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Abstract 

Cognitive tests are typically scored and interpreted using an appropriate normative 

reference group, often similar age individuals with similar levels of education. 

Psychometric testing theory presupposes that demographic correction is always 

beneficial, supporting the ubiquitous use of age and education correction in clinical 

practice. In the context of dementia, however, there is some evidence suggesting that 

demographic correction (specifically age correction) may reduce the sensitivity of 

cognitive tests to age related cognitive decline. It was hypothesized that age correction 

would reduce the utility of cognitive tests for detecting cognitive change in individuals 

with mild cognitive impairment and mild dementia due to Alzheimer’s disease. This 

hypothesis was investigated using the National Alzheimer’s Coordinating Center 

(NACC) database. NACC data are contributed by the NIA-funded Alzheimer’s Disease 

Centers (ADCs). A series of hierarchical multiple linear regressions predicted the CDR® 

Dementia Staging Instrument Sum of Boxes Score (CDR-SB) from domain specific 

composite scores derived using different types of demographic correction (i.e., no 

correction, age correction, education correction, and both age and education correction). 

When looking at memory scores alone, raw scores captured more variation in the CDR-

SB. However, when using a typical neuropsychological (NP) battery approach, correcting 

for education only produced a superior model. Findings may be used by clinicians for 

positive social change by recognizing that a diagnosis between normal cognitive aging 

and dementia is never determined by a single cut off score in clinical practice, correcting 

for education is an essential component when processing standardized test scores. 
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Chapter 1: Introduction to the Study  

The overarching purpose of this study was to investigate the impact of 

demographic correction on the diagnostic validity of cognitive tests when differentiating 

between normal cognitive aging and dementia, because it was not clear how to best use 

normative data in dementia diagnostic evaluations. This goal was achieved by 

constructing a series of cognitive composite scores from tests subject to different types of 

demographic correction (i.e., uncorrected test scores, age corrected test scores, education 

corrected test scores, as well as age and education corrected test scores) and examining 

their relationship with a gold-standard measure used to determine the presence or absence 

of dementia, the CDR-SB.  

The fields of education and psychology recognize standardized testing and norm-

referenced scoring as a significant method of collecting meaningful information about 

individuals and groups. The American Educational Research Association (AERA) in a 

joint committee with the American Psychological Association (APA) and the National 

Council on Measurement in Education (NCME) asserted, “Educational and psychological 

testing and assessment are among the most important contributions of cognitive and 

behavioral sciences to our society” arguing that better decisions are made with their 

proper use (AERA, APA & NCME, 2014, p.1). Psychological testing plays a big part in 

the diagnosis of dementia, a progressive cognitive decline that is serious enough to take 

away a person’s independence. Since more people are surviving into old age, the period 

of highest risk for cognitive deficits related to dementia, the number of people that can be 

helped using a NP measurement perspective is increasing.  
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It is imperative to diagnose the condition early and with accuracy, as by the time 

clinical symptoms are clear enough to make a definitive diagnosis, too many neurons 

have already been destroyed and the damage is irreversible. There is a need to gain 

empirical characterizations of normal cognitive aging, mild cognitive impairment (MCI), 

and dementia using comprehensive NP methods (Bondi et al., 2014). Standardized testing 

using normative methods provides a comprehensive assessment of general cognitive 

functioning that identifies strengths and weaknesses in examinees with a variety of 

neurological conditions. While brief global cognitive assessment screening measures like 

the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination 

(MMSE) are used to delineate between healthy aging and dementia using cut off scores, 

they are limited in their sensitivity to cognitive impairment and do not reliably 

differentiate normal from diseased individuals until late in the course of the illness 

(Malek-Ahmadi et al., 2015; Roalf et al., 2013; Stephan et al., 2017).  

Psychometric theory has long recognized that the individual’s performance on 

standardized tests is strongly related to demographic variables such as age and education. 

For example, an 80-year-old man with 8 years of education cannot be expected to achieve 

the same memory performance as a 30-year-old with 20 years of education. Clearly, 

comparing the elderly individual’s performance to that of the 20-year-old in this scenario 

would be inappropriate. Rather, cognitive testing is typically interpreted using 

demographically corrected scores that allow an “apples to apples” comparison. In the 

example above, the 80-year-old man’s performance would be demographically corrected 

by comparing his performance to other similar aged individuals with similar levels of 
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education. Therefore, it is standard practice to demographically correct test scores for age 

and education to increase their sensitivity to detecting impairments and facilitate test 

score comparison to an appropriate normative cohort (Heaton et al., 2004; Malek-Ahmadi 

et al., 2015; Petersen et al., 2014; Quaranta et al., 2016; Smith & Bondi, 2013). In certain 

cases, demographic correction may enhance sensitivity to cognitive changes. For 

example, if the 20-year-old in the example above is compared to other young, highly 

educated individuals, then the stringent expectations placed on his performance are more 

likely to reveal a change has occurred (Heaton et al., 2004; Malek-Ahmadi et al., 2015; 

Quaranta et al., 2016; Schoenberg & Scott, 2011). 

The current debate is whether the use of a normative system universally 

 improves diagnostic accuracy in an aging population. Researchers argue that current 

norms may underestimate the presence of cognitive impairments in the older population 

because the norms are contaminated with undiagnosed cognitively impaired individuals 

(Hassenstab et al., 2016; Hessler et al., 2014; O’Connell & Tuokko, 2010). If individuals 

with undiagnosed impairments are present in “normal samples” of healthy elderly, then 

this decreases the performance expectations for the group as a whole and increases 

variability, thus obscuring the detection of change (Hassenstab et al., 2016; Hessler et al., 

2014; O’Connell & Tuokko, 2010). Considering that the base rate of dementia becomes 

incredibly high, around 40% over age 80 (Alzheimer’s Association [AA], 2018) this is a 

serious problem for NP research. A limited number of studies suggested that raw test 

scores or education-only test scores may be more sensitive to impairment (Hassenstab et 

al., 2016; Hessler et al., 2014; O’Connell & Tuokko, 2010). The use of partially corrected 
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and uncorrected test scores has not been rigorously empirically evaluated, and further 

research on this topic is justified (Smith & Bondi, 2013).  

It is imperative to continually monitor changes and revise key documents in this 

rapidly evolving field to develop the utility of this body of knowledge (AERA, APA & 

NCME, 2014; Smith & Bondi, 2013). When a rival hypothesis challenges the status quo, 

the validation process must continue to obtain empirical evidence by conducting a logical 

analysis that evaluates the new proposition. Outcome studies using comprehensive NP 

testing to reveal the patterns and profiles of cognitive dysfunction are critically needed to 

move the field significantly forward (Bondi et al., 2014; Malek-Ahmadi et al., 2015; 

Smith & Bondi, 2013). Important contributions can be made to the field if the findings of 

this investigation support that one set of scores (a) raw scores, (b) scores that are only age 

corrected, (c) scores that are only education corrected, or (d) a combination of age and 

education correction demonstrate better predictive power of the patient’s dementia 

severity as measured by the CDR-SB. This study addressed the specific need to 

differentiate normal aging and dementia using cognitive testing and various combinations 

of demographic corrections (normative data) to examine the strength of the test scores’ 

relationship to the patient’s clinical status. 

Problem Statement 

The rapid growth of our oldest population, referred to as the “silver tsunami”, will 

cause an unprecedented challenge to our health care industry, namely our Medicare 

system (AA, 2018; Gill, 2015; He et al., 2016). Because age is the number one risk factor 

for cognitive impairment due to Alzheimer’s disease (AD) and other types of dementia, 
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the natural increase in dementia cases will create historically high financial demands for 

medical expenses and ongoing personal care needs (AA, 2018; Gill, 2015; Smith & 

Bondi, 2013). It is estimated that costs will exceed $47 trillion for medical and long-term 

care expenses for all the individuals in the United States alive today that will develop 

dementia (AA, 2018, Zissimopoulos et al., 2014). Researchers are in search of a set of 

predictors to differentiate those who are experiencing normal cognitive decline due to 

aging from individuals who are in the process of developing dementia, an irreversible 

neurodegenerative process. NP methods may be ideal for that purpose.  

Significant medical, emotional, and social benefits for both the individual and 

their families will result from our ability to differentiate between normal aging, MCI, and 

dementia earlier and more accurately. The presumed benefit to identifying cognitive 

impairment earlier is that cognitively impaired individuals are at higher-than-average risk 

of transitioning into dementia (AA, 2018; Dubois et al., 2016; Hessler et al., 2014; Langa 

& Levine, 2014; Petersen et al., 1999; Smith & Bondi, 2013). Diagnostic accuracy of 

early dementia is critical because secondary prevention trials, disease-modifying 

treatments, need to be administered early in the disease process before too much damage 

has been done (AA, 2018; Dubois et al., 2016; Rockwood et al., 2014; Smith & Bondi, 

2013; Sperling et al., 2011; Ward et al., 2013; Zissmopoulos et al., 2014).  

There is no single universally accepted test for dementia. A differential diagnosis 

requires a thorough workup that includes laboratory, structural neuroimaging, neurologic 

and clinical information. In alignment with psychometric theory, it is widely recognized 

that an individual’s performance on standardized tests is strongly related to demographic 
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variables such as age, education, sex, and ethnicity, therefore raw scores are “corrected” 

to increase the test’s sensitivity to impairment (Heaton et al.; 2004; Malek-Ahmadi et al., 

2015; Quaranta et al., 2016; Schoenberg & Scott, 2011;). However, there is a lack of 

empirical evidence that these demographic corrections improve cognitive testing’s 

accuracy in late adulthood.  

Researchers now question whether the demographically corrected normative 

system universally improves diagnostic accuracy (Hassenstab et al., 2016; Hessler et al., 

2014; Holtzer et al, 2008; O’Connell & Tuokko, 2010). The current study was an 

outcome study that examined the relationship between the tests, normed different ways, 

and the dementia diagnostic status, with the goal of finding which way of scoring best 

captured the real-world changes associated with dementia. Because demographic 

corrections had not been rigorously empirically evaluated in late adulthood, further 

research into this area was warranted to determine if raw test scores may demonstrate 

superior sensitivity for differentiating between normal aging and dementia.   

Purpose 

The purpose of this quantitative study was to identify optimal normative methods 

for detecting pathologic cognitive change in elderly individuals. This was achieved by 

examining the manner in which demographic corrections for age alone, education alone, 

and age and education together affected the relationship between the NP test scores and a 

patient’s clinical dementia severity as measured by the CDR-SB. Individuals with normal 

cognition, mild cognitive impairment (i.e., predementia, and mild dementia due to AD 

served as the study population. Analyses proceeded in three steps. First, tests were scored 
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using four different methods of demographic correction (i.e., no correction, age 

correction, education correction, age and education correction). This yielded four 

different sets of test scores. Second, test scores were aggregated into cognitive composite 

scores (i.e., one set of composite scores per norming method). Finally, the relationship of 

each set of cognitive composite scores to dementia severity status was analyzed using 

four different hierarchical linear regressions to determine which normative method 

captured the most variance associated with the cognitive changes that accompany 

dementia. The R2 values from these different regressions were compared across the 

different norming methods to identify which method of demographic correction was most 

strongly associated with the dementia severity status. Akaike’s Information Criterion 

(AIC) was calculated and evaluated using published cutoffs frequently used to compare 

non-nested models (Burnham & Anderson, 2004).  

 Multiple regression was ideally suited for this task given that it is explicitly 

designed for examining the magnitude of association between a set of continuous 

predictor variables and a continuous outcome variable (Field, 2013). In this study, 

composite scores derived from tests scored using four different methods of normative 

correction served as the continuous predictor variables in four different hierarchical linear 

regressions (i.e., one for each norming method) modeling the CDR-SB, a gold-standard 

measure of the extent to which cognitive loss interferes with an individual’s real-world 

functioning ([dementia status]; Burke et al., 1988). As above, the R2 values and AIC 

values from the different regressions were compared across norming methods, to 
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determine which method best captured functional decline due to cognitive impairment in 

MCI and AD dementia. 

Because the order of entry into a hierarchical linear regression model greatly 

impacts the results, the order of entry was defined a priori, based on prior work. This 

facilitated comparability across models. It was hypothesized that memory and executive 

function would be most strongly related to dementia severity status, followed by 

language and attention function. Impairments in memory and executive functioning have 

been established as prototypical early changes in presentations of AD (Karantzoulis & 

Galvin, 2011). It was also predicted that age-adjustment would decrease the magnitude of 

the association between cognitive test scores and the CDR-SB while education-

adjustment would increase the magnitude of association between cognitive test scores 

and the CDR-SB. The findings of this study may aid in determining how to best use 

normative data in dementia diagnostic evaluations, identify specific and increase the 

understanding of cognitive biomarkers in a specific neurodegenerative disease.  

Significance 

Malek-Ahmadi et al., (2015) asserted that classification of impairment using 

normative data that corresponds with a specific clinical diagnosis is needed to further the 

field. Mortamais et al. (2017) argued that secondary prevention trials are hindered by a 

lack of proximal cognitive outcome markers. The results of this study may advance the 

understanding of the issues raised by these researchers. This project was unique because 

it is assumed that we should use age- and education-corrected scores in standardized 

testing, but it has not been rigorously empirically evaluated in our aging population 



9 

 

(Quaranta et al., 2016). Previous researchers who have examined the impact of age and 

education corrected scoring focused either on a single test score (Sliwinski et al.,1996; 

Sliwinski et al., 1997), or used heterogeneous composite scores that represented multiple 

cognitive domains (Hessler et al., 2014). One novel feature of this study was the creation 

of domain-specific cognitive scores for (a) memory, (b) executive function, (c) language, 

and (d) attention. This allowed for the precise investigation of the extent to which age and 

education correction affected the predictive validity of these individual cognitive 

domains. This is important because it is unlikely that cognitive domains are affected by 

demographic variables in a uniform manner. For example, we know that processing speed 

declines with age (Eckert, 2010) but crystallized intelligence such as vocabulary and 

knowledge remain relatively stable and may even improve during senescence (Harada et 

al., 2013). It stood to reason that age correction might enhance the accuracy with which 

changes in processing speed could be detected across the lifespan and is less important 

when measuring crystallized knowledge. No studies could be located that examined the 

relationship between dementia severity and demographically corrected cognitive test 

scores at an individual domain level.  

Positive social change results from improvements that promote earlier detection 

of neurodegenerative diseases allowing for better treatment planning and prediction of 

progression into dementia. The ability to delay the progression of dementia, even just for 

1 year, is shown to have significant medical, emotional, and social benefits for the 

individual, as well as financial benefits for our nation. Opening this window to earlier 

interventions gives the individual more time to seek treatment, learn compensatory 
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strategies, and participate in their own care and estate planning. This has the potential to 

save money on the historically-costly long course of this disease (AA, 2018; Dubois et 

al., 2016; Langa & Levine, 2014; Zissimopoulos et al., 2014).  

Background 

Francis Galton was credited with launching the modern psychological testing 

movement using systematic data he collected on different psychological processes in 

1884; not only did he pioneer tests of sensory discrimination, but he also developed the 

use of self-report measures (rating scales) along with the statistical methods necessary for 

analysis of the data (Anastasi & Urbina, 1997). After a chance meeting with an American 

psychologist, James McKean Cattell, a former student of Wilhelm Wundt, Cattell merged 

Galton’s new testing movement with what he learned in Wundt’s experimental laboratory 

in Leipzig, Germany. Cattell continued his work during his tenure at the University of 

Pennsylvania and furthered psychological testing when he proposed a series of 10 

different tests and measurements to explore the “constancy”, “interdependence”, and 

“variations of mental processes” (Cattell, 1890). Cattell also sketched out rudimentary 

methodology for standardized administration in an effort to gain the uniform results 

necessary to enable comparisons across different times and places. Cattell’s work helped 

spread the interest in quantifying mental abilities to further psychology as a science.  

 The next hundred years in psychological testing research saw huge leaps forward 

with an understanding of measurement error, validation studies, and the development of 

norms for different populations (Cortina et al., 2017). Alfred Binet created the first 

comprehensive standardized test in 1904 to determine how students would achieve in a 
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classroom, and along with his advance came the development of norm-referenced scoring 

to estimate the position of the individual within the context of a larger population. In 

other words, was the person’s performance “normal” for students of the same age, and by 

comparing students to each other he determined if a particular student was ahead-of or 

behind the “norm” (Binet & Simon, 1980). Researchers eagerly adopted these statistical 

significance and prediction models that emphasized psychometric properties and 

classification, and an explosion of new measures and data-analysis innovations were 

developed (Cortina et al., 2017).  

The use of testing in the field of neuropsychology began around WWII when the 

assessment and recovery of brain injured soldiers created a new need in the field of 

testing beyond the sensory, vocational, and intelligence testing that was currently 

available. Ralph Reitan, a recent college graduate, was given the task of evaluating brain-

injured soldiers and found a lack of publications available for reference (Grant & Heaton, 

2015). The profiles and patterns that were revealed by NP testing became a key 

component in making a differential diagnosis, predicting the progression of, and planning 

the treatment for neurodegenerative diseases. This research consistently demonstrated 

that actuarial methods were a necessary component for comprehensive assessment 

(Heaton et al., 2004; Quaranta et al., 2016; Ritchie, et al., 2015; Smith & Bondi, 2013; 

Sutphen et al., 2015). The use of a normative system in NP testing, with its roots in the 

work of pioneer Alfred Binet, has since been assumed to provide more refined estimates 

of cognitive performance and better detection of cognitive impairments (Heaton et al., 

2004; Malek-Ahmadi et al., 2015).  
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Normative scores are derived from the performance of a large, diverse normative 

sample that demographically represents the U.S. population. Yet some researchers have 

argued that despite their attempt at representativeness, it may be advantageous to develop 

norms based on specific subgroups and subpopulations to improve the utility of testing 

(Brown & Bryant, 1984; Chew et al., 1984; Hassenstab et al., 2016; Holtzer et al., 2008; 

Oosterhuis et al., 2016; Svinicki & Tombari, 1981). The aging population may be one 

specific subgroup that warrants the use of an alternative method because of the presence 

of undiagnosed cognitive impairments in the normative reference population. Researchers 

forwarded a proposal that demographic corrections may not improve diagnostic accuracy 

in the service of diagnosing cognitive impairment in an older population because the 

norms are tainted with individuals who may be in early stages of a degenerative cognitive 

decline, which compromises the mean performance and increases the variability in the 

normative sample (Hassenstab et al., 2016; Hessler et al., 2014; Holtzer et al., 2008; 

O’Connell & Tuokko, 2010; Wyman-Chick et al., 2018). Yet other researchers like 

Quaranta et al. (2016) failed to support the hypothesis that raw scores were superior to 

age-corrected scores and normative scoring remains standard practice. Wyman-Chick et 

al. (2018) argued that the selection of the normative comparison group greatly impacts 

both research and clinical interpretations of cognitive data. Yet no studies could provide 

rigorously validated impact of demographic corrections on the diagnostic accuracy of 

cognitive testing in individual cognitive domains when employed in dementia diagnostic 

evaluations. The current study focused on the accuracy of raw scores versus 
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demographically corrected scores using an outcome study with a large data set gathered 

through the NACC database.  

Framework 

This study was grounded in testing and measurement theory that governs how 

psychological constructs are measured and compared between individuals and groups. 

Professor James McKean Cattell (1890) at the University of Pennsylvania wrote about 

the benefits of standardized psychological testing, arguing that efforts:   

Would be of considerable scientific value in discovering the 

constancy of mental processes, their interdependence, and their 

variation under different circumstances…the scientific and 

practical value of such tests would be much increased should a 

uniform system be adopted, so that determination made at different 

times and places could be compared and combined. (p. 347) 

Frenchman Alfred Binet furthered the utility of testing and measurement in an 

educational setting when he developed the first comprehensive standardized test in 1904 

as a method of classifying which students could or could not achieve in the classroom. 

Binet never claimed that his scale could measure intelligence like a “ruler can measure a 

linear surface”, but instead he claimed to provide “…a classification, a hierarchy among 

diverse intelligences; and for the necessities of practice this classification is equivalent to 

a measure” (Binet & Simon, 1980, p. 41). Binet developed what is now known as norm-

referenced scoring to allow an estimation of the individual’s position within the context 
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of a larger population. Thus, norms became a fact of life in educational and psychological 

assessment.  

It was quickly realized that much of variance between test scores could be 

accounted for by a single demographic variable, and mounting evidence over the 

evolution of standardized testing showed that even more variances could be accounted for 

with a combination of multiple demographic variables (Barona et al., 1984; Karzmark et 

al., 1985; Wilson et al., 1978). The addition of demographic corrections became almost 

mandatory in psychological testing because these factors are relevant in an individual’s 

diagnosis (Quaranta et al., 2016). In 2004, Heaton et al. published a widely adopted 

comprehensive set of demographically adjusted NP norms for more than 50 commonly 

used measure for adults ages 20- to 85-years old which helped solidify the use of a 

normative system in the field of NP testing at all ages.  

Using the established framework, the predictor variables, the demographically 

corrected scores, should better predict the outcome variable (the dementia severity rating 

as measured by the CDR-SB) because demographically corrected scores are believed to 

improve diagnostic accuracy. But researchers argue different reasons that this may not be 

true. Manuals for standardized testing give national norms, but the utility of norms is 

questioned in an aging demographic. First and foremost, individuals in the normative 

sample population may already be transitioning into dementia and contaminating the 

norms by lowering the mean performance and increasing the variability in cross-sectional 

normative samples (Hassenstab et al., 2016; Hessler et al., 2014; O’Connell & Tuokko, 

2010). Similarly, many individuals in an aging normative sample may be prescribed brain 
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impairing maintenance medications that also affect their performance and increase the 

variability within the sample. Second, is the Flynn effect; norms become less accurate 

when too much time passes since publication due to changes in demographics, 

socioeconomics, and cultural factors that modify the reference population. Third, norms 

become more forgiving and tolerant of errors as age increases, possibly underestimating 

the risk of dementia in our oldest population. The current study hypothesized that age-

corrected scores would have the lowest magnitude of association with dementia severity 

level as measured by the CDR-SB, while education-corrected scores would have a higher 

magnitude of association with dementia severity level as measured by the CDR-SB. 

Research Questions 

The overarching research question was: how does demographic correction for age 

and education affect the relationship between cognitive tests and functional deterioration 

due to cognitive impairment? Some researchers proposed that raw test scores may have 

superior sensitivity for detecting cognitive changes accompanying dementia in an aging 

population, over the standard practice of demographically correcting the scores for age 

and education level (Hessler et al, 2014; Holtzer et al., 2008; O’Connell & Tuokko, 

2010). It is not clear how to best use normative data in dementia diagnostic evaluations 

using cognitive testing and there is no consensus in the literature making a rigorous 

empirical investigation using an outcome study warranted. Tests will be scored 4 

different ways (a) corrected for gender, age, and education (GEA); (b) corrected for 

gender and age (GA); (c) corrected for gender and education level (GE); and (d) raw test 

scores corrected for gender only (G). Cognitive composite scores representing memory 
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and learning, executive functioning, language, and attention were built for each norming 

method. Then one multiple linear regression equation per norming method (four total) 

was built. These models were then compared by examining the R2 and AIC values to 

determine which model “best” captured functional decline due to cognitive loss. The 

multiple linear regression equations outlined below were used to determine which set of 

scores had the strongest relationship with the patient’s clinically determined dementia 

severity level as measured by the CDR-SB. 

1. The relationship between the CDR-SB and cognitive composites built from 

GEA corrected data. 

2. The relationship between the CDR-SB and cognitive composites built from GA 

corrected data.  

3. The relationship between the CDR-SB and cognitive composites built from GE 

corrected data.  

4. The relationship between the CDR-SB and cognitive composites built from 

“raw” or G corrected test data. 

The novel feature of the current study was the creation of domain-specific cognitive 

composite scores. There were 4 steps to each regression equation because each composite 

score, memory, executive function, language, and attention, was entered into the equation 

in a hierarchical fashion allowing for the precise investigation of the extent to which the 

demographic corrections affected the predictive validity of each individual cognitive 

domain score. 
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RQ1:  How do age and education correction affect the relationship between cognitive 

tests and functional deterioration due to cognitive impairment (i.e., dementia severity)?  

H1:  Age and education correction increase the extent to which NP tests capture 

functional decline due to cognitive loss in dementia. This will be tested by 

comparing R2 and AIC values from regression equation 1 with regression equation 

4. For example, if the R2 value in equation 1 is moderate (R2 > .25) and the R2 

value in equation 4 is strong (R2 > .4) as per conventions from Cohen (1988), then 

the null hypothesis can be rejected. Alternatively, if the AIC of model 4 is less 

than the AIC value of model 1 by 4 or more (Burnham & Anderson, 2016), then 

the null hypothesis can be rejected.  

H01:  Age and education correction decrease or have no effect on the extent to 

which NP tests are able to capture functional decline due to cognitive loss in 

dementia. 

Sub RQ2:  How does age correction affect the relationship between 

cognitive tests and functional deterioration due to cognitive impairment?    

H2:  Age correction decreases the extent to which NP tests are able to 

capture functional decline due to cognitive loss in dementia. This will be 

tested by comparing R2 and AIC values from regression equation 4 with 

regression equation 2. For example, if the R2 value in equation 2 is 

moderate and the R2 value in equation 4 is strong, then the null hypothesis 

can be rejected. Alternatively, if the AIC of model 4 is less than the AIC 

value of model 2 by 4 or more, then the null hypothesis can be rejected.  
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H02:  Age correction increases or has no effect on the extent to which NP 

tests are able to capture functional decline due to cognitive loss in 

dementia. 

Sub RQ3:  How does education correction affect the relationship between 

cognitive tests and functional deterioration due to cognitive impairment?    

H3:  Education correction increases the extent to which NP tests are able to 

capture functional decline due to cognitive loss in dementia. This will be 

tested by comparing R2 and AIC values from regression equation 4 with 

regression equation 3. For example, if the R2 value in equation 4 is 

moderate and the R2 value in equation 3 is strong, then the null hypothesis 

can be rejected. Alternately, if the AIC of model 3 is less than the AIC 

value of model 4 by 4 or more, then the null hypothesis can be rejected. 

H03:  Education correction decreases or has no effect on the extent to 

which NP tests are able to capture functional decline due to cognitive loss 

in dementia.  

Optimal demographic correction (as determined via the analyses above) will result in 

better diagnostic performance when differentiating normal controls from individuals with 

dementia. Comparison of the R2 values of the various regression equations presented 

above will clarify the extent to which various types of demographic correction (e.g., age, 

education, age & education) influence the ability of cognitive tests to detect meaningful 

variation in dementia severity. While the above tests are not associated with significance 

levels, R2 values and AIC values are used commonly to compare non-nested models and 
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allow the important research questions above to be answered quantitatively albeit not 

with a given significance level as in a traditional null hypothesis testing approach.  

Nature of the Study 

This was a quantitative study of concurrent case-referent design for evaluating 

test-criterion relationships. This study looked at the relationship between the cognitive 

tests, normed different ways, and the clinical dementia severity rating (CDR-SB) using 

hierarchical multiple linear regression. Prior to modeling, the data was described by 

calculating descriptive statistics including the mean, standard deviation, and a range of all 

study variables. The intercorrelations of the cognitive test scores, age, education, and the 

CDR-SB was calculated for each of the 4 different norming methods using bivariate 

Pearson correlations (one correlation matrix per norming method). The correlations 

provided a direct measure of the strength of the relationship between all quantitative 

study variables and aided in the interpretation of the hierarchical multiple linear 

regression analyses for testing the primary study hypothesis, help detect suppression, and 

served as a measure of variable importance (Nathans et al., 2012). Following descriptive 

statistics and analysis of intercorrelations between tests, the primary study hypotheses 

was tested using least squares hierarchical multiple linear regression. Each set of 

cognitive composites, one per norming method, was regressed on the CDR-SB. Because 

there are no universally accepted statistical tests by which to compare these non-nested 

models, these differences were evaluated quantitatively using R2 values and AIC values, 

but were not be associated with a significance level. This told us the extent to which these 
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different methods of scoring captured clinically meaningful variations in dementia 

severity status and the extent to which they differed from one another.  

Hierarchical multiple regression was chosen for this analysis because it allowed 

us to fit a model to the data that enabled the prediction of the outcome variable, the CDR-

SB, from a number of different independent variables, the cognitive tests for each of the 4 

cognitive domains scored 4 different ways. This technique is appropriate when examining 

the magnitude of association between a set of continuous predictor variables and a 

continuous outcome variable (Field, 2013). The comparison of the R2 and AIC values 

from the resulting models facilitated an exploration of the extent to which different 

scoring methods differed in their ability to capture meaningful variability in dementia 

severity status. Identifying optimal norming methods facilitates greater diagnostic 

accuracy in the context of dementia.  

Sources of Data 

The University of Washington’s NACC is funded by the National Institute on 

Aging and maintains a valuable resource, a cumulative database with which researchers 

can collaborate (NACC, 2010). The NACC shares all data, providing an excellent 

resource for investigating cognitive aging and dementia in a well-defined cohort. This 

data, the Universal Data Set (UDS), will be obtained from the NACC who took the first 

steps to standardize data collection across the ADCs in 1999 in an effort to advance better 

research hypotheses; by the end of 2016 data had been collected from 34,748 participants 

(Weintraub et al., 2018a). Participants with normal cognition, MCI, and various 

etiologies of dementia are recruited and followed annually. Data collection using Version 
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3 began in March 2015 as part of an ongoing effort to produce a uniform data set with an 

updated NP battery allowing research institutions to collaborate using freely available 

standardized instruments (Besser et al., 2018). The current study used the updated 3rd 

version of the NACC’s UDS Neuropsychological Assessment Battery (UDS-3 NAB) 

which included measures of dementia severity, verbal and nonverbal memory, executive 

function, language, and attention (Besser et al., 2018). The instruments produced both 

raw test scores and age- and education-corrected scores and were modeled as a function 

of the patient’s dementia severity level as measured by the CDR-SB. All identifying 

information of the subjects was scrubbed prior to the dissemination of the data to assure 

complete confidentiality.  

Summary 

 Since the first standardized psychological testing was used to quantify an 

individual’s performance and compare it across groups, norm-referenced scoring was 

used to make raw scores more relevant and useful. Researchers draw conclusions about 

an individual’s performance by comparing scores to national norms that allow them to 

find if the person’s performance is “typical” and determine whether their functioning is 

at, ahead, or behind the norm. The presence of appropriate national norms is necessary 

for these conclusions. A recent proposal questions the utility of age- and education-

corrected scores in late adulthood, postulating that these norms may be contaminated 

with undiagnosed individuals in preclinical or prodromal stages of neurodegenerative 

diseases, making the tests less sensitive to the detection of cognitive impairments in our 

aging population. 
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AD and other dementias are some of the costliest conditions in our society and 

predicted to reach crisis levels as our oldest population grows faster than any other 

demographic and threatens to place great financial strain on our health care system. 

Secondary prevention trials are handicapped by a lack of cognitive outcome markers and 

the ability to classify impairment using standard normative data. The current search for a 

set of predictors, including cognitive biomarkers, that distinguish individuals who are 

experiencing the effects of normal aging from those in the process of developing 

neurodegenerative diseases gives rise to the question concerning the utility of raw scores 

versus demographically-corrected scores in norm-referenced cognitive testing of an older 

population. The current study aimed to explore the strength of the relationship between 

tests scored different ways and dementia severity with the ultimate goal of finding which 

way of scoring was most diagnostically accurate.  
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Chapter 2: Literature Review 

The literature review in this chapter justifies the need for additional research to 

examine whether the current standard practice of age- and education-correcting scores in 

NP testing are best practice when attempting to differentiate between normal cognitive 

aging and dementia in an aging population. Some researchers championed the proposal 

that national norms are polluted with undiagnosed individuals in the early stages of 

dementia, decreasing the tests’ ability to detect cognitive impairment (Hessler et al., 

2014; Holtzer et al, 2008; O’Connell & Tuokko, 2010; Wyman-Chick et al., 2018). But 

others failed to support this hypothesis and current practice still adheres to demographic 

correction (Malek-Ahmadi et al., 2015; Quaranta et al., 2016). This study addressed a 

current debate in the literature over which set of data, normative or raw scores, best 

predict the patient’s clinical level of dementia using data obtained from NACC’s ADCs. 

The current study may further the utility of NP testing in the service of earlier and more 

accurate detection of neurodegenerative diseases because optimal demographic correction 

will result in better diagnostic performance when differentiating normal controls from 

individuals with dementia. 

This chapter starts by addressing the major social problem, the public health 

burden of dementia. It then covers an overview of dementia including the concept of 

MCI, and the criteria for dementia diagnosis. From there, dementia is discussed starting 

with the most common etiology, Alzheimer’s disease (AD), followed by how the testing 

profiles of the next common causes of dementia compare and contrast, including vascular 

dementia, Lewy body disease, frontotemporal dementia, and Parkinson’s disease. A 
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history of psychological and educational testing is explored and connected to the role of 

NP testing in a clinical setting with an emphasis on norm referenced interpretation in NP 

assessment, methods of norming, and norm referenced interpretation specifically for 

dementia diagnostic evaluations.  

The literature search included articles electronically accessed through Walden 

University library’s databases; Academic Search Complete; Google Scholar; Mental 

Measurements Yearbook with Tests in Print; Proquest; psycTESTS; PubMed; SAGE; 

Taylor and Francis Online; Thoreau; World Health Organization (WHO), and open 

access articles from PubMed.gov and NIH.gov. Other resources such as UpToDate and 

Elsevier were accessed through an alternative institution’s library databases. Search terms 

included; Alzheimer’s disease; dementia; dementia assessment; diagnostic accuracy and 

dementia assessment; diagnostic accuracy and memory impairment; diagnostic accuracy 

and mild cognitive impairment; NP assessment and dementia; demographic correction 

and neuropsychology and dementia; and demographic correction of NP test scores. 

Multiple books, both in print and electronically, were also accessed and reviewed for 

relevant information. The search had a rough scope over the last decade with an emphasis 

on the last 5 years of research, even though it was necessary to look into the annals of 

history when tracing the origins of psychological and educational testing theory.  

The Public Health Burden of Dementia 

Our healthcare system is about to face an unprecedented challenge as the growth 

of our oldest population, the baby boom generation, reaches the age of high risk for the 

development of neurodegenerative diseases like AD and other types of dementia (AA, 
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2018; Gill, 2015; Livingston et al., 2017; Smith & Bondi, 2013; WHO, 2018;). As the 

number of older Americans increases rapidly due to medical advances and better 

environmental conditions, so will the number of new cases of dementia. Significant 

financial, medical, and emotional benefits will result from earlier intervention because 

disease-modifying and psychosocial interventions are most effective early in the disease 

process; delaying the onset of the disease, even just for one year, has significant benefits 

due to the long duration of the illness prior to death that carries a heavy emotional and 

financial burden. (AA, 2018; Dubois et al., 2016; Hurd et al., 2013; Langa & Levine, 

2014; Rockwood et al., 2014; Smith & Bondi, 2013; Sperling et al., 2011; Ward et al., 

2013; Wei-Hong et al., 2017; Zissmopoulos et al., 2014).  

 Lifetime expenditures for an individual with dementia are roughly $341,840, three 

times more than the cost of care for people without dementia for the same age group 

(AA, 2018). Medicare and Medicaid cover 67% or $186 billion of the total $277 billion 

in these costs, deeming this issue a major social problem (AA, 2018). Payments in every 

category; primary care physicians; specialists; lab services; medication; emergency room 

visits; inpatient hospital stays; skilled nursing facilities; and hospice care are higher for 

those with dementia, 23 times greater than those who remain dementia free (AA, 2018). 

Even with the financial assistance from Medicare and private insurance, out-of-pocket 

expenses are an additional burden to an already emotionally stressed family dealing with 

the dementia diagnosis of a loved one.  

 In addition to medical expenses and lost economic value for unpaid care, 

dementia caregivers reported more physical and mental health issues than the general 
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population (AA, 2018; Ma et al., 2018; Roth et al., 2015; Solway, 2017). Caregivers 

spend an average of 21.9 unpaid hours a week caring for a loved one with dementia (AA, 

2018). This often exacerbates their own health issues; increases emotional stress and 

depression; and depletes income and finances due to disruption in employment and 

additional personal health care expenses (AA, 2018; Ma et al., 2018; Roth et al., 2015; 

Solway, 2017). This caregiver strain was even shown to increase the caregiver’s risk of 

death (Roth et al., 2015). While most caregivers reported caring for their loved one was 

rewarding, they also acknowledged the role is highly stressful (AA, 2018; Solway, 2017). 

This is such a prominent issue that the National Academies of Sciences, Engineering, and 

Medicine (2016) released a report entitled Families Caring for an Aging America which 

focused on national health care reform efforts that recognize the role of family members 

and encourage health care providers to deliver evidence-based services to both care 

recipients and their caregivers.  

Other benefits for the individual include early intervention programs such as 

cognitive rehabilitation that maximizes reserved cognitive resources by teaching 

compensatory strategies, behavioral interventions like diet and exercise that may increase 

quality of life and prolong independence, and estate and care planning while the person 

can still participate (AA, 2018; Livingston et al., 2017). Changing the trajectory of AD 

and other neurodegenerative diseases has the potential to improve the lives of patients, 

their families, and society as a whole.  

The WHO (2018) called to prioritize dementia as a global health issue and 

reported the prevalence and financial burdens of people living with syndromes of 
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cognitive impairment worldwide, proposing the need for public policies to address the 

impending crisis: 

Almost 9.9 million people develop dementia each year, the majority (63%) 

of whom reside in low- and middle- income countries. Dementia currently 

affects approximately 50 million people worldwide; a number that is 

projected to grow to 82 million by 2030 and 152 million by 2050. It is the 

second largest cause of disability for individuals aged 70 years and older, 

and the seventh leading cause of death. Dementia imposes an estimated 

economic cost of approximately US $818 billion per year globally – or 

1.1% of global gross domestic product. Left unaddressed, dementia could 

represent a significant barrier to social and economic development. (p. 6)  

Research focused on earlier and more accurate diagnoses is part of the formula leading to 

improvements in biomedical, psychological, and social interventions that have the 

potential to reduce the number of new cases by 10-20% because of their potential to ease 

the physical, psychosocial, and financial hardships for individuals, their families, and 

developing nations (AA, 2018; WHO, 2018).  

Overview of Dementia  

Normal or Abnormal Cognitive Aging?  

The life-span perspective classifies human development from conception to death, 

encompassing all stages and phases of growth, maturity, and aging. Viewing aging 

through this lens allows for a model that avoids pejorative or abnormal terms when 

psychological processes such as cognition change during the maturation process. It is 
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clear that adults peak cognitively between the ages of 20 and 40, but it is also established 

that fluid intelligence, efficient functioning of the central nervous system, declines 

steadily over adulthood beginning at age 35 or 40 (Boyd & Bee, 2019). Given ample 

time, older adults will still come up with the adequate answers, just not as quickly as 

younger adults. Using a life-span perspective, cognitive changes due to aging are not seen 

as an abnormal condition, but rather a normal developmental stage of life. The difference 

between normal cognitive aging and abnormal cognitive aging is an impairment that is 

distinct from normal aging, not typical of age-matched peers, and objectively measurable 

using NP testing measures. 

Cognitive changes are measured by NP testing, tests designed to detect 

quantitative or qualitative changes in the main cognitive domains of memory, executive 

function, language, attention, processing speed, and visuospatial skills. When an 

individual scores > 1 SD below the age corrected normative mean on a testing measure in 

a single domain with no interference in Instrumental Activities of Daily Living (IADLs; 

e.g., driving, managing one’s finances, self-managing medications, using the community, 

etc.) a diagnosis of MCI may be made. When the individual scores > 1 SD below the age 

corrected normative mean in multiple domains leading to difficulty with IADLs then a 

diagnosis of dementia may be considered. There is a general acknowledgment that 

preclinical dementia-related neuropathology is present in normally aging individuals 

prior to any measurable cognitive decline (Mortamais et al., 2017; Ritchie et al., 2015; 

Rockwood et al., 2014; Smith & Bondi, 2013; Sperling et al., 2011; Sutphen et al., 2015 

Ward et al., 2013; Wei-Hong et al., 2017). This grey area, the phase between normal 
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cognitive functioning and clinical dementia, is seen as the most promising period for 

disease-modifying interventions that have the potential to alter the trajectory of the 

disease and has come to be widely accepted as the concept of MCI.  

Our ability to predict which patients with MCI will remain stable, typical of 

normal aging, versus which will convert to dementia and continue to decline, is a major 

goal in current research. NP testing plays an important role in the multidisciplinary search 

for answers (Bondi et al., 2014; Smith & Bondi, 2013). NP testing becomes a key front-

line component in the detection of preclinical dementia because, unlike a lumber 

puncture, it is non-invasive, does not require expensive medical equipment like brain 

imaging, and is easy to administer in a variety of clinical settings.  

The Evolution of the Concept of MCI 

Kral’s (1962) seminal work delineated the difference between “benign” (normal) 

and “malignant” (pathological) aging, many terms have been proposed to describe the 

concept of the “not-normal but not-demented clinical state”, and MCI has clearly gained 

widest acceptance (Smith & Bondi, 2013, pp. 72-73). Petersen et al., (1995) adopted the 

term MCI as a diagnostic entity to reflect the earliest objectively measurable deficits in 

cognition when it is no longer normal relative to expectations for age, but the individuals 

can still live and function independently. The first guidelines for MCI proposed by 

Petersen et al. (1999) recommended that general criteria include a non-demented 

individual (does not meet the DSM criteria for a dementia syndrome) with generally 

intact cognition, preserved Activities of Daily Living (ADLs; e.g., personal hygiene, 

continence management, dressing, feeding, and ambulating) and minimal impairment of 
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IADLs, but experiencing subjective memory complaints that can be objectively 

measured. Smith and Bondi (2013) explained the concept of MCI and its meaning for the 

clinician: 

MCI constitutes that level of cognitive function wherein low-functioning 

normal older persons and high functioning dementia patients cannot be 

reliably distinguished. If all persons labeled as MCI are conceived of as 

belonging in either a normal population, not destined to develop dementia, 

or from a population that is developing dementia, then MCI can be thought 

of not as a condition present in the patient, but rather as a state of 

uncertainty in the clinician. (p. 73)  

MCI was incorporated into the DSM-5 as a mild neurocognitive disorder and is central in 

the field because it is considered a significant risk factor for the subsequent development 

of dementia. While a percentage of people with MCI remain stable, and a smaller 

percentage may recover completely, estimates varied from 43% to 83% conversion rate 

to dementia depending on the methodology used; but it is agreed that these patients are at 

higher risk for developing dementia (Bondi et al., 2014; Mazaheri et al, 2018; Mitchell & 

Shiri-Feshki, 2009; Petersen et al., 1999; Petersen et al., 2013; Petersen et al., 2015; 

Smith & Bondi, 2013; Ward et al. 2013; Wimblad et al., 2004). MCI is also important 

because it is the window when the least damage has occurred making it an ideal target for 

interventions. Thus, the concept defined as MCI has become a primary focus for research 

in neurodegenerative diseases.  
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Early in the MCI research, total learning score, also referred to as immediate 

recall, emerged as the single most sensitive and specific measure for distinguishing MCI 

from normal aging; researchers found the addition of a delayed recall measure enhanced 

classification accuracy and improved prediction of progression to AD dementia (Bondi et 

al., 2014; Smith & Bondi, 2013). As the conception of MCI evolved, it became 

recognized as a pathologically heterogeneous disorder and the concept was broadened to 

include deficits in other domains besides just memory (Smith & Bondi, 2013; Wimblad et 

al., 2004).  

A multidisciplinary consensus conference in 2003 expanded MCI into three 

subtypes, amnestic, multiple domain, and single nonmemory domain (e.g., language or 

visuospatial) and listed multiple possible etiologies; degenerative; vascular; metabolic; 

traumatic; psychiatric; and “others” (Wimblad et al., 2004). This was an important 

revision in the concept as subcortical dementias like Parkinson’s and Huntington’s 

diseases may leave memory relatively intact in the early stages while the first measurable 

deficits appear as compromised attention and processing speed (Smith & Bondi, 2013; 

Wimblad et al, 2004). Comprehensive NP testing is the best way to classify the specific 

subtype of MCI (Bondi et al., 2014; Wimblad et al., 2004).  

In 2013, the DSM-5 (APA, 2013) classified MCI as Mild Neurocognitive 

Disorder and established the following criteria for diagnosis: 

A. Evidence of modest cognitive decline from a previous level of 

performance in one or more cognitive domains (complex attention, 
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executive function, learning and memory, language, perceptual-

motor, or social cognition) based on: 

1. Concern of the individual, a knowledgeable informant, or 

the clinician that there has been a mild decline in cognitive 

function: and 

2. A modest impairment in cognitive performance, preferably 

documented by standardized neuropsychological testing or, 

in its absence, another quantified clinical assessment.  

B. The cognitive deficits do not interfere with capacity for 

independence in everyday activities (i.e., complex instrumental 

activities of daily living such as paying bills or managing 

medications are preserved, but greater effort, compensatory 

strategies, or accommodation may be required).  

C. The cognitive deficits do not occur exclusively in the context of a 

delirium. 

D. The cognitive deficits are not better explained by another mental 

disorder (e.g., major depressive disorder, schizophrenia). (p. 605) 

When testing outcome shows that an individual’s memory is significantly lower 

than age expectations, but other domains (attention, language, visuospatial skills, and 

executive functions) remain intact, amnestic MCI is the preferred classification. If mild 

deficits are found in a number of different domains, multidomain MCI (with or without a 

memory component) is more appropriate. When one nonmemory domain is impaired, 
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such as visuospatial skills, then single nonmemory domain MCI is the most applicable.  

After a diagnosis of MCI is made and classified, then the clinician must attempt to 

determine the etiology of the impairment and plan for monitoring or treatment. The 

differential diagnosis of a cognitive disorder requires an extensive workup given the 

serious consequences of progressive degeneration and impending disability. NP testing 

plays an important role in the push for earlier and more accurate diagnoses that will allow 

for disease-modifying treatments to be developed, tested, and utilized successfully (Bondi 

et al., 2014; Mortamais et al., 2017; Smith & Bondi, 2013).  

The difference between MCI and dementia is the severity and prognosis. Once the 

criteria are met for a dementia diagnosis, there is progression over time. MCI, on the 

other hand, while considered a significant risk for future dementia does not always 

progress. Current research estimates the majority of patients with MCI transition to 

dementia within 5 years of the MCI diagnosis (Mazaheri et al., 2018). Differential 

diagnosis demands a comprehensive clinical assessment that includes a full neurological 

exam, brain imaging studies, and NP testing (Bondi et al., 2014; Mazaheri et al., 2018; 

Mortamais et al., 2017; Petersen et al., 2014; Smith & Bondi, 2013). The early and 

accurate diagnosis of MCI is increasingly important as patients are presenting concerns to 

their primary care physicians earlier, and secondary prevention trials seek to intervene 

sooner in the disease process to limit permanent damage to the brain. 

Dementia Criteria 

The term dementia is customary in most settings, but the DSM-V reclassified 

dementia as major neurocognitive disorder (APA, 2013). Some of the earliest research on 
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aging defined two types of changes related to cognition and behavior, “benign” and 

“malignant” (Kral, 1962). Benign changes were typical, developmental changes 

associated with aging and unrelated to diseased brain tissue, in other words, normal 

aging. Malignant changes were histopathological brain changes that were progressive in 

nature. As research continued, the focus became the ability to distinguish a normally 

aging individual, who was worried about their memory function enough to complain to 

their primary care provider, from a malignant or neurodegenerative process (Smith & 

Bondi, 2013). Currently, the DSM-V sets the consensus diagnostic criteria for a major 

neurocognitive disorder as:  

A. Evidence of significant cognitive decline from a previous level of 

performance in one or more cognitive domains (complex attention, 

executive function, learning and memory, language, perceptual-

motor, or social cognition) based on: 

1. Concern of the individual, a knowledgeable informant, or the 

clinician that there has been a significant decline in cognitive 

function; and  

2. A substantial impairment in cognitive impairment in cognitive 

performance, preferably documented by standardized 

neuropsychological testing or, in its absence, another quantified 

clinical assessment.  

B. The cognitive deficits interfere with independence in everyday 

activities (i.e., at a minimum, requiring assistance with complex 



35 

 

instrumental activities of daily living such as paying bills or 

managing medications). 

C. The cognitive deficits do not occur exclusively in the context of a 

delirium.  

D. The cognitive deficits are not better explained by another mental 

disorder. (APA, 2013, pp. 602-603) 

 The DSM-V requires the clinician to specify the etiology of the major 

neurocognitive disorder, a discussion of all the causes is beyond the scope of this paper, but 

the most prevalent causes are addressed in the following subsections. The most common 

cause of dementia is AD. The second most common cause is vascular disease, followed by 

Lewy body disease, and frontotemporal lobar degeneration (Ramirez-Gomez et al., 2017; 

Smith & Bondi, 2013). While AD, Lewy body disease, and frontotemporal dementia are all 

classified as neurodegenerative diseases, vascular disease is more diverse and does not 

always conform to the same standards. NP profiles and patterns aid in distinguishing these 

underlying pathologies (Ramirez-Gomez et al., 2017; Smith & Bondi, 2013; Stephan et al., 

2017). This is why the number of people that can be helped using a NP perspective is 

increasing.  

Alzheimer’s Disease 

 Over a century ago Alois Alzheimer, considered the father of neuropathology, 

was the first to describe a patient with the progressive form of dementia that now bears 

his name (Möller & Graeber, 1998). AD is the most common cause of dementia 

accounting for up to 80% of all cases (AA, 2018; Sutphen et al., 2015). In the United 
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States, one person develops the disease every 65 seconds (AA, 2018). Current estimates 

support that 10% of people age 65 have AD, with the prevalence of the disease increasing 

exponentially with age: three percent of people age 65-74, 17% of people age 75-84, and 

over 40% of people age 85 and older (AA, 2018; Hebert et al., 2013).  

 The first individuals to be born into the baby boom generation turned 72 in 2018, 

placing them at high risk for neurodegenerative disorders (AA, 2018). The rapid increase 

of our oldest population over the coming decades will stress our health care system as 

demand for medical care and long-term services will increase, placing a huge burden on 

Medicare that will cause a major economic ripple on our Nation’s budget (Barnett, et al., 

2014; Dubois et al., 2016; Hurd et al., 2013; Rockwood et al., 2014; Zissmopoulos et al., 

2014). Estimates claim a $935 billion in savings that can be realized over the 10-year 

period from 2026-2035 with an overall $7.9 trillion savings for the current U. S. 

population (AA, 2015). Our Nation will benefit from earlier and more accurate detection 

of neurodegenerative diseases like Alzheimer’s because of the potential to improve the 

lives of the millions of individuals yet to be diagnosed.  

 Prior to updated guidelines in 2011, a formal diagnosis of AD required that an 

individual already exhibit significant problems with learning, thinking, or memory. The 

seminal work of Braak and Braak (1991) changed how AD was viewed based on the 

discovery of neurofibrillary tangles (a known biomarker of AD) in people as young as 30. 

This sparked a surge of research that led to Jack et al.’s (2010) continuum model of AD 

that begins with a preclinical period, decades before symptoms appear but when 

biological changes are already taking place in the central nervous system, moving into 
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MCI where cognitive decline can be objectively measured, and finally full-blown 

Alzheimer’s dementia. This revised model of the Alzheimer’s trajectory continues to 

guide most of the current direction in research and practice with the hopes that disease-

modifying interventions will be developed and utilized during the earliest stages to 

change the course of the disease prior to total dementia setting in (Jack et al., 2013).  

 It is certain that a preclinical stage of AD begins decades before symptoms 

appear, when biological changes take place, but the individual remains asymptomatic 

(AA, 2018; Jack et al., 2013; Jack et al., 2015; Mazaheri, 2018; Mortamais et al., 2017; 

Ritchie et al., 2015; Sutphen et al., 2015). This has led some researchers to categorize AD 

as a disease of midlife rather than of old age (Ritchie et al., 2015; Sutphen et al., 2015). 

Jack et al. (2013) proposed the main AD biomarkers change in a temporally ordered 

manner; starting with an abnormal accumulation of amyloid β protein (Αβ) as plaques, 

and hyper phosphorylated tau protein as neurofibrillary tangles that can be assessed by 

measures of cerebral spinal fluid (CSF) Aβ and tau. This is followed by the biomarkers of 

neurodegeneration indicated by brain imaging, hypo metabolism on fluorodeoxyglucose 

(FDG) PET, and structural MRI, that finally lead into the clinical symptoms and 

measurable cognitive decline (cognitive biomarkers). This insidious onset is included in 

the diagnostic criteria for AD. The current model assumes “the maximum rate of change 

moves sequentially from one biomarker class to the next, and as the disease progresses all 

biomarkers become progressively more abnormal simultaneously…at rates that change 

over time in an ordered manner” (Jack et al., 2013, p. 207). The rate of progressive 

cognitive impairment is “loosely coupled” with the amount CSF Aβ, but “closely 
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coupled” with imaging neurodegenerative biomarkers (Jack et al., 2013). It was also 

noted that the time needed to travel the course of the disease varies among individuals 

because it is mediated by baseline differences in brain plasticity and cognitive reserve, as 

well as the presence of other pathophysiology like cerebrovascular disease or Lewy 

bodies, which often co-occur with AD and contribute to an individual’s variation and 

presentation (Jack et al., 2013; Karantozoulis & Galvin, 2011; Smith & Bondi, 2013).   

 In the Alzheimer’s continuum, MCI is thought of as the period that reveals the 

first objectively measurable cognitive deficits due to neuropathological brain changes that 

occur in the course of the disease, and also where therapeutic trials designed to prevent 

cognitive decline are most useful (AA, 2018; Livingston et al., 2017; Mortamais et al., 

2017; Sutphen et al., 2015). Once brain changes are so significant that cognition and 

physical functioning decline, risk reduction and medical interventions are of little value 

(AA, 2018; Peall & Robertson, 2015). The problem remains in the obvious detail that by 

definition of being asymptomatic, the preclinical phase avoids detection using current 

cognitive measures. Empirically validated innovations for detection using a NP testing 

perspective are critically needed.  

 Our ability to diagnose individuals earlier and more accurately for the purpose of 

testing and utilizing disease-modifying treatments are the key to changing the trajectory 

of neurodegenerative diseases. Mortamais et al. (2017) asserted: 

 The design of secondary prevention trials targeting the preclinical period 

has thus been handicapped up to this point by that lack of proximal 

cognitive outcome markers. The cognitive tests currently used to describe 
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AD, having been largely derived from comparisons of persons with and 

without dementia, are by definition inappropriate for preclinical studies. 

Such early cognitive changes, if they exist, are likely to be subtle, requiring 

highly sensitive tests that target specific brain regions affected early in the 

disease process. (p. 469)  

AD is a prototypical cortical dementia with the most salient cognitive biomarkers 

markers being episodic memory impairments (learning and retention measures), that 

when coupled with the presence of a molecular biomarkers, like CSF Aβ and tau or FDG 

PET, clinicians can be fairly certain the individual will progress into AD dementia 

(Mortamais et al., 2017; Smith & Bondi, 2013). Episodic memory impairment is the most 

prominent predictor of dementia, but aphasia and apraxia are also common features and 

can be measured by lower performance in verbal fluency, processing speed, and fluid 

reasoning (Karantzoulis & Galvin, 2011; Mortamais et al., 2017; Smith & Bondi, 2013). 

During recognition memory testing, patients with AD do not benefit from cueing and 

tend to show greater false-positive errors (Karantzoulis & Galvin, 2011). As the disease 

progresses, language skills continue to deteriorate, and global aphasia and muteness are 

common. Traditionally, cognitive dysfunction was viewed as the outcome of AD and 

other dementias. Mortamais et al. (2017) argued that increasing evidence supports that 

cognitive changes can be detected in preclinical stages of dementia rather than waiting 

for a clinical diagnosis and there is a need for “comprehensive evidence-based guidelines 

for preclinical cognitive assessment”. The current study attempted to address these needs.  
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Vascular Dementia 

 Vascular dementia (VaD) is an umbrella term that refers to any dementia caused 

by impaired cerebral blood flow due to cerebrovascular disease or brain injury. It was 

included in the DSM-5 as a major cognitive disorder. VaD is the second most common 

form of dementia but it is not classified as a neurodegenerative disease, only AD leads in 

incidence. Pure VaD is relatively uncommon, but it is a contributor in an estimated half 

of clinical- and population-based studies, most often in combination with AD and 

diagnosed as mixed dementia ([MD]; Blom et al., 2014; Kang et al., 2016; Smith, 2017; 

Smith & Bondi, 2013). While rare in its pure form, it can cause dementia (Ramirez-

Gomez et al., 2017; Smith, 2017; Smith & Bondi, 2013; Stephan et al., 2017). VaD 

generally has a more abrupt onset than AD (Karantzoulis & Galvin, 2011; Smith & 

Bondi, 2013). Typically, it is identified in one of two ways, either a stroke is diagnosed 

which is then followed by the onset of dementia, or a patient with no history of stroke 

complains of cognitive decline and neuroimaging or neuropathology reveals the vascular 

brain injury (Smith, 2017). Cognitive impairments due to vascular issues are also 

diagnosed on a spectrum, with the severity of the vascular disease correlated with the 

extent of the cognitive impairment ranging from MCI with a vascular etiology, also 

known as vascular cognitive impairment to all-out VaD when the criteria for dementia is 

met (Ramirez-Gomez et al., 2017; Stephan et al., 2017). Just like with AD the prevalence 

of vascular dementia increases after 65 years of age and factors related to the brains 

ability to compensate for the level of pathology makes it difficult to use neuroimaging 
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alone to diagnose the severity of VaD. NP testing becomes an important factor in the 

comprehensive clinical assessment used make the final diagnosis.  

 In addition to age, there are other risk factors associated with vascular dementia; 

hypertension; diabetes; high cholesterol; sedentary lifestyle; low or high body mass 

index; smoking; coronary artery disease; and atrial fibrillation (Livingston et al., 2017; 

Smith & Bondi, 2013). Cerebral blood flow becomes impaired through slow cumulative 

processes that lead into cerebral small vessel disease or may have a sudden onset from a 

single major event such as a hemorrhagic stroke (Blom et al., 2014; Ramirez-Gomez et 

al., 2017; Smith, 2017; Smith & Bondi, 2013; Stephan et al., 2017). Cortical signs of 

stroke may include aphasia and apraxia, but the NP profile of an individual post stroke 

varies because it is directly related to the stroke location and severity (Smith & Bondi, 

2013; Stephan et al., 2017). The mere presence of a cerebrovascular brain injury does not 

necessarily signal dementia or indicate impending dementia.  

 There are many different cardiovascular and cerebrovascular incidents that lead to 

cognitive dysfunction and different vascular disorders have different patterns of cognitive 

impairment (Kang et al., 2016; Ramirez-Gomez et al., 2017; Stephan et al., 2017). People 

with vascular dementia tend to experience motor issues more often than those with AD, 

such as a slowing of gait, and neuropsychiatric signs like depression, apathy, psychosis, 

or sudden and inappropriate laughing or crying known as pseudobulbar affect (Smith & 

Bondi, 2013). When vascular dementia is suspected, the cognitive profile is examined 

along with a complete health history, risk factors, brain imaging, and the presence or 
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absence of biomarkers of other neurodegenerative diseases that may be contribute to 

cognitive decline such as the presence of CSF Αβ (Smith & Bondi, 2013).  

 The NP profile for VaD is typically characterized by poor executive function that 

includes decreased inhibition and processing speed; poor planning and problem solving; 

and difficulties with task changing, working memory, and attention, but the variety of 

incidents that lead to vascular cognitive dysfunction makes it difficult to typify a pattern 

across all vascular conditions (Karantzoulis & Galvin, 2011; Ramirez-Gomez et al., 

2017; Smith & Bondi, 2013; Stephan et al., 2017). While episodic memory impairment is 

a hallmark of the AD diagnosis, those with VaD typically respond better to recognition 

and cueing of learned information (Karantzoulis & Galvin, 2011; Ramirez-Gomez et al., 

2017). Measures of verbal fluency showed greater impairment of phonemic (letter) 

fluency in VaD versus greater impairment of semantic (category) fluency in AD 

(Ramirez-Gomez et al., 2017). Ramirez-Gomez et al. (2017) found phonemic and 

semantic differences alone did not distinguish AD from VaD, but when they generated a 

formula that incorporated the first learning trial of a word memory test, they were able to 

classify AD from VaD in an autopsy confirmed cohort with moderate sensitivity and 

specificity, but asserted additional independent studies were necessary to confirm their 

hypothesis.  

 Vascular dementia may mimic AD depending on the location of the infarct, and 

the fact that it is often found in combination with AD as MD makes it even more difficult 

when testing profiles have significant overlap (Karantzoulis & Galvin; 2011; Kang et al., 

2016). When comparing a pure AD etiology to MD, the frontal lobe deficit patterns of 
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VaD overlap with the medial and lateral temporal lobe deficit patterns of AD. Kang et al. 

(2016) found significant differences in the milder stage of dementia where the NP 

profiles of MD demonstrated lower performance on executive function and semantic 

fluency but maintained a memory advantage over AD into a moderate stage of dementia. 

As the severity of the dementia increased, testing patterns and profiles were harder to 

distinguish from one another as no significant differences were found in attention, 

language, visuospatial, or memory scores (Kang et al., 2016). Another conclusion from 

Kang et al.’s study was that AD patients appeared to maintain better ADLs making the 

rating of functional performance an important piece of the differential diagnostic puzzle. 

The current study includes a clinical dementia staging instrument, CDR, considered a 

gold standard for capturing daily functional performance  

related to dementia. Clearly the variations in cognitive profiles across VaD make it 

challenging to come to a consensus on which cognitive tests best capture the information 

needed to support an MCI due to vascular conditions or a VaD diagnosis (Stephan et al., 

2017). Comprehensive testing across all domains allows clinicians to identify cognitive 

strengths and weaknesses to rule out alternative explanations for the impairments, and the 

use of the CDR as a measure of functional performance helps support the final diagnosis.  

Lewy Body Disease 

 Dementia with Lewy bodies (DBL) is considered one of the three most common 

forms of dementia and is the second leading neurodegenerative cause (McKeith et al., 

2017; Smith & Bondi, 2013). It has distinct clinical features including cognitive 

fluctuations; hallucinations; rapid eye movement (REM) sleep behavior disorder (RBD); 
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and parkinsonism; which typically appear early and persist throughout the course of the 

disease (McKeith et al., 2017). Unlike AD and VaD, the incidence of DLB does not 

appear to increase with age (Smith & Bondi, 2013). The First International Workshop of 

the Consortium on DLB convened in 1996 and established the classification of dementia 

with Lewy bodies (Rizzo et al., 2012). The pathologic hallmark of DLB is the Lewy 

body, an intracytoplasmic inclusion in deep cortical layers in the brain, especially the 

frontal and temporal lobes (McKeith et al., 2017; Rizzo et al., 2017; Smith & Bondi; 

2013). While short-term memory is typically the earliest deficit of an AD patient, 

impaired visuospatial function, attention, and executive function appear to be the most 

prominent deficits in early DLB (McKeith et al., 2017; Rizzo et al., 2017; Smith & 

Bondi, 2013). In fact, an absence of visuospatial impairment helps clinicians exclude 

DLB. Attention deficits vary from seconds to days and are interspersed with periods of 

near normal function; they may take the form of a brief cognitive fluctuation that 

interrupts the flow of an ADL or be severe enough for the individual to appear catatonic 

for a length of time (Smith & Bondi, 2013; McKeith et al., 2017). The CDR helps capture 

these fluctuations in consciousness.  

 Visual hallucinations are rare in AD but occur in up to 80% of individuals with 

DLB (McKeith et al., 2017). They are an early sign of DLB and are often under reported 

because the patient has a lack insight regarding the nature of the hallucinations. They 

may come in the form of people, animals, or inanimate objects that move or shape shift; 

or even more complex visual interactions like ongoing conversations with the dearly 

departed. Auditory hallucinations, hearing music, a TV, or voices nearby; olfactory 
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hallucinations, both pleasant and foul; and tactile hallucinations like feathers or fur 

brushing up against an arm or leg, or even insects crawling on their skin are also present 

in patients with DLB (McKeith et al., 2017). Another early sign that occurs in 85% of 

individuals and may precede clinical diagnosis by up to 20 years is RBD, characterized 

by recurrent dream enactment and vocalizations (Donaghy et al., 2018; McKeith et al., 

2017; Smith & Bondi, 2013). It can be mild or severe, and injuries can happen from 

striking a bed partner or suddenly jumping out of bed. RBD is not exclusive to DLB and 

can also occur in patients with Parkinson disease dementia. Gait disorders, limb rigidity, 

or a combination of the two, termed parkinsonism, is also present in 70%-90% of patients 

with DLB but usually in a milder degree than someone with Parkinson’s disease.  

 These types of overlapping clinical features make differential diagnosis 

challenging which is why NP testing plays an important role in a comprehensive clinical 

assessment to avoid serious negative side effects of certain treatment protocols. DLB 

continues to be under-recognized, and misdiagnosed as AD or Parkinson’s disease, so 

there is a need to refine diagnostic criteria to improve sensitivity and specificity as 

treatment efficacy is highly specific to DLB (McKeith et al., 2017; Rizzo et al., 2017). 

There are serious consequences when DLB is treated with the wrong types of 

medications; 30% to 50% of patients with DLB have severe antipsychotic sensitivity with 

reactions that may include irreversible parkinsonism, impaired consciousness, and even 

death (McKeith et al., 2017; Smith & Bondi, 2013; Rizzo, et al, 2017). These reactions 

are less common in Parkinson’s disease and have not been observed in AD. Donaghy et 

al. (2018) concluded the addition of neuropsychiatric symptoms other than hallucinations 
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(e.g., delusions, anxiety, depression, and apathy) to the core diagnostic features supported 

the differential diagnosis between DLB and AD.  

 The NP profile of DLB is a mixture of cortical and subcortical symptoms 

characterized by disproportional impairment in visuospatial, attention, and executive 

functions early on (Karantzoulis & Galvin, 2011; McKeith et al., 2017; Smith & Bondi, 

2013). When memory is impaired, usually later in the disease, encoding is typically less 

affected than retrieval; object naming is also typically preserved (Karantzoulis & Galvin, 

2011; McKeith et al., 2017; Smith & Bondi, 2013). No specific testing battery has been 

developed (Donaghy et al., 2018; McKeith et al., 2017), but comprehensive measures that 

includes spatial and perceptual tasks like complex figure copy and line orientation, and 

executive and processing speed measures like trail making tests and coding, are 

especially helpful in the differential diagnosis process when used in tandem with word 

memory lists, and object naming tasks.   

Frontotemporal Dementia 

 Frontotemporal dementia (FTD) has become an umbrella term for a group of 

clinically heterogeneous degenerative disorders affecting the frontal lobe alone, an 

isolated temporal lobe, or a degeneration of both the frontal lobes and temporal lobes. 

The most common subtypes are the behavioral variant (bvFTD) and two forms of 

Primary Progressive Aphasia (PPA), nonfluent and semantic variants (Lee, 2019; 

Ravskoski et al., 2011; Smith & Bondi, 2013). The main symptoms of bvFTD are 

persistent and significant changes in behavior and personality, while the main changes in 

PPA are a progressive deterioration of language skills. Because the pathology of each 
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variant is different, a consensus on the neuropsychology of FTD remains elusive. When 

contrasted with AD, memory is spared in the early course of the disease with better recall 

and recognition across all FTD syndromes (Smith & Bondi, 2013). Wittenberg et al., 

(2008) asserted that the difficulties to finding a consensus stems from still evolving 

diagnostic criteria, inconsistent findings in research, and the rare prevalence of FTD. 

Smith and Bondi (2013) claimed that FTD accounted for only about 5% of all dementias 

in an unselected autopsy series.  

 The most common subtype bvFTD accounts for nearly 50% of all FTD cases with 

an onset most common in the 6th decade of life but uncovered as early as the 2nd decade 

and as late as the 9th decade of life with only a 0.02% incidence rate in the general 

population (Lee, 2019). The primary characteristics are the pervasive behavioral changes 

that are often ignored or misdiagnosed for several years causing significant impact on the 

caregiver stress levels before a formal clinical diagnosis (Lee, 2019; Smith & Bondi, 

2013). Rascovsky et al. (2011) included the following symptoms in their outline for 

diagnostic criteria:  

A. Disinhibition – inappropriate and embarrassing public behavior 

B. Apathy, inertia, loss of sympathy, empathy, or changes in humor – 

indifference to others’ needs and feelings, less warmth and affection  

C. Hyperorality – changes in food preferences or decline in table manners  

D. Compulsive behaviors – obsessions with new hobbies or interests; smoking, 

alcohol use; or new religious and spiritual pursuits  
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E. A neuropsychological profile that shows a relative sparing of memory and 

visuospatial functions with deficits in executive functions  

 It is challenging to interpret NP test results in many patients with bvFTD due to 

substantial overlapping profiles with other neurodegenerative diseases. First, other 

medical illnesses (infarction, tumors, abscess, or trauma), substance abuse, psychiatric 

disorders, and other dementias such as AD or LBD must be ruled out (Lee, 2019; Smith 

& Bondi, 2013). Because individuals with bvFTD rarely have insight into their 

behavioral changes, a proper diagnosis is heavily dependent on the testimony of a 

knowledgeable informant. This is obtained via informant interviews during the clinical 

interview and through the CDR, a structured interview and informant testimony. Clearly, 

the significant personality and behavioral changes in bvFTD dwarf any behavioral 

disturbances present in AD, but in the temporal variants that are discussed below 

language and semantic knowledge are the most pronounced deficits. 

 The other syndrome of FTD is PPA characterized by an insidious onset of 

progressive language impairment that is evident in the early stages of the disease; 

prevalent deficits in word finding, word comprehension and usage, and sentence 

construction are present while other cognitive domains and ADLs are relatively spared 

(Gorno-Tempini et al., 2011; Mesulam, 2013; Smith & Bondi, 2013). Two variants of 

PPA have been delineated based on the type of language impairment; nonfluent or 

agrammatic, and semantic (Gorno-Tempini et al., 2011; Smith & Bondi, 2013). Word 

finding is the common feature across both subtypes of PPA, but the nonfluent variant has 
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more pronounced articulation problems while the semantic variant has more pronounced 

comprehension difficulties.  

 The main characteristic of nonfluent PPA is apraxia of speech as demonstrated by 

effortful, halting speech with speech-sound errors or distortions and agrammatism in 

language production; comprehension is spared for single words and simple sentences, but 

complex syntax poses problems (Smith & Bondi, 2013; Gorno-Tempini et al., 2011).  

The semantic variant PPA is marked by preserved fluent output, but simple 

comprehension becomes impaired through a loss of single word or object meaning and as 

the disease progresses comprehension becomes more globally impaired, episodic memory 

may decline, and behavioral symptoms such as rigidity of personality and loss of 

empathy may emerge (Mesulam, 2013; Smith & Bondi, 2013). A differential diagnosis is 

made by first ruling out other medical issues like cerebrovascular disease or tumors, then 

testing is used to discern the pattern of language deficits; the patient must also initially 

present with no impairments of episodic or visual memory, no visuospatial impairment, 

and no prominent behavioral disturbances (Lee, 2019). There is inconclusive evidence for 

the utility of NP testing in the diagnosis of FTD as the pattern of executive dysfunctions 

has not been distinguished from AD (Smith & Bondi, 2013). The challenges remain to 

improve the utility of NP testing and to clear the confusion behind the diagnostic criteria 

of FTD.  

Parkinson’s Disease 

 Parkinson’s disease (PD), once considered a disorder of only the motor system, is 

now widely recognized as a clinically diverse disease with three major subtypes; two of 
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which have more neuropsychiatric and nonmotor manifestations in addition to motor 

symptoms (Chou, 2019). The traditional tremor-dominant subtype has slower progression 

and less cognitive impairment than the akinetic-rigid subtype and the postural instability 

and gait difficulty subtype (Chou, 2019). The common clinical motor manifestations 

include tremor, bradykinesia, rigidity, and postural instability, while 97% of patients also 

present with nonmotor symptoms, some which manifest before motor symptom onset: 

• Cognitive dysfunction and dementia 

• Psychosis and hallucinations 

• Mood disorders – depression, anxiety, and apathy 

• Sleep disturbance 

• Fatigue 

• Autonomic dysfunction 

• Olfactory dysfunction 

• Gastrointestinal dysfunction 

• Pain and sensory disturbances 

• Dermatologic findings - seborrhea 

• Rhinorrhea 

PD and DLB share many overlapping clinical symptoms and pathological similarities 

such as parkinsonian features, psychosis, visual hallucinations, and fluctuating cognition 

making the differential diagnosis even more challenging (Chou, 2019). Clinicians and 

researchers use the convention of the “one-year rule”; if motor symptoms begin more 

than a year prior to the onset of dementia, then PD is diagnosed. When motor symptoms 
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present concurrently, or they start during the same year, then the diagnosis of DLB is 

given.  

 Cognitive dysfunction and dementia are common in PD with an estimated 78% 

incidence rate of dementia uncovered in longitudinal studies (Chou, 2019; Rodnitzky, 

2018). Subcortical dementias like PD typically spare memory in the early stages with the 

first NP manifestations appearing as psychomotor retardation, compromised executive 

function, and impaired attention and processing speed (Chou, 2019; Smith & Bondi, 

2013). As the disease progresses memory recall and visuospatial skills are more notably 

impaired with full dementia typically setting in later during the course of the disease. 

Cognitive testing plays a large role in determining the etiology of AD and all other types 

of dementia.  

The History of Educational and Psychological Testing 

Anastasi and Urbina (1997) wrote the classic comprehensive text on 

psychological testing that is still widely used in graduate programs. The authors wrote, 

“The roots of testing are lost in antiquity” (p. 32) but sketched an outline of the ground-

breaking pioneers that laid the foundation for educational and psychological testing as a 

valid and reliable method for collecting meaningful data about individuals. English 

biologist Francis Galton launched the modern testing movement when he established the 

need to measure characteristics of related and unrelated persons in the effort to further his 

research interests in heredity, leading to the first large systematic collection of data from 

his anthropometric laboratory (Anastasi & Urbina, 1997). In addition to developing 

rating-scales and self-report questionnaires, Galton also advanced the statistical methods 
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necessary for data analysis. Around the same time American psychologist James McKeen 

Cattell has just finished his dissertation on reaction time under the tutelage of Wilhelm 

Wundt in the first experimental psychology laboratory in Leipzig, Germany. Cattell’s 

chance encounter with Galton in 1888 while lecturing at Cambridge University, inspired 

Cattell to merge Wundt’s newly established science of experimental psychology with 

Galton’s even newer testing movement. The result of this early work was an upsurge of 

interest in testing and measures designed to quantify and classify human behavior and 

cognition.  

Frenchman Alfred Binet built on that foundation and constructed the first 

comprehensive test of intelligence in 1905 at the request of the Minister of Public 

Instruction in an effort to create proper procedures to educate children with mental 

retardation (Anastasi & Urbina, 1997). The 1905 scale, as it was known, originally 

consisted of 30 problems that required comprehension, reasoning, and judgment and was 

arranged from least to most difficult. The scale was administered to 50 “normal” children 

aged 3 to 11, and other children and adults with mental retardation. This preliminary 

scale had no objective method for arriving at a total score, but it caught the attention of 

psychologists around the world and was translated and adapted in many countries, 

including the United States. In the revised version, the 1908 scale, the researchers 

dropped the unsatisfactory tests and added others that had more promise. Simon and 

Binet then collected data on 300 normal children and grouped the results by age level. 

Any tests passed by 80 to 90% of normal 3-year-olds were grouped into a 3-year level; all 

tests passed by 4-year-olds were grouped into a 4-year level; and the same was done with 
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each age group up to 13. Thus, the foundation for a normative scoring system as a 

uniform frame of interpretation and reference was based on research with children, but 

Binet’s ill-timed death in 1911 left much work to be done.  

L. M. Terman and associates from Stanford University adopted Binet’s work in 

1916 and used it to build the broader and more psychometrically sound Stanford-Binet 

coining the use of a ratio between mental age and chronological age as an intelligence 

quotient (IQ). The work of these early psychometricians quickly diffused throughout the 

world and standardized psychological and educational testing forged ahead as an 

explosion of new measures and methods for analyzing data quickly followed. The 

Journal of Applied Psychology (JAP) chronicles the history that led to our understanding 

of measurement error and validation, as well as many other methodological areas of 

psychological testing (Cortina et al., 2017). From 1917 to 1925 the journal published the 

early work on the development and norming of cognitive ability testing for different 

populations and the beginning of statistical significance and prediction models with 

emphasis on psychometric properties and classification. Over the next 40 years, work on 

test scoring methods and cross validation dominated the publication while the following 

43 years witnessed an explosion of new measures and the data-analysis innovations that 

came along with them (Cortina et al., 2017). The current study builds upon the work of 

these early psychometricians and examines subgroup differences to validate optimal 

norms for an aging population.  

The use of testing in the field of neuropsychology began around WWII when the 

evaluation and recovery of brain injured soldiers created a new need in the field of testing 
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beyond sensory, vocational, and intelligence testing. Ralph Reitan, a recent college 

graduate, was given the task of assessing these brain-injured soldiers and found a lack of 

publications available for reference (Grant & Heaton, 2015). With the help of the 

hospital’s chief neurologist, John Anita, they published a series of four articles on the 

psychological consequences of brain injury. Anita encouraged Reitan to consult with 

psychologist Ward Halstead who he had seen lecture on the effects of brain injury. 

Through his new relationship with Halstead, he met Louis Thurston a mathematical 

psychologist from the University of Chicago Medical School and together the men 

encouraged Reitan to enter a graduate program in psychology (Grant & Heaton, 2015). 

“Through a combination of mishaps and serendipity”, Reitan ended up splitting his 

studies between medical school and psychology; and as a graduate student Reitan tested 

patients in Halstead’s laboratory using the instruments Halstead developed (Grant & 

Heaton, 2015). The brain-behavior relationship began to unfurl as data was gathered 

through testing, medical, surgical, and autopsy channels and the field of neuropsychology 

was born. Reitan’s work: 

…refined and standardized what most neuropsychologists now take for 

granted as they write their reports: the approach to inference in individual 

cases that takes into account such information as levels of performance, 

patterns of test results, right-left comparisons, and pathognomonic signs. 

(Grant & Heaton, 2015, para. 3) 

The Halstead-Reitan battery is a collection of NP tests that assess the functioning of the 

brain and is still used both in its complete form and as individual test components today.  
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The Role of Neuropsychological Testing in Clinical Settings 

NP testing and measurement play an important role in diagnosis, prediction of 

progression, and treatment planning for neurodegenerative diseases because research 

demonstrates that these actuarial methods are superior to clinical judgment alone (Smith & 

Bondi, 2013). The FDA established cognitive measures in this critical role when they 

required NP measures be included as a co-primary outcome in research studies seeking to 

demonstrate efficacy in dementia treatments (Leber, 1990). A test is defined as any set of 

tasks, procedures, or stimuli designed to elicit responses that sample an examinee’s 

performance or behavior in a specified domain, while assessment is the broader term 

referring to the process that integrates the gathered data with other sources of evidence 

such as interviews about a participant’s social, educational, employment history, health 

history, and psychological history (AERA, APA & NCME, 2014). NP testing batteries 

gather quantified and meaningful data about an individual’s various cognitive and 

behavioral domains for diagnostic or predictive value, yet the final diagnosis should 

always include a full assessment including physical and neurological examinations, the 

patient’s medical and family history, and blood tests or brain imaging to rule out other 

potential causes of cognitive impairment.  

As there is no single test for dementia, a variety of different measures are used 

during an assessment to take an inventory of the strengths and weaknesses of the major 

cognitive domains including verbal and nonverbal IQ, memory domains that encompass 

both encoding (learning) and retention (delayed recall and recognition), executive function 

processes, language production, attention, visuospatial skills, and processing speed. The 
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patterns and profiles attained from testing aid in a differential diagnosis between the 

underlying pathologies (Karantzoulis & Galvin, 2011; Ramirez-Gomez et al., 2017; 

Ramlall et al., 2014; Smith & Bondi, 2013; Stephan et al., 2017).  

Normal aging individuals have no deficits on psychometric test performance 

relative to their age-matched peers, whereas individuals “at risk” for dementia may have 

borderline or impaired cognitive function in one or more areas of cognition when 

compared to age-matched peers. Ideally, more than one measure is used in each domain so 

that evidence converges to illuminate the relationship between tests intended to assess 

similar constructs. This also helps assure that discriminant evidence between measures 

intended to measure different constructs are also accurate. Educational and psychological 

testing methods are some of the most significant and vital contributions of the behavioral 

sciences to society (AERA, APA & NCME, 2014). The procedures for neuro-

psychological testing and data collection are highly operationalized and demonstrate 

strong reliability (Ramirez-Gomez et al., 2017; Smith & Bondi, 2013).  

Tests that are valid for their intended purposes provide substantial benefits 

for test takers and test users…proper use can result in better decisions 

about individuals and programs than would result without their use... The 

improper use of tests, on the other hand, can cause considerable harm to 

test takers and other parties affected by test-based decisions. (AERA, APA 

& NCME, 2014, p.1)  

A primary consideration in developing and evaluating tests is validity, an 

accumulation of evidence that scientifically supports that the test measures the construct 
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it is intended to measure. The validity and reliability of testing methods are the 

foundation for accurate assessment (AERA, APA & NCME, 2014; Heaton et al., 2004). 

The first empirical paper published in the Journal of Applied Psychology in 1917 was a 

validation study by Terman and his colleagues (Cortina et al., 2017). The process of 

validation deliberates arguments both for and against the intended interpretation of the 

test scores relevant to their proposed use (AERA, APA & NCME, 2014). The validation 

process is continual, constantly evolving as new data is gathered, and often necessitates 

revisions to accommodate the latest articulated evidence (Wilkenson & Robertson, 2006). 

The proposed study is a concurrent study, particularly useful for psychodiagnostic tests 

(AERA, APA & NCME, 2014). It also continues the validation process of the measures 

being used and may provide evidence to refine and reevaluate the utility of the tests and 

their interpretations for use in an aging population.  

 Smith and Bondi (2013) asserted that NP measures are essential in clinical and 

research efforts focused on neurodegenerative disease and defined five roles for such 

measurements in preclinical and clinical dementia populations. First, NP measures serve 

as biomarkers because they are highly operationalized and help distinguish between 

underlying pathologies (Smith & Bondi, 2013). The FDA’s requirement that cognitive 

measures must be included as a co-primary outcome in secondary prevention studies 

solidified NP measures in this key role (Smith & Bondi, 2013). Second, they serve as 

predictors for the development of AD and other dementias; they detect the clinical 

manifestations of neurodegenerative disorders, so they should also predict their future 

development (Smith & Bondi, 2013). 
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Third, measures can dynamically capture countervailing influences on disease trajectory, 

studies suggested that memory function does not decline at an even rate but goes through 

periods of stabilization that may reflect biological and psychological compensatory 

mechanisms such as the mediating and moderating factors of compensatory strategies or 

cognitive reserve (Smith & Bondi, 2013). Fourth, NP measures are proxies for important 

functional deficits; patients may be unreliable reporters of their own functional , so the 

measures serve to estimate functional impairment which helps family members determine 

what matters most, because it identifies when their loved one is no longer safe living 

independently (Smith & Bondi, 2013). Finally, NP measure can provide insights into 

interventional targets (Smith & Bondi, 2013). Just as important as identifying impaired 

cognitive domains, measurements also have the ability to identify cognitive domains with 

preserved strengths. Cognitive rehabilitation services can capitalize on an individual’s 

residual strengths in order to compensate for weaker areas. These five functions demand 

that the NP measures contain the optimal sensitivity and specificity for their intended 

purpose.  

A test that is sensitive to detecting a neurodegenerative disease like AD must have 

a high probability that patients with AD score in the abnormal range, while higher 

specificity assures that patients without dementia will score within normal range. Smith 

and Bondi (2013) argued that positive predictive value rather than sensitivity, is 

statistically more relevant to a diagnostic situation, and enhancements to specificity are 

more important for this purpose. The use of norms is assumed to enhance specificity. 

Researchers argue that aging is the major risk factor for dementia, therefor it undermines 
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the sensitivity of NP measures to control for age (Hessler et al., 2014; Holtzer et al., 

2008; Malek-Ahmadi et al., 2015; O’Connell & Tuokko, 2010; Quaranta et al., 2016). 

The current study will obtain empirical evidence and conduct logical analyses to evaluate 

the proposition that age- and education-corrected norms may not universally improve 

utility of testing measures in an aging population. 

Norm-Referenced Interpretation in Neuropsychological Assessment 

Educational and psychological testing theory assumes the concept of an “ideal” or 

“normal” level of functioning against which the test taker’s performance can be 

compared. Therefore, the most fundamental level of interpretation is the participant’s 

performance in relation to the general population as established by a standardized sample 

to derive normative scores (AERA, APA & NCME, 2014; Heaton et al., 2004). Raw 

scores, simply the number of items correct on any given test, are thought to be of little 

use because tests vary in difficulty and the number of items they contain, making it 

difficult to make meaningful comparisons to other scores (AERA, APA & NCME, 2014; 

Bryant & Brown, 1984; Schoenberg & Scott, 2011). Therefore, derived scores, a 

statistical concept illustrating the participant’s exact position relative to individuals in the 

normative group, has become a far more meaningful and significant metric. Norms 

provide a point of reference that make raw scores valuable by allowing interpretations 

that indicate if the individual’s performance is typical for the normative group. They also 

allow for comparison of performance across various tests, track change or progress across 

time, and diagnose strengths and weaknesses (Bryant & Brown, 1984; AERA, APA & 

NCME, 2014; Schoenberg & Scott, 2011). Thus, norm-referenced interpretation has 
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become gospel in testing theory (Quaranta et al., 2016). One of the fundamental 

principles relevant to norming is the selection of the appropriate comparison group for 

the tests being used.  

At a most basic level, a normative sample is taken from the population that is 

thought to be large enough to represent the current U.S. population, and sufficient enough 

to be proportional across certain demographic characteristics such as sex, age, and level 

of education, geographic region, and race or ethnicity. The mean score becomes the 

average and expected level of performance for age and education. High scores are 

classified in terms of being “high average”, “superior”, and “very superior”, while low 

scores are described in terms of “low average”, “weak/mildly to moderately impaired”, 

and “exceptionally weak/severely impaired”. The use of demographically corrected 

normative scores is recommended for most diagnostic purposes. Yet, despite the quest to 

achieve a fair representation in a normative sample, researchers established that there are 

times when it may be advantageous to develop norms based on the performance of 

individuals in a specific subpopulations; especially if the mean of the subgroup is 1 to 1½ 

SD away from the mean of the normative group, or when test performance is tied to a 

specific therapy or treatment (Bryant & Brown, 1984; Hessler et al., 2014; Holtzer et al., 

2008; Malek-Ahmadi et al., 2015; O’Connell & Tuokko, 2010; Svinicki & Tombari, 

1981). This study examines whether late adulthood, a time of exponentially increased risk 

for cognitive impairment, may be one of the exceptions to the standard practice of using 

an age- and education-corrected normative system.  
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Methods of Norming 

Both educational and psychological testing assume a “normal” level of functioning, 

which is traditionally established by the mean test performance in the standardization 

sample. The most fundamental interpretation of an individual’s performance is their 

standing in relation to the general population. When the individual’s raw score is compared 

to the distribution of scores across the sample population, it becomes a snapshot of where 

they fall in that distribution. This gives clinicians and researches a uniform frame of 

reference to determine the individual’s relative position within the context of the larger 

population. Understanding the principles relative to developing norms is imperative for the 

test user as “psychological test norms are in no sense absolute, universal, or permanent” 

(Anastasi & Urbina, 1997, p. 68).  

The main consideration in traditional norming methods is representativeness of 

the standardization sample to the general population, but it is equally important that the 

sample represent the population using the test (Anastasi & Urbina, 1997). Data should be 

collected at multiple sites that represent different geographic regions of the U.S. The 

advantage of traditional norming is its simplicity, but the greatest disadvantage is that 

separate norm groups must be defined arbitrarily for continuous covariates like age and 

as a result can change an interpretation of an individual’s test performance; a corrective 

measure would be to define more categories, but the smaller sample size produces less 

precise norms (Oosterhuis, et al., 2016). Zachary and Gorsuch (1985) introduced linear 

regression to avoid categorizing continuous covariates. According to Oosterhuis et al. 
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(2016) regression-based norming, which requires a smaller sample size but claims 

equally precise norms is gaining in popularity.  

It has been established that participants should be screened and excluded for 

characteristics that might interfere with their performance such as sensory impairment, 

brain impairing medications, or a medical history that includes stoke, epilepsy, or any 

other neurological issues that affect cognition (White & Stern, 2003), but in an aging 

population this is a difficult task. Robust norms, norms that follow the normative cohort 

for a length of time removing anyone who develops dementia and keeping only those 

who remain dementia free, may have more clinical utility than conventional norms when 

dealing with an aging population (Holtzer et al., 2008). Hassenstab et al. (2016) found 

that removing preclinical participants from normative samples yielded higher means and 

less variability on episodic memory, visuospatial ability, and executive function measures 

reducing age-affects, but provided no substantive benefit for diagnostic classification. 

However, the considerable investment of resources needed to establish robust norms 

leaves researchers looking for alternative methods to estimate the prevalence of 

preclinical cases and consequentially adjust interpretation guidelines for cognitive testing.  

Norm-Referenced Interpretation in MCI and Dementia 

Norms are assumed to enhance specificity, the probability that a person without 

dementia will have normal test scores. But because age is the number one risk factor for 

dementia, researchers currently debate the use of norms in an aging population arguing 

that norms reduce the sensitivity of the test scores to abnormal cognitive impairment 

(Hessler et al., 2014; O’Connell & Tuokko, 2010; Quaranta et al., 2016). There are 
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several reasons stated why this may be true. It is noted in the literature that norms 

become less accurate as time between publication and use increases due to changes in 

demographics and socioeconomic factors that modify the composition of the reference 

population (Quaranta et al., 2016). It is also argued that individuals in the normative 

sample population for age corrected norms may already be transitioning into dementia 

and contaminating the norms by lowering the mean performance and increasing the 

variability in cross-sectional samples (Holtzer et al., 2008). Late adulthood is also a time 

when brain impairing maintenance medications are routinely prescribed to manage 

chronic health conditions. Age correction is also thought to decrease the sensitivity of 

measures because norms become more forgiving and tolerant of errors as age increases, 

possibly decreasing the sensitivity of the tests to cognitive impairment and 

underestimating the risk of dementia in our aging population (Smith & Bondi, 2013). 

Optimal demographic correction as determined via the analyses in this study could result 

in better diagnostic performance when differentiating normal controls from individuals 

with dementia when employing cognitive testing.  

Summary 

It is recognized that symptoms of dementia may not appear for 20 years or more 

after brain changes start to occur (Jack et al., 2015; Ritchie et al., 2015; Rockwood et al., 

2014; Smith & Bondi, 2013; Sperling et al., 2011; Sutphen et al., 2015; Ward et al., 

2013). Research is only beginning to address how many people may be in preclinical 

stages of dementia or have MCI due to neurodegenerative diseases (AA, 2018) and these 

individuals are included in the standard norms which influence a diagnostic outcome 
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when employing a NP testing perspective. Smith and Bondi (2013) asserted the number 

of patients that can be helped through neuropsychology is only increasing and the ability 

to differentiate between normal aging, dementia, and the phase between the two, accepted 

as MCI, has emerged as a primary focus of research.  

Psychometric measures are the necessary tools that provide the data needed to 

distinguish between normal aging and a neurodegenerative process (Smith & Bondi, 

2013). As there is no single measure for dementia, the continued validation of current 

measures to optimize their ability to differentiate between normal cognitive aging and a 

neurodegenerative disease process is paramount. There is no cure for AD and the race 

against the clock continues to inspire researchers to search for new ways to diagnose the 

condition earlier and more accurately. Treatments and interventions must be administered 

as early as possible if there is any hope of changing the course of the disease. Researchers 

argue that outcome studies using comprehensive actuarial methods to examine the 

patterns and profiles of NP dysfunctions are needed to move the field forward (Bondi et 

al., 2014; Malek-Ahmadi et al., 2015, Smith & Bondi, 2013). The current study aims to 

clarify the current debate over which normative method is most diagnostically accurate.  
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Chapter 3: Methodology 

The following methodology was review and approved by the Walden University 

IRB, approval number 01-21-20-0529160. The overarching purpose of this study was to 

investigate the impact of demographic corrections on the diagnostic validity of cognitive 

tests in differentiating between normal cognitive aging and dementia. The standard 

practice of demographically correcting raw test scores for age and education is widely 

believed to universally improve the scores’ ability to detect cognitive impairment for all 

age groups. However, there is a debate in the literature about the use of demographically 

corrected scores in our aging population because the norms for older individuals may be 

tainted by individuals with preclinical AD and thus underestimate the presence of 

cognitive impairments. Consequently, it is not clear how to best use normative data in 

dementia evaluations. This section is an exposition of the data and the analytic strategies 

that will be used for this investigation. 

First, the methodology and rationale is introduced along with a brief review of 

how clinicians determine the presence or absence of dementia. Next, participant selection 

procedures, recruiting strategies, and data collection techniques designed to minimize 

threats to internal validity are addressed. The primary variables involved in the analysis 

are presented, and the manner in which demographic corrections were applied and the 

creation of aggregate cognitive composite scores from individual tests follows. The data 

sources are thoroughly explained, including a review of the reliability and validity of the 

tests taken from the most recent version of the UDS-3 NAB, with special attention paid to 

the CDR-SB the primary criterion measure in the study. Subsequently the detailed data 
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analysis plan that was used to investigate primary study hypotheses (including 

assumption testing and regression diagnostics that protect against threats to internal and 

external validity) are presented. Finally, a priori power analysis for tests of the overall 

models was generated, and the regression coefficients are disclosed.  

Hierarchical multiple linear regression was used to investigate the strength of the 

relationship between the patient’s test scores (scored 4 different ways) and the patient’s 

clinical dementia severity rating. Because the order of entry into the hierarchical multiple 

linear regression model can have great impact on the results, the order of variable entry 

was defined a priori, which avoided pitfalls inherent in methods such as stepwise 

regression and will promoted better generalization as opposed to overfitting of sample 

data (Harrell, 2001; Roa, 2003). Comparison of the R2 and AIC values of the various 

regression equations clarified the extent to which the raw scores, or the various types of 

demographic corrections (e.g., age, education, age and education) influenced the ability 

of cognitive tests to detect meaningful variation functional changes due to cognitive loss 

in dementia and MCI. While this cannot be explicitly tested for significance because 

there are no universally accepted means for quantitatively comparing non-nested models, 

it was one of the more important features of this study. Differences in R2 and AIC values 

of the various regression models allowed for quantitative analysis of model differences, 

albeit not with a specific statistical test. 

Determining the Presence or Absence of Dementia  

The primary difference between dementia and MCI is the extent to which the 

cognitive decline influences the individual’s day-to-day functioning (APA, 2013; 



67 

 

McKhann et al, 2011). MCI requires an objectively determined decline in cognitive 

function as evidenced by mental status screening or formal NP testing in the setting of 

relatively well-preserved day-to-day functioning (APA, 2013; Albert et al., 2011). 

Dementia by definition requires significant functional impairment that represents a 

decline from the individual’s previously higher level of functioning (APA, 2013; 

McKhann et al, 2011). Heuristically and in clinical practice, this is often defined as the 

loss of ability to independently complete IADLs (e.g., driving, managing one’s finances, 

self-managing medications, using the community, etc.) with an adequate performance 

level. More formally, global staging instruments such as the CDR measure the extent to 

which cognitive loss interferes with an individual’s ability to perform day-to-day 

activities (Morris, 1997). The CDR measure represents the ultimate quantitative standard 

for the presence or absence of dementia and thus serves as an optimal criterion for the 

purposes of the present study.  

Study Variables 

The primary variables involved in the analyses presented below included the CDR 

as an outcome measure, a global measure of dementia severity that has been 

neuropathologically validated and is considered an international “gold-standard” for 

ascertaining the presence or absence of dementia (Olde-Rikkert et al., 2011). The CDR 

also allows clinicians to derive the CDR-SB by summing clinician ratings in the 6 

different domains, which provides a more fine-grained, pseudo-continuous measure of 

dementia severity. Published criteria derived from large clinical samples exist for 

determining the presence or absence of dementia using either the global CDR score 
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(Morris, 1993) or the CDR-SB (O’Bryant et al., 2008, 2010). Individuals with a CDR-SB 

of 0 are considered “normal,” those with a CDR-SB of 0.5 - 2.5 are considered to have 

“questionable impairment,” those with a CDR-SB of 3 - 4 are considered to have “very 

mild dementia,” whereas individuals with a CDR-SB of 4.5 - 9.0 are considered to have 

“mild dementia.” The predictor variables were derived from a subset of the tests from the 

UDS-3 NAB. The memory domain was represented by Craft Story immediate and 

delayed recall and Benson complex figure delayed recall. The executive function domain 

was defined by verbal fluency (F & L) and the Trail Making Test B. The language 

domain was defined by the Multilingual Naming Test (MINT) and semantic fluency 

(Animals). And Digit Span Forward (DGF) and Digit Span Backward (DGB) backward 

were used to define the attention domain. Additional clinical and demographic variables 

needed to process the data, such as etiologic diagnosis, age, education, gender, and visit 

number were also utilized  

Participant Selection and Stratification 

Most individuals with Alzheimer’s disease develop the condition later in life, but 

Alzheimer’s can develop in a subset of individuals any time after the second decade of 

life (Rossor et al., 2010). Classically, Alzheimer’s dementia is considered “early onset” 

or “young onset” when it develops prior to age 65. While this threshold is somewhat 

arbitrary, there is a large body of evidence suggesting that individuals with early-onset 

AD often present with atypical forms of the illness and different cognitive profiles 

characterized by more visuospatial disturbance, executive dysfunction, and higher rates 

of behavioral or neuropsychiatric disturbance (Ossenkoppele et al., 2015). The primary 
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goal of this study was to inform the clinical use of NP tests in the types of situations most 

commonly encountered by professionals in clinical practice. Accordingly, all subjects 

younger than 60 years of age were excluded from analysis in order to increase the 

likelihood that the study sample was most reflective of typical presentations of AD. 

Similarly, different dementia subtypes present with different degrees and types of 

cognitive difficulties. For example, dementia due to Lewy body disease is classically 

thought to present with early visuospatial and constructional impairments while memory 

may remain preserved until well into the disease course (Karantzoulis & Galvin, 2011). 

Inclusion of non-Alzheimer’s dementia may thus introduce phenotypic-related variability 

that would obscure detection of subtle differences due to demographic factors. 

Accordingly, only individuals with a primary etiologic diagnosis of AD were selected 

from the data set for analysis. Dementia due to AD is a progressive condition and 

individuals traverse several stages during the course of the illness. NP tests may be most 

helpful in the earlier phases of disease (e.g., MCI, Mild Dementia), as patients become 

too cognitively impaired to participate meaningfully in assessment as they transition from 

mild to later stages of dementia. There is also a high likelihood that cognitive test data 

from moderate to severely demented patients may be less reliable and thus less 

meaningful than in individuals with milder forms of the disease (Weintraub et al., 2018b). 

For example, attention, language, memory, and executive function test results may be 

substantially influenced by general confusion, language comprehension problems, 

difficulty appropriately engaging in the task, or other impairments that render cognitive 

tests unreliable indicators of the processes they are purported to measure. Accordingly, 
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individuals with a CDR-SB > 9 (i.e., moderate to severe dementia) were removed from 

all analyses.  

Creation of Cognitive Composites 

Most studies addressing the effects of age and education correction on the 

predictive validity of cognitive tests in dementia have focused on single test scores 

(Sliwinski et al.,1996; Sliwinski et al., 1997) or heterogenous composite scores 

representing multiple cognitive domains (Hessler et al., 2014). It is likely that age and 

education correction influence different cognitive domains differently. For example, 

processing speed invariably declines with increasing age (Eckert, 2010) whereas 

crystallized abilities such as vocabulary or fund of knowledge remain stable or even 

improve throughout senescence (Harada et al., 2013). A novel feature of the present study 

was the creation of domain-specific cognitive composite scores for memory, executive 

function, language, and attention that allowed for precise investigation of the extent to 

which age and education affected the predictive validity of individual cognitive domains 

using a hierarchical multiple linear regression analysis.  

Creation of cognitive composites was also advantageous statistically. Composite 

measures may be more sensitive to longitudinal cognitive changes in preclinical dementia 

and more reliable than the measures from which they are derived (Riordan, 2017). 

Cognitive composites also offer a better and more complete sampling of participant 

cognitive abilities than do single cognitive test scores by virtue of their broader item 

content. Models with fewer explanatory variables are also more desirable than complex 

models due to enhanced interpretability (James et al., 2017). Such models also tend to 
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demonstrate less variance across samples, which increases the likelihood that they will 

generalize to new samples. Composite scores can generally be categorized as empirically 

derived, theoretically derived, or some combination of these two methods (Weintraub et 

al., 2018b). This project made use of a theoretically driven strategy that is grounded in 

well-established principles of NP function and localization. The method used for 

aggregation of tests within a domain has been widely used as exemplified by Donohue et 

al. (2014) and involves first grouping tests into different cognitive domains, transforming 

scores to the same metric (i.e., Z-scores), and then summing them to create aggregate 

cognitive composite measures with similar psychometric properties and scales of 

measurement. Theoretical groupings of the particular tests used in this study into 

different cognitive domains (memory, executive function, language, and attention) are the 

same as in Weintraub et al. (2018a). 

Impairments in memory and executive functioning are highly characteristic of the 

cognitive phenotype associated with typical presentations of AD  (Karantzoulis & Galvin, 

2011). Memory measures in particular have been shown to be some of the earliest 

indicators decline, even in minimally symptomatic individuals (Weintraub et al., 2018b). 

Tests in this domain included Craft Story immediate and delayed recall and the Benson 

complex figure delayed recall. The executive function domain included verbal fluency (F 

& L) and Trail Making Test B. Impairments in language including deficits in semantic 

verbal fluency and visual object confrontation naming are also characteristic of AD 

(Salmon & Bondi, 2009). This domain was constructed using the Multilingual Naming 

Test (MINT) and semantic fluency (Animals). Individuals with AD may additionally 
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show difficulties with attention and working memory, though these abilities are often 

better preserved until later into the illness (Cherry et al., 2002). Digit Span Forward 

(DGF) and Digit Span Backward (DGB) backward were used to create the attention 

domain. Following transformation of raw scores into Z-scores using the various norming 

methods described in the following section, Z-scores were summed across tests within a 

given cognitive domain to create a composite score for each domain. These composite 

scores served as the predictor variables in the series of hierarchical regression analyses. 

Cognitive Test Scoring 

Subjects’ raw test scores were analyzed before and after a series of demographic 

corrections. Cognitive tests are scored on different metrics (i.e., seconds to completion as 

opposed to number of words remembered) and thus must be transformed to a common 

scale in order to facilitate comparison. Weintraub and colleagues (2018b) developed a 

normative calculator for the UDS-NAB through fitting linear regression models to the 

cognitive test data of 3602 cognitively normal participants over the age of 60. 

Specifically, cognitive test scores were predicted using age, gender, education, and the 

combination of these variables. These regression models can then be used to standardize 

observed test scores, adjusting for the demographic variables of choice.  

The intercepts of the regression models represent the mean performance of the overall 

study sample holding age and education constant. The root mean squared error (RMSE) 

represents the average squared difference between the observed scores and the predicted 

scores, which can be used as a surrogate measure of the population standard deviation 

(Weintraub et al., 2018b). To facilitate comparison between the models, the intercept, 
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slope, and demographic variable regression weights from the full model incorporating 

age, sex, and education will be utilized and thus, all analyses were corrected for gender.  

To generate “raw scores,” subjects’ scores were first transformed into Z-scores by 

generating predicted scores using each subjects’ actual gender, the average education and 

age level of the overall sample, subtracting the predicted score for a participant from their 

observed score, and then dividing by the RMSE of the model. There were no systematic 

adjustments for age or education, allowing the variability of those factors to remain in the 

model. To generate age-corrected scores, participant scores were transformed as above 

but with an adjustment for age by multiplying the participant’s actual age by the 

coefficient for age when generating the predicted scores. To generate education-corrected 

scores, the same procedure was applied but with an adjustment for each participant’s 

actual education level. To generate age- and education-corrected scores, subjects’ actual 

age and education was used to generate predicted scores.  

The National Alzheimer’s Coordinating Center Uniform Data Set 3 

NACC was established by a division of National Institutes of Health. NACC’s 

ultimate goal is to provide a comprehensive approach to research on AD (Besser, 2018). 

To date, there are 39 present and past ADCs. In 2005, the ADCs began longitudinally 

collecting demographic, clinical, NP, and diagnostic data on the original version of the 

UDS (Morris et al., 2006). Version 2 was implemented in 2008, which represented a 

minor update to data collection elements including several new forms, restructuring the 

form logic, and adding a few NP test elements. The 3rd and most recent revision of the 

Uniform Data Set (UDS-3) represents a major advance, including a fully updated NP test 
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battery, additional supplemental data, and updated diagnostic criteria to reflect changes in 

how dementia syndromes are classified in current clinical practice. Data collection with 

the UDS-3 was implemented in March 2015. As of the most recent data freeze in March 

2019 approximately 6, 266 individuals in the UDS 3 had completed the UDS-3 NAB. 

Further details regarding the study sample are available at: 

www.alz.washington.edu/WEB/UDS_NEUROonepage.pdf.  

Each ADC enrolls subjects according to its own protocol. Subjects may come via 

clinician referral, self-referral by the patient or family members, active recruitment 

through community organizations, or by volunteering. In addition to patients with 

dementia and mild cognitive impairment, most centers also enroll normal control 

participants. As such, the NACC subjects are not a statistically representative sample of 

the U.S. Population. They are best described as a referral-based or volunteer case series. 

This renders UDS data inappropriate for studies of the prevalence or incidence of 

dementia. UDS data are collected via standardized evaluation of subjects enrolled in the 

ADCs. Data are generated using a standard order of administration for the NP tests, 

collected by trained clinician and clinic personnel, and diagnosis is made by either a 

consensus team of multiple practitioners or a single physician dependent upon the 

individual ADCs protocol. Subjects are seen for an initial visit and followed 

longitudinally with approximately annual visits until they can no longer participate or are 

lost to follow up. The complete UDS data-collection protocol is available at 

https://www.alz.washington.edu/WEB/qaqc_protocol.html.  

http://www.alz.washington.edu/WEB/UDS_NEUROonepage.pdf
https://www.alz.washington.edu/WEB/qaqc_protocol.html
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Clinical Dementia Rating  

The CDR is a dementia severity rating that is clinician administered, structured 

interview of a patient and a knowledgeable informant (often a family member) that can 

be conducted by a physician, nurse, social worker, or other trained staff member (Morris, 

1997). Following the interview, clinicians rate a patient’s functioning in the areas of 

memory, orientation, judgment and problem solving, function at home and hobbies, 

function in the community, and personal care. A global score can be calculated based on 

published scoring rules and used as a gross summary measure of dementia severity, but 

the CDR also allows clinicians to derive the CDR-SB which provides a more fine-

grained, pseudo-continuous measure of dementia severity. Published criteria derived 

from large clinical samples exist for determining the presence or absence of dementia 

using either the global CDR score (Morris, 1993) or the CDR-SB (O’Bryant et al., 2008, 

2010). The CDR was developed by John Morris and colleagues at the Washington 

University in St. Louis ADC in the 1980s (Hughes et al., 1982). It has since become the 

dominant global staging measure used clinically, in research, and as a primary end point 

in clinical trials. It has been translated into 14 different languages and was described as 

the “best-evidenced” measure in a recent review on global dementia severity staging 

measures (Olde-Rikkert et al., 2011). The CDR has been neuropathologically validated 

and demonstrates predictive accuracy of 92% for the presence of Alzheimer’s pathology 

in symptomatic individuals with AD (Storandt et al., 2006). Studies indicate high 

interrater reliability for physicians and non-physicians applying the CDR (Williams et al., 
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2013). Accordingly, the CDR was an ideal criterion measure for the purposes of the 

present study.  

Craft Story 21 

 The trademark characteristic of AD is memory loss, so list learning and story 

memory tasks are frequently used in the episodic memory evaluation for dementia. Craft 

and colleagues designed a story recall test with multiple forms that achieved similar 

psychometric properties to the Weschler Logical Memory test, immediate and delayed 

recall conditions (Weintraub et al., 2018a). The complete set of stories consisted of 22 

narratives that were originally tested on 13 healthy adults and 22 patients with 

Alzheimer’s dementia and rated on the CDR as very mild, mild, moderate, and severe 

(Craft et al., 1996). Participants listened to a brief story with 25 bits of information and 

were asked to recall both immediately and after a 10-minute delay, receiving credit for 

each bit of data that was recalled verbatim or accurately paraphrased. Validity was 

determined by correlation with The Wechsler Memory Scale normative scores: 

 Pearson r’s between Logical Memory and paragraph recall scores were 

0.73, p < 0.02 (immediate recall) and 0.84, p < 0.004 (delayed recall) for 

normal adults and 0.76, p < 0.0002 (immediate recall) and 0.88, p < 0.0001 

(delayed recall) for Alzheimer patients. Group mean and SD were nearly 

identical. (Craft et al., 1996, p. 126)  

When the Neuropsychology Work Group committee convened to make recommendations 

for the UDS-NAB 3, their pilot study to determine the equivalence of the stories in 

middle-aged and older adults determined that 3 of the stories offered the greatest 
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relationship to the Logical Memory subtest of the Weschler Memory Scale and to each 

other, with a single story chosen because of its applicability to a culturally diverse 

population and “Craft Story 21” was adopted as the episodic memory measure for UDS-

NAB 3 (Weintraub et al., 2018a). In this study, the composite score for the memory 

domain was composed of the scores from Craft Story 21 and the Benson Complex Figure 

recall task.  

Benson Complex Figure 

Asking a patient to copy a figure is the most common method of assessing 

visuospatial ability in dementia evaluations and having the patient recall the figure after a 

delay is considered a measure of nonverbal memory. These tasks are new addition to the 

UDS-NAB 3. Impairments in the visuospatial domain commonly appear in AD, bvFTD, 

and DLB. Complex figure copy tasks like the Rey-Osterrieth Complex Figure are 

influenced by visual spatial perception and attention, and also frontally mediated 

executive skills like organization, strategic planning, and working memory (Possin, 

Laluz, Alcantar, Miller & Kramer, 2011). The Rey Complex Figure Test was developed 

by Rey in 1941 and has a long history in neuropsychology (Strauss et al., 2006). Internal 

reliability was evaluated by split-half and alpha coefficients and achieved greater than .60 

for copy trial, and greater than .80 for recall trial. Test-retest reliability examined (r = .76; 

r = .89) for immediate copy and delayed recall respectively (Strauss et al., 2006). Validity 

is also supported through independent correlational and factor analytic studies (Meyers & 

Meyers, 1995). The Benson Figure is a simplified variation of the Rey-Osterrieth figure 
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developed by Frank Benson (Possin et al., 2011) and was adopted as a measure of 

visuospatial ability and memory recall in the UDS-3 NAB.  

Phonemic Fluency 

 Verbal fluency tests assess the spontaneous production of individual words under 

constrained conditions. Phonemic fluency tasks (“F” and “L”) are commonly used in 

many NP batteries (Strauss et al., 2006). Originally developed as a measure of primal 

mental abilities by Thurstone in 1938, his variant of the word fluency test showed 

performance improved throughout childhood, peaked about age 30-39, and mildly 

declined into old age in normal cognition. This pattern was confirmed by subsequent 

research, and accumulating evidence showed that the test was highly useful for the 

detection of dementia because it is heavily dependent on the integrity of executive 

function (Strauss et al., 2006).  

The letters F, A, and S are most commonly used, but C, F, and L are also used. 

The examinee is given the specified letter, in this case F and L, and orally produces as 

many words as possible in 1 minute. The total score is the sum of all correct words for 

both letters. Alternate form reliability observed correlations among phonemic fluency 

tasks high (.85 to .94) with differences between letter sets small (Strauss et al., 2006). For 

a detailed discussion of letter equivalence across different versions see Borkowski, 

Benton and Spreen (1967). Studies indicated test-retest correlations typically .70 or 

higher for letter and fluency at both short (2 week) and long (5 year) intervals (Strauss et 

al., 2006). Age and education corrected norms are published in manuals (Heaton et al., 

2004), and can be statistically computed (Mitrushina et al., 2005; Tombaugh et al., 1999). 
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For the purpose of this study, verbal fluency F & L and TMT B were chosen as measures 

of the executive function domain.  

Trail Making Tests B 

 The adult version of the Trail Making Tests (TMT) measures processing speed in 

people aged 15 to 89. Originally constructed in 1938 as a divided attention test, they were 

part of the Army Individual Test Battery and adapted by Reitan in 1955 (Strauss et al., 

2006). Scoring is expressed in seconds required to complete the test with a maximum 

time on TMT B set at 300 seconds. Performance is affected by age, education, and IQ; 

with education becoming progressively more important with increasing age. Test-retest 

reliability was high in healthy controls (r = .89) for TMT B; but not uniformly reliable in 

clinical groups (r = .67 to r = .86); practice effects noted in healthy controls leveled off 

after 5 administrations (Strauss et al., 2006). Alternate form reliability reported a 

reliability coefficient of .92. Validity was demonstrated through correlations with other 

measures of executive processing speed including the Category Test; Wisconsin Card 

Sorting Test; Visual Search and Attention Test; Symbol Digit Modality Test; Paced 

Serial Addition Test; and Letter Cancellation that were moderate to strong (.36 to .93) 

with TMT B emerging as more sensitive to executive control (Strauss et al., 2006). Thus, 

TMT B was chosen to be included in the composite measure of executive control 

function.  

The Multilingual Naming Test  

 Individuals with AD show deficits in naming speed and accuracy (dysnomia). The 

Boston Naming Test is one of the most common measures of confrontation naming 
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(Kaplan et al., 1983) and has been shown to discriminate well between cognitively 

normal participants and those with dementia (Katsumata et al., 2015). The MINT was 

specifically designed to be a culturally sensitive measure of picture naming for English, 

Spanish, Mandarin Chinese, and Hebrew. Sixty-eight black-and-white line drawings, 

selected from a variety of sources with translation equivalents in each different language, 

are presented in increasing difficulty of order. Ivanova et al. (2013) found the MINT was 

highly correlated with the BNT, ranging from r = .855 to r = .893, p < 0.001, and 

suggested that it had more utility for diagnostic purposes as the BNT was biased in favor 

of English. Ivanova et al. (2013) established that a 32-item subset of the MINT had 

adequate sensitivity and provided superior clinical utility because of its contextual 

diversity to detect naming impairments in AD and controls. 

The NP Work Group replaced the Boston Naming Test (BNT) with the MINT for the 

UDS-NAB 3 (Weintraub et al., 2018a). This study used the MINT and Animal Fluency 

as the measures for the Language domain. 

Animal Fluency 

The most common semantic fluency test requires an individual to name as many 

animals as possible in 1-minute, other categories such as fruits and vegetables or “things 

to wear” are also used (Strauss et al., 2006). Norms were derived from large samples of 

participants that ranged in age from 20 to 101 years of age depending on the study; (n = 

1148) in Heaton et al. (2004); (n = 2843) in Mitrushina et al. (2005) and (n = 735) in 

Tombaugh et al. (1999) to name just a few. Tombaugh et al. (1999) found the degree of 

internal consistency high (r = .83) and test-retest reliability coefficient of .74 after a 5-



81 

 

year interval in elderly individuals. Studies showed test-retest correlations were typically 

.70 or higher for semantic fluency at both short (2 week) and long (5 year) intervals 

(Strauss et al., 2006). Like phonemic fluency tasks, age and education corrected norms 

are located in published manuals (e.g., Heaton et al., 2004) and can be statistically 

computed (Mitrushina et al., 2005; Tombaugh et al., 1999). 

Digits Forward and Digits Backward 

DGF assess attentional capacity using auditory digit repetition, a common method 

used in most existing tests for this purpose. DGB requires the examinee to reverse orally 

presented digits as a measure for both attentional capacity and working memory. The 

number strings are administered up to failure of two trials at the same length with points 

earned for each completed sequence and, in some cases, a note for the longest digit span 

completed. Digit span tasks are modeled after the Weschler Memory Scale III (WMS), 

which was originally designed to assess auditory attention and working memory (Strauss, 

2006). The number spans for the UDS-NAB 3 were randomly generated with the 

restriction that no digit would be adjacent to the next higher or lower digit, and efforts 

made to avoid recognizable sequences such as common area codes (Weintraub et al., 

2018a). Digit span generalizability coefficients to the WMS were high (.80 to .89), and 

while ‘clinical lore’ espouses that DGB is more demanding of working memory than 

DGF and more sensitive to advancing age and neurodegenerative conditions, the most 

recent findings suggest that both DGF and DGB are affected equally as one ages, 

although large discrepancies between the two tasks may point to a deficiency in working 
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memory (Strauss et al., 2006). DGF and DGB served as our measures of the attention 

domain.  

Data Analysis Plan 

The following section describes the analytic strategies that will be used to answer 

the primary study hypothesis, data cleaning (e.g., handling of outliers and missing 

values), construction of hierarchical linear regressions to test primary study hypotheses, 

and an a priori power analysis. Prior to that discussion, it may be helpful to restate the 

series of regression analyses that are planned, and the primary study hypothesis and sub-

hypotheses. This study involved predicting the CDR-SB score by a combination of 

cognitive composite scores derived from cognitive tests scored using 4 different methods 

of demographic correction (i.e., no correction, age correction, education correction, age 

and education correction). The following prototype model was built 4 different times 

(once for each of the norming methods) and then those models were compared using R2 

and AIC values:  CDR-SB scores =  

β1Memory and Learning + β2 Executive Function + β3 Language + β4 Attention   

 Four sets of regressions were used to examine:  

1. The relationship between CDR-SB and the “raw” (i.e., corrected for gender 

only) cognitive composite scores. 

2. The relationship between the CDR-SB and cognitive composite scores derived 

from age corrected test data.  

3. The relationship between the CDR-SB and cognitive composite scores derived 

from education corrected test data.  
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4. The relationship between the CDR-SB and cognitive composite scores derived 

from age and education corrected test data.  

There was one model for each norming method as specified above, so 

determining which model was “best” required comparing the merits of the various 

models. This represented a statistical conundrum, because the models were built using 

different data (data subject to different norming methods) and as such are “non-nested” 

models. In the context of least squares regression, nested models are easily testable for 

differences at a given significance level but there are no universally agreed upon methods 

for comparing non-nested models. In practice, various parameters such as a model’s R2 

value and AIC are typically used for model selection purposes in lieu of significance 

tests. For consideration, some authors have convincingly argued that null hypothesis 

testing itself is undesirable and gives a false sense of precision when none is warranted 

and as such, the lack of significance testing in this project is not viewed as a particular 

shortcoming (Harrel, 2001).  

 R2 values represent the total amount of variability in the criterion variable, in this 

study the CDR-SB, accounted for by the predictor variables, in this case the cognitive 

composite scores (Field, 2013). Thus, models with a higher R2 value are desirable and 

indicate that the predictor variables are capturing more variation in the criterion of 

interest than models with a lower R2 value. Cohen (1988) has set conventions for 

interpreting R2 values that are used widely in the social sciences, with R2 = .02 considered 

a small effect, R2 = .25 considered a medium effect, and R2 = .40 or greater considered to 

be a large effect. Thus, there would be clear and meaningful differences between the 
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models if the R2 values associated with the different models fell into different effect size 

categorizations. For example, if the R2 value in equation 2 was moderate (R2 > .25) and 

the R2 value in equation 1 was strong (R2 > .4), then model 1 is clearly superior to model 

2. Differences that are smaller in magnitude may suggest the superiority of one model 

versus another model, but there are no universally accepted criteria for determining the 

incremental difference required to make a clinically significant contribution to clinical 

practice. In the context of dementia evaluation, it can be argued that any increase in R2 

value that might lead to greater diagnostic accuracy is desirable and may be of practical 

significance at a population level.  

 AIC was developed by Hirotogu Akaike in 1974 (Akaike, 1974) and is typically 

employed in logistic regression but can also be computed for least squares regression. 

This parameter is used commonly for model selection and considers both a model’s 

overall fit and its parsimony. While AIC is often used to compare nested models, 

Akaike’s work makes no statement that models must be nested, and thus this statistic is 

often used to compare non-nested models. One calculates the lowest AIC value of all 

models being considered and then evaluates the change in AIC between different models 

(the delta AIC). According to Burnham and Anderson (2004), models having a delta AIC 

less than or equal to 2 have substantial support and are comparable to the model with the 

minimum AIC value. Those in which 4 ≤ delta AIC ≤ 7 can be said to have considerably 

less support, and those where delta AIC > 10 have essentially no support. Therefore, the 

models above can be compared semi-quantitatively using their AIC values with the 

model having the lowest AIC value being the most desirable.  



85 

 

Primary Study Hypothesis 

H1:  Age and education correction increase the extent to which NP tests are able to 

capture functional decline due to cognitive loss in dementia. This will be tested by 

comparing R2 and AIC values from regression equation 1 with regression equation 4.  

H01:  Age and education correction decrease or have no effect on the extent to which NP 

tests are able to capture functional decline due to cognitive loss in dementia.  

H2:  Age correction decreases the extent to which NP tests are able to capture functional 

decline due to cognitive loss in dementia. This will be tested by comparing R2 and AIC 

values from regression equation 1 with regression equation 2.    

H02:  Age correction increases or has no effect on the extent to which NP tests are able to 

capture functional decline due to cognitive loss in dementia. 

H3:  Education correction increases the extent to which NP tests are able to capture 

functional decline due to cognitive loss in dementia. This will be tested by comparing R2 

and AIC values from regression equation 1 with regression equation 3.  

H03:  Education correction decreases or has no effect on the extent to which NP tests are 

able to capture functional decline due to cognitive loss in dementia.  

Optimal demographic correction as determined by the analyses above may result in better 

diagnostic performance when differentiating normal controls from individuals with 

dementia. Comparison of the R2 and AIC values of the various regression equations 

presented above will clarify the extent to which various types of demographic correction 

influence the ability of cognitive tests to detect meaningful variation in dementia severity. 

While the above hypotheses are not associated with significance levels, R2 values and 
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AIC values are commonly used to compare non-nested models and allow the important 

research questions above to be answered quantitatively.  

Data Preparation 

The plan was to identify missing values and either exclude them on a case-wise 

basis during analyses or replace them with the group-wise mean value (i.e., a missing 

value for a patient with mild dementia would be replaced using the mean of that variable 

for individuals with mild dementia). The strategy used depended on the number of 

missing data points and other specific data characteristics that were not known prior to 

receiving the data set. Primary tests of study hypotheses may further benefit from 

exclusion of outliers and transformation of poorly behaved variables that deviate 

markedly from normality. It should be noted that linear regression does not explicitly 

require multivariate normality (Allison, 1999). As with most parametric models however, 

relative normality prior to model fitting may aid in model stability, generalization, and 

avoiding violations of other assumptions downstream (Tabachnick & Fidell, 2012).  

To assess normality, histograms and Q-Q plots were constructed for each of the 

cognitive tests for visual inspection (see appendix). Skew and kurtosis values were 

calculated. In general, skew and kurtosis values < 1 are considered acceptable, 

particularly given that multiple linear regression does not require normally distributed 

variables (George & Mallery, 2016). Parametric methods such as the Komolgorov-

Smirnoff test were not appropriate for the present study because with the large sample 

size, they would be overpowered and likely detect tiny departures from normality. 

Similarly, it was also inadvisable to perform statistical tests of skew and kurtosis values 
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by dividing them by their standard errors and then comparing them to a Z-score 

distribution (Field, 2013). Data transformations were considered and applied as needed 

with the caveat that model interpretability was a primary concern and thus variable 

transformation was avoided if at all possible, particularly for the CDR-SB. Univariate 

outliers were identified through the use of Boxplots, with values plus or minus 3 times 

the interquartile range of a variable screened as potential outliers (Field, 2013). 

Multivariate outliers were identified within the regression analyses through several 

different methods described below. 

Statistical Analytic Strategies 

Prior to modeling, the data was described by calculating descriptive statistics 

including the mean, standard deviation, and range of all study variables. The 

intercorrelations of the cognitive test scores, age, education, and the CDR-SB were 

calculated for each different norming method using bivariate Pearson correlations. These 

correlations provided a direct measure of the strength of relationship between a given 

cognitive test and the criterion measure of interest. These bivariate correlations aided in 

the interpretation of the hierarchical linear regression analyses for testing primary study 

hypotheses, helped to detect suppression, and served as a measure of variable importance 

(Nathans et al., 2012). Following descriptive statistics and analysis of intercorrelations 

between tests, the primary study hypotheses was tested using least squares hierarchical 

multiple linear regression. This analytic technique is appropriate when one wishes to 

examine the magnitude of association between a set of continuous predictor variables and 

a continuous outcome variable (Field, 2013).   
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The order of variable entry was defined a priori, which avoided the pitfalls 

inherent in methods such as stepwise regression and promoted better generalization as 

opposed to overfitting of sample data (Harrell, 2001). The cognitive composite scores 

were entered in the following order in a block wise fashion using an alpha of 0.5 to enter 

the model: memory, executive functioning, language, and attention. It was hypothesized 

that memory and executive function would be the most important predictors in the model 

irrespective of norming method followed by language, then attention. The models were 

evaluated based on R2 values and adjusted R2. Models were compared by examining R2 

differences between models and AIC differences. The importance of individual cognitive 

domains were evaluated by examining R2 change, standardized regression weights 

associated with each cognitive domain, and significance of terms in the final models. The 

model construction strategy allowed for a precise determination of the different 

proportions of variance accounted for by each cognitive domain and how the magnitude 

of those relationships was affected by demographic correction. 

Regression requires several assumptions: linearity of the relationship between 

predictor and criterion variables, absence of multicollinearity, absence of outliers 

amongst the independent and dependent variables, independence of errors, and 

homoscedasticity (Tabachnick & Fiddell, 2012). Linearity was examined visually using 

scatterplots and bivariate Pearson correlations described above. Multicollinearity was 

addressed a priori by design, through creating homogeneous cognitive composites that 

were relatively distinct from one another by virtue of their item content. Bivariate 

Pearson correlations between the test variables allowed for quantitative evaluation of any 
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multicollinearity between variables. In general, variables with correlations above 0.7 – 

0.8 should not be used together in a regression equation (Allison, 1999). Variance 

Inflation Factor (VIF) and tolerance values calculated as a result of the regressions 

complemented these a priori methods of detecting multicollinearity. In general, VIF 

above 10 and Tolerance values below 0.2 are considered as representing possible 

problems (Field, 2013). Outliers and influential data points were evaluated using 

regression diagnostics.  

In a multiple regression context, outliers can be defined as points that differ 

substantially from the main trend of the data (Field, 2013). Examination of standardized 

and studentized residuals following model fitting was used to identify such points which 

were further inspected for possible removal. Single data points with standardized 

residuals above or below 3.29 were considered for removal, as values this high are 

unlikely to occur based on chance (Field, 2013). The proportion of cases with 

standardized residuals greater or less than 1.96 was also examined, because 95% of data 

points should fall within these values in a well-fitting model. Multivariate outliers were 

also evaluated by calculating their distance from the group centroid via Mahalanobis 

distance, which is distributed as a Chi-square and can be evaluated at p < .001 to detect 

multivariate outliers (Meyers et al., 2016).  

Outlying data points may not be a large concern if they are not overly influential 

on the overall model. To assess influence, leverage values were examined. Leverage 

gauges the influence of the observed value of a case on a particular variable over the 

predicted values of a regression solution. The average expected leverage is defined as 
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(k+1/n) with cutoff values around 3 times the average leverage value typically considered 

as indicative of points with undue influence (Pituch & Stevens, 2015). This statistic was 

complemented by calculation of studentized deleted residuals, which represented the 

difference between the prediction of an observed value when it is and when it is not 

included in the model divided by its standard deviation (Field, 2013). Influence on the 

overall model was evaluated using Cook’s distance, with values greater than 1 potentially 

indicating cause for concern (Cook & Weisberg, 1982).  

Independence of errors or lack of autocorrelation amongst residuals was assessed 

using the Durbin-Watson statistic which tested for serial correlations between adjacent 

residuals. This statistic ranges from 0 to 4, with values greater than 2 implying negative 

correlation and below 2 implying positive correlation. Rule of thumb suggested by Field 

(2013) for evaluating this statistic are that values less than 1 or greater than 3 are 

indicative of a possible problem. Homoscedasticity was evaluated by plotting 

standardized residuals vs. standardized predicted values, which should ideally assume a 

random pattern. Funnel shaped plots may suggest heteroscedasticity and a curved 

appearance may indicate departures from normality (Field, 2013). Histograms of residual 

values and normal p-p plots were also calculated to examine normality of residuals.  

Power Analysis 

 Power for multiple regression includes tests of the overall model being 

significantly different than 0, tests of R2 increase at each step in variable entry, and tests 

for the significance of individual regression coefficients. G*Power 3.1.9.4 was used to 

examine power for each of these tests assuming a moderate effect size (f2 = 0.15) and α = 
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.05 at the desired power level of 0.8, as recommended by Cohen (1988) (Faul et al., 

2007). A total sample size of n = 85 was required to achieve power of 0.803 for tests of 

the R2 deviation from 0 and the same sample size was required for tests of R2 increase. A 

total sample of 55 was required for tests of model coefficients. 

Summary 

 The current investigation examined the impact of demographic correction on the 

diagnostic validity of cognitive tests in the service of differentiating between normal 

cognitive aging, MCI, and dementia. The proposed study challenges the standard practice 

of demographic correction thought to universally improve cognitive testing instruments’ 

sensitivity to impairment. The NACC appointed a specific task force to choose the set of 

measures that are freely available and have adequate discriminatory powers to encourage 

uniform data collection strategies and collaboration between researchers. The resulting 

data set, the UDS Version 3, was the focus of the current study because of its size and 

diversity. It contains healthy control participants as well as those meeting the diagnostic 

criteria for MCI and Alzheimer’s dementia. The results of this study may not only tip the 

debate towards an optimum scoring method to detect the earliest stages of degenerative 

cognitive impairment, but it may also advise the illusive search for a set of cognitive 

biomarkers that distinguish individuals who are experiencing the effects of normal aging 

from those in the process of developing a neurodegenerative disease. The earlier and more 

accurately we can diagnose Alzheimer’s, the greater chance we have of altering the 

disease trajectory, potentially improving the future for the many individuals that are yet to 

be diagnosed and other stakeholders.   
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Chapter 4: Results  

The purpose of the present study was to investigate the impact of demographic 

corrections on the diagnostic validity of cognitive tests when differentiating between 

normal cognitive aging and AD dementia. The standard practice of demographically 

correcting raw test scores for age and education is widely believed to universally improve 

the scores’ sensitivity to detecting cognitive impairment for all age groups but has been 

challenged by researchers who believe that uncorrected scores may be more sensitive for 

detecting impairment in the aging population (Hassenstab et al., 2016; Hessler et al., 

2014; Holtzer et al., 2008; O’Connell & Tuokko, 2010; Wyman-Chick et al., 2018) . 

Hierarchical multiple linear regression was used to predict the outcome variable, the 

CDR-SB scores, by a combination of cognitive composite scores derived from cognitive 

tests scored using 4 different methods of demographic correction.  

The cognitive domain composite scores for memory, executive function, 

language, and attention were the predictor variables. The composite construction strategy 

was based on the same theoretical grouping of tests used in the work of Weintraub et al. 

(2018a). This theoretically driven strategy is well grounded in established principles of 

NP function and localization. Weintraub and colleagues (2018b) developed a normative 

calculator for the UDS-NAB using test data of 3602 cognitively normal participants over 

the age of 60. This model was used to standardize the test scores and adjust for the 

various demographic corrections that were compared in the regression analysis. The 

composite score for the memory domain (MEMO) was composed of the scores from 2 

tests, Craft Story 21 and the Benson Complex Figure recall task. The executive function 
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domain (EXEC) was constructed from verbal fluency F & L and TMT B tests. The 

language domain (LANG) was derived from the MINT and Animal Fluency measures. 

And the attention domain composite score (ATTN) was composed of DGF and DGB 

tests. For a full discussion of the reliability and validity of each individual NP test, see 

chapter 3. Cognitive composites offer a more complete sampling of cognitive abilities 

than a single cognitive test by virtue of broader item content and are advantageous 

statistically as they can be more sensitive to cognitive changes in preclinical dementia 

therefore more reliable than the single measures from which they were derived. These 4 

domains were chosen because models with fewer explanatory variables are more 

desirable than complex models due to enhanced interpretability (James et al., 2017). For 

more details on how each of the demographic scores were computed see the full 

discussion in chapter 3 under the subheadings “Cognitive Test Scoring” and “Creation of 

Cognitive Composites”.   

The order of entry into hierarchical regression models was defined a priori. 

Memory measures have been shown to be the earliest indicators of decline in AD even in 

minimally symptomatic individuals, and executive function impairment usually follows 

(Karantzoulis & Galvin, 2011). Deficits in language functioning, including semantic 

verbal fluency and visual object confrontation are also characteristic of AD (Salmon & 

Bondi, 2009). Individuals with AD may also exhibit impairment with attention and 

working memory though these abilities may be well preserved until later into the illness 

(Cherry et al., 2002). The following prototype model was built 4 different times, once for 

each norming method: 
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CDR-SB scores = β1MEMO + β2 EXEC + β3 LANG + β4 ATTN  

The first model was corrected for gender only (G) and considered the raw scores for the 

purpose of the analysis. The second model was age corrected only (GA). The third model 

was education corrected only (GE). The fourth model was corrected with a combination 

of both age and education (GEA). Therefore, the abbreviated combination of MEMO_G, 

is the score for the memory composite score corrected only for gender (raw score), while 

MEMO_GEA is the memory composite score corrected for gender, education, and age.   

Four sets of regressions will be used to examine:  

1. The relationship between CDR-SB and the G cognitive composite scores. 

2. The relationship between the CDR-SB and GA cognitive composite scores.  

3. The relationship between the CDR-SB and GE cognitive composite scores.  

4. The relationship between the CDR-SB and GEA cognitive composite scores.  

Models were compared by examining R2 differences between the models and AIC 

values. This strategy clarified the extent to which the raw scores and various 

demographic corrections influenced the ability of the cognitive tests to detect meaningful 

variation in functional changes due to cognitive loss from AD dementia. The importance 

of individual cognitive domains was evaluated by examining R2 change, standardized 

regression weights associated with each cognitive domain, and significance of terms in 

the final models. It also allowed for the precise determination of the different proportions 

of variance accounted for by each cognitive domain with each norming method. 

Determining which model was “best” required comparing the merits of the various 

models because there was one model for each norming method as specified above. 
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The overarching research question was how demographic corrections affected the 

strength of the relationship between cognitive test scores and CDR-SB. The primary 

study hypothesis was that age and education correction would increase the extent to 

which NP test scores were able to capture functional decline due to cognitive loss in 

dementia. There were also 2 subhypotheses 1) age correction alone would decrease the 

extent to which NP tests were able to capture functional decline due to cognitive loss in 

dementia, and 2) education correction alone would increase the extent to which NP tests 

were able to capture functional decline due to cognitive loss.  

Chapter 4 opens with data collection and participant selection information that 

includes a review of the inclusion and exclusion parameters that determined the final 

sample size. Descriptive and demographic characteristics of the final sample extracted 

from the entire data set provided by NACC. A discussion of the statistical assumptions 

necessary for the analyses, and a complete report of the findings organized by the 

research questions, including tables that best illustrated the results of the analyses and 

effect sizes. The chapter closes with a precise summary of hypotheses testing.  

Data Collection 

The data set was obtained from the University of Washington’s NACC by 

submitting the abstract from the present study and signing a data use agreement. To date, 

the NACC coordinated the collection of longitudinal data on 967 different variables for 

more than 100,000 participants. This study was limited to only data gathered on the most 

recent version of the UDS-3 implemented in March 2015 because it reflected changes in 

how dementia syndromes are classified in current clinical practice with an updated 
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version of the UDS-3 NAB that allowed researchers to collaborate using freely-available 

standardized testing instruments. For a complete discussion on how each ADC enrolls 

subjects and gathers data, see chapter 3 “The National Alzheimer’s Coordinating Center 

Uniform Data Set 3”. NACC subjects are best described as a referral-based or volunteer 

case series and thus are not a statistically representative sample of the population. The 

complete UDS-3 NAB data included a robust group of individuals with normal cognition 

as well as those with various etiologies of neurodegenerative diseases. The primary goal 

of this study was to inform the use of NP tests to differentiate between normal cognitive 

aging and dementia in the most commonly encountered situations, so the subjects were 

filtered to include only a primary etiologic diagnosis of AD in people 60 years and older 

with a CDR-SB score < 9.5. This cutoff excluded individuals with moderate to severe 

dementia for reasons fully justified in chapter 3 under “Participant Selection and 

Stratification”.  

Sample Descriptives 

The case processing summary showed no missing data. From the more than 

100,000 participants in the full data set, 8724 subjects met all inclusion and exclusion 

criteria (n = 8724), 5192 females and 3532 males. They ranged in age from 60 to 101 

with an average age of 74. The majority earned a bachelor’s degree with a range of 

formal education from 9 years to 21 years. Table 1 contains the descriptive statistics for 

all study variables. The frequencies tables were visually inspected for anomalies, these 

values all fell within expected ranges.. Table 2 used the outcome measure, to classify the 

subjects according to their CDR-SB scores into categories of Normal Cognition, MCI, or 
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Demented. The majority of subjects, 6237, fell into the normal cognition range, 1505 had 

a diagnosis of MCI, and 982 subjects met the criteria for dementia.  

 

Table 1 

Descriptive Statistics for All Variables  
 

Variable Mean SD Min Max Range IQR Skew Kurtosis 

AGE 74.12 7.87 60 101 41 12  .32 - .46 
SEX   .60   .49 0 1 1 1 -.39      -1.85 
EDU 16.24 2.51 9 21 12 4 -.32    .20 
CDR-SB  .83 1.68 0 9 9 .50 2.53  6.30 
MEMO_GEA -.4595 1.13 -3.83 2.78 6.62 1.47 -.56  -.34 
MEMO_GA -.4635 1.14 -3.69 2.52 6.21 1.48 -.59 -.20 
MEMO_GE -.4592 1.16 -3.56 2.69 6.25 1.51 -.53 -.25 
MEMO_G -.4632 1.17 -3.37 2.43 5.80 1.52 -.52 -.29 
EXEC_GEA -.3411 1.08 -4.59 2.48 7.07 1.12 -1.07 1.36 
EXEC_GA -.3482 1.12 -4.40 2.46 6.86 1.20 -1.07 1.24 
EXEC_GE -.3408 1.11 -4.45 2.59 7.04 1.17 -1.06 1.22 
EXEC_G -.3479 1.15 -4.28 2.56 6.83 1.23 -1.06 1.10 
LANG_GEA -.3459 1.14 -9.09 2.95 12.04 1.24 -1.70 6.16 
LANG_GA -.3528 1.17 -8.91 3.03 11.94 1.29 -1.58 5.36 
LANG_GE -.3457 1.17 -8.88 3.00 11.88 1.27 -1.63 5.66 
LANG_G -.3525 1.20 -8.80 3.01 11.80 1.33 -1.51 4.94 
ATTN_GEA -.1234   .88 -3.32 2.93 6.26 1.18 .27 .05 
ATTN_GA -.1282   .90 -3.39 3.01 6.40 1.20 .28 .05 
ATTN_GE -.1233   .89 -3.41 3.01 6.42 1.20 .28 .04 
ATTN_G -.1280   .91 -3.52 2.83 6.35 1.16 .30 .04 

Note. n = 8724. n = 5192 females. n = 3532 males. Memory composite score (MEMO). 

Executive function composite score (EXEC). Language composite score (LANG). 

Attention composite score (ATTN). Scores corrected for gender, education, and age 

(GEA). Scores corrected for gender, and age (GA). Scores corrected for gender, and 

education (GE). Scores corrected for gender only, also considered as the “raw” score (G).  
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Table 2 

 

 

 

Assumption Testing 

A preliminary regression analyses was run to look for outliers identified using 

standardized and studentized residuals following model fitting. Single data points with 

residuals above or below 3.29 were considered for removal as they were unlikely to occur 

by chance (Field, 2013). The proportion of cases with standardized residuals greater or 

less than 1.96 were also examined because it was desired that 95% of data points fell 

within these values for a well-fitting model. Distances were calculated using 

Mahalanobis, Cook’s, and Leverage values. Using a Chi-square table P = .001 and 4df, 

Descriptive Statistics Grouped by Dementia Severity Level 

 Normal 

N = 6237 

MCI 

N = 1505 

Demented 

N = 982 

 

          
 
 

Mean 
 

SD Range Mean 
 

SD Range Mean 
 

SD Range 

CDR-SB  .10 .30    2.0 1.23 .90 5.12 4.90 1.70 6.50 
MEMO_GEA -.00 .78 5.98 -1.15 .94 5.12 -2.31  .81 4.69 
MEMO_GA -.00 .79 5.85 -1.15 .94 5.12 -2.34  .81 4.28 
MEMO_GE -.01 .81 5.71 -1.18 .94 5.32 -2.36  .80 4.23 
MEMO_G -.02 .82 5.59 -1.19 .95 5.00 -2.39  .80 5.80 
EXEC_GEA -.32 .80 6.32   -.71 1.06 6.72 -1.74 1.35 5.92 
EXEC_GA  .01 .88 5.89  -.72 1.10 6.24 -1.80 1.36 6.40 
EXEC_GE -.01 .83 6.35  -.74 1.08 6.44 -1.80 1.36 6.34 
EXEC_G -.01 .87 6.71  -.76 1.15 5.99 -1.85 1.36 6.83 
LANG_GEA -.00 .80 7.93  -.84 1.07 10.80 -1.79 1.59 10.56 
LANG _GA  .00 .84 8.35  -.85 1.08 11.01 -1.84 1.58 10.13 
LANG _GE  .01 .82 8.37  -.87 1.09 10.63 -1.83 1.60 10.37 
LANG _G  .02 .86 8.72  -.88 1.10 10.84 -1.88 1.59 11.80 
ATTN_GEA  .01 .86 5.64  -.32  .82 5.83  -.65 .84 5.92 
ATTN _GA  .01 .88 5.89  -.33  .83 5.83  -.69  .84 6.04 
ATTN _GE  .02 .87 5.68  -.34  .82 5.90  -.68  .83 5.97 
ATTN _G  .02 .89 5.66  -.35  .83 5.89  -.72  .83 6.35 

Note. n = 8724. n = 5192 females. n = 3532 males.  
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the cutoff was 18.47. Cook’s distance values over .00045877 could have been considered 

outliers and leverage values over .00114626 could also been considered for removal. No 

data violated all three markers and the data set was kept in its entirety without fear that 

outliers biased results because of the large size of the data set. Tests to see if the data met 

the assumption of collinearity indicated that it was not a concern. VIF and Tolerance 

values were examined because VIF > 10 and Tolerance < .02 could be problematic, none 

of the values violated those boundaries. The data also met the assumption of independent 

errors, Durbin Watson values that were all close to 2 and are included in Table 7.  

Histograms and Q – Q plots were visually inspected (see Appendix). The 

histograms confirmed normality of the variables. All test score variables were roughly 

centered over 0 and the majority of the scores fell between – 2 and 2. Skew and kurtosis 

values are included in Table 1, values < 1 are generally considered acceptable but 

multiple linear regression does not require normally distributed variables (George & 

Mallery, 2016). The slight negative skew for the test variables was expected as 

individuals with impaired performance perform below normal. Q – Q plots were 

inspected for linearity and observed values adhered well to the line of best fit (expected 

values), they were not completely on the line, but close, so there were no obvious 

violations of this assumption. The departure from normality appeared more significant as 

the values of the CDR-SB increased (a higher dementia severity) which followed logic 

that the CDR-SB is more accurate at predicting normal cognition and less accurate at 

predicting demented people (see Appendix A). Homogeneity and homoscedasticity were 

examined using boxplots. The length of the boxes and their “whiskers” had 
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approximately the same spread so there were no obvious violations of this assumption. 

The data also met the assumption of non-zero variances as all values were greater than 0. 

Pearson correlations also showed no violations of collinearity between the outcome 

measure, the CDR-SB, as all values were less than .7. Table 3 contains the correlations 

for GEA model; Table 4 shows the GA model correlations; Table 5 shows the 

correlations for the GE model, and; Table 6 shows the correlations for the G (raw) model. 

The correlations have a negative relationship as expected. The lower the test scores, the 

higher the CDR-SB score, in other words people performed worse on the tests as their 

dementia severity increased.  

Table 3 

Pearson Correlations for Gender, Age, and Education Corrected Scores 

 

 

 CDRSUM MEMO_GEA EXEC_GEA ATTN_GEA LANG_GEA 

CDRSUM  1 -.645** -.507** -.240** -.512** 

MEMO_GEA  -.645** 1 .483** .287** .559** 

EXEC_GEA  -.507** .483** 1 .463** .564** 

ATTENT_GEA  -.240** .287** .463** 1 .305** 

LANG_GEA  -.512** .559** .564** .305** 1 

Note. N = 8724. ** p < .001 (2-tailed). 
 

 

Table 4 

Pearson Correlations for Gender and Age Corrected Scores 

 

 CDRSUM MEMO_GA EXEC_GA ATTN_GA LANG_GA 

CDRSUM  1 -.645** -.505** -.248** -.513** 

MEMO_GA  -.646** 1 .501** .309** .574** 

EXEC_GA  -.505** .501** 1 .490** .589** 

ATTENT_GA  -.248** .309** .490** 1 .335** 

LANG_GA  -.513** .574** .589** .335** 1 

Note. N = 8724. ** p < .001 (2-tailed). 
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Table 5 

Pearson Correlations for Gender and Education Corrected Scores 

 

 CDRSUM MEMO_GE EXEC_GE ATTN_GE LANG_GE 

CDRSUM  1 -.651** -.517** -.255** -.519** 

MEMO_GE  -.651** 1 .511** .308** .582** 

EXEC_GE  -.517** .511** 1 .477** .588** 

ATTENT_GE  -.255** .308** .477** 1 .325** 

LANG_GE  -.519** .582** .588** .325** 1 

Note. N = 8724. ** p < .001 (2-tailed). 
 

 

 

Table 6 

Pearson Correlations for Raw Scores 

 

 CDRSUM MEMO_G EXEC_G ATTN_G LANG_G 

CDRSUM  1 -.651** -.515** -.263** -.520** 

MEMO_G  -.651** 1 .528** .329** .595** 

EXEC_G  -.515** .528** 1 .503** .611** 

ATTENT_G  -.263** .329** .503** 1 .354** 

LANG_G  -.520** .595** .611** .354** 1 

Note. N = 8724. ** p < .001 (2-tailed). 
 

 

The bivariate correlations also supported the order of entry into the hierarchical 

regression equation for the testing the main hypotheses; memory composite scores 

showed the strongest relationship to the CDR-SB (α = -.65, p < .001) so entering memory 

scores into the model first was supported; executive function and language composite 

scores both demonstrated moderate relationships with the CDR-SB (α = -.51, p < .001) so 

they were entered second and third respectively, and; the attention composite scores 
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showed a weak yet still statistically significant relationship (α = .25, p < .001) to the CDR 

– SB so entering these scores into the regression equation last was also supported.  

Regressions to Predict Dementia Severity Rating by Norming Method 

Hierarchical multiple regression was conducted to predict CDR-SB, a clinical 

measure of functional changes due to cognitive loss, from the memory, executive 

function, language, and attention test composite scores that were normed by 4 different 

methods. R2 and AIC values were compared to analyze the extent to which the raw scores 

and demographically corrected scores influenced the ability of the tests to capture 

meaningful variation in the CDR-SB. See Table 7 for an overall summary of the 

significance of each of the models by norming method. The individual predictor variable 

results for each norming method are reported in Table 8.  

The first hierarchical multiple regression was conducted to predict CDR-SB 

scores from memory scores, executive function scores, language scores, and attention 

scores adjusted for gender, age, and education. Model 1 showed memory test scores 

accounted for 41.6% of the CDR-SB variability, R2 = .416, F(1, 8722) = 6213.10, p < 

.001. Model 2 showed executive function scores accounted for an additional 5% of the 

variability in the CDR-SB, F(1, 8721) = 809.94, p < .001, R2 = .05. Model 3 showed 

that language had a smaller yet still significant effect by accounting for 1% of the 

variability in the CDR-SB, F(1, 8720) = 169.06, p < .001, R2 = .01. Model 4 showed 

that attention scores were again significant even though they only captured .1% of the 

variance in the CDR-SB, F(1, 8719) = 19.69, p < .001, R2 = .001. The complete model 

captured 47.7% of the variability in the CDR-SB, R2 = .477, p < .001. 
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Further analysis demonstrated the significance of each predictor. Memory 

accounted for 42% of the CDR-SB score,  = -.65, t(8722) = -78.82, p < .001, pr2 = .42. 

In other words, for every one unit decrease in memory scores there was an increase in 

dementia severity rating by .65 SD. In the second model executive function accounted for 

an additional 9% of the CDR-SB when controlling for memory,  = -.25, t(8721) = -

28.46, p < .001, pr2 = .09. In the third model language accounted for another 2% of the 

CDR-SB score over and above memory and executive function scores,  = -.13, t(8720) = 

-13, p < .001, pr2 = .02. And in the fourth model attention was again a significant 

predictor, but only accounted for .22% of the CDR-SB score,  = .04, t(8719) = 4.44, p < 

.001, pr2 = .0022. 

A second hierarchical multiple regression was conducted to predict CDR-SB 

scores from memory test scores, executive function test scores, language test scores, and 

attention test scores that were adjusted for gender and age. Memory test scores accounted 

for 41.7% of the CDR-SB variability, F(1, 8722) = 6235.38, p < .001, R2 = .417. Model 2 

showed executive function scores accounted for an additional 4% of the variability in the 

CDR-SB, F(1, 8721) = 809.94, p < .001, R2 = .04. Model 3 showed that language had 

a smaller yet still significant effect by accounting for .09% of the variability in the CDR-

SB, F(1, 8720) = 145.83, p < .001, R2 = .009. Model 4 showed that attention scores 

were again significant even though they only captured .2% of the variance in the CDR-

SB, F(1, 8719) = 27.08, p < .001, R2 = .002. The total model accounted for 47.1% of 

the variability in the CDR-SB score, R2 = .471, p < .001. 
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The significance of the predictors for this model showed memory to have the 

same value as in the model corrected for gender, education, and age,  = -.65, t(8722) = -

78.96, p < .001, pr2 = .42. Executive function accounted for another 8% of the CDR-SB 

score when holding memory constant,  = -.24, t(8721) = -26.62, p < .001, pr2 = .08. 

Language picked up another 2% of the CDR-SB score when controlling for memory and 

executive function scores,  = -.13, t(8720) = -12.08, p < .001, pr2 = .02. Attention, 

although statistically significant, only accounted for an additional .31% of the CDR-SB 

score over and above the memory, executive function, and language scores,  = .05, 

t(8719) = 5.20, p < .001, pr2 = .0031. 

The third hierarchical multiple regression was conducted to predict CDR-SB 

scores from memory test scores, executive function test scores, language test scores, and 

attention test scores that were adjusted for gender and education. Memory test scores 

accounted for 42.3% of the CDR-SB variability, F(1, 8722) = 6401.38, p < .001, R2 = 

.423. Executive function scores accounted for an additional 4.6% of the variability in the 

CDR-SB, F(1, 8721) = 755.64, p < .001, R2 = .046. Language had a smaller yet still 

significant effect by accounting for .8% of the variability in the CDR-SB, F(1, 8720) = 

139.86, p < .001, R2 = .008. Lastly, attention scores were again significant even though 

they only captured .1% of the variance in the CDR-SB, F(1, 8719) = 16.18, p < .001, 

R2 = .001. The total model accounted for 47.9% of the variability in the CDR-SB 

scores, R2 = .479, p < .001. 

The significance for each predictor adjusted for gender and education showed 

memory again accounting for 42% of the CDR-SB score,  = -.65, t(8722) = -80.01, p < 
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.001, pr2 = .42. Executive function accounted for an additional 8% of the CDR-SB score 

over and above memory,  = -.25, t(8721) = -27.49, p < .001, pr2 = .08. Language picked 

up an addition 2% of the CDR-SB score,  = -.12, t(8720) = -11.83, p < .001, pr2 =.02. 

Attention was again significant while accounting for .18% of the CDR-SB score,  = .04, 

t(8719) = 4.02, p < .001, pr2 = .0018. 

The fourth hierarchical multiple regression was conducted to predict CDR-SB 

scores from raw scores, adjusted for gender only (raw scores). Memory test scores again 

accounted for 42% of the CDR-SB variability, F(1, 8722) = 6420.78, p < .001, R2 = .424. 

Executive function scores accounted for an additional 4.1% of the variability in the CDR-

SB scores, F(1, 8721) = 662.44, p < .001, R2 = .041. Language had a smaller yet still 

significant effect by accounting for .07% of the variability in the CDR-SB, F(1, 8720) = 

120.73, p < .001, R2 = .007. Lastly, model 4 showed that attention scores were again 

significant even though they only captured .1% of the variance in the CDR-SB, F(1, 

8719) = 22.70, p < .001, R2 = .001. The complete model accounted for 47.3% of the 

variability in the CDR-SB scores.R2 = .473, p < .001. 

The significance of the predictors for the raw scores showed memory again at 

42%,  = -.65, t(8722) = -80.13, p < .001, pr2 = .42. Executive function accounted for an 

additional 7% of CDR-SB scores,  = -.24, t(8721) = -25.74, p < .001, pr2 = .07. 

Language accounted for 1% of the CDR-SB score,  = -.12, t(8720) = -10.99, p < .001, 

pr2 =.01. And attention was again statistically significant while only accounting for .26% 

of the CDR-SB scores,  = .04, t(8719) = 4.77, p < .001, pr2 = .0026. 
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The gender and education normed model captured the greatest amount of variance 

in the CDR-SB with 47.9% . The gender, education, and age normed model accounted for 

47.7% of the variance in the CDR-SB. The raw scores accounted for 47.3% of the 

variance and the model normed for gender and age captured the least amount of variance 

47.1% from the CDR-SB. The differences were small and did not fall into different effect 

size categorizations, but an argument can be made that any increase is of significant 

clinical value in dementia diagnostic evaluations. Each predictor was significant in every 

step of every regression for every norming method. Meaning no matter how the test 

scores were normed they all had important relationships with the CDR-SB. As expected, 

memory, executive functions, and language test scores significantly predicted the 

dementia severity rating in a negative direction, as test scores decreased, the dementia 

severity increased. However, an unexpected finding surfaced with the attention scores, 

while statistically significant, the contribution to the predicted outcome measure was 

much smaller than expected. The best explanation for the small effect size of the attention 

domain is that the ability to maintain attention is often well preserved until the later 

stages of AD. The majority of the sample group had normal cognition with inclusion 

criteria removing participants with a CDR-SB score above 9.5, meaning that individuals 

with moderate and severe dementia were excluded from this analysis. This decreased the 

lower end scores in the attention composite.  

Age-adjusted scores weakened the ability of the model to capture the variance in 

the CDR-SB, and the theory that raw scores are superior to other norming methods could 

not be supported when using a NP battery approach (Hassenstab et al, 2016; Hessler et 
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al., 2014; Holtzer et al.,2008; O’Connell & Tuokko, 2010; Wyman-Chick et al., 2018). 

The findings clearly suggested that correction for education is best practice for processing 

NP test scores in an older population because the 2 models that included education 

correction were superior to the models that did not included education correction. The 

model that was only corrected for education, leaving age correction out completely, 

captured the most variability in the CDR-SB. 

 

 

Table 7 

Model Summary of Regressions for Prediction of CDR-SB Scores  

  Total 

R2 

R2 

change 
df 

    F 

Change 

Total 

R2 

Durbin 

Watson 

Model 1 

 

1MEMO_GEA .416 .416 1, 8722 6213.101 .416  

2 EXEC_GEA .466 .050 1, 8721   809.944 .466  

3 LANG_GEA .476 .010 1, 8720   169.055 .476  

4 ATTN_GEA .477 .001 1, 8719     19.692 .477 1.99 

        

Model 2 

 

1 MEMO_GA .417 .417 1, 8722 6235.376 .417  

2 EXEC_GA .461 .044 1, 8721   708.728 .461  

3 LANG_GA .470 .009 1, 8720   145.833 .470  

4 ATTN_GA .471 .002 1, 8719    27.080 .471 1.98 

        

Model 3 

 

1 MEMO_GE .423 .423 1, 8722 6401.380 .423  

2 EXEC_GE .469 .046 1, 8721   755.641 .469  

3 LANG_GE .478 .008 1, 8720   139.859 .478  

4 ATTN_GE .479 .001 1, 8719    16.182 .479 1.98 

        

Model 4 

 

1 MEMO_G .424 .424 1, 8722 6420.780 .424  

2 EXEC_G .465 .041 1, 8721   662.440 .465  

3 LANG_G .472 .007 1, 8720    120.733 .472  

4 ATTN_G .473 .001 1, 8719      22.703 .473 1.98 

Note. n = 8724. All p values were statistically significant p < .001. Memory composite score (MEMO). 

Executive function composite score (EXEC). Language composite score (LANG). Attention composite 

score (ATTN). Scores corrected for gender, education, and age (GEA). Scores corrected for gender, and 

age (GA). Scores corrected for gender, and education (GE). Raw scores (G) corrected for gender only.  
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Table 8 

Significance of Predictors by Norming Method 

Note: n = 8724. *p < .001. Memory composite score (MEMO). Executive function composite score (EXEC). Language composite score (LANG). Attention 

composite score (ATTN). Scores corrected for gender, education, and age (GEA). Scores corrected for gender, and age (GA). Scores corrected for gender, and 

education (GE). Raw scores (G) corrected for gender only.  

 Model 1 Model 2 Model 3 Model 4 

Predictors B SE B β B SE B β B SE B β B SE(B) β 

MEMO_GEA  -.96  .01  -.65* -.78  .01 -.52*    -.70  .01 -.47* -.71  .01 -.46* 

EXEC_GEA     -.40  .01  -.25*     -.32  .02  .20*  -.34  .02  -.22* 

LΑΝG_GEA       -.20 .02  -.13*  -.20  .02  -.13* 

ATTN_GEA          .07  .02 .04* 

MEMO_GA -.95 .01 -.65* -.77 .01 -.52* -.70 .01 -.48* -.70 .01 -.48* 

EXEC_GA    -.36 .01 -.24* -.29 .02 -.19* -.32 .02 -.21* 

LANG_GA       -.18 .02 -.13* -.19 .02 -.13* 

ATTN_GA          .09 .02 .05* 

MEMO_GE -.94 .01 -.65* -.76 .01 -.52* -.69 .01 -.48* -.70 .01 .49* 

EXEC_GE    -.38 .01 -.25* -.30 .02 -.20* -.33 .02 -.22* 

LANG_GE       -.18 .02 -.12* -.18 .02 -.13* 

ATTN_GE          .07 .02 .04* 

MEMO_G -.93 .01 -.65* -.75 .01 -.53* -.69 .01 -.48* -.69 .01 -.48* 

EXEC_G    -.35 .01 -.24* -.28 .02 -.19* -.30 .02 -.21* 

LANG_G       -.17 .02 -.12* -.17 .02 -.12* 

ATTN_G          .08 .02 .04* 
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Table 9 

Comparison of Percentage Accounted for by Each Cognitive Domain (N = 8724) 

 

Model Memory 

Score + 

Executive 

Score + 

Language 

Score + 

Attention 

Score = 

Total 

GEA 41.6% 5.0% 1% .1% 47.7% 

GA 41.7% 4.4% .9% .2% 47.1% 

GE 42.3% 4.6% .8% .1% 47.9% 

G 42.4% 4.1% .7% .1% 47.3% 

Note: n = 8724. Scores corrected for gender, education, and age (GEA). Scores corrected for 

gender, and age (GA). Scores corrected for gender, and education (GE). Raw scores (G) 

corrected for gender only. 

 

The models were also compared using AIC values by computing the delta AIC 

values as seen in Table 9. The lowest AIC value was the model corrected for gender and 

education, which when subtracted from the other AIC values provided the model delta 

value. The best model had the lowest AIC value unless another model had a lesser delta 

AIC (Burnham & Anderson, 2004). Burnham and Anderson (2004) determined that 

models with delta AIC  2 have substantial support and are comparable to the model with 

the lowest AIC value. Models with delta AIC  4 to 7 have considerably less support and 

those with delta AIC > 10 have essentially no support. This is the same story told by R2 

only clearer. Age correction of cognitive tests created an inferior model. The best model 

was gender and education corrected model with all the other models having essentially no 

support because the other delta AIC values were all > 10. 
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Table 10 

AIC Values for All Regression Models 

 

 

 

AIC Value 

 

Delta AIC Value 

GEA 3373.47782  24.24 

GA   3469.066734 122.83 

GE   3346.239576 ** 

G   3433.620439   87.38 
Note: n = 8724. *p < .001. Scores corrected for gender, education, and age 

(GEA). Scores corrected for gender, and age (GA). Scores corrected for 

gender, and education (GE). Raw scores (G) corrected for gender only.  

 

 

Results of Main Hypotheses Testing 

The first hypothesis was that age and education correction would increase the 

extent to which NP test scores would capture functional decline due to cognitive loss in 

dementia. This hypothesis was supported. A comparison of the gender, education, and 

age corrected model to the raw score model showed the gender, age, and education model 

captured more variance, R2 = .477 than the raw scores, R2 = .473 so the null hypothesis 

was rejected. 

Subhypothesis 2 was that age correction would decrease the extent to which NP 

tests were able to capture functional decline due to cognitive loss in dementia. This 

hypothesis was also supported. A comparison of the gender and age corrected model to 

the raw score model showed the gender and age corrected scores, R2 = .471 captured less 

variance than the raw scores, R2 = .473 so the null hypothesis was rejected. 

Subhypothesis 3 was that education correction would increase the extent to which 

NP tests was able to capture functional decline due to cognitive loss in dementia. The 

comparison between the gender and education scored model, R2 = .479, showed that it 
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captured more variance in the CDR-SB than any other model so the null hypothesis was 

rejected. In short, the results of this hierarchical multiple regression showed that gender 

and education correction of test scores captured 47.9% of variance in CDR-SB, giving it 

a slight edge over the gender, education, and age corrected model which captured 47.7% 

of the variance in the CDR-SB. This was confirmed by the comparison of the AICs for 

the models (See Table 10). The best model was the one with the lowest AIC value, the 

model corrected for gender and education, and all the other models had essentially no 

support.  

Summary 

The overarching research question examined the effects of different types of 

demographic correction on the relationship between cognitive test scores and functional 

deterioration due to cognitive impairment as measured by the CDR-SB, a dementia 

severity measure. The first hypothesis, that age and education correction increased the 

extent to which NP test scores captured functional decline due to cognitive loss in 

dementia was supported. The first subhypotheses that age correction decreased the extent 

to which NP tests captured functional decline due to cognitive loss in dementia was also 

supported. The second subhypotheses, that education correction increased the extent to 

which NP tests captured functional decline due to cognitive loss in dementia was strongly 

supported. A comparison of the models showed that the education correction model 

captured the most variance, R2 = .479, in the CDR-SB score. The results of this 

hierarchical multiple regression showed that education correction of test scores made for 

a superior model by accounting for 47.9% of variance in CDR-SB. The comparison of the 
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AIC values for each model confirmed these findings. The gender and education corrected 

scores provided the best model with the other models having essentially no support. Age 

correction alone of NP tests in an older population created an inferior model. The 

differences between the models corrected for education alone and the education and age 

correction model were small, and an argument can be made that any increase is of 

significant clinical value. However, the necessary amount of increase or increment that 

would make a significant clinical difference on a population level was beyond the scope 

of this research. Chapter 5 addresses further interpretation of these findings, as well as 

limitations of the study and recommendations for further research.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

The purpose of this study was to identify optimal normative methods for detecting 

pathologic cognitive changes in elderly individuals when using cognitive testing. 

Archival data from the NACC provided a large data set on which to perform a 

hierarchical multiple regression analyses to determine the strength of the relationships 

between cognitive test scores, normed 4 different ways, and the clinical dementia severity 

rating as measured by the CDR-SB. Total R2 values and AIC values were compared to 

determine which norming method captured the greatest amount of variance, in other 

words which of the models garnered the most support. The results of the analysis 

revealed the differences between the models were small and did not fall into different 

effect size categories, but a clear hierarchy was established with education-corrected 

scores demonstrating superiority over the other demographic correction methods. Age 

correction weakened the models’ ability to capture variance in the CDR-SB.  

The main hypothesis was that age and education correction would increase the 

extent to which NP test scores captured functional decline due to cognitive loss in 

dementia. This hypothesis was supported. A comparison of the gender, education, and 

age scored model to the model composed of raw scores showed the demographically 

corrected model captured more variance, R2 = .477 than the raw scores, R2 = .473. The 

first subhypothesis was that age correction would decrease the extent to which NP tests 

captured functional decline due to cognitive loss in dementia. This hypothesis was also 

supported because the comparison between the gender and age corrected model and the 

model composed of raw scores showed gender and age corrected scores, R2 = .471 
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captured less variance than the raw scores, R2 = .473. The second subhypothesis was that 

education correction would increase the extent to which NP tests captured functional 

decline due to cognitive loss in dementia. Support was provided for this hypothesis as the 

gender and age corrected model, R2 = .479, captured the most variance in the CDR-SB 

when compared to all other models. Age correction subtracted from the model’s ability to 

capture variance. While the differences were small, they suggested the superiority of the 

gender and education corrected model over all others. The major limitation to these 

results is that further work is necessary to determine the extent of the difference in R2 

value that is required to make this clinically significant on a population level as no 

universally accepted criteria exists. Had the models fallen into different effect size 

categories the interpretation of the results would have been clearer. All the models had 

large effect sizes, R2 values >.40 as per the conventions established by Cohen (1988). It 

can be argued that any increases in R2 value is desirable because it may lead to greater 

diagnostic accuracy when evaluating for dementia. The current study confirmed that age-

corrected scores are the least desirable method of norming in an older population. The 

findings of the current study also refute the idea that raw scores are superior to 

demographically corrected scores in NP testing when used in the service of dementia 

diagnostic evaluations that utilize a NP battery approach.  

Interpretation of the Findings 

 The purpose of norming cognitive tests in the elderly is to provide a point of 

comparison for detecting deviant performance that would be indicative of a 

neurodegenerative disease such as AD. The findings of the current study provided a clear 
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hierarchy between the models; the education-corrected scores generated a superior model 

that captured 48% of the variance in the CDR-SB while the age-corrected model 

produced an inferior model that captured 47% of the variability in the CDR-SB. A 

comparison of the AIC values confirmed that gender and education corrected scores 

constructed the superior model. The next step would logically be to determine what 

useful clinical significance a 1% increase in R2 translates into at a population level, but 

that is beyond the scope of the current study.  

 Sliwinisky et al., (1996) introduced the idea that conventional norms were not 

optimal for detecting deviant performance on cognitive tests because the norms contained 

individuals who were already in cognitive decline yet still performed within normal limits 

on testing. Their seminal work demonstrated that conventional norms; underestimated 

normal performance in the elderly; overestimated the variance in test scores; exaggerated 

cognitive decline due to normal aging, especially in the very old, and; produced norms 

that were less sensitive to detecting dementia making it more challenging to diagnose. 

Sliwinski et al. argued that correcting for age and education decreased the discriminative 

validity of their single memory test, and that the uncorrected raw scores were superior for 

detecting dementia. The present study challenged their findings by using different 

methods of norming to analyze the strength of test scores’ relationships with the gold 

standard for clinical dementia severity ratings. The results of the current study partially 

supported their work, correcting for age and education did produce an inferior model if 

looking only at memory scores. Raw memory scores indeed captured more variation in 

the CDR-SB. However, when a battery approach was utilized and executive processes, 



116 

 

language, and attention scores were taken into consideration, the raw scores did not 

capture as much variation as models that included correction for education. It was clear 

that when using a typical NP battery approach, adding education correction produced a 

better model. Because a diagnosis between normal cognitive aging and dementia is never 

determined by a single cut off score in clinical practice, correcting for education is an 

essential component when processing scores.  

In 2010 O’Connell and Tuokko expanded on Sliwinski et al.’s key idea that 

demographic corrections of cognitive test scores may not universally improve dementia 

classification accuracy. Their study concluded equivalent overall classification accuracy 

of demographically corrected scores and uncorrected test scores but the authors realized 

that their findings were of more importance when only one test was used, as in a 

dementia-screening evaluation, and of less clinical importance with a typical NP battery 

approach. O’Connell and Tuokko conceded numerous limitations in their data given its 

novel simulation methodology that necessitated replication to be of any clinical value. 

Although their conclusion was overall equivalence between demographically corrected 

scores and uncorrected test scores, they did mention that gender and education corrected 

scores showed slightly higher accuracy. More work needs to be done to determine the 

exact extent of the differences required to deem these small differences in findings as 

significant or non-significant. The future direction for research of this type should be to 

determine if this number translates into clinical significance at a population level.  

Previous work by Sliwinski and colleagues (1996; 1997) focused on a single 

memory test score, while later work by Hessler et al. (2014) used a heterogeneous 
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composite score that represented multiple cognitive domains. The current study deemed it 

unlikely that cognitive domains would be affected by demographic variables in a uniform 

manner. Thus, theoretical groupings of particular tests were used to represent different 

cognitive domains (memory, executive function, language, and attention). This allowed 

for a first-of-its-kind examination of how each domain was affected by demographic 

corrections. Raw memory composite score captured the most variation in the CDR-SB 

when standing alone, but when the other domains were added and the model was 

examined as a whole, the raw scores underperformed the models that included correction 

for education (See Table 11). The executive and language composite scores appeared to 

benefit the most from gender, age, and education correction. While the attention domain 

received a slight increase from age correction but captured the same amount of variability 

with all other norming methods. The differences did not fall into different effect size 

categories leaving some work to be done on how meaningful the findings are on a 

practical level.  

 

Table 10 

Comparison of Percentage Accounted for by Each Cognitive Domain (N = 8724) 

 

Model Memory 

Score + 

Executive 

Score + 

Language 

Score + 

Attention 

Score = 

Total 

GEA 41.6% 5.0% 1% .1% 47.7% 

GA 41.7% 4.4% .9% .2% 47.1% 

GE 42.3% 4.6% .8% .1% 47.9% 

G 42.4% 4.1% .7% .1% 47.3% 

Note: n = 8724. Scores corrected for gender, education, and age (GEA). Scores corrected for 

gender, and age (GA). Scores corrected for gender, and education (GE). Raw scores (G) 

corrected for gender only. 
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Hessler et al. (2014) determined that both corrected and uncorrected scores were 

highly significant predictors of progression to dementia even when adjusted for age and 

education but observed that education-corrected scores had slightly higher predictive 

accuracy. Their overall conclusion was that the differences between the models were 

small and did not reach a level of clinical significance, but acquiesced further 

investigation was necessary because of the limitations of their study. They questioned the 

generalizability of their study because their sample size was composed of a small set of 

inpatients (n = 537) who were recruited from 3 general hospitals. Once a patient is 

hospitalized, there is a greater chance that their performance on cognitive testing is 

compromised which may decrease the variability in the sample and mask clear results in 

the analysis. The current study improved on this by using a large data set that included 

individuals from across the Nation with a robust normal group, individuals classified as 

having normal cognition, as well as those with mild to moderate cognitive impairment 

and the same patterns were uncovered. The current study supported their conclusions, 

education corrected scores enhanced the relationship between the predictors and the 

outcome variable and age-corrected scores were the worst predictors of the outcome 

measure.  

In 2016 Quaranta et al. aimed to replicate the work of Hessler et al. (2014). 

Quaranta et al. (2016) failed to attain results that reached statistical significance and 

explicitly stated that their results did not clearly support age correction of test scores 

compromised their ability to predict progression to dementia, but acquiesced that, at least 
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theoretically, applying age norms in the diagnosis of MCI might partly decrease the 

prognostic value over the raw memory scores. Limitations cited by these authors included 

the recruitment of participants from general hospitals and not memory clinics, and also 

that the sample group was not homogeneous in etiology and included AD dementia, MD, 

and non-AD dementia. The current study addressed these limitations by using data from 

memory clinics and specified a primary diagnosis of AD dementia for inclusion criteria. 

A robust normal control group was also part of the current study design. The current 

study supported that age-corrected scores were inferior to raw scores and all other 

methods of demographic correction for capturing the amount of variability in the clinical 

dementia severity rating. A final thought on age correction, when revisiting the 

correlations between the cognitive composite test scores and one another, it appeared that 

even after scores were corrected for age and education, relationships still existed between 

the test scores and sample demographics. The strongest correlation was between the 

CDR-SB and age. It is common knowledge that the incidence of dementia increases with 

age, yet some may not consider the unintended consequence of age correcting test scores 

in an elderly population and removing the effects of a variable that is scientifically known 

to be correlated with dementia.  

Strengths and Limitations 

A strength of the present study is that it had a large amount of data utilizing the 

UDS-3NB, a standardized and clinically sound NP test battery endorsed by the National 

Alzheimer’s Coordinating Center. The inclusion criteria specified only AD etiology 

which addressed one of limitations cited by a previous researcher who recognized that 
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having multiple etiologies of dementia was a limitation because different types of 

dementia present with different NP profiles. It also screened out participants in advanced 

stages of dementia because again, their testing profiles would be highly variable and less 

reliable. Yet, this large data set with its robust normal control group may have also 

functioned as a limitation because the number of individuals with normal cognition far 

outnumbered those who were demented and this may have obscured larger effect size 

differences between the models and diluted the final interpretation of these differences. 

Another limitation of this study was the lack of universally accepted criteria for 

determining the incremental difference required to make a clinically significant 

contribution to clinical practice. When analyzing the significance of each individual 

predictors’ contribution to the overall models’ ability to capture meaningful variations in 

the CDR-SB score, the differences between the models were small and did not fall into 

different effect size categories leaving the final interpretation quite ambiguous. In the 

context of dementia evaluations, it can always be argued that any increase in R2 value 

leads to greater diagnostic accuracy and may be of practical significance at a population 

level. The recommendation for further research is determining how these differences 

translate at a population level, in other words what incremental increase confirms or 

disconfirms these findings as significant for clinical practice.  

Implications 

Improved diagnostic accuracy during the earliest stages of a neurodegenerative 

process is critically needed to move the field forward so disease-modifying interventions 

can succeed before too much irreversible damage is done (Ritchie et al., 2015; Sutphen et 
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al., 2015; Villemagne et al., 2012). Refinements in the science of cognitive testing that 

distinguish individuals who are experiencing the effects of normal aging from those in 

the process of developing neurodegenerative diseases gave rise to the question 

concerning the utility of raw scores versus demographically-corrected scores in norm-

referenced cognitive testing of an older population. The current study explored the 

strength of the relationship between tests scored different ways and dementia severity 

with the ultimate purpose of finding which way of scoring was most diagnostically 

accurate. Using a typical NP battery approach with composite test scores representing 

major cognitive domains affected by AD, demographic corrections for gender and 

education, leaving age correction out completely, constructed the most accurate model 

for predicting the dementia severity rating and highlighted that standard normative 

corrections may be insufficient for removing the confounding effects of age, gender, and 

education.  

Our ability to differentiate between normal cognitive aging and a 

neurodegenerative process earlier and with more accuracy has many implications for 

positive social change. If leaving out age correction increases the ability of testing to 

capture functional loss, it may allow for an earlier or more accurate diagnoses of a 

neurodegenerative process. This opens the window for the individual to earlier 

intervention, more time to provide evidence-based services that improve the individual’s 

quality of life. Drug interventions may slow the progression of the disease while 

cognitive rehabilitation can maximize reserved cognitive resources by teaching 

compensatory strategies. Behavioral interventions such as diet and exercise increase 
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quality of life and prolong a person’s independence. The individual also gains the benefit 

of participating in their own care and estate planning. Families benefit when they can 

develop and plan strategies to avoid disruption in employment, depletion of finances, and 

exacerbation of their own health issues from the emotional stress added by being a care 

giver. Society benefits because expenditures for an individual with dementia are 3 times 

the cost of care for people without dementia for the same age group causing a huge 

financial strain on our Medicare system. Delaying the onset of the disease for just one 

year saves resources on the costly and long course of this disease (AA, 2018; Dubois et 

al., 2016; Zissimopoulos et al., 2014).  

Conclusion 

 Dementia currently affects approximately 50 million people worldwide; a number 

that is projected to grow to 82 million by 2030 and 152 million by 2050. It is the second 

largest cause of disability for individuals aged 70 years and older, and the seventh leading 

cause of death. Dementia imposes an estimated economic cost of approximately US $818 

billion per year globally – or 1.1% of global gross domestic product. Left unaddressed, 

dementia could represent a significant barrier to social and economic development 

(WHO, 2018). Delaying the onset of the disease, even just for one year, has significant 

benefits (AA, 2018; Dubois et al., 2016; Hurd et al., 2013; Langa & Levine, 2014; 

Rockwood et al., 2014; Smith & Bondi, 2013; Sperling et al., 2011; Ward et al., 2013; 

Wei-Hong et al., 2017; Zissmopoulos et al., 2014). Any improvement in standardized 

testing is of value, even if it just detects one case of AD that might have gone 

undiagnosed. The results of the current study supported that best practice when 
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processing NP test scores in the service of a dementia diagnostic evaluation should 

include education correction. It can also be concluded that when we correct for age, we 

remove the effects of a variable that is systematically related to the outcome we are trying 

to predict simply because the incidence of AD increases with age. Clinicians need to 

consider this unintended consequence when utilizing test scores in the service of a 

dementia evaluation. Research focused on earlier and more accurate diagnoses is part of 

the formula leading to improvements in biomedical, psychological, and social 

interventions that have the potential to reduce the number of new cases by 10-20% and 

ease the physical, psychosocial, and financial hardships for individuals, their families, 

and developing nations (AA, 2018; WHO, 2018). 
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Appendix: Histograms and Q – Q Plots from SPSS 
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