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Abstract 

Cognitive structures that promote deep learning of gross anatomy are integral to 

musculoskeletal physiotherapy practice yet poorly understood. This quantitative, 

criterion-related validation study addressed two data modeling strategies 

(multidimensional scaling and Pathfinder networks) as a potential visual and quantitative 

representation of the cognitive structures of physiotherapy students learning gross 

anatomy. The study was grounded in the Adaptive Control of Thought-Rational theory of 

cognition. The research questions addressed the agreement (reliability, accuracy, and 

association) between student and expert cognitive structures and included the derived 

quantitative parameters as predictor variables in multiple regression to examine potential 

relationships with unit grades. An online survey of paired comparisons of 20 anatomical 

concepts relevant to musculoskeletal clinical practice generated the raw data used in the 

data modeling strategies for cognitive structure mapping. Convenience sampling was 

used to recruit 31 physiotherapy students, four course instructors, and three domain 

experts who completed the online survey. The results indicated moderate to high effect 

sizes regarding the agreement between student and expert. Six predictor variables 

accounted for 68.9% of the variance in unit grade indicating a large effect size. 

Preliminary evidence of concurrent and predictive validity was reported. Positive social 

change is reflected in this innovative use of data modeling strategies to represent 

cognitive structure and potentially enhance competency-based education critical to 

effective musculoskeletal physiotherapy practice.  
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Chapter 1: Introduction to the Study 

Physiotherapy (physical therapy) has a clear and evolving role as a primary care 

provider for musculoskeletal (MSK) conditions (Ojha et al., 2020). The clinical 

diagnostic accuracy of physiotherapists is equivalent to that of orthopedic surgeons in the 

context of MSK conditions; as such, it requires a mastery of gross anatomy and its 

relationship to movement and function (Barrett & Liebman, 2020; Moore et al., 2005). 

The foundation of physiotherapy education is firmly rooted in anatomical knowledge, an 

essential aspect of entry-level training leading to clinical reasoning and diagnostic 

thinking (Timmerberg et al., 2019). However, there is a growing trend among 

physiotherapy, medical, nursing, and chiropractic students indicating the decline of 

anatomical knowledge retention (Dayal et al., 2017; Hołda et al., 2019; Narnaware & 

Neumeier, 2020). This decline becomes crucial for global health policy when 17% of the 

world’s population is affected by musculoskeletal conditions that require the care of a 

skilled primary MSK provider such as a physiotherapist (Briggs et al., 2020; James et al., 

2018). 

Knowledge retention and transfer are critical learning outcomes that depend on 

the student’s cognitive structure gained through deep (meaningful) learning (Ausubel, 

1963; Mayer, 2002b). Factors related to instructional design, the instructor’s pedagogical 

content knowledge, and the student’s self-regulated learning strategies can either enhance 

or inhibit cognitive structure development (Mayer, 2009; Neumann et al., 2019; van 

Lankveld et al., 2019). These factors may limit the retention and transfer of anatomical 
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knowledge for subsequent clinical courses and, over the long term, negatively impact 

clinical practice (Mayer, 2002b; Montpetit-Tourangeau et al., 2017).  

Gross anatomy is a foundational course that provides unique challenges to 

physiotherapy students. Anecdotal experience indicated broad variations in prior 

knowledge, misconceptions, and an emphasis on rote memorization, features indicative 

of poor knowledge organization (D’Antoni et al., 2019). Physiotherapy students are often 

overwhelmed by the volume of the material and lack confidence in understanding how to 

learn anatomy (Choi-Lundberg et al., 2017). These factors subsequently increase stress 

and cognitive load, diminishing the student’s ability to use prior knowledge for future 

encoding (Vogel et al., 2018). Much attention has focused on teaching approaches and 

instruction. However, little research exists on how physiotherapy students learn gross 

anatomy in a way that develops a cognitive structure associated with meaningful learning 

and potentially enhances long-term retention, competency, and effective transfer to a 

clinical context as a primary care provider (Choi-Lundberg et al., 2017; D’Antoni et al., 

2019). 

The current study addressed two data modeling strategies (multidimensional 

scaling [MDS] and Pathfinder networks [PFN]) as a potential visual and quantitative 

representation of the cognitive structures of physiotherapy students learning gross 

anatomy. Chapter 1 provides an overview of the study and includes the background, 

problem, purpose, research questions, theoretical framework, nature, definitions, 

assumptions, scope and delimitations, limitations, and significance. The background 

provides key relevant literature related to the topic. The problem, purpose, and research 
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questions provide the basis for the investigation. The theoretical framework identifies the 

foundations for the study that informed the chosen methodology. The scope of the study 

includes definitions, assumptions, scope and delimitations, and limitations. Finally, the 

significance of the study provides implications for positive social change. 

Background 

Deep learning, also known as meaningful learning, is grounded in cognitive 

science. The primary foundation for deep learning is prior knowledge, and new 

knowledge builds upon this foundation (Ausubel, 1963; Mayer, 2002a). Cognitive 

architectures such as Adaptive Control of Thought-Rational, or ACT-R (J. R. Anderson, 

1996, 2007), have been designed to align computational and neuroscientific constructs 

for a functional understanding of deep learning and the cognitive mechanisms underlying 

knowledge acquisition, encoding, retention, and retrieval. ACT-R utilizes two abstraction 

levels (symbolic and subsymbolic) to represent these cognitive mechanisms, one of 

which is cognitive structure. 

Cognitive structures are the individual’s mental representation of what they know 

(content) and how they know it (organization); cognitive structures contain facts, 

personalized meaning, perceptions, and misconceptions. Prior knowledge forms the basis 

for cognitive structures, which are continually undergoing revision and updating as 

knowledge and learning progress (J. R. Anderson, 1996; Noushad & Khurshid, 2019). 

Effective encoding of knowledge into well-organized and relevant cognitive structures 

free of misconceptions is a goal of learning and instruction. However, the challenge is 

that the direct measurement of cognitive structures remains elusive; indirect methods are 
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required that demand both reliability and validity in their use (Gisick et al., 2018; 

Ifenthaler et al., 2011; Moon et al., 2018). Although many studies have addressed 

cognitive structure and its representation, a broad range of methodological issues has 

limited the generalizability of findings regarding a preferred representational approach or 

its reproducibility across domains. 

Self-directed learning places a higher demand on the physiotherapy student in 

developing effective cognitive structures (van Lankveld et al., 2019). The learning 

process begins with the student’s approach to learning, either surface (also known as rote 

or meaningless) or deep (meaningful; Marton & Säljö, 1976). Deep learning strategies 

create more developed cognitive structures, enhancing learning outcomes and the transfer 

of learning to higher order thinking (Krathwohl, 2002; Smith, Stokholm, et al., 2017). 

Cognitive structures can differentiate students from experts and can be used to establish 

cognitive performance while monitoring educational progress (Moon et al., 2018). The 

development of cognitive structure that is optimized for clinical decision making is the 

goal of any health professions curricula; for the physiotherapy student, this begins with 

the study of gross anatomy. 

The importance of gross anatomy in the education of primary MSK care providers 

cannot be overstated. Research in medical education has indicated that medical gross 

anatomy performance is correlated with the United States Medical Licensing 

Examination Step 1 (Peterson & Tucker, 2005). Peterson and Tucker (2005) reported that 

this correlation (r = 0.577) is greater than other traditional predictors in use such as the 

biology section of the MCAT (r = 0.482), science grade point average (GPA; r = 0.213), 
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and undergraduate GPA (r = 0.189). Physiotherapy students show a similar trend. 

Traditional predictors of the first-time pass rate on the National Physical Therapy Exam 

(NPTE) include preprofessional, undergraduate, first year, and final professional GPA 

(Bayliss et al., 2017; Cook et al., 2015; S. H. Hayes et al., 1997; Kume et al., 2019; 

Meiners & Rush, 2017; Roman & Buman, 2019; Wolden et al., 2020). Much like the 

findings of medical education, gross anatomy grade in physiotherapy students contributed 

to 49% (younger, traditional students) and 35% (older, nontraditional students) of the 

variance in final professional program GPA (S. H. Hayes et al., 1997). Wolden et al. 

(2020) reported that student clinical performance scores had a weak and not statistically 

significant relationship with first-time NPTE pass rate. However, first- and third-year 

student GPA, of which gross anatomy is a contributor, had a strong and significant 

relationship (Wolden et al., 2020). Gross anatomy education plays an integral role in 

primary MSK provider entry-level training and the first-time pass rate on the NPTE. 

Gross anatomy education has remained relatively static over several decades; 

however, recent developments have included the use of problem-based learning and 

computer-assisted instruction (Wilson, Brown, et al., 2019; Wilson, Miller, et al., 2018). 

A critical review by Estai and Bunt (2016), followed by systematic reviews by Losco et 

al. (2017) and Wilson, Brown, et al. (2019), indicated that gross anatomy teaching 

methods and instructional strategies attain similar learning outcomes. Wilson, Brown, et 

al. (2019) noted that there is a need to examine the impact of anatomy pedagogies and 

learning strategies on the acquisition and long-term retention of anatomical knowledge, 

especially in the context of student-centered learning. Hulme et al. (2020) noted the 
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importance of tracking changes in anatomical knowledge within the curricula and 

measuring retention as cognitive levels change. Learner-specific cognitive factors may be 

significant contributors to the problem of anatomical knowledge retention. However, 

cognitive learning theories that promote deep learning are often poorly integrated into 

gross anatomy curricula (Agra et al., 2019; Choi-Lundberg et al., 2017; Smith, Finn, & 

Border, 2017). For example, a literature review revealed only two studies in gross 

anatomy and neuroanatomy that included mind mapping to promote knowledge 

representation and deep learning (Anand et al., 2018; Deshatty & Mokashi, 2013). No 

studies were identified that focused on students’ cognitive structure in the broad context 

of gross anatomy education, how students’ cognitive structure compared to experts (both 

domain specific and physiotherapy centric), and how students’ cognitive structure 

changed over time. The research was also limited on medical, chiropractic, or 

physiotherapy students learning gross anatomy to become future primary MSK care 

providers. 

Cognitive structures serve as a construct for knowledge organization, an essential 

element in learning gross anatomy and a domain that demands cognitive skills such as 

visualization, spatial ability, and the use of consistent terminology and taxonomy (Amin 

& Iqbal, 2019; Castro-Alonso & Atit, 2019; Clarkson & Whipple, 2018; Langlois et al., 

2020). The student’s learning approach can have diverse effects on cognitive structures 

and subsequent learning outcomes (Marton & Säljö, 1976). Cognitive mapping may 

represent the multidimensional frames of reference inherent to cognitive structure 

(Bottini & Doeller, 2020). Data modeling strategies such as MDS and PFN have been 



7 

 

 

used to represent cognitive structures in a broad range of domains (Azzarello, 2007; 

Balloo et al., 2016; Casas-García & Luengo-González, 2012; Connor et al., 2004; Curtis 

& Davis, 2003; DiCerbo, 2007; Jaworska & Chupetlovska-Anastasova, 2009; McGaghie, 

McCrimmon, et al., 2000; McGaghie, McCrimmon, & Thompson, 1998; Neiles et al., 

2016; Stevenson et al., 2016; Veríssimo et al., 2017; H. D. White, 2003). MDS provides a 

visual spatial representation (with associated quantitative measures), whereas a PFN 

provides a visual network representation (with associated quantitative measures). 

Although both MDS and PFN are promising approaches to the visual and quantitative 

representation of cognitive structure, neither have been used to represent cognitive 

structures in gross anatomy or physiotherapy education. 

There was a gap in the research on how physiotherapy students learn gross 

anatomy, specifically the cognitive structures that promote deep learning in the gross 

anatomy domain to fulfill their role as primary MSK care providers. Although limited 

research on cognitive structure was found in other health care professions such as nursing 

(Alfayoumi, 2019) and medicine (Nicoara, Szamoskovi, et al., 2020), I did not find 

studies in the physiotherapy domain beyond two concept mapping studies (see Zipp & 

Maher, 2013; Zipp et al., 2015). The problem was that deep learning of gross anatomy by 

physiotherapy students is poorly understood based on cognitive structure development. 

The current study addressed a primary component in this process: the representation of 

cognitive structure in physiotherapy students learning gross anatomy. The use of 

cognitive structure mapping via MDS and PFN is a promising and innovative approach to 

the representation of cognitive structures that merited further research in the context of 
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gross anatomy education for physiotherapy students. Quantitative representation of 

cognitive structure may provide valuable insight into learning and instruction strategies 

that enhance the development of well-organized cognitive structures, promote deep 

learning, and serve as an assessment of learning leading to enhanced retention and 

transfer (see Leppink, 2020). 

Problem Statement 

The problem was that the mapping of cognitive structures of physiotherapy 

students learning gross anatomy is poorly understood. A mastery of gross anatomy is 

imperative for a primary care provider, given their role in musculoskeletal care (Barrett & 

Liebman, 2020). Anatomical knowledge retention, an important learning outcome, 

diminishes over time, creating a need to understand the mechanisms involved in surface 

(rote/meaningless) and deep (meaningful) learning (Dayal et al., 2017; Hołda et al., 2019; 

Narnaware & Neumeier, 2020). Learning outcomes in gross anatomy courses do not 

appear to vary with instructional strategy or learning style (Aslaksen & Lorås, 2019; 

Husmann & O’Loughlin, 2019; Losco et al., 2017; O’Mahony et al., 2016; L. J. White et 

al., 2018; Wilson, Brown, et al., 2019). However, gross anatomy grades account for a 

large percentage of the final professional GPA variance, a predictor of first-time pass rate 

on the NPTE (S. H. Hayes et al., 1997). Although cognitive structures cannot be 

measured directly, data modeling strategies such as MDS and PFN have been used as an 

indirect method to represent cognitive structures in various domains. However, few 

research studies have addressed the use of these strategies in the health care professions, 

limited primarily to nursing (Azzarello, 2007) and psychology (Jaworska & 
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Chupetlovska-Anastasova, 2009); none have focused on the domains of musculoskeletal 

care or primary care providers such as orthopedic surgeons, chiropractors, or 

physiotherapists. Finally, methodological challenges in previous studies have limited the 

generalizability and reproducibility of results. Given the research gap, the goal was to 

understand the visual and quantitative representation of cognitive structure in the gross 

anatomy domain, exemplified by MDS and PFN strategies, and to validate the possible 

meaning of these quantitative measures in the context of entry-level physiotherapy 

education. Data modeling strategies may serve as a promising and innovative approach to 

the visual and quantitative representation of the cognitive structures in this domain, 

fostering deep and meaningful learning. 

Purpose of the Study 

The purpose of this quantitative study was to explore two data modeling strategies 

(MDS and PFN) as a potential visual and quantitative representation of the cognitive 

structures of physiotherapy students learning gross anatomy. The study was initially 

conceived to focus on student cognitive structure in two contexts: how it changes over 

time and how it compares to two criterion standards (expert cognitive structure and 

academic performance). However, due to extenuating circumstances, this purpose was 

revised to reflect one context: comparing student cognitive structure to two criterion 

standards. The first part of this exploratory study addressed the potential relationships 

and agreement between student cognitive structure and expert cognitive structure 

(criterion standard one). There were no independent or dependent variables because an 

independent variable was not manipulated to examine a change in the dependent variable. 
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For the second part of this exploratory study, the dependent variable (criterion standard 

two) was the unit grade. The independent variables were MDS- and PFN-derived 

quantitative measures and the level of agreement between student and expert cognitive 

structures. MDS-derived measures included dimensionality, stress-1, Tucker’s coefficient 

of coherence (TCC), R2 (the variance accounted for by the model), and Euclidean 

semantic distances. PFN-derived measures included links, degree, eccentricity, 

coherence, similarity (with another network), and graph-theoretic semantic distances. 

Covariates addressed prior knowledge and included admission GPA and admission 

anatomy GPA. Moderating variables that were considered included instructor and mode 

of program delivery (residential or flexible). Age and gender were used for 

poststratification to ensure that the sample represented the target population. Validation 

of measures provided an essential foundation for improving gross anatomy learning, 

instruction, and assessment to enhance retention, transfer, and competency for 

physiotherapy students. Insights gained from this study may provide a unique perspective 

on cognitive structures and serve as an innovation in gross anatomy and physiotherapy 

education. 

Research Questions 

The research questions (RQs) addressed in this exploratory study were framed 

within the context of physiotherapy students enrolled in a first semester foundational 

gross anatomy course. In this study, cognitive structure (student and expert) was 

represented by the following measures: MDS dimensionality, stress-1, TCC, R2, and 

Euclidean semantic distances, and PFN links, degree, eccentricity, coherence, similarity, 
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and graph-theoretic semantic distances. Prior knowledge was represented by two 

measures: admission GPA and admission anatomy GPA. The unit grade was measured by 

a weighted average of written and practical exam grades. The study was guided by the 

following RQs: 

RQ1: Is there a meaningful change over time in the quantitative representation of 

student cognitive structure? 

RQ2: Is there a relationship between student cognitive structure and expert 

cognitive structure while controlling for prior knowledge? 

RQ3: Is there a relationship between student cognitive structure and unit grade 

while controlling for prior knowledge? 

Given the RQs’ exploratory nature, hypotheses for each RQ were not appropriate 

or indicated. 

Theoretical Framework for the Study 

The theoretical framework integrated cognitive science and data modeling 

strategies used for dimensionality reduction and data visualization. There has been a 

growing interest in integrating cognitive science with computational strategies borne of 

graph theory and network analysis (Siew, 2020). Cognitive science theory includes the 

ACT-R cognitive architecture (J. R. Anderson, 1996, 2007) as a coherent foundation for 

cognitive learning theory. Two data modeling strategies were considered within the 

context of the current study: MDS (Kruskal & Wish, 1978) and PFN (Schvaneveldt, 

1990). The integration of cognitive science and data modeling may play an important role 
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in the gross anatomy domain, specifically within the broader scope of physiotherapy 

education. 

The ACT-R model of cognition is a cognitive architecture that provides a 

foundation for cognitive learning theory (J. R. Anderson, 2007; Ausubel, 1963; Mayer, 

2009). This cognitive architecture proposes both symbolic and subsymbolic structures; 

the former as knowledge chunks stored as declarative knowledge, and the latter as 

production rules stored as procedural knowledge (J. R. Anderson, 1996). Cognitive units, 

an integral element of declarative memory, were proposed by J. R. Anderson (1980) as a 

precursor to what is now considered cognitive structure. Surface learning (also known as 

rote or meaningless learning) is the rote memorization of (symbolic) information with 

little coherent integration into an existing cognitive structure, whereas deep (meaningful) 

learning has clear relationships and associations between concepts that are integrated 

within a well-organized cognitive structure (Ausubel, 1963; Marton & Säljö, 1976; 

Mayer, 2009). Expert cognitive structures are typically consistent with those gained 

through deep learning and serve as a gold standard for student cognitive structure 

comparisons. 

Recent developments in understanding the hippocampus, and its analogous 

functional representations within the ACT-R computational framework, may serve a role 

in better understanding cognitive structures (Burgess, 2014; O’Keefe & Nadel, 1978; 

Spiers, 2020; Theves et al., 2019). Cognitive maps reflect a growing understanding of a 

multilayered representation of knowledge organization consisting of two frames of 

reference: a high-dimensional space reflecting semantic spaces and a low-dimensional 
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space reflecting semantic networks (Bellmund et al., 2018; Bottini & Doeller, 2020; 

Gärdenfors, 2017). The use of data modeling strategies such as MDS (Kruskal & Wish, 

1978) and PFN (Schvaneveldt, 1990) may reflect the operationalization of these frames 

of reference: MDS as a potential visual and quantitative representation of the semantic 

space, and PFN as a potential visual and quantitative representation of the semantic 

network. These data modeling strategies provided an indirect yet explicit cognitive 

structure mapping, which was examined in the gross anatomy domain and physiotherapy 

students. 

Nature of the Study 

The nature of the study was initially conceived as a quasi-experimental, 

longitudinal, criterion-related validation study. It consisted of a one-group pretest-posttest 

design with pretest and posttest measures of proximity data (see A. D. Harris et al., 

2006). However, extenuating circumstances precluded the option of the study being 

longitudinal in nature. A quasi-experimental design was appropriate for a criterion-

related validation design because it minimized selection effects while providing external 

validity inherent to the design itself (see Burkholder et al., 2016). This study design 

aligned with the purpose and research questions by providing a foundation to examine the 

potential use of two data modeling strategies to quantitatively represent the cognitive 

structures of physiotherapy students learning gross anatomy. This exploratory study 

addressed the potential relationships and agreement between student cognitive structure 

and expert cognitive structure (criterion standard one). There were no independent or 

dependent variables because an independent variable was not manipulated to examine a 
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change in the dependent variable. For the second part of this exploratory study, the 

dependent variable (criterion standard two) was the unit grade. The independent variables 

were MDS- and PFN-derived quantitative measures and the level of agreement between 

student and expert cognitive structures. MDS-derived measures included dimensionality, 

stress-1, TCC, R2, and Euclidean semantic distances. PFN-derived measures included 

links, degree, eccentricity, coherence, similarity (with another network), and graph-

theoretic semantic distances. The covariate was prior knowledge (admission GPA and 

admission anatomy GPA). Moderating variables included instructor and mode of 

program delivery (residential or flexible). Physiotherapists in clinical practice were 

provided with a list of concept items derived from the gross anatomy course text 

Clinically Oriented Anatomy (Moore et al., 2018), the Terminologia Anatomica (FIPAT, 

2019), and the Foundational Model of Anatomy (Clarkson & Whipple, 2018) anatomical 

taxonomy. The physiotherapists were asked to rank the relevance of the concept items to 

clinical practice. A final list of 20 concept items was used for pairwise comparisons. 

Student and expert cognitive structure were derived from proximity/similarity data based 

on pairwise comparison of concept items. Expert cognitive structures served as the 

primary criterion standard. Experts were drawn from both physiotherapy centric 

instructors (Doctor of Physical Therapy [DPT] but not PhD in Anatomy) and anatomy 

centric instructors (PhD in Anatomy but not DPT or clinical doctorate). The sample 

consisted of volunteer student participants from the DPT program currently enrolled for 

the first time in the first-trimester gross anatomy course. Between-group analysis was 

used to examine the agreement with and relationships between student cognitive 
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structures and criterion variables (expert cognitive structure and unit grade) while 

controlling for prior knowledge. 

Although an examination of the current literature on the use of MDS and PFN 

revealed an absence of specific power calculations, a preliminary a priori power analysis 

was performed via G*Power with an alpha of 0.05 and power of 0.80 (see Faul, 

Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). Several 

sample sizes were generated based on the statistical analysis and both medium and large 

effect sizes for comparison. For paired sample t tests, the sample size was 34 (moderate 

effect size of 0.50) or 15 (large effect size of 0.80). For correlational analysis, the sample 

size was 84 (moderate effect size of 0.30) or 29 (large effect size of 0.50). For multiple 

regression, the sample size was 77 (moderate effect size of 0.15) or 36 (large effect size 

of 0.35). Previous studies provided a foundation upon which to view sample size in the 

context of a priori calculations. Seminal studies indicated a range of sample sizes from 35 

to 71 participants (Acton et al., 1994; Egli, Streule, & Lage, 2008; Goldsmith et al., 1991; 

Neiles et al., 2016; Stevenson et al., 2016; Trumpower, Sharara, & Goldsmith, 2010). 

Definitions 

Agreement: Agreement between raters or measurements is reflected in three 

statistical measures: reliability, accuracy, and association. Reliability is calculated as 

interrater reliability via Krippendorff’s alpha (A. F. Hayes & Krippendorff, 2007; 

Krippendorff, 2004). Accuracy is calculated as RMSD or root mean square deviation 

(Kopp-Schneider & Hielscher, 2019; Looney, 2018). Association is calculated as the 

strength of linear association via Pearson’s product-moment correlation (Kopp-Schneider 
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& Hielscher, 2019; Looney, 2018). Agreement is used in the context of proximity data, 

MDS Euclidean semantic distances, and PFN graph-theoretic semantic distances. 

Cognition: “The mental action or process of acquiring knowledge and 

understanding through thought, experience, and the senses” (Lexico, n.d., US dictionary). 

Cognitive architecture: “A specification of the structure of the brain at a level of 

abstraction that explains how it achieves the function of the mind” (J. R. Anderson, 2007, 

p. 7). 

Cognitive map: “A schematic-like mental representation of the relationships 

between entities in the world including places, events, people, or even concepts” (Arzy & 

Schacter, 2019, p. 9). 

Cognitive structure: “A hypothetical construct referring to the organization of the 

relationships of concepts in long-term memory” (Shavelson, 1972, pp. 226–227). This 

definition is aligned with the cognitive unit described by J. R. Anderson (1980, abstract) 

as “sets of elements that are stored in long-term memory in a single encoding act and 

which are retrieved from long-term memory in a single retrieval. By this definition, 

concepts in a semantic network are generally considered cognitive units”. 

Cognitive structure mapping (cognitive mapping): The proposed representation of 

cognitive structure reflected in a cognitive map defined via two data modeling strategies 

(MDS and PFN) and their derived quantitative parameters and data visualization. A well-

organized cognitive structure reflective of an expert has a greater number of links and 

stronger associations between them, greater coherence within the PFN model, greater 

goodness-of-fit, shorter semantic distances, and a higher percentage of variance attributed 
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to the MDS model (Egli, Streule, & Lage, 2008; Schvaneveldt et al., 1985). Higher 

similarity (PFN) would indicate greater similarity with another cognitive structure, with a 

change and increase in similarity indicating the cognitive structure is more expert-like 

(Goldsmith et al., 1991). 

Deep (meaningful) learning (construct): Meaningful learning involves the 

integration of new knowledge with an existing cognitive structure. It is “an iterative 

process in which learners must continue to refine, rectify, rearrange, and reorganize the 

content and structure of their knowledge so that their cognitive structure can be 

improved” (Wei & Yue, 2017, p. 5). 

Deep (meaningful) learning (context): “Meaningful learning is distinguished by 

good transfer performance as well as good retention performance” (Mayer, 2009, p. 20). 

MDS-derived measures: The quantitative measures representing both 

configuration properties and Euclidean semantic distances (Borg & Groenen, 2005). 

Configuration properties include dimensionality, stress-1 (goodness-of-fit, which 

represents the coherence of the model), TCC, and R2. Euclidean semantic distances 

represent the degree of association of concepts within the spatial model. These measures 

are also reflected in a spatial visual representation of the proximity data. 

PFN-derived measures: The quantitative measures representing both network 

properties and graph-theoretic semantic distances (Schvaneveldt, 1990). Network 

properties include links, degree (the number of links attached to each node), eccentricity 

(the maximum number of links between a node and all other nodes in a network), 

coherence (the degree to which an individual’s cognitive structure has internal links and 



18 

 

 

associations), and similarity (the degree to which an individual’s cognitive structure 

aligns with the cognitive structure of another individual or group of individuals). Graph-

theoretic semantic distances represent the degree of association of concepts within the 

network model. These measures are also reflected in a network visual representation of 

the proximity data. 

Prior knowledge: The knowledge that the student has before the initiation of the 

foundational gross anatomy course and is reflected in admission GPA (the student’s 

grade point average on admission to the DPT program) and admission anatomy GPA (the 

student’s grade point average of prerequisite anatomy and physiology courses on 

admission to the DPT program). 

Unit grade: The content module’s unit grade is a calculated weighted grade 

consisting of a multiple-choice exam and a practical, identification-based exam. The unit 

grade is weighted 50:40 (written 55.56%, practical 44.44.%). 

Assumptions 

The primary assumption was that cognitive structures exist as a construct 

grounded in cognitive science. Although this construct has been used extensively in the 

cognitive science literature, there is a clear lack of consistency in terminology and 

description. Associated with this assumption was that cognitive structures could be 

represented visually and quantitatively. The current cognitive science literature indicated 

that there are no direct representation methods; indirect methods such as natural language 

and graphical approaches are assumed to represent what they are thought to represent 

(Ifenthaler & Pirnay-Dummer, 2014). The third assumption was that computational 
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strategies such as MDS and PFN utilizing semantic distances could serve as visual and 

quantitative representations of cognitive structure. The fourth assumption was that the 

proximity ratings reflect the perceptual construct; although this is the gold standard in the 

literature, it is an indirect method of assessing the perceptual nature of concepts and their 

individualized meaning. Although several assumptions related to cognitive structures and 

their representation exist, there is an extensive research basis to support indirect methods 

to represent this construct. These assumptions were necessary to utilize an innovative 

approach to representing the gross anatomy domain’s cognitive structure in 

physiotherapy students.  

Scope and Delimitations 

The mapping of cognitive structures of physiotherapy students learning gross 

anatomy was poorly understood. This study was limited to a narrow subpopulation and 

context within physiotherapy education: the first-trimester physiotherapy student learning 

gross anatomy. The research design focused on one content module and its organization 

(cognitive structure) by the student, with pretest measures reflective of prior knowledge 

and posttest measures reflective of potential learning and changes over time. This narrow 

focus impacted internal validity by defining the potential causal inferences that could be 

made. The study was not intended to address the content within the content module; 

student generation of content could be assessed via free word association or creating and 

assessing individual concept maps. However, concept mapping as a representation of 

cognitive structure would entail a more comprehensive study to do so effectively. Unit 

grades depended on the validity of written (multiple-choice questions) and practical 
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(identification and free association responses) examinations, limiting their utility as a 

criterion standard. The results may be generalizable to other physiotherapy students and 

to the use of data modeling strategies to examine cognitive structures in gross anatomy 

throughout the physiotherapy curriculum. 

Limitations 

There were several potential limitations to the study. The study’s power and effect 

sizes were limited by the cohort size and recruitment of participants. Convenience 

sampling (also known as volunteer response sampling or nonprobability sampling) was 

used. Although this sampling strategy provided some inherent threats to internal and 

external validity, these threats were limited via several methodological considerations. 

The study addressed domain-specific effects, but these may be confused with the domain-

general learning that occurs over time within the program. History and maturation bias 

were potential internal validity issues given the nature of the pretest and posttest 

measures. Although the examination of cognitive structures throughout a content module 

may reflect a real-world scenario, it is unknown how much time is required to make 

significant changes in those cognitive structures. Construct validity of the item list used 

for proximity/similarity ratings was critical. Instructors and pedagogical content 

knowledge of instructors varied; however, this was examined as a moderating variable. 

The quantitative representation of cognitive structure appeared to have construct validity 

based on research from various disciplines, including psychiatry (Egli, Streule, & Lage, 

2008) and nursing (Azzarello, 2007). However, the construct has historically been poorly 

defined, with significant disparities between the construct definitions proposed by Piaget 
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(1926), Craik (1943), Quillian (1966), Shavelson (1972), J. R. Anderson (1980), and 

Jonassen et al. (1993). This disparity necessitated a clear definition and operationalization 

in the current study, which are described in Chapter 3. Finally, there was little research on 

the test-retest reliability of cognitive structures or the use of MDS or PFN in this context. 

Although test-retest reliability will become an essential consideration for practical 

applications, it was not within the scope of this criterion-related validation design. 

Significance 

The results of this study may help to fill the gap in understanding how 

physiotherapy students learn gross anatomy. Insights gained from this study may begin to 

foster the development of learning and instruction strategies that assist physiotherapy 

students in developing the cognitive structures necessary for anatomical knowledge 

acquisition, retention, retrieval, and near transfer to fulfill their role as primary MSK care 

providers. The potential implications of validated cognitive structure mapping strategies 

include improvements in the formative assessments of learning used in the context of 

gross anatomy education for physiotherapy students. However, these potential 

implications also extend to lifelong learning strategies in clinical practice. Positive social 

change may occur because of a better understanding of how physiotherapy students 

develop cognitive structures that promote deep learning in gross anatomy. This may 

provide the potential for both vertical integration within the physiotherapy curriculum 

and long-term transfer to clinical practice. 
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Summary 

This study may contribute to the gross anatomy and health sciences literature by 

providing an enhanced understanding of how physiotherapy students learn gross 

anatomy. The theoretical framework provided a foundation grounded in cognitive science 

and emerging concepts. A criterion-related validation design was used to examine the 

mapping of cognitive structures via data modeling strategies. Assumptions and 

limitations to the study were clearly defined. Chapter 2 includes a review of the literature 

related to cognitive learning theory, gross anatomy education, and the data modeling 

strategies under consideration.] 
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Chapter 2: Literature Review 

The purpose of this quantitative study was to explore two data modeling strategies 

(MDS and PFN) as a potential visual and quantitative representation of the cognitive 

structures of physiotherapy students learning gross anatomy. The problem was that the 

mapping of cognitive structures of physiotherapy students learning gross anatomy is 

poorly understood. Gross anatomy is an integral component of entry-level physiotherapy 

education, and its importance cannot be overstated. Anatomical knowledge provides the 

foundation for diagnostic thinking and clinical practice (Timmerberg et al., 2019). A pilot 

study by Bayliss et al. (2017) indicated that gross anatomy in the first semester of the 

institution’s DPT program was a predictor of success on the NPTE. Gross anatomy grade 

is also a predictor of final GPA in the physiotherapy program, with the first semester 

GPA is a predictor of first-time pass rate on the NPTE (S. H. Hayes et al., 1997; Wolden 

et al., 2020). However, there is a growing trend of decreasing anatomical knowledge in 

physiotherapy students and the broader scope of health professions (Dayal et al., 2017; 

Hołda et al., 2019; Narnaware & Neumeier, 2020). 

Gross anatomy education, including student-centered learning strategies, has been 

extensively studied with little difference in learning outcomes reported. Traditional 

approaches to anatomical knowledge retention have focused on instructional design and 

teaching methods in gross anatomy. However, I found little research on how to reinforce 

deep and meaningful learning and promote retention and transfer. This may not purely be 

a function of the instructional strategy or teaching approach employed; it may also be a 

function of the learner profile, including how the learner acquires, encodes, and organizes 
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knowledge. Paas and van Merriënboer (2020) noted the importance of learners’ strategies 

in managing cognitive load to promote learning. Cognitive structures are an essential 

component of the learner profile. Several domains, including mathematics, 

anesthesiology, accounting, computer science, pulmonary physiology, chemistry, 

neuroscience education, author cocitation, psychology, research methods, nursing, 

psychiatry, chronic obstructive pulmonary disease and asthma, and vaccine education, 

have addressed the cognitive structures of students as they evolve toward those of experts 

during the learning process (Azzarello, 2007; Balloo et al., 2016; Casas-García & 

Luengo-González, 2012; Connor et al., 2004; Curtis & Davis, 2003; DiCerbo, 2007; 

Jaworska & Chupetlovska-Anastasova, 2009; McGaghie, McCrimmon, et al., 2000; 

McGaghie, McCrimmon, & Thompson, 1998; Neiles et al., 2016; Stevenson et al., 2016; 

Veríssimo et al., 2017; H. D. White, 2003). However, there was a gap in understanding 

how physiotherapy students learn gross anatomy, specifically the cognitive structures that 

promote deep learning in the gross anatomy domain. 

Chapter 2 provides a review of the current state of the research that was relevant 

to the current study. Literature search strategies and topics are described. The theoretical 

foundations for the study, grounded in cognitive science, are discussed. A theoretical 

framework in the context of gross anatomy education is presented. Finally, operational 

constructs related to the study (multivariate analysis and representation) are reviewed to 

establish the relevance and application of measurement tools related to the study’s 

methodology. The chapter concludes with a summary of the literature review and a 

transition to Chapter 3. 
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Literature Search Strategy 

I conducted a comprehensive literature search using several online search 

strategies to attain saturation on topics relevant to the theoretical foundations, 

methodological approach, and variables used in the study. Walden University’s Thoreau 

search tool was used to search databases related to educational research: Academic 

Search Complete, APAPsych, Education Source, ERIC, and SAGE Journals. Relevant 

topics were also searched within allied health and medical research databases: CINAHL 

Plus, ScienceDirect, and MEDLINE. This focused the search on relevant educational 

topics in the health professions and, specifically, physiotherapy and gross anatomy 

domains. Google Scholar was used as a supplemental search tool to establish articles’ 

perceived importance and relevance based on the “cited by” functionality. Citation 

chaining was implemented both within journal articles and Google Scholar. This strategy 

deepened the pool of items for consideration based on seminal research or author 

citations. 

A broad range of topics was considered, given the diversity of the constructs 

utilized within the study. Searches focused on the following key terms: cognitive 

architecture, ACT-R, cognitive learning theory, cognitive structure, knowledge structure, 

schema, mental models, cognitive mapping, concept mapping, mind mapping, gross 

anatomy education, Pathfinder associative networks, and multidimensional scaling. Key 

terms were searched independently and in combination with many references duplicated 

between databases and searches. The primary inclusion criteria were English language, 

full-text, peer-reviewed journal articles, books, and book chapters published after January 
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1, 2016, to encompass a 5-year search window. However, the research considered 

seminal to the study’s theoretical foundations was not subject to this 5-year inclusion 

criteria. Because there was little research related to multivariate analyses specific to gross 

anatomy and physiotherapy education, the search scope was expanded to other allied 

health and medical professions and to all other domains. The Ulrichsweb Global Serials 

Directory was used to verify the quality and credibility of publications. 

Due to the broad scope of the domains integral to the study, searches resulted in a 

review of several hundred article abstracts, full-text articles, books, and book chapters. 

After an initial scan of abstracts and a review of the methodology for potentially relevant 

studies, 327 relevant studies remained. The studies considered for inclusion in this 

literature review were grouped based on these topics: cognitive science (100 citations not 

inclusive of seminal research), multivariate analysis strategies including 

multidimensional scaling and Pathfinder networks (44 citations), and gross anatomy 

education (183 citations). 

Theoretical Foundation 

The acquisition, retention, retrieval, and transfer of knowledge are essential 

components of learning and instruction, making the cognitive mechanisms underlying 

these components critical to success. Cognition, or “the mental action or process of 

acquiring knowledge and understanding through thought, experience, and the senses” 

(Lexico, n.d., US dictionary), has been the source of philosophical and scientific 

discussion. Approaches to this discussion have varied from neuroanatomical constructs 

integrating form and function within the central nervous system to symbolic and 
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subsymbolic representations that address cognition from a computational approach (J. R. 

Anderson, 2007; Borst & Anderson, 2017; Camina & Güell, 2017). The theoretical 

foundation of the current study focused on the integration of cognitive science (including 

cognitive architecture and cognitive structures) and data modeling strategies (spatial and 

network) to represent cognitive structures in the context of the gross anatomy domain of 

knowledge in physiotherapy students. This theoretical integration provided the basis for 

cognitive learning theory relevant to the study of gross anatomy by physiotherapy 

students. 

Cognitive Architecture 

The quest for a unified theory of cognition has prompted the development of 

several cognitive architectures such as ACT-R (J. R. Anderson, 1996) and State Operator 

and Result (Soar; Laird, 2012). A cognitive architecture’s functional goal is to understand 

better the cognitive mechanisms underlying cognitive functions such as knowledge 

acquisition, memory encoding and retrieval, and skill acquisition from a computational or 

connectionist perspective (Laird et al., 2017). J. R. Anderson (2007) defined cognitive 

architecture as “a specification of the structure of the brain at a level of abstraction that 

explains how it achieves the function of the mind,” and added that “function of the mind 

can be roughly interpreted as referring to human cognition in all its complexity” (p. 7). 

Cognitive architectures are categorized based on their knowledge processing pattern: 

symbolic, emergent, or hybrid (Kotseruba & Tsotsos, 2020; Ye et al., 2018). Both ACT-

R and Soar are considered hybrid architectures with symbolic and subsymbolic 

components; however, they originated in diverse domains: ACT-R in cognitive science 
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and Soar in artificial intelligence (Kotseruba & Tsotsos, 2020; Laird et al., 2017; Ye et 

al., 2018). A cognitive architecture attempts to provide a unified conceptual framework 

of abstract representations and computational processes that can be used to understand 

cognitive function and to predict human behaviors consistent with seemingly diverse 

cognitive mechanisms (Kotseruba & Tsotsos, 2020).  

The ACT-R model of cognition began as the ACT theory (J. R. Anderson, 1976) 

and evolved through several iterations, making it one of the leading coherent frameworks 

for cognitive science and cognitive learning theory (Laird et al., 2017; Ritter et al., 2019). 

As a hybrid cognitive architecture, the ACT-R model utilizes two abstraction levels: 

symbolic and subsymbolic (J. R. Anderson, 2007). The symbolic level addresses how the 

brain encodes knowledge, whereas the subsymbolic level addresses how knowledge is 

made available via retrieval (J. R. Anderson, 2007). Although ACT-R is used to model 

the mechanisms underlying many conscious cognitive functions and behaviors, it is not 

considered a comprehensive behavioral or social theory, nor was it intended as such. In 

developing ACT-R, J. R. Anderson’s (2007) goal was to develop a tool that could 

effectively link the brain with “functional cognition” (p. 8). 

The cognitive architecture of ACT-R is represented by eight modules, each with 

an associated buffer: visual, aural, vocal, manual, imaginal, intentional, procedural, and 

declarative (J. R. Anderson, 2007). Four of these modules for the perceptual-motor 

system (visual, aural, vocal, and manual) interact with the external world (J. R. Anderson 

et al., 1997). The declarative module is the home of facts and information. The 

procedural module serves as the central production system and can only interact with the 
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information currently residing in the buffers (J. R. Anderson et al., 2004; Laird et al., 

2017; Ritter et al., 2019). The intentional module, also known as the control or goals 

module, serves to process goals by maintaining the intention of the problem in question 

(J. R. Anderson, 2007). The imaginal module, also known as the problem module, is 

focused on attention and the mental representation of the problem (J. R. Anderson, 2007). 

Buffers are associated with encoding and retrieval to and from the declarative module, as 

well as matching and execution within the procedural module (J. R. Anderson et al., 

2008). The modular organization of the ACT-R model provides a computational yet 

functional perspective on cognition. 

Complex systems (such as those necessary for J. R. Anderson’s “functional 

cognition”) are often composed of heterarchies serving a global function and hierarchies 

serving a local function (Cumming, 2016). Bechtel (2019) described cognition as a 

heterarchy of cognitive control mechanisms that improve the system’s efficiency. The 

ACT-R model is aligned with these evolving perspectives of complex systems because it 

entails both parallel and serial processing in understanding the potential limiters to 

cognitive function. Parallel processing occurs within modules, with multiple operations 

occurring simultaneously, and between modules, with multiple modules working at the 

same time (J. R. Anderson, 2007). Serial processing is slower than parallel processing 

and is one of the most significant bottlenecks to cognition (J. R. Anderson et al., 2004). 

Within each module, there is a buffer limitation as each buffer accepts and processes one 

chunk of information at a time (J. R. Anderson, 2007). Between modules, the limiter is 

the potential dependence of one module awaiting data from another module (J. R. 
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Anderson, 2007). Parallel and serial processing, essential elements of both heterarchical 

and hierarchial organization, play a role in cognitive learning theory (Bechtel, 2019; 

Cumming, 2016).  

Extensive research on higher level cognitive processes indicated a growing 

alignment of empirical data derived from functional magnetic resonance imaging (fMRI) 

with the modular constructs of ACT-R (J. R. Anderson et al., 2008). Borst and Anderson 

(2017) found that the modules of ACT-R (vocal, manual, visual, aural, imaginal, 

intentional, procedural, declarative, and associated buffers) mapped to corresponding 

brain regions via fMRI. The perceptual-motor system is mapped to the motor cortex 

(vocal and manual modules), visual cortex (visual module), and auditory cortex (aural 

module). The imaginal module is associated with the posterior parietal cortex. The 

intentional module is associated with the anterior cingulate cortex. The procedural 

module is mapped to the basal ganglia, thalamus, amygdala, and cerebellum. Buffers 

associated with the modules, most notably the retrieval buffer, are associated with the 

prefrontal cortex. Finally, the declarative module is mapped to the hippocampus and 

medial temporal cortex (J. R. Anderson, 2007; J. R. Anderson et al., 2008; Borst & 

Anderson, 2017; Eichenbaum, 2017; Stocco, 2018). These mappings create a potential 

direct link between neuroanatomical structure and cognitive function. 

A primary goal of the ACT-R cognitive architecture is to understand better the 

cognitive mechanisms underlying cognitive functions. One of these cognitive 

mechanisms is the role of memory in cognitive functions such as knowledge acquisition, 

retention, and retrieval. Traditional descriptions of memory (Camina & Güell, 2017; 
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Kotseruba & Tsotsos, 2020) focus on duration (short- and long-term) and type 

(declarative and procedural). Atkinson and Shiffrin (1968) proposed several modalities of 

memory, including sensory memory leading to short-term memory and ending in long-

term memory. Short-term memory includes working memory, whereas long-term 

memory consists of both declarative and procedural memory (Atkinson & Shiffrin, 

1968). Although ACT-R does not represent these specific modalities per the Atkinson 

and Shiffrin definitions, it does provide mechanisms aligned with them. 

Sensory memory, also known as sensory registers, consists of iconic (visual), 

echoic (auditory), and haptic (touch) perceptions, among others yet to be fully described 

(Camina & Güell, 2017). Sensory memory is analogous to perceptual information drawn 

from the vast amount of sensory information available to the individual that registers at 

any given moment in time (Camina & Güell, 2017). However, the retention of this 

information lasts for less than 100 milliseconds (Camina & Güell, 2017). If sensory 

memory is not moved from the sensory registers into short-term memory (more 

specifically, working memory) and acted upon, it will be lost (Kotseruba & Tsotsos, 

2020). 

Working memory was considered a part of short-term memory. Baddeley and 

Hitch (1974) extended the Atkinson and Shiffrin (1968) model to include four functional 

components of working memory: central executive, episodic buffer, visuospatial 

sketchpad, and phonological loop. The central executive is analogous to the imaginal 

module in ACT-R that addresses attentional focus and current mental representation of 

the problem, and the episodic buffer adds a temporal component to working memory 
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(Baddeley & Hitch, 1974). The most critical aspect of Baddeley’s contribution is the 

discrete visuospatial and verbal/auditory processing within working memory (Baddeley, 

1983, 2010). These elements are analogous to the visual and auditory modules and 

buffers in ACT-R (J. R. Anderson, 2007; J. R. Anderson et al., 1997). Visuospatial 

working memory will affect several cognitive skills, including mental rotation and 

folding, field independence, and general reasoning abilities (Castro-Alonso & Atit, 2019; 

Keehner, 2011). Baddeley and Hitch’s research on working memory paralleled the dual 

coding theory first described by Paivio (1971, 1986), which consisted of the parallel 

processing of verbal and nonverbal stimuli into representations that contribute to 

referential (between-system) and associative (within-system) networks (Paivio, 1971). 

However, the functional importance of working memory is to serve as the gateway to 

long-term memory reflected in its role in cognitive processing mechanisms such as 

knowledge acquisition, decision making, and clinical reasoning (J. R. Anderson, 1996; 

Chai et al., 2018; Hruska et al., 2016; Ritter et al., 2019). Although ACT-R does not 

define working memory per the work of Atkinson and Shiffrin (1968) or Baddeley and 

Hitch (1974), it does provide an analogous functional representation of these constructs 

via cognitive units, activation, and strength of association (J. R. Anderson, 2007; J. R. 

Anderson et al., 1996).  

Working memory is integral to cognitive function and creates a bottleneck that 

can limit cognitive capacity and processing (Paas et al., 2004). The primary constraint 

upon working memory, for both encoding and retrieval, is cognitive load: extrinsic, 

intrinsic, and germane (Paas et al., 2004). If the cognitive load increases, it can lead to 
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stereotyping, bias, central tendency bias, and fundamental attribution error – all elements 

will limit the efficacy of knowledge acquisition, learning, and decision-making (Allred et 

al., 2016). Instructional design, the learner’s expertise and prior knowledge, and the 

inherent complexity of the domain content can create excessive cognitive load (van 

Merriënboer & Sweller, 2005). However, cognitive load can also be beneficial when 

cognitive resources are utilized that encourage efficient encoding to and retrieval from 

long-term memory and subsequently enhance schema construction (Mayer, 2009). 

Cognitive load, and managing it effectively, thus becomes a significant challenge to 

working memory. 

Long-term memory provides vast storage that is persistent over time. Knowledge 

acquisition in long-term memory is represented in ACT-R via two modules: declarative 

memory and procedural memory (J. R. Anderson, 2007). Declarative knowledge, also 

known as conscious and explicit knowledge, comprises symbolic knowledge chunks 

representing facts, events, and associations stored in long-term memory (Yee et al., 

2017). Declarative knowledge is further subdivided into semantic and episodic 

knowledge; semantic knowledge is information composed of objects and relationships, 

whereas episodic knowledge is reflective of past autobiographical experiences 

(Kotseruba & Tsotsos, 2020; Yee et al., 2017). From an anatomical perspective, the 

hippocampus has an integral function in spatial and non-spatial episodic and semantic 

memory organization (Duff et al., 2020; Eichenbaum, 2017). Semantic memory has a 

high degree of flexibility and is dynamic over time, continuously adapting with the 

integration of new knowledge, associations, and representations (Duff et al., 2020; 
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Klooster et al., 2020). There are also individual variations in semantic memory based on 

the differences in personal experience and meanings associated with them (Yee et al., 

2017). In contrast, procedural knowledge, also known as unconscious and implicit 

knowledge, comprises subsymbolic production rules that utilize knowledge chunks, 

conditions, and actions stored in declarative knowledge (J. R. Anderson, 2007). The 

procedural module can only act upon declarative knowledge via knowledge chunks that 

are shuttled into and out of the declarative (retrieval) buffer as needed (J. R. Anderson, 

2007). Experiences influence the content of both declarative and procedural modules (J. 

R. Anderson, 2007). 

Chunking and Activation 

Knowledge chunking and activation are integral components of encoding and 

retrieval in ACT-R and serve as an analogous functional representation of the traditional 

working memory construct. Knowledge chunks, also known as cognitive units, are 

symbolic representations of information encoded in the declarative module (J. R. 

Anderson, 2007; Ritter et al., 2019). Encoding entails a new chunk of knowledge being 

indexed to a corresponding aspect of prior knowledge based on the context or problem 

for which it is being encoded (J. R. Anderson, 2007). Each chunk in declarative memory 

has a base-level activation that indicates how readily available a piece of information is in 

the declarative module based on the context of the problem being solved (J. R. Anderson, 

2007; J. R. Anderson & Matessa, 1997). J. R. Anderson’s concept of activation was a 

refinement of the spreading activation theory initially conceived by Quillian in reference 

to a computer program (Collins & Loftus, 1975; Quillian, 1962). The more frequently a 
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knowledge chunk is encountered, the more likely it will be retrieved in the future, and 

thus the higher the level of activation. Buffers can only hold one chunk with memory 

limitations defined by those chunks in declarative memory with sufficient activation (J. 

R. Anderson et al., 1996). Activation can increase via repetition or increasing the links 

between and within cognitive structures (J. R. Anderson & Schunn, 2000). This 

phenomenon is called the “practice effect,” in which any given memory or knowledge 

chunk can be associated with either a few or many other knowledge chunks. The “fan 

effect” occurs when retrieval time is affected because of the higher number of associated 

knowledge chunks based on what J. R. Anderson (2007) called “associative interference.” 

However, the fan effect diminishes when facts are well-organized into cognitive 

structures, a key element of deep learning. 

Cognitive Learning Theory 

A robust cognitive architecture such as ACT-R provides a foundation for 

cognitive learning theory that is consistent with schema theory (Piaget, 1926), 

assimilation theory (Ausubel, 1963), and the learner’s self-directed strategies and 

approach to learning (Marton & Säljö, 1976). The schema theory of Piaget (1926) 

described two processes that occur during learning: accommodation (an adaptation of 

existing knowledge) and assimilation (formation of new knowledge). Ausubel (1963) 

proposed that new knowledge builds upon prior knowledge, thereby revising and refining 

its cognitive structure. These theories have further evolved into a differentiation between 

deep (meaningful) learning and surface (rote or meaningless) learning (Marton & Säljö, 

1976). Deep learning involves developing relationships and meaning for the content in 
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question within a well-organized cognitive structure; in contrast, surface learning refers 

to the memorization of discrete facts within a poorly organized cognitive structure with a 

goal of factual retrieval (Marton & Säljö, 1976; Mayer, 2002b). Students can experience 

changes in their approach to learning over time and often transition from a surface 

learning approach to more strategic and deep learning approaches (McDonald et al., 

2017). 

The modern-day technological evolution of the work of Piaget, Ausubel, and 

Marton and Säljö is the cognitive theory of multimedia learning (Mayer, 2002a, 2009). 

Mayer’s work unifies cognitive load theory, active learning, working memory, and the 

dual coding theory of Paivio (1986). Working memory constraints become critical in 

meaningful learning, demanding the coordinated and effective use of visuospatial and 

textual input via dual coding (Mayer, 2009). The primary goals of multimedia instruction 

are to enhance dual coding (visuospatial and auditory/text) while optimizing cognitive 

load in the process (Mayer, 2002a, 2009).  

Mayer (2009) explicitly defined three learning outcomes: no learning (poor 

retention, poor transfer), rote learning (good retention, poor transfer), and 

meaningful/deep learning (good retention, good transfer). Transfer of learning indicates 

that knowledge can be applied to a new learning scenario; near transfer reflects an 

activity similar to the context in which the knowledge was encoded, whereas far transfer 

occurs when the two learning contexts or activities are dissimilar (Mayer, 2009; 

Montpetit-Tourangeau et al., 2017). Within the context of physiotherapy practice, clinical 

reasoning and diagnostic thinking require near transfer (Montpetit-Tourangeau et al., 
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2017). It is believed that deep learning builds upon prior knowledge and experiences, 

creating more developed cognitive structures that subsequently enhance both retention 

and transfer of learning to higher-order thinking (Krathwohl, 2002; Smith, Stockholm, et 

al., 2017). 

In the context of cognitive learning theory, the ACT-R model is consistent with 

the previously noted theories of Piaget (1926), Ausubel (1963), Marton and Säljö (1976), 

and Mayer (2009). Several mechanisms in both declarative and procedural modules are 

responsible for learning (J. R. Anderson, 2007). Learning occurs via creating new 

knowledge chunks in the declarative module (building upon prior knowledge) or creating 

new production rules in the procedural module via proceduralization, composition, 

generalization, and analogy (Whitehill, 2013). The strengthening of activation in existing 

chunks will also produce learning (J. R. Anderson, 2007). Surface learning is represented 

by the passive learning of symbolic structures in declarative memory; in contrast, deep 

learning is characterized by linking knowledge chunks via procedural memory with 

active cognitive structure development as prior knowledge is revised and updated 

(Whitehill, 2013). J. R. Anderson and Schunn (2000) noted a differentiation in cognition 

depending upon the goal of learning – be that long-term competency or short-term 

retrieval of knowledge – that paralleled the work of Marton and Säljö (1976) in the 

context of student approaches to learning.  

A glaring omission in the scientific literature on cognitive load and working 

memory provides a clear gap. Cognitive learning theory, exemplified by Mayer’s 

cognitive theory of multimedia learning, is built upon the cognitive load theory. In a 2020 
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review of cognitive load theory and the learning of complex tasks, Paas and van 

Merriënboer noted the critical elements in managing cognitive load: learning task 

characteristics, available schemas in long-term memory, the learner, and the learning 

environment. However, in their review, they addressed learning tasks, the learner, and the 

learning environment – with no further mention of the schemas in long-term memory and 

how this can impact cognitive load. This is a clear example of the gap that persists in 

cognitive learning literature. Although research has focused on instructional design (the 

learning task), the learner (collaboration, motivation, learning styles), and the learning 

environment (split attention, stress, instructor pedagogical content knowledge, negative 

emotions), little is focused on the efficient development of cognitive structures within 

long-term memory. 

Cognitive Structure 

Long-term memory is the home of cognitive structures – a term that is 

traditionally synonymous with a broad range of poorly-defined terms and constructs, 

including structural knowledge (Jonassen et al., 1993), cognitive units (J. R. Anderson, 

1980), semantic networks (Quillian, 1966), schemata (Piaget, 1926), mental models 

(Craik, 1943), and cognitive structure (Shavelson, 1972). The historical origins of 

cognitive structures lie in the schema theory proposed by Piaget (1926). Although all 

share similar themes and represent similar cognitive constructs, the ambiguity in 

terminology makes consistency and clarity in research and application difficult. For this 

review, the term “cognitive structure” will reflect the operational definition proposed by 

Shavelson (1972, p. 226-227): “a hypothetical construct referring to the organization of 
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the relationships of concepts in long-term memory.” This term will be used to provide 

some consistency to this construct in the following discussion. 

Several common features of cognitive structures emerge in the literature. A 

cognitive structure represents knowledge specific to both the individual and the domain 

that has an internal organization (Liu et al., 2019). This representation is based on the 

individual’s declarative knowledge (including semantic and episodic memory), 

perceptions, and experiences. Cognitive structures are domain-dependent and aligned 

with cognitive tasks for that domain (J. R. Anderson & Schunn, 2000). However, there is 

not one exclusive mental representation in any given domain, though mental 

representations between individuals may share similar concepts as associations. Jonassen 

et al. (1993) noted that declarative knowledge is composed of content knowledge (what 

you know) and structural knowledge (how you organize it), with the term “structural 

knowledge” often being used interchangeably with “cognitive structure.” Contextually 

relevant information, often consisting of both text and images, is an important element of 

cognitive structure and defines how it is encoded for future retrieval (Gilboa & Marlatte, 

2017; Richter et al., 2019; Ziembowicz, 2017). Cognitive structures are sensitive to 

chronological order, hierarchical organization, cross-connectivity, and context (Ghosh & 

Gilboa, 2014). Working memory is critical to the development of cognitive structures; 

however, it is readily diverted from this task with increases in cognitive load, limiting the 

learner’s ability to attain meaningful learning (Paas et al., 2004). As cognitive structures 

improve, the overall cognitive load decreases (Wirzberger et al., 2018). However, though 

all of these phenomena have been observed and documented within the context of 
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knowledge representation, how these cognitive structures develop remains a neurological 

and cognitive mystery, and their operationalization remains elusive (Ifenthaler et al., 

2011; Ziembowicz, 2017). 

The foundation for cognitive structures is prior knowledge, making it a critical 

element in cognitive processing (van Kesteren & Meeter, 2020). Incorporating new 

knowledge entails indexing it to prior knowledge; this also predicts future behavior (J. R. 

Anderson, 2007; van Kesteren & Meeter, 2020). Cognitive structures continually undergo 

revision and updating as knowledge and learning progress (J. R. Anderson, 1996; 

Noushad & Khurshid, 2019; Zulu et al., 2018). Castro and Siew (2020) proposed that 

although an understanding of cognitive structure is important, the cognitive structure’s 

transformation with learning is equally important. Flexibility and adaptability are 

essential for new knowledge and evolving knowledge organization (Ghosh & Gilboa, 

2014). However, prior knowledge can also lead to misconceptions that become a part of 

the cognitive structure that is subsequently difficult to “unlearn” unless the cognitive 

structure changes (Ziembowicz, 2017). Cognitive structures can develop that promote 

bias and create false memories; if they are well-established in long-term memory, they 

can also strengthen misconceptions and be highly resistant to change (van Kesteren & 

Meeter, 2020). Once again, the knowledge context is critical in encoding knowledge and 

retrieval based on the problem being solved. 

The ACT-R model provides a functional framework for representing cognitive 

structures based on the chunking of information in the declarative module. This was 

founded in J. R. Anderson’s early work that described cognitive units consisting of 
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concepts (vertices or nodes), propositions (edges or links), and schemata (chunks or 

clusters) as an abstract representation within the computational framework of the ACT-R 

model (J. R. Anderson, 1980, 1996). As the retrieval buffer contents are limited to one 

chunk of information, it is essential to develop chunks containing a higher degree of 

knowledge or associated data bundled within the cognitive unit (J. R. Anderson, 2007). 

Retrieval from long-term memory is a hallmark of retention, but effective encoding of 

knowledge into well-organized and relevant cognitive structures free of misconceptions is 

a prerequisite. 

The premise underlying the declarative module’s chunking mechanism provides a 

degree of implicit structural organization in declarative memory based on the 

mechanisms of base-level and associative activation proposed by the ACT-R model. 

Jonassen et al. (2005) envisioned structural knowledge as a bridge between declarative 

and procedural knowledge. However, these authors did not clearly define the mechanisms 

underlying structural knowledge, and this conceptualization may be redundant based on 

the premise of activation within the ACT-R model. Activation involves not only the 

degree of usefulness in the past (base-level) but also the relevance to the current problem 

(associative) based on attentional weight (number of sources of activation) and strength 

of associations with other facts retained in declarative memory (J. R. Anderson, 2007). In 

this way, declarative memory and knowledge chunks have an implicit structure and 

organization based on prior value and strength of associations in solving the current 

problem. 
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Expertise 

Cognitive structures and knowledge organization play a significant role in 

differentiating novice and expert. As noted by Jonassen et al. (1993), declarative 

knowledge is a function of both content knowledge and knowledge organization. 

Expertise and the development of clinical competency is more than just acquiring more 

knowledge; how you know it is essential (Persky & Robinson, 2017). Experts have two 

significant differences compared with novices: a high quantity of domain knowledge, and 

a high quality of internal structure and organization of the domain knowledge (Gardner et 

al., 2019; Siew, 2020). Improving the structural organization of knowledge through 

refined cognitive structures has also been shown to improve knowledge transfer success, 

an essential element in diagnostic thinking and clinical reasoning (Kubsch et al., 2020; 

Salkowski & Russ, 2018). 

Cognitive task analysis in any domain reveals several cognitive factors that 

differentiate experts from novices, including mental models, perceptual skills, sense of 

typicality, routines, and declarative knowledge, many of which depend on cognitive 

structures (Crandall & Hoffman, 2013). However, although research in diagnostic 

thinking often focuses on experts’ cognitive task analysis, this may be problematic 

without understanding the cognitive structures underlying them. For example, Sullivan et 

al. (2014) reported that experts would omit 71% of clinical knowledge steps, 51% of 

action steps, and 73% of decision steps when describing a procedure to learners. 

Developing expertise – or becoming a competent professional – demands an 

understanding of what and how they know and an awareness of the learning processes 
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that allow one to become an expert by transforming their cognitive structure eventually 

(Castro & Siew, 2020; Jung et al., 2016). Experts will tend to emphasize the use of 

inductive reasoning and pattern recognition. However, experts encounter premature 

closure and cognitive bias more frequently (Norman et al., 2017). In contrast, novices 

will use deductive reasoning as their primary strategy based on an overall lack of pattern 

recognition based on their lack of experience (Norman et al., 2017). They lack the 

representational skills and competence of experts (Kozma, 2020). Cognitive and 

metacognitive skills alone account for 22% of the variance in physiotherapy students’ 

clinical reasoning skills (Elvén et al., 2019). These factors may prompt the novice to 

examine their cognitive structures more fully during clinical reasoning and diagnostic 

thinking (Shin, 2019). 

In the context of ACT-R, experts will display several essential characteristics. 

They will have enhanced declarative knowledge based on the chunking of information in 

the declarative module and enhanced activation levels and strength of association. 

Experts will also have an improved ability to retrieve the knowledge faster and more 

efficiently due to improved matching via the procedural module with the declarative 

module. Hruska et al. (2016) noted that novices utilize working memory more so than 

experts based on the increased activation of the prefrontal cortex on fMRI, the site of the 

retrieval buffer in ACT-R (J. R. Anderson, 2007). Errors in experts’ diagnostic thinking 

may be related to automation; as knowledge chunks evolve, there will often be a removal 

of certain details as the information is assimilated (J. R. Anderson, 2007). Experts may 
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also fail to utilize the fan effect characterized by cognitive bias or premature closure in 

their diagnostic thinking (Norman et al., 2017). 

Representation 

The representation of a cognitive structure parallels the elements of cognitive task 

analysis: knowledge elicitation, knowledge representation, and data analysis (Crandall & 

Hoffman, 2013). Although cognitive structures exist as symbolic mental representations, 

they remain hypothetical constructs, as noted in the operational definition proposed by 

Shavelson (1972). This makes a direct measurement of cognitive structures elusive, with 

indirect methods limited by a lack of psychometric properties such as reliability and 

validity. Several approaches have been used to indirectly measure cognitive structure 

dating back to Preece (1976). Ifenthaler et al. (2011) proposed two indirect methods for 

knowledge elicitation: natural language and graphical. Natural language methods include 

verbal reporting, think-aloud, free word association, controlled word association, 

pairwise comparisons, structure formation, and eye-tracking (Ifenthaler et al., 2011; Tsai 

& Huang, 2002; van Gog et al., 2009). Graphical methods include tree construction, flow 

maps, concept maps, causal diagrams, DEEP, and Pathfinder analysis (Ifenthaler et al., 

2011; Tsai & Huang, 2002; van Gog et al., 2009). Natural language methods are limited 

by the individual’s linguistic skills and fluency in any relevant domain taxonomy or 

ontology (Clarkson & Whipple, 2018). In contrast, graphical methods are difficult to 

compare and depend upon the evaluator’s interpretation, which may not align with the 

meanings implied by the picture’s creator. Cognitive structures can contain several 

different contextually relevant modalities, such as text and images. This aligns with the 
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cognitive theory of multimedia learning (Mayer, 2009) and the dual processing theory of 

Paivio (1971). Cognitive structure representation may benefit from an integration of these 

two components. 

Concept mapping, one of a group of visual mapping strategies, has been proposed 

as an indirect method of knowledge elicitation and representation for cognitive task 

analysis and cognitive structures (Crandall & Hoffman, 2013; Davies, 2011; Ifenthaler et 

al., 2011). In a systematic review by Buitrago and Chiappe (2019), concept mapping was 

the most widely used knowledge representation approach. This method provides a clear 

example of the potential to visualize an individual’s cognitive structure to foster deep 

learning. The underlying premise of concept mapping stems from the use of “advance 

organizers” by Ausubel (1963) to visually represent the development of cognitive 

structures while building new knowledge on prior knowledge. Novak and Gowin (1984) 

aligned their concept mapping theory with Ausubel’s assimilation theory and Marton & 

Säljö’s approaches to learning to advance the “advance organizer” premise proposed by 

Ausubel.  

Concept mapping has been used in learning, instruction, and assessment across a 

wide variety of domains. A systematic review by Stevenson et al. (2017) examined the 

extensive research on concept mapping and found consistently favorable learning 

outcomes. Concept mapping has been used to promote the development of cognitive 

structures, knowledge visualization and retention, critical thinking, clinical reasoning, 

near transfer, and meaningful learning while decreasing the cognitive load of the learner 

(Abd El-Hay et al., 2018; Bressington et al., 2018; Machado & Carvalho, 2020; 
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Montpetit-Tourangeau et al., 2017; Schroeder et al., 2018; Si et al., 2019; Wang et al., 

2018; Yue et al., 2017; Zulu et al., 2018). Kinchin et al. (2019) noted that concept maps 

could be differentiated based on their topology (spoke, chain, and network) and that they 

could be used to represent different types of knowledge (novice, theoretical, practical, 

and professional). Radwan et al. (2018), in a study of final year medical students, 

reported a statistically significant correlation between concept mapping scores and 

clinical reasoning scores as assessed by the Script Concordance Test. Concept mapping 

could also serve in the natural progression from learning and instruction to structural 

assessment (Hartmeyer et al., 2018). Concept mapping has extensive research support, 

making it highly relevant to the discussion of cognitive structures. 

Several challenges exist in the effective implementation of concept mapping as a 

formative and summative assessment. Psychometric properties such as reliability and 

validity may limit their effective real-world use as a quantitative measurement (Siew, 

2020). There is a need for reliable and valid rubrics, graders familiar with the rubric, and 

the time required to grade each student concept map (Novak & Gowin, 1984). Concept 

mapping is a cognitive skill that requires training and repetition over time to develop. The 

visual representation provides rich data in visuospatial and textual references and 

includes personal meaning, which may be difficult to assess. Concept mapping may offer 

a tangible, paper- or digital-based visualization of a student’s cognitive structure; 

however, it demands the student’s ability to translate a perceived mental representation to 

an overt visualization. Many may be challenged to do so. Although concept mapping may 

provide valuable lessons regarding the importance and relevance of cognitive structures 
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to learning and instruction, it may not comprehensively view the cognitive structure’s 

multidimensional nature. 

Cognitive Mapping 

Cognitive structures suffer from a high degree of ambiguity in both construct 

description and representation. Good operational definitions are often lacking as they are 

often used to describe both domain-general and domain-specific applications. 

Descriptions of these constructs vary from cognitive spaces to conceptual spaces and 

from semantic networks to cognitive maps (Bellmund et al., 2018; Gärdenfors, 2004, 

2017; Lieto et al., 2017). The term “cognitive mapping” was initially proposed by 

Edward Tolman (1948) in the context of spatial mapping within the hippocampus, 

potentially merging cognitive structures with neuroanatomy. Tolman envisioned 

cognitive mapping involving both spatial and non-spatial components. This concept was 

extended by O’Keefe and Nadel (1978) in the seminal work The Hippocampus as a 

Cognitive Map. The importance of grid-like cells in non-spatial conceptual knowledge, 

much as Tolman had originally proposed, was reported by Constantinescu et al. (2016). 

Spiers (2020) noted that the perspective of this “universal cognitive map” was enhanced 

by the Nobel Prize work of O’Keefe, Moser, and Moser in identifying grid and place 

cells in the hippocampus and their role in memory (Burgess, 2014). 

Tolman’s “cognitive mapping” appears to be the construct definition best aligned 

with cognitive architecture, cognitive structure, and neuroanatomy. Arzy and Schacter 

(2019, p. 9) provide an operational definition of the cognitive map as “a schematic-like 

mental representation of the relationships between entities in the world including places, 
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events, people, or even concepts.” Behrens et al. (2018) noted that cognitive maps 

provide a framework for knowledge organization. The premise of a multidimensional 

cognitive map is on the cutting edge of research focusing on the role of the hippocampus 

(Theves et al., 2019). This provides the theoretical, computational, and neuroanatomical 

basis for cognitive structures, both spatially and non-spatially, grounded in complex 

systems’ heterarchical and hierarchical organization (Bechtel, 2019; Bottini & Doeller, 

2020; Cumming, 2016; Zemla & Austerweil, 2018).  

Cognitive mapping may serve as a more comprehensive representation of the 

cognitive structure. It reflects both content (in the form of concepts) and structure (in 

terms of memory organization) that serves as a frame of reference for the individual. 

Gärdenfors (2004) provided a foundation for this frame of reference that the individual 

perceptually determines, with the meaning being specific to the individual and not 

universal. Complex systems, exemplified by the brain and its cognitive mechanisms, can 

be represented by the system’s features, similarity, and connectivity (Comin et al., 2016). 

Features are measurements used to describe a node or concept, be they intrinsic or 

induced, and often reflect its spatial position (Comin et al., 2016). Similarity reflects the 

relatedness between two nodes based on features or correlation (Comin et al., 2016). 

Connectivity defines the system’s network representation and its associated topology 

(Comin et al., 2016). Cognitive mapping within this context reflects factual and structural 

knowledge, the individual’s perceptions of the topic or domain, and the characteristics of 

a complex system reflected in the individual (Comin et al., 2016; Egli, Streule, & Lage, 

2008). Bottini and Doeller (2020) proposed two interrelated frames of reference for the 
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individual: high-dimensional and low-dimensional spaces. These frames of reference are 

aligned with the complex systems described by Comin et al. (2016) and provide a 

foundation for cognitive mapping and its representation. 

High-dimensional spaces represent concepts in several dimensions like semantic 

or conceptual spaces. They are self-centered and relevant to the individual while being 

egocentric and dependent on the individual’s perspective and frame of reference (Bottini 

& Doeller, 2020). These high-dimensional spaces are believed to be developed within the 

parietal cortex, are grounded in the sensorimotor experiences of the individual, and may 

include perceptual, functional, and abstract dimensions. Gärdenfors (1996, 2004, 2017) 

envisioned these conceptual spaces as having a spatial, geometric, or topological 

representation based on quality dimensions and perceived similarities. Conceptual spaces 

may serve as multidimensional frameworks of knowledge hierarchies aligned with high-

dimensional frames of reference (Bellmund et al., 2018; Gärdenfors, 2004, 2017). 

Low-dimensional spaces represent concepts in 1 or 2 dimensions that can include 

spatial and non-spatial knowledge. These spaces are like semantic networks in that they 

are world-centered and factual while being allocentric and independent of the point of 

view and frame of reference (Bottini & Doeller, 2020). Much of the current literature on 

cognitive structures refers to some degree of network representation; J. R. Anderson 

developed the ACT-R cognitive architecture as a computational framework with 

associative features (J. R. Anderson, 2007; Paivio, 1986). Many neuroanatomical 

constructs lend themselves to representation as a network, with network analysis used 

extensively to study brain dynamics (Bhuvaneshwari & Kavitha, 2017; Stam & 
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Reijneveld, 2007) and connectivity patterns within the brain. This may prove beneficial 

in representing cognitive structures (Farahani et al., 2019). The structure of a semantic 

network is also similar to the nodes and links found in concept mapping. 

One of the potential failures of cognitive structure representation is the limited 

dimensionality of the representation. Vukić et al. (2020) described a “multidimensional 

knowledge network” having a multilayered representation. Bottini and Doeller (2020) 

noted that individuals might have cognitive maps that reflect two frames of reference, 

with individuals navigating between both frames of reference to adequately represent 

their cognitive structure. This entails an individual operating within a global heterarchy 

of concepts that contains local hierarchical networks (Bechtel, 2019; Cumming, 2016). 

This multidimensional representation may require a computational framework; this 

provides a potential role of multivariate techniques to provide data-driven representations 

of the cognitive structure. 

Cognitive Mapping and Data Modeling 

Multivariate analysis may serve as a means of quantifying an individual’s 

cognitive map. Several strategies exist for quantitative cognitive modeling, including 

cognitive architectures, graphic models, complex systems, and networks (Shiffrin, 2010; 

Siew, 2020). High-dimensional (egocentric) and low-dimensional (allocentric) 

representations (frames of reference), as proposed by Bottini and Doeller (2020), 

combined with the components of complex systems (features, similarity, and 

connectivity), may provide a comprehensive and quantitative representation of an 

individual’s cognitive structures.  



51 

 

 

Jonassen et al. (1993) and, more recently, Dozortsev et al. (2017) noted that 

structural knowledge could be represented empirically by spatial/dimensional and 

network methods. Dimensional approaches transform the cognitive structure and reveal 

spatial relationships and clusters of concepts while maintaining semantic distances 

(Jonassen et al., 1993). Network approaches extract concepts and associative 

relationships as a part of a semantic network (Jonassen et al., 1993). Although 

dimensional and network approaches are visuospatial and computational, they can also 

use a natural language strategy such as pairwise comparisons for semantic similarity or 

dissimilarity to provide the raw data necessary. These representations, or structural 

models as described by Schvaneveldt (1990), can potentially be addressed via two 

multivariate dimensionality reduction techniques grounded in psychometrics that utilize 

proximity scaling algorithms: MDS and PFN. Scaling algorithms may serve as an 

effective means of knowledge representation as they can be empirically derived to 

capture the structure and organization of knowledge (Cooke et al., 1986). Strategies that 

implement quantitative approaches to analysis are well-aligned with the demands of 

cognitive task analysis and assessing the structural organization of knowledge structures 

(Siew et al., 2019). 

The key concept consistent between these strategies is perceived semantic 

similarity and distance (Chen, 1997). The content of the knowledge is predefined with an 

a priori item list defined by content experts or that which the curriculum deems necessary 

for acquisition, retention, and retrieval clinically (Gisick et al., 2018). Semantic similarity 

or proximity data derived from pairwise comparisons can be utilized to represent the 



52 

 

 

underlying structure of the data in two ways: a global overview that examines the feature 

space using MDS and a local structural view that examines the similarity and 

connectivity of the network using PFN (Chen, 1997; Goldsmith et al., 1991). MDS, also 

known as Principal Coordinates Analysis, examines proximity data in terms of pairwise 

distances in the context of a spatial representation of concepts (Buja et al., 2008; Jonassen 

et al., 1993). PFN examines the same proximity data in terms of pairwise associations in 

the context of a network representation of nodes and links (Buja et al., 2008; Jonassen et 

al., 1993). The visualization of a network’s vertices and edges is akin to a concept map, 

and its analysis is grounded in network science (Newman, 2018). Both MDS and PFN are 

used to reveal the underlying structure of proximity data based on an individual’s 

perception of the similarity of paired items representing domain concepts (Chen, 1997). 

Figure 1 provides an example of both MDS and PFN representations. 

Although the empirical evidence of cognitive mapping is limited to recent 

advances in fMRI and neuroanatomical connectivity research, the premise for the 

functional representation of multiple frames of reference and implicit structural 

knowledge was noted by Goldsmith et al. (1991). In this seminal study, the authors 

compared MDS and PFN in a group of 40 college students enrolled in a psychological 

research techniques course. Their conclusions proposed that MDS may provide more 

significant insights into the global structure of knowledge, whereas PFN may provide 

greater insights into the local knowledge structure. Subsequent research by Gillan et al. 

(1992), Gonzalvo et al. (1994), and Bonebright et al. (2005) supported the work of 

Goldsmith et al. (1991). 
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Figure 1 

 

Multidimensional Scaling and Pathfinder Network Representations 

 

Researchers in a diverse range of domains – searching for a computational 

strategy for the structured assessment of knowledge and cognitive structures – have 

implemented MDS and PFN analysis. These domains include mathematics (Casas-García 

& Luengo-González, 2012; Veríssimo et al., 2017), anaesthesiology (Connor et al., 

2004), accounting (Curtis & Davis, 2003), computer science (DiCerbo, 2007), pulmonary 

physiology (McGaghie, McCrimmon, et al., 2000; McGaghie, McCrimmon, & 

Thompson, 1998), chemistry (Neiles et al., 2016), neuroscience education (Stevenson et 

al., 2016), author cocitation (H. D. White, 2003), psychology (Jaworska & Chupetlovska-

Anastasova, 2009), research methods (Balloo et al., 2016), and nursing (Azzarello, 2007). 

MDS and PFN have also been used to examine representations within a patient 

population, including psychiatry (Egli, Riedel, et al., 2009), chronic obstructive 

pulmonary disease and asthma (Insel et al., 2005), and vaccine education (Amith, Cohen, 
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et al., 2020; Amith, Cunningham, et al., 2017). These studies support the use of 

quantitative analyses to model structural changes in cognitive structure over time, during 

learning, or compared to a referent such as an expert (Siew et al., 2019). They can also be 

used as formative assessments, skill acquisition, and student feedback to address potential 

misconceptions (Day et al., 2001; Trumpower, Filiz, & Sarwar, 2014; Trumpower, 

Sharara, & Goldsmith, 2010). However, MDS and PFN are often used independently. 

The seminal work of Goldsmith et al. (1991) has not been replicated in gross anatomy or 

physiotherapy domains, making it a potentially innovative approach to address the gap in 

the research. 

In summary, multivariate quantitative analysis and data visualization are well-

aligned with the potential quantitative representation of cognitive structures. These 

mental representations are believed to be based on the individual’s perception, prior 

knowledge, and learning strategies. Although MDS and PFN have been proposed as 

potential strategies for quantitative representation, an important caveat exists, they do not 

address the processes necessary to create the structures nor the specific neurological 

mechanisms involved. In this regard, cognitive mapping may provide insight into the 

individual’s cognitive structures within a computational framework and offer the 

potential to be used in the structural assessment of knowledge. One approach may not be 

better or worse than the other to represent cognitive structure; they may represent 

different layers or strata of the cognitive structure. The ability to examine an individual’s 

cognitive structure then provides a means to compare to other cognitive, educational, and 

neural measures of importance (Siew et al., 2019). 



55 

 

 

Gross Anatomy Education 

The study of gross anatomy is an integral component of all health professions’ 

curricula, including physiotherapy. However, the retention of anatomical knowledge in 

many health professions programs such as medical, nursing, chiropractic, and 

physiotherapy, is poor (Dayal et al., 2017; Hołda et al., 2019; Narnaware & Neumeier, 

2020). This is not a new development in health professionals’ education; this concern 

extends back to the research of Prince et al. (2005) and Bergman et al. (2008). Poor 

retention subsequently contributes to poor near and far transfer (Persky & Murphy, 

2019). Gross anatomy education involves a significant volume of content. A broad range 

of cognitive skills are necessary for the study of anatomy: visualization, spatial ability 

(visuospatial), consistent terminology and taxonomy (verbal/auditory), and knowledge 

organization (Amin & Iqbal, 2019; Castro-Alonso & Atit, 2019; Clarkson & Whipple, 

2018; Keehner, 2011; Langlois et al., 2020; Lufler et al., 2012). D’Antoni et al. (2019) 

reported that clinical anatomy students often utilize surface (rote) learning strategies that 

emphasize the lowest levels of the revised Bloom’s taxonomy (Krathwohl, 2002). Several 

authors have examined retrieval practice and found it a valuable addition to anatomical 

knowledge retention (S. J. Anderson et al., 2018; D’Antoni et al., 2019; Dobson, 

Linderholm, & Perez, 2018; Dobson, Perez, & Linderholm, 2017). However, retrieval 

remains dependent upon encoding; the best retrieval practices will reveal misconceptions 

and poor anatomical knowledge if the encoding is poorly structured or organized. 

Traditional teaching methods have emphasized lectures and cadaveric dissection. 

Gross anatomy curricula have been impacted by a decrease in curricular time devoted to 
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anatomy and basic sciences education and thus has been increasingly focused on student-

centered pedagogy, self-directed learning, and computer-assisted instruction (Amin & 

Iqbal, 2019; Guimarães et al., 2017; Hulme et al., 2020; van Lankveld et al., 2019; 

Wilson, Brown, et al., 2019). Cognitive learning theories that promote deep learning are 

often poorly integrated into gross anatomy and physiotherapy curricula (Agra et al., 2019; 

Choi-Lundberg et al., 2017; Smith, Finn, & Border, 2017). The application of cognitive 

learning theories in these domains often focuses solely on instructional design or retrieval 

practices (D’Antoni et al., 2019; Delgado et al., 2018; Dobson, Linderholm, & Perez, 

2018; Dobson, Perez, & Linderholm, 2017; Mukhalalati & Taylor, 2019). Gross anatomy 

teaching methods and instructional strategies have been extensively reviewed and found 

to attain similar learning outcomes (Estai & Bunt, 2016; Losco et al., 2017; Wilson, 

Brown, et al., 2019). As an expert, the instructor provides content knowledge and 

pedagogical content knowledge to establish what needs to be taught and how it needs to 

be prepared to attain the curriculum’s specific learning outcomes. This is presumably 

within the context and needs of a physiotherapy student learning gross anatomy. 

However, L. J. White et al. (2018) noted that the form of content delivery did not affect 

student outcomes in gross anatomy. Husmann and O’Loughlin (2019) indicated no 

correlation between learning style and final grade in an undergraduate anatomy course; 

O’Mahony et al. (2016) found similar results in medical students studying anatomy. 

Aslaksen and Lorås (2019) reported that working memory performance did not improve 

by matching instruction to learning style. The equivocal learning outcomes in gross 
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anatomy education suggest that learner-specific cognitive factors may be significant 

contributors to the problem of anatomical knowledge retention.  

Little literature exists related to the cognitive structures necessary for a 

physiotherapy student nor a gross anatomy student. Many assumptions typically link 

content knowledge (anatomical knowledge, both declarative and procedural) and 

diagnostic thinking based on expert opinion and clinical experience. However, cognitive 

architecture and the organization and indexing of long-term memory are necessary for 

understanding both learning and instruction (J. R. Anderson, 2007). There should be 

alignment between cognitive structures within the content domain and how to develop 

these structures via specific learning and instructional strategies (D’Antoni et al., 2019; 

Dobson, Perez, & Linderholm, 2017). For example, although concept mapping as a visual 

representation of a cognitive structure appears in the research within several health 

professions, including nursing (Alfayoumi, 2019; Jaafarpour et al., 2016; Mohammadi et 

al., 2019; Si et al., 2019) and medicine (Daley et al., 2016; Nicoara, Szabo, et al., 2018; 

Nicoara, Szamoskovi, et al., 2020), little research exists in physiotherapy (Zipp & Maher, 

2013; Zipp et al., 2015) with just two research studies utilizing mind mapping in gross 

and neuroanatomy (Anand et al., 2018; Deshatty & Mokashi, 2013). The current 

literature focuses on learning strategies and cognitive processes but not the student’s 

cognitive structures necessary for success in the course or beyond (Siew, 2020). This 

significantly limits the ability of the instructor, the curriculum, and the student in 

attaining these cognitive structures representative of deep learning that may then serve as 

valuable in promoting the transfer of learning (Siew, 2020). 
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The challenge in gross anatomy assessment has been the seeming dichotomy 

between assessment of learning, assessment as learning, and assessment for learning 

(Hawe & Dixon, 2017; Leppink, 2020). Assessment of learning is the traditional 

summative assessment of learning outcomes (Leppink, 2020). Gross anatomy education 

traditionally utilizes multiple-choice questions or practical examinations to assess 

learning (Brenner et al., 2015; Choudhury & Freemont, 2017). However, these 

assessment strategies have either poor validity or have not been tested for validity 

whatsoever, leaving them as assessments of “meaningless” or surface learning compared 

to deep learning that promotes near transfer and provides the foundation for competency. 

Even with the evolution of the digital learning environment, Meyer et al. (2016) found 

that student performance on gross anatomy practical examinations was unaffected by 

assessment modality, with no differences between the traditional face-to-face and online 

variations. Students are often more focused on academic performance based on exam 

demands and the short-term retention of instructional materials than on developing 

strategies that promote expertise as a clinician (Choi-Lundberg et al., 2017). However, 

assessment for learning and assessment as learning are better aligned with the 

development of deep learning and self-regulated learning skills (Hawe & Dixon, 2017; 

Kulasegaram & Rangachari, 2018; Leppink, 2020). The challenge is to have assessments 

aligned with cognitive structure changes based on their importance in deep learning, 

retention, and expertise. 
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Gross Anatomy Knowledge for Physiotherapy Students 

The ACT-R model of cognition provides a coherent cognitive architecture and 

computational framework to examine cognition. J. R. Anderson (2007) noted that 

cognitive function and information processing are consistent with the anatomical 

structures that allow this processing to be performed effectively. Inherent to the ACT-R 

model is the concept of chunking information in declarative memory in both a 

heterarchical and hierarchical organization. Cognitive structures developed by the 

individual serve as mental representations of content knowledge (what they know) and 

the organization of knowledge (how they know it) tied to their perceptions and meaning. 

Changes in cognitive structures over time may indicate that learning has occurred with 

the potential progression from novice toward more expert cognitive structures. As a 

learner, merely having the symbolic knowledge isn’t sufficient; there must be a 

deployment of knowledge which demands activation. It is not critical to fully understand 

the neurological mechanisms underlying the development of cognitive structures as a 

prerequisite to establish a means of representation of the phenomenon. However, 

determining the validity of a means of representation becomes critical in utilizing 

cognitive structures for learning, instruction, and assessment. 

The assessment of cognitive structures in physiotherapy students provides a 

foundation for understanding the deep learning of gross anatomy. However, this gap in 

the current research has not been considered in traditional approaches to gross anatomy 

education, with educational research efforts focused on teaching methods and learning 

styles. Understanding cognitive structures, their development and quantitative 
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representation, may provide insight into the individual’s prior knowledge, learning, and 

organization of anatomical knowledge to enhance retention and transfer. Assessment of 

gaps in knowledge representation, exemplified by the individual’s cognitive structure 

(what knowledge exists and how it exists), provides a basis for adaptive learning and 

curricular development that can focus on the underlying strategies and behaviors that will 

promote their development (Liu et al., 2019). 

Literature Review Related to Key Variables and Concepts 

Data Modeling and Visualization 

Data modeling and visualization can be achieved within a computational 

framework that includes multivariate analysis. Dimensionality reduction techniques are 

multivariate analyses that employ scaling algorithms for data visualization (Dzemyda et 

al., 2013). Data visualization techniques that employ dimensionality reduction may 

subsequently display hidden structures and organization within both an individual’s data 

(Dzemyda et al., 2013) or a broader “concept landscape” of group data (Muehling, 2017). 

Data modeling may have the potential to provide a novel and innovative approach to the 

assessment of and for learning (Morales-Martinez et al., 2017). This aligns well with 

clinical applications such as the systematic approach proposed by Bonebright et al. 

(2005). The authors implemented both MDS and PFN to provide a more comprehensive 

overview of conceptual and perceptual relationships among auditory stimuli. Goldsmith 

et al. (1991) considered several parameters derived by MDS and PFN as “knowledge 

indices” based on their correlation between student and expert representations. These 

indices included the correlations on raw proximity data (r = 0.61), MDS distances (r = 
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0.54), PFN distances (r = 0.66), and PFN closeness (also known as neighborhood 

similarity; r = 0.74). Although the depth of quantitative analysis that can be attained 

through these approaches may not be directly practical in an educational realm, the 

theoretical framework has potential value in assessment strategies related to a learner’s 

cognitive structure and, subsequently, cognitive mechanisms and function. It can also 

provide more significant insights into the current state of development of the student’s 

cognitive structures relative to an expert’s cognitive structures and be a potential tool for 

student feedback. This has the potential to provide a data-driven means of assessment of 

learning, assessment as learning, and assessment for learning (Leppink, 2020). 

Proximity Data 

MDS and PFN have been used to provide a broad overview of cognitive 

structures and serve as the primary methodological constructs for this study. Both MDS 

and PFN are scaling algorithms that utilize semantic distance and association to develop 

proximity data representations that provide high predictive utility (Dry & Storms, 2009). 

Perceived similarity or relatedness between items, keywords, or concepts can be 

established via pairwise comparisons, a perceptual approach based on Thurstone’s law of 

comparative judgment (Thurstone, 1927). The direct comparison of items to establish 

perceptual similarity is considered the gold standard for concept organization (Dry & 

Storms, 2009). Pairwise comparisons have been used repeatedly in psychological 

research, and their use in educational research is growing (Crompvoets et al., 2020; 

Heldsinger & Humphry, 2010). Content items are often selected a priori based on the 

feedback of content experts. 
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Participants are provided with a paired list of concepts and keywords; for 

example, if 20 concepts are considered, each participant would have 190 pairwise 

comparisons. The total number of pairwise items would be 380, with all pairwise items 

being duplicated, leaving 190 pairwise comparisons. Most studies will use pairwise 

comparisons with Likert scales ranging from five to seven levels of similarity (ranging 

from “no similarity” to “identical”). This produces ordinal data, which may limit 

statistical analysis. However, Wu and Leung (2017) suggest using an 11-point scale may 

provide greater similarity to interval data and enable statistical analyses oriented to this 

type of data. Participants do not require any specific training to establish perceptual 

relatedness other than the primary domain context in which they are working. 

This proximity data can then be analyzed by both MDS and PFN scaling 

algorithms, each producing a different representation. These representations may have 

some semantic relationship dependent upon the strength of similarity between items; 

weak similarities between concepts may be influenced by spreading activation and via 

link associations (De Deyne et al., 2016). Changes in cognitive structure representation 

may reflect both learning and evolution from novice to more expert cognitive 

organization levels. Further consideration is now given to both analysis techniques, the 

measures that are implicit to their potential use as spatial and network representations of 

cognitive mapping, and their relevance to educational and clinical applications. 

Multidimensional Scaling for Spatial Representation 

Proximity data analysis via MDS provides a global spatial representation, also 

known as a perceptual or spatial mapping, consisting of concepts (points) in Euclidean 
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space, much like the high-dimensional frame of reference described by Bottini and 

Doeller (2020). Dimensional reduction leads to a spatial representation of the data. There 

is an extensive research history utilizing MDS to examine the cognitive structure in a 

broad range of practical applications (Balloo et al., 2016; Egli, Riedel, et al., 2009; Egli, 

Streule, & Lage, 2008; Gillan et al., 1992; Goldsmith et al., 1991; McGaghie, 

McCrimmon, & Thompson, 1998). Relevant MDS-derived measures and parameters 

include dimensionality, stress-1 (goodness of fit, which represents the coherence of the 

model), TCC, R2, and Euclidean semantic distances. One representative example is that 

of Egli, Streule, and Lage (2008), in which MDS was used to assess the differences 

between student and expert psychotherapists in their diagnosis of ICD-10 mental 

disorders. A total of 26 students participated in the study. As students gained training, 

their spatial representations (as reflected in their MDS visualizations) became more 

similar to those of the experts. 

Pathfinder Networks for Network Representation 

Proximity data analysis via PFN provides a local associative representation 

consisting of concepts (nodes) and associations (links), much like the low-dimensional 

frame of reference related by Bottini and Doeller (2020). The representation derived by 

PFN is in much the same form as a concept map (Meyer & Schvaneveldt, 1976; 

Schvaneveldt et al., 1988; Schvaneveldt, 1990; Schvaneveldt et al., 1989). Dimensional 

reduction leads to a network representation of the data. Although PFN has not been in 

existence as long as MDS, there is still a rich research history utilizing PFN to examine 

the cognitive structure in a broad range of practical applications (Azzarello, 2007; Curtis 
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& Davis, 2003; DiCerbo, 2007; Goldsmith et al., 1991; Lyu & Li, 2019; McGaghie, 

McCrimmon, et al., 2000; Neiles et al., 2016; Stevenson et al., 2016; Trumpower, Filiz, 

& Sarwar, 2014). Relevant PFN-derived measures and parameters include links, degree 

(the number of links attached to each node), eccentricity (the maximum number of links 

between a node and all other nodes in a network), coherence (the degree to which an 

individual’s cognitive structure has internal links and associations), and similarity (the 

degree to which an individual’s cognitive structure aligns with the cognitive structure of 

another individual or group of individuals). Measures such as coherence (within-subject 

consistency and reliability of data within the individual network) and similarity (between-

subject comparison to a referent structure) can be used to detect change over time. Lyu 

and Li (2019) noted that engineering students’ diagnostic performance improved as their 

Pathfinder similarity with experts improved. Azzarello (2007) reported a statistically 

significant relationship between post-course coherence and similarity with mean 

examination grade in a study of community health nursing students. Neiles et al. (2016) 

examined PFN in terms of validity and as a measure of assessing cognitive structure 

change in undergraduate chemistry students. The authors noted that PFN was valid and 

could be used as a formative assessment for chemistry students. Stevenson et al. (2016) 

used PFN within an undergraduate neuroscience course. They performed pre- and post-

course assessments on 63 students, finding that coherence and similarity improved 

throughout a course. The authors noted that the post-course assessment had shown 

improvement and could have promise as an outcome measurement. 
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Critical Analysis of MDS and PFN 

Research using MDS and PFN is relatively abundant in the literature across a 

broad range of domains, though its prevalence has been diminished over the past decade. 

Several potential issues exist. A critical review of the literature on MDS and PFN 

revealed an absence of specific a priori power calculations in any prior studies regardless 

of the statistical analyses performed. Seminal studies noted previously have a range of 

sample sizes from 35 to 71 participants (Acton et al., 1994; Egli, Streule, & Lage, 2008; 

Goldsmith et al., 1991; Neiles et al., 2016; Stevenson et al., 2016; Trumpower, Sharara, 

& Goldsmith, 2010). Although the majority of these seminal studies did not report effect 

sizes as such, further review of the study results revealed large effect sizes based on 

calculated r2 and η2 values (Goldsmith et al., 1991; Neiles et al., 2016; Stevenson et al., 

2016). 

There is little research on the test-retest reliability of these data modeling 

strategies related explicitly to cognitive structures’ representation. However, several 

studies have examined this psychometric property within graph-theoretical networks 

applied to similar anatomical constructs such as brain networks (Paldino et al., 2017; 

Welton et al., 2020). Paldino et al. (2017) studied the test-retest reliability of graph 

theoretical analysis of pediatric patients with epilepsy and found Pearson correlation 

coefficients ranging from 0.76 to 0.97 with an ICC of 0.74 to 0.96. This indicates good to 

excellent reliability (Koo & Li, 2016; Liljequist et al., 2019). Welton et al. (2020), in a 

similar graph theoretical analysis using patients with multiple sclerosis, reported that the 

ICC was greater than 0.6, a moderate to good reliability (Koo & Li, 2016; Liljequist et 
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al., 2019). Although these studies are based on anatomical constructs, they provide 

evidence of the potential use of these data modeling strategies to monitor specific 

cognitive structure changes based on the individual’s learning and reorganization of 

knowledge.  

There are several potential methodological concerns with the use of MDS and 

PFN; however, there does not appear to be any literature that has provided any disclaimer 

in terms of usage or relevance of these strategies for the intended purpose. Tessmer et al. 

(1997) provided a clear foundation for future research, noting that structural measures of 

representation (specifically, MDS and PFN) have predictive validity and can be used to 

measure changes in learning and differences between experts and novices. However, as 

exemplified by the commentary of Paas and van Merriënboer (2020), the focus of the 

cognitive learning theory literature appears to have centered on themes such as 

multimedia learning, cognitive load, instructional design, and the learning environment 

with a diminished focus on the efficient development of cognitive structures within long-

term memory. Gao et al. (2019) examined the literature related to deep learning in 

education. The authors noted that although the number of studies related to deep learning 

theory and strategies has been steadily increasing, those related to evaluation and 

measurement remain few and consistent over time. It is unknown if this disparity is 

related to a shift in research agenda, a disparate view of analytical approaches, or a lack 

of development of the domain over time. 
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Criterion Standards 

One of the primary considerations for a criterion-related validation study is the 

selection of an appropriate criterion. Content knowledge is often assessed as the criterion 

standard via multiple-choice questions yet there are implicit issues related to the validity 

of multiple-choice questions for knowledge assessment. However, this does not examine 

the structure and organization of the criterion of interest (thus limiting predictive 

validity), nor does it adequately address issues related to the validity of the multiple-

choice questions themselves (thus limiting concurrent validity). Academic grades provide 

a potential criterion problem. By not representing the full range of differences between 

students, grading standards can vary significantly and can be highly arbitrary, and the 

actual meaning of grades in terms of achievement may vary significantly (Borneman, 

2012; Hartnett & Willingham, 1980). The use of grades as a criterion may also impact 

studies aimed at assessing the relationship of learning strategies (Kamath et al., 2018). 

Grade point average has a long tradition of use as a predictor of success in medical 

student gross anatomy (Moffatt et al., 1971) and physiotherapy student NPTE success 

(Bayliss et al., 2017; S. H. Hayes et al., 1997). The primary focus of this study is on the 

cognitive structure and the internal perceived structural organization and representation 

of those structures; thus, the criterion selected is that of the expert or instructor. Unit 

grades will be considered as a secondary criterion. 

Summary and Conclusions 

Gross anatomy is an integral component of physiotherapy curricula. However, 

anatomical knowledge retention is poor. Little is known about how physiotherapy 
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students learn gross anatomy. However, cognitive science provides a foundation upon 

which to understand better the challenges faced by physiotherapy students. The ACT-R 

model of cognition provides a well-supported theoretical foundation for examining 

cognition in both domain-general and domain-specific (gross anatomy) cognitive learning 

contexts. Effective cognitive structures develop through deep and meaningful learning, 

enhancing retention and near transfer. The emerging cognitive science research indicates 

the presence and importance of cognitive mapping to represent these cognitive structures. 

Gross anatomy education provides unique challenges to the physiotherapy 

student. Research has focused on learning and instruction strategies, noting minimal 

differences in learning outcomes. However, self-directed learning strategies may provide 

a sound framework for examining physiotherapy students engaged in gross anatomy 

education to develop the skills necessary for effective clinical practice. Anatomical 

knowledge retention is dependent upon the student’s cognitive structures. This 

underscores the importance of a better understanding of cognitive structures and their 

quantitative representation as a tool for learning, instruction, and assessment. 

Data modeling strategies via scaling algorithms such as MDS and PFN have been 

used effectively in a broad range of domains to represent cognitive structure. These 

strategies may provide an innovative approach to the visualization and assessment of 

gross anatomy cognitive structures grounded in cognitive science. Understanding the 

cognitive functions essential for success, combined with the backward design of the 

curriculum, should establish the cognitive structures necessary as the student progresses 
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through the clinical program. These strategies are discussed within the context of the 

methodology of the current study in Chapter 3. 
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Chapter 3: Research Method 

The purpose of this quantitative study was to explore two data modeling strategies 

(MDS and PFN) as a potential visual and quantitative representation of the cognitive 

structures of physiotherapy students learning gross anatomy. Chapter 3 provides an 

overview of the methodology of the study. Major sections include research design and 

rationale, methodology, data collection strategy, threats to validity, and ethical 

procedures. The chapter concludes with a summary of the research methods used in this 

study. 

Research Design and Rationale 

A quantitative approach was appropriate for this study and the research questions 

involved. This choice of methodology was consistent with the literature reviewed in 

Chapter 2 that addressed the proposed use of multivariate analysis and the quantitative 

representation of cognitive structures (see Acton et al., 1994; Egli, Streule, & Lage, 2008; 

Goldsmith et al., 1991; Neiles et al., 2016; Stevenson et al., 2016). The research design 

was a quasi-experimental, criterion-related validation study using proximity data (see A. 

D. Harris et al., 2006). A quasi-experimental design was appropriate because selection 

effects were minimized to better represent real-world scenarios and provide a high degree 

of external validity (see Bärnighausen et al., 2017). 

There were several considerations in the selection of this research design. 

Researchers on cognitive learning theory have noted the importance of cognitive 

structures. J. R. Anderson (1996) described the cognitive unit as the precursor to 

cognitive structure, integrating it as a cognitive mechanism within ACT-R. A review of 
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the literature on gross anatomy education revealed equivocal learning outcomes with 

various instructional strategies, subsequently providing the rationale to explore self-

directed learning strategies that promote cognitive structures development. A quasi-

experimental, nonequivalent control group pretest-posttest design was initially conceived 

as a means of examining the effect of one learning strategy (concept mapping) on the 

meaningful learning of physiotherapy students enrolled in a gross anatomy course (see 

Handley et al., 2018). However, several philosophical, epistemological, and 

methodological concerns were exposed. First, there was little consensus regarding the 

definition of cognitive structures, how to represent them, and how to measure them. 

Second, the proposed study design would have been interventional, which provided 

several methodological constraints such as a lack of good rubrics, the necessity for 

additional student and instructor training, and the fidelity of implementation. Third, there 

were many threats to validity, both internal and external. At this point, with several clear 

limitations methodologically, new avenues were considered. 

The study’s focus shifted to the emerging cognitive science literature regarding 

cognitive structures and cognitive mapping and integrating with network science’s 

computational strategies (see Behrens et al., 2018; Bellmund et al., 2018; Siew, 2020; 

Siew et al., 2019). This literature was well-aligned with the computational framework of 

ACT-R. Extensive research on MDS and PFN indicated using both data modeling 

strategies as an indirect means of representing the structure of knowledge in various 

domains. However, their practical application in the health sciences was limited. 

Although these computational strategies appear promising and innovative in the gross 
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anatomy and physiotherapy domains, many prior studies were methodologically weak. 

This necessitated further refinement of the topic, specifically criterion-related validity, 

and incorporating a research design that would align with this topic. I determined that an 

innovative and exploratory approach to representing cognitive structure would utilize a 

criterion-related validation design. The purpose of the study was to investigate the 

potential use of two data modeling strategies (MDS and PFN) to visually and 

quantitatively represent cognitive structure in physiotherapy students learning gross 

anatomy. 

The criterion-related validation study would include pairwise comparisons to 

establish proximity (similarity) data, which could then be used via MDS and PFN to 

derive spatial and network visual and quantitative representations of cognitive structure, 

respectively. The study was initially conceived to have student participants complete 

pretest and posttest pairwise comparisons to examine change over time; however, due to 

extenuating circumstances, this was revised to focus on one set of pairwise comparisons 

representative of student cognitive structure. Expert participants also completed one 

pairwise comparison test. The first part of this exploratory study addressed the potential 

relationships and agreement between student cognitive structure and expert cognitive 

structure (criterion standard one). There were no independent or dependent variables 

because an independent variable was not manipulated to examine a change in the 

dependent variable. For the second part of this exploratory study, the dependent variable 

(criterion standard two) was the unit grade. The independent variables were MDS- and 

PFN-derived quantitative measures and the level of agreement between student and 
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expert cognitive structures. MDS-derived measures included dimensionality, stress-1, 

TCC, R2, and Euclidean semantic distances. PFN-derived measures included links, 

degree, eccentricity, coherence, similarity (with another network), and graph-theoretic 

semantic distances. Prior knowledge was reflected in admission GPA and admission 

anatomy GPA and was controlled as a covariate. These measures also reflect academic 

performance and are factors related to professional program GPA and first-time pass rate 

on the NPTE (Bayliss et al., 2017; S. H. Hayes et al., 1997; Wolden et al., 2020). The 

moderating (categorical) variables were the instructor and the program mode of delivery 

(residential and flex). Although content modules are standardized across program modes 

of delivery via the Blackboard learning management system, and teaching strategies are 

often consistent based on the course’s lecture and laboratory components, variations can 

occur. Instructor bias may have had a moderating effect on student cognitive structure’s 

potential changes or the degree of similarity with expert cognitive structure. The program 

mode of delivery may have had a moderating effect due to potential variations in the 

degree of synchronous and asynchronous teaching interaction. Both instructor and mode 

of delivery were potential confounding variables. 

The research design was a replication and extension of previous studies using 

MDS and PFN based on the theoretical justification reported in Chapter 2. Components 

of the methodology were replicated from several studies, including Goldsmith et al. 

(1991), Neiles et al. (2016), Stevenson et al. (2016), Egli, Streule, and Lage (2008), and 

Acton et al. (1994). The concurrent use of MDS and PFN and the basic implementation 

methodology was exemplified by the Goldsmith et al. study. The knowledge indices 
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described in the Goldsmith et al. study were integrated similarly in the current study, 

emphasizing the importance of raw proximity data, MDS Euclidean distances, Pathfinder 

graph-theoretic distances, and Pathfinder coherence, common links, and similarity. The 

premise of variations in expert cognitive structures and the averaging of raw proximity 

data to derive the expert cognitive structures was derived from the Acton et al. study. The 

studies by Neiles et al. and Stevenson et al. were used as examples of the practical 

implementations of PFN (with undergraduate chemistry and neuroscience students, 

respectively) and the study of Egli, Streule, and Lage was used as an example of the 

practical implementation of MDS for examining student–expert differences. Although 

several methodological challenges were noted in Chapter 2, these were acknowledged to 

narrow the scope of the current study with these accepted limitations. 

I refined the methodology of seminal works and extended the analysis for 

preliminary use in the gross anatomy content domain. Several refinements were 

implemented to enhance previous methodological approaches and to build on prior 

research. An 11-point Likert scale was initially conceived for use in pairwise 

comparisons to represent proximity data as interval data better and enhance subsequent 

analysis (see Wu & Leung, 2017). Concept items and functional terms were derived from 

the course text Clinically Oriented Anatomy (Moore et al., 2018), the Terminologia 

Anatomica (FIPAT, 2019) and the Foundational Model of Anatomy (Clarkson & 

Whipple, 2018). The final item list was selected by physiotherapists currently in 

musculoskeletal clinical practice. This review process increased the external validity and 

clinical relevance of concepts used for pairwise comparisons. Expert cognitive structures 
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were derived from both course instructors (typically physiotherapy centric) and PhD 

anatomists using the same procedures and variables used for student cognitive structure. 

Finally, I controlled for prior knowledge, an integral factor in both the cognitive structure 

and the target population.  

Establishing reliability and validity is critical for any potential learning outcome 

measure before its use in the field. The reliability of a measure is its stability and internal 

consistency either within one rater or between raters (Souza et al., 2017). Test-retest 

reliability is an indicator of the internal validity of the measure. Although the importance 

of test-retest reliability is evident, establishing intraclass correlations with appropriate 

power would require its own participant pool (Koo & Li, 2016; Liljequist et al., 2019). 

Test-retest reliability of experts’ cognitive structures would also necessitate the 

completion of testing within a short period to limit the effects of history and maturation 

bias (Handley et al., 2018). The validity of a measure is the degree to which it measures 

what it claims to be measuring (Souza et al., 2017). There is a difference, however, 

between validity and validation. Sussmann and Robertson (1986) differentiated validity 

and validation by noting that validation refers to research design, whereas validity is a 

function of the results attained from the study. Validation studies are critical first steps in 

the life of an assessment tool. Validity comprises four critical stepwise components: 

statistical conclusion validity, internal validity, construct validity, and external validity 

(Sussmann & Robertson, 1986). The current study was a criterion-related validation 

study in that it was a specific research design used to establish various types of validity 

through the design of the study.  
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Several researchers have reported the use of MDS and PFN to represent cognitive 

structures in a variety of domains (Azzarello, 2007; Balloo et al., 2016; Casas-García & 

Luengo-González, 2012; Connor et al., 2004; Curtis & Davis, 2003; DiCerbo, 2007; 

Jaworska & Chupetlovska-Anastasova, 2009; McGaghie, McCrimmon, et al., 2000; 

McGaghie, McCrimmon, & Thompson, 1998; Neiles et al., 2016; Stevenson et al., 2016; 

Veríssimo et al., 2017; H. D. White, 2003). These studies appeared to confirm construct 

validity based on the perceptual representations derived from proximity data and scaling 

algorithms, with the critical assumption that representations of the cognitive structure are 

indirect and not direct (Ifenthaler et al., 2011). The study of Neiles et al. (2016) provided 

a clear example of a relevant validation study. Neiles et al. examined the use of PFN with 

undergraduate chemistry students by evaluating four types of validity: content, construct, 

criterion-related, and concurrent. Content validity ensures that the content domain is 

adequately addressed. Construct validity assesses whether the construct in question is 

being measured. Criterion-related validity consists of predictive and concurrent validity 

and establishes whether the assessment or measure predicts future performance or 

behavior on the criterion of interest (Fink, 2010). The current study paralleled the types 

of validity assessed by Neiles et al. Content validity was addressed via selecting key 

terms from the text that adequately represented the domain concepts in question. 

Construct validity addressed student cognitive structure in comparison to an expert 

cognitive structure. Criterion-related validity included two criterion standards: expert 

cognitive structure as a primary criterion (concurrent validity) and unit grade as a 

secondary criterion (predictive validity). 
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Criterion validity, including predictive and concurrent validity, creates a unique 

challenge when assessing cognitive structure. In the current study, the primary criterion 

of interest was the representation and organization of the cognitive structure, not the 

content or the student’s ability to recall specific concepts. For this reason, the content was 

provided to participants a priori via an item list and pairwise comparisons. Because clear 

distinctions were noted regarding the organization of knowledge between experts and 

novices, the criterion or reference standard was the experts’ cognitive structure. The use 

of this criterion becomes increasingly essential as curricula evolve toward competency-

based education (Bains & Kaliski, 2019; Lucey et al., 2018). Although the limitations for 

using academic grades were acknowledged, the unit grade (consisting of both multiple-

choice and practical examinations) was used as a secondary criterion for consideration. 

This measure had been used in most previous studies, making its consideration relevant 

for direct comparison to prior research, practical relevance to the domain-specific 

application, and promoting the potential generalizability of the current study’s findings. 

Methodology 

The methodology section addresses the study population, sample, sampling 

procedures, recruitment and participation procedures, and data collection. Operational 

definitions and instrumentation are described. A concise plan for data preparation and 

data analysis to address all research questions is presented. Threats to validity (including 

internal, external, construct, and statistical conclusion validity) are considered. Finally, 

ethical considerations and procedures are described. 
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Population 

The DPT is a clinical doctorate that serves as the entry level for clinical practice 

as a physiotherapist. The DPT program at the institution under consideration consists of 

two separate modes of delivery: an eight-trimester residential program and a 12-trimester 

online-based flexible program. The target population consisted of DPT students enrolled 

in Gross Anatomy I during the first 15-week trimester of the program. There are 

approximately 320 students each trimester institution-wide (260 residential, 60 flexible). 

The demographics of this population reflect a graduate student who is 26 years of age on 

average, with a range of 21 to 46 years. Admission prerequisites include a bachelor’s 

degree and several course prerequisites such as six semester hours of anatomy and 

physiology. Admission data revealed that entering students have an average cumulative 

GPA of 3.2 and an average GRE score of 301.  

Two groups of experts were used to derive the expert cognitive structures that 

served as the primary criterion of interest in the current study. The first group consisted 

of the six lead course instructors within the institutional DPT programs. These course 

instructors had a clinical doctorate in physiotherapy. Generally, course instructors do not 

have a PhD in Anatomy, thereby providing an expert cognitive structure that was 

physiotherapy centric but not domain specific. The second consisted of three anatomy 

content experts outside of the institutional DPT program. These experts had a PhD in 

Anatomy but not a clinical doctorate, thereby providing an expert cognitive structure that 

was domain specific but not physiotherapy centric. Averages were calculated for the 
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instructor group, anatomist group, and combined group (a weighted average based on the 

number of expert participants). 

A group of 10 physiotherapists currently in clinical practice was recruited to rank 

order concept items and functional terms that would form the 20-item list used for 

pairwise comparisons by students and experts. Inclusion criteria were a minimum of 10 

years of clinical practice focused on musculoskeletal conditions in an outpatient 

environment. Exclusion criteria were individuals currently involved in teaching 

physiotherapy students in an entry-level DPT program. 

Sampling and Sampling Procedure 

As the research study was a criterion-related validation study, voluntary response 

(nonprobability) sampling was used. Demographic data such as age, gender, admission 

GPA, admission anatomy GPA, and GRE scores were used for post-stratification 

weighting to ensure a sample that is as closely representative of the target population as 

possible (Battaglia, 2008; Farrokhi & Mahmoudi-Hamidabad, 2012). Inclusion criteria 

consisted of first trimester DPT program students in either the residential or flex modes 

of program delivery; all students in all delivery modes were allowed to volunteer to 

participate. There were two exclusion criteria. The first exclusion criterion was students 

repeating the course as the previous course exposure may create a confounding variable. 

The second exclusion criterion was those students whose lead instructor is the primary 

investigator of the current study. This removed any potential bias and influence over 

study participants due to direct authority over the participants in question. 
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As noted in Chapter 2, a priori power calculations are lacking in most of the 

seminal studies; however, sample sizes range from 35 to 71 participants (Acton et al., 

1994; Egli, Streule, & Lage, 2008; Goldsmith et al., 1991; Neiles et al., 2016; Stevenson 

et al., 2016; Trumpower, Sharara, & Goldsmith, 2010). In a review of the studies by 

Goldsmith et al. (1991), Neiles et al. (2016), and Stevenson et al. (2016), large effect 

sizes were reported based on calculated r2 (>0.5) and η2 (>0.14) values (see Cohen, 

1988). Although these studies lacked clearly defined power calculations, a preliminary a 

priori power analysis via G*Power indicated several appropriate sample sizes (Faul, 

Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007). To balance 

Type I and Type II errors, Cohen (1988) suggests using an alpha value of 0.05 and a beta 

value of 0.20 (with a power of 0.80). All a priori calculations utilized these alpha and 

beta values. For paired sample t tests, the sample size was 34 (moderate effect size of 

0.50) or 15 (large effect size of 0.80). For correlational analysis, the sample size was 84 

(moderate effect size of 0.30) or 29 (large effect size of 0.50). For multiple regression, 

the sample size was 77 (moderate effect size of 0.15) or 36 (large effect size of 0.35). 

Effect sizes tend to be greater in quasi-experimental research designs (compared to 

randomized clinical trials) and within-group analyses (Bakker et al., 2019). 

Procedures for Recruitment, Participation, and Data Collection 

The proposed timeline for the study is represented in Figure 2. Student and expert 

recruitment procedures were consistent, with minor variations in the timeline and 

demographic information collected. During the first week of the trimester, all groups 

(student, expert, and physiotherapists in clinical practice) were recruited upon approval 



81 

 

 

from the Walden University Institutional Review Board and the institution offering the 

DPT program. 

Figure 2 

 

Proposed Study Timeline 

 

Prospective student and expert participants were assured that their involvement 

would be held in strict confidence, their privacy throughout the study was ensured, and 

that all data associated with the study would be protected and remain anonymous once 

the data set (demographic data, pretest survey, posttest survey) was complete. During the 

recruitment process, students and experts were not coerced into participation, and they 

could choose to opt out at any time without any adverse effect. Anonymous online 

surveys were a component of the non-coercive recruitment strategy. Participation and 

non-participation would not impact academic standing in the course, or any subsequent 

courses offered at the institution, nor would they negatively impact any current or future 
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relationship with the primary investigator. After completing the survey(s), participants 

received a $10 (appreciation) gift card as a thank you—this encouraged participation in 

the study. 

Ten physiotherapists currently in musculoskeletal clinical practice were recruited 

upon approval from the Walden University Institutional Review Board and the institution 

offering the DPT program. These clinicians were provided a list of concept items and 

functional terms specifically related to the shoulder and glenohumeral joint which was 

the current student content module. These items were derived from the course text 

Clinically Oriented Anatomy (Moore et al., 2018), the Terminologia Anatomica (FIPAT, 

2019), and the Foundational Model of Anatomy (Clarkson & Whipple, 2018). The 

Terminologia Anatomica (FIPAT, 2019) represents the standardized nomenclature for 

gross and clinical anatomy (Chmielewski, 2020; Greathouse et al., 2004), whereas the 

Foundational Model of Anatomy (Clarkson & Whipple, 2018) is an ontology of 

anatomical structures. The list of concept items and functional terms is provided in 

Appendix A. Physiotherapists were asked to rank order these items according to the level 

of relevance to clinical practice and musculoskeletal care. Rank order was compiled and 

averaged, with the top 20 items being used as the final item list for pairwise comparisons. 

Students received an explanation of the study in three formats: remotely via 

teleconference, embedded video within Blackboard, and description posted via 

announcement in Blackboard (Appendix B). Group teleconferences would be scheduled 

during the last few minutes of one of the regularly scheduled class sessions, arranged in 

advance with the lead course instructor(s). Contact information, including the primary 
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investigator’s email address and phone number, was included in all formats. The 

Blackboard announcement contained a link to volunteer and opt-in for participation in the 

study; this would generate an email request to the primary investigator for a unique 

identifier code that would initially be associated with the student ID number. Each 

participant would receive this unique identifier and link to the online survey via email. 

Student ID numbers and associated unique identifiers were maintained in an Excel 

spreadsheet until supplemental data were received from the registrar (admission GPA and 

admission anatomy GPA) and Blackboard (unit grades). At that time, all student ID 

numbers were removed from the data set, thereby de-identifying the data set and reducing 

it to a single unique identifier. 

Experts received an explanation of the study in two formats: remotely via 

teleconference (individual or group), as well as an email containing both a written 

description and an embedded video. Contact information, including the primary 

investigator’s email address and phone number, was included in all formats. Each 

participant would receive a unique identifier and link to the online survey via email. 

Personal data to be collected from expert participants was the number of years of clinical 

practice, number of years of teaching anatomy, terminal clinical degree, and terminal 

academic degree. Expert names and associated unique identifiers were maintained in an 

Excel spreadsheet. Once all data sets were complete, all expert names were removed 

from the data set, thereby de-identifying the data set and reducing it to a single unique 

identifier. 
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Students and experts that agreed to participate in the study received a link to 

complete an online survey. The nature of the survey design ensured the fidelity of 

implementation. This online survey consisted of several components. A description of the 

study (Appendix B) with all associated risks and benefits, identical to that used during the 

recruitment procedures, was provided. Informed consent was attained via implied 

consent; the participant clicked the link to continue with the survey, with a notification 

that no consent signature was required. This further protected the participant’s privacy. A 

short description of the task’s context to be performed, with instructions for completion, 

was included. All pairwise comparisons followed. It was initially conceived that the 

students would complete the online survey at two different time intervals: before starting 

the unit (weeks three through five) and completing the unit (week twelve); however, this 

was revised so that one survey was completed within the span of the course module. 

Students received email reminders to limit nonresponse bias and attrition. Experts 

completed the online survey within the first five weeks of the semester. 

The data to be collected for the study was pairwise similarity comparisons. 

Further details of the pairwise comparisons procedure can be found in the section on 

instrumentation. A total of 190 pairwise comparisons were collected from all study 

participants (student and expert). This was projected to take the participant no more than 

15 to 20 minutes to complete. Unit grades were collected in week twelve upon 

completing the content module, written exam, and practical exam. The unit grade was 

weighted in a means consistent with the course syllabus, such that the written exam 

accounted for 55.56% of the weighted unit grade.  
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Data were stored electronically via password-protected Excel spreadsheets and 

SPSS data files locally (encrypted flash drive) and backed up via cloud storage 

(Dropbox). Local storage was secured via a flood- and fire-proof safe at the primary 

investigator’s home. Data will be stored for five years per Walden University criteria, at 

which time the files in question will be deleted. There were not any specific follow-up 

procedures or debriefing for either student or expert participants to complete. All 

participants will be provided the opportunity to attend a short institution-wide 

presentation of the study results at a future date. 

Instrumentation 

The primary instruments utilized were semantic similarity ratings (via pairwise 

comparisons) and two independent dimensional reduction scaling algorithms, MDS and 

PFN, that utilize these ratings (Kruskal & Wish, 1978; Schvaneveldt, 1990). These data 

modeling strategies address different intents regarding cognitive structure 

representations. MDS is used to examine potential global (high dimensional) spatial 

relationships and PFN is used to examine potential local (low-dimensional) network 

relationships. In this study, cognitive structure (student and expert) was represented by 

the following measures: MDS dimensionality, stress-1, TCC, R2, and Euclidean semantic 

distances, and PFN links, degree, eccentricity, coherence, similarity (with another 

network), and graph-theoretic semantic distances. Prior knowledge was represented by 

two measures: admission GPA and admission anatomy GPA. The unit grade was 

measured by a weighted average of written and practical exam grades. 
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The cognitive structure for physiotherapy students in the gross anatomy course 

was initially conceived to be examined in a pre- and posttest fashion to establish if a 

meaningful change in cognitive mapping occurs over time. However, due to extenuating 

circumstances, this was revised to entail only one assessment of cognitive structure. 

Comparisons were made with expert cognitive structures for two subgroups: 

physiotherapy centric (instructor) and domain specific (Ph.D. anatomist). Comparisons 

were made between student cognitive structures and unit grades to establish if the two 

were related. 

Similarity ratings were compiled via pairwise comparisons to create a proximity 

matrix (Roske-Hofstrand & Paap, 1990). An item list was used to generate pairwise 

comparisons. This item list contained essential concept items and functional terms that 

were specifically related to the shoulder and glenohumeral joint, the content module in 

question. Items and terms were derived from the course text Clinically Oriented Anatomy 

(Moore et al., 2018), the Terminologia Anatomica (FIPAT, 2019), and the Foundational 

Model of Anatomy (Clarkson & Whipple, 2018), and were based on structure and 

function as integrating these components is essential to clinical practice. Physiotherapists 

in musculoskeletal clinical practice rank-ordered the clinical relevance of these terms to 

establish a final 20-item list. The master list of concept items and functional terms is 

provided in Appendix A. Pairwise comparisons create a proximity matrix which can then 

be used for both MDS and PFN calculations. 

A review of the relevant literature revealed no specific parameters defined for an 

optimal number of items used in MDS; however, this has been explored in the PFN 
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research. Schvaneveldt et al. (1985) reported that 15 terms are the lowest number of 

terms used to generate accurate Pathfinder networks. A greater number of items linearly 

increases the predictive validity while decreasing the overall variance; however, there is 

an associated increase in the time necessary to complete the pairwise comparisons 

(Goldsmith et al., 1991). For example, the use of 20 items would necessitate 190 pairwise 

comparisons (approximately 16 minutes), whereas increasing to 25 items would 

necessitate 300 pairwise comparisons (approximately 25 minutes); a 25% increase in 

terms is reflected in a 50% increase in time per survey. The impact of balancing 

reliability and efficiency on the study design must be considered. Although a greater 

number of items may improve the predictive validity, it may also decrease the participant 

pool due to a greater amount of time necessary to complete the study with pretest and 

posttest measures (Crompvoets et al., 2020). A total of 20 items were selected, creating 

380 pairwise comparisons; with duplicate items removed, 190 pairwise comparisons were 

collected from all study participants (student and expert). These comparisons were 

projected to take no more than 15 to 20 minutes per online survey. 

Best practices were used in the development of the online survey (Ruel et al., 

2015). Initial concerns focused on satisficing behavior such as straightlining of responses 

based on inattentiveness and optimizing the user experience given the large number of 

paired comparisons required (Kim et al., 2019; Leiner, 2019). Liu and Cernat (2018) 

found that straightlining of responses was similar between grid and individual item 

surveys and that data quality diminished with 9- and 11-column responses. For these 

reasons, a grid matrix was used with five items and seven scale responses to diminish 
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satisficing behavior (including survey inattentiveness and straightlining) while improving 

the ease of use (Grady et al., 2019). Pairwise comparisons generated ordinal data; 

however, Harpe (2015) noted that individual ratings with responses having greater than 

five categories could be analyzed as continuous data. Both data modeling strategies have 

options to consider the data as ordinal or interval depending on the analysis of individual 

data (ordinal) versus aggregated data (interval). Ruel et al. (2015) noted that best 

practices include using a progress bar and numbering the questions, and these strategies 

were implemented in the final survey design. All online surveys were designed with 

mandatory responses for each set of questions, thus preventing missing data. Data were 

downloaded from the survey website, and data cleaning was performed as the survey data 

were imported into Excel and SPSS for analysis. 

Operationalization of Constructs 

The operationalization of variables provides a clear definition of concepts, 

variables, and indicators. Table 1 represents a summary of relevant construct definitions 

and their operationalization.  
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Table 1 

 

Operationalization of Constructs 

Construct definition  Construct operationalization 

Cognitive structure: “A hypothetical 

construct referring to the organization of 

the relationships of concepts in long-term 

memory.” (Shavelson, 1972, p. 226-227) 
 

 Pairwise comparisons (raw proximity 

semantic similarity data) representing 

perceptual concept organization 

Cognitive structure mapping: The 

representation of cognitive structure 

reflected in a cognitive map defined via 

two data modeling strategies (MDS and 

PFN) and their derived quantitative 

parameters and data visualization. 

 MDS spatial representation with MDS-

derived quantitative measures 

(configuration properties including 

dimensionality, stress-1, R2, and 

Euclidean semantic distances) 

 

PFN network representation with PFN-

derived quantitative measures (network 

properties including degree, 

eccentricity, coherence, similarity, and 

graph-theoretic semantic distances) 

 

Deep/meaningful learning: “Meaningful 

learning occurs when students build the 

knowledge and cognitive processes 

needed for successful problem-solving.” 

(Mayer, 2002a) 

 

 Meaningful change in student cognitive 

structure mapping over time (pretest to 

posttest) reflected in changes in MDS- 

and PFN-derived quantitative measures 

Prior knowledge: “All knowledge 

learners have when entering a learning 

environment that is potentially relevant 

for acquiring new knowledge” (Biemans 

& Simons, 1996) 

 

 Admission GPA 

Admission anatomy GPA 

Pretest student cognitive structure  

Criterion: “Human expertise can be 

defined as displayed behavior within a 

specialized domain and related domain in 

the form of consistently demonstrated 

actions of an individual that are both 

optimally efficient in their execution and 

effective in their results” (Herling, 2000). 

 

 Primary: expert cognitive structure 

(Schvaneveldt et al., 1985) 

 

Secondary: Unit grade 
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Paired comparisons data were collected via similarity ratings from 1 to 7 based on 

the degree of relatedness and similarity between the items. This was based on the 

Goldsmith et al. (1991) study. As there was not a defined “identical” value and the 

ratings were perceptual, Kruskal and Wish (1978) reported a need to convert similarity 

ratings to dissimilarity ratings by subtracting each value from a defined constant; the 

constant was defined as a value of eight as seven indicated “most similar” but not 

“identical.” 

Cognitive Structure Mapping 

Cognitive structure was represented visually and quantitatively via MDS and PFN 

measures derived from proximity data via pairwise comparisons, the gold standard for the 

perceptual representation of concept organization (Dry & Storms, 2009). Pairwise 

comparisons served as the raw data used for both MDS and PFN calculations of key 

variables. These include MDS-derived measures (dimensionality, stress-1, TCC, R2, and 

Euclidean semantic distances) and PFN-derived measures (links, degree, eccentricity, 

coherence, similarity, and graph-theoretic semantic distances). These values created both 

a visual and quantitative representation of the proximity data, which served as the 

cognitive structure mapping. 

Multidimensional Scaling. MDS was initially developed by Kruskal and Wish 

(1978). Data modeling was performed using SPSS software to create a spatial 

representation of the proximity matrix data. Metric MDS was to be used as the 11-point 

Likert scale data would serve as interval data (Kruskal & Wish, 1978; Wu & Leung, 

2017). This representation reflected the semantic space and consisted of the Euclidean 
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semantic distance between concepts derived from the proximity data. MDS represents the 

proximity data via multiple dimensions that best represent the semantic distances of the 

model’s proximity data.  

Giguère (2006) provided a decision table for the selection of scaling models 

within MDS. This was based on the number of matrices used, the assumption of 

perceptual and cognitive differences, measurement conditionality, and data level. 

Classical MDS (CMDS, also known as the Identity scaling model in SPSS) via the 

PROXSCAL algorithm is appropriate with one matrix of continuous or ordinal data (for 

example, an individual’s survey responses). This produces one group configuration or 

stimulus space with Euclidean distances. Replicated MDS (RMDS) uses the same 

algorithm as CMDS but with multiple matrices to generate one stimulus space. However, 

RMDS provides a more robust solution as the use of multiple matrices provides increased 

data to generate the solution and accounting for the difference in how people use the 

response scale (Davison & Sireci, 2000; Hout et al., 2013). Both CMDS and RMDS 

produce a stimulus space that can be transformed via rotation, reflection, and scaling 

without losing the relative locations of the items in the stimulus space. Weighted MDS 

(WMDS, also known as the Weighted Euclidean scaling model or INDSCAL), also via 

the PROXSCAL algorithm, is used with multiple matrices and the assumption of 

perceptual and cognitive differences between the matrices. This produces a common 

configuration or stimulus space with Euclidean distances and individual spaces and 

dimension weights that are believed to represent differences in cognitive or perceptual 

factors (Hout et al., 2013). However, the group space is non-transformable in that the 
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axes used for the dimensions are implicit to that specific data set (Davison & Sireci, 

2000). The summary provided by Giguère (2006) is consistent with the more recent work 

of Borg et al. (2018). 

Five variables are derived via MDS: dimensionality, stress-1 (goodness of fit), 

TCC, R2, and Euclidean semantic distances. Dimensionality represents the number of 

dimensions that most accurately represent the proximity data; common values would be 

two dimensions or greater. The greater the number of dimensions, the more difficult it is 

to represent the data spatially visually. The dimensionality of the expert cognitive 

structure was used as the standard of comparison for all student cognitive structures.  

The assessment of goodness (or badness) of fit is achieved via a multifactorial 

approach including scree plot, stress-1, R2, and a Shepard diagram which plots the 

observed dissimilarities versus fitted distances (Mair et al., 2016). Stress -1 examines the 

overall goodness-of-fit of the proximity data to the projected MDS configuration based 

on the optimal dimensionality, with lower values (less than 0.2) indicating a better 

goodness-of-fit (Borg & Groenen, 2005; Davison & Sireci, 2000; Kruskal, 1964; Mair et 

al., 2016). Stress-1 is calculated as the square root of normalized raw stress (Borg & 

Groenen, 2005). Random stress norms have been calculated for various numbers of 

objects by Sturrock and Rocha (2000). For a 1% chance of 20 objects being randomly 

arranged (p<0.01), then stress-1 values are 0.446 (one dimension), 0.279 (two 

dimensions), and 0.189 (three dimensions); thus, if stress values are less than this, there is 

some certainty that objects are not organized randomly (Sturrock & Rocha, 2000). 

Finally, TCC provides a measure of congruency within the data set. At the same time, R2 
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represents the proportion of variance in the proximity data accounted for by the MDS 

configuration. Good similarity is reflected in TCC values greater than 0.95 with fair 

similarity between 0.85 and 0.94 (Lorenzo-Seva & ten Berge, 2006). An increasing R2 

value indicates greater coherence within the MDS model. R2 is visually represented by a 

plot of transformed proximities and distance. WMDS produces dimensional weights that 

indicate the individual’s preference of the dimensions defined by the MDS configuration. 

These values were calculated for each set of student and expert proximity data. 

Euclidean semantic distances are the perceived distances between concept items, 

with shorter distances indicating greater association or similarity. Euclidean distances are 

unaffected by rotation, translation, or reflection (Borg & Groenen, 2005). Agreement and 

correlation of semantic distances can indicate a degree of association between student and 

expert cognitive structures. The reliability of MDS is highly dependent upon the 

reliability of proximity ratings; however, research related to the test-retest reliability of 

this approach was lacking. 

Pathfinder Networks. PFN was initially developed by Schvaneveldt (1990). 

Data modeling was performed using the Pathfinder software to create a network 

representation of the proximity data. This representation reflected the semantic network 

and consisted of the associated links between concepts derived from the proximity data. 

Network properties define its overall characteristics. These properties include centrality, 

links, degree, eccentricity, coherence, and graph-theoretic semantic distances. 

Eccentricity represents the maximum number of links between a node and all other nodes 

in a network; the center of a network is the node with minimum eccentricity. Degree is 
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the number of links attached to each node. Coherence represents the degree to which the 

original proximity data correlates with the inferred relationships of the network -the 

degree of associated links between nodes within the semantic network. A higher level of 

coherence would indicate a greater number of links and associations between nodes 

(concept items). Network properties are derived from the PFN solution for each set of 

proximity data with visual networks created; group averages were also calculated. Graph-

theoretic semantic distances are defined as the shortest path between nodes/concept 

items, with shorter distances indicating greater association or similarity. Agreement and 

correlation of semantic distances can indicate a degree of association between student and 

expert cognitive structures. 

PFN also provides two unique measures for comparing two networks: 

closeness/common links and similarity. Closeness indicates the number of links in 

common with a second network, whereas similarity is the degree that two networks 

contain the same nodes and links. Identical networks have a value of one, and no shared 

links have a value of zero. Similarity is calculated by comparing the nodes and links of 

two data sets to assess the number of shared links. This provided a direct comparison 

between a student’s cognitive structure and an expert cognitive structure. In effect, the 

greater the closeness and similarity, the more expert-like the network. The reliability of 

PFN is also highly dependent upon the reliability of proximity ratings.; however, research 

related to the test-retest reliability of this approach was lacking. 
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Agreement Analysis 

The intent of examining a relationship between ECS and SCS is to understand if 

the student’s cognitive structure “agrees” with that of the expert, to what degree it agrees 

(if that is possible to derive), the strength of association between them, and whether this 

level of agreement impacts future academic success. Assessment of the agreement 

between student and expert occurs throughout physiotherapy education and requires both 

interrater reliability and agreement while examining the level of competency displayed in 

the performance of a clinical activity (Liao et al., 2010). Exploring the relationship 

between student cognitive structure and expert cognitive structure involves comparing 

their perceptual organization and relationships between concepts and items. Each 

cognitive structure representation serves as a measurement tool of the perceived 

organization of anatomical concepts. These elements are necessary for concurrent and 

predictive criterion-related validity; the former is reflected in the level of agreement 

between SCS and ECS (criterion standard one), and the latter is represented by the 

relationship between SCS properties, the agreement between ECS and SCS, and the unit 

grade (criterion standard two).  

There is a lack of consistency in the literature regarding how to assess the 

agreement or relationship between raters and the construct validity of measures used to 

do so. Reliability and agreement are often used interchangeably; however, they represent 

different constructs and have poor operational definitions (Hernaez, 2015; ten Hove et al., 

2018). This has led to the inappropriate use of various statistical analyses (Aggarwal & 

Ranganathan, 2016, 2017; Ranganathan et al., 2017). Reliability and agreement research 
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often focuses on continuous data; however, ordinal data can be analyzed as continuous 

data via robust parametric statistical analyses within specific contexts (Harpe, 2015; 

Norman, 2010; Rhemtulla et al., 2012). A frequent pitfall occurs with the use of 

Pearson’s correlation coefficient. Raters can have a high strength of association (for 

example, r = 1 would be a perfect association) yet have no agreement on any of the 

ratings. For example, rater one could have three ratings of 1, 1, and 1 and rater two could 

have ratings of 3, 3, and 3; although the correlation coefficient r = 1, the level of 

agreement is zero. This phenomenon is common in educational research; for example, 

previous seminal research by Goldsmith et al. (1991) and Gonzalvo et al. (1994) 

described the correlation of student and expert proximity data, MDS Euclidean distances, 

and PFN graph-theoretic distances as well as PFN coherence, common links, and 

similarity. However, they did not report having met the assumptions deemed necessary 

for the appropriate use of correlational analysis. 

Clear differentiation of these terms and the operationalization of constructs is 

integral to a focused examination of the relationship between student cognitive structure 

and expert cognitive structure and establishing concurrent criterion-related validity and 

selecting appropriate and relevant statistical analyses. Stolarova et al. (2014) and Looney 

(2018) developed frameworks for agreement analysis that provided the foundation for the 

quantitative comparison of cognitive structures. Stolarova et al. (2014) defined three 

methods to address agreement: interrater reliability, interrater agreement, and strength of 

linear association. Looney (2018) provided a framework for agreement aligned with 

Barnhart et al. (2007) that focuses on absolute agreement via graphical plot, unscaled, 



97 

 

 

and scaled indices. If neither of the individuals serves as a reference, then agreement 

tends to reflect reliability; if one of the individuals serves as a reference, then agreement 

tends to reflect validity (Looney, 2018). The latter becomes highly relevant for RQ2 in 

this study. 

In the context of this study, reliability was the extent to which the raters can 

consistently discriminate between paired comparisons; agreement was the extent to which 

different raters assign the same value of perceived relatedness (Chaturvedi & Bajpai, 

2015). The relationship between student and expert cognitive structures is represented by 

reliability (reflected in interrater reliability), accuracy (via unscaled and scaled indices), 

and the strength of linear association between rater variables (Haghayegh et al., 2020; 

Looney, 2018; Stolarova et al., 2014). First, interrater reliability between student and 

expert ratings can be examined via Krippendorff’s alpha coefficient, a robust tool used to 

measure reliability and agreement used for various data types and number of raters that 

accounts for chance agreements (Krippendorff, 2004). This provides Krippendorff’s 

alpha coefficient with greater flexibility in its use (Shabankhani, 2020; Zapf et al., 2016). 

It also embraces several other known reliability coefficients such as Spearman’s rho, 

Pearson’s intra-class correlation, and the kappa statistic as it is calculated based on the 

differences between raters (A. F. Hayes & Krippendorff, 2007; Shabankhani, 2020). 

However, as noted in Chapter 2, test-retest reliability, a specific component of interrater 

reliability and validity, is beyond the scope of this study as it requires a larger sample 

size. Second, absolute agreement between raters can be established via graphical plots, 

unscaled, and scaled indices (Barnhart et al., 2007; Looney, 2018). Unscaled indices 
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represent the level of agreement via the mean of differences and standard deviation, 

limits of agreement with a 95% confidence interval (derived from the mean of 

differences), or the root mean squared deviation (Kopp-Schneider & Hielscher, 2019). 

The mean of differences indicates the average agreement across all measurements. It 

provides a sign or direction, whereas the absolute mean of differences provides an 

indicator of each measure without sign or direction. The root mean square deviation 

provides a measure of the average difference in agreement between raters (accuracy) 

given the units of the original rating (Barnhart et al., 2007; Looney, 2018). This data can 

often be displayed effectively in a bivariate plot of raw scores compared to a y=x identity 

line, histogram, or a Bland-Altman plot (Bland & Altman, 1986, 2003; Giavarina, 2015; 

Haghayegh et al., 2020; Looney, 2018). Scaled indices include intraclass correlation and 

Lin’s concordance correlation coefficient. However, Krippendorff’s alpha coefficient is 

used in place of the intra-class correlation based on the findings of A. F. Hayes and 

Krippendorff (2007). Finally, the strength of linear association can be calculated via 

Pearson’s correlation coefficient. Many parametric approaches such as Pearson’s 

correlation coefficient that are thought to require continuous data are robust enough to 

accommodate both non-normality of data and Likert scale data (Harpe, 2015; Norman, 

2010). However, the true value of a correlation coefficient may lay in its derived 

coefficient of determination which describes the proportion of variance accounted for by 

the statistical solution. It is interesting to note that many of the reliability coefficients 

currently in use (Cohen’s kappa, weighted kappa, ICC, Pearson’s correlation, Spearman’s 
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rho, and Kendall’s tau-b) produce similar results when used with ordinal data, especially 

if there are seven or more categories of the ordinal variable (de Raadt et al., 2021).  

In this study, the construct of cognitive structure was operationalized as “a 

hypothetical construct referring to the organization of the relationships of concepts in 

long-term memory” (Shavelson, 1972, p. 226-227) via pairwise comparisons representing 

perceptual concept organization. However, understanding the relationship between the 

variables and the context of the raw data (in terms of normality) requires understanding 

both the agreement between student and expert and the strength of linear association 

between the two. This promotes the correct use of operational definitions, the careful 

examination of assumptions for parametric tests given the context of the data, and 

appropriate comparisons with the previous research. Three levels of analysis were used. 

A qualitative visual comparison of both MDS and PFN representations was the first step 

toward examining the potential relationship between student and expert cognitive 

structure. A quantitative descriptive comparison of raw proximity data, MDS 

configuration properties, and PFN network properties provided the second comparison 

level. Descriptive parameters derived from the MDS configuration included stress-1, 

TCC, and R2. Descriptive parameters derived from the PFN network properties included 

degree, eccentricity, number of links, and coherence. Finally, a quantitative statistical 

analysis examined the raw proximity data, MDS Euclidean distances, and PFN graph-

theoretic distances in terms of interrater reliability (Krippendorff’s alpha coefficient), 

accuracy (root mean squared deviation), and strength of linear association (Pearson’s 

correlation coefficient). These measures served to examine the relationship between 
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student cognitive structure and expert cognitive structure in RQ2. Potential predictor 

variables for RQ3 were subsequently be derived from these measures and used in 

conjunction with prior knowledge. 

Criterion-Related Validity 

Criterion-related validity was explored for two criterion standards: expert 

cognitive structure and unit grade. Cognitive structure was represented by MDS-derived 

measures (stress-1, TCC, R2, Euclidean semantic distances) and PFN-derived measures 

(links, degree, eccentricity, coherence, similarity, and graph-theoretic semantic 

distances). The first criterion-related validity with expert cognitive structure is 

exemplified by agreement between student cognitive structure and expert cognitive 

structure while controlling for prior knowledge (admission GPA and admission anatomy 

GPA). The second criterion-related validity with unit grade is exemplified by a 

relationship between student cognitive structure and the agreement between student and 

expert and unit grade while controlling for prior knowledge (admission GPA and 

admission anatomy GPA). 

Data Analysis Plan 

Data collected within the study were analyzed using the Statistical Package for the 

Social Sciences (SPSS) and the Pathfinder analysis software publicly available at 

www.interlinkinc.net (Schvaneveldt, n. d.). Online survey data consisting of pairwise 

comparisons were entered as a proximity matrix for further analysis in both statistical 

packages. Both MDS and PFN utilize the same proximity matrix data. Data were stored 

in Excel spreadsheets as well as SPSS data files. 



101 

 

 

Data Preparation 

Each participant (student and expert) was issued a unique identifier code to 

complete the online survey. This code number would remain associated with the 

individual’s identification number (student) or name (expert) until all data were collected 

from all sources (survey, registrar, Blackboard). All data were maintained within an 

Excel spreadsheet. A complete data set for each student participant consisted of a student 

number, unique identifier code, survey ratings, unit written exam grade (Blackboard), 

unit practical exam grade (Blackboard), and demographic data collected from the 

registrar, which included age, gender, admission GPA, admission anatomy GPA, GRE 

score, program/campus, and mode of delivery. Demographic data were used for post-

stratification weighting to ensure a sample that is as closely representative of the target 

population as possible (Battaglia, 2008). A complete data set for each expert participant 

consisted of a unique identifier code, program/campus, mode of delivery (residential or 

flexible), test ratings, number of years of clinical practice, number of years of anatomy 

teaching practice, terminal clinical degree, and terminal academic degree. Coding 

designations are noted in Appendix C. A check of email address and IP address ensured 

unique survey entries without duplication. Once a data set was complete and had all the 

required elements, the data were de-identified, and only the unique identifier was used. 

Each data set was examined manually for missing data and data entry errors. The 

primary technique for minimizing missing data is an effective data collection strategy 

built into the study design (Kang, 2013). Missing data can significantly impact 

quantitative research, resulting in loss of information and bias, decreased statistical 
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power, and increased standard errors (Dong & Peng, 2013). Missing data can occur 

during the survey proximity ratings or opt-out or non-completion of the posttest survey. 

A complete description of the process to be completed during the study is essential, with 

well-defined steps described for the participant. Effective organization of the survey 

ensured that a participant must complete each item before moving to the next item to 

minimize the risk of missing data. The survey design prevented item non-response as 

much as possible, leaving unit-level non-response – when no information is collected 

from the participant (Dong & Peng, 2013). Email reminders were sent to participants 

before the projected date of completion of the survey. If a survey was partially 

completed, this was considered an opt-out. In the event of missing pairwise proximity 

data, listwise deletion will be used. Most item non-responses would be related to missing 

data that is considered missing completely at random (Kang, 2013). In these 

circumstances, listwise deletion, also known as complete case analysis, is the most 

common approach to missing data while limiting bias associated with removing cases 

(Kang, 2013). A complete set of proximity ratings are required to derive a cognitive 

structure; if the data set is incomplete, then it would be preferable to remove the case 

entirely. Although this may impact the sample size, all correlations and other statistical 

analyses will be performed on the same set of participants (Warner, 2013). As all 

pairwise comparisons are necessary to utilize both MDS and PFN and pairwise ratings 

are perceptual, using a principled missing data method was not indicated in this research 

design. An SPSS data file was created for proximity matrix data in both MDS and PFN 

analyses. 
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Data screening consisted of proofreading the original data sets and SPSS data file 

for inconsistencies. Descriptive statistics were used to establish a profile of the data. A 

histogram, scatterplot, and summary statistics provided descriptive data regarding central 

tendency and the range of scores. This data established the normalcy of distribution and 

identified potential outliers outside of +/- 3 standard deviations. Assumptions for all 

statistical tests were reviewed for the integrity of the statistical analysis. For paired t tests, 

assumptions consist of no significant outliers and normal distribution of differences in the 

dependent variable (Warner, 2013). For Pearson correlation coefficients, assumptions 

consist of paired continuous data, linear relationship, no significant outliers, and bivariate 

normality (Warner, 2013). For multiple regression, assumptions consist of a continuous 

dependent variable with at least two independent variables, independence of 

observations, linearity, homoscedasticity, no multicollinearity, no significant outliers, and 

normal distribution of residuals (Warner, 2013). The data were analyzed after these 

assumptions were met or addressed. Further commentary on normality and statistical tests 

is noted in Chapter 4. 

Data Analysis and Research Questions 

The research study addressed several interrelated components. An overview of the 

research design and variables is visualized in Figure 3, with a summary of the research 

questions and associated data analysis noted in Table 2. Methodological discrepancies 

and revisions are discussed in Chapter 4. 
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Figure 3 

 

Research Questions and Variables 

Note. SCS Pre = student cognitive structure (pretest); SCS Post = student cognitive 

structure (posttest); ECS = expert cognitive structure. 

Both expert and student cognitive structures were reflected in MDS- and PFN-

derived measures (MDS dimensionality, stress-1, TCC, R2, and Euclidean semantic 

distances, and PFN links, degree, eccentricity, coherence, similarity, and graph-theoretic 

semantic distances). Averages were calculated for both physiotherapy centric and domain 

centric expert subgroups as well as the combined expert group. Student cognitive 

structure (reflected in MDS- and PFN-derived measures) was to be examined for within-

subject changes over time, making a pretest and posttest comparison relevant to the 

study. However, methodological discrepancies are noted in Chapter 4. Criterion-related 



105 

 

 

validity (concurrent and predictive) was examined to assess potential relationships 

between student cognitive structure and its associated variables and both expert cognitive 

structure, its associated variables, and unit grade. Concurrent validity was reflected in the 

level of agreement between SCS and ECS (criterion standard one), whereas predictive 

validity was represented by the relationship between SCS, level of agreement, and the 

unit grade (criterion standard two).  

A visual comparison of both MDS and PFN representations was the first step 

toward examining the potential relationship between student and expert cognitive 

structure. A quantitative descriptive comparison of proximity data, MDS configuration 

properties, and PFN network properties provided the second comparison level. 

Descriptive parameters derived from the MDS configuration include stress-1, TCC, and 

R2. Descriptive parameters derived from the PFN network properties include degree, 

eccentricity, number of links, and coherence. The dimensionality of the MDS 

representation was defined by the average expert cognitive structure representations and 

the dimensionality that established the data’s best fit. The same dimensionality was used 

to analyze all student cognitive structures to establish consistent comparisons based on 

the criterion standard. Student MDS stress-1 (goodness-of-fit) and R2 was calculated 

based on the dimensionality of the expert cognitive structure. Finally, a quantitative 

statistical analysis examined the proximity data, MDS Euclidean distances, and PFN 

graph-theoretic distances in terms of reliability (Krippendorff’s alpha coefficient), 

accuracy (root mean squared deviation), and strength of linear association (Pearson’s 

correlation coefficient) between student and expert. Multiple regression was used to 
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examine potential relationships between student cognitive structure, levels of agreement 

between student and expert (primary criterion), and unit grade (secondary criterion) while 

controlling for prior knowledge (admission GPA and admission anatomy GPA). Finally, 

the instructor and mode of delivery were examined as potential moderating variables. 

These variables were included as potential confounding variables. 

The following research questions were initially conceived and considered in this 

exploratory study within the context of physiotherapy students enrolled in a first semester 

foundational gross anatomy course. The study was guided by the following RQs: 

RQ1: Is there a meaningful change over time in the quantitative representation of 

student cognitive structure? 

RQ2: Is there a relationship between student cognitive structure and expert 

cognitive structure while controlling for prior knowledge? 

RQ3: Is there a relationship between student cognitive structure and unit grade 

while controlling for prior knowledge? 

Given the RQs’ exploratory nature, hypotheses for each RQ were not appropriate 

or indicated. Methodological discrepancies and revisions are discussed in Chapter 4. 
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Table 2 

 

Research Questions, Variables, and Data Analysis Plan 

Construct validity  Variable  Data analysis 

RQ1 Is there a 

meaningful 

change over 

time in the 

quantitative 

representation 

of student 

cognitive 

structure? 

 

 MDS dimensionality, 

stress, semantic 

distances, and R2 

 

PFN semantic 

distances, coherence, 

and similarity 

 Mean differences and 

relationship between 

pretest/posttest student 

cognitive structures and 

associated variables 

  Scatterplots 

Paired t tests and Cohen’s d 

Pearson correlation (r) and r2 

 

Criterion validity  Variable  Data analysis 

RQ2 Is there a 

relationship 

between student 

cognitive 

structure and 

expert cognitive 

structure while 

controlling for 

prior 

knowledge? 

 MDS dimensionality, 

stress, semantic 

distances, and R2 

 

PFN semantic 

distances, coherence, 

and similarity 

 

 The relationship between 

student cognitive structure 

and the criterion variable 

(expert cognitive structure) is 

represented by reliability 

(Krippendorff’s alpha 

coefficient), agreement 

(RMSD), and strength of 

linear association (Pearson’s 

correlation coefficient). 

 

RQ3 Is there a 

relationship 

between student 

cognitive 

structure and 

unit grade while 

controlling for 

prior 

knowledge? 

 MDS dimensionality, 

stress, semantic 

distances, and R2 

 

PFN semantic 

distances, coherence, 

and similarity 

 

Unit grade 

 

Admission GPA 

Admission anatomy 

GPA 

 Multiple regression to 

examine relationships 

between multiple student 

cognitive structure predictor 

variables and the criterion 

variable (unit grade). 

  Pearson correlation (r), 

multiple correlation 

coefficient (R), standardized 

coefficient (β), adjusted 

coefficient of determination 

(ΔR2), and regression 

equation 
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Threats to Validity 

Portney and Watkins (2009) presented a straightforward stepwise process for 

assessing threats to validity. Statistical conclusion validity refers to the appropriate use of 

statistical procedures. This allows for appropriate and valid conclusions to be drawn from 

the relationships between the dependent and independent variables. Internal validity 

addresses confounding factors that might interfere with these relationships. Construct 

validity refers to the theoretical constructs representing the variables and their 

interpretation. External validity refers to the generalizability of results beyond the current 

study. Each element must be addressed in the study’s design, with threats to validity 

limited or addressed with specific procedures to diminish the threats’ impact. 

Statistical conclusion validity is the use of statistical analyses appropriate for the 

data and goals of analysis (Matthay & Glymour, 2020; Portney & Watkins, 2009). 

Threats to statistical conclusion validity are limited by meeting the appropriate statistical 

analysis assumptions and ensuring adequate power. Type I and II errors are a component 

of statistical conclusion validity; however, these factors are addressed via an appropriate 

selection of alpha and beta values in the study design. The error rate can increase as 

repeated measures increase; however, this will not be a significant threat to validity with 

two repeated measures. Factors that influence the study’s variability are controlled using 

standardized protocols (throughout the study’s design) and the homogeneity of 

participants within the cohort. The reliability of both MDS and PFN analyses has not 

been extensively researched and is an acknowledged limitation of the current study. 
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A study with internal validity has conditions that promote causal inferences, and 

the results are due to the study’s factors and not due to confounding variables (Matthay & 

Glymour, 2020; Warner, 2013). Internal validity demands control of extraneous variables 

(Campbell & Stanley, 1963; Warner, 2013). The current study has several threats to 

internal validity. As the research design has pretest and posttest measurements, there is a 

risk of uncontrolled factors occurring over time (history) and changes within the 

individual (maturation). These factors should be minimized as students throughout the 

institution have similar admission requirements in each cohort and are within a narrow 

age group. Social interaction between participants may occur, though the participant’s 

adherence to the study instructions will limit this. There is a risk of a testing effect as 

participants may better understand the context and process of similarity ratings during the 

posttest conditions. However, the order of pairwise comparisons can be varied for the 

posttest ratings, thus minimizing the testing effect. Attrition may impact average group 

scores depending on which participants drop out of the study by not completing the 

pretest and posttest. This was limited by using email reminders for posttest rating 

completion. Attrition rates are noted in the study results. The selection of the criterion or 

gold standard is critical to internal validity, yet the assumption is made that they are, in 

fact, the best criterion standard. Although the research design of the current study cannot 

control this factor, these assumptions are based on the best available research literature 

related to MDS and PFN. As noted previously, instrumentation and the reliability of 

measurement is an acknowledged limitation of the current study. Measurement error as a 

function of instrument reliability can lead to statistical regression (Portney & Watkins, 



110 

 

 

2009). Each of these threats to internal validity is a function of the research design and 

serves as a limitation to the study. 

The most significant threat to internal validity is selection bias. Voluntary 

response (nonprobability) sampling allows all students in all modes of delivery to 

participate. However, this can create a self-selection bias. Exclusion criteria assist in 

limiting confounding variables in the selection process. Including as many students as 

possible will dimmish the impact of selection bias by increasing the representativeness of 

the sample. A lack of a control group (and subsequent assignment of participants) limits 

the effect of selection bias. Although selection bias issues exist, they are often 

unavoidable and inherent to many educational studies and institutional procedures. 

Random (probability) sampling, while limiting selection bias, would severely limit the 

study’s sample size and power. Greater power (with selection bias) is a preferred 

limitation to the current study compared to random sampling (with a significantly 

underpowered design), enhancing the potential for generalizable effect sizes within the 

participant pool’s constraints. Repeated measures enhance internal validity by providing 

each participant with their own control (Warner, 2013). As the target population is DPT 

students within the first semester of the program, regardless of the mode of delivery or 

campus, post-stratification and weighting can align the sample’s demographic 

characteristics with those of the target population (Battaglia, 2008). Demographic data 

such as age, gender, admission GPA, admission anatomy GPA, and GRE scores will be 

used for post-stratification weighting to ensure a sample that is as closely representative 
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of the target population as possible (Battaglia, 2008; Farrokhi & Mahmoudi-Hamidabad, 

2012). 

Construct validity reflects the construct being measured accurately, representing 

the construct in question (Matthay & Glymour, 2020). Threats to construct validity 

involve issues related to the operationalization of constructs (including construct 

definitions) and experimental biases introduced by the researcher or participant. The 

development of the item list for pairwise comparisons is critical to having construct 

validity. The use of several resources, including the Foundational Model of Anatomy 

(Clarkson & Whipple, 2018), will limit this potential threat. Operational definitions of 

important constructs are clearly reported, and the operationalization of these constructs is 

outlined. Data modeling (MDS and PFN) to represent cognitive structure is based on 

previous research that provides a precedent for potential construct validity. However, as 

noted in Chapter 2, the construct of a cognitive structure appears to have some 

characteristics that promote representation, albeit indirectly. Experimental bias related to 

the researcher is limited as there is limited interaction between researcher and 

participants. Finally, the Hawthorne effect could also play a role as participants may 

change their behaviors as they know they are being studied. However, this becomes less 

of an issue as the study does not have an intervention, and interaction with the researcher 

is limited.  

External validity reflects the generalizability of the study results beyond the 

current study participants and context (Campbell & Stanley, 1963; Matthay & Glymour, 

2020; Warner, 2013). If a study has high external validity, results will translate to real-
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world scenarios with varied contexts and participants. Two essential issues exist in 

establishing external validity and the generalizability of results: the effect of the specific 

setting and context and participants being representative of the target population (Portney 

& Watkins, 2009). The current study has several threats to external validity. Study results 

will be specifically relevant to the program and institution of the target population. 

However, the assumption is made that the institution’s admissions are consistent with the 

broader population of students entering other DPT programs. Admissions data such as 

admission GPA and admission anatomy GPA can be compared to national DPT program 

averages if available. Reliability and consistency of measurement in terms of grading are 

emphasized based on institutional guidelines, though this may limit the generalizability of 

study results to DPT programs at other institutions. Replication of the study in the future 

with different student groups at various institutions will be necessary to broaden the 

impact of the study results. Testing reactivity may impact posttest measures; although 

this is inherent to the proposed repeated measure research design, the effect should be 

nominal if posttest ratings have varied the order of pairwise comparisons. The greatest 

challenge to external validity parallels that of internal validity: the representativeness of 

the sample. Sampling bias is often used synonymously with selection bias. It is reflected 

in participants that do not represent the general population due to self-selection and 

voluntary response (nonprobability) sampling. The strategies utilized to limit this threat 

to external validity are consistent with those previously noted to limit internal validity. 

Furthermore, clearly describing the conditions of sampling via an audit trail is integral to 
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reporting study results. Attrition rates reflective of nonresponse bias will also be reported 

to provide greater clarity of any disparities evident in sampling (McCutcheon, 2008). 

Ethical Procedures 

Ethical procedures are of utmost importance in the methodology of the current 

study. Participants completed an informed consent before the initial online survey, which 

outlined all expectations and rights of the participant. Participants were assured that their 

personal information related to the study would be held in strict confidence. Data 

collection was both protected and anonymous to ensure the privacy and security of 

information. Several layers of encrypted data storage were used to ensure data security 

and integrity. This consisted of password-protected files stored on both local encrypted 

storage via flash drive and encrypted cloud storage. Data files were accessible to the 

primary investigator and were password protected. Local storage was secured via a flood- 

and fire-proof safe at the primary investigator’s home. Data will be stored for five years 

per Walden University criteria, at which time the files in question will be deleted. The 

student identification number was used to ensure that a complete data set (with associated 

unique identifier code) was compiled; all data were de-identified at that time. 

Participation in the study was voluntary, and participants were free to withdraw at their 

discretion without adverse effects. A $10.00 gift card appreciation was given to all 

student and expert participants who completed the study and all physiotherapists who 

completed the review and rank-ordering of anatomical concept items. This was used to 

promote participation without coercion. Academic standing was not impacted by a 

student choosing to participate or not. Students currently being instructed by the primary 
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investigator were not eligible for participation to limit any undue influence on data 

collection at the investigator’s institution. 

Summary 

The methods, sampling, data collection, and ethical procedures discussed in 

Chapter 3 provide a sound methodological platform for examining the research questions. 

The research design provides the foundation for examining criterion validation and using 

these strategies for cognitive structure mapping and quantitative representation in 

physiotherapy students learning gross anatomy. Threats to validity are described, with 

potential methodological issues addressed. Finally, ethical procedures are outlined to 

ensure privacy, confidentiality, and data security. 
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Chapter 4: Results  

The purpose of this quantitative study was to explore two data modeling strategies 

(MDS and PFN) as a potential visual and quantitative representation of the cognitive 

structures of physiotherapy students learning gross anatomy. The study was designed to 

address three research questions: 

RQ1: Is there a meaningful change over time in the quantitative representation of 

student cognitive structure? 

RQ2: Is there a relationship between student cognitive structure and expert 

cognitive structure while controlling for prior knowledge? 

RQ3: Is there a relationship between student cognitive structure and unit grade 

while controlling for prior knowledge? 

Given the research questions’ exploratory nature, hypotheses for each research 

question were not appropriate or indicated. 

Chapter 4 provides an overview of the results of the study. Major sections in this 

chapter include data collection, an overview of the sample participants (physiotherapist, 

expert, and student), data analysis including MDS and PFN, and a summary of the 

findings for each research question. Several exploratory analyses are included that 

provide further context for the research questions. The chapter concludes with a summary 

and a transition to the Discussion in Chapter 5. 

Data Collection 

Walden University served as the Institutional Review Board (IRB) of record and 

the partner organization’s IRB entered into an Interagency Authorization Agreement for 
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approval at the institutional level. Once final approval was received from Walden 

University’s IRB and the partner organization (Walden University approval number 12-

23-20-0979508) on January 22, 2021, recruitment of subjects was initiated. Data 

collection began on January 25, 2021 and ended on March 31, 2021. 

Methodological Discrepancies 

There was one primary methodological discrepancy in data collection compared 

to the research design that was originally proposed. Due to unforeseen delays in IRB 

approval, the timing of the study was impacted. These delays prevented the completion of 

a pretest survey scheduled to be offered in the first 3 weeks of the semester. This 

necessitated either the delay of the study by 15 weeks or the removal of RQ1. I chose the 

latter option. The data collection for RQ2 or RQ3 was not adversely affected, and there 

was no impact on the associated validation components of the study. The finalized 

timeline is displayed in Figure 4. 
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Figure 4 

 

Final Study Timeline 

 

Several smaller discrepancies and refinements in the recruitment process were 

based on the logistics involved with multiple cohorts in multiple programs. Initially, a 

comparison based on the mode of delivery (residential versus flexible) was planned. 

However, as the study data were collected during the COVID-19 pandemic of 2020–

2021, all students in all cohorts were in a remote learning environment for the duration of 

the study. This removed the potential differentiation between residential and flexible 

modes of delivery. However, comparisons related to the instructor and their specific 

cohort were maintained. Teleconference arrangements were difficult to make based on 

the scheduling of classes in multiple time zones and institutional scheduling changes 

driven by the pandemic. The student recruitment efforts subsequently focused on the 
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Blackboard course email distribution and the associated video description of the study 

embedded in the call for participants. Student ID numbers were not used in the initial 

survey registration process. All prospective survey participants obtained a unique survey 

token and login directly from the survey website by using their email address. This 

process simplified registration and decreased the barriers to participation; it also 

enhanced the confidentiality of the process by removing the initial email request via 

student ID number.  

There were several adjustments in how the study data were analyzed. These are 

summarized in Figure 5. Moderating variables such as the program mode of delivery 

were removed because of changes in all modes of delivery necessitated by the 2020–2021 

pandemic. With the absence of a pretest survey, the SCS-derived parameters were used as 

the predictor variables for RQ3. An 11-point Likert scale for the paired comparisons was 

replaced by a 7-point scale to better align with previous seminal research as well as to 

improve ease of use by the participant and to be better aligned with best practices in the 

use of grid formats and online surveys (see Goldsmith et al., 1991; Grady et al., 2019; Liu 

& Cernat, 2018). Prior knowledge was initially planned as a covariate; however, with the 

shift in research design given the absence of a pretest, prior knowledge became a 

predictor variable for RQ3. A weighted average of the expert group participants was not 

used because it became apparent that subgroups were more relevant to the analysis. 

Poststratification weighting via demographic data were not deemed necessary due to a 

smaller-than-expected student sample.  



119 

 

 

Figure 5 

 

Updated Research Questions and Variables 

 

Note. SCS = student cognitive structure; ECS = expert cognitive structure; MDS-derived 

parameters = stress-1, TCC, R2; PFN-derived parameters = links, coherence, similarity; 

agreement = reliability, accuracy, and association; prior knowledge = admission 

cumulative GPA and admission core sciences GPA. 

  



120 

 

 

Correlations and multiple regression were initially proposed as the primary 

statistical analyses; however, further evaluation of the research questions and data 

indicated that agreement analysis (reflected in interrater reliability, level of agreement, 

and strength of linear association between student and expert) were all integral to 

understanding the relationship between student and expert cognitive structures for RQ2. 

Multiple linear regression remained the primary statistical approach used for RQ3 with 

predictor variables derived from RQ2. These variables (derived parameters and 

agreement analysis) are summarized in Table 3. 
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Table 3 

 

Summary of Constructs and Variables for RQ2 and RQ3 

Construct definition Construct operationalization Variable 

Cognitive structure: “A 

hypothetical construct 

referring to the organization of 

the relationships of concepts in 

long-term memory.” 

(Shavelson, 1972, p. 226-227) 

 

Pairwise comparisons (raw 

proximity semantic similarity data) 

representing perceptual concept 

organization 

PRX 

Cognitive structure mapping: 

The representation of cognitive 

structure reflected in a 

cognitive map defined via two 

data modeling strategies (MDS 

and PFN) and their derived 

quantitative parameters and 

data visualization. 

 

MDS spatial representation 

MDS configuration properties 

MDS Euclidean distances 

 

PFN network representation 

PFN network properties 

PFN common links/similarity 

PFN graph-theoretic distances 

MDS data visualization 

MDS stress-1, TCC, R2 

MDS Euclidean distances agreement (α, RMSD, r) 

 

PFN data visualization 

PFN links, coherence 

PFN common links/similarity 

PFN graph-theoretic distances agreement (α, RMSD, r) 

Research Question 2 Relationship between SCS and ECS reflected in MDS/PFN properties and agreement analysis 

 

Research Question 3 Relationship between RQ2 predictor variables, prior knowledge, and unit grade 

 

Note. PRX = proximity data; TCC = Tucker’s coefficient of congruence; R2 = coefficient of determination; α = Krippendorff’s 

alpha, RMSD = root mean square deviation; r = Pearson’s correlation coefficient. 
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Sampling 

Physiotherapists, experts (including lead course instructors and domain experts), 

and first trimester DPT students were recruited for participation in the study via voluntary 

response (nonprobability) sampling. Recruitment and response rates varied based on the 

population in question. 

Physiotherapists 

Thirteen physiotherapists were recruited to participate in the study; an email 

address was used during registration to generate a unique survey token and login. All data 

sets were deidentified once the data collection was completed. The response rate was 

92.3%, providing a sample of 12 physiotherapists currently in musculoskeletal clinical 

practice. Descriptive statistics for the physiotherapist sample are displayed in Table 4. 

The highest clinical degree attained by physiotherapists was the doctorate in PT (n = 6), 

followed by a bachelor’s in PT (n = 4) and a master’s in PT (n = 2). All are reflective of 

the entry-level to practice in the United States and to attain state licensure. The number of 

years in clinical physiotherapy practice in musculoskeletal care ranged from 11 to 35 

years, with a mean of 22 years. The sample represented 264 total years of clinical 

practice. Three of the physiotherapists (25%) had taught gross anatomy in the past; 

however, the mean duration of teaching gross anatomy among the three was negligible 

(1.3 years). These physiotherapists were included in further data analysis. 

Experts 

The seven Gross Anatomy lead instructors in the partner organization and seven 

gross anatomy domain experts from outside the partner organization were invited to 
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participate in the study; an email address was used during registration to generate a 

unique survey token and login. All data sets were deidentified once the data collection 

was completed. The overall expert response rate was 57.1%, providing a sample of 5 lead 

instructors (71.4% response rate) and three gross anatomy domain experts (37.5% 

response rate). Descriptive statistics for the expert sample are displayed in Table 4. Lead 

instructors were physiotherapy centric in that they were teaching gross anatomy and had 

clinical degrees in physiotherapy. In contrast, domain experts were domain centric and 

did not have a clinical degree. Seven of the eight experts had a doctoral degree as their 

highest academic degree (PhD = 5, DHSc = 1, Sc.D. = 1) with one master’s degree 

reported. There were two primary subgroups: clinical (those having a clinical degree; n = 

5) and nonclinical (those not having a clinical degree; n = 3). The clinical group consisted 

of instructors (n = 4), who were responsible for instructing the cohorts in question, and 

noninstructors (n = 1). Three lead instructors had a master’s in PT and one had a 

doctorate in PT. 

There were two unique cases. The first case was a lead instructor who did not 

have a cohort represented in the sample population and was an outlier lacking a clinical 

degree. This subject was subsequently considered in the domain expert subgroup because 

these experts were domain centric and not physiotherapy centric with clinical degrees. 

The second case, initially recruited as a domain expert, was the lone participant in this 

subgroup with a clinical degree. Because this subject’s clinical degree was in 

physiotherapy and the subject had 40 years of clinical experience, they were considered 
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an outlier in the domain expert group. This subject was subsequently considered in the 

clinical subgroup. 

Data were initially analyzed based on total expert group (ECST, n = 8) as well as 

three subgroups: nonclinical (ECSD n = 3), clinical (ECSC n = 5), and clinical lead 

instructors (ECSI, n = 4). Based on the initial descriptive analysis, it appeared that the 

physiotherapist sample was consistent with the expert clinical and instructor group. 

Table 4 

 

Physiotherapist and Expert Demographic Data 

   YTA   YCP  

Group n M SD Range M SD Range 

Physio 12 0.33 0.65 0-2 22.00 8.30 11-35 

ECST 8 22.38 13.56 5-44 18.88 17.10 0-40 

ECSC 5 15.00 9.77 5-25 30.20 9.18 22-40 

ECSI 4 12.50 9.26 5-25 27.75 8.50 22-40 

ECSD 3 34.67 9.50 25-44 0 0 0 

Note. YTA = years of teaching anatomy; YCP = years of clinical practice; ECST = 

ECS total group (n = 31); ECSC = ECS clinical subgroup (n = 5); ECSI = ECS 

instructor subgroup (n = 4); ECSD = ECS domain expert subgroup (n = 3). 

DPT Students 

Five concurrent cohorts of students totaling 224 students (165 residential 

program, 59 flexible program) were invited to participate in the study. This sample was 

much smaller than the expected target population of 320 because the partner organization 

had one fewer cohort registered for the trimester and fewer students per cohort than 
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projected. The student’s email address during registration was used to generate a unique 

survey token and login. All data sets were deidentified once the data set was complete. 

Initial student registration for the online survey was 21.9% (49 students) which 

was consistent with expectations based on survey research; however, the overall student 

response rate was 13.9%, providing a sample of 31 students. A total of 18 students (8%) 

failed to complete the online survey. Seventeen of the 31 students were enrolled in the 

residential program (54.8% of the sample with a 10.3% response rate), and fourteen 

students were enrolled in the flexible program (45.2% of the sample with a 23.7% 

response rate). However, as noted previously, the mode of delivery for both residential 

and flexible programs shifted to an exclusively remote learning environment during the 

pandemic. 

Demographic data were collected for the five concurrent cohorts. Admission data 

included age, gender, admission cumulative GPA, admission core science GPA, and 

GRE. The data representing both the total cohort and study sample are displayed in Table 

5. 



126 

 

 

Table 5 

 

DPT Student Demographic Data 

 Total (n = 224) Sample (n = 31) 

Characteristics M Range M Range 

Age 25.94 20-48 26.35 23-40 

Gender (% F:M) 52:48  55:45  

GRE 298.23 280-329 296.68 283-308 

Cumulative GPA 3.23 2.48-4.0 3.28 2.63-4.0 

Core Sciences GPA 3.30 2.60-4.0 3.37 2.96-4.0 

Note. The study sample was representative of the target population, and thus post-

stratification was not indicated. 

Covariates (as defined by age, gender, program location, and program type) and 

prior knowledge (as defined by admission cumulative GPA and admission core sciences 

GPA) were consistent between the cohorts and the study sample, indicating that the study 

sample was representative of the target population. The use of voluntary response 

(nonprobability) sampling can often necessitate post-stratification to represent the target 

population more accurately. However, given the small sample size and consistency 

between the target population and sampling frame, post-stratification was not needed due 

to differences in the covariates. 

Data Preparation 

There were four key components in preparing the data for use in each of the three 

research questions. First, I screened the survey data and prepared it for further statistical 

analysis. Second, I assessed the relevant statistical assumptions. Third, I used the study 

data to procedurally describe the development of cognitive structure (both expert and 



127 

 

 

student) via the data modeling strategies. Finally, two exploratory analyses related to the 

MDS scaling model (and its selection) were necessary to provide important context for 

the subsequent selection of models for data analysis. 

Several clusters of data were collected, with each serving a specific purpose based 

on the operationalization of constructs employed in the study. Student demographic data 

included age, gender, GRE score, program location, and program type (both the study 

participants and the cohort target population). Prior knowledge was represented by two 

measures: admission cumulative GPA and admission core science GPA. The students’ 

unit grades served as a criterion standard. Physiotherapist and expert demographic data 

such as highest academic degree, highest clinical degree, number of years teaching gross 

anatomy, and number of years in clinical practice in musculoskeletal care were collected. 

Finally, cognitive structure (student and expert), in this study, was represented by the raw 

proximity data as well as the primary measures derived from MDS (dimensionality, 

stress-1, TCC, R2, and Euclidean semantic distances) and PFN (links, degree, 

eccentricity, coherence, common links/closeness, similarity, and graph-theoretic semantic 

distances). Interrater reliability, accuracy, and strength of linear association were 

calculated from student and expert comparisons (proximity data, MDS Euclidean 

distances, and PFN graph-theoretic distances). 

Preliminary Data Screening 

Preliminary data screening was performed. Survey data were downloaded and 

compiled with admissions data and was screened for missing data, errors, and 

inconsistencies. However, the design of the online surveys prevented the submission of 
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incomplete surveys. Email and IP addresses confirmed that duplicate responses were not 

submitted. Data sets were subsequently deidentified and prepared for use in Excel and 

SPSS. 

Statistical Test Assumptions 

The data analysis focused on the potential relationship between SCS, ECS, and 

unit grade via factors such as MDS configuration and PFN network properties as well as 

agreement analysis for semantic distances (MDS Euclidean and PFN graph-theoretic) that 

included interrater reliability, level of agreement, and strength of linear association. 

Relevant factors were then considered as potential predictor variables for multiple linear 

regression. Each of the associated statistical tests has implicit assumptions for their 

correct use and application. Reliability, represented by interrater reliability, was assessed 

via Krippendorff’s alpha coefficient (Krippendorff, 2004), which provides the flexibility 

to use all data types and any number of raters. Krippendorff (2004) noted that the alpha 

coefficient is an umbrella for other commonly used reliability tests, including Spearman’s 

rho, Pearson’s intra-class correlation (ICC), and Cohen’s kappa. Accuracy was assessed 

by the root mean square deviation to establish absolute agreement. Scatterplots, Bland-

Altman plots (Bland & Altman, 1986), and histograms displayed the data visually when 

appropriate. Association, represented by the strength of linear relationship, was 

calculated via Pearson’s correlation coefficient and had four assumptions per Warner 

(2013): two paired continuous variables (research design), linearity between the variables 

(noted via scatterplot), no significant outliers (noted via scatterplot or Cook’s distance), 

and bivariate normality (Shapiro-Wilk test, histograms, and normal Q-Q plots). Multiple 
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linear regression has eight assumptions per Warner (2013): continuous dependent 

variable (research design), two or more independent variables (continuous or categorical, 

based on the research design), linearity between the variables (noted via scatter plots and 

partial regression plots), no significant outliers (noted via scatterplot, casewise 

diagnostics, or Cook’s distance), independence of observations (Durbin-Watson test), 

homoscedasticity (via scatterplot), no multicollinearity (tolerance/VIF values), and 

residuals are approximately normally distributed (histogram and P-P plot or normal Q-Q 

plots). Many of the assumptions (for example, the nature of the dependent variable, 

linearity, no significant outliers, and normality) are shared between statistical analyses. 

As subgroupings of the data remained the same throughout the study (student, expert, 

instructor, cohort instructor), the assumptions remained consistent throughout the MDS 

and PFN analyses that utilize the same raw proximity data. 

The issue of normality, a fundamental assumption in both correlational analysis 

and multiple linear regression, becomes problematic based on the context of the data. 

Paired comparisons and their associated perceived relatedness are assumed to be 

normally distributed based on Thurstone’s law of comparative judgment (Brown & 

Peterson, 2009). However, this normality is at the level of each individual comparison 

only. Multiple paired comparisons produce ordinal data that is inherently not normally 

distributed across the multiple comparisons, and as such, histograms would not indicate a 

normal distribution. When comparing proximity data between groups or individuals, 

assessment of normality may be a function of the individual’s perception, knowledge, and 

experiences regarding their perceived relatedness of that specific paired comparison 
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instead of it being considered an “outlier” in the context of a normal distribution. As a 

result, removing outliers (in the traditional context) would effectively compromise and 

remove the representation of certain paired comparisons. Norman (2010) noted that many 

parametric tests, including Pearson’s correlation coefficients, are robust tools and are not 

adversely impacted by non-normal distributions, especially given the context of the data 

noted above. Aggregated Likert scale ratings were considered as continuous data for 

group analyses when appropriate (Harpe, 2015; Norman, 2010). Unless expressly noted 

otherwise, histograms (mean of differences) and the visual inspection of normal Q-Q 

plots (Mishra et al., 2019) revealed a normal distribution of all data sets. The Shapiro-

Wilk test indicated that the variables were not normally distributed (p < 0.05), however, 

this is expected as each variable represents one independent paired comparison. I 

included an example of statistical assumptions testing for Pearson’s correlation 

coefficient is provided for group SCS – group ECS comparisons for raw proximity data, 

MDS Euclidean distances, and PFN graph-theoretic distances. As subsequent analyses 

(MDS and PFN) were mathematical derivations of proximity data, all Pearson’s 

correlation coefficient assumptions were deemed to have been met if these assumptions 

were met for the raw proximity data. Assumptions for multiple regression are discussed 

independently for RQ3. 

Cognitive Structure 

The intent of examining a relationship between ECS and SCS is to understand 

better if the student’s cognitive structure “agrees” with that of the expert, to what degree 

it agrees, the strength of association between them, and whether this level of agreement 
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impacts future academic success. In retrospect, after further evaluation of the literature, 

the use of the term “relationship” was incorrect. The intent was to examine if students 

align their cognitive structure with experts (concurrent validity) and does the level of 

agreement relate to predictive validity via a criterion standard reflecting academic 

performance. In this study, the construct of cognitive structure was operationalized as “a 

hypothetical construct referring to the organization of the relationships of concepts in 

long-term memory” (Shavelson, 1972, p. 226-227) via pairwise comparisons representing 

perceptual concept organization. The issues of construct validity and the appropriate use 

of statistical analyses were discussed in the operationalization of constructs in Chapter 3. 

The raw proximity (similarity) data compiled from the paired comparisons of the 

survey instrument served as the basis for all statistical analyses with both data modeling 

strategies. The paired comparisons component of both expert and student surveys was 

identical to promote the fidelity of implementation. I assumed that as physiotherapy 

students had completed prerequisite courses in anatomy before program admission, they 

would clearly understand and be familiar with the items noted. The raw proximity data 

were converted from similarity to dissimilarity ratings by subtracting each value from a 

constant value. The defined constant was a value of eight as seven on the relatedness 

scale indicated “most similar” but not “identical.” The raw proximity data were also 

analyzed as it represented the direct perceptions of the participant regarding the paired 

comparisons. 

Three levels of agreement analysis were used. First, I presented a visual 

comparison of student and expert cognitive structures using MDS and PFN data 
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visualizations. Second, I based a quantitative descriptive comparison of student and 

expert cognitive structures on the MDS configuration properties (stress-1, TCC, and R2) 

and PFN network properties (degree, eccentricity, number of links, and coherence). 

Third, I performed a quantitative statistical analysis of student and expert cognitive 

structures using the proximity data, MDS Euclidean distances, and PFN graph-theoretic 

distances in terms of agreement based on reliability (interrater reliability calculated via 

Krippendorff’s alpha coefficient), accuracy (level of agreement based on the root mean 

squared deviation), and association (the strength of linear relationship calculated via 

Pearson’s correlation coefficient). 

Measures derived from these analysis levels served to examine the relationship 

between student cognitive structure and expert cognitive structure in RQ2. If there was a 

relationship established between SCS and ECS, then it might be conceived that a higher 

level of agreement could translate into improved academic performance. Potential 

predictor variables for RQ3 were subsequently derived from these measures and used in 

conjunction with prior knowledge.  

There are several important considerations regarding the use of raw data to derive 

or represent cognitive structure. The “meaningful aggregation” (Segalowitz et al., 2016) 

of group data is a critical consideration for both data modeling strategies as they involve 

mathematical manipulation of the raw data to generate spatial and network 

representations. Group data in MDS can be examined via the aggregation of multiple 

matrices within the MDS solution (see Gonzalvo et al., 1994) or as mean (average) values 

used to generate the MDS solution (see Goldsmith et al., 1991). Group data in PFN can 
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be examined as mean or median values generated from single or multiple matrices. 

Segalowitz et al. (2016) noted that the mean data might, in fact, not be truly 

representative of any of the input data and thus may create an artifact or skewed 

representation of the data (Janska & Clark, 2010). Mean data are generally vulnerable to 

outliers in the raw data; however, mean MDS configurations (with multiple matrices) 

may limit the impact of any one matrix that may be an outlier from the others; it is taken 

into consideration but allows the MDS configuration to retain representative and reliable 

results (Janska & Clark, 2010). Previous research has used average/mean values to 

represent expert cognitive structure via MDS and PFN. For this research study, both 

approaches were used where appropriate and noted accordingly. I included an exploratory 

analysis of the potential differences in data aggregation and their impact on the MDS 

solution. 

MDS was used to examine the data at the global/spatial level, whereas PFN was 

used to examine the data at the local/network level. I calculated the MDS configurations 

using the Proxscal 1.0 algorithm in SPSS (Busing et al., 1997) and the PFN properties 

using the Pathfinder Network Java application (Schvaneveldt, n.d.). Both data modeling 

strategies required specific parameters before analysis: dimensionality in MDS and the q- 

and r-parameters in PFN. I have described these within the context of the compiled 

research data. 

MDS Dimensionality 

Best practices for MDS, as proposed by Borg et al. (2018), were used. The 

authors proposed using the PROXSCAL algorithm with Torgerson scaling for the initial 
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configuration, ordinal proximity transformations, primary approach to ties (untie tied 

observations), a stress convergence of 0.0000001, minimum stress of 0.0000001, and 

maximum iterations of 1000. CMDS uses one matrix and generates an MDS solution, 

whereas RMDS uses multiple matrices to generate an MDS solution based on the 

aggregation of the data. In this study, RMDS used Identity model scaling to establish the 

MDS configuration. R2 in the context of MDS is the coefficient of determination derived 

from transformed proximities and distances. This value represents the proportion of 

variance accounted for by the MDS solution. 

Dimensionality in MDS is a critical factor in determining how the data are 

represented spatially. In this study, dimensionality was defined by the expert data and 

was subsequently applied to the student data to maintain consistency. The initial 

examination of the eight expert data sets utilized RMDS (CMDS with multiple matrices) 

with the PROXSCAL algorithm and the Identity scaling model in SPSS. The eight 

matrices established a common group space to determine the appropriate dimensionality 

of the solution initially. Several factors are important in determining the appropriate 

dimensionality of the MDS solution. Davison and Sireci (2000) and Mair et al. (2016) 

advocated for a multi-factorial approach to goodness of fit that included a scree plot 

(Figure 6), the residual plot of disparities and transformed proximities, and general 

interpretability of the solution. 
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Figure 6 

 

Scree Plot for Assessment of MDS Dimensionality 

 

Note. The scree plot assists in determining dimensionality based on the “elbow” or 

inflection point of the normalized raw stress values. 

The “elbow” in the scree plot appears to be at a dimensionality of two, although 

this is not distinct; thus, I also considered the R2 values. Kruskal and Wish (1978) noted 

that the maximum number of dimensions (D) should be a factor of the number of 

items/stimuli (I) with I – 1 ≥ 4D; this established an upper limit of four dimensions to be 

considered (Table 6). 
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Table 6 

 

Dimensionality of MDS Solution 

Dimension Stress-1 R2 

1 0.3518 0.627 

2 0.2238 0.704 

3 0.1708 0.719 

4 0.1367 0.721 

 

Kruskal (1964) considered a value of 0.2 as “poor” and 0.1 as “fair.” However, 

although the use of 3 dimensions would improve the stress-1 value, it would not 

significantly impact R2 while making the interpretability of the solution more difficult. A 

two-dimensional solution was selected based on the data in conjunction with the potential 

interpretability of the findings in the context of the research questions and the potential 

practicality of use in an educational environment (Davison & Sireci, 2000). This 

dimensionality was used throughout both expert and student analyses. Decisions 

regarding the selection of the MDS scaling model (data aggregation to be used and in 

what context it was used) were made after several preliminary exploratory analyses. 

PFN Parameters 

PFN can use both individual and multiple matrices (mean or median values) to 

generate a Pathfinder network which can then be examined and compared to other 

networks. Two parameters are required to generate a Pathfinder network: the q- and r-

parameters. The q-parameter is the number of links in the generated network and is a 

value between 2 and n-1, where n is the number of nodes (in this study, 20). The r-
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parameter defines how distances are calculated, using values from 1 to infinity. In the 

context of this study, to generate a network with ordinal data and the minimum number of 

links, I set the q-parameter to 19, calculated based on the 20 content items/nodes (20 

nodes – 1 = 19). I set the r-parameter to infinity per best practices described by 

Schvaneveldt (1990), which was consistent with previous seminal research. 

Cognitive Structure Procedures 

Each sample (ECS, SCS) was examined as a group, and relevant subgroups were 

identified. Expert subgroups included nonclinical/domain (ECSD, n = 3), 

clinical/instructor (ECSI, n = 4), and individual instructor by cohort (ECSIC). Student 

subgroups were arranged by cohort. I performed within-group and between-group 

comparisons of cognitive structure, using a similar process for both ECS and SCS using 

MDS and PFN data modeling strategies to address RQ2. The group data visualizations 

are displayed. I presented individual SCS in comparison to ECSD, ECSI, and the cohort 

instructor ECSIC. Agreement analysis was performed between ECS and SCS proximity 

data, MDS-derived parameters, and PFN-derived parameters. Key MDS- and PFN-

derived parameters, interrater reliability, accuracy, and correlations were subsequently 

used as predictor variables for RQ3 along with prior knowledge variables (admission 

cumulative GPA, admission core sciences GPA). 

Preliminary Exploratory Analysis 

Several preliminary exploratory analyses were performed to address relevant 

statistical issues related to the research questions. These focused on the impact of the 

MDS scaling model and data aggregation methods given the Likert scale data. 
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Impact of MDS Scaling Model 

RMDS provides an aggregated visual representation of the structure of the stimuli 

based on multiple matrices. Items have unique coordinates (Euclidean distances) in a 

configuration; however, their orientation is not fixed and can be transformed via rotation, 

reflection, and translation. WMDS provides a visual representation of the structure of the 

stimuli but with two key additions: an individual space and weights and unique 

coordinates in a fixed orientation of the dimensions/axes. Previous research by Gonzalvo 

et al. (1994) reported their findings based on the INDSCAL scaling model. Both RMDS 

and WMDS are known to produce similar group spaces; however, these differences in 

cognitive structure representation are unknown. To assess potential differences between 

RMDS and WMDS in assessing group and individual differences, WMDS (multiple 

matrices, PROXSCAL algorithm, weighted Euclidean scaling model, two dimensions) 

was used to examine the group spaces for the ECSD, ECSC, and ECSI subgroups. I 

compared the WMDS results to those attained via RMDS. The results of both RMDS and 

WMDS are summarized in Appendix D (Table D1). 

The results indicated a consistency between group MDS configurations with an 

overall improvement in R2 based on the scaling model used. The R2 values indicated a 

greater percentage of variance accounted for by the weighted model than the replicated 

(classical) model across all groups, though these differences were not large. There was 

also a variation in the orientation of the axes and dimensions. The differentiation between 

RMDS and WMDS using the same data set has not been reported in previous studies 

examining cognitive structure. The use of either MDS scaling model provides 
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comparable results consistent with the context of analysis (between-group and within-

group), providing support for the context-specific use of both scaling models within the 

study. 

Aggregation Strategy and MDS Configuration 

Previous seminal research studies, including Goldsmith et al. (1991) and 

Gonzalvo et al. (1994), reported their findings based on the mean values of expert groups. 

As noted in Chapter 3, raw proximity data aggregation has the potential to not fully 

represent individual data sources within the context of the overall MDS configuration. 

CMDS, using one matrix of mean values instead of the multiple matrices of raw values 

used by RMDS, was used to compare the mean ECSD, mean ECSC, and mean ECSI 

groups. These are summarized in Appendix D (Table D2). 

The use of median values may be a more statistically accurate derivation from the 

initial ordinal data. However, both the mean and median values produce results that 

overestimated all values compared to the aggregated data derived from multiple matrices. 

This differentiation between RMDS (multiple matrices of raw data) and CMDS (mean 

values within one matrix) has not been reported in previous studies of cognitive structure. 

This is an important consideration during the analysis of expert and student cognitive 

structures to provide relevant context. Aggregate data (RMDS) was subsequently used for 

the MDS analyses as appropriate. It is of note that PFN generates mean values for links 

and distances in determining aggregate data for analysis. 
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Survey Instrument Development 

The online survey consisted of paired comparisons of 20 items (anatomical 

concepts and structures) related to the shoulder complex. Physiotherapists with ten or 

more years of musculoskeletal clinical practice defined the items used in the online 

survey. The physiotherapist participants were responsible for rank-ordering the 40 items 

representing anatomical concepts and structures, with one being the most relevant to 

musculoskeletal practice and 40 being the least relevant (Appendix A). The survey data 

were compiled by ranking the sum of individual rank values for each item. The 20-item 

list that the physiotherapists perceived to be the most relevant to musculoskeletal 

physiotherapist practice would then form the instrument used for paired comparisons to 

define the cognitive structure of both experts and students. The top 20 items based on 

ranking are summarized in Appendix E. 

The online survey containing paired comparisons was designed as a series of grids 

such that five paired comparisons were displayed per grid per page. The grid format was 

used to promote the speed of completing the survey, as it contained a total of 190 paired 

comparisons. Chapter 3 noted the specifics of the survey instrument development.  

Interrater reliability amongst the 12 physiotherapist raters is reported in Table 7. 

Krippendorff’s alpha was used to examine multiple raters with ordinal data. Interrater 

reliability is noted for three item groups after rank ordering: 40 items (total), top 20 

items, and top 10 items. The results indicated poor interrater reliability across the 12 

physiotherapist participants and all groups of rank-ordered items. It is important to note 
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that all 12 physiotherapist raters had ten or more years of experience in musculoskeletal 

clinical practice. 

Table 7 

 

Physiotherapist Interrater Agreement 

 α 95% CI 

40 items .36 .33 – .39 

20 items .33 .27 – .38 

10 items .32 .25 – .39 

Note. Sample of 12 physiotherapists. 

As noted in Chapter 3, the small sample size limited the conclusions. A greater 

sample size is necessary to further examine the impact of the interrater agreement in this 

research context and was not within the scope of the current study. 

Research Question 1 

RQ1: Is there a meaningful change over time in the quantitative representation of 

student cognitive structure? 

Due to the unforeseen issues related to the timing of IRB approval, a pretest 

survey could not be completed by students before the start of the unit module in week 6. 

In order to complete a pretest data collection as initially planned, the study would have 

been delayed a minimum of 15 weeks. The second option was to remove RQ1, 

eliminating the need for a longitudinal pretest-posttest design and the associated data 

analysis. The premise of “meaningful learning” (reflected in the pretest and posttest 

measures) was supplemental to better understanding criterion validity through the 

exploratory nature of RQ2 and RQ3. I chose to remove RQ1 based upon this rationale. 
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Upon further consultation with and approval by the dissertation committee, RQ1 was 

removed from the scope of the current study. 

Research Question 2 

RQ2: Is there a relationship between student cognitive structure and expert 

cognitive structure while controlling for prior knowledge? 

Figure 7 provides a detailed overview of the approach used to examine RQ2. 

Figure 7 

 

RQ2 Overview 
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Expert cognitive structure (ECS) served as the criterion standard used for RQ2. I 

used the two data modeling strategies to derive spatial (MDS) and network (PFN) 

representations from the proximity data. The data visualizations and the derived statistical 

parameters representing student cognitive structure (SCS) were compared to those of the 

expert cognitive structure (ECS). This included an agreement analysis of proximity data 

and both Euclidean and graph-theoretic semantic distances examining reliability 

(Krippendorf’s alpha coefficient with 95% confidence intervals), accuracy (root mean 

square deviation with bivariate and Bland-Altman plots used where appropriate to display 

the data visually), and association (Pearson’s correlation coefficient). I completed these 

analyses for three levels of comparisons: group SCS (n = 31) with group ECS (n = 4), 

individual SCS with group ECS, and individual SCS with cohort instructor ECS. As the 

primary goal of RQ2 was to establish potential relationships and agreement between ECS 

and SCS visually and quantitatively (via derived parameters and agreement analysis of 

MDS and PFN semantic distances), controlling for prior knowledge was not an 

appropriate inclusion in this research question. However, prior knowledge was 

considered in the context of RQ3. 

Proximity Data 

The survey instrument generated 190 paired comparisons of proximity data for 

each participant; these data were then converted to dissimilarity data (subtracting from a 

constant value) and subsequently used for both MDS and PFN data modeling strategies 

that follow. 
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Group SCS and Group ECS 

Results for the agreement analysis between group SCS and group ECS raw 

proximity data are summarized in Table 8. 

Table 8 

 

Group SCS–ECS Agreement: Proximity Data 

 Reliability Accuracy Association 

SCS α [95%CI] RMSD (units) r 

ECSI .75 [.70,.79] 0.9 0.82** 

ECSD .59 [.58,.66] 1.1 0.66** 

Note. α = Krippendorff’s alpha coefficient, RMSD = root mean square deviation, r = 

Pearson’s correlation coefficient. SCS (n = 31), ECSI (n = 4), ECSD (n = 3). 

* p < 0.05, ** p < 0.01 

Interrater reliability between student and instructor (α = 0.75) was improved 

compared to student and domain expert (α = 0.59). In comparison, there was good 

interrater reliability between ECSI and ECSD expert subgroups (α = 0.64). Accuracy (via 

RMSD) between SCS and ECSI indicated that SCS proximity values for paired 

comparisons were within a +/- 0.9 points range on the perceived relatedness rating scale. 

There were greater differences between SCS and ECSD for paired comparisons on the 

perceived relatedness rating scale. The data are represented visually by the Bland-Altman 

plot and histogram of differences (Figures 8 and 9). Students tended to over-rate items 

with low expert ratings (more dissimilar than experts) and under-rate those with higher 

expert ratings (less dissimilar than experts). 
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Figure 8 

 

SCS and ECSI Differences: Proximity Data 

  

Note. Left – Bland-Altman plot of the mean of differences versus differences. Right – 

histogram of differences. 

Figure 9 

 

SCS and ECSD Differences: Proximity Data 

  

Note. Left – Bland-Altman plot of the mean of differences versus differences. Right – 

histogram of differences. 
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Scatterplots (Figure 10) indicated a positive linear relationship between SCS and 

both ECSI and ECSD. The Shapiro-Wilk test indicated that the variables were not 

normally distributed (p < 0.05), however, this would be expected as each pair of values 

represents one independent paired comparison. Pearson’s correlation test is robust and 

not adversely impacted by non-normal distributions, especially given the context 

mentioned above. 

Figure 10 

 

Scatterplots of SCS, ECSI, and ECSD: Proximity Data 

  

a. SCS and ECSI b. SCS and ECSD 

Note. Dotted lines indicate line y = x in which student and expert would be in full 

agreement in terms of perceived relatedness and dissimilarity. 

There was a statistically significant strong positive correlation between groups, 

r(188) = 0.66 – 0.82, p < 0.01. This indicated a large strength of linear association. SCS 

had a higher correlation with ECSI than it did with ECSD, which may reflect the 

importance of a clinical degree in teaching gross anatomy to physiotherapy students. 
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Based on the results of the subgroup analysis and their practical application 

educationally, the instructor (ECSI) subgroup was defined as the primary criterion 

standard for all further SCS comparisons. 

Individual SCS and ECS 

I compared each individual SCS to both group ECSI and individual ECSIC (ECS 

for their cohort instructor). Results for the agreement analysis between individual SCS 

and ECSI proximity data are summarized in Table 9. 

Table 9 

 

Individual SCS–ECS Agreement: Proximity Data 

 Reliability Accuracy Association 

SCS α (SD) RMSD (units) r 

ECSI .37 (.20) 1.8 .46** 

Range -.03 - .66 1.2 – 2.4 .12 - .79** 

ECSIC .29 (.23) 2.3 (0.4) .40 

Range -.25-.61 1.6-3.3 .10-.62** 

Note. α = Krippendorff’s alpha coefficient, RMSD = root mean square deviation, r = 

Pearson’s correlation coefficient. SCS (n = 31), ECSI (n = 4), ECSD (n = 3), ECSIC 

individual cohort instructor 

* p < 0.05, ** p < 0.01 

The mean interrater reliability between all individual students and group ECS (α = 

0.37) indicated a fair level of interrater reliability. This value decreased when comparing 

individual SCS and cohort instructor ECSIC (α = 0.29). It is notable that only four 

students (13%) had an overall increase in interrater reliability with their cohort instructor 
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than with the group ECS. There is a high degree of variability in accuracy among 

students with mean ratings having a range of +/- 1.8 points on the perceived relatedness 

rating scale for any given paired comparison. This may reflect perceptual differences or 

chance agreement. However, nine students (36%) displayed an overall improved level of 

agreement with the cohort instructor ECSIC compared to the group ECSI. There is also a 

high degree of variability in association (ECSI: r(188) = 0.12 - 0.79, p < 0.01; ECSIC: 

r(188) = 0.10 – 0.62). 

Proximity Data: Overview 

A summary of the agreement analysis across all comparison levels (group SCS 

and group ECS, individual SCS and group ECSI, and individual SCS and individual 

ECSIC) is presented in Figures 11 and 12. SCS raw proximity data was aligned with 

instructors more so than with domain experts. On a more granular level, students did not 

appear to display a consistently higher relationship with their specific instructor than the 

group ECSI with a trend toward disparity between cohorts. However, this observation 

was limited by the small sample size. 
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Figure 11 

 

Summary of Agreement Analysis: Proximity Data 

 

 

 

Note. Each bar represents a specific level of comparison. ECSD and ECSI are 

compared to group SCS. A = individual SCS and group ECSI, B = individual SCS and 

individual cohort instructor ECSIC. At the level of the cohort instructor, accuracy and 

association increased in 36% of students. 
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Figure 12 

 

RQ2 Summary: Proximity Data 

 

Note. A = Group SCS–Group ECSI; B = Individual SCS–Group ECSI; C = Individual 

SCS–Individual ECSIC 
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Data Modeling: Multidimensional Scaling 

I used the proximity data to generate MDS configurations and all derived 

parameters (stress-1, TCC, R2, and Euclidean semantic distances). I made comparisons 

between groups in terms of MDS configuration, MDS-derived parameters, and agreement 

analysis (reliability, accuracy, and association). 

Group SCS and Group ECS 

The initial analysis considered the total expert data set (ECST, n = 8) with 

relevant subgroupings subsequently examined to see if there were changes in the 

goodness of fit of the MDS configuration. I performed all analyses using RMDS, 

PROXSCAL algorithm, and Identity model scaling. Refer to Figure 13 for a visual 

representation of the MDS configurations and Table 10 for all relevant derived 

parameters. 

Table 10 

 

Group RMDS Configuration Properties 

Group Stress-1 TCC R2 

ECST .224 .98 .70 

ECSD .222 .98 .73 

ECSI .196 .98 .78 

SCS .265 .96 .53 

Note: RMDS with multiple matrices, PROXSCAL algorithm, Identity scaling model, 

two dimensions. 
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Figure 13 

 

Group CMDS Data Visualizations 

  

a b 

  

c d 

Note. All CMDS configurations can be reflected, rotated, and translated without a 

change in Euclidean distances between items in the configuration space. a = ECST, b = 

ECSD, c = ECSI, d = SCST. The common space for SCS has a greater spatial range 

overall. 
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MDS configurations based on raw proximity data have the risk of stress-related to 

a random error within the data; in other words, raw proximities may be a function of 

random choice instead of perceptual differentiation. Sturrock and Rocha (2000) 

calculated random stress norms noting that a 1% chance of random arrangement for 20 

objects in two dimensions would have a stress of 0.279. This indicates that at a level of p 

< 0.01, the null hypothesis is rejected, and the data arrangement is not considered 

random. In all MDS configurations reported, reported stress values were well below this 

random stress norm, indicating that the data were not random and reflected perceptual 

differences. A stress-1 value of 0.2238 indicated a poor overall fit of the configuration for 

the total expert group but several other factors were considered. TCC was high, 

indicating good congruence, and R2 = 0.70, indicating a moderate fit with 70% of the 

variance accounted for by the configuration. The R2 values indicated that there was a 

difference between subgroups. A higher R2 was noted for the ECSC (clinical) and ECSI 

(the instructor subgroup within the clinical group) MDS configurations. The derived 

MDS configuration accounted for a greater percentage of the variance within the data 

indicating a greater internal consistency or coherence of the MDS configuration 

(McGaghie, McCrimmon, et al., 2000). This suggests that the MDS configuration of 

domain experts without a clinical degree may differ from the MDS configuration of those 

with clinical degrees teaching anatomy within the DPT curriculum.  

I derived the Euclidean distances from the individual MDS configurations. MDS 

configurations may vary via reflection, rotation, and translation (using CMDS), but 

Euclidean distances remain consistent within the context of the scaling model used. 
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However, the interpretability of MDS distances in the study context was purely 

referential and contextual; there was not a defined minimal interpretable difference of 

importance. As the raw proximity data were used within similar subgroups, Pearson’s 

correlation coefficient assumptions were considered to have been met. 

Results for the agreement analysis between group SCS and group ECS MDS 

Euclidean distances are summarized in Table 11. 

Table 11 

 

Group SCS–ECS Agreement: MDS Euclidean Distances 

 Reliability Accuracy Association 

SCS α [95%CI] RMSD (units) r 

ECSI .83 [.77,.87] 0.231 .83** 

ECSD .53 [.45,.60] 0.384 .53** 

Note. α = Krippendorff’s alpha coefficient, RMSD = root mean square deviation, r = 

Pearson’s correlation coefficient. SCS (n = 31), ECSI (n = 4), ECSD (n = 3) 

* p < 0.05, ** p < 0.01 

Interrater reliability between group SCS and ECSI (α = .83) was again greater 

than that between group SCS and ECSD (α = .53). These values indicated a greater 

disparity between SCS and ECSD MDS distances. There was moderate interrater 

reliability between ECSI and ECSD (α = .63). The data are represented visually by the 

Bland-Altman plot and histogram of differences for SCS and ECSI (Figure 14) and SCS 

and ECSD (Figure 15). 
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Figure 14 

 

SCS and ECSI Differences: MDS Euclidean Distances 

  

Note. Left – Bland-Altman plot of the mean of differences versus differences. Right – 

histogram of differences. 

Figure 15 

 

SCS and ECSD Differences: MDS Euclidean Distances 

  

Note. Left – Bland-Altman plot of the mean of differences versus differences. Right – 

histogram of differences. 
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Scatterplots (Figure 16) indicated a positive linear relationship between SCS and 

both ECSI and ECSD. The Shapiro-Wilk test indicated that the variables were not 

normally distributed (p < 0.05), however, this would be expected as each pair of values 

represents one independent paired comparison. Pearson’s correlation test is robust and 

not adversely impacted by non-normal distributions, especially given the context 

mentioned above. 

Figure 16 

 

Scatterplots of SCS, ECSI, and ECSD: MDS Euclidean Distances 

  

a. SCS and ECSI b. SCS and ECSD 

Note. Dotted lines indicate line y = x in which student and expert would be in full 

agreement in terms of perceived relatedness and dissimilarity. 

There was a statistically significant, strong positive correlation between groups, 

r(188) = .53 – .83, p < 0.01). This indicated a large strength of association between 

groups. SCS had a higher correlation with ECSI than it did with ECSD; once again, this 

difference may reflect the importance of a clinical degree in teaching gross anatomy in a 

clinical context. 
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Individual SCS and ECS 

I calculated the individual MDS configurations to derive stress-1, TCC, and R2 for 

each participant. These are summarized as mean values in Table 12. Individual SCS 

displayed a fair goodness of fit and high R2, reflecting an internal consistency within the 

individual. I have included all individual MDS data visualizations in Appendix F. 

Table 12 

 

Individual RMDS Configuration Properties 

 Stress-1 TCC R2 

Group M (SD) M (SD) M 

SCS a .170 (.033) .98 (.01) .82 

Range .103-.243 .97-.99 .61-.94 

ECSD a .167 (.019) .99 (.003) .84 

Range .145-.180 .98-.99 .82-.89 

ECSI a .122 (.039) .99 .92 

Range .064-.145 .990-.998 .89-.98 

Note: Further exploratory analysis regarding RMDS and WMDS appears in a later 

section. 

a RMDS with multiple matrices, PROXSCAL algorithm, Identity scaling model, two 

dimensions. 

I compared each individual SCS to both group ECSI and individual ECSIC (ECS 

for their cohort instructor). I have summarized the results of the agreement analysis 

between individual SCS and ECS MDS Euclidean distances in Table 13. 
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Table 13 

 

Individual SCS–ECS Agreement: MDS Euclidean Distances 

 Reliability Accuracy Association 

SCS α [95%CI] RMSD (units) r 

ECSI .49 0.405 .49 

Lower .01 [-.17,.18] 0.270 .00 

Upper .68 [.61, .75] 0.556 .79** 

ECSIC .41 (.17) 0.456 (0.065) .41 (.17) 

range .42-.70 .329-.608 .04-.70** 

Note. α = Krippendorff’s alpha coefficient, RMSD = root mean square deviation, r = 

Pearson’s correlation coefficient. SCS (n = 31), ECSI (n = 4), ECSD (n = 3).  

* p < 0.05, ** p < 0.01 

The mean Krippendorff’s alpha coefficient of 0.49 indicated a moderate level of 

interrater reliability between individual students and ECSI. Although the interrater 

reliability decreased between students and cohort instructors, all four cohorts increased 

interrater reliability (α = 0.58 to 0.64). These results indicated that there is a trend in 

improved interrater reliability within an instructor’s cohort. Accuracy, within the context 

of the MDS Euclidean distances, increased with cohort instructors as nine students (29%) 

displayed an overall decrease in RMSD with the instructor ECS compared to the group 

ECSI. There is broad variability across student participants. The strength of association 

also showed a slight overall decrease as compared to the previous group ECS 

comparison. 

A weighted Euclidean scaling model (WMDS) was used to derive common and 

individual spaces using 32 subjects: 31 students and one instructor. The instructor data 
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represented the mean aggregate values of the four course instructors (ECSI). The WMDS 

configuration generated individual dimensional weights within the context of the group 

MDS configuration. MDS-derived parameters for the group data (common space) 

included stress-1, TCC, and R2 values. A WMDS configuration of two dimensions had a 

stress-1 value of 0.2609, indicating a poor fit; this was confirmed by the R2 of 0.558. In 

comparison, the cohort-by-cohort MDS configurations had a range of stress-1 values 

between 0.2150 and 0.2656, indicating a poor fit, but the R2 values ranged from 0.543 to 

0.711, indicating a moderate fit. 

The visual representation of the common space and the subject space and 

dimensional weights for all subjects and instructor (mean) are displayed in Figure 17. 

Dimension one weights ranged from 0.4350 – 0.5680 (M = 0.496, SD = 0.040) and 

dimension two weights ranged from 0.350 – 0.489 (M = 0.441, SD = 0.040). The mean 

instructor dimensional weights were 0.526 and 0.415. It appears that perceptual 

differences between individuals can be represented spatially. However, the potential 

importance or relevance of dimensional weights is unknown. 
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Figure 17 

 

WMDS Group Space and Dimensional Weights 

 

 

a. Group space b. Dimensional weights 

Note. WMDS = Weighted MDS; ECSI (M) refers to the mean instructor values. 

MDS Overview 

A summary of the agreement analysis across all levels of comparison (group SCS 

and group ECS, individual SCS and group ECSI, and individual SCS and cohort 

instructor ECSIC) is presented in Figures 18 and 19. SCS was aligned with instructors 

more so than with domain experts. On a more granular level, students appeared to display 

a greater relationship with their specific cohort instructor than the group ECSI. However, 

this trend between cohorts was impacted by the small sample size of each cohort. 
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Figure 18 

 

Summary of Agreement Analysis: Multidimensional Scaling 

 

 

 

Note. Each bar represents a specific level of comparison. ECSD and ECSI are 

compared to group SCS. A = individual SCS and group ECSI, B = individual SCS and 

individual cohort instructor ECSIC. At the level of the cohort instructor, accuracy 

increased in 29% of students. 
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Figure 19 

 

RQ2 Summary: Multidimensional Scaling 

 

Note. A = Group SCS–Group ECSI; B = Individual SCS–Group ECSI; C = Individual 

SCS–Individual ECSIC 
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Data Modeling: Pathfinder Networks 

I used the proximity data to generate PFN representations and all derived 

parameters. I made comparisons between groups in terms of PFN representation, PFN-

derived parameters, and agreement analysis. 

Group SCS and Group ECS 

The initial analysis used the total expert data set (ECST, n = 8) with relevant 

subgroupings subsequently examined to see if there were differences noted in the 

network properties. Refer to Figure 20 to visualize the Pathfinder networks and Table 14 

for all relevant derived network properties. 

Table 14 

 

Group Pathfinder Network Properties 

Group Links Max. Degree Center Eccentricity Coherence 

ECST 24 HH ST 6.2 0.736 

ECSD 23 HH-BP HH-AC-GL-MO-

ST 

6.6 0.599 

ECSI 21 HH HH-SU 5.5 0.699 

SCS 19 HH GR 8.0 0.796 

Note. Maximum degree = item with the greatest number of links to it, eccentricity = the 

maximum number of links between a node and all other nodes in a network; coherence 

= the degree to which the original proximity data correlates with the inferred 

relationships of the network (higher value = greater coherence). 
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Figure 20 

 

Pathfinder Network Data Visualizations 

  

a. b. 

  

c. d. 

Note. a = ECST (total), b = ECSD (domain experts), c = ECSI (instructors), d = SCST 

(student group) 
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All groups had the same node (HH) with the maximum degree (greatest number 

of links); however, the center of the network varied from group to group. Students 

exhibited fewer total links than all the expert groups and displayed greater eccentricity 

(maximum distance between nodes/items). Coherence is an internal measure that relates 

to the internal consistency of the data. A high coherence indicates that the original 

proximities are more consistent with the indirect relationships between the items. 

Students had similar coherence values compared to experts; however, the data 

visualizations indicated that their individual networks varied. 

Pearson correlation coefficients were calculated for several network properties, 

including total links, eccentricity, and mean links for each node in the network 

(corresponding to the 20 items used in the paired comparisons). I presented the results in 

Table 15. In all three network properties, students have a higher correlation with ECSI 

than ECSD. 

Table 15 

 

Group Correlation of Pathfinder Network Properties 

 Degree Eccentricity Mean Links 

SCS r r r 

ECST 0.57** 0.54* 0.59** 

ECSD 0.31 -0.27 0.17 

ECSI 0.51* 0.51* 0.46* 

Note. Degree = the number of links attached to each node; eccentricity = the maximum 

number of links between a node and all other nodes in a network; mean links = mean 

number of links per node 



166 

 

 

Pathfinder networks also produce two other unique derived parameters: common 

links and similarity. I have presented these parameters in Table 16. SCS has more 

common links with the instructor ECS and a greater calculated similarity between the 

Pathfinder networks generated. 

Table 16 

 

Group Pathfinder Common Links and Similarity 

SCS Common Links Common Link % Similarity 

ECSD 6 26.1 0.167 

ECSI 10 47.6 0.333 

Note. SCS has more common links and greater similarity with ECSI than ECSD. 

I derived the graph-theoretic (PFN) distances for each individual network. These 

were calculated using the r-parameter consistent with the generation of the network (r = 

infinity). However, the interpretability of PFN distances in the study context is purely 

referential and contextual; there is not a defined minimal interpretable difference of 

importance. I compared the PFN distances for each student with those derived from the 

ECSD and ECSI networks. As proximity data were used within similar subgroups, the 

assumptions for correlation were assumed to have been met. 

Results for the agreement analysis between group SCS and group ECS PFN 

graph-theoretic distances are summarized in Table 17. 
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Table 17 

 

Group SCS–ECS Agreement: PFN Graph-Theoretic Distances 

 Reliability Accuracy Association 

SCS α [95%CI] RMSD (units) r 

ECSI .19 [.02,.36] 2.5 .34** 

ECSD .10 [-.11,.28] 2.7 .15* 

Note. α = Krippendorff’s alpha coefficient, RMSD = root mean square deviation, r = 

Pearson’s correlation coefficient. SCS (n = 31), ECSI (n = 4), ECSD (n = 3) 

* p < 0.05, ** p < 0.01 

There was poor interrater reliability between SCS and ECSI PFN distances (α = 

0.19) and between SCS and ECSD PFN distances (α = 0.10). As noted in previous 

analyses, students had greater interrater reliability with instructors than with domain 

experts. RMSD served purely as a contextual reference. However, greater differences 

were noted for ECSD than ECSI. The data are represented visually by the Bland-Altman 

plot and histogram of differences for SCS and ECSI (Figure 21) and SCS and ECSD 

(Figure 22). 
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Figure 21 

 

SCS and ECSI Differences: PFN Graph-Theoretic Distances 

  

Note. Left – Bland-Altman plot of the mean of differences versus differences. Right – 

histogram of differences. 

Figure 22 

 

SCS and ECSD Differences: PFN Graph-Theoretic Distances 

  

Note. Left – Bland-Altman plot of the mean of differences versus differences. Right – 

histogram of differences. 
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Scatterplots (Figure 23) indicated a positive linear relationship between SCS and 

both ECSI and ECSD. The Shapiro-Wilk test indicated that the variables were not 

normally distributed (p < 0.05), however, this would be expected as each pair of values 

represents one independent paired comparison. Pearson’s correlation test is robust and 

not adversely impacted by non-normal distributions, especially given the context 

mentioned above. 

Figure 23 

 

Scatterplots of SCS, ECSI, and ECSD: PFN Graph-Theoretic Distances 

  

a. SCS and ECSI b. SCS and ECSD 

Note. Dotted lines indicate line y = x in which student and expert would be in full 

agreement in terms of perceived related and dissimilarity. 

There was a statistically significant small to moderate positive correlation 

between groups, r(188) = .15 – .42, p < 0.05. This indicated a moderate strength of linear 

association. SCS had a higher correlation with ECSI than ECSD; this may again reflect 

the importance of a clinical degree in teaching gross anatomy in a clinical context. 
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Individual SCS and ECS 

Individual PFN configurations were created to derive network properties such as 

coherence and the number of links. Pathfinder networks also produce two other unique 

derived parameters: common links and similarity. PFN provides the ability to make direct 

comparisons between individuals. These are summarized as mean group values in Table 

18. Individual SCS has similar common links, common link percentage, and similarity 

with ECSI as it does with ECSD. I have included all individual PFN data visualizations in 

Appendix F. 

Table 18 

 

Mean Values of Group Pathfinder Network Properties 

 Links Coherence Common Common % Similarity 

Group M (SD) M (SD) M (SD) M (SD) M (SD) 

SCS 41.4 (14.3) 0.430 (0.225) --- --- --- 

Range 26-88 0.010-0.765    

ECSD 41.0 (6.0) 0.410 (0.238) 9.6 (3.4) 24.1 (8.3) .181 (.068) 

Range 35-47 0.140-0.588 3-17 10.3-42.1 .061-.356 

ECSI 36.8 (14.4) 0.597 (0.033) 9.7 (4.1) 24.0 (8.3) .189 (.078) 

Range 24-52 0.555-0.627 3-19 9.7-40.0 .061-.339 

Note. Instructor coherence: C1 = 0.627, C2 = 0.589, C3 = 0.555, C4 = 0.618 

Common links, common link percentage, and similarity between the individual 

student and cohort instructors as a group showed a slight improvement over the group 

comparison. However, there was a marked improvement when examining individual 

students by cohort. Common links ranged from 12.4 to 20.6, common link percentage 

ranged from 27.3 to 54.9, and similarity improved to a range of 0.215 to 0.332.  
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I compared each individual SCS to both group ECSI and individual ECSIC (ECS 

for their cohort instructor). Results of the agreement analysis between individual SCS and 

ECS PFN graph-theoretic distances are summarized in Table 19. 

Table 19 

 

Individual SCS–ECS Agreement: PFN Graph-Theoretic Distances 

 Reliability Accuracy Association 

SCS α [95%CI] RMSD (units) r 

ECSI .12 1.8 .26 

Lower -.31 [-.56, -.07] 1.5 -.18* 

Upper .39 [.25, .51] 2.2 .58** 

ECSIC .16 (.19) 1.6 .24 (.17) 

Range -.22-.52 1.0-2.0 -.12-.52 

Note. α = Krippendorff’s alpha coefficient, RMSD = root mean square deviation, r = 

Pearson’s correlation coefficient. 

a probability * p < 0.05, ** p < 0.01 

b SCS (n = 31), ECSI (n = 4), ECSD (n = 3) 

The mean Krippendorff’s alpha coefficient (α = 0.12) indicated poor interrater 

reliability between individual students and ECSI PFN distances; however, the interrater 

reliability with the cohort instructor ECSIC PFN distances improved (α = 0.16). It is 

notable that 11 students (44%) had an overall increase in interrater reliability with their 

cohort instructor than with the group ECS. There was a broad variability amongst 

students. Accuracy improved with the cohort instructor, with twenty students (80%) 

displaying an overall decrease in RMSD with the instructor ECSIC compared to the 

group ECSI. The strength of association between individual SCS and ECSI was 
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consistent with the strength of association between individual SCS and individual ECSIC, 

though there appeared to be differences between cohorts. 

PFN Overview 

A summary of the agreement analysis across all comparison levels (group SCS 

and group ECS, individual SCS and group ECSI, and individual SCS and cohort 

instructor ECSIC) is presented in Figures 24 and 25. SCS was aligned with instructors 

more so than with domain experts. On a more granular level, students appeared to display 

a greater relationship with their specific cohort instructor than the group ECSI. However, 

this trend between cohorts was impacted by the small sample size of each cohort. 
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Figure 24 

 

Summary of Agreement Analysis: Pathfinder Networks 

 

 

 

Note. Each bar represents a specific level of comparison. ECSD and ECSI are 

compared to group SCS. A = individual SCS and group ECSI, B = individual SCS and 

individual cohort instructor ECSIC. At the level of the cohort instructor, reliability 

increased in 44% of students, and accuracy increased in 80% of students. 
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Figure 25 

 

RQ2 Summary: Pathfinder Networks 

 

Note. A = Group SCS–Group ECSI; B = Individual SCS–Group ECSI; C = Individual 

SCS–Individual ECSIC 

Summary of Findings 

MDS and PFN provided both a qualitative and quantitative representation of 

anatomical concepts based on the raw proximity (paired comparisons) data. There were 

qualitative differences in how students and experts perceive the paired comparisons as 

reflected in the MDS and PFN data visualizations. Quantitative properties of both MDS 

configuration and PFN network also displayed differences between groups and 
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individuals. Semantic distances (MDS Euclidean distances and PFN graph-theoretic 

distances) provided a reference for the perceived relationship of anatomical concepts with 

smaller distances inferring a closer perceptual relationship between items. Agreement 

analysis based on semantic distances provided a quantitative representation of the degree 

to which students and experts agree. All these factors were essential in establishing a 

relationship between SCS and ECS.  

The MDS data visualization provided a broad qualitative overview of the spatial 

relationships of the anatomical concepts with many commonalities between expert and 

student MDS configurations. Figure 26 displays an example of the potential spatial 

differentiation between ECSI and SCS. Euclidean distances are unaffected by rotation, 

reflection, and translation of the CMDS configurations. MDS data visualizations 

exhibited greater spatial distances in the SCS configuration as compared to the ECSI 

configuration. However, the specific perceptual meaning of the two dimensions was 

unclear regarding the organization of anatomical concepts. 

The PFN data visualization provided a more specific network relationship of the 

perceptual organization of anatomical concepts represented in the paired comparisons. 

Figure 27 displays an example of the potential network differentiation between ECSI and 

SCS. The PFN data visualization exhibited two critical differences compared to the MDS 

representation: it provided a direct linking of items and a derived quantitative parameter 

of direct similarity with another generated network. The SCS coherence values were 

consistent with those of the ECSI, indicating that both groups had internal coherence 

though this may not be represented in an identical visual fashion.  



176 

 

 

Figure 26 

 

MDS Data Visualizations: ECSI and SCS 

  

a. b. 

Note. a = ECSI, b = SCS 

Figure 27 

 

PFN Data Visualizations: ECSI and SCS 

  

a. b. 

Note. a = ECSI, b = SCS 
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Reliability and association may be the two most readily understood measures to 

indicate a potential relationship between student and expert cognitive structures. 

Accuracy was quantifiable via the derived parameters of both MDS and PFN; however, 

RMSD provided a purely contextual reference with smaller distances indicating a closer 

perceptual relationship. Table 20 summarizes the agreement analysis across all data 

modeling strategies for both ECSD and ECSI. 

Table 20 

 

Summary of Agreement Analysis: Group and Individual 

  Group SCS Individual SCS 

SCS Measure ECSD ECSI ECSI ECSIC 

PRX α .59 .75 .37 .29 

 r .66 .82 .46 .40 

MDS distances α .53 .83 .49 .41 

(Euclidean) r .53 .83 .49 .41 

PFN distances α .10 .19 .12 .16 

(Graph-theoretic) r .15 .34 .26 .24 

 Common % 26.1 47.6 24.0 44.0 

 Similarity .167 .333 .189 .284 

Note. Group SCS is more closely aligned with group ECSI than group ECSD. 

Individual SCS is generally more closely aligned with group ECSI than with the 

individual ECSIC; however, alignment with the instructor is higher at the level of 

common link percentage and network similarity. 

There were several important observations regarding the potential relationship(s) 

between student and expert cognitive structure. The most important finding established 
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with the data analysis was the difference between expert groups and the variation in the 

agreement between SCS and both ECSI and ECSD. Student cognitive structure had 

greater reliability, accuracy, and association with instructors than with domain experts. 

Perceptual differences were also noted within the group of instructors. 

There appeared to be some variation between cohorts and their respective 

instructors reflected in the student’s cognitive structure and agreement with the instructor. 

In terms of proximity data, 36% of students had a greater association with their specific 

cohort instructor than with ECSI. MDS analysis revealed that 29% of students had a 

higher degree of accuracy with their specific cohort instructor than ECSI. PFN analysis 

revealed that 44% of students had greater reliability, with 80% of students having greater 

accuracy, with their specific cohort instructor than with ECSI.  

The data comparing SCS and ECSI indicated large effect sizes for proximity data 

and MDS Euclidean distances with small effect sizes for PFN graph-theoretic distances. 

In contrast, the data comparing SCS and ECSD indicated small to moderate effect sizes 

across all measures. PFN similarity scores displayed improvement with individual 

comparisons. In summary, the findings provided evidence of concurrent criterion-related 

validity based on the first criterion standard and the study’s operational definitions noted 

in Chapter 3. 

Research Question 3 

RQ3: Is there a relationship between student cognitive structure and unit grade 

while controlling for prior knowledge? 

Figure 28 provides an overview of the approach used to examine RQ3. 
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Figure 28 

 

RQ3 Overview 

 

Note. Agreement between SCS and ECS for each component were derived in RQ2. 

Student Unit Grades 

Unit grades served as the criterion standard used for RQ3. Exam grades often 

have poor validity; however, they have served as a standard criterion for comparison with 

the previous research. Unit grades were calculated based on the weighting prescribed in 

the Gross Anatomy course syllabus. The written exam grade comprised 55.56% of the 

unit grade, with the practical grade accounting for 44.44%. Table 21 summarizes the 

grade data for the total (five cohorts) and sample. The sample frame was representative of 

the target population, given the small sample size. 
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Table 21 

 

DPT Student Unit Grades 

 Total Sample 

 M Range M Range 

n 224  31  

Unit Written Exam 79.9 38 – 100 81.6 56 – 98 

Unit Lab Exam 82.6 47 – 100 84.2 58.8 – 100 

Unit Grade (weighted) 81.1  82.8 (10.01)  

Note. Standard deviation in parentheses. 

Prior Knowledge as a Predictor Variable 

The construct of prior knowledge was operationally defined in Chapter 3 as “all 

knowledge learners have when entering a learning environment that is potentially 

relevant for acquiring new knowledge” (Biemans & Simons, 1996). The partner 

institution used several variants of admission GPA and admission anatomy GPA. These 

included admission cumulative GPA (undergraduate degree) and admission core science 

GPA (consisting of 2 chemistry courses, two physics courses, two biology courses, and 

two anatomy/physiology courses). As the institution did not explicitly define admission 

anatomy GPA, the core science GPA was used. Table 22 summarizes student prior 

knowledge represented by admission cumulative GPA and admission core sciences GPA 

(five cohorts). The sample frame was representative of the target population, given the 

small sample size. 
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Table 22 

 

DPT Student Prior Knowledge 

 Total Sample 

n 224  31  

Cumulative GPA 3.23 2.48-4.0 3.28 2.63-4.0 

Core Sciences GPA 3.30 2.60-4.0 3.37 2.96-4.0 

Note. The sample was representative of the target population. 

I used multiple regression analysis to determine a prediction model between prior 

knowledge (represented by the continuous independent variables of cumulative GPA and 

core sciences GPA) and unit grade (continuous dependent variable). The independence of 

observations was confirmed via a Durbin-Watson value of 1.754. There was linearity and 

homoscedasticity assessed by partial regression plots and a plot of residuals against the 

predicted values (Figure 29). Tolerance values greater than 0.1 confirmed no evidence of 

multicollinearity. Casewise diagnostics confirmed that there were no outliers greater than 

+/- 3 standard deviations. The assumption of normality was met based on an examination 

of the histogram and P-P plots. 
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Figure 29 

 

Residuals Plot of Unit Grade (Variable: Prior Knowledge) 

 

Note. Linearity and homoscedasticity were confirmed. 

The multiple regression model did not predict unit grade, F(2, 28) = 0.090, p = 

0.914, adjusted R2 = -0.065. There was not a statistically significant relationship between 

the predictor variables (prior knowledge) and unit grade. 

I used multiple regression analysis to determine a prediction model between prior 

knowledge (represented by the continuous independent variables of cumulative GPA and 

core sciences GPA) and each of the potential predictor variables (including proximity-, 

MDS-, and PFN-derived parameters as well as variables derived from the agreement 

analyses between SCS and ECS). All the dependent variables tested were continuous. For 

each dependent variable tested, all statistical assumptions were met. However, there was 
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not a statistically significant relationship between prior knowledge and any of the values 

derived from the proximity-, MDS-, or PFN-derived parameters used to represent student 

cognitive structure, nor the values derived from the agreement analysis between SCS and 

ECS or any of its subgroups. Prior knowledge was not a statistically significant predictor 

of MDS Euclidean distances or PFN graph-theoretic distances nor any of the values 

derived from the agreement analysis, including interrater rater reliability, level of 

agreement, or strength of linear association between students and experts. 

MDS and PFN Predictor Variables 

I examined all parameters derived from the proximity data, MDS configurations, 

PFN networks, and student-expert agreement analyses as potential predictor variables 

within the context of linear regression. Potential predictor variables included all variables 

derived directly from the data modeling strategy (for example, MDS stress-1 and PFN 

number of links) and those derived via direct comparison of SCS and ECS agreement 

(interrater reliability, level of agreement, and strength of linear association). Refer to 

Table 3 for an overview of variables derived and subsequently tested. 

One predictor variable was noteworthy during the preliminary analysis of 

individual dependent variables: PFN common links between SCS and ECSD. I performed 

a linear regression analysis to understand the effect of the agreement between SCS and 

ECSD in terms of PFN common links and unit grade. A scatterplot of PFN common links 

against unit grade with a superimposed regression line was plotted (Figure 30). Visual 

inspection indicated a linear relationship between these variables. 
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Figure 30 

 

Scatterplot of PFN ECSD Common Links Versus Unit Grade 

 

Note. Visual inspection reveals a linear relationship between the variables. 

The independence of observations was confirmed by a Durbin-Watson value of 

2.069. Casewise diagnostics confirmed that there were no outliers greater than +/- 3 

standard deviations. There was linearity and homoscedasticity assessed by partial 

regression plots and a plot of studentized residuals against the predicted values (Figure 

31). The assumption of normality was met based on an examination of the histogram and 

P-P plots. 
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Figure 31 

 

Residuals Plot of Unit Grade (Variable: PFN ECSD Common Links) 

 

Note. Linearity and homoscedasticity were confirmed. 

The level of agreement between SCS and ECSD in terms of PFN common links 

statistically significantly predicted unit grade, F(1, 29) = 8.474, p = 0.007, accounting for 

22.6% of the variance in unit grade with adjusted R2 = 19.9%, a medium effect size (see 

Cohen, 1988). An increase of one common link with ECSD increases the grade by 1.4% 

(95% CI, 0.42 to 2.40). 

Based on the preliminary analysis of all potential independent variables (including 

the agreement between SCS and ECSD in terms of PFN common links), I used a multiple 

regression analysis to determine a prediction model between six agreement analysis 

independent variables and unit grade (continuous dependent variable). One independent 
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variable was derived from the proximity data (PROX correlation with ECSD), one 

independent variable was derived from the MDS Euclidean distances (CMDS correlation 

with ECSD), and four independent variables were derived directly from the PFN network 

properties (PFN common links with ECSD, PFN common links with ECSIC, PFN ECSD 

similarity, and PFN ECSIC similarity). The independence of observations was confirmed 

via a Durbin-Watson value of 1.810. There was linearity and homoscedasticity assessed 

by partial regression plots and a plot of studentized residuals against the predicted values 

(Figure 32). Tolerance values greater than 0.1 confirmed no evidence of multicollinearity. 

Casewise diagnostics confirmed that there were no outliers greater than +/- 3 standard 

deviations. The assumption of normality was met based on an examination of the 

histogram and P-P plots. 
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Figure 32 

 

Residuals Plot of Unit Grade (Variables: MDS and PFN) 

 

Note. Linearity and homoscedasticity were confirmed. 

The multiple regression model statistically significantly predicted unit grade, F(6, 

18) = 6.645, p = 0.001, adjusted R2 = 0.585. All six variables added statistically 

significantly to the prediction, p < 0.05. Regression coefficients and standard errors can 

be found in Table 23. 
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Table 23 

 

Multiple Regression Results for Unit Grade 

Unit Grade B 95% CI for B SE B β R2 ΔR2 

  LL UL     

Model      .69 .59*** 

Constant 67.53*** 58.06 77.06 4.52    

PRX 34.67* 0.09 69.25 16.46 0.59*   

CMDS -40.03** -69.36 -10.69 13.96 -0.80**   

PFN C1 3.54*** 1.79 5.29 0.83 1.23***   

PFN C2 -1.89** -3.05 -0.73 0.55 -1.31**   

PFN S1 -86.49* -168.88 -4.11 39.22 -0.59*   

PFN S2 119.56** 42.24 196.89 36.81 1.33**   

Note. PRX = Proximity correlation SCS and ECSD; CMDS = MDS Euclidean distance 

correlation SCS and ECSD; PFN C1 = PFN common links SCS and ECSD; PFN C2 = 

PFN common links SCS and ECSIC; PFN S1 = PFN similarity SCS and ECSD; PFN 

S2 = PFN similarity SCS and ECSIC.  

B = unstandardized regression coefficient, CI = confidence interval; LL = lower limit; 

UL = upper limit; SE B = standard error of the coefficient; β = standardized coefficient; 

R2 = coefficient of determination; ΔR2 = adjusted R2. 

*p < 0.05, **p < 0.01, *** p < 0.001 
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Six predictor variables accounted for 68.9% of the variance in unit grade with 

adjusted R2 = 58.5%, a large effect size (see Cohen, 1988). However, direct interpretation 

of the regression coefficients within the context of the proximity data and data modeling 

strategies is important. Attaining a one percent increase in unit grade would require 

several minor changes in any or all of the six parameters. For example, changes of 0.050 

in correlation and PFN similarity or a 0.1 change in PFN common links may produce 

large changes in unit grade. This is a high level of granularity subject to the small sample 

sizes and requires greater numbers of experts and students to generalize these observed 

trends. 

Summary of Findings 

Prior knowledge was not a statistically significant predictor of any of the MDS- or 

PFN-derived parameters and was not a statistically significant predictor of unit grade. 

There was a medium effect size in predicting unit grade via PFN common links between 

SCS and ECSD. Multiple linear regression indicated that there was evidence of predictive 

criterion validity based on the second criterion standard. In terms of unstandardized beta 

coefficients, it is important to remember the context of the derived parameter. Small 

changes in the level of agreement between student and expert can be notable given the 

context of the derived parameters. However, the minimal interpretable difference for all 

derived variables was unclear at this point. 
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Exploratory Analysis 

Several exploratory analyses were performed as contextual issues arose during the 

examination of RQ2 and RQ3. These focused on within-group differences for both 

instructors and students. 

Instructor ECS 

An exploratory analysis was performed to examine within-group differences for 

cohort instructor ECSIC. This was based on the preliminary results of RQ2, indicating 

that students within a cohort may have a greater agreement with their specific instructor 

than the group ECS. Proximity data and MDS- and PFN-derived parameters (Euclidean 

distances, graph-theoretic distances, and associated interrater reliability, RMSD, and 

Pearson’s correlation coefficient) were calculated for each pair of instructors. Table 24 

summarizes the ranges of calculated values. 

Proximity Data 

There was fair to good interrater reliability across all instructor ECSIC (α = 0.41, 

95% CI 0.37 - 0.45). The RMSD representing the level of agreement between instructor 

ECSIC indicated that ratings could be up to 2 points different on the seven-point 

perceived relatedness rating scale. There was a medium to large strength of association 

between cohort instructors (r = 0.39 – 0.62, p < 0.01), indicating a degree of internal 

consistency between instructors regarding their proximity data. 

Multidimensional Scaling 

There was moderate interrater reliability across all instructor ECSIC (α = 0.56, 

95% CI 0.51 - 0.60). The RMSD representing the level of agreement between instructor 
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ECSI MDS distances served primarily as a contextual reference; similar values were 

present for all instructor comparisons. There was a moderate to strong positive 

correlation between cohort instructors (r = 0.45 – 0.72, p < 0.01), indicating a degree of 

internal consistency between instructors regarding their MDS Euclidean distances. 

I briefly considered the variations of instructor MDS and the preference of 

dimensions one and two as derived by using a weighted Euclidean scaling model. The 

WMDS configuration, using data from all four instructors, produced a derived stress-1 = 

0.1879, TCC = 0.9822, and R2 = 0.812. Dimensional weights varied from 0.382 to 0.524 

(dimension one) and from 0.432 to 0.555 (dimension two). Experts appeared to utilize 

dimensions in differing proportions, which may reflect perceptual differences. However, 

it was unknown if these dimensional differences were relevant or statistically significant. 
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Table 24 

 

Summary of Agreement Analysis: Cohort Instructor 

  Individual Instructor ECSIC 

 Measure Lower Upper 

PRX α .07a .62 

 RMSD 2.0 2.2 

 r .39** .62** 

MDS distances α .46 .72 

(Euclidean) RMSD .326 .465 

 r .45** .72** 

 Dim 1b .382 .524 

 Dim 2b .432 .555 

PFN distances α .00 .36 

(Graph-theoretic) RMSD 1.3 1.8 

 r .20** .36** 

 Common Links 11 30 

 Coherence 0.555 0.627 

 Similarity 0.250 0.441 

Note. Agreement analysis for individual cohort instructors. α = Krippendorff’’s alpha; 

RMSD = root mean square deviation; r = Pearson’s correlation coefficient. 

a PRX α range was 0.34 to 0.62 with one outlier. 

b WMDS (weighted Euclidean scaling model) was used for comparison. 

** p < 0.01 
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Pathfinder Networks 

There was poor interrater reliability across all instructor ECSIC PFN graph-

theoretic distances (α = 0.19, 95% CI 0.12 - 0.27). The RMSD representing the level of 

agreement between instructor ECSI PFN distances served primarily as a contextual 

reference; similar values were present for all instructor comparisons. There was a small to 

moderate strength of linear association between cohort instructors (r = 0.20 – 0.36, p < 

0.01), indicating a degree of internal consistency between instructors regarding their PFN 

graph-theoretic distances. Instructors as a group appeared to have potentially large 

differences in the number of links generated in their Pathfinder network. However, 

coherence values were consistent between instructors indicating that the derived 

measures had internal consistency with the proximity data. These network properties may 

reflect perceptual differences. 

Summary of Findings: Instructor ECS 

There appeared to be broad variability across instructor ECSIC. However, these 

were purely observational trends; a larger sample size of instructors may provide less 

variability with improved statistical power. These variations between instructors provided 

a rationale for further exploring the relationship between SCS and their specific cohort 

instructor’s ECS. 

ECS, SCS, and Academic Performance 

I explored a follow-up to RQ3 to compare the visual representations of students 

having unit grades over 90 and those having unit grades under 75. However, the sample 

size for the groups (high grades n = 8, low grades n = 6) provided insufficient power for 
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statistical comparisons. Preliminary observations were limited to qualitative visual 

assessment. Figure 33 displays the MDS and PFN visual representations of these two 

student groups with ECSI. The MDS configuration for both groups had similar values for 

stress-1 (0.254 and 0.244), TCC (0.967 and 0.970), and R2 (0.58 and 0.61). Both groups 

also had similar PFN coherence (0.687 and 0.724). These factors indicated that students 

developed internal coherence regardless of grade. PFN-derived parameters provided the 

ability for direct comparison between groups. It is of note that students with high grades 

consistently displayed more common links and higher similarity with ECSI and ECSIC. 

However, these trends were observational and were not subjected to the scrutiny of 

statistical analysis given the small sample sizes and inherently low statistical power. 

These trends suggest the need for further research to define any generalizable 

conclusions. 

 



195 

 

 

Figure 33 

 

ECSI, SCS, and Academic Performance 

   

   

ECSI Students with > 90% Students with < 75% 

Note. An observed trend toward greater visual similarity with ECSI was noted in students with higher academic performance. 
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Summary 

The purpose of this quantitative study was to explore two data modeling strategies 

(MDS and PFN) as a potential quantitative representation of the cognitive structures of 

physiotherapy students learning gross anatomy. Qualitative and quantitative findings 

were reported based on the proximity data and both MDS and PFN. 

MDS and PFN data visualizations produced an initial qualitative overview of 

commonalities and differences between students and experts. Anatomical concepts 

occupied similar spatial relationships in MDS but were linked in different ways in PFN. 

There were also differences noted in the visual representations within the expert 

subgroups. The first level of quantitative analysis examined the properties derived from 

MDS configurations and PFN networks. The MDS configurations of experts displayed 

higher R2 values with anatomical concepts having closer spatial relationships (decreased 

semantic distances) than students. The PFN network properties of experts displayed a 

greater degree of linking anatomical concepts than students.  

Agreement analysis (reliability, accuracy, and association) was used to examine 

the potential relationship between student and expert cognitive structure represented by 

MDS and PFN data modeling strategies. MDS Euclidean distances and PFN graph-

theoretic distances may provide a contextual reference for students based on their 

agreement with experts. However, the relevance of the measures and the minimally 

educationally relevant values remain to be studied. The findings of RQ2 indicated that 

agreement analysis varied between groups, and moderate to large effect sizes were 

evident in several of the reported measures. 
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The specific relevance of many derived parameters, either based directly on MDS 

configuration or PFN network properties or based on semantic distance agreement 

analysis, was unknown from a practical educational perspective. However, the PFN 

common links between students and domain experts (ECSD) accounted for 19% of the 

variance in unit grade. Six of the derived parameters (Proximity correlation between SCS 

and ECSD, MDS Euclidean distance correlation between SCS and ECSD, PFN common 

links between SCS and ECSD, PFN common links between SCS and ECSIC, PFN 

similarity between SCS and ECSD, and PFN similarity between SCS and ECSIC) 

accounted for 58.5% of the variance in student unit grade, the second criterion standard. 

Four of the six predictor variables involved comparisons with the domain expert (ECSD), 

and two involved comparisons with the specific cohort instructor (ECSIC). Four of the 

predictor variables involved the use of PFN and its derivations. 

This study provided preliminary evidence of concurrent and predictive criterion-

related validity. Given the operational definitions outlined in Chapter 3, it appeared that 

these data modeling strategies may provide the potential for a quantitative representation 

of the cognitive structures of physiotherapy students learning gross anatomy. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

The mapping of cognitive structures of physiotherapy students learning gross 

anatomy is poorly understood. The purpose of this quantitative study was to explore two 

data modeling strategies (MDS and PFN) as a potential visual and quantitative 

representation of the cognitive structures of physiotherapy students learning gross 

anatomy. The nature of the study was a quasi-experimental, criterion-related validation 

study. The study was conducted to understand better the quantitative representation of 

cognitive structure in the gross anatomy domain, exemplified by MDS and PFN 

strategies, and to validate the possible meaning of these quantitative measures in the 

context of entry-level physiotherapy education. 

The study’s key findings provided preliminary evidence that MDS and PFN data 

modeling strategies may serve as a potential visual and quantitative representation of the 

cognitive structures of physiotherapy students learning gross anatomy. Cognitive 

structure mapping was reflected in both the MDS and PFN data visualizations, 

descriptive properties (MDS configuration and PFN network), and derived parameters 

such as semantic distances (MDS Euclidean and PFN graph-theoretic). Differences in 

these quantitative parameters may reflect perceptual differences and level of agreement 

between student and expert and within expert subgroups. It is unclear whether this 

represents cognitive structure or some other cognitive, perceptual, or educational 

construct. Differences were noted between expert subgroups based on the presence or 

absence of a clinical degree. Preliminary evidence of content, construct, and criterion-

related validity (concurrent and predictive) was reported. Six predictor variables derived 
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from the proximity data, MDS configurations, and PFN networks accounted for 68.9% of 

the variance in unit grade with adjusted R2 = 58.5%, a large effect size (see Cohen, 1988). 

The biggest single predictor of the unit grade was the PFN common links between the 

student and the domain expert. It is unknown whether these factors differentiate academic 

performance among students. Given the context of the study’s operational definitions, 

there appears to be some potential in using MDS and PFN as a visual and quantitative 

representation of the cognitive structures of physiotherapy students learning gross 

anatomy. 

Interpretation of the Findings 

Cognitive structure is a construct rooted in declarative and procedural knowledge 

developed in long-term memory. J. R. Anderson’s (1996, 2007) ACT-R cognitive 

architecture model served as a foundation for understanding the construct’s potential 

mechanisms. Two of these mechanisms (chunking and activation) provided a context for 

long-term memory and knowledge acquisition. However, there remains little agreement 

on a clear operational definition of cognitive structure as a construct, the representation 

(either directly or indirectly) and validation of the construct, and its practical application 

and relevance educationally. The current study addressed two data modeling strategies 

(MDS and PFN) as a potential visual and quantitative representation of the cognitive 

structures of physiotherapy students learning gross anatomy. Although little research has 

simultaneously addressed the data visualizations and quantitative representations of MDS 

and PFN (Branaghan, 1990), the current study provided an extensive and rigorous 

analysis of the derived parameters of both data modeling strategies. 
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Data Visualization 

The MDS and PFN data visualizations of cognitive structure provided an initial 

visual representation of differences between students and experts and within expert 

subgroups. These differences varied in scope and magnitude depending on the data 

modeling strategy. Branaghan (1990) noted that MDS could represent semantic 

dimensions underlying a domain and PFN could visualize the direct relationship between 

items. Figure 34 displays the MDS and PFN data visualizations for the ECSI subgroup. 

Several potential clusters of items appear to be consistent across MDS solutions once 

transformed via reflection, rotation, and translation (Figure 34, upper panel). These 

clusters may reflect the grouping of anatomical constructs and relationships: for example, 

neurological function (brachial plexus [BP] and segmental innervation [SI]), functional 

stability including the rotator cuff musculature (stability [ST], supraspinatus [SU], 

infraspinatus [IN], subscapularis [SS], rhomboids [RH], and teres major [TM]), the joint 

capsule and articulating surfaces and their role in joint mobility (mobility [MO], triplanar 

motion [TR], ball and socket [BS], joint capsule [JC], humeral head [HH], glenoid fossa 

[GF], and glenoid labrum [GL]), and the biceps brachii and its relationship to the 

shoulder complex (acromion [AC], coracoid process [CP], greater tubercle [GR], biceps 

brachii [BB], bicipital groove [BG]). The clustering of items may provide a broad 

overview of how a student is organizing their knowledge, especially in comparison to the 

organization of the expert or the specific cohort instructor. Visual differences of PFN 

(Figure 34, lower panel) are readily discernible based on item links within the network 

and a derived parameter of direct similarity with another generated network. Both data 
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visualizations are consistent with J. R. Anderson’s (2007) ACT-R model and the 

processes of chunking and activation used in knowledge organization. Although 

differences may be readily apparent in the PFN representations, they are far less so with 

MDS configurations because they lack a direct assessment of configurational similarity 

(see Borg & Leutner, 1985). However, MDS representations remain highly consistent and 

may provide a broad overview of their concept organization, which becomes more 

granular within the PFN’s direct linking. 
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Figure 34 

 

MDS and PFN Clustering of Anatomical Concepts 

 

 

Note. The upper panel is MDS data visualization for ECSI. The lower panel is PFN 

data visualization for ECSI. Dotted lines emphasize clusters of anatomical items and 

concepts. 
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Criterion-Related Validity 

The results indicated preliminary evidence of content and construct validity as 

well as concurrent and predictive criterion-related validity. The selection of items by 

physiotherapists in musculoskeletal clinical practice enhanced content and construct 

validity because the items reflected relevant competency, expertise, and knowledge 

organization. Concurrent (criterion-related) validity is the correlation of a measurement 

with a criterion (Barnhart et al., 2007). In the current study, the level of agreement 

between SCS and ECSI (criterion standard one) and how this differs from the level of 

agreement between SCS and ECSD provided preliminary evidence of concurrent validity. 

Predictive (criterion-related) validity is the correlation of a measurement with a future 

criterion (Barnhart et al., 2007). In the current study, predictive validity was represented 

by the predictor variables (the descriptive properties of MDS and PFN as well as the 

agreement between SCS and ECS) and the unit grade (criterion standard two). Six 

predictor variables accounted for 68.9% of the variance in unit grade with adjusted R2 = 

58.5%. Of the six predictor variables, one variable was derived from the proximity data 

(SCS correlation with ECSD), one variable was derived from the MDS Euclidean 

distances (SCS correlation with ECSD), and four variables were derived from the PFN 

network properties (SCS common links with ECSD, SCS common links with ECSIC, 

SCS similarity with ECSD, and SCS similarity with ECSIC). In the context of gross 

anatomy and physiotherapy education, these results are consistent with the predictive 

validity reported by Goldsmith et al. (1991) and Johnson et al. (1994). 



204 

 

 

Agreement Analysis 

The study addressed the potential quantitative agreement between student and 

expert reflected in reliability (interrater reliability), accuracy, and strength of linear 

association. Assessment of agreement between student and expert occurs throughout 

physiotherapy education and requires both interrater reliability and agreement in the 

performance of a clinical activity, making it highly relevant in the assessment and 

comparison of cognitive structures in the context of physiotherapy education (Liao et al., 

2010). Cognitive structure is essential in the development of expertise and, subsequently, 

clinical performance and diagnostic thinking. However, the use of agreement analysis 

between student and expert cognitive structures to derive unit grade and academic 

performance predictors had not been previously reported in the literature. There appeared 

to be preliminary evidence supporting this approach based on the findings of RQ2 and 

RQ3 with several derived parameters linked to academic performance. However, most 

parameters had no direct relationship with unit grade. Results suggest that a rigorous, 

data-driven approach to the representation of cognitive structure is promising and 

deserves further consideration. 

Internal Consistency 

Knowledge acquisition involves the addition of personal meaning above and 

beyond factual information. Students and experts will develop cognitive structure in long-

term memory based on their perceptions, life experiences, emotional meaning, and 

misconceptions. How the individual organizes their knowledge will vary based on these 

factors. In the current study, the individual MDS configurations displayed consistently 
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high R2 values (indicating large effect sizes) and the PFN representations indicated good 

coherence within both students and experts. Both groups organize their knowledge, 

inclusive of misconceptions, in a way that provides internal consistency and coherence 

within their individual cognitive structure mapping. The MDS and PFN data 

visualizations displayed these individual variations; changes in these representations over 

time may provide evidence of a cognitive structure that evolves with learning, knowledge 

organization, or competency development. However, the degree to which these variations 

are relevant educationally is unclear and requires further examination. 

Prior Knowledge 

Prior knowledge is an integral component of learning (Ausubel, 1963). 

Meaningful learning occurs as students scaffold new knowledge upon prior knowledge 

via J. R. Anderson’s (2007) chunking and activation mechanisms. However, the variables 

used to define prior knowledge in the current study (admission cumulative GPA and 

admission core sciences GPA) were not predictors of any of the MDS- or PFN-derived 

parameters, SCS agreement with ECS, or unit grade. However, a large proportion of 

variance in unit grade could be accounted for by six derived parameters that appear to be 

otherwise unrelated to prior knowledge. This creates a potential disparity between a 

construct (prior knowledge) and its current academic representation (GPA). Several 

researchers, including Bayliss et al. (2017) and S. H. Hayes et al. (1997), have examined 

the relationship between GPA as a predictor of success on the NPTE. Because prior 

knowledge was not associated with unit grades and the testing associated with it, there is 

a question of whether GPA (in any form) is a good metric to use for prior knowledge. Its 
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use as a predictor of success on the NPTE may represent factors unrelated to cognitive 

structure or physiotherapy curriculum. 

Expert Differences 

There were differences between expert subgroups (domain expert ECSD, 

instructor ECSI, and cohort instructor ECSIC) across all group comparisons with 

proximity data, MDS, and PFN. The agreement between SCS and ECSI appeared to be 

higher than that between SCS and ECSD. This may provide early evidence of the 

importance of the presence or absence of a clinical degree in the teaching of gross 

anatomy to physiotherapy students. Although reliability, accuracy, and association 

appeared to have moderate to good reliability and medium to large strength of association 

(with the associated medium to large effect sizes), these values generally diminished at 

the level of the cohort instructor. However, large numbers of students improved their 

agreement with the cohort instructor. Reliability improved in 44% of students for PFN 

graph-theoretic distances. Accuracy improved in 29% of students for MDS Euclidean 

distances and 80% of students for PFN graph-theoretic distances. Association improved 

in 36% of students for the proximity data. These results provide evidence of a potential 

cohort-instructor-specific effect and highlight the importance of the instructor’s academic 

content knowledge, pedagogical knowledge, and pedagogical content knowledge (see 

Neumann et al., 2019). However, this may result from either the actual differences 

between student and instructor or may be a function of the small sample size. The use of 

data modeling strategies may provide insight into these perceptual differences. This could 
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provide valuable information regarding how students organize their knowledge based on 

their interaction with a specific instructor to attain learning outcomes.  

The biggest single predictor of the unit grade was the student’s PFN common 

links with the domain expert ECSD. Initial exploratory analysis indicated a trend for 

students with higher grades to be more highly correlated with ECSD than with ECSI. 

Domain experts may have knowledge that is more representative of nonclinical gross 

anatomy, which aligns more clearly with the content and context of the course text used 

to develop unit exams and is not specifically physiotherapy centric. Although students 

may align more closely with instructors in terms of agreement analysis, what defines their 

unit grade may be more closely aligned with the domain expert and course text. A gross 

anatomy course offered in the first trimester of the program may be testing primary 

anatomical organization that aligns more with the ECSD domain experts (basic 

anatomical knowledge) than its application (ECSI). This provides a challenge for 

effective clinically based education that promotes near transfer and clinical competency. 

Previous Research 

Previous research by Goldsmith et al. (1991), Gonzalvo et al. (1994), Neiles et al. 

(2016), and Stevenson et al. (2016) found relationships between MDS- and PFN-derived 

parameters and student grades. Large effect sizes were reported based on calculated r2 

(>0.5) and η2 (>0.14) values (see Cohen, 1988). The moderate to large effect sizes 

reported in the current study were consistent with these studies. However, many of these 

studies focused solely on correlation, a statistical test that may not have been used 

judiciously nor with a clear delineation of operational definitions, level of measurement, 
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and assumptions necessary for their statistical analyses. Agreement is not solely an issue 

of correlation as raters can be highly correlated with little to no agreement. This makes 

the conclusions from previous research problematic. The current study provided a more 

extensive and granular analysis of agreement within expert subgroups. 

Implications 

Cognitive structure is a fuzzy construct for clinicians and educators to 

conceptualize due to inconsistencies in operational definitions, the inability to represent it 

readily, and the lack of a clearly defined relevance and practical application for students, 

educators, and future clinicians. The exploratory nature of the current study provided a 

narrow window into the construct of cognitive structure in a small sample of 

physiotherapists, experts, and DPT students in the context of gross anatomy education. 

However, the current study has implications on theory development, research 

methodology, educational practice, and positive social change. 

Theory Development 

The cognitive architecture proposed by the ACT-R model consists of eight 

modules – four of which are related to the perceptual-motor system and interact directly 

with the external world (J. R. Anderson et al., 1997). The remaining four modules 

(declarative, procedural, intentional, and imaginal) are related to facts, procedures, goals, 

and a mental representation of the problem. Representations of cognitive structure, such 

as those proposed via MDS and PFN, provide a snapshot of cognition at that specific 

moment in time. This may reflect a summation of the function of these four modules at 

that moment. However, long-term memory and knowledge organization is a dynamic 
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system (Schuelke et al., 2009). J. R. Anderson (2007) proposed that chunking and 

activation are factors in long-term memory and cognitive structure development. 

Jonassen et al. (1993) proposed another aspect of long-term memory, that of structural 

knowledge. If MDS and PFN serve as a potential visual and quantitative representation of 

cognitive structure, then they may only reflect cognitive structure at that moment in time. 

This underscores a need to examine test-retest reliability. 

Cognitive learning theory is an integral factor in the development of competent 

physiotherapists. However, this depends on the goal of learning: short-term retrieval of 

knowledge or long-term competency (J. R. Anderson & Schunn, 2000). The development 

of cognitive structure parallels the development of epistemic cognition leading to critical 

thinking, clinical reasoning, diagnostic thinking, near transfer, and academic achievement 

(Greene & Yu, 2016; Montpetit-Tourangeau et al., 2017). Cognitive structures developed 

through deep learning enhance retention and transfer of learning to higher-order thinking 

and decrease cognitive load (Krathwohl, 2002; Smith, Stockholm, et al., 2017). Experts 

learn to categorize problems based on deeper features and have improved knowledge 

organization (Fatima, 2020; Schuelke et al., 2009). Critical thinking is necessary for 

clinical practice specifically and as a 21st-century skill more broadly, but it is also limited 

by surface (rote) learning. Novices tend to use surface learning strategies to accumulate 

facts, which generates a higher level of cognitive loading without enhancing cognitive 

structure development (Fatima, 2020; Schuelke et al., 2009; Zulu et al., 2018). This may 

promote the development of misconceptions which can severely hamper academic 

progression and clinical competency. A visual and quantitative representation of 
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cognitive structure may have potential implications in monitoring a student’s cognitive 

structure development and refining their learning strategies. 

The development of a reference standard for expert cognitive structure could 

serve a valuable role in assessment for learning in the context of competency-based 

medical education (P. Harris et al., 2017). A reference ECS could be derived from experts 

currently in musculoskeletal clinical practice. It should not just reflect safety and 

requisite knowledge but also evidence-based practice and clinical efficacy, the standards 

by which physiotherapists will solve the challenges of global disability. Expert perceptual 

data could then be integrated with data derived from an outcomes management system to 

establish a reference standard of expert cognitive structure. Subsequent agreement 

analysis between student and expert may reflect the student’s progression toward that 

which may ultimately reflect expert clinical practice. 

Research Methodology 

Data analysis in the current study indicated that two important aspects of 

methodology need to be considered in the discussion of cognitive structure. First, 

agreement analysis should consider several measures representing various aspects of 

agreement, such as reliability, accuracy, and association. Agreement is not solely an issue 

of correlation as raters can be highly correlated with little to no agreement. Individuals 

describing their perceptual experiences via psychometric scaling are, in essence, 

measurement tools of that individual’s perceptual experience and state of declarative 

knowledge and semantic memory. As such, approaches to measurement like those used in 
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assessing the level of agreement between measurement tools in a laboratory environment 

are indicated.  

One of the biggest challenges in research methodology is understanding what 

semantic (Euclidean and graph-theoretic) distances represent cognitively and 

perceptually. Smaller semantic distances are equated with concepts that are perceptually 

closer to each other or having a higher degree of agreement or perceived relatedness. 

However, how these distances relate to differences in perception and knowledge 

organization between individuals is unknown. Results from the current study indicated 

that these measures may reflect contextual perceptual changes, although they should be 

used cautiously to represent cognitive structure. 

Educational Practice 

Wainer and Kaye (1974) described several challenges in education related to 

developmental psychology which are relevant to physiotherapy education to this day: 

A major goal of any course of instruction is the integration of concepts into a 

cohesive structure. The recall of facts and the ability to define concepts are fairly 

easy outcomes to assess, but the extent to which students understand 

interrelationships among the facts and concepts is problematic. Relationships are 

more difficult to define; there is far less agreement among instructors and among 

authors as to the meaningful structure of the subject matter; and the instructor is 

usually ambivalent about whether his students should be acquiring the structure, 

his structure, or their own structure. (p.591) 
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Physiotherapy students need to develop good cognitive structure to promote 

competency. This begins in foundational courses such as gross anatomy. As noted by 

Wainer and Kaye (1974), there must be meaningful structure. This may be reflected in 

the content structure (as defined by the course text and aligned with a domain expert), the 

instructor’s structure (aligned with clinical practice or the perceived needs for success on 

the NPTE), or the student’s structure. As noted in the results of this study, it appears that 

all are relevant in terms of cognitive structure. Using an expert’s cognitive structure as a 

referential structure becomes increasingly essential as curricula evolve toward 

competency-based education (Bains & Kaliski, 2019; Lucey et al., 2018).  

The impact of the instructor in terms of the development of a student’s cognitive 

structure cannot be overstated. The current study found preliminary evidence of student 

cognitive structure aligning with that of the instructor (ECSI) more so than the domain 

expert (ECSD), although the best predictor of academic performance was the number of 

PFN common links with the domain experts. Housner et al. (1993) examined student 

cognitive structures in relation to those of the instructor and found increasing 

correspondence throughout the course. This highlights the importance of the instructor’s 

academic content knowledge, pedagogical knowledge, and pedagogical content 

knowledge (Depaepe et al., 2013; Neumann et al., 2019; Shulman, 1987). However, 

Gess-Newsome et al. (2019) reported that in terms of pedagogical content knowledge, the 

instructor’s academic content knowledge was the only variable directly correlated with a 

student’s academic performance. Misconceptions are readily developed and hard to 

revise once chunked into long-term memory. It is important to note that misconceptions 
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can arise as a function of the student’s self-directed learning and an instructor’s level of 

understanding or how they present the concept(s) to a student. This becomes increasingly 

important with foundational courses such as gross anatomy. Student cognitive structure 

will have its own internal coherence, but it can be favorably (or adversely) impacted by 

that of the cohort instructor. How a student represents their knowledge compared to an 

expert (specifically, their cohort instructor) may provide valuable information regarding 

the assessment of and for learning within the specific and broad educational contexts. 

Physiotherapy education straddles two curricular concepts: time-based and 

competency based. However, the two concepts are often used interchangeably in health 

care education though most program lengths are fixed. However, the learning curve for 

both is not the same (Pusic et al., 2015). Much of the focus on assessment in 

physiotherapy education revolves around knowledge-based multiple-choice exams 

(aligned with the NPTE) or clinical/practical exams such as Objective Structured Clinical 

Examinations (OSCE). Students will adapt their learning strategies to what they perceive 

to be expected of them given the testing environment; this often emphasizes surface 

learning strategies (Rovers et al., 2019). Course grades composed of knowledge-based 

multiple-choice exams and practical exams often have limited validity and are used 

primarily as a marker for success in the educational system. Teaching strategies now 

implement simulations designed to reflect clinical scenarios. However, effective 

simulations are dependent upon an understanding of cognitive task analysis, which is 

derived from the practical application of cognitive structure development. Although these 

teaching and assessment strategies may be considered to reflect the development of 
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competency, physiotherapy education does not examine the actual cognitive structure of 

the developing clinician. This cognitive structure drives clinical reasoning and diagnostic 

thinking and not just the ability to render a successful performance in a simulation or 

practical exam that signifies perceived proficiency or competency. 

Assessments for learning, designed around data modeling strategies such as MDS 

and PFN, may provide a window into the dynamic development of cognitive structure. 

The current study may provide some potential insight into how cognitive structure could 

be used as an assessment strategy to refine a student’s learning path. MDS- and PFN-

derived parameters appear to display a relationship between expert subgroups and 

between students and experts and are also predictive of academic grades within the 

context of this specific gross anatomy course. A subset of these parameters may be a 

potentially relevant assessment of learning, assessment for learning, or at least 

progression toward success on the unit exams based on the predictor variables noted. 

However, the perceptual and educational relevance to the derived quantitative parameters 

is unclear. If there is a minimal interpretable difference for parameters such as level of 

agreement and its impact on learning, then it is unknown at this point. This makes an 

evaluation of the derived parameters and their differences more theoretical and 

(presently) less practical as a formative or summative assessment. 

Positive Social Change 

The current study’s findings suggest a potential role in promoting positive social 

change on many levels – individual, domain specific, and physiotherapy centric. Self-

directed learning places a higher demand on the physiotherapy student in developing 
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effective cognitive structures (van Lankveld et al., 2019). Liu et al. (2019) noted the 

importance of cognitive structure in adaptive learning and the development of learning 

paths to foster individual learning, emphasizing the importance of the cognitive 

mechanisms of the individual and not on outdated learning styles. This becomes 

increasingly important in a domain such as gross anatomy, in which a wide range of 

teaching and learning strategies have been shown to produce similar outcomes (Estai & 

Bunt, 2016; Losco et al., 2017; Wilson, Brown, et al., 2019). Cognitive mechanisms 

associated with adaptive learning may not currently be addressed effectively. Knowledge 

level and knowledge structure are necessary components of adaptive learning, though the 

latter is rarely examined as a part of physiotherapy curricula in either a formative or 

summative fashion. Using data modeling strategies such as MDS and PFN to represent 

cognitive structure in physiotherapy students learning gross anatomy could provide an 

individualized self-assessment and reflection aligned with self-directed learning and its 

role in 21st-century education.  

One significant finding of the study which has a potential impact on health 

professions education is the notable differences between the expert subgroups and the 

student’s alignment with a particular subgroup. There is much debate within the 

anatomical education community about the lack of Ph.D. programs to train anatomists 

and the urgency of continuing anatomical education. However, the results of this study 

present a different picture in that a clinician with anatomical education experience and 

training may be better suited to provide more context-specific anatomical teaching to 

other student clinicians that is also aligned with the stated goals of the curriculum and the 
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National Physical Therapy Exam. This brings into question the importance of a clinical 

degree in educating those who will eventually be practicing as clinicians. Although the 

sample size was small and limited the findings’ generalizability, it provides a foundation 

for further research. 

The current study highlights the dichotomy between creating competent clinicians 

and passing the licensure exam to ensure patient safety. Physiotherapists in active clinical 

practice were surveyed to define relevant anatomical concepts in the clinical realm to 

enhance content validity. Students have a greater agreement with instructor ECS 

(becoming more “expert-like”) as compared to domain expert ECS, yet the greatest 

predictor of the unit grade was the PFN common links with domain expert ECS. A 

domain expert may exhibit knowledge that is better aligned with the course text and 

subsequently knowledge-based exams. A clinician with ten or more years of experience 

may represent competency, clinical efficacy, and expertise, but these traits may not 

necessarily be consistent with the goals of the current physiotherapy curriculum defined 

by the NPTE. In the end, assessing agreement with clinical experts may not provide a 

reasonable predictor of academic performance relevant to the NPTE. However, it remains 

to be seen if the development of cognitive structure that aligns with ECSI does reflect the 

cognitive structure of physiotherapists with the clinical reasoning and diagnostic thinking 

reflective of effective musculoskeletal clinical practice. 

Several significant assumptions have been made in physiotherapy education 

regarding teaching, learning, and subsequent diagnostic thinking and clinical 

performance. Many of these elements are defined by the nature of program accreditation 
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and the NPTE. The primary goal of entry-level professional education, and one of the 

most important outcome measures in the accreditation of physiotherapy curricula, is the 

first-time pass rate on the NPTE. Decisions regarding curricular developments and 

faculty retention are often based on an educational program’s need to have a high first-

time pass rate. The purpose of the NPTE is to “assess your basic entry-level competence 

after graduation from an accredited program” (Federation of State Boards of Physical 

Therapy, 2021b). This is aligned with their stated mission to “protect the public” 

(Federation of State Boards of Physical Therapy, 2021a). The NPTE is a multiple-choice 

exam that focuses primarily on the components of clinical practice that ensure patient 

safety more so than clinical efficacy. The goals of public safety, requisite knowledge, and 

clinical competency may be aligned, but they are not synonymous; a clinician can 

provide safe care without having a high level of clinical competency by simply abiding 

by the words of Hippocrates: “do no harm.” 

The current study may serve as a catalyst for the reevaluation of physiotherapy 

curriculum in terms of the role of competency-based education based on the cognitive 

structure of the developing clinician. Competency-based education requires both 

formative and summative assessments that promote assessment for learning and reflect 

either a change in competency or alignment with an expert or evidence-based practices. 

Cognitive structures are dynamic systems and undergo revisions and adaptations based 

on the scaffolding of new knowledge and the revision of prior knowledge. The 

representation of cognitive structure via data modeling strategies may provide an 

innovative approach to better understanding how the developing clinician perceives the 
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world, how they organize their knowledge, and how it compares to experts in 

musculoskeletal clinical practice. MDS may provide a spatial overview of the 

individual’s representation of anatomical concepts and structures. In contrast, PFN may 

provide a more granular representation of the association and linking of these anatomical 

concepts and structures. These strategies may provide an important perspective on how 

students organize their knowledge compared to an expert as early as their foundational 

courses, including gross anatomy. The dichotomy between assessment, competency, 

knowledge, and their relationship to the development of cognitive structure reveals a 

need for fundamental change not only in how gross anatomy is taught to physiotherapy 

students but how it is assessed and vertically integrated into the scope of competency-

based physiotherapy education leading to long-term transfer to clinical practice. 

Limitations of the Study 

There are several limitations of the study. The COVID-19 pandemic of 2020-2021 

created a unique educational experience for students. Two modes of delivery were 

initially going to be examined: one based on on-campus experiences and one based on 

remote learning with face-to-face lab experiences. Students will often self-select their 

mode of delivery based on their approach to self-directed learning and prior experiences 

with remote learning. However, during the pandemic, all students were forced to partake 

in a fully remote learning mode of delivery, which may have provided unforeseen 

learning challenges to those expecting a different delivery mode as the basis for their 

physiotherapy educational experience. Although the consistency in the mode of delivery 

across all students created a potential benefit in terms of the consistency of data 



219 

 

 

collection, it may have also inadvertently added a limiter for those students who were not 

expecting the change in their model of delivery. 

The predominant limitation of the study was the small sample size of expert 

(domain experts: n = 3; instructors: n = 4) and student (n = 31) samples. A priori power 

calculations indicated that correlational analysis would require a sample size of 15 (large 

effect size) to 34 (moderate effect size). In comparison, multiple regression would require 

a sample size of 36 (large effect size) to 77 (moderate effect size). The correlational 

analysis had sufficient power though multiple regression was mildly underpowered. 

However, sample sizes were consistent with previous research that also reported large 

effect sizes based on calculated r2 (>0.5) and η2 (>0.14) values (see Goldsmith et al., 

1991; Neiles et al., 2016; Stevenson et al., 2016). Finally, a priori power calculations 

indicated that paired sample t tests would require a sample of 15 to 34; this made within-

group comparisons (for example, between students attaining high grades > 90 and those 

attaining poor grades < 75) unrealistic and highly under-powered as the former group had 

eight students and the latter group had six students. The small sample size limited the 

generalizability of the findings and impacted the power of this component of the 

statistical analysis. As such, only preliminary observations were reported in the case of 

student group comparisons of academic performance. 

The survey instrument employed in the study was unique as the physiotherapists 

in musculoskeletal clinical practice defined it. Larger sample size would have provided 

greater insight into the perceived importance and relevance of anatomical concepts. The 

small sample size for physiotherapists (n = 12) limited the conclusions drawn regarding 
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any degree of interrater agreement in item selection and rank ordering which ultimately 

defined the content and construct validity of the survey instrument.  

Paired comparisons formed the basis for the raw proximity data that assessed 

perceptual differences of anatomical concepts. This approach has a long history of use in 

psychological scaling (see Brown & Peterson, 2009; Thurstone, 1927); however, paired 

comparisons may also be viewed as a rather rudimentary means of examining perceptual 

differences for high-level constructs such as cognitive structure. An item list for paired 

comparisons may have produced artificial representations of the construct or represented 

some other perceptual or organizational construct. Further research on the psychometric 

properties of paired comparisons and other strategies for assessing perceptual and 

organizational differences in the health care professions is indicated. 

Criterion standard one, ECS, was like the “knowledge indices” used by Goldsmith 

et al. (1991). Criterion standard two, unit grade, was used in this study to maintain some 

degree of consistency with previous research. However, lecture and lab exams have 

generally not been assessed for validity, making a unit grade based on these assessment 

tools potentially problematic. Exams may become reflections of an instructor’s academic 

content knowledge, pedagogical knowledge, and pedagogical content knowledge 

(Neumann et al., 2019) or a DPT program’s perception of what is valid and necessary as 

a prerequisite for later courses in the curriculum or preparation for the National Physical 

Therapy Examination (NPTE). The two criterion standards used in the current study may 

not fully represent equivalent criteria. There may be a disparity between ECS (a criterion 

aligned with knowledge organization, competency, and expertise) and unit 
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grade/academic performance (a criterion aligned with knowledge retrieval). However, 

they do share similar features. 

There was a significant challenge due to the lack of consistent operational 

definitions in the scientific literature regarding agreement and how this is quantified in a 

statistically sound and consistent fashion. The quantitative representation of cognitive 

structure could be viewed in terms of assessing any measurement tool; however, this 

measurement tool is internalized to the rater. Significant discrepancies exist in terms of 

the description of agreement, the statistical tests used to assess it, and clearly meeting the 

assumptions of the statistical test used. At the level of student-expert comparisons 

(reliability, accuracy, and association), there is little consistency in the literature 

regarding the meaning and practical application. There are few reports (if any) of what 

would be considered a minimal perceptible or interpretable change in many of the 

agreement measures, their relationship to the perceptual data or MDS and PFN 

implementations of the raw proximity data, or the impact on cognitive structure 

development, meaningful learning, or academic performance. 

One of the challenges with MDS is the direct visual comparison of stimulus 

spaces. Comparison to a reference standard representation is difficult statistically. An 

MDS configuration will seek to find the best fit amongst multiple matrices; if a student 

and expert are used concurrently within the analysis, the resultant configuration will be a 

composite of both. Although individual differences scaling produces a group space and 

individual spaces, the group space is the best fit for the entire data set. Assessing the 

degree of configurational similarity (see Borg & Leutner, 1985) mathematically was 
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beyond the scope of the current analysis. However, several authors have proposed doing 

so via mathematical transformations such as Procrustes rotation (see Borg & Leutner, 

1985; Egli, Streule, & Lage, 2008; Peres-Neto & Jackson, 2001; Rosas, 2017). This was 

beyond the scope of many health professions researchers and beyond the level of 

practicality for the educator should these strategies be employed in an educational 

environment. 

Finally, direct interpretation of the regression coefficients within the context of 

the raw proximity data and data modeling strategies is problematic from a practical 

perspective. Semantic distances, be they MDS Euclidean distances or PFN graph-

theoretic distances, are viewed in a purely referential context. For example, as MDS 

Euclidean distances decrease, items are closer together perceptually; as PFN graph-

theoretic distances decrease, there is a more direct and shorter pathway between concepts 

perceptually. How these distances relate to individual differences in perception, 

knowledge organization, and learning is unknown. 

Recommendations 

Several recommendations for further research emerged based on the results of the 

current study. Foremost of these recommendations is the need for improved operational 

definitions of cognitive structure regarding what is being represented and how it is being 

represented. To measure a construct, you must know what you are measuring. Refined 

definitions can then be used to delineate and differentiate perceptual changes related to 

the construct and the psychometrics used for measurement and scaling purposes. MDS 

and PFN provide preliminary evidence of a quantitative, indirect representation of 
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cognitive structure of physiotherapy students learning gross anatomy that is grounded in 

the operational definitions of the current study. It is unknown if this reflects an indirect 

representation of cognitive structure or another construct. The neuroanatomical construct 

of cognitive structure may require similar (but not identical) definitions as compared to 

those used in a learning context. Further research to examine these issues in the context 

of neuroscience and education is critical. 

The current study results indicated a need to examine cognitive structure further 

and its practical application in education. Several aspects of cognitive structure could be 

examined: the test-retest reliability within any given individual, the changes noted within 

an individual over time and minimally detectable or relevant changes in cognitive 

structure that indicate key milestones in competency and academic performance. Test-

retest reliability would indicate the consistency of the representation and enhance its 

validity for practical use. Changes in cognitive structure over time (for example, within 

the duration of a course of study or between admission, graduation, and ten years of 

clinical practice) could provide evidence of learning and the development of diagnostic 

thinking. Finally, understanding a minimal interpretable change could provide evidence 

of learning benchmarks and progression towards academic proficiency and competency. 

The psychometrics of rank-ordering by the physiotherapist must be better 

understood, especially in relation to their own cognitive structure. The current study 

indicated that physiotherapists had poor interrater reliability in rank ordering anatomical 

concepts based on clinical relevance. Further examination of a group of physiotherapists 

in terms of rank-ordering and the subsequent use of paired comparisons to derive their 
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cognitive structure representation that grounds their rankings could provide greater 

insight into perceived importance and relevance based on an individual’s cognitive 

structure.  

The results of the current study provided preliminary evidence of differences 

between expert subgroups. This was subsequently related to the level of agreement with 

the student. An expert cognitive structure may have value as a referent cognitive 

structure, making the expert subgrouping important (Acton et al., 1994). Examining a 

broad population of experts could provide the basis for comparison between expert 

subgroups such as clinicians (new graduates and experienced), domain experts, and 

clinical instructors. Compilation of this expert perceptual data in a database could expand 

the understanding of cognitive structure and expertise in physiotherapists. However, this 

assumes that the assessment and representation of cognitive structure have clear 

operational definitions. 

The current study used a survey of 20 anatomical concepts and items. However, 

some of the paired comparisons may have greater value in predicting the level of 

agreement or as predictor variables based on higher correlations. Factor analysis could 

help establish which items and paired comparisons are better predictors, and the survey 

could then use a smaller number of items. This may lead to developing a gross anatomy 

concept inventory along the lines of the Force Concept Inventory used in physics 

education (see Hestenes et al., 1992). A concept inventory could be used as both a gross 

anatomy course pretest and assessment of and for learning (see Leppink, 2020). 
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Conclusion 

Preliminary evidence indicates that data modeling strategies such as MDS and 

PFN have potential as a visual and quantitative representation of cognitive structure. 

Specifically, using these strategies appears to have some value in describing the cognitive 

structure of physiotherapy students learning gross anatomy compared to experts and 

highlights the importance of clinical practice instead of just a deeper understanding of the 

gross anatomy domain. The visual and quantitative representation of cognitive structure 

via MDS and PFN data modeling is promising in terms of criterion-related validity and as 

a foundation for further research on agreement analysis between the cognitive structures 

of students and experts. It is unclear if these representations genuinely reflect cognitive 

structure or another educational, clinical, or cognitive construct. The significance of 

changes in these derived parameters over time is unknown. The study’s findings provide 

critical perspectives on the real-world relevance and practical application of cognitive 

structure in competency-based education. The development of expertise reflected in the 

agreement with expert cognitive structure serves as an integral component of the learning 

process that begins with foundational courses like gross anatomy. The representation of 

cognitive structure in physiotherapy students learning gross anatomy may serve as a 

valuable first step in better understanding this process and innovation in true competency-

based education of physiotherapists. 
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Appendix A: Content Items and Functional Terms 

Please rank order these concept items and functional terms in order of anatomical 

importance and clinical relevance, with 1 = most important/relevant to clinical practice 

and 40 = least important/relevant to clinical practice. 

Item Rank Item Rank 

Humeral head  Mobility  

Acromion  Stability  

Bicipital groove  Ball and socket  

Coracoid process  Triplanar Motion  

Glenoid fossa  Subacromial bursa  

Biceps brachii  Levator scapulae  

Triceps brachii  Axillary artery  

Supraspinatus  Circumflex humeral arteries  

Infraspinatus  Suprascapular nerve  

Subscapularis  Lateral pectoral nerve  

Teres minor  Axillary nerve  

Deltoid  Glenoid labrum  

Teres major  Joint capsule  

Latissimus dorsi  Glenohumeral ligaments  

Pectoralis major  Coracoclavicular ligaments  

Pectoralis minor  Coracohumeral ligament  

Coracobrachialis  Transverse scapular ligament  

Rhomboids  Transverse humeral ligament  

Brachial Plexus  Greater tubercle  

Segmental Innervation  Lesser tubercle  
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Appendix B: Description of Study for Prospective Participants 

Call for Research Study Participants 

There is a gap in understanding how physiotherapy students learn gross anatomy, 

specifically, how they organize concepts to promote learning and retention. As a part of 

my dissertation research, I am conducting a study regarding the organization of anatomy 

concepts by first trimester DPT students. This study’s findings will enhance 

understanding of how students learn anatomy, the foundation for all courses within the 

DPT curriculum. 

What Will I Do? Study participants will register and complete an online survey 

at any time prior to [date removed]. The online survey will take approximately 15 to 20 

minutes to complete. The online survey will ask you to compare several pairs of items for 

similarity/relatedness on a 0 to 10 scale, with 0 being completely dissimilar and 10 being 

completely similar (identical). As an example, imagine the words “goldfish” and “shark.” 

You might perceive them to have a certain degree of similarity as they are both fish. The 

next pair of words could be “shark” and “lion,” which you might perceive to have a little 

similarity. Items in the online survey will refer to anatomical concepts, and there is no 

right or wrong answer - just your perception of their similarity and relatedness. It is not 

testing your anatomical knowledge. 

A link for recruitment to participate in the study is at the end of the 

announcement. This will generate an email request; simply include your student 

identification number. In return, you will receive both a unique private identifier code 
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and a link to the online survey. Informed consent will be attained via clicking on a link 

that acknowledges your understanding before beginning the paired similarity ratings. 

Voluntary Nature of the Study: This study is voluntary. Everyone will respect 

your decision of whether you choose to be a part of the study or not. You will be treated 

the same at [institution removed], whether you choose to be a part of the study or not. If 

you decide to join the study now, you can still change your mind later. You may stop at 

any time. 

Payment: Upon completing both surveys, participants will receive a $10 

electronic gift card in appreciation of their participation. Participants will submit an email 

address upon completion of the survey to which the electronic gift card will be sent. 

Email addresses will not be associated with the online surveys. Study participants will 

also be provided an opportunity to attend a presentation of the study results upon 

completing the study. 

Privacy: Any information you provide will be kept confidential and anonymous. 

Surveys will be linked to your unique identifier; no identifying information will be 

associated with your results. Electronic data will be kept strictly confidential in a fire- 

and flood-proof safe in my home and encrypted as a private file in my Dropbox account. 

Questions: You can ask questions of the researcher by email at [email removed]. 

Thank you for your consideration in participating in this study. 
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Appendix C: Data Coding for Participant Data Sets 

Student Data Set 

Code Description Data Source 

SID Student ID (deidentified once data set 

compiled) 

Student 

UI Unique Identifier Primary Investigator 

Pretest Pretest ratings (pairwise comparisons) Student 

Posttest Posttest ratings (pairwise comparisons) Student 

GradeW Unit grade – written exam Blackboard 

GradeP Unit grade – practical exam Blackboard 

Age Age Registrar 

Gender Gender Registrar 

AdmGPA Admission Cumulative GPA Registrar 

AdmAGPA Admission Core Science GPA Registrar 

Campus Location Registrar 

Mode Mode of Delivery: residential or flexible Registrar 

 

Expert Data Set 

Code Description Source 

UI Unique Identifier Primary Investigator 

Test Test ratings (pairwise comparisons) Expert 

YCP Years of Clinical Practice Expert 

YAT Years of Anatomy Teaching Expert 

TCD Terminal Clinical Degree Expert 

TAD Terminal Academic Degree Expert 

Campus Location Expert 

Mode Mode of Delivery: residential or flexible Expert 

 

N.B. Data sets as described do not include derived MDS and PFN parameters. 
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Appendix D: Preliminary Exploratory Analysis 

Table D1 

Impact of MDS Scaling Model 

Group Model Stress-1 TCC R2 

ECSD RMDS 0.222 0.98 0.73 

 WMDS 0.217 0.98 0.75 

ECSI RMDS 0.196 0.98 0.78 

 WMDS 0.188 0.98 0.81 

Note. RMDS with multiple matrices, PROXSCAL algorithm, Identity scaling model, 

two dimensions; WMDS with multiple matrices, PROXSCAL algorithm, weighted 

Euclidean scaling model, two dimensions 

 

Table D2 

Aggregation Strategy and MDS Configuration 

Group Strategy Stress-1 TCC R2 

ECSD RMDS 0.222 0.98 0.73 

 CMDS Mean 0.252 0.97 0.67 

 CMDS Median 0.149 0.98 0.89 

ECSI RMDS 0.196 0.98 0.78 

 CMDS Mean 0.234 0.97 0.69 

 CMDS Median 0.149 0.98 0.89 

Note. RMDS with multiple matrices; CMDS mean with one matrix; CMDS median 

with one matrix. All utilize PROXSCAL algorithm, Identity scaling model, two 

dimensions. 
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Appendix E: Final Item List 

The 20 anatomical structures and concepts noted in bold were used for the paired 

comparisons survey. Codes associated with these items are noted. 

 

Item Code Item Code 

Humeral head HH Mobility MO 

Acromion AC Stability ST 

Bicipital groove BG Ball and socket BS 

Coracoid process CP Triplanar Motion TR 

Glenoid fossa GF Subacromial bursa  

Biceps brachii BB Levator scapulae  

Triceps brachii  Axillary artery  

Supraspinatus SU Circumflex humeral arteries  

Infraspinatus IN Suprascapular nerve  

Subscapularis SS Lateral pectoral nerve  

Teres minor  Axillary nerve  

Deltoid  Glenoid labrum GL 

Teres major TM Joint capsule JC 

Latissimus dorsi  Glenohumeral ligaments  

Pectoralis major  Coracoclavicular ligaments  

Pectoralis minor  Coracohumeral ligament  

Coracobrachialis  Transverse scapular ligament  

Rhomboids RH Transverse humeral ligament  

Brachial Plexus BP Greater tubercle GT 

Segmental Innervation SI Lesser tubercle  
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Appendix F: MDS and PFN Data Visualizations 

 

ECSD (Domain Experts; n = 3) 
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ECSI (Instructors; n = 4) 
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SCS (DPT students; n = 31) 
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