiting factor regulating de 

novo synthesis of sphingolipids is the level of available saturated free fatty acids (e.g. 

C16:0)(Watt et al., 2012).  Therefore, one mechanism to decrease visceral body fat due to 

dietary and age-related increases of free fatty acids would be by inhibition of SREBP-1c, 

and/or activation of AMPK. 

The Role of Inflammation in Perpetuating a Cycle of Insulin Resistance and 

Lipogenesis 

Inflammation markers (C-reactive protein, NFκβ, and TNFα) have been used as 

markers to predict the development of cardiovascular disease, Type 2 diabetes, and 

metabolic syndrome (Gerner, et al., 2013).  During acute infections, the rise of 

inflammatory cytokine TNFα has been shown to activate neutral sphingomyelinase 

causing increases in ceramides and insulin resistance (Brindley, Wang, Mei, Xu, & 

Hanna, 1999).  This effect transiently increases circulating levels of glucose and free fatty 

acids that the immune system has been shown to effectively utilize for energy in 
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combating the infection.  After clearance of the infection, cytokine levels drop and lipid 

raft size and receptor responses go back to basal homeostatic levels.  Currently, there is 

little evidence that supports a direct relationship between increases in SREBP-1c pathway 

activity from over-eating or diets high in saturated fats initiating inflammation.  However, 

there is evidence that once activated, inflammation perpetuates the SREBP-1c pathway 

along with the onset and progression of lipidemia and metabolic syndrome (Biddinger et 

al., 2005). 

Excess Intake of Saturated Fats, Inflammation, and Risk for Age-Related Diseases 

 The simultaneous availability of high calorically dense food choices (e.g. pizza) with 

increases in portion size, particularly in the fast food industry (e.g. super sizing soft 

drinks and French fries), has been strongly associated with the recent and dramatic 

increases in obesity (Piernas & Popkin, 2011a, 2011b).  Evidence has shown significant 

increases in blood proinflammatory cytokines (i.e. interleukins (IL)-1β and 6), tumor 

necrosis factor (TNFα), plasminogen activator inhibitor-1 (PAI-1), and C-reactive protein 

(CRP) shortly (i.e. 1 to 6 hours) after ingesting a single, large (i.e. ≥ 800 calorie), high 

saturated fat meal (Manning et al., 2004).  High levels of these inflammatory markers 

have been directly related to a number of serious health problems, including heart 

disease, type 2 diabetes, insulin resistance, asthma, and obesity (Manning et al., 2008; 

Wood, Garg, & Gibson, 2011).  It has been suggested that the types of food we eat on a 

regular basis can influence the median levels of inflammatory markers (Wood, et al., 

2011).  In the United States, almost one third of meals are now from a fast food 

restaurant, and most often consist of foods high in simple carbohydrates and saturated 

fats; where consumption of pizza has increased over 3-fold and typically consists of 46% 
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of the recommended daily value of saturated fat intake (Margioris, 2009).  However, the 

identity of the specific lipid species causing the observed postprandial acute 

inflammation response has not been identified.  Agreement of the known harmful 

components of fast food (e.g. cholesterol, trans-fats) by experts in the field has helped 

mold public health policies and public awareness campaigns (e.g. food label listings and 

recommended daily allowances).   However, more studies are needed to identify other 

harmful components and doses contained within our food supply and in particular the fast 

food menu. 

One of the most studied lipids associated with an increase of dietary meat and 

inflammation is the polyunsaturated omega-6 fat lipid arachidonic acid, as well as its 

saturated counterpart, arachidic acid.  We get high amounts of arachidonic acid from 

dietary meats and some vegetable oils (e.g. peanut oil).  One clinical intervention study 

reported a significant increase of arachidonic acid in participants two hours after 

ingestion of a single fast food meal (i.e. McDonald’s Big Mac meal McDonald’s Corp., 

London, England)(Gopaul, Zacharowski, Halliwell, & Anggard, 2000).  Arachidonic acid 

is a precursor of endocannabinoid synthesis via the acyltransferase pathway, which has 

been shown to be a primary activator of the limbic forebrain’s hunger response and 

associated with a propensity to consume excess calories (Matias, Bisogno, & Di Marzo, 

2006).  Arachidonic acid is also a precursor that can go down the cyclooxygenase 

pathway to produce eicosanoids (e.g. prostaglandins, prostacyclin, and thromboxanes), 

which activate inflammation, vasodilatation and thrombosis (Calder, 2002).  Both of the 

biological effects of arachidonic acid, i.e., activating the hunger response and acute 
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inflammation, place it as a pivotal player for risk in over-eating weight gain and 

metabolic syndrome (Simopoulos, 2002). 

The Role of Uric Acid in Exercise Performance 

Most animals excrete nitrogenous waste through a pathway ending in allantoin 

and urea.  However, humans are part of a small group of species, which includes birds 

and bats, that has evolved biochemical regression by mutational deactivation of urate 

oxidase, making uric acid (UA), rather than allantoin and urea, the endpoint of the purine 

degradation pathway (Johnson, Titte, Cade, Rideout, & Oliver, 2005).  One hypothesis 

for the driving force behind the regression of an established biochemical pathway is a 

proposed gain in exercise endurance and training response (Sutin, et al., 2013).  Aerobic 

exercise increases nitric oxide and the respiratory production of free radicals, particularly 

superoxide, which leads to the formation of peroxynitrite, hydroxyl-, carbon dioxide-, 

nitric oxide-, and nitrogen dioxide radicals (Davies, Quintanilha, Brooks, & Packer, 

1982).  UA has been shown to have a high specific antioxidant activity towards 

quenching these radicals thereby buffering their negative effects of inhibiting eNOS 

activity, myoglobin and erythrocyte oxygen exchange, hemolysis, and in decreasing 

muscle contraction efficiency (Gersch et al., 2008; Kondo, Takahashi, & Niki, 1997; 

Waring et al., 2003).  UA reacts with superoxide, nitric oxide, and peroxynitrite to 

produce allantoin, 6-aminouracil, and triuret respectively (Kim et al., 2009; Robinson, 

Morre, & Beckman, 2004).  Knocking out urate oxidase also has the benefit of sparing 

the utilization of 1-oxygen and 1-water that could then be used for muscle respiration, 

and in sparing the production of 1-hydrogen peroxide and 1-carbon dioxide that would 

have otherwise acted to decrease muscle contraction efficiency.  Human studies have 
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shown that during rigorous exercise, skeletal muscle UA levels decrease (i.e. consumed) 

as non-enzymatic metabolic products of UA reacting with superoxide (i.e. allantoin) 

increase.  During post exercise recovery, human muscle and circulating levels of UA 

increased significantly higher than pre-exercise levels (Hellsten, Tullson, Richter, & 

Bangsbo, 1997).  Similar data on increases of UA with exercise and VO2 max has been 

shown in birds, which, like humans, also lack functional urate oxidase (Tsahar, Arad, 

Izhaki, & Guglielmo, 2006).  

Uric Acid Protects Against Traumatic Stress Induced Methemoglobin and 

Hemolysis Anemia 

Exercise causes physical injury and metabolic and oxidative stress, with increases 

in catabolic by-products of purines, carbon dioxide, nitric oxide, superoxide, hydrogen 

peroxide, and peroxynitrite (Davies, et al., 1982).  Post-exercised mice have a high 

incidence of hemolysis, which has been reported to be negatively correlated with UA 

levels (Suzuki et al., 2006; Theodorou et al., 2010).  Peroxynitrite and other oxidizing 

radicals have been shown to directly reduce the oxygen carrying and exchange efficiency 

of erythrocytes and myoglobin (i.e. methemoglobinemia and hemolysis (Kondo, et al., 

1997; Meadows & Smith, 1987).  UA has also been reported to protect against 

peroxynitrite and ROS mediated increases in methemoglobin and hemolysis (Ames, 

Cathcart, Schwiers, & Hochstein, 1981; Smith, Gore, & Roland, 1988).  Further 

supporting these studies, clinical treatment of patients transfused with functional urate 

oxidase protein (i.e. rasburicase) has numerous reported cases of causing methemoglobin 

and hemolysis anemia emergencies.  This effect has been attributed to increases in urate 
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oxidase-derived hydrogen peroxide with simultaneous decreases in antioxidant protection 

from UA (Ng, Edwards, & Egelund, 2012; Zaramella et al., 2013). 

Neuroprotective Role of Uric Acid Against Stroke and Ischemia 

Stroke is a major cause of age-related morbidity and mortality.  Strenuous 

exercise and ischemia increases nitric oxide and free radical production (Gravier et al., 

2013).  Peaks of nitric oxide can cause degeneration of neurons via inactivation of protein 

disulfide isomerase and S-nitrosylation mediated neuropeptide misfolding (Obukuro et 

al., 2013).  Increases in levels of carbon dioxide during exercise or ischemia enhance 

peroxynitrite-mediated protein tyrosine nitration (Gow, Duran, Thom, & Ischiropoulos, 

1996).  Buffering nitric oxide levels has been shown to reduce ischemic reperfusion 

damage in mouse models (D. H. Liu et al., 2013).  Animal model studies have reported 

that treatment with exogenous UA or more soluble UA analogs can be beneficial in 

animal stroke models (Haberman, et al., 2007).  However, in humans both positive and 

negative associations between levels of UA and the outcome of ischemic stroke have 

been reported (Chiquete et al., 2013).  

Effects of Uric acid in Buffering AMPK Activation 

Exercise of skeletal muscle activates AMP-activated protein Kinase (AMPK), 

which plays roles in cellular energy homeostasis (e.g. fatty acid beta-oxidation), 

activation of catabolysis, and autophagy (Ruderman et al., 2003).  Activation of AMPK 

during stress has been identified as an inhibitory regulator of renal UA efflux excretion, 

resulting in increased reabsorption and circulating levels (Bataille, Maffeo, & Renfro, 

2011).  Sprint training in humans has been shown to stimulate URAT1 mediated kidney 

reuptake of UA (Stathis, Carey, Hayes, Garnham, & Snow, 2006).  Unexpectedly, UA 
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has been reported to inhibit activation of AMPK in a human liver cell line (Lanaspa, 

Sanchez-Lozada, et al., 2012).  However, during exercise of skeletal muscle, regulation 

of fatty acid oxidation utilizes AMPK-independent pathways (Dzamko et al., 2008b; 

Jeppesen et al., 2013).  AMPK activation has protective functions in cell survival during 

transient energy depletion, but prolonged activation can lead to apoptosis via activation 

of Bcl-2 family member Bim, and by hyper-activation of autophagy via inhibition of 

mTOR (Weisova et al., 2011).  Therefore, increases in UA may provide advantages 

during metabolic stress by buffering prolonged activation of AMPK (Venna, Li, 

Benashski, Tarabishy, & McCullough, 2012).    

Increases in UA may also be advantageous for exercising by increasing 

circulating and stored triglycerides to be utilized for fuel.  Higher numbers of 

mitochondria and levels of triglycerides in muscle have been shown to increase exercise 

performance and hyperactivity (Pandareesh & Anand, 2013; Turner et al., 2007).   

Repatterning of energy metabolism by increasing muscle triglycerides has been shown to 

increase running performance and maximum life span in a phosphoenolpyruvate 

carboxykinase over-expressing mouse model (Hakimi et al., 2007).  Farber et al. (1991) 

has shown that circulating triglycerides are a major energy source in endurance athletes, 

and others have shown it is the preferred fuel used by long-distance migrating birds 

(Farber, Schaefer, Franey, Grimaldi, & Hill, 1991; Jenni-Eiermann et al., 2002).  

Increased lipids increase transcriptional coactivator peroxisome proliferator-activated 

receptor-gamma coactivator 1-beta (PGC.1beta), with concomitant increases in muscle 

mitochondria numbers and oxidative energy metabolism capacity (Lin, et al., 2005; Song 

et al., 2012). 
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Uric Acid as a Stress Signal in Response to Starvation 

Epidemiology and mouse studies have shown that UA is strongly correlated with 

increased disinhibition, risk taking, impulsivity, positive outlook, and a high energy drive 

for voluntary exercise (Lorenzi, Borba, Dutra, & Lara, 2010; Sutin, et al., 2013).  This 

evidence indicates that it may act on neurons to change cognitive behavior that would be 

beneficial in a drive for migration towards new food sources during starvation conditions.  

In times of famine, it is conceivable that increased UA levels would be advantageous in 

increasing motivation, risk taking behaviors, exercise endurance, and anabolic recovery 

in the search for food.  UA’s ability to buffer nitric oxide and raise blood pressure may be 

life saving during famine conditions when blood pressure and cognitive performance 

drop (Alvarez-Lario & Macarron-Vicente, 2010).  Even after food is found, UA may be 

further beneficial in its ability to increase insulin secretion and triglyceride synthesis (i.e. 

metabolic efficiency) in the utilization and fat storage of excess food. 

Acute Increases in Uric Acid Associated with Lower Levels of Oxidative Stress 

Many of the physiological responses during rigorous physical exercise (e.g. 

utilization of glucose, glycogen, and fat, and muscle catabolism) are acutely mimicked by 

caloric fasting.   In previous work, I have reported on the progressive increase in plasma 

UA with a concurrent decrease in oxidative damage levels during an eight-week 

intermittent fasting clinical study.  This study also showed acute increases of UA and 

decreases of oxidative damage markers on fasting days verses the previous feeding day 

(Johnson et al., 2007).  Uric acid makes up 53 to 60% of the fast-acting oxidative radical 

absorption capacity in human serum (Benzie & Strain, 1996; Cao, Alessio, & Cutler, 
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1993), and has been shown to play a key role in protecting nitric oxide synthase and 

antioxidant enzyme activities (Hink et al., 2002; Lee et al., 2013). 

Uric Acid as a Regulator of an Antioxidant and Nitric Oxide 24-hour Circadian 

Rhythm 

Blood levels of UA follow a 24-hour circadian rhythm that parallels melatonin 

and antioxidant levels, and is inverse of nitric oxide and markers of oxidative stress 

(Andreoli et al., 2010; Arguelles, Gomez, Machado, & Ayala, 2007; Kanabrocki et al., 

2000; Sennels, Rgensen, Goetze, & Fahrenkrug, 2012).  The rise in UA, which peaks at 

4:00 AM, is likely due to the “dumping” of purines (e.g. adenosine, cAMP) in resetting 

the circadian clock, but may also be part of an unrecognized oxidative stress and nitric 

oxide circadian system (Edgar et al., 2012; Kalinchuk, McCarley, Porkka-Heiskanen, & 

Basheer, 2011; O'Neill, Maywood, Chesham, Takahashi, & Hastings, 2008; 

PorkkaHeiskanen et al., 1997).   Knock out of urate oxidase, rather than changes in 

regulation, acts to tightly couple the circadian rhythm of purine signaling metabolism 

with the peroxiredoxin antioxidant/redox cycle (Stangherlin & Reddy, 2013).  The 

finding that the peak of UA does not correlate with peaks of blood pressure gives some 

evidence that UA levels may not be directly related to blood pressure, as suggested by 

other researchers (Hermida, Ayala, & Portaluppi, 2007).  However, the nightly peak of 

UA levels do parallel with the peaks of de novo triglyceride and cholesterol synthesis 

(Jones & Schoeller, 1990; Parker et al., 1982).  This observation may be due to UAs 

suppression of AMPK, which is a major negative regulator of de novo lipid synthesis.  

More work is needed to uncover this proposed mechanism. 
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The Negative Health Effects of Diet-Induced Increases in Uric Acid 

Due to increases in meat and fructose consumption, the average U.S. adult blood 

UA levels have increased approximately 30% over the past three decades, and the 

epidemiological prevalence of gout has gone up over 2-fold (Rho, Zhu, & Choi, 2011).  

Increasing levels of UA by dietary fructose has been shown to increase blood insulin and 

triglyceride levels (Lanaspa, Sanchez-Lozada, et al., 2012).  Uric acid levels naturally 

increase in response to starvation or physical exercise, where it is proposed to enhance 

motivation to migrate, forage, and increase insulin response towards visceral fat storage 

(Green & Fraser, 1988; Lanaspa, Cicerchi, et al., 2012).  However, diet-induced increases 

of UA can act as a misdirected stress response, where increased sensitivity in insulin 

response and lipogenesis raise the risk of visceral fat weight gain from excess calories 

(W. T. Lin et al., 2013; Rock, et al., 2013). 

Potentially Confounding Factors from Natural Dietary VLDL Synthesis Inhibitors 

Participant levels of natural VLDL synthesis (e.g. SREBP-1c) pathway inhibitors 

from their previous diet (e.g. lycopene) are a variable that was not measured in this study, 

and could be a confounding factor in the results and interpretation of the data.  Utilization 

of human liver cell culture (e.g. HepaRG™, Life Technologies Corporation; Grand 

Island, NY) and clonal rodent models would give a cleaner background and, therefore, 

more confidence in the relationship between cause and effect for this study.   

Levels of Inflammation and Basal Metabolic Rate Mediating Arachidonic Acid 

Metabolites 

The effect of other lipids in a typical fast food meal was not evaluated in this 

study and could constitute a confounding factor in the results and interpretation of the 
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data.  A meal high in saturated fat meats contains large amounts of arachidonic acid (Li, 

Ng, Mann, & Sinclair, 1998).  Arachidonic acid is not only a lipid precursor for many 

inflammatory signaling molecules, but also a precursor for endogenous cannabinoid 

synthesis.  Food-induced activation of endocannabinoids (i.e. anandamide, 

oleoylethanolamide, and noladin) has recently been implicated as a possible causal factor 

for over-eating and food addiction (E. K. Jones & Kirkham, 2012; Petersen et al., 2006).  

The endocannabinoid system is normally silent and only becomes transiently activated 

during stressful conditions (e.g. exercise, fasting, and physical injury)(Raichlen, Foster, 

Gerdeman, Seillier, & Giuffrida, 2012).  Chronic activation of the endocannabinoid 

system by nonsynonymous genetic polymorphisms in the cannabinoid receptor CB2 or 

over-production of endocannabinoids through eating large doses of lipid precursors has 

been shown to increase over-eating and sedentary behaviors (Ishiguro et al., 2010; 

Kirkham, Williams, Fezza, & Di Marzo, 2002).  As expected from a stress response of 

starvation, the activation of the endocannabinoid system during fasting conditions acts to 

conserve energy homeostasis by decreasing metabolic rate (Banni & Di Marzo, 2010).  

Endocannabinoids are also activated during and after physical trauma as a natural 

painkiller and anti-inflammation agent (Esposito & Cuzzocrea, 2013; Rettori, De 

Laurentiis, Zorrilla Zubilete, Rettori, & Elverdin, 2012).  The anti-inflammatory activity 

of endocannabinoids may help counteract the inflammation-inducing effects of a meal 

high in saturated fats (Batetta et al., 2009; Gopaul, Zacharowski, Halliwell, & Anggard, 

2000).  However, because endocannabinoids are mainly produced locally (e.g. limbic 

forebrain that controls hunger, and the neurons of injured tissue), the beneficial anti-

inflammatory effects have not been reported to be systemic enough to counteract the 
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inflammatory effects of a large high saturated fat meal.  Endocannabinoid regulatory 

pathways are regulated by the hormones and neuropeptides involved in energy 

homeostasis, which can be directly affected by diet (You, Disanzo, Wang, Yang, & 

Gong, 2011).  Endocannabinoids mediate the actions of nutrient intake and processing 

through modifications in behavior and caloric metabolism, where perturbation by dietary 

fat precursors could lead to over-eating and propensity to store visceral fat (Heyman, 

Gamelin, Aucouturier, & Di Marzo, 2012). 

Gaps and Barriers 

 Epidemiology studies on weight gain, obesity, and metabolic syndrome have reported 

many relationships regarding the possible causes and resulting effects on health.  

However, most clinical trials on this topic use obese subjects who already have many 

confounding variables (e.g. gout, cardiovascular disease, and type 2 diabetes)(Manning, 

et al., 2008; Peairs, Rankin, & Lee, 2011).  The resulting gap in knowledge from these 

studies could be filled with the use of healthy populations to discover the factors involved 

in regulating the sensitivity of initiating lipogenesis.  The discovery of predicting markers 

of an individual’s sensitivity of initiating lipogenesis from excess caloric intake would be 

a valuable clinical tool in evaluating and managing his/her risk of visceral fat weight 

gain, obesity, metabolic syndrome, and associated age-related diseases. 

Implications for Social Change 

The aim of this study was to increase the knowledge of UA’s role in health and 

disease, in order to identify targets of intervention that enhance the positive aspects of 

UA and limiting the negative.  UA has a bell shaped curve associated with many 

beneficial health outcomes (Fini, Elias, Johnson, & Wright, 2012).  However, with excess 
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caloric intake, particularly with foods high in saturated fats, UA is positively associated 

with the onset and progression of many age-related diseases (Zhao, et al., 2013).  This 

study tested if UA acts to increase the sensitivity of inducing lipogenesis after a high in 

saturated fat meal.  The potential relevance for social change from this study is to 

increase the knowledge of risk factors for visceral fat weight gain. 

Summary and Conclusions 

This literature review depicts my strategy and utilized search engines for choosing 

the most accepted as high quality research study findings by my peers.  Utilizing this 

strategy, I was able to layout the history of previous work on the factors that lead to the 

development of the “Western diet” and sedentary work environment that make up the 

theoretical basis behind the leading causes of the current weight gain and obesity 

epidemic facing most modern societies today.  A detailed understanding of the behavior 

and biochemical pathways regulating hunger response triggers, satiation, and regulators 

of visceral fat synthesis has been reviewed.  However, there remains a large gap of 

knowledge as to the factors of why some people quickly gain visceral fat, while others 

with similar caloric diets and physical exercise are resistant.   

This study provides evidence as to whether UA acts to increase lipemic response 

and, therefore, visceral fat synthesis from excess caloric consumption in humans.  

Because of the novelty of the hypothesis tested in this study, the research model does not 

reach the standard of “theory.”  The aim of this study was to test the hypothesis that pre-

meal blood UA levels can predict lipemic response to a single high in saturated fats meal.  

If the null hypothesis can be rejected, blood UA levels may be a novel and useful factor 
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to predict risk of visceral fat weight gain from excess caloric consumption - particularly 

from meals high in saturated fats. 

Chapter 3: Research Design And Methods 

Introduction 

 This chapter describes the study design, rationale, setting, sampling method, sample 

size and power analysis, data collection, instrumentation, and statistical methods.  This 

study examined levels of UA, lipids, insulin pathway hormones, markers of 

inflammation, and insulin sensitivity data as a secondary study from archival data.  The 

primary study selected a general representation of healthy middle-aged adults and 

collected blood serum samples measured at baseline and time points after ingestion of a 

HSF meal, and a PUFA meal.  The purpose of my secondary study using this data was to 

quantitatively measure the effects that baseline serum UA levels have on the acute peak 

and sustained changes in endogenously-synthesized circulating blood lipids and insulin 

sensitivity after a single HSF meal.   

Comparisons of the predictive value of UA levels on postprandial lipemic 

response (i.e. percent change in VLDL), were compared to other known blood risk 

factors involved in the development of visceral fat weight gain, obesity, type 2 diabetes, 

and metabolic syndrome.  The predictive power of the independent variables on lipemic 

response post ingestion of a HSF meal was determined using one-way repeated measures 

ANOVA, and Pearson’s correlation with least squares (two-tail) regression modeling to 

test the research questions of this dissertation.  
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A brief description of the instruments and criteria for inclusion and exclusion of 

participants used in the primary study is briefly described in this chapter to disclose that 

the participant protocol methods followed ethical and legal guidelines. 

Research Design and Rationale 

 This study analyzed archival serum sample data from a completed double blind 

randomized longitudinal crossover clinical trial.  The rationale for the design was to have 

each participant serve as his or her own control, so that differences could be presented as 

percent change from their baseline values.  The benefit of this design was a lower number 

of participants required to reach statistical significance.  However, one drawback may 

have been a bias in the population, where the findings and conclusions may not be 

generalizable to all people.   

In the study, 68 participants were recruited, with 31 completing all six visits.  The 

schedule and procedures performed at each visit are briefly depicted below.  This study 

was funded by and conducted at the National Institute on Aging (NIA; 251 Bayview 

Blvd., Baltimore, MD 21224).  The Protocol had obtained Institutional Review Board 

(IRB) approval by the NIA IRB and MedStar Research Institute, NIA/Astra Unit.  The 

principal investigator was Luigi Ferrucci, MD PhD (Clinical and Scientific Director of 

NIA).  The NIA IRB approval and outline of this study is provided at 

http://clinicaltrials.gov/; identifier: NCT00233311. 

Methodology 

Participant Population and Recruitment Methods Used in the Primary Study 

 The participants used in the primary study were from a convenience sample of 

recruited male and female volunteers.  Recruited subjects were from the following NIA 
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screening protocol that operates within local clinics and health care facilities in the 

Baltimore-Washington area.  Brochures and flyers were used to advertise recruitment for 

the study.  Recruitment letters were mailed to healthcare providers and to those 

participants who requested information.  This included ads and/or public service 

announcements on websites, in radio broadcasts, television, as well as newspapers, 

newsletters, and magazines.  Direct mailing through established marketing and 

advertising organizations were also used. 

Inclusion Criteria 

 A narrow age criterion of healthy male and female participants between the ages of 

50 and 65 was used to remove the known effects of age from the experiment.  Previous 

reports have shown that aging causes plasma levels of pro-inflammatory cytokines to 

increase (Hager et al., 1994), where the production of IL-6, TNF-alpha and IL-1 from 

stimulated polymorphonucleated leukocytes increases with the age of the donor 

(Roubenoff et al., 1998).  Most important to this study are the findings of correlations 

between age and the postprandial lipemic response to a fatty meal (Cohn, McNamara, 

Cohn, Ordovas, & Schaefer, 1988).  

Participant Eligibility 

 Participants needed to meet all of the following criteria.  Failure to meet any of the 

eligibility criteria would have rendered the participant ineligible for participation in the 

study.  

• Body mass index (BMI) must be ≥ 19-kg/m2   and ≤ 30 kg/m2.   
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• Waist circumference less than or equal to 40 inches for men and 35 inches for 

women (measured at natural waist just above the navel).  These criteria are 

based on guidelines of the American Heart Association. 

• CRP level less than 3mg/L.   

• Report no difficulties or need for help in performing self-care or instrumental 

activities of daily living 

• Able to walk for at least 10 minutes without needing to stop or without 

symptom onset   

• No substantial cognitive impairment based on mental status screening tests 

(score <24 on Mini-Mental Status Exam)  

• No history of a cardiovascular event over the last 3 months (including angina, 

myocardial infarction, CABG, congestive heart failure, cerebral-vascular 

diseases), cancer, diabetes mellitus, neurological disease, thyroid disease, 

birth defect, kidney or liver disease, gastrointestinal (G.I.) diseases (including 

gallbladder disease), musculoskeletal disorder (if they cause pathological 

weakness and/or chronic pain), important sensory deficits. 

Exclusion Criteria 

• Blood pressure > 160 mmHg systolic or >95 mmHg diastolic with or without 

treatment 

• WBC > 12,000/: l   

• Platelets < 100,000 or >600,000 /: l 

• Hemoglobin < 11 gm./dl 

• Creatinine >1.4 mg/dl or calculated creatinine clearance < 50 cc/min  
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• Bilirubin > 1.5 mg/dl unless higher levels can be ascribed to Gilbert’s disease  

• Abnormal liver function (alanine transaminase > 56 IU/L; aspartate 

transaminase > 47 IU/L, and alkaline phosphatase > 120 IU/L) 

• Corrected calcium < 8.5 or > 10.7 mg/dl 

• Albumin < 3.4 g/dl 

• Shortness of breath while performing normal activities of daily living, such as 

walking or climbing stairs  

• Use of any hormones (e.g. estrogen, testosterone)  

• Absolute need for long-term treatment with anti-inflammatories, aspirin (>100 

mg per day per physician orders), statins, antibiotics, corticosteroids, 

immunosuppressors, H2 blockers and pain medications.  Non-steroid anti-

inflammatory use is allowed, but should be stopped three days before the 

study 

• Use of herbal supplements are not permitted during the study (multivitamin is 

permitted, but other vitamin supplementation is not permitted during the 

study) 

• Any medication/drug that acts on lipid metabolism (e.g. Xenical) 

• Any severe psychiatric condition  

• Any infections requiring use of antibiotics within the past 3 months  

• Alcoholic intake > 30 grams while on this study is not permitted. 

• Any marked increase in exercise regimen in the last 2 weeks 

• Allergies to nuts  

• Any condition that may preclude informed consent 
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• Recent blood donation (past 3 months) 

• Pregnant 

Criteria for Withdrawal of Participants from the Study 

 Participants were considered for removal from study for any of the following  

reasons: 

• Participant decided to withdraw from the study 

• General or specific changes in the participant’s condition which rendered the 

participant unsuitable for continuation in the study per the judgment of the 

investigator 

• Participant was non-compliant.  If the subject was determined to be non-

compliant with the protocol, counseling would be indicated.  Evidence of repeated 

noncompliance may have resulted in further counseling or possible removal from 

the study with no further monetary compensation. 
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Table 1 

Primary Study Participant Demographics and Physical Screen Data 

Participant 
ID # 

Age 
(yrs.) Race Sex BMI Visit 3 

Meal 
Visit 5 
Meal 

Serum 
Creatinine 
(mg/dL) 

2-hour 
OGTT 

(mg/dL) 
FF-003 50.2 Ca M 21.7 HSF PUFA 0.8 68 
FF-007 55.7 Ca M 25.6 PUFA HSF 1.0 74 
FF-010 58.5 AA M 29.5 PUFA HSF 1.3 84 
FF-015 54.1 Ca M 23.6 PUFA HSF 1.0 109 
FF-018 55.4 AA M 21.8 HSF PUFA 0.9 134 
FF-022 65.5 Ca M 24.2 HSF PUFA 1.0 121 
FF-024 54.8 AA M 25.3 PUFA HSF 0.9 111 
FF-025 51.7 Ca F 23.0 HSF PUFA 0.7 94 
FF-026 65.2 Ca M 24.1 PUFA HSF 1.0 122 
FF-028 60.9 Ca M 25.3 PUFA HSF 1.0 127 
FF-030 56.6 Ca M 22.7 HSF PUFA 1.2 48 
FF-034 56.5 Ca M 27.8 HSF PUFA 0.8 62 
FF-035 56.1 Ca F 23.2 HSF PUFA 0.9 86 
FF-039 61.8 Ca M 19.8 PUFA HSF 0.9 100 
FF-040 55.6 Ca F 27.5 HSF PUFA 0.8 76 
FF-044 56.0 AA F 24.2 HSF PUFA 1.0 76 
FF-046 56.7 Ca F 21.2 HSF PUFA 0.9 73 
FF-047 64.2 Ca F 30.0 HSF PUFA 1.0 164 
FF-049 60.9 Ca M 28.4 HSF PUFA 1.3 108 
FF-050 59.6 Ca M 22.9 PUFA HSF 1.3 92 
FF-051 60.9 Ca F 26.1 HSF PUFA 0.8 111 
FF-052 52.8 Ca F 21.4 PUFA HSF 0.7 118 
FF-053 50.9 AA F 27.9 PUFA HSF 1.1 92 
FF-055 64.2 Ca F 27.0 HSF PUFA 1.0 104 
FF-056 60.5 Ca F 27.6 HSF PUFA 0.8 136 
FF-057 57.9 AA F 23.7 HSF PUFA 0.9 176 
FF-059 56.7 AA M 28.1 PUFA HSF 0.9 132 
FF-062 53.1 Ca F 29.8 HSF PUFA 0.9 108 
FF-063 56.8 Ca F 28.0 PUFA HSF 0.9 166 
FF-066 54.3 AA F 25.9 PUFA HSF 1.0 68 
FF-068 52.4 AA M 29.2 HSF PUFA 1.2 74 
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Table 2 

Primary Study Participant Visit Schedule 

 

 

 

 

 

 

Procedure 
Screening 

Visit 1 Visit 2 Visit 3 

 
 

Visit 4 Visit 5 

 
 

Visit 6 
Total 

Procedures 
Blood draw  X X X X X X 6 

History/physical exam X      1 

Informed consent X      1 

Study meal   X  X  2 

Mini-mental exam X      1 
Food Record Diary 

(blue booklet) X X X  X  4 

Oral glucose tolerance test  X     1 

Creation of participant file X      1 
Reimbursement 

check distribution X X  X  X 4 

Urine pregnancy test X     X 2 

Vital signs X X X X X X 6 

Body measurements X      1 

ECG X      1 
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Table 3 

Nutritional Makeup of Intervention Meals 

 
HSF 
meal 

PUFA 
meal 

HSF/ 
PUFA   

Water (g) 138.3 324.3 0.4   
Energy (kcal) 887.0 845.0 1.0   

Protein (g) 46.3 46.8 1.0   
Fat, total (g) 50.4 41.7 1.2   

Carbohydrate (g) 59.7 75.7 0.8   
Sugars, total (g) 7.2 27.5 0.3   

Fiber, total dietary (g) 3.9 8.4 0.5 HSF PUFA 

Cholesterol (mg) 149.0 73.0 2.0 
contribution 
to total fat 

contribution 
to total fat 

Saturated fatty acids, total (g) 18.6 7.2 2.6 36.8% 17.2% 
4:0 (g) 0.3 0.0 28.8 0.6% 0.0% 
6:0 (g) 0.2 0.0 118.5 0.5% 0.0% 
8:0 (g) 0.2 0.0 14.1 0.3% 0.0% 

10:0 (g) 0.4 0.0 18.4 0.8% 0.1% 
12:0 (g) 0.4 0.1 6.7 0.9% 0.2% 
14:0 (g) 2.0 0.1 21.6 3.9% 0.2% 
16:0 (g) 9.2 4.4 2.1 18.2% 10.5% 
18:0 (g) 5.1 1.9 2.7 10.1% 4.5% 

Monounsaturated fatty acids, 
total (g) 20.1 19.5 1.0 40.0% 46.7% 
16:1 (g) 1.1 0.2 4.9 2.2% 0.6% 
18:1 (g) 18.2 19.0 1.0 36.1% 45.5% 
20:1 (g) 0.3 0.2 1.4 0.6% 0.5% 
22:1 (g) 0.0 0.0 0.1 0.0% 0.0% 

Polyunsaturated fatty acids, 
total (g) 6.1 12.3 0.5 12.2% 29.4% 
18:2 (g) 5.4 11.5 0.5 10.8% 27.6% 
18:3 (g) 0.6 0.6 0.9 1.1% 1.5% 
18:4 (g) 0.0 0.0 2.0 0.0% 0.0% 
20:4 (g) 0.1 0.1 1.1 0.1% 0.1% 

20:5 n-3 (g) 0.0 0.0 1.8 0.0% 0.0% 
22:5 n-3 (g) 0.0 0.0 5.0 0.0% 0.0% 
22:6 n-3 (g) 0.0 0.0 1.0 0.0% 0.0% 

Trans Fatty Acids (g) 0.0 0.0 15.4 0.0% 0.0% 
omega 3 0.6 0.7 0.9 1.2% 1.6% 
omega 6 5.5 11.6 0.5 10.9% 27.7% 
ratio 6/3 9.1 17.7 0.5     
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Sampling Method and Randomization 

 All participant samples were taken during separate baseline exam, oral glucose 

tolerance test (OGTT), at timed intervals over 8.5 hours post feeding of intervention meal 

(HSF or PUFA), and the next morning (fasted).  Who received the first of the two 

intervention meals was randomly selected, and the crossover meal given 10 days later.  

The order of assignment to each of the meal groups was randomly selected by the NIA 

pharmacy.  This sample collection method was used to establish before intervention 

baseline levels for each participant.  Changes due to the study intervention meal are 

relative to within-subject comparison to their baseline; i.e. each participant served as 

his/her own control. 

Sample Size and Power 

 A power analysis using Raosoft (2012; http://www.raosoft.com/samplesize.html) 

sample size calculator revealed that for a 95% confidence level, response distribution of 

50%, and a 5% margin of error, the study will need 29 participants, assuming a normal 

distribution curve.  This study had 31 participants who finished all 6 visits, and met the 

recommended sample size for achieving a high statistical power of analysis.  A secondary 

analysis for sample size was based on a minimum clinically important difference in CRP, 

one of the outcome variables, following consumption of a test meal, where a change of 

1.0 mg/L in serum levels of CRP constituted a clinically meaningful change.  This value 

was derived from previously published data from the InChianti study, which revealed that 

the mean serum level of CRP from an unusually healthy population is 1.4 mg/L [standard 

deviation = 0.75 mg/L](Cesari et al., 2004).   According to recent American Heart 

Association guidelines, persons with a CRP level greater than 3.0 mg/L are considered to 
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be at high risk for cardiovascular disease (Sabatine et al., 2007).  Therefore, for the 

purposes of this study, I was only interested in those people with CRP levels below high 

cardiovascular risk.  Based on this information, the sample size calculator determined that 

a sample size of 12 participants, who act as their own controls, would give a Power of 

83% to yield a statistically significant result.  An accrual ceiling of 100 subjects was 

established in order to assure that 15 men and 15 women were eligible and able to 

complete the study. 

Data Collection and Access 

 The data used in this secondary analysis study is from a double-blinded longitudinal 

crossover clinical trial that was conducted by and at the National Institute on Aging 

(NIA; a branch of the National Institutes of Health, under the Department of Health and 

Human Services of the U.S. federal government), who privately holds the data.  The 

methods described below pertain to my usage of the primary study’s data in a secondary 

analysis as my dissertation study.   

As a full time employee (research scientist) of the NIA, I obtained anonymized 

(participant code ID#, with no personally identifiable information) data from the 

completed study: Assessment of the Effects of Fast-Food on Inflammatory Markers 

(ClinicalTrials.gov ID: NCT00233311).  The specimens were not collected specifically 

for this current research study and the data given to me was anonymized; therefore, my 

study does not involve human subjects.  I was given this data as a known colleague and 

employee of the National Institute on Aging, who funded and conducted the primary 

study.  Since the primary study has already been conducted, my secondary research study 

analysis of the existing data does not pose any additional safety risks to the participants.  
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My research study is in the general scope and pretense of the original study that the 

participants originally signed up for under the primary studies protocol and, therefore, 

does not breach their participation agreement.  My secondary analysis of the data 

represents minimal risk to the participants and involves no procedures or access linking 

personal identifiers or information for which written consent is normally required outside 

of the research context.  The data has been used to investigate the relationship between 

baseline blood levels of UA, lipids, insulin hormones, 2-hour OGTT glucose, insulin 

sensitivity, and markers of inflammation, with acute changes in de novo lipemic 

response, after a HSF and PUFA test meal. 

Labeling of Data Samples 

 The data was sent to me electronically via email and stored on an encrypted and 

secure computer hard drive.  The participants’ stored data are labeled with no identifying 

information (such as name); only the participants’ code numbers were given to link the 

data for this study.  Any identifying information about the subject has been kept 

confidential and only accessible by the IRB to the extent required by HIPAA laws. 

Specimen Data Banking and Tracking 

 Specimen data have been stored and tracked utilizing the NIA Biological Sample 

Inventory system following NIH guidelines.  The data was stored on my computer hard 

drive at the National Institute on Aging building; 251 Bayview Blvd., Baltimore, MD 

21224.  My work computer and backup server are only accessible by my Department of 

Health and Human Services (HHS) ID Badge Smart Card and pin number.   The data on 

my computer is protected by a Federal Information Processing Standard (FIPS) 140-2 

compliant encryption software package.  All efforts have been made to protect the 
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subjects’ personal information to the extent reqired by law.  Medical records of research 

study subjects are to be stored and kept according to legal requirements.  Subjects will 

not be identified in any reports or publications resulting from this study.  Organizations 

that may request, inspect and/or copy research and medical records for quality assurance 

and data analysis include groups such as: National Institute on Aging, the Department of 

Health and Human Services (DHHS) agencies, The Office of Human Research 

Protection, Food and Drug Administration, and the MedStar Research Institute 

Institutional Review Board (IRB). 

Operationalization of the Instruments and End-Point Variables of the Study 

The following information is provided to convey that the generation of data from 

the primary study followed ethical and procedural standards.  All participant blood draws, 

clinical blood chemistry (Table 4), oral glucose test, and physical (i.e. sex, race, body 

mass index) data were generated on site at the NIA Clinical Research Unit at Harbor 

Hospital Baltimore, MD 21225.  They operate under the MedStar Health Research 

Institute's (MHRI's) biomarker, biochemical, and biorepository core, and are a College of 

American Pathologists (CAP)- and Clinical Laboratory Improvement Amendments 

(CLIA)-certified central laboratory.  The instrumentation used to collect the data for the 

original primary study is regulated and monitored for accuracy by U.S. Federal Clinical 

Laboratory Improvement Amendments (CLIA) under the Center for Clinical standards 

and Quality program (Clinical Laboratory Improvement Amendments, 2014).  The utility 

of using the hour 2 glucose reading as a measure of insulin sensitivity during the oral 

glucose tolerance test is in the public domain and the standard established by the 

American Diabetes Association (Tuomilehto, J. 2002).  The quantitative insulin 
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sensitivity calculator (HOMA2) instrument is in the public domain (Hines, et al., 2013; 

Levy, et al., 1998). 

Table 4 

Blood Serum Clinical Data Used for the Study 

Lipids Analytes 

cholesterol uric acid 

triglycerides glucose (fasting and OGTT) 

high density lipoproteins creatinine 

low density lipoproteins 

Markers of inflammation 

C-reactive protein 

albumin 

total proteins 

globulins 

white blood cell count 

tumor necrosis factor - α 

interleukin 6 

very low density lipoproteins 

 

insulin hormones 

insulin 

C-peptide (insulin precursor) 

insulin like growth factor 1 

 

 

 

Development of Instrument for Measuring Lipemic Response 

 Very low-density lipoproteins are assembled in the liver from endogenously 

synthesized triglycerides, cholesterol, and phospholipids before being released into 

circulating blood.  Acute changes in VLDL were used in this study as a measure of 

endogenous lipogenesis in response to a meal (Faeh et al., 2005).  Single time-point 
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blood serum VLDL levels were collected at timed intervals over an 8.5-hour time period 

postprandial consumption of PUFA and HSF meals.  I designed the instrument of 

postprandial lipemic response to the intervention meal as the percent change of blood 

serum VLDL from the baseline at timed intervals for 480 minutes after ingestion of the 

test meal.  The area under the curve of the percent change from time-0 was used to 

calculate the net lipemic load response from the meal (the dependent variable) for each 

participant.  This single value was used to analyze each individual’s response and for 

grouping participants into an ordered distribution tertile consisting of low, median, and 

high lipogenesis responders.  Individual and group medians of lipemic response were 

analyzed using regression modeling against the independent variables.   

Pre-meal intervention visit collection of morning fasting serum levels of UA, 

cholesterol, triglycerides, HDL, LDL, VLDL, HDL/LDL ratio, quantitative insulin 

sensitivity calculation (HOMA2), 2-hour OGTT glucose, inflammation (CRP, white 

blood cell count, and albumin/globulin ratio), inflammation cytokines (IL-6 and TNF-α), 

and insulin hormones (insulin, C-peptide, and IGF-1) were used as independent variables 

to test correlative prediction power with lipemic response from the HSF meal.  The 

lipemic response from the PUFA meal was used as a negative control for each research 

question below.  Analysis of the data included separating male and female, as well as test 

normalization of the meal dose per body weight by multiplying lipemic response with 

BMI.  Clinical chemistry values found to be below the detection limit of the assay were 

assumed to be at the set detection limit for the purposes of inclusion in the data analysis. 
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Research Questions of the Study 

Research Question 1: Can baseline levels of UA be used in a regression model to 

predict postprandial lipemic response to a HSF meal?  It is hypothesized that UA is 

acting as a natural sensitizer of postprandial lipogenesis when activated by a HSF meal. 

Ho1: There is no positive correlation between baseline UA levels and postprandial 

lipemic response to a HSF meal. 

Ha1: There is a positive correlation between baseline UA levels and postprandial 

lipemic response to a HSF meal. 

Research Question 2: How do baseline levels of lipids (i.e. triglycerides, 

cholesterol, HDL, LDL, VLDL, and HDL/LDL ratio) compare with UA in a regression 

model to predict postprandial lipemic response to a HSF meal?  Because saturated fatty 

acids are known modulators of lipemic response (percent change VLDL), it was 

hypothesized that within normal range variations of baseline circulating lipids may 

correlate with a higher postprandial lipemic response to a HSF meal, and constitute a 

confounding variable. 

Ho1: There is a positive correlation between baseline lipid levels and postprandial 

lipemic response to a HSF meal. 

Ha1: There is no positive correlation between baseline lipid levels and 

postprandial lipemic response to a HSF meal. 

Research Question 3: How do baseline levels of markers of inflammation (i.e. C-

reactive protein and pro-inflammatory cytokines TNF-α, and interleukin-6, white blood 

cell count, and albumin/globulin ratio) compare with UA in a regression model to predict 

postprandial lipemic response to a HSF meal?  Because increased inflammation-mediated 
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oxidative stress and ceramides (primary causes of insulin resistance) have been shown to 

modulate postprandial lipogenic response, it was hypothesized that upper normal range 

variations of baseline circulating inflammation may correlate with a higher postprandial 

lipemic response to a HSF meal, and constitute a confounding variable. 

Ho1: There is a positive correlation between baseline markers of inflammation 

and postprandial lipemic response to a HSF meal. 

Ha1: There is no positive correlation between baseline markers of inflammation 

and postprandial lipemic response to a HSF meal. 

Research Question 4: How do baseline 2-hour OGTT glucose levels compare with 

UA in a regression model to predict postprandial lipemic response to a HSF meal?  

Because insulin resistance (i.e. high circulating insulin and glucose) has been shown to 

modulate postprandial lipemic response, it was hypothesized that upper normal range 

variations in baseline 2-hour OGTT may be correlated with a higher postprandial lipemic 

response to a HSF meal, and constitute a confounding variable. 

Ho1: There is a positive correlation between 2-hour OGTT glucose levels and 

postprandial lipemic response to a HSF meal. 

Ha1: There is no positive correlation between 2-hour OGTT glucose levels and 

postprandial lipemic response to a HSF meal. 

Research Question 5: Does postprandial lipemic response (now the independent 

variable) after a HSF meal correlate with next morning fasting insulin sensitivity 

(HOMA2 insulin/glucose test; the dependent variable)?  Participants with a high 

postprandial lipemic response to the HSF meal are expected to have a negative 

correlation with next morning fasting insulin sensitivity.  IGF-1 and c-peptide values 
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were used to substitute insulin in the HOMA2 algorithm equation to validate the accuracy 

of the primary insulin data; as the HOMA2 results using c-peptide, insulin, or IGF-1 have 

been previously shown to be nearly identical.  The outcome of changes in insulin 

sensitivity the day after a single high in saturated fat meal is the key question for linking 

lipemic response with risk for diabetes type 2, a major concern in public health. 

Ho1: There is no negative correlation between postprandial lipemic response to a 

HSF meal and next morning fasting insulin sensitivity. 

Ha1: There is a negative correlation between postprandial lipemic response to a 

HSF meal and next morning fasting insulin sensitivity. 

Research Question 6: Are there any co-dependence correlations between the 

baseline levels of UA and the other independent variables that could indicate the presence 

of a serial correlation bias error in the results from Research Questions 1 - 5?  Each 

independent variable was tested against UA for a Pearson’s correlation, to reveal if a co-

dependence relationship exists.  After rank ordering the highest predictive power of all 

independent variables, analysis of combining 2 and 3 variables was tried to increase 

predictive power.  This analysis was performed to show if a multivariate combination of 

these variables might provide a higher power of prediction with postprandial lipemic 

response than UA alone. 

Ho1: There are correlations between baseline UA and the other independent 

variables. 

Ha1: There are no correlations between baseline UA and the other independent 

variables. 
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Statistical Analysis of the Data 

The primary end-point postprandial lipemic response, (i.e. the percent change 

from baseline with time of very low density lipoproteins (VLDL)) was used as the 

dependent variable to develop a scatter plot distribution of the data and 1-way analysis of 

variance (repeated measures) analysis (ANOVA) Pearson correlation with regression.  

The postprandial lipemic response data was also analyzed by grouping participants into 

an ordered distribution tertile consisting of low, median, and high risk for developing 

lipidemia (Andersen, Holst, Michaelsen, Baker, & Sorensen, 2012). 

Because of normal variations in general population weight and body composition 

between participants, the fixed caloric and lipid dose from the intervention meal may 

have resulted in having different effects (e.g. hypo-caloric for a large, muscular male, and 

hyper-caloric for a petite female).  In the data analysis, splitting male and female, and 

normalization by body size (i.e. multiplying the lipemic response by creatinine (reflects 

muscle mass) and BMI) were tested to determine if it would decrease the standard 

deviation (Lagerpusch et al., 2013). 

The next stage of the study analysis tested the research questions regarding the 

hypothesis that baseline (pre-HSF meal) levels of UA can predict the outcome of the 

postprandial lipemic response from a single HSF meal.  Pearson’s correlation with least 

squares (two tailed) regression modeling was utilized to assess the predictive power of 

UA, in addition to other independent/predictor variables (i.e. baseline: lipids, insulin 

sensitivity, insulin hormones, and markers of inflammation), on the postprandial lipemic 

response (the dependent variable).  In addition, UA was analyzed for a Pearson’s 

correlation with all of the other independent variables for the presence of potentially 
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cooperative or confounding inter-relationships.  Results have been expressed as mean + 

standard error of the mean. Values of P<0.05 were considered statistically significant, 

where differences of P< 0.1 were denoted as “*” near significant, P< 0.05 as “**” 

significant, and P< 0.01 as “***” very significant.  Analyses were performed using Prism 

software package 5.0 (GraphPad Software, San Diego, CA, USA). 

Threats to Validity 

The archival data that obtained for this study was anonymized (participant code 

ID#, with no personally identifiable information) from the completed clinical trial entitled 

Fast Food Study: Assessment of the Effects of Fast-Food on Inflammatory Markers 

(ClinicalTrials.gov ID: NCT00233311).  The specimens were not collected specifically 

for my current research study; therefore, this current study does not involve human 

subjects.  I was given this data as a known colleague and employee of the National 

Institute on Aging, who funded and conducted the primary study.  Since the primary 

study has already been conducted, my secondary research study analysis of the existing 

data did not pose any procedural safety risks to the participants.  My research study is 

within the general scope and pretense that the participants originally signed up for under 

the primary study’s protocol and, therefore, does not breach their participant agreement.  

My secondary analysis of the data represents minimal risk to the participants and 

involves no procedures or access linking personal identifiers or information for which 

written consent is normally required outside of the research context.  I will maintain the 

data and analysis for 5 years following the publication of my dissertation.  Although the 

data was anonymized, it will be stored on an encrypted and secure computer hard drive. 
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I was given the data by an IRB-approved researcher involved in the primary 

study, who is a Staff Scientist at the National Institute on Aging, who funded and 

conducted the primary study.  The NIA privately holds the data from the primary study.  

Authorized approval that I may use the data for this proposed dissertation study has been 

agreed upon in a signed Data Use Agreement (Appendix A).  The data was sent to me 

electronically (email) and stored on an encrypted and secure computer hard drive (i.e. my 

computer located at the National Institute on Aging building; 251 Bayview Blvd., 

Baltimore, MD 21224).  This computer and backup server is only accessible by my 

United States Department of Health and Human Services (HHS) ID Badge Smart Card 

and pin number.   The data on this computer is protected by a Federal Information 

Processing Standard (FIPS) 140-2 compliant encryption software package.  Safety and 

security checks in place to facilitate accuracy of the data include mirrored hard drive 

copies of the original data set, and dated copies of each major step in the analysis.  All 

data and analysis from my study will be securely maintained for 5 years after publication 

of my dissertation and any resulting peer reviewed journal publication.  Disposal of the 

data will occur from wiping and destroying of the hard drive by and under U.S. Federal 

government guidelines.  No adverse events are perceived to affect the participants under 

the design of this research study because I have only received anonymized data for a 

secondary analysis from a study that has already been completed.   

An overview of the previsions taken to insure participant safety, ethical treatment, 

and accuracy of the results from the instruments used to generate the data from the 

primary study will be briefly discussed.  Participants’ blood draws, clinical blood 

chemistry, oral glucose test, and physical (i.e. sex, race, body mass index) data were 
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generated at the NIA Clinical Research Unit at Harbor Hospital Baltimore, MD 21225.  

They operate under the MedStar Health Research Institute's (MHRI's) biomarker, 

biochemical, and biorepository core, and are a College of American Pathologists (CAP)- 

and Clinical Laboratory Improvement Amendments (CLIA)-certified central laboratory.  

The instrumentation used to collect the data from the original study is regulated and 

monitored for accuracy by U.S. Federal Clinical Laboratory Improvement Amendments 

(CLIA) under the Center for Clinical standards and Quality program (Clinical Laboratory 

Improvement Amendments, 2014).  The utility of the hour 2 glucose reading during the 

oral glucose tolerance test is in the public domain and the standard established by the 

American Diabetes Association (Tuomilehto, 2002).  The quantitative insulin sensitivity 

calculator (HOMA2) instrument is in the public domain  (Hines, et al., 2013; Levy, et al., 

1998).  I designed the instrument of postprandial lipemic response to the intervention 

meal as the percent change of blood plasma VLDL from the baseline at timed intervals 

for 480 minutes after ingestion of the test meal, (i.e. area under the percent change 

curve).   

The rationale for the sample size utilized Raosoft (Roasoft Inc., Seattle, WA) 

power analysis for 95% confidence level, 50% response distribution, and a 5% margin of 

error, which determined that I needed 29 participants.  The data set that I received has 31 

participants who have fully completed the study.  Each participant has served as his/her 

own control, where the baseline data was used to compare their postprandial lipemic 

responses to a single high in saturated fat (experimental), followed by a washout period 

and crossover high in polyunsaturated fat (control) test meal.   To insure I have a 

foundational understanding of the laws regarding human research protections, I have 
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completed the National Institutes of Health (NIH) Human Research Protections training 

and received a certificate (Appendix B). 

Discontinuation of Participation 

 If the subject decided to discontinue participation in the primary study, he/she was 

given the option to request that any samples with his/her name on them be destroyed.  If 

this occurred, the subject was not to be asked for further information or samples.  

However, it was agreed upon by the participants that data already collected from the 

study would not be destroyed. 

Ethical Considerations 

 Careful consideration was given to the health and well being of the participants 

during the primary study.  Each participant was required to pass the Mini-Mental Status 

Exam to insure competency of understanding the potential risks of participation in the 

study before being given the Informed Consent form.   Participants were also given a flier 

describing the risks and benefits of participating as well as the schedule and activities of 

each of the six visits (Table 1). 

Risks and Comfort Considerations 

Blood and urine tests.  Participants were informed of the known risks and 

discomforts associated with each procedure scheduled during the study.  There was a 

slight risk of pain, bruising around the site where blood was drawn, and rarely bleeding 

or infection.  To minimize this risk, the routine blood draw protocol was followed and 

pressure was applied to the site.  Some people can experience feelings of lightheadedness 

or dizziness after having blood drawn.  To reduce the risk of falling, the subject was 

closely monitored and asked about these symptoms before allowing them to stand.  A 
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total of 430.5 mL of blood was collected over the 6-week course of the study.  This 

amount of blood does not exceed the amount of blood taken by the American Red Cross 

during a single donation of 473 mL.  A healthy person can safely donate this amount of 

blood every 8 weeks.  The samples collected were used to monitor the subject’s current 

medical condition and for the research purposes described for this study.  There were no 

perceived risks to giving a urine sample. 

Oral glucose tolerance test.  Drinking the sugar solution may have lead to a 

temporary sense of abdominal fullness and discomfort, nausea, vomiting, or diarrhea, but 

it is a rare occurrence and was not reported by any participants during the primary study. 

Body composition.  Height, weight and waist circumference were obtained by 

non-invasive techniques. 

Summary 

This chapter reviewed the study design, rationale, setting, sampling method, 

sample size and power analysis, data collection, instrumentation, and statistical methods.  

The aim of this study was to quantitatively measure the effects that baseline serum uric 

acid (UA) levels have on the acute peak and sustained changes in endogenously 

synthesized circulating blood lipids and insulin sensitivity after a single HSF meal.  

Levels of UA, lipids, insulin pathway hormones, markers of inflammation, and insulin 

sensitivity data from healthy middle aged human blood serum samples were measured at 

baseline and time points after ingestion of a high in saturated fat (HSF), and a high in 

polyunsaturated fat (PUFA) meal.  Statistical analysis determined the predictive power of 

UA levels on postprandial lipemic response (i.e. percent change in VLDL), which in the 

same manner was compared to other known risk factors involved in the development of 
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visceral fat weight gain, obesity, type 2 diabetes, and metabolic syndrome.  The 

predictive power of the independent variable/s on lipemic response post ingestion of a 

high saturated fat meal was determined with the use of one-way repeated measures 

ANOVA and Pearson’s correlation with least squares (two tail) regression modeling.  

This chapter also briefly reviewed the participant protocol, including: selection criteria, 

participation protocol, and ethical considerations, in order to disclose the criteria used to 

conduct the primary study.  In the next chapter, the results and findings from this 

proposed secondary study of archival data are given in context of the research questions 

and statistical data showing whether or not the null hypothesis can be rejected. 

Chapter 4: Data Analysis 

Introduction 

The aim of this study was to test if baseline blood levels of UA can be used as a 

predictor of the rise in endogenously synthesized blood lipids from a single HSF meal.  

Because the increase of blood lipids from a meal are mostly from endogenous liver 

synthesis and not from the meal itself, the propensity towards lipogenesis rather than 

protein or glycogen synthesis is important in assessing an individual’s risk of 

hyperlipemic diseases (e.g. atherosclerosis, metabolic syndrome; Lin et al., 2005).  This 

chapter describes the steps taken to collect, organize, and analyze that data in testing the 

research questions for this dissertation study. 

Data Collection 

This study used archival serum sample data from a completed, double blind, 

randomized, longitudinal, crossover, and clinical trial.  In the primary study titled: 

Assessment of the Effects of Fast-Food on Inflammatory Markers (ClinicalTrials.gov ID: 
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NCT00233311), 68 participants were recruited, with 31 completing all six visits.  The 

schedule and procedures performed at each visit are briefly depicted in Appendix B.   

Each participant has served as his or her own control, so that differences could be 

presented as percent change from baseline values.  The benefit of this design was a lower 

number of participants required to reach statistical significance.  After receiving the data 

for this study, is was discovered that Participants 10 and 30 could not be used because of 

missing data.  Participant 51 had to be taken out because her C-reactive protein level and 

liver enzymes went over the exclusion trigger limit that was established in the primary 

study, briefly described in Chapter 3, page 49 of this study.  Therefore, the data set used 

for this secondary analysis utilized the data from 28 participants (14 male, 14 female). 

The dependent variable used to measure endogenous lipid synthesis directly after 

eating a meal was the relative percent changes in blood VLDL over time. Single time 

point blood serum VLDL levels were collected at timed intervals over an 8.5-hour time 

period postprandial consumption of the HSF and “healthy” control PUFA meals.  Using 

the area under the curve (AUC) of the percent change post meal (where time 0 = 0%) as 

an instrument to derive a single value as the postprandial lipemic response to the 

intervention meal.  The relative percent changes from baseline in VLDL from a single 

HSF or “healthy” control (PUFA) meal were used as a measure of endogenous 

lipogenesis in response to the meal (i.e. lipemic response; Faeh et al., 2005). 

The major independent variable of the study was fasted baseline blood levels of 

UA, taken just before administration of the intervention meals.  Additional independent 

variables of blood lipids, inflammation, insulin sensitivity, and liver function were used 

to test for their independent and/or co-association between lipemic response and UA.  
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The demographic of the study participants has been previously described in 

Table1.  The means of all baseline clinical values from the primary study participant 

pool, which have been stratified by gender in this dissertation study, are depicted in Table 

5.  The tables have been organized by the following categories: lipids, markers of 

inflammation, insulin sensitivity, and liver function. 

Table 5  

Baseline Clinical Values Used in Study 

 

Note. The mean baseline clinical values are followed by the standard error, stratified by 
gender, and include on the far right, the relative percent differences between the gender 
pools (i.e. percent difference of male over female). 
 

 

 

Baseline clinical values
All Male Female M/F

Age (yrs.) 56.82 ± 1.19 57.64 ± 1.21 56.00 ± 1.18 3%
BMI (kg/m2) 25.45 ± 0.78 25.15 ± 0.77 25.74 ± 0.79 -2%

Uric acid (mg/dL) 4.71 ± 0.22 5.49 ± 0.22 3.94 ± 0.21 39%
Creatinine (mg/dL) 0.96 ± 0.04 1.02 ± 0.04 0.90 ± 0.03 13%

VLDL (mg/dL) 17.54 ± 2.48 23.93 ± 4.16 11.14 ± 1.38 115%
Triglycerides (mg/dL) 95.65 ± 10.78 105.80 ± 10.32 85.50 ± 11.24 24%

Cholesterol (mg/dL) 201.51 ± 8.83 191.73 ± 6.93 211.29 ± 10.73 -9%
HDL (mg/dL) 60.04 ± 4.57 53.80 ± 4.21 66.29 ± 4.92 -19%
LDL (mg/dL) 122.37 ± 7.13 116.73 ± 5.39 128.00 ± 8.86 -9%

HDL/LDL ratio 0.50 ± 0.04 0.47 ± 0.04 0.54 ± 0.04 -13%
C-reactive protein (ug/mL) 1.17 ± 0.23 1.15 ± 0.21 1.19 ± 0.25 -3%

TNFα (pg/mL) 6.19 ± 0.46 6.14 ± 0.32 6.24 ± 0.59 -2%
TNF RI (pg/mL) 1,706.31 ± 75.47 1,750.31 ± 62.48 1,662.32 ± 88.46 5%

TNF RII (pg/mL) 2,909.53 ± 131.89 2,949.93 ± 136.97 2,869.14 ± 126.81 3%
IL-6 (pg/mL) 2.44 ± 0.40 2.41 ± 0.34 2.48 ± 0.45 -3%

IL6sR (pg/mL) 48,188.57 ± 3,714.97 44,869.13 ± 2,789.97 51,508.00 ± 4,639.97 -13%
sGP130 (pg/mL) 277.97 ± 13.80 291.37 ± 12.37 264.56 ± 15.23 10%

White blood cells (billion/L) 5.78 ± 0.43 6.02 ± 0.43 5.54 ± 0.44 9%
Albumin to globulin ratio 1.48 ± 0.05 1.45 ± 0.04 1.52 ± 0.06 -5%

Glucose (mg/dL) 89.54 ± 2.63 88.87 ± 1.90 90.21 ± 3.35 -1%
C-peptide (ng/dL) 399.91 ± 31.29 387.26 ± 26.75 412.56 ± 35.82 -6%
Insulin (uLU/mL) 5.93 ± 0.83 5.76 ± 0.75 6.11 ± 0.90 -6%

IGF-1 (ng/mL) 155.80 ± 13.68 139.55 ± 20.35 172.04 ± 17.96 -19%
HOMA2 %B 78.37 ± 6.49 75.17 ± 6.94 81.57 ± 6.03 -8%
HOMA2 %S 166.95 ± 23.36 176.63 ± 27.51 157.27 ± 19.22 12%
HOMA2 IR 0.77 ± 0.11 0.75 ± 0.10 0.79 ± 0.12 -5%

2-hour OGTT (mg/dL) 105.49 ± 8.07 101.20 ± 6.26 109.79 ± 9.89 -8%
ALP (IU/L) 79.27 ± 5.30 84.47 ± 6.71 74.07 ± 3.90 14%
ALT (IU/L) 31.62 ± 2.17 36.60 ± 2.38 26.64 ± 1.97 37%
AST (IU/L) 27.35 ± 1.82 30.20 ± 1.75 24.50 ± 1.89 23%
GGT (IU/L) 30.69 ± 7.43 40.80 ± 13.13 20.57 ± 1.72 98%
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Results 

The primary research question of this study was to test if baseline levels of UA 

could be used in a regression model to predict postprandial lipemic response to a HSF 

meal.  The first step in the analysis was to calculate the lipemic response value for each 

participant post HSF meal.  The relative percent change for each participant was used to 

adjust for the person-to-person differences in the absolute VLDL mg/dL values at time 0.  

This was done by organizing the data in a Microsoft Excel spreadsheet and using the 

formula ((=time point cell value/time 0 cell value)-1) to derive the relative change in 

VLDL post meal, where time 0 = 0% (%ΔAUC).  Because of the potential issue of a 

limited number of participants in the population pool to reach significance in this study, 

near-significant Pearson correlations P-alpha values ≤ 0.1 are depicted ( * ) to indicate 

trends that could be followed up in future studies.  Figure 1 shows that the females in this 

study had a near-significant increased lipemic response after the HSF meal over the 

males.  The lipemic response from the “healthy” control PUFA meal does not show this 

trend.  However, as can been seen in Table 5, the males’ mean baseline (i.e. time-0) 

VLDL levels starts out over 2-fold higher than the females’. 
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Figure 1.  Post meal lipemic response.  Mean percent change in the lipemic response is 
stratified by gender with standard error bars.  There was a near-significant trend 
(P=0.057) of the lipemic response between genders for the HSF meal.  “*” P ≤ 0.1 near 
significant, “**” P ≤ 0.05 significant, “***” P ≤ 0.01 very significant. 
 

These data were then transferred into the statistical analysis software GraphPad 

Prism 5.0, where the time points (minutes) were in the X-axis and the participants’ 

corresponding percent change (Δ) in VLDL values was in the Y-axis.  The Prism 5.0 

software was then able to calculate a single value for the AUC, which is the relative 

lipemic response to the intervention meal.  All of the participants’ values for lipemic 

response were placed in the X axis and statistically analyzed using Pearson (two tailed) 

correlation using one-way analysis of variance (repeated measures) analysis ANOVA and 

linear regression modeling for associations with all baseline clinical chemistry and BMI 

values, including UA.  The results showed that UA was statistically significant in 

correlating with lipemic response from the HSF meal for both genders independently 

(male P=0.045; female P=0.041), but not when they are merged together (P=0.438).  
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The HSF lipemic response also showed a near-significant correlation by gender for the 

inflammation marker TNFα (male P=0.097; female P=0.051), and a significant 

correlation with glucose response in females only (P=0.042).  UA did not show any 

correlation with the lipemic response from the PUFA meal.  However, there were several 

statistically significant correlations of the PUFA lipemic response with the HDL/LDL 

ratio, TNF receptor II, and liver function enzyme GGT activity for both genders.  This 

data analysis showed the importance of separating genders as well as doing the analysis 

as a whole group.  Interestingly, BMI showed significant correlations with the lipemic 

response for both HSF and PUFA meals for all participants and males after the HSF 

meal, but not for females.  This association will be followed up on later in the analysis.  

Using the GraphPad Prism 5.0 software, a distribution plot with linear regression analysis 

of the data from Table 6, stratified by gender is shown in Figure 2.  This plot shows that 

when stratified by gender, UA levels positively correlated with lipemic response from a 

HSF meal, and may have clinical utility in predicting risk of lipemic diseases in 

individual patients.  These results answer the first research question of this study, which 

is that there is a positive correlation between baseline UA levels and postprandial lipemic 

response to a HSF meal. 
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Table 6  

Post Meal Lipemic Response verses Clinical Baseline Values 

 

Note.  Pearson correlation P alpha value of post meal lipemic response (%ΔAUC) verses 
the mean baseline clinical values found in Table 5.  “*” P ≤ 0.1 near significant, “**” P ≤ 
0.05 significant, “***” P ≤ 0.01 very significant. 
 
 

 

 

 

 

 

 

 

A) HSF lipemic response vs. baseline clinical values B) PUFA lipemic response vs. baseline clinical values
All Male Female All Male Female

Uric acid 0.438 **0.045 **0.041 Uric acid 0.943 0.880 0.202
BMI ***0.017 **0.045 0.102 BMI **0.0141 *0.0747 0.164

Creatinine 0.591 0.688 0.890 Creatinine 0.371 0.634 *0.0939
Triglycerides 0.435 0.115 0.733 Triglycerides 0.132 0.186 0.657

Cholesterol 0.330 0.692 0.457 Cholesterol 0.386 0.171 0.836
HDL 0.909 0.217 0.206 HDL **0.0334 *0.0825 0.393
LDL 0.348 0.366 0.757 LDL 0.857 0.359 0.542

HDL/LDL ratio 0.566 0.061 0.297 HDL/LDL ratio **0.0245 0.184 0.151
C-reactive protein 0.142 0.110 0.396 C-reactive protein 0.192 0.686 0.328

TNFα 0.573 *0.097 *0.051 TNFα 0.524 0.280 0.883
TNF RIl 0.420 0.609 0.159 TNF RIl *0.095 ***0.0071 0.852

TNF RIIl 0.686 0.920 0.471 TNF RIIl **0.0382 **0.0273 0.568
IL-6 0.273 0.977 0.100 IL-6 0.391 0.165 0.959

IL6sR 0.613 0.542 1.000 IL6sR 0.412 0.114 0.740
sGP130 0.748 0.317 0.725 sGP130 0.004 0.138 0.033

White blood cells 0.223 0.444 0.465 White blood cells 0.133 0.318 0.440
Albumin/globulin ratio 0.456 *0.079 0.743 Albumin/globulin ratio 0.629 0.160 0.613

Glucose 0.178 0.977 **0.042 Glucose 0.647 0.733 0.687
Insulin 0.899 0.672 0.487 Insulin 0.909 0.844 0.749

HOMA2 %B 0.580 0.566 0.957 HOMA2 %B 0.744 0.878 0.412
HOMA2 %S 0.833 0.455 0.256 HOMA2 %S 0.423 0.422 0.712
HOMA2 IR 0.865 0.677 0.462 HOMA2 IR 0.901 0.877 0.771

2-hour OGTT glucose 0.378 0.985 0.173 2-hour OGTT glucose 0.694 0.729 0.695
ALP 0.949 0.636 0.632 ALP 0.097 0.157 0.733
ALT 0.740 0.635 0.442 ALT 0.163 0.966 0.128
AST 0.371 0.605 0.178 AST **0.0155 0.150 0.146
GGT 0.594 0.535 0.746 GGT 0.358 0.519 0.962
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A) 

 

B) 

 

 

Figure 2. Post meal lipemic response verses baseline uric acid level.  Distribution plot 
and linear regression analysis of: A) male lipemic response to HSF meal (%ΔAUC) 
verses baseline UA levels (**P=0.045); B) female lipemic response to HSF meal 
(%ΔAUC) verses baseline UA levels (**P=0.041).  “*” P ≤ 0.1 near significant, “**” P 
≤ 0.05 significant, “***” P ≤ 0.01 very significant. 
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Research questions 2, 3, and 4 were designed to confirm and compare previously 

reported independent and covariant variables of lipemic response and insulin sensitivity 

relative to UA.   Table 6A also answers how baseline lipids (question 2), markers of 

inflammation (question 3), and insulin response (question 4) compare to UA in 

correlating with the lipemic response to a HSF meal.  The results show that there are no 

significant correlations between baseline lipids, markers of inflammation, or insulin 

sensitivity and postprandial lipemic response to a HSF meal.  However, the results for 

TNFα (male, P=0.097; female, P=0.051) are trending toward significance, where a 

higher number of study participants may have yielded a significant difference. 

In order to test for other post meal responses associated with UA, Pearson 

correlation analysis of baseline UA levels verses all measured post meal responses (i.e. 

lipids, markers of inflammation, and insulin response) were analyzed.  Table 7 shows the 

P alpha value of the analysis.  Because each gender was previously shown to have a 

strong independent correlation between baseline UA and %ΔAUC VLDL, but none when 

analyzed together, the lipemic response for each gender was adjusted to 100% maximum 

response and merged together.  The results show that baseline UA levels are a strong 

predictor of lipemic response to a HSF meal (P=0.018), but still not for the PUFA meal.  

Interestingly, baseline UA levels strongly correlated with glucose response after the HSF 

meal in females (P=0.006), but not in males. 
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Table 7  

Baseline Uric Acid Level verses All Post Meal Responses 

 

Note.  Pearson correlation P alpha value of UA verses post meal lipemic response 
(%ΔAUC) all and stratified by gender for: A) HSF meal; B) PUFA meal.  “*” P ≤ 0.1 
near significant, “**” P ≤ 0.05 significant, “***” P ≤ 0.01 very significant. 
 

Research question 6 asks if there are any co-dependence correlations between the 

baseline levels of UA and the other independent variables that could indicate the presence 

of a serial correlation bias error in the results from Research Questions 1 – 5.  Each 

independent variable was tested against UA for a Pearson’s correlation.   The analysis 

shows that there are no correlations between baseline UA and any of the other 

independent variables. The finding that UA is not associated with BMI may be very 

relevant because it means that the correlations found between HSF meal lipemic response 

and UA and BMI are independent. 

 

 

 A) UA vs. post HSF meal response      B) UA vs. post PUFA meal response
All Male Female All Male Female

VLDL 0.438 **0.045 **0.041 VLDL 0.366 0.799 0.161
% of max VLDL **0.018 **0.044 **0.042 % of max VLDL 0.905 0.798 0.164

Triglycerides 0.357 0.239 0.100 Triglycerides 0.371 0.346 0.870
Cholesterol 0.677 0.932 0.355 Cholesterol 0.282 0.797 0.805

HDL 0.312 0.073 0.458 HDL 0.599 0.131 0.637
LDL 0.536 0.845 0.603 LDL 0.914 0.823 0.383

ApoB 0.288 0.710 0.503 ApoB 0.890 0.550 0.921
C-reactive protein 0.452 0.931 0.657 C-reactive protein 0.261 0.869 0.843

TNFα 0.702 0.188 0.271 TNFα 0.890 0.808 0.674
TNF RIl 0.198 0.643 0.458 TNF RIl 0.640 0.450 0.581

TNF RIIl 0.553 0.768 *0.054 TNF RIIl 0.685 0.111 0.922
IL-6 0.716 0.943 0.278 IL-6 0.585 0.740 0.413

IL6sR 0.834 0.724 0.312 IL6sR 0.784 0.617 0.106
sGP130 0.989 0.477 0.353 sGP130 0.163 0.756 0.812
Glucose 0.283 0.108 ***0.006 Glucose 0.475 0.329 0.430

C-peptide 0.912 0.285 0.311 C-peptide 0.957 0.164 0.646
Insulin 0.697 0.661 0.731 Insulin 0.409 0.539 0.821
IGF-1 0.397 0.882 0.244 IGF-1 0.779 0.413 0.119
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Table 8 

Baseline Uric Acid Levels verses All Other Baseline Clinical Values 

 

Note.  Pearson correlation P alpha value of UA verses all other baseline clinical values, 
all and stratified by gender. HOMA2: %B = steady state beta cell function; %S = insulin 
sensitivity; and IR = insulin resistance.  “*” P ≤ 0.1 near significant, “**” P ≤ 0.05 
significant, “***” P ≤ 0.01 very significant. 
 

To address the observed correlation between HSF lipemic response and BMI, a 

Pearson correlation analysis was performed on BMI verses all post HSF meal responses 

UA vs. baseline clinical values
All Male Female

BMI 0.678 0.884 0.146
Creatinine 0.249 0.543 0.719

Triglycerides 0.230 0.418 0.135
Cholesterol *0.087 0.943 0.228

HDL 0.226 0.159 0.209
LDL *0.083 0.490 0.260

HDL/LDL ratio 0.968 *0.095 0.862
C-reactive protein 0.952 0.842 0.175

TNFα 0.991 0.196 0.344
TNF RIl 0.277 0.694 0.210

TNF RIIl 0.404 0.837 0.152
IL-6 0.974 0.495 0.430

IL6sR 0.425 0.710 0.851
sGP130 0.500 0.645 0.979

White blood cells 0.541 0.896 0.988
Albumin/globulin ratio 0.452 0.768 0.763

Glucose 0.855 0.784 0.383
Insulin 0.781 0.350 0.465

HOMA2 %B 0.409 0.329 0.622
HOMA2 %S 0.523 0.461 0.569
HOMA2 IR 0.808 0.357 0.460

2-hour OGTT glucose 0.618 *0.097 0.238
ALP 0.276 0.983 0.579
ALT *0.081 0.738 0.994
AST 0.382 0.970 0.269
GGT 0.380 0.908 0.827
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(%ΔAUC), Table 9A.  The results show that, although BMI is significantly correlated 

with the all participants (P=0.017) as a whole and males (P=0.045), it is not a significant 

predictor of HSF lipemic response for females (P=0.102).  Interestingly, like UA, BMI 

also significantly correlated with the glucose response from the HSF meal in females 

only (P=0.029).  Pearson correlation analysis was also performed on BMI verses all 

baseline clinical values to test for independent and/or potential covariates.  The results 

show that BMI has significant correlations with inflammation markers C-reactive protein 

(P=0.017) and sGP130 (P=0.045), as well as with insulin (P=0.026), and all HOMA2 

insulin resistance markers when using all participants.  These results corroborate previous 

study findings that BMI is a risk factor for inflammation, insulin resistance, and 

metabolic syndrome (Fortuna, 2012). 
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Table 9 

Baseline BMI verses Post Meal Lipemic Response

 

Note.  Pearson correlation P alpha value of BMI verses: A) post HSF meal lipemic 
response (%ΔAUC); B) all other baseline clinical values; all and stratified by gender.  
HOMA2: %B = steady state beta cell function; %S = insulin sensitivity; and IR = insulin 
resistance.  “*” P ≤ 0.1 near significant, “**” P ≤ 0.05 significant, “***” P ≤ 0.01 very 
significant. 
 

Because baseline levels of blood UA and BMI have been shown to be 

independent predictors of the participants’ lipemic response to a HSF meal, both were 

multiplied together to test if the resulting value was a stronger predictor than either used 

alone.  Table 10A, shows the Pearson correlation P alpha value of UA x BMI verses all 

post HSF meal lipemic responses (%ΔAUC).  Compared to UA alone (male, P=0.045; 

female P=0.041), UA x BMI (male, P=0.004; female P=0.02) increased the significance 

of the correlation over ten-fold for males and two-fold for females.  Using percent of 

                                A) BMI vs. post HSF meal response B) BMI vs. baseline clinical values
All Male Female All Male Female

VLDL **0.017 **0.045 0.102 Uric acid 0.678 0.884 0.146
% of max VLDL ***0.010 **0.045 0.102 Creatinine 0.162 0.282 0.133

Triglycerides 0.262 0.873 0.266 Triglycerides 0.175 0.150 0.809
Cholesterol 0.994 0.618 0.596 Cholesterol 0.737 0.318 0.168

HDL 0.544 0.523 0.883 HDL 0.796 0.700 0.264
LDL 0.156 0.150 0.804 LDL 0.884 0.121 0.335

ApoB 0.433 0.390 0.989 HDL/LDL ratio 0.847 0.665 0.902
C-reactive protein 0.387 0.762 *0.057 C-reactive protein **0.017 *0.092 0.147

TNFα 0.900 0.926 0.577 TNFα 0.167 0.424 **0.045
TNF RIl 0.711 0.431 0.246 TNF RIl 0.565 0.300 0.116

TNF RIIl 0.597 *0.058 0.163 TNF RIIl 0.833 0.202 0.231
IL-6 0.326 0.930 0.378 IL-6 0.523 0.716 0.294

IL6sR 0.653 0.621 0.660 IL6sR *0.063 ***0.008 0.377
sGP130 0.697 0.122 0.114 sGP130 **0.045 0.142 0.280
Glucose **0.041 0.447 **0.029 White blood cells 0.526 0.685 0.476

C-peptide 0.200 0.480 0.291 Albumin/globulin ratio 0.541 **0.018 0.403
Insulin 0.190 0.393 0.410 Glucose 0.170 0.674 0.223
IGF-1 0.238 0.145 0.861 Insulin **0.026 *0.060 0.216

HOMA2 %B **0.050 *0.065 0.473
HOMA2 %S **0.034 0.129 0.178
HOMA2 IR **0.026 *0.064 0.207

2-hour OGTT glucose 0.443 0.640 0.280
ALP 0.508 0.599 0.970
ALT 0.464 0.919 0.658
AST **0.014 0.132 0.105
GGT 0.243 0.346 0.791
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maximum value for each gender to merge the data together, thereby increasing the n of 

the analysis, shows that factoring blood UA levels and BMI together is a strong predictor 

of lipemic response to a HSF meal (P=0.001).  Females are still showing a significant 

correlation with glucose response from the HSF meal (P=0.001), and now males are 

nearing significance (P=0.081).  The data distribution and linear regression modeling of 

UA x BMI verses post HSF meal lipemic response (%ΔAUC) for each gender is shown 

in Figures 3A & B.  Pearson correlation analysis was also performed on UA x BMI 

verses all baseline clinical values to test for any unforeseen independent and/or potential 

covariates.  As shown in Table 10B, the results are similar as seen for UA alone in Table 

8, in that there are no significant correlations.  However, compared to the results for BMI 

alone in Table 9B, factoring in UA has resulted in the loss all of associations between 

BMI with inflammation and insulin resistance.  This analysis shows that a multivariate 

combination of the independent variables UA and BMI provides a higher power of 

prediction for the postprandial lipemic response from a HSF meal, than from using UA 

alone.  
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Table 10 

Baseline Uric Acid x BMI verses Post Meal Lipemic Response 

 

Note.  Pearson correlation P alpha value of UA x BMI verses: A) post HSF meal lipemic 
response (%ΔAUC); B) all other baseline clinical values; all and stratified by gender.  
HOMA2: %B = steady state beta cell function; %S = insulin sensitivity; and IR = insulin 
resistance.  “*” P ≤ 0.1 near significant, “**” P ≤ 0.05 significant, “***” P ≤ 0.01 very 
significant. 
 

 

 

 

 

 

 

            A) UA x BMI vs. post HSF meal response                     B) UA x BMI vs. baseline clinical values
All Male Female All Male Female

VLDL *0.091 ***0.004 **0.020 Creatinine 0.151 0.919 0.416
% of max VLDL ***0.001 ***0.004 **0.020 Triglycerides 0.630 0.144 0.390

Triglycerides 0.201 0.319 *0.081 Cholesterol 0.159 0.487 0.177
Cholesterol 0.661 0.913 0.337 HDL 0.282 0.165 0.193

HDL 0.148 **0.028 0.533 LDL 0.225 0.715 0.264
LDL 0.872 0.533 0.690 HDL/LDL ratio 0.856 0.305 0.855

ApoB 0.505 0.952 0.595 C-reactive protein 0.285 0.278 *0.097
C-reactive protein 0.369 0.795 0.294 TNFα 0.531 *0.095 0.114

TNFα 0.695 0.329 0.315 TNF RIl 0.186 0.312 *0.097
TNF RIl 0.320 0.441 0.294 TNF RIIl 0.495 0.382 0.103

TNF RIIl 0.900 0.399 **0.043 IL-6 0.719 0.392 0.294
IL-6 0.898 0.983 0.202 IL6sR 0.191 0.274 0.717

IL6sR 0.938 0.537 0.293 sGP130 0.897 0.242 0.723
sGP130 0.979 0.121 0.175 White blood cells 0.359 0.863 0.738
Glucose *0.064 *0.081 **0.001 Albumin/globulin ratio 0.899 0.148 0.616

C-peptide 0.607 0.205 0.670 Glucose 0.463 0.982 0.221
Insulin 0.920 0.436 0.630 Insulin 0.483 0.909 0.311
IGF-1 0.193 0.512 0.481 HOMA2 %B 0.904 0.925 0.580

HOMA2 %S 0.689 0.907 0.343
HOMA2 IR 0.465 0.914 0.301

2-hour OGTT glucose 0.910 0.109 0.192
ALP 0.436 0.726 0.580
ALT 0.234 0.737 0.986
AST 0.785 0.402 0.155
GGT 0.829 0.529 0.775
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A)  

 

B) 

 

 

Figure 3. Post meal lipemic response verses baseline uric acid x BMI.  Distribution plot 
and linear regression analysis of: A) male lipemic response to HSF meal (%ΔAUC) 
verses baseline UA x BMI (***P=0.004); B) female lipemic response to HSF meal 
(%ΔAUC) verses baseline UA x BMI (**P=0.02).  “*” P ≤ 0.1 near significant, “**” P ≤ 
0.05 significant, “***” P ≤ 0.01 very significant. 
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The next statistical analysis was to test if the lipemic response (%ΔAUC) of 

VLDL has any covariant correlations with any of the other measured responses (i.e. 

%ΔAUC of: lipids, markers of inflammation, and insulin sensitivity) post HSF or PUFA 

meal.  Table 11 shows the Pearson correlation P alpha values of %ΔAUC of VLDL 

verses all post meal lipemic responses (%ΔAUC) for: A) HSF meal, and B) PUFA meal.  

The results from all participants in the study after the HSF meal show significant 

associations between the changes in VLDL and triglycerides (P=0.003), and HDL 

(P=0.001), as expected because it replicates previous studies showing that HSF meals 

can activate the SREBP-1c pathway of de novo lipid synthesis (Lin, et al., 2005).  

Interestingly, as with UA and BMI, the changes in VLDL were very significantly 

correlated with glucose response from the HSF meal, but only in females (P=0.0001); the 

strongest correlation observed in this study.  There was also the observation of a gender 

specific effect between changes in VLDL with insulin response factor IGF-1 that was 

seen only in males (P=0.044).  The results between changes in VLDL with the other 

measured responses after the PUFA meal showed significant positive gender specific 

relationships with all markers of inflammation, except C-reactive protein, TNF RI, and 

IL-6.  This result is not too surprising because PUFA fats (i.e. linoleic and arachidonic 

acid) are known precursors of inflammatory eicosanoids (Calder, 2002).  Table 11B also 

showed a very significant correlation between changes in VLDL with changes in HDL 

(P=0.008) after the PUFA meal that was found when using all participants, but lost after 

gender stratification. 
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Table 11 

Post Meal Lipemic Response verses All Post Meal Responses 

 

Note.  Pearson correlation P alpha value of post meal lipemic response (%ΔAUC) verses 
all other post meal responses (%ΔAUC): A) HSF; B) PUFA; all and stratified by gender.  
“*” P ≤ 0.1 near significant, “**” P ≤ 0.05 significant, “***” P ≤ 0.01 very significant. 
 

Research question 5 asks if there are significant changes in next morning fasting 

insulin sensitivity (glucose, C-peptide, insulin, and calculated HOMA2 IR) following the 

HSF meal.  Data for the absolute mean values of insulin sensitivity (i.e. glucose, C-

peptide, insulin, and calculated HOMA2 insulin resistance values are presented in Table 

12 for next morning post: A) HSF and B) PUFA meals.  The percent change from the 

before meal baseline (Table 5) is given for all participants and stratified by gender.  The 

percent difference between male verses female is presented on the right side of Table 12.  

Pearson’s correlation analysis revealed that only males had a near-significant change in 

insulin and HOMA2 IR (insulin resistance) following the HSF meal (P=0.06).  There 

were no such associations following the PUFA meal, or with the female participants.  

         A) Post HSF meal lipemic response (VLDL) vs.          B) Post PUFA meal lipemic response (VLDL) vs.
              all other post HSF meal responses               all other post PUFA meal responses

All Male Female All Male Female
Triglycerides ***0.001 *0.081 ***0.008 Triglycerides *0.064 *0.054 0.808

Cholesterol 0.655 0.899 0.608 Cholesterol 0.938 0.773 0.849
HDL 0.611 0.677 0.177 HDL **0.044 *0.095 0.420
LDL **0.012 ***0.006 **0.047 LDL **0.006 ***0.001 0.627

ApoB 0.266 0.784 0.357 ApoB 0.283 0.607 0.196
C-reactive protein 0.965 0.780 0.683 C-reactive protein 0.843 0.511 0.720

TNFα 0.693 0.971 0.948 TNFα **0.046 0.234 **0.048
TNF RIl 0.228 0.785 0.282 TNF RIl 0.865 0.749 0.440

TNF RIIl 0.989 0.737 0.972 TNF RIIl 0.114 0.450 *0.063
IL-6 0.907 0.931 0.847 IL-6 0.622 0.676 0.554

IL6sR **0.019 0.716 *0.095 IL6sR 0.407 0.902 ***0.003
sGP130 0.947 *0.075 0.776 sGP130 0.806 0.245 *0.064
Glucose ***0.003 0.252 ***0.000 Glucose 0.373 0.211 0.667

C-peptide 0.828 0.187 0.438 C-peptide 0.797 0.155 0.151
Insulin 0.827 0.295 0.794 Insulin 0.820 0.308 0.574
IGF-1 0.701 **0.035 0.888 IGF-1 **0.033 **0.033 0.628
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This data therefore supports the null hypothesis that there are no changes in next morning 

fasting insulin sensitivity following the HSF meal. 

Table 12 

Changes in Next Morning Following Meal Insulin Sensitivity 

 

Note.  Mean values of insulin sensitivity markers from the next morning following the: 
A) HSF, and B) PUFA meals.  The mean is from all participants, and stratified by gender, 
with corresponding standard errors.  Directly below the means are the percent change 
from the before meal baseline (Table 5).  To the right of the table are the relative percent 

A) Next morning after HSF meal fasted indicators of insulin sensitivity
All Male Female M/F

Glucose (mg/dL) 92.22 ± 2.28 92.73 ± 1.92 91.71 ± 2.64 1%
C-peptide (ng/dL) 438.83 ± 43.99 456.08 ± 45.08 421.59 ± 42.91 8%
Insulin (uLU/mL) 7.53 ± 1.15 8.20 ± 1.61 6.86 ± 0.70 20%

HOMA2 %B 87.82 ± 8.65 89.57 ± 10.05 86.07 ± 7.24 4%
HOMA2 %S 132.88 ± 17.24 137.31 ± 21.23 128.45 ± 13.24 7%
HOMA2 IR 0.98 ± 0.15 1.07 ± 0.21 0.89 ± 0.09 19%

Change from baseline All Male Female
Glucose (mg/dL) 3% ± 3% 4% ± 2% 2% ± 3%

C-peptide (ng/dL) 10% ± 9% 18% ± 8% 2% ± 9%
Insulin (uLU/mL) 27% ± 15% *42% ± 16% 12% ± 13%

HOMA2 %B 12% ± 9% 19% ± 10% 6% ± 8%
HOMA2 %S -20% ± 13% -22% ± 16% -18% ± 11%
HOMA2 IR 27% ± 15% *42% ± 16% 13% ± 13%

B) Next morning after PUFA meal fasted indicators of insulinsensitivity
All Male Female M/F

Glucose (mg/dL) 91.12 ± 2.15 93.47 ± 2.55 88.77 ± 1.74 5%
C-peptide (ng/dL) 468.27 ± 53.70 466.48 ± 49.20 470.05 ± 58.20 -1%
Insulin (uLU/mL) 6.47 ± 0.86 6.43 ± 0.87 6.50 ± 0.85 -1%

HOMA2 %B 81.31 ± 8.02 76.80 ± 8.29 85.83 ± 7.74 -11%
HOMA2 %S 168.78 ± 32.96 180.63 ± 41.49 156.92 ± 24.43 15%
HOMA2 IR 0.84 ± 0.12 0.85 ± 0.12 0.83 ± 0.12 2%

Change from baseline All Male Female
Glucose (mg/dL) 2% ± 3% 5% ± 2% -2% ± 3%

C-peptide (ng/dL) 17% ± 10% 20% ± 9% 14% ± 11%
Insulin (uLU/mL) 9% ± 14% 12% ± 13% 7% ± 14%

HOMA2 %B 4% ± 9% 2% ± 10% 5% ± 8%
HOMA2 %S 1% ± 17% 2% ± 19% 0% ± 14%
HOMA2 IR 8% ± 14% 12% ± 13% 4% ± 14%
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differences between the gender pools (i.e. male over female).  HOMA2: %B = steady 
state beta cell function; %S = insulin sensitivity; and IR = insulin resistance.  “*” P ≤ 0.1 
near significant, “**” P ≤ 0.05 significant, “***” P ≤ 0.01 very significant. 
 

Summary 

The purpose of this study was to test if blood levels of UA influenced the level of 

endogenous lipid synthesis after eating a HSF meal, a known activator of lipogenesis.  

The primary research question asked if baseline levels of UA could be used in a 

regression model to predict postprandial lipemic response to a HSF meal.  The 

distribution plot with linear regression analysis in Figure 2 shows that, when stratified by 

gender, UA levels positively and significantly correlates with lipemic response from a 

HSF meal (male, P=0.045; female, P=0.041).   These results answer the 1st research 

question of this study, which is that there is a positive correlation between baseline UA 

levels and postprandial lipemic response to a HSF meal.  Figure 1 also shows that these 

correlations could have a clinical utility predicting risk of lipemic diseases in individual 

patients.   

The answer as to how baseline lipids (question 2), markers of inflammation 

(question 3), and insulin response (question 4) compares to UA in correlating with the 

lipemic response to a HSF meal has all been answered in Table 6A.  The results show 

that there are no significant correlations between baseline lipids, markers of 

inflammation, or insulin sensitivity and postprandial lipemic response to a HSF meal.  

However, the results for TNFα (male, P=0.097; female, P=0.051) are trending toward 

significance, where a higher number of study participants may show a statistically 

significant difference. 
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Research question 5 asks if there are significant changes in next morning fasting 

insulin sensitivity (i.e. glucose, C-peptide, insulin, and calculated HOMA2 IR) following 

the HSF meal.  Because spikes in blood levels of saturated fatty acids have been shown to 

activate VLDL synthesis through a SREBP-1c feed forward mechanism, it is possible 

that within normal range variations of baseline circulating lipids may lead to a higher 

postprandial lipemic response to a HSF meal, and constitute a confounding variable.  

However, the Pearson’s correlation analysis shown in Table 12 revealed that only males 

had a near-significant change in insulin and HOMA2 IR (insulin resistance) following the 

HSF meal (P=0.06).  As expected, there were no such associations following the 

“healthy” control PUFA meal.  This data therefore supports the null hypothesis that there 

are no changes in next morning fasting insulin sensitivity following the HSF meal. 

Research question 6 asks if there are any co-dependent correlations between the 

baseline levels of UA and the other independent variables that could indicate the presents 

of a serial correlation bias error in the results from research questions 1 – 5.  Baseline UA 

levels were tested against all of the other baseline independent variables using Pearson’s 

correlation.   The analysis shows that there are no correlations between baseline UA and 

any of the other independent variables. The finding that UA is not associated with BMI 

may be very relevant because it means that the correlations found between the HSF meal 

lipemic response and UA, and BMI are independent.  Further interpretations of the 

results, implications for social change, and discussions on the limitations found with this 

study, plus recommendations for future research, will be discussed in Chapter 5. 
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Chapter 5: Conclusions And Recommendations 

Introduction 

Blood levels of UA have previously been reported to be associated with aging, 

high blood pressure, heart disease, type 2 diabetes, obesity, and metabolic syndrome 

(Soltani, et al., 2013).  Using archival data from a completed double blind, randomized, 

longitudinal, crossover clinical trial, this study aimed to test if circulating UA levels 

could predict the lipemic response after eating a single, typical fast food modeled meal 

high in saturated fats.  The study population consisted of healthy, middle-aged adults.  

The analysis showed that when stratified by gender, baseline UA levels could 

significantly predict the lipemic response (%ΔAUC) from a HSF, but not a “healthy” 

PUFA meal.  The public health utility of this finding would be to use clinically obtained 

UA values to plug into the gender specific linear regression plot (Figure 2) to identify 

individuals at risk for hyperlipidemia from a HSF meal.  

The results from this study also found that BMI was only a near-significant 

predictor of lipemic response from a HSF meal, but was independent of UA.  However, 

when UA and BMI values were factored together, the power to predict the lipemic 

response from a HSF meal significantly increased (i.e. over 10-fold for males, and 2-fold 

for female). Therefore, the gender specific regression plot (Figure 3) may be a more 

accurate predictor of a patient’s risk for hyperlipidemia from a HSF meal. 

The health consequence of a strong lipemic response from a HSF meal is most 

evidently seen in the female population of this study.  The female data showed that a high 

lipemic response from a HSF meal resulted in simultaneous insulin resistance (i.e. high 

and sustaining glucose levels immediately following the meal; P=0.0001).  The observed 



 92 

 

insulin resistance directly following the HSF meal was specific to the HSF meal, because 

the effect did not show up during the equal calorie and fat content PUFA meal.  While 

UA and BMI predicted the lipemic response in both male and females, only the females 

showed a statistical significance of UA and BMI to predict insulin resistance following 

the HSF meal.  However, when UA and BMI were factored together, the predictive 

power for insulin resistance following the HSF meal nears significance for the male 

population as well. 

Interpretations of the Findings 

Two of the major gaps in the current knowledge of hyperlipidemia are the risk 

factors and most sensitive targets for intervention in the prevention of lipidemia and 

weight gain in healthy people (Akbaraly et al., 2013).  During feeding, the human body 

requires about 5 grams of glucose to bring blood glucose levels from a fasting state of 

~60 mg/dL to a fed state of ~130 mg/dL.  The calories from a typical meal (e.g. ~750 

kcal.) are quickly stored into glycogen (e.g. liver, muscle, and brain), protein (e.g. muscle 

and liver), and fat (visceral and subcutaneous).  During prenatal and early childhood, the 

fat storage is primarily subcutaneous fat; however, with aging, a progressively higher 

percent is stored as visceral fat (Schlosser, 2002).  Visceral fat is also the type of fat that 

has been shown to be most associated with the development of most age-related and 

hyperlipemic diseases (Liu, et al., 2013).  The factors that direct where excess calories are 

stored remains unknown, but are recognized as being critically important in public health 

prevention of age-related diseases. 

The justification for factoring together UA with BMI in this study’s data analysis 

(Table 10 and Figure 3) was to adjust for different body sizes given that the calories for 
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the meal were fixed.  The number of calories ingested by each participant for the meal 

was fixed (i.e. 866 kcal.), but the dose/response of a low body weight/muscle mass 

participant is likely to be different than a much larger participant.  BMI is calculated by 

age, height and weight measurements entered into a tabulated chart that is stratified by 

gender.  The biggest limitation of the BMI calculation is that it does not reflect muscle 

mass, where many athletes (particularly weight lifters) can be diagnosed as being obese 

although they have a very low percent body fat.  The response to caloric intake in 

stimulating lipogenesis and inflammation is very low in active individuals with high 

muscle mass, whereas, in most cases it is very high in individuals with a high percent 

body fat, even though they have the same BMI (Lagerpusch et al., 2013). 

The HOMA2 calculation used in this study was to measure insulin 

sensitivity/resistance (Hines et al., 2013; Levy et al., 1998).  Insulin resistance is defined 

as the physiological failure of cells to respond to insulin.  Pancreatic beta-cells produce 

insulin in response to blood glucose levels to maintain homeostasis between 70 and 130 

mg/dL.  Chronically high blood glucose and insulin levels (e.g. type 2 diabetes) results in 

a response of the target cells to lower their production of glucose receptors (e.g. GLUT4), 

thereby setting up a self-perpetuating cycle.  The results from Table 11A show that 

elevated levels of glucose (i.e. insulin resistance) occurred immediately following the 

HSF meal, but not the “healthy” control PUFA meal.  The observed insulin resistance did 

not carry over to the next morning HOMA2 test, and also did not show up in the OGTT.  

This finding indicated that it may be clinically useful to conduct a HSF challenge test, 

using the same protocol as for the OGTT. 
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Fitting the Study Findings into the Theoretical Framework 

 The theoretical foundation for this archival study was based on the previous 

findings that UA has been found to be independently correlated with visceral fat weight 

gain and the diagnosis of cardiovascular disease (Soltani, et al., 2013).  However, it there 

were no publications indicating whether UA is a cause of an effect of hyperlipidemia.  

One hypothesis for the driving evolutionary pressure for genetic mutations aimed at 

increasing UA in humans (i.e. knockout of UOX and increase of URAT1) was to increase 

metabolic efficiency and enhance anabolic recovery by suppression of AMPK mediated 

catabolism and autophagy (Lanaspa, Sanchez-Lozada, et al., 2012).  The hypothetical 

model being tested in this study was that UA decreases the activation energy of anabolic 

pathways (i.e. lipemic response).  The proposed increase in anabolic response would act 

to increase the risk of lipidemia and visceral fat weight gain from excess caloric intake, 

thereby making UA a potential indicator and modifiable risk factor for visceral fat weight 

gain.  The modeled framework being used to test this hypothesis utilized blood serum UA 

data from a healthily middle aged population to see if the differences in baseline UA 

levels could statistically predict lipemic response after eating a single HSF meal.  The 

findings from this study showed that baseline UA levels positively and significantly 

correlate with the lipemic response from a HSF, but not a PUFA meal (Figure 2 A and 

B).  The data analysis also revealed that the observed phenomena are gender specific.   

This finding supported the theoretical foundation of previous studies, and adds to the base 

of knowledge by showing that the increase of risk for hyperlipidemia begins to increase 

in individuals with blood UA levels of 4.5 mg/dL for male and 3.0 mg/dL for female.  
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More work is needed to understand the mechanisms of why this effect is on different 

scales between the genders and why it is specific to saturated fats. 

Limitations of the Study 

The two major additions in the primary study design that would have greatly 

benefited this dissertation study would have been to include a full lipid profile and UA 

measurements for all of the time-point samples from the OGTT, and UA levels for the 

post intervention meal samples.  This would have given valuable information towards 

understanding how different calorie sources (i.e. glucose from the OGTT, and saturated 

verses PUFA fats from the meals) were affecting the SREBP-1c lipogenesis pathway 

response.  It would have also been interesting to see if UA changed during these dietary 

interventions.   However, previously published studies have not shown UA to 

significantly change in HSF and PUFA meal intervention trials similar to this one 

(Jimenez-Gomez et al., 2009).  However, UA has been shown to significantly raise post 

meal in studies using large doses of fructose or purines (e.g. RNA from yeast or sardines; 

Rock, et al., 2013). 

This study may have benefited if the primary study recruited more participants in 

increasing the strength of the statistical correlations.  The tables and figures from the 

study analysis included statistical designations of near-significance (*P≤0.1).  This was 

to show trends in the data that may confirm previously reported findings, and also to 

show potential research questions for future studies with a more focused design or higher 

number of participants to reach significance.  A recommendation for future studies on 

this data set will be to do a Pearson’s correlation analysis of HOMA2 IR at baseline and 

post meals verses all baseline clinical values and verses all relative changes measured 
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(%ΔAUC) post HSF and PUFA meals.  This analysis would give a better understanding 

of which factors are involved in causing insulin resistance. 

Recommendations 

Since 1985, there has been an alarming rise in visceral fat weight gain, with 

approximately 68% of adults in the U.S. currently diagnosed as being overweight or 

obese (Fortuna, 2012).  Current gaps in the knowledge include the genetic and biological 

risk factors for visceral fat weight gain and, in particular, why some people are more 

prone to lipogenesis.  These gaps have been a major stumbling block for public health 

organizations in being able to launch effective prevention and treatment campaigns. 

According to the Adult Treatment Panel II and International Diabetes Federation 

criteria, a patient meets diagnostic criteria for metabolic syndrome when three or more of 

the following risk factors are present: abdominal obesity waist circumference for men 

greater than or equal to 102 cm, for women greater than or equal to 88 cm; fasting blood 

triglyceride levels greater than or equal to 150 mg/dL, HDL-cholesterol less than 40 

mg/dL for men and 50 mg/dL for women; blood pressure greater than or equal to 130/85 

mmHg; and/or a fasting blood glucose greater than or equal to 100 mg/dL (Alberti, 

Zimmet, & Shaw, 2006).  Very high levels of UA can result in precipitation of soluble 

UA into needle-shaped crystals (i.e. gout) that can accumulate in joints and kidneys to 

cause physical damage, leading to further damage by chronic inflammation, and is a 

cause of arthritis and kidney disease (Rho, Zhu, & Choi, 2011).  This dissertation study 

only focused on the phenomena associated with soluble UA [i.e. UA≤ 6.0mg/dL]; 

however, the presence of gout symptoms interfering with the interpretation of the data 

cannot be rule out in participants with high levels.  The observed increase in 
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inflammation markers after the “healthy” control meal triggered concerns that a diet high 

in PUFA, which are substrates of inflammation signals (i.e. arachidonic acid), could 

further antagonize inflammatory damage in gout patients.  Further analysis of data from 

this study needs to test if baseline markers of inflammation are correlated with changes in 

inflammation markers immediately after eating the PUFA meal.  A Pearson’s correlation 

analysis of baseline C-reactive proteins verses all other baseline clinical values showed a 

significant association with BMI (P=0.017, Table 9A), but also with most of the other 

markers of inflammation (data not shown).  This result indicates that preexisting levels of 

inflammation are correlated with an amplified increase in levels of inflammation post 

meal.  This observation of a feed-forward self-cycling mechanism was also seen with 

BMI, in that higher BMI participants are more likely to have a higher lipemic response to 

the HSF meal with corresponding insulin resistance (P=0.017, Table 6A).  In other 

words, the more visceral fat a participant had, the more geared their metabolic pathway 

was to synthesize more fat.  The observation of the interactions between BMI and 

inflammation being self-perpetuating has been previously reported, and is an established 

component of the metabolic syndrome mechanistic hypothesis (Alberti, Zimmet, & 

Shaw, 2006).  A future study design to better understand the factors involved in the self-

perpetuating nature of the metabolic syndrome should include a more defined lipid 

challenge (e.g. just C16:0 or C18:2) that is able to dissect out which lipids and signaling 

pathways are most involved.  The design of the follow-up study should also include 

increasing and decreasing UA levels before the dietary challenges to establish if UA is a 

direct effector of lipemic response sensitivity.  Future work also needs to address the 
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factors underlying the gender differences observed in the outcome findings from this 

study. 

Implications for Social Change 

The implications for the results from this study to cause positive social change 

lies in providing the research community evidence that UA is an independent regulator of 

postprandial lipemic response that is specific to a diet high in saturated fats.  The results 

from this study corroborate previously reported findings that BMI and inflammation are 

involved in increasing the sensitivity to postprandial lipemic response from either meal, 

but the association is independent and much weaker than that observed for UA in this 

study.  The relatively weak correlations of BMI and inflammation with lipemic response 

from the HSF meal in this study are likely because the participant pool was selected to 

represent a healthy-weight population.  The key finding that UA levels are an 

independent predictor of lipemic response from a HSF meal is summarized in Figure 2 

and 3.  After obtaining BMI and UA levels, these figures could be utilized by healthcare 

professionals to determine a patient’s risk of visceral fat weight gain from excess caloric 

intake.  These findings could be added to the public health awareness campaign of 

disseminated information so that it includes the relationship between blood serum UA 

levels and postprandial lipemic response to dietary saturated fats.  Continuation of this 

line of research is also likely to uncover new targets for pharmaceutical drugs and natural 

dietary supplements directed toward prevention and treatment of hyperlipemia and age-

related diseases. 

This study found a significant and positive correlation between lipemic response 

and insulin resistance immediately following a HSF meal.  Diets high in saturated fats are 
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known inducers of insulin resistance, where palmitic acid (C16:0), the major precursor of 

ceramides is the most potent inducer (Holland et al., 2007).  Lowering ceramides has 

been shown to be a key in reversing the self-perpetuating cycle of insulin resistance and 

metabolic syndrome (Gill & Sattar, 2009).  However, inflammation, mainly through the 

production of reactive oxygen species, is a key activator of ceramide production via 

activation of sphingomyelinases.  Therefore, to break the cycle, the current clinical data 

indicates that a three-pronged approach would be most effective.  One step is to lower 

ceramide synthesis precursor palmitic acid by maintaining a low saturated fat and simple 

sugar (e.g. fructose) diet, intermittent fasting and exercise.  Our 24-hour hormone cycle 

favors peak endogenous fatty acid and steroid (i.e. cholesterol) synthesis in response to 

our nocturnal peak of growth hormone (Jones & Schoeller, 1990; Parker et al., 1982).  

This is why taking statins to lower cholesterol synthesis is most effective and therefore 

prescribed to be taken with the evening meal (Faeh et al., 2005).  There is also building 

evidence that eating lighter meals at dinner may be an effective strategy in lowering 

endogenous lipogenesis (Faeh et al., 2005).  The second step is to lower inflammation, 

which can be achieved by lowering infections activating inflammation, particularly 

chronic infections (e.g. hepatitis virus, oral plaque, etc.…) (Lin, et al., 2005).  After 

clearing the primary activator of inflammation, anti-inflammatory agents (e.g. steroids, 

and non-steroid (ibuprofen, aspirin)) may be useful in breaking the inflammation cycle 

(Lin, et al., 2005).  Lastly, a diet high in antioxidants has been shown to be useful in 

breaking a self-perpetuating inflammation cycle after the primary inflammatory trigger 

has been cleared.  Dietary antioxidants have also been shown to be useful in increasing 

the threshold of the inflammation response, thereby lowering false antigen activated auto-
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immune responses (Vgontzas, et al., 2000).  Antioxidants like N-acetyl-cysteine have 

been shown to shorten the time in quenching the immune response back to baseline after 

clearance of antigen resulting in the prevention of initiating a self-perpetuating 

inflammation cycle and consequential collateral damage to surrounding healthy tissues 

(Boon et al., 2013; Dekker et al., 2013).  Since UA has been shown to be a potent 

antioxidant that positively correlates with lipemic response to a HSF meal, it could be 

acting as a beneficial response to put on the “metabolic brakes” on the self-perpetuating 

cycle described above (Cutler, 1984; Sutin et al., 2013).  However, more research is 

needed to support this hypothesis. 

Conclusion 

Utilizing data from a healthy middle-aged population, this study has found that 

when stratified by gender, baseline UA levels are an independent and significant 

predictor of the lipemic response (%ΔAUC) from a HSF, but not a “healthy” PUFA meal 

(Table 6).  In most animals, the biochemical pathway of purine catabolism ends with 

allantoin as the end product, with many species having the biochemical catabolic 

pathway going further to ammonia.  However, in apes, birds, bats, and some reptiles, the 

urate oxidase gene has accumulated multiple mutations resulting in knocking out 

enzymatic activity thereby making UA the final catabolic end product.  The evolutionary 

advantage and driving force for the progressive knockdown and eventual knockout of 

urate oxidase in apes, birds, bats, and some reptiles remains unknown.  Evidence that UA 

is not an unwanted waste product, but has some biologically desired function, is in the 

presence of enzymatic systems in the kidneys that expend energy to transport UA from 

the urine back into the blood stream.  Blood serum UA levels increase with starvation and 
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physical injury (e.g. exercise), which is further amplified by an increase in kidney 

reabsorption via URAT1, indicating that UA is being utilized as a stress signal, or in a 

repair pathway.  One of the proposed benefits of high UA is that it is acting to increase 

the metabolic efficiency of visceral fat synthesis and storage by inhibiting AMPK, 

thereby increasing the postprandial activation of the sterol regulatory element binding 

protein-1c (SREBP-1c) lipogenesis pathway (Lanaspa, Sanchez-Lozada, et al., 2012).  

However, UA levels can also be increased by a diet high in purines (e.g. meat) or 

fructose, which has been positively correlated with obesity, hypertension, cardiovascular 

disease, type 2 diabetes mellitus, metabolic syndrome, and gout (Soltani, Rasheed, 

Kapusta, & Reisin, 2013).   

The concerning public health implication of high BMI found from this study is 

that having a high percent of visceral fat somehow makes one more prone to gain more 

fat from the same calorie meal.  This result indicates that there is a sensitivity and/or 

feed-forward mechanism, where the existing visceral fat is influencing metabolism to 

synthesize more visceral fat.  Fortunately, the effect of BMI in causing temporary insulin 

resistance directly after a HSF meal was specific to HSF and did not happen with the 

PUFA meal.  These results confirm previous studies that found that Mediterranean (i.e. 

high PUFA) meals are beneficial in maintaining insulin sensitivity and weight loss as 

compared to HSF meal (Jimenez-Gomez et al., 2009).  Other studies have shown that 

diets high in simple sugars (e.g. fructose), stimulate endogenous fatty acid synthesis that 

closely matches the blood lipid profiles (e.g. high palmitic acid) of people on a high in 

saturated fat diet (Lanaspa, Sanchez-Lozada, et al., 2012).  However, this effect can be 

countered by insuring that 5 – 10% of fats in a meal are polyunsaturated omega-3 fatty 
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acids (e.g. DHA, EPA, ALA)(Jimenez-Gomez et al., 2009).  Previous studies have shown 

that fasting and exercise can stop this cycle in muscle and brain, by increasing insulin 

sensitivity (Bataille, Maffeo, & Renfro, 2011). 

Although the results from this study show that UA is significant and positively 

correlated with lipemic response after a HSF meal, it is not known if lowering UA (e.g., 

through use of allopurinol) would result in a lower lipemic response.  The public health 

information and utility that can be taken away from this study are found in Figures 2 and 

3, which can be used to advise patients with UA above 4.5 and 3.0 mg/dL for males and 

females, respectfully, about their increased sensitivity with HSF foods. 

Building on the findings from this study, a future study should test if increasing 

and lowering UA levels affects the lipemic response to a HSF meal.  Currently, there is 

no clinical diagnostic utility for measuring UA levels, besides assessing for gout 

(Nakagawa, et al., 2006).  The continuation of this line of research should determine if 

UA has any diagnostic value and, if so, establish healthy ranges. 
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