
Walden University Walden University

ScholarWorks ScholarWorks

Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies
Collection

2020

Factors That Influence Throughput on Cloud-Hosted MySQL Factors That Influence Throughput on Cloud-Hosted MySQL

Server Server

Eric Brown
Walden University

Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations

 Part of the Computer Engineering Commons, and the Databases and Information Systems Commons

This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies
Collection at ScholarWorks. It has been accepted for inclusion in Walden Dissertations and Doctoral Studies by an
authorized administrator of ScholarWorks. For more information, please contact ScholarWorks@waldenu.edu.

http://www.waldenu.edu/
http://www.waldenu.edu/
https://scholarworks.waldenu.edu/
https://scholarworks.waldenu.edu/dissertations
https://scholarworks.waldenu.edu/dissanddoc
https://scholarworks.waldenu.edu/dissanddoc
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F9701&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F9701&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F9701&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ScholarWorks@waldenu.edu

Walden University

College of Management and Technology

This is to certify that the doctoral study by

Eric Brown

has been found to be complete and satisfactory in all respects,

and that any and all revisions required by

the review committee have been made.

Review Committee

Dr. Steven Case, Committee Chairperson, Information Technology Faculty

Dr. Charlie Shao, Committee Member, Information Technology Faculty

Dr. Jodine Burchell, University Reviewer, Information Technology Faculty

Chief Academic Officer and Provost

Sue Subocz, Ph.D.

Walden University

2020

Abstract

Factors That Influence Throughput on Cloud-Hosted MySQL Server

by

Eric Brown

MS, Capella University, 2006

BS, Western Illinois University, 1996

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

December 2020

Abstract

Many businesses are moving their infrastructure to the cloud and may not fully

understand the factors that can increase costs. With so many factors available to improve

throughput in a database, it can be difficult for a database administrator to know which

factors can provide the best efficiency to maintain lower costs. Grounded in Six Sigma

theoretical framework, the purpose of this quantitative, quasi-experimental study was to

evaluate the relationship between the time of day, the number of concurrent users,

InnoDB buffer pool size, InnoDB Input/Output capacity, and MySQL transaction

throughput to a MySQL database running on a cloud, virtual, database server. Data were

collected from Debian Linux virtual machines (VMs) on Amazon Web Services, Google

Cloud Platform, and Microsoft Azure using HammerDB database benchmarking

software. The results of the one-way ANOVA were not significant. A key

recommendation is to study further other factors and a more in-depth investigation into

each cloud provider's performance. The implications for positive social change include

the potential for database administrators to make informed decisions on how to configure

MySQL to run in a VM and choose the best cloud provider so that nonprofits may serve

their clients more efficiently.

Factors That Influence Throughput on Cloud-Hosted MySQL Server

by

Eric Brown

MS, Capella University, 2006

BS, Western Illinois University, 1996

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

December 2020

Dedication

 I dedicate this work to my wife, Carla, for helping protect my time in the

completion of this program and motivating me to continue during the difficult times. I

could not have made it through this program without her support.

Acknowledgments

I would like to acknowledge Dr. Christos Makregorgis, my original chair, who

passed away during the editing process. The first two sections of this doctoral study are a

reflection of his mentoring work.

I would also like to acknowledge Dr. Steven Case, who took over as the chair of

my committee and assisted and helped to motivate me to finish this study.

i

Table of Contents

List of Tables ... iv

List of Figures ..v

Section 1: Foundation of the Study ..1

Background of the Problem ...1

Problem Statement ...2

Purpose Statement ..3

Nature of the Study ..4

Quantitative Research Question and Hypotheses ..6

Theoretical Framework ..8

Definition of Terms..10

Assumptions, Limitations, and Delimitations ..10

Assumptions .. 10

Limitations .. 14

Delimitations ... 16

Significance of the Study ...18

Contribution to Information Technology Practice .. 18

Implications for Social Change ... 19

A Review of the Professional and Academic Literature ..19

Introduction ... 19

Foundational Theory and Design of Experiments .. 21

Analysis of Potential Themes ..33

ii

The TPC Benchmarks ... 33

Hardware Methods of Improving Database Performance 34

Software Methods of Improving Database Efficiency .. 38

Complications in Database Performance in Multitenant Environments 43

Gaps in the Literature.. 48

Transition and Summary ..49

Section 2: The Project ..51

Purpose Statement ..51

Role of the Researcher ...52

Participants ...54

Research Method and Design ..55

Method .. 55

Research Design.. 56

Population and Sampling ...58

Ethical Research...60

Instrumentation ..61

Data Collection Technique ..64

Data Analysis Technique ...68

Validity ..81

Transition and Summary ..83

Section 3: Application to Professional Practice and Implications for Change84

Overview of Study ...84

iii

Presentation of the Findings...85

Main Effect Hypotheses .. 88

Two-Factor Interaction Effects Hypotheses ... 90

Three-Factor Interaction Effects Hypothesis .. 93

Research Question Answer ... 95

Applications to Professional Practice ..98

Implications for Social Change ..99

Recommendations for Action ..100

Recommendations for Further Study ...101

Reflections ...101

Summary and Study Conclusions ..102

References ..104

Appendix A: Script db_install.sh ...128

Appendix B: sqlrun.sh ...129

Appendix C: Sample HammerDB Log ..131

Appendix D: NIH Training Certificate ..133

Appendix E: Virtual Machine Specifications ..134

Appendix F: Final Data for Amazon Web Services ..135

Appendix G: Final Data for Microsoft Azure ..136

Appendix H: Final Data for Google Cloud ..137

iv

List of Tables

Table 1 Database Performance Factor Level Combinations..72

Table 2 Justification of Factor Level Interactions ...77

Table 3 Descriptive Statistics for Throughput on Each Cloud Provider87

Table 4 Statistical Analysis Results for Main Factor Effects on AWS89

Table 5 Statistical Analysis Resutls for Main Factor Effects on Microsoft Azure89

Table 6 Statistical Analysis Resutls for Main Factor Effects on Google Cloud90

Table 7 Statistical Analysis Resutls for Two-Factor Effects on AWS91

Table 8 Statistical Analysis Resutls for Two-Factor Effects on Microsoft Azure92

Table 9 Statistical Analysis Resutls for Two-Factor Effects on Google Cloud93

Table 10 Statistical Analysis Resutls for Three-Factor Effects on AWS94

Table 11 Statistical Analysis Resutls for Three-Factor Effects on Microsoft Azure94

Table 12 Statistical Analysis Resutls for Three-Factor Effects on Google Cloud95

v

List of Figures

Figure 1. TPC-C schema ... 67

Figure 2. Variable view in SPSS with the independent and dependent variables. 71

Figure 3. Data view from SPSS with factor combinations in Yates order. 73

Figure 4. Populating the factors and dependent variables for analysis. 74

Figure 5. Specifying a full factorial model and interaction effects................................... 75

Figure 6. Estimated marginal means for SPSS ... 79

file:///C:/Users/ericb/Documents/Walden/ITEC-9000-DocStudy-16/Brown_Eric_DIT_Final-20200814.docx%23_Toc49103576

1

Section 1: Foundation of the Study

Enterprise software often requires scalable speed and computing capacity,

coupled with the business realities of curtailing costs (Garg, Singla, & Jangra, 2016). In

meeting these needs, many organizations have been migrating their technology

infrastructure to a private cloud or a commercial cloud provider, with an estimated $241

billion in cloud investments by the year 2020 (Gholami, Daneshgar, Low, & Beydoun,

2016). The cloud offers high availability, scalable speed, and high performance, allowing

many businesses to realize that the cloud meets many of the same goals set forth for

databases themselves (Sakr, 2014). An increasing number of clients can affect the

performance of a database in the cloud (Januzaj, Ajdari, & Selimi, 2015), which can

detract from the desired speed and performance. In this study, I compared the

performance of MySQL running on virtual servers at different times of the day with

varying compositions of load on several public cloud providers.

Background of the Problem

A recent survey of technical professionals by RightScale (2019) found that 91%

of respondents were utilizing public cloud providers. The cloud allows businesses to take

advantage of a nearly unlimited pool of computing resources (Gholami et al., 2016).

However, with larger workloads and processing demand variations comes unpredictable

usage patterns (Gharbaoui, Martini, Adami, Giordano, & Castoldi, 2016). For this

reason, it can be challenging to manage the quality of service (QoS) in the cloud. The

topic of QoS assessment and management has been a matter of increasing interest in

2

business and academic circles (Abdelmaboud, Jawawi, Ghani, Elsafi, & Kitchenham,

2015).

While working as a database administrator (DBA) for a large organization, I often

reviewed the usage of different systems: the database, servers, and the network. In nearly

all cases, the usage graph patterns for all systems were similar. As the workday started,

the usage graphs would show more and more activity, peaking in the midmorning hours.

As midday approached, the graph would dip during the lunch break, and slowly rise again

during the midafternoon hours. The activity would gradually decline as the end of the

workday approached and would return to near zero by the early evening hours.

Amazon Web Services (AWS) is the most popular public cloud provider

(RightScale, 2019), more popular means more users, which in turn could mean a smaller

share of resources, particularly at times of day when business activity is at its peak.

While the database workload may be outside of the control of the DBA, other factors,

such as the InnoDB buffer pool and the InnoDB input/output (I/O) capacity, are under the

control of the DBA. With this knowledge, I used a statistical experiment technique to

model the database performance of the MySQL cloud database on several public cloud

providers at different times of day, subject to a series of controllable experimental

factors.

Problem Statement

Today’s businesses are moving on-premises database technologies to cloud,

virtual, database servers to reap the benefits of scalability and flexibility to rapidly

changing business needs, such as big data, increased throughput, and accessibility

3

(Nedelcu, Ionescu, Ionescu, & Vasile, 2014). Despite this movement, many cloud

databases are not configured optimally by administrators in a way that could potentially

reduce processor utilization by 30% per VM (Reddy & Shyamala, 2016). The general

information technology (IT) problem was that a DBA may not understand the

controllable factors available that can affect the performance of a cloud-based database

server. The specific IT problem was that some DBAs lack information on the

relationship between the time of day, the number of concurrent users, InnoDB buffer pool

size, and the InnoDB I/O capacity to increase transaction throughput to a MySQL

database running on a cloud, virtual, database server.

Purpose Statement

The purpose of this quantitative, quasi-experimental study was to evaluate the

relationship between the time of day, the number of concurrent users, InnoDB buffer pool

size, InnoDB I/O capacity, and MySQL transaction throughput to a MySQL database

running on a cloud, virtual, database server. The four independent variables considered

in this experimental study were the time of day, the number of concurrent users, InnoDB

buffer pool size, and the InnoDB I/O capacity. I tested each factor at two levels, referred

to as high (+) and low (-). The dependent or response variable was the throughput of the

MySQL as measured by the number of transactions per second (see Transaction

Processing Performance Council [TPC], 2010). The public cloud computing platforms

that constituted the population for this study were Amazon Web Services, Google Cloud,

and Microsoft Azure, the top three public cloud providers based on market share (see

Sikeridis, Papapanagiotou, Rimal, & Devetsikiotis, 2017). The location was the data

4

centers located in the United States, so the distance to the data centers was not a factor.

This study contributes to social change because the identification of the combination of

controllable factors that maximize throughput renders reduced costs for nonprofit

organizations using the cloud, allowing such organizations to serve their clients more

quickly and efficiently.

Nature of the Study

 I selected a quantitative methodology for this study. Quantitative methods utilize

numerical data to test a hypothesis to answer the research question through careful

measurement and evaluation of variables (Park & Park, 2016). A thorough analysis of

the literature has informed me of the variables and the values to use to test the hypotheses

to determine which factor combination provided the most efficient throughput in MySQL

hosted on a cloud-based VM. Qualitative methods are exploratory by nature and gather

expert opinions and experiences as data utilizing unstructured or semistructured

techniques, the results of which are analyzed to surface themes to gain a deep

understanding of the underlying nature of a phenomenon (Houghton & Casey, 2013).

Expert opinions or experiences do not assist in quantifying the impact of the combination

of measurable factor levels on a quantifiable response and, therefore, were not suitable to

achieve my research objective. Mixed methods are employed to attempt to gain a fuller

understanding of complex issues using a combination of quantitative and qualitative

methods, which may include surveys, case studies, and interviews (Sommer &

Subramanian, 2013). Because this study did not involve humans in the experiment, there

was no need for surveys, case studies, or interviews or any other qualitative approaches,

5

so mixed methods were not appropriate to use. I developed the research question to focus

on identifying the target levels for various factors that affect MySQL performance in a

hosted cloud environment. This narrow research question required a classic, quasi-

experimental design because it was essential to control both the factor levels and measure

their impact; therefore, a quantitative method was necessary, and any qualitative method

would not have addressed the research question.

I selected a full-factorial, quasi-experimental design for this study. A researcher

applies a full-factorial design by changing each factor from a low to a high level until all

combinations of levels are achieved (Reddy & Shyamala, 2016). Although there may be

many real-world factors and their combinations that can influence a response outcome, in

practice, a researcher only focuses on those factors and their combinations that have a

high potential to influence the response and can be quantifiably measured (Sanchz &

Wan, 2015). Due to the expense of running and recording continuous experiments with

databases on public, cloud-hosted VMs, I decided to reduce the number of trials to 2k

using only a high and low level for each of the k variables or factors. When using

descriptive designs, researchers first collect data and then attempt to draw the meaning or

conclusion of the general population from the data (Fisher & Marshall, 2009).

Descriptive designs do not affect a treatment on the population but are used to attempt to

measure dispersion or determine a point of central measure (Fisher & Marshall, 2009).

Since the purpose of this study was to find an optimal combination of factors that I

implemented, the definition of a descriptive study failed to meet the goals of this study.

Researchers use correlational studies to determine how variables are correlated and where

6

the average differences in one variable relate to the average differences in another

variable (Gabbiadini & Greitemeyer, 2017). In essence, correlational studies are

conducted to determine the strength and direction of the relationship between two

continuous variables (Chen & Popovich, 2002). However, the purpose of this study was

not to determine how incremental changes in one variable relate to changes in another

variable or the strength of the relationship between two variables. Quasi-experimental

research attempts to measure the effects of treatment with the intervention of a researcher

(Bärnighausen, Røttingen, Rockers, Shemilt, & Tugwell, 2017). The quasi-experimental

design was appropriate for this study because I directly implemented a series of

treatments on the database and did not randomly assign treatments between a control

group and a treatment group. The real difference between experimental and quasi-

experimental is the random assignment of subjects to treatment, and therefore, this study

was not genuinely experimental due to the lack of randomness (see Abramson et al.,

2018). DBAs have many specific factors that they can alter to improve database

performance, and seeking the optimal combination of these particular factors would not

qualify this approach as a quasi-experimental study. Ruling out descriptive, correlational,

and experimental designs for this study left a quasi-experimental model as the appropriate

option.

Quantitative Research Question and Hypotheses

 The overarching research question for this quasi-experimental study was:

7

What are the optimal levels of the time of day, number of users, InnoDB buffer pool size,

and InnoDB I/O capacity that maximizes the throughput of MySQL running on a cloud

server as measured by transactions per second (TPS)?

Having k = 4 factors (i.e., F1, F2, F3, and F4, representing the time of day, the

number of concurrent users, InnoDB buffer pool size, and the InnoDB I/O capacity,

respectively) and two possible experimental levels (i.e., a high and low value for each

factor) led to a full-factorial design with 24 or 16 possible experiments and responses or

outcomes for each replication of the experiment. With replication in consideration, I

replicated each experiment three times and used the mean value of each response for 48

trials (see National Institute of Standards and Technology/Semiconductor Manufacturing

Technology [NIST/SEMATECH], 2012a). The pairs of main and interaction effect null

and alternative hypotheses are as follows:

• Main Effect Hypotheses:

o H0a: The main effect Fi of factor i is not significant on the outcome.

o H1a: The main effect Fi of factor i is significant in the outcome.

• Two-Factor Interaction Effects Hypotheses:

o H0b: The interaction effect of FiFj of the pair of factors i and j are not

significant on the outcome.

o H1b: The interaction effect of FiFj of the pair of factors i and j is significant

on the outcome.

• Three-Factor Interaction Effects Hypotheses:

8

o H0b: The interaction effect of FiFjFk of the triplet of factors i, j, and k is

not significant on the outcome.

o H1b: The interaction effect of FiFjFk of the triplet of factors i, j, and k is

significant on the outcome.

 The data for the four experimental factors and response variables were all

assessed experimentally, and there was no survey role in this study. In other words, I did

not solicit survey respondent input on the five (i.e., 4+1) variables and instead performed

experiments from scratch.

Theoretical Framework

Six Sigma is a statistical methodology used to reduce variation in a process to

improve desired outcomes by making data-driven decisions (Maleyeff & Kaminsky,

2002). William Smith developed Six Sigma at Motorola in the late 1980s through

realizing that variation in the individual components being assembled led to defective

products and setting out to reduce the variations in components to reduce problems with

the final product (LeMahieu, Nordstrum, & Cudney, 2017). The Six Sigma methodology

involves five steps to follow in solving a problem: define, measure, analyze, improve,

and control (DMAIC; LeMahieu et al., 2017).

Six Sigma consists of a set of statistical process control techniques to assess

whether a production process or an output is out of control or not (Antony, Snee, &

Hoerl, 2017). When a process is out of control, researchers use other methods to

determine the variables contributing to the out-of-control process (Antony, Snee, &

Hoerl, 2017).

9

In this study, I aimed to find the optimal levels for k = 4 specific two-level factors

that affect database throughput measured as the number of TPS. The adopted

methodology used to tackle this problem is a statistical method called a 2k full factorial

experiment. Because Six Sigma utilizes statistical methods to assess out-of-control

output processes and the variables that need to be adjusted to help a process get back in

control, I considered the Six Sigma as an appropriate framework to frame this research.

In this case of the current study, the first step in the Six Sigma process, to define

the problem, was to improve the throughput of the database. The second step of the Six

Sigma process is to measure, in which the researcher determines the inputs that have the

most significant effect on database throughput (LeMahieu et al., 2017). In the literature,

the three major areas that have been identified as bottlenecks for database systems in the

cloud are buffer pool management, disk I/O operations (Ding, Shan, & Jiang, 2016), and

processing capabilities (Bonthu, Thammiraju, & Murthy, 2014). For this experiment,

these three areas had different levels tested to determine the optimal combination of

InnoDB buffer pool size and InnoDB I/O capacity for the first two constraints identified.

In the cloud, a user cannot see the other processes running on the same server that may or

may not be affecting the processing capability of a virtual server hosted in the cloud. I

tested the processing capacity at two different times of day, with the idea that more

processing power may be available outside of regular business hours. The remainder of

this experiment continued with the final three steps of the Six Sigma process, by

analyzing the data to determine the best combination of factors to improve and control

the throughout at optimal levels.

10

Definition of Terms

Infrastructure-as-a-service: A service model that is essentially a virtualized server

hosted on a publically available cloud service. This service model provides a virtualized

server, including networking and storage services (Abourezq & Idrissi, 2016).

InnoDB buffer pool size: A parameter within the MySQL configuration that can

set a block-level cache for caching indexes and data in memory (Tapdiya & Xue, 2014).

InnoDB I/O capacity: A parameter within the MySQL configuration that controls

the maximum number of input and output operations per second (Kong, 2012).

Platform-as-a-service: A service model providing middleware services, such as

database management systems, upon which developers can build application components

(Kaltenecker, Hess, & Huesig, 2015).

Service-as-a-Service: A service model offering direct access to software

uncoupled from the underlying technology. Users pay for this service model on a

subscription basis, and the provider is responsible for software updates as well as backups

of user data (Kaltenecker et al., 2015).

Throughput: In reference to databases, the measurement of the average operations

per unit of time (Hwang et al., 2016).

Assumptions, Limitations, and Delimitations

Assumptions

The definition of the word assumption is a fundamental statement given or not

given about facts in the study and how the facts may be related (Foss & Hallberg, 2017).

Researchers typically make assumptions about the following: (a) the underlying theory,

11

(b) the phenomenon being investigated, (c) the instrument being used to measure the

variables, (d) the methodology being used to address the problem being investigated, (e)

the statistical analysis, (f) the statistical procedures used, (g) the population under study,

and (h) the ability of the results to be generalized beyond the sample being studied

(Dusick, 2015).

Concerning (a) the underlying theory, I assumed that there is a single underlying

theoretical framework that fits the study (see Dusick, 2015). As discussed in the

Theoretical Framework section, Six Sigma is the theoretical framework that was most

suitable for this study because I used the same statistical methods to control the output

processes of a database. I also assumed the parameters chosen for this study (i.e., number

of users, InnoDB I/O capacity, and InnoDB buffer pool sizing) are the factors most likely

to affect the throughput. Another factor, the available processing power, is affected by

running the experiment at different times of day, with the idea that other users of the

cloud system may be affecting the available processing power available for this

experiment (see Bonthu et al., 2014).

When testing the phenomenon under investigation (b), I assumed that the

phenomenon under scrutiny was measurable and defined (see Dusick, 2015). In

examining the performance of databases, many researchers make use of the database

benchmarking standards from the TPC, which measures the throughput of a database

when the benchmarking software applies a simulated workload to the database (Ding et

al., 2016; Sakr, 2014; Tapdiya & Xue, 2014). Because of a large number of examples

using the TPC benchmarking standard, I assumed this to be a valid tool for measuring

12

database performance. For this test, I chose the TPC-C benchmarking, which simulates

an online transaction processing.

A researcher must also make assumptions about the instrument (c) being used to

measure the phenomenon (Dusick, 2015). The software performing the TPC-C

benchmarking test was HammerDB, which supports the TPC-C benchmarking

specifications. HammerDB (2018a) allows for creating the number of virtual users and

measures the throughput as the transactions are applied.

The researcher also makes assumptions about the methodology (d) chosen and

that it is the appropriate methodology for the given study (Dusick, 2015). As outlined in

the Nature of the Study section, the purpose of this study was not to find out the how or

why to a particular question but to determine the optimal levels of specific factors that

provide the best throughput on a cloud-based VM hosting MySQL. Based on the facts

presented in that section, I assumed that quantitative analysis was the proper approach for

the study.

All statistical procedures have requirements for use, so researchers must make

assumptions about the analysis (e; Dusick, 2015). For this study, I assumed that the

independent and dependent measures chosen meet the criteria for a full-factorial analysis.

Based on the facts presented in the Nature of the Study section, I assumed that a full-

factorial analysis was the most appropriate choice for this study.

 Along with assumptions about the analysis, a researcher must also make

assumptions about the ability to detect any meaning in the relationships under

observation (f; Dusick, 2015). I made an assumption that the values used for the factors

13

in the full-factorial analysis would show variations in throughput; however, this

assumption was determined after the experiments were concluded and the results were

calculated.

 The relevance of the population (g) is another feature of a study that a researcher

must address (Dusick, 2015). Since different public cloud providers use different

virtualization platforms (Bernstein, 2014), I assumed that the underlying hypervisor does

not play a role in experiments performed. I also assumed that the cloud providers gave

the VMs used in these experiments equal treatment with any other VMs that may be

working on the underlying hardware as well as identically performing hardware (see

Xavier, Matteussi, Lorenzo, & De Rose, 2016). Comparable hardware or virtualized

hardware can have an impact on database performance because storage, caching, and

processing is so critical to database operations (Bonthu et al., 2014). With the use of

several different public cloud providers, I assumed that I would find valid results that

would not be skewed by underlying hypervisors, hardware, or unknown loads on the

systems. The information provided in the Nature of the Study section justifies the

assumption for the full-factorial analysis.

Finally, a researcher needs to assume that the results (h) are generalizable beyond

the participants of the study (Dusick, 2015). Given that the statistical testing model

outlined by Six Sigma is accurate and that a full-factorial quantitative analysis was a

proper approach for this study, I assumed that the values determined in this experiment

should be able to guide other MySQL DBAs in getting a superior throughput for their

systems.

14

Limitations

Limitations are the realistic descriptions of the weaknesses in the research

presented, provide a useful understanding of the context of the study, and outside of a

researcher’s ability to control (Brutus, Aguinis, & Wassmer, 2013). A researcher should

consider the limitations of the study in the areas of (a) the theory under investigation, (b)

the phenomenon being investigated, (c) the instruments used in the experiment, (d) the

methodology, (e) the analysis, (f) the ability to detect any significance, (g) the

participants, and (h) the results of the study (CITE).

The theoretical foundation of Six Sigma (a) limited this study as well as the

modeling capabilities of Six Sigma in accurately modeling the events under observation.

Six Sigma is used when seeking to improve results by looking at the factors that can

affect results and systematically adjusting the inputs to achieve an optimal outcome

(Psomas, 2016). In this study, I only looked at the factors affecting throughput and no

other factors or outcomes.

Regarding (b) the phenomenon under investigation, the fundamental limitation

was that the phenomenon of how the levels of certain measurable factors affect the

throughput as measured by TPS is somewhat complicated by the dimension of time. In

other words, a given software or application, such as a database and the cloud

environment that it operates within, are never really static and can change when the

application or environment is improved or updated. Therefore, the phenomenon itself is

well defined, but the factors that influence throughput are not static.

15

The key limitation of the instrument (c) used for this study was that the software

application, HammerDB, in the implementation of the TPC-C benchmarking standard

measured the outcome of this experiment measurement. The TPC-C standard simulates

transactions of users in an order-entry type of software. Other TPC (n.d.) benchmarks,

like the TPC-DI, simulate the extraction, transformation, and loading of data into a

database or the TPC-H, which simulates a database supporting a decision support system.

While there remains a variety of benchmarking standards available, this study was

limited to the TPC-C benchmarking standard.

I applied the quantitative (d) methodology in this study, so it was limited to the

data collection and analysis associated with the quantitative approach. I did not conduct

an analysis of opinions or perceptions by individuals on any aspects of cloud computing,

databases, or VMs. The factors being manipulated and observed in this study were

limited to quantitative analysis only. Another limitation of this study related to the data

collection and analysis was in having enough samples to detect statistical power. As

shown on p. 59, 50 samples will give power of 0.907, but in this case, it was advised that

48 samples will be sufficient to meet a power of 0.90 (C. Marigeorgis, personal

communication, June 7, 2017).

The ability of the (e) statistical analysis to detect a significant difference in

throughput using the factor levels chosen also limited this study. As previously

mentioned in the hypotheses, the factors in this study were limited to two levels of the

number of simulated users, the size of the InnoDB buffer pool, the size of the InnoDB I/O

capacity, and the time of day.

16

The results of this experiment were limited to the (f) ability of the analysis to

detect statistical differences or relationships that exist based on the factors and factor

levels chosen. While there should be some improvement with increasing or decreasing at

least one factor, the experiment may not show any statistical significance. For example,

changing the number of virtual users from 10 to 100 may reduce throughput; however,

with a sufficiently provisioned VM, the increased usage may be adequately handled with

the existing virtual hardware.

As I outlined in the Purpose Statement section, the (g) population of this study

was limited to the top three public cloud providers as defined by market share: AWS,

Microsoft Azure, and Google Cloud (see Sikeridis et al., 2017). Other public cloud

providers may have been suitable for this study, but due to the effort in setting up this

experiment on each platform, I limited the trials to the three major platforms.

The (h) results of this study were limited to how generalizable they may be to

other cloud platforms (see Dusick, 2015). Cloud providers use different methods of

virtualization (Babcock, 2016), and each may be configured differently or guarantee

various levels of service. The generalizations of the results in this study were limited to

cloud providers that match the population under investigation.

Delimitations

Delimitations can facilitate the decision-making process as well as help eliminate

biases (Argilaga, 2003). Delimitations are the factors of the experiment that the

researcher can include and control (Dusick, 2015) and may span (a) the theoretical

foundation, (b) the phenomenon being researched, (c) the instruments measuring the

17

phenomenon, (d) the methodology, (e) the analysis, (f) the ability to find significance in

the experiment, (g) the population, and (h) the results.

The (a) theoretical foundation for this study was Six Sigma. While researching

the topic of database efficiency, the literature enumerates other foundational theories,

such as queueing theory (Srivastava, 2018). For this study, the theoretical lens of Six

Sigma best represented the effect of multifactor manipulation on optimal throughput.

As mentioned in the Limitations section, researchers can use other methods to

measure the efficiency of a database. Through the support of the literature and the tools

used, throughput, as measured by TPS, was the (b) phenomenon chosen as the outcome

for optimization in this study.

Costs and common usage helped in the selection of the instruments (c) for this

study. The VMs in this study used the latest production version of Debian Linux, and the

database used was the most recent production version of MySQL. The tool used to

implement a simulated load on the database and measure throughput was the newest

production version of HammerDB. On each cloud platform, I deployed equally

provisioned VMs, and costs and availability of the configuration options determined the

virtual hardware used.

The (d) methodology chosen for this study was quantitative. As discussed in the

Nature of the Study section, quantitative experimentation was most appropriate to

achieve the quantitative objectives of this experiment.

The (e) analysis for this study was a full-factorial analysis, as outlined in the

Nature of the Study section.

18

I determined the (f) ability to detect statistical significance once the data had been

collected and analyzed.

As outlined in the Limitations section, the (g) population I chose for this study,

AWS, are the three public cloud platforms with the highest market share (see Sikeridis et

al., 2017). I chose data centers located in North America to reduce the possibility of

network lag affecting the outcome of the study,

The (h) results of this study should be generalizable to the three public cloud

providers given that all other factors are equal, such as the operating system version, the

resources available to the VM, and the database management system deployed.

Significance of the Study

Contribution to Information Technology Practice

As I mentioned in the Theoretical Framework section, there have been many

studies conducted on ways to cut costs in cloud computing by improving performance in

cloud databases. However, my broad literature search did not reveal a published

experimental study that compares the performance of a single database on identical cloud

servers at different times of the day. I suspected that, with all factors and cloud servers

being equal, most cloud providers would perform about the same with some decrease or

increase during the late morning or early afternoon hours, which is what I observed while

working in an enterprise environment. The performance differences at different times of

day could be due to the workload of a particular cloud provider or could affected by the

backend virtualization architecture in use. It may be that Amazon’s implementation of

Xen is better suited for database queries than Microsoft’s Hyper-V implementation

19

(Babcock, 2016) when all other factors are equal. Ideally, this study might help those

working in IT make an informed decision when configuring and using MySQL on a

cloud server.

Implications for Social Change

In my years working in IT, I have donated significant amounts of my time

applying my skills to a few select nonprofit organizations. When I have had the

resources, I have also donated hardware. Initial equipment costs may be prohibitive for

nonprofits, but in today’s world, organizations still need computing resources to fulfill

their mission. Cloud computing can offer cash-strapped organizations a way to meet

their computing needs at a lower cost by removing the requirements for significant up-

front investments (Mann, 2015). I hope this study will help organizations that help others

make better use of their resources and give nonprofits more opportunity to help others.

A Review of the Professional and Academic Literature

Introduction

 The literature review begins with a discussion of the foundational theory of Six

Sigma, its history, and how other theories have built up to and worked around Six Sigma.

Examples of the design of experiments (DOEs), which I used in the experiment for this

study and researchers commonly use in conjunction with Six Sigma. I also discuss other

theories frequently found in the literature that may pertain to this study and a discussion

of why alternate theories were not selected. A review of the literature on the independent

variables chosen for this study and the instrument used to measure the dependent variable

is then provided.

20

 The searching process for the literature review took many iterations. In general

terms, I started using the search terms database performance and database efficiency in

Google Scholar and the databases accessible through the Walden University Library. As

I learned more about different approaches to database efficiency, various factors that

affect database efficiencies, such as InnoDB and disk I/O, were added to the search

terms. Six Sigma and related theories on efficiency were also consistent search terms.

Many studies in the literature included both physical and VMs, so the search terms based

on virtual performance were also included.

 Seventy-six academic articles comprise this literature review, with 72.4% of the

articles published in the last 5 years, and 86.8% of the articles deriving from peer-

reviewed journals. In the literature review, I cover the theoretical framework for this

study, Six Sigma, as well as comparative frameworks and the statistical methods

commonly used for Six Sigma. The second portion of this section includes a discussion

of what the literature has to report on the independent and dependent variables for this

study and the instruments commonly used to collect the data for the experiments used in

this study. The overreaching goal of this literature review was to identify key factors in

the performance of database systems, namely MySQL, running on VMs in a cloud

environment and how to measure that performance. Once the tool had also been

identified for measuring database performance, the literature showed how Six Sigma and

DOEs use these elements to answer the primary research question for this study: What

are the optimal levels of the time of day, number of users, InnoDB buffer pool size, and

21

InnoDB I/O capacity that maximizes the throughput of MySQL running on a cloud server

as measured by TPS?

Foundational Theory and Design of Experiments

 The foundational theory for this experiment, Six Sigma, does not exist in a

vacuum and has evolved and overlaps with other theories in quality improvement or

management. In this section, I summarize the literature that explains the underlying

foundational theory of Six Sigma and the underpinning experimental approach that I

applied in finding the optimal combination of factors to improve the performance of the

MySQL database running on a cloud-based VM. I also discuss other theories that

preceded Six Sigma and other theories used in conjunction with Six Sigma.

Six Sigma. Six Sigma is an improvement doctrine that focuses on continuous

improvement by measuring existing processes and statistically measuring the impact of

changing critical factors in that system to reach a defined goal (Hsieh, Lin, & Manduca,

2007). Other definitions in the literature mention the goal of improving performance by

reducing variation on a system (LeMahieu et al., 2017). This second definition comes

closer to matching the name of Six Sigma since the Sigma here represents the statistical

notation for standard deviation and the goal of Six Sigma in keeping variation very small

in meeting and exceeding customer expectations (Hsieh et al., 2007).

 Six Sigma is a framework for improvement based upon the philosophy of total

quality management (TQM; Antony et al., 2017; Maleyeff & Kaminsky, 2002). In TQM,

both management and employees participate in improving the quality of the products or

services to create long-term customer satisfaction (Sreedharan, Sunder, & Raju, 2018).

22

Nguyen and Nagase (2019) varied the definition slightly, describing TQM as an

organization-wide and top-down philosophy that strives for customer satisfaction and

continuous customer satisfaction. Where TQM is a management philosophy about

making progress for the business as a whole, Six Sigma focuses more on removing

defects by concentrating on specific and measurable outputs of a process (Sreedharan et

al., 2018). It was out of the TQM frame of thinking that led William Smith of Motorola

to develop Six Sigma around 1987 (Antony et al., 2017). The literature varies on the

official start date of Six Sigma at Motorola. Many researchers agree that Jack Welch of

General Electric pushed the concept of Six Sigma from an academic manufacturing

concept into the limelight by announcing Six Sigma as the main business strategy for the

corporation (Antony et al., 2017; Hsieh et al., 2007; LeMahieu et al., 2017; Reosekar &

Pohekar, 2014). To prove excellence and knowledge in Six Sigma, practitioners in the

area can earn certifications of green-belt, black-belt, and master black-belts (Antony,

Gupta, Sunder, & Gijo, 2018), similar to the martial arts.

 Six Sigma focuses on measurable data in a scientific, objective, and repeatable

way with the end goal of improving the financial performance of an organization (Hsieh

et al., 2007). The academic literature shows that the manufacturing field most often uses

Six Sigma; however, Six Sigma also has uses in healthcare (Reosekar & Pohekar, 2014),

education (LeMahieu et al., 2017), and IT (Hsieh et al., 2007). The implementation of

Six Sigma works in different industries because nearly any professional domain can make

use of its five-step process of DMAIC. The first stage in Six Sigma is to define and

identify the problem that needs to be solved (Hsieh et al., 2007). Defining the problem is

23

one of the most critical stages of the entire process because the problem should be well

defined and well understood by those attempting to solve the problem (Antony et al.,

2017). In the second stage, the Six Sigma practitioner needs to decide what to measure

and the best way of measuring performance (Hsieh et al., 2007). The third stage is

analyzing the collected data to determine the problematic part of the process (LeMahieu

et al., 2017). The fourth stage, improvement, involves using the output of the analysis

phase and deciding on a course of action and how to implement and monitor the solution

(LeMahieu et al., 2017). The control stage is the final step wherein the Six Sigma

practitioner monitors and measures the defined problem for reduced variation or that the

process is now under control (Hsieh et al., 2007).

 The Six Sigma practitioner uses the DMAIC process to improve existing

processes. There is a slight variation of these stages when approaching a new process or

in working with software that uses the same first three words as DMAIC (i.e., design,

measure, and analyze), but the last two words are design and validate (E. V., Antony, &

Sunder, 2019). In these last two phases, the Six Sigma practitioner designs a solution to

the new problem, and the end-customer may have the last word in validating that the

solution does meet the requirements (Mouaky, Benabbou, & Berrado, 2018). However,

in the initial phase of defining the variables to measure, the factors that most affect

quality may not be easily identifiable. If the initial qualify factors are not obvious, a Six

Sigma practitioner may resort to more subjective approaches, such as brainstorming, to

identify root causes of variation (Cox et al., 2016). In these cases, a Six Sigma

practitioner can use the process variation diagnostic tool as a more objective measure in

24

determining key factors affecting the variation, which requires sampling a small number

of products on several factors and applying the improvement tool (Cox et al., 2016).

 Not all organizations have fully embraced the Six Sigma philosophy, even with

the proven results and the endorsements of successful corporations such as Motorola and

General Electric. One common hindrance is buy-in from upper management as well as

an understanding by the general workforce that reduction of variation can help the

organization as a whole (Psomas, 2016). Another weak area for Six Sigma is the lack of

cooperation between academics and fields outside of manufacturing, although there have

been recent improvements (Reosekar & Pohekar, 2014). It is also challenging to use Six

Sigma in disruptive innovation, and some organizations have even found that Six Sigma

stifles innovation and creativity (Sony & Naik, 2019). One study found that over 60% of

companies that initiated Six Sigma methodologies failed to develop the desired results

(Antony et al., 2019).

Lean manufacturing. Entangled in Six Sigma is the concept of lean

manufacturing, which focuses less on data collection and focuses more on applying

known and tested methods of improving performance or reducing errors (Antony et al.,

2017). Another concept of the lean philosophy is that a business focuses only on those

activities that address customer needs and strip away anything that does not add value to

the customer (Anthony & Antony, 2015). In the United States, Womack, Jones, and Roo

defined the lean movement in 1990 in their book titled, The Machine that Changed the

World, in which the authors wrote about the idea based upon their observations of the

Toyota Production System for manufacturing automobiles in Japan (Anthony & Antony,

25

2015). Even though the Toyota Motor Company had been using their approach since

their inception in the 1930s, Toyota never documented their process until the 1960s

because they felt the procedure was merely common sense and too basic to bother

codifying (Anthony & Antony, 2015).

From these two approaches was derived yet another methodology in improving

manufacturing and services known as Lean Six Sigma, which attempts to synergize

between lean and Six Sigma by making changes more quickly to improve the output

(Sreedharan et al., 2018). Another article identified Six Sigma as being top-down and

management-driven compared to Lean, which is more bottom-up, shop-floor driven,

making the two philosophies all-encompassing and well suited together to bring value to

both the company and customer (Anthony & Antony, 2015). In one case study, E. V. et

al. (2019) found that Lean Six Sigma reduced average complaint resolution time by about

30% and reduced variation in solution times by nearly half. Searching more recent

academic articles for Six Sigma, it becomes challenging to find an article on one of these

continuous improvement philosophies without some mention of the others.

Design of experiments. One advanced statistical method used in the analysis

phase of Six Sigma is the DOEs. DOE also lends itself well to the field of IT because

DOE allows for the testing of many factors at once using specific combinations of

patterns representing the configuration of services, such as databases (Hsieh et al., 2007).

DOE allows researchers to observe the effects of individual factors as well as the

interaction between combinations of factors (Hancock & McNeish, 2017). There are four

stages in evaluating the performance of a system using DoE: declare the objective of the

26

experiment, design the experiment, conduct the experiment, and analyze the data (Reddy

& Shyamala, 2016).

 Once the Six Sigma practitioner defines the goal of the investigation, much like

the initial stage of the Six Sigma process, the practitioner then needs to identify factors to

study in designing the experiment (Ustinova & Jamshidi, 2015). The identified factors

must be controllable by the researcher. Once such factors are determined, the researcher

experiments with different levels of values, usually one high and one low value, on each

factor to see which factors have the most significant effect on the system (Ustinova &

Jamshidi, 2015). Choosing two levels for each factor also reduces the number of times

an experiment is run, which reduces costs, time, and complexity it takes to run every

continuous combination of factors (Jia et al., 2017). The commonly used, two-level, full-

factorial design has all combinations of factors ran at two levels in the experimentation

(Ustinova & Jamshidi, 2015). The change in outcome based on a single factor is known

as the main effect, and changes based on combinations of multiple factors is known as the

interaction effects; a full-factorial analysis is a method used to capture both of these

effects (Jia et al., 2017). With two levels for each factor chosen and the number of

factors commonly referred by the variable k, then the number of experiments performed

is denoted as 2k (CITE). For example, if four factors are chosen (k = 4), then the number

of experiments performed in a full-factorial analysis would be 24 = 16 experiments.

 The order of experiments should be randomized to ensure extraneous factors do

not play a part in the experimentation (NIST/SEMATECH, 2012a). Furthermore, there

should be multiple runs of each combination of factors to determine that there is

27

consistency within the results (NIST/SEMATECH, 2012a). Replication also provides

pure, error-free degrees of freedom in estimating the error variance (Jones &

Montgomery, 2017). In continuing with the above example with four factors and two

levels, for 16 runs with three trials each, I performed 48 experiments and used the

average of the three results for the final analysis of variance.

 Full factorial analysis has found its way into the field of IT as well. Reddy and

Shyamala (2016) used factors of the number of clients, the type of system virtualized

(i.e., web server, application server, or database server), and hypervisor software (i.e.,

VMWare, Xen, or Kernel-based Virtual Machine [KVM]) to develop a scoring system to

rank the performance of hypervisor software. The measure used to determine the

outcome was the mean central processing unit (CPU) utilization in each combination of

experiments (Reddy & Shyamala, 2016). In a similar approach, a different team of

researchers used a combination of algorithms to efficiently find outliers in sets of data

(Orair, Teixeira, Meira, Wang, & Parthasarathy, 2010). One common thread between

these two experiments is that they did not choose discrete numbers for all their factors.

Reddy and Shyamala used different software as two of their factors, and Orair et al.

(2010) turned different algorithms on and off for each of their experiments. These

experiments go on to show that researchers can perform the analysis while adjusting the

factors to values other than just numbers but discrete categories as well.

Define, measure, and analyze. For this experiment, it is appropriate to discuss

the first stages of Six Sigma as it applies to database efficiency. LeMahieu et al. (2017)

identified that the first step is defining the outcome of the experiments. While several

28

researchers attempted to improve the cost efficiency in databases, usually by way of

reducing the power consumption of servers running database management systems

(DBMSs; Ferretti, Pierazzi, Colajanni, & Marchetti, 2014; Han, Ghanem, Guo, Guo, &

Osmond, 2014; Zhao et al., 2016), most of the articles in the literature measured database

performance by throughput (Loghin, Tudor, Zhang, Ooi, & Teo, 2015; Narasayya et al.,

2015; Xiang, Li, Chen, Guo, & Yang, 2016). Response time was another metric

presented in the literature, but this metric was related to how users felt about the database

performance rather than an objective metric (Liaqat et al., 2017). While the actual costs

of database performance could have been the dependent variable here, one group of

researchers presented the difficulties in trying to determine the actual costs of running a

database server. The researchers cited the costs of hardware, software licenses, and

power consumption as uncertain variables (Tak, Urgaonkar, & Sivasubramaniam, 2013).

The elimination of other metrics left throughput, as defined by operations per second, as

the dependent variable for this experiment. Furthermore, nearly all of the articles used

the TPC benchmarking standard as the tool to produce and measure throughput on the

databases, giving an academically supported instrument to use for these experiments.

 Part of what makes the TPC benchmarking standard work is how the benchmark

defines the number of users on a database system. Since the TPC standard is the proper

instrument to use for the experiment, the number of users, virtualized users, in this case,

was one of the independent variables. Remote systems could be responsible for query

execution, but in the end, those remote systems would be a reflection of end-user action.

29

In typical business settings, users make use of systems in the course of their work.

In the United States, “typical” business hours are from 9 a.m. to 5 p.m., or within an hour

or 2 of this window. While working in an enterprise-sized environment, I would

commonly see database usage start very low, then rise to a peak at midmorning, dipping

down around noon, rising to a second peak during the midafternoon, before dropping

down very low for the rest of the day. From this experience, I have identified the time of

day as one of the independent variables for this experiment.

The other two independent variables for this experiment, the database settings of

the InnoDB buffer pool and InnoDB I/O capacity, are critical choke points for database

performance cited in the literature. Narasayya et al. (2015) identified buffer pool

memory as essential to database performance and identified shared buffer pool memory

in a multitenant environment like the cloud as problematic. The complication of buffer

pool memory in multitenant environments that lead me to identify buffer pool memory as

an essential factor, and why I investigated multiple cloud providers to see how each

manages this particular factor. Among several teams of researchers, Sharma, Nelson, and

Singh (2016) started their article by stating disk I/O is the most common problem facing

DBAs. As with the buffer pool memory, multi-tenant environments may cause

contention when two VMs are experiencing heavy read/write jobs (Dean et al., 2016). I

discuss how the literature has approached the factors indicated above in later sections of

this literature review.

Analysis of similar theories. Six Sigma was not the only theory found in the

literature in the discussion of database efficiency. Several other theories were mentioned

30

in the literature and were potential candidates for this study. In the following sections, I

discuss and define alternate foundational theories for this study and how they did not

work for this experiment.

Queueing theory. One other theory encountered in the review of the literature is

queueing theory. Danish engineer Anger Erlang first introduced queueing theory in 1909

(Mandelbaum & Hlynka, 2009). While working for the Danish telephone company,

Erlang proposed that a Poisson distribution best modeled the number of calls arriving at a

telephone exchange during a given time interval (Kingman, 2009). Over the years, Erlang

expanded upon is initial research to cover more complicated circumstances (Kingman,

2009). Many national post offices and telephone networks made use of Erlang’s queueing

theory (Kingman, 2009).

Queueing theory is used in computing to calculate and predict performance

measures, such as finding the length of a line or predicting wait times (Yang, Cayirli, &

Low, 2016). In the real world, production systems can experience a wide variation in

workload demand, by a varying number of users. This changing workload can make

mathematical modeling of a queue very difficult (Yang, Cayirli, et al., 2016). Essentially,

queueing theory is the study of waiting in line (Hilier & Lieberman, 2015). One feature

of a queue is an input source that feeds a queue or line. A service mechanism or server

handles each member of the series (Hilier & Lieberman, 2015).

While I could make an argument to fit the independent variables for this

experiment into queueing theory, I chose to pursue Six Sigma as the theoretical

foundation. As presented in the Theoretical and Foundational Frameworks earlier,

31

because of the high and low values used for the independent variables fit in better with

the design of experiments and, consequently, Six Sigma. Furthermore, queueing theory

makes use of complex mathematical models to predict or measure performance, as

usually measured by customer wait time (Yang, Cayirli, et al., 2016). With this fact in

mind, I determined that the queueing theory was not the best choice for this experiment.

Theory of constraints. Another theory mentioned in the literature, particularly in

conjunction with Six Sigma, is the theory of constraints (TOC). Author Eliyahu Goldratt

first presented TOC in 1984 (Hudson, 2017). Where Six Sigma proposes to improve the

system process by reducing variability, lean works to improve performance, TOC focuses

on improving performance by removing bottlenecks in processes (Hudson, 2017). The

bottlenecks, in this case, can be physical, like in a manufacturing production line, or

procedural, like in a software system. The improvement process under TOC involved

five steps. For the first step, a researcher identifies a constraint. Then the researcher

decides on how to reduce the impact of the constraint. From here, the researcher focuses

on all aspects of only the individual constraint. Next, the researcher makes a change to

the constraint. Finally, the researcher observes the overall system for new restrictions

(Aryanezhad, Badri, & Rashidi Komijan, 2010). If all goes well, the identified constraint

is no longer restricting process flow, and a new bottleneck becomes apparent and

corrected using the same five steps (Aryanezhad et al., 2010). Since disk I/O was

identified as a constraint to a database system, TOC seemed like a potential candidate for

the theoretical foundation of this study. However, disk I/O is not the only factor under

32

consideration, and TOC focuses on a single factor at a time, which would not make TOC

the best choice for this study.

Big data and Six Sigma. Big data often means data that comes in large volumes

and at high velocity (Abadi et al., 2016). For performance improvement, some

businesses keep the data locally to handle the high throughput of data. With large

amounts of data, it can also be cost-prohibitive to transfer this data in and out of the cloud

(Assunção, Calheiros, Bianchi, Netto, & Buyya, 2014). It is with this volume and

velocity of data that DBAs must find ways to improve performance to keep the data

pipeline flowing at the desired rate. Multiple authors looking at the future of database

research agreed about the importance of database performance in this era of big data

(Abadi et al., 2016; Assunção et al., 2014).

Six Sigma practitioners are using big data to assist with the measuring and

analyzing steps of the DMAIC process. With large volumes of data coming from

multiple sensors at a high velocity, engineers can use all of this data within the Six Sigma

framework to make decisions more quickly (Duarte, 2017). One group of researchers

proposed using Six Sigma, along with large amounts of customer data to help drive

business processes. Jha, Jha, and O’Brien (2016) identified improved customer service

as a goal and identified factors that should improve that goal: customer reviews, searches

for similar products, weblogs, and images. The article concluded with the idea that

businesses should not wait to analyze data until the system moves the data to a data

warehouse but to use Six Sigma and big real-time data to drive business improvements.

Diverse fields such as higher education (Laux, Li, Seliger, & Springer, 2017) and oil

33

fields (Xu, Wang, Wu, Shi, & Lu, 2017) are all using Six Sigma in conjunction with big

data to make improvements in their systems.

Analysis of Potential Themes

In reading the academic literature, several common themes emerged. After

finding similar software, concepts, and approaches to database efficiency, the literature

informed me about how researchers have been considering database efficiency. It was

these common themes that lead me to choose the factors and instruments for this study.

In the upcoming sections, I will review these themes that have assisted in preparing me

for this experiment.

The TPC Benchmarks

 In deciding the database performance measures to use, and the tool to make the

measurements, researchers favored the benchmarking standard created by the TPC. The

literature may vary on the version of the benchmarking standard, but the literature also

discusses different TPC benchmarks used in multiple experiments. Many of the articles

presented in this literature review used variations of the TPC benchmark and explained

why some researchers used more than one TPC benchmark to measure performance

under different circumstances. The most widely used standard was the TPC-C

benchmark standard that provides an intensive workload that emulates an online

transaction processing system (Loghin et al., 2015). The TPC-C emulates read, write,

and update queries that would commonly run in a commercial business where goods are

ordered and shipped, with queries that would describe stock levels, order status, payment

processing, or create a new order (Ferretti, Colajanni, et al., 2014). Users can alter

34

several variables at the start of TPC-C testing, such as the simulated number of

warehouses used in this business emulation, the number of simulated users, and the

volume of transactions submitted by the simulated users (Tian, Huang, Mozafari, &

Schoenebeck, 2018).

 The second most popular benchmarking specification was the TPC-H, which

simulates a decision support system database environment comprised of only two update

queries and 22 read-only queries (Barata, Bernardino, & Furtado, 2014). In their pursuit

of determining energy usage, Xu, Tu, and Wang (2015) measured the differences

between their proposed model of energy usage against the actual energy usage for each of

the 22 read-only queries of the TPC-H. Loghin et al. (2015) pointed out that it is crucial

to flush the file system cache each time these 22 read-only queries execute so that the

data comes from the database rather than cached data when using the TPC-H benchmark

standard. The fact that a variety of hardware, from cloud-based hardware, ARM

processors, or solid-state storage, is a commonality in the literature in the discussion of

the TPC-H benchmark.

Hardware Methods of Improving Database Performance

 Throughout the research on database efficiency, researchers often cite disk I/O as

one of the main bottlenecks for database performance. Researchers have attempted to

improve this bottleneck by using caching methods, as well as various disk configurations

to improve performance. Focusing on the input-output, some researchers have tried

numerous algorithms to improve the input or output of a system.

35

Caching methods. One popular area of research into improving database

research was different caching methods. In most computer systems, the main bottleneck

is processing data lies in writing and reading data from the disks (Sharma et al., 2016).

Database systems keep data stored in the cache to avoid disk I/O, which is an area of the

main system memory allocated for this very purpose (Tailor & Morena, 2017). DBMSs

employ several popular algorithms in determining which data to keep in the database

cache. Least recently used (LRU) is the most popular method for removing data from the

database and is used in most commercial databases (Tailor & Morena, 2017). With LRU,

the database software keeps track of the age of pages in the cache and removes the oldest

pages when more space is needed (Tailor & Morena, 2017). In their review, Tailor and

Morena (2017) stated that Least frequently used is the second most popular algorithm in

cache management. Least frequently used is a method that keeps the most popular buffer

pages in the system memory.

 Cache size is a variable in most database systems that can be adjusted by a DBA.

The size of the cache may depend on the amount of available memory and the size of the

database. In reviewing the literature, Nanda, Chande, and Sharma (2017a) found that

researchers have varied on the optimal size of the database cache, with most researchers

reporting 10% to 20% of the size of the database being optimal. Even in their

experiments with adjusting cache sizes, Nanda et al. (2017a) found that a cache of 15%

of the size of the database was optimal in cloud-based systems. This group performed

multiple experiments involving the cache in cloud databases. Since the overall size of the

cache can be unlimited in the cloud due to the elastic nature of resources in cloud

36

services, more cache can be better. In a separate experiment, Nanda, Chande, and

Sharma (2017b) determined that placing the entire database in the cache usually

outperformed entirely disk-based databases. Memory-based databases struggled when

the types of queries were very different, and the database system had to pull unique sets

of data each time rather than deliver a response already held in memory (Nanda et al.,

2017b).

 While most authors have focused on scaling-out in the database literature, others

considered scaled-up systems. With today’s technology, multicore processors are

becoming more and more inexpensive. With more cores comes more worker threads

hitting the database with queries. Even with sufficient cache sizing, contention can occur

on the data pages in the buffer (Ding et al., 2016). In their work, Ding et al. (2016)

introduced a unique buffer management algorithm using batching requests and

prefetching data called BP-Wrapper. The authors went on to prove that BP-Wrapper can

dramatically increase data throughput in both physical and virtual systems when

implemented (Ding et al., 2016).

Disk and storage variations. As discussed in the previous section, there have

been many approaches to improving the speed of database systems by studying the cache.

Other authors have looked at making improvements on the other end of the disk I/O

system by considering variations in storage options for database systems.

 In his review, Richardson (2014) considered several approaches to improving

database performance at the disk level. Even though a typical serial advanced technology

attachment disk can transfer data at 750 megabytes (MB) per second, seek times for the

37

disk limit performance, which can locate data only at speeds of 250 times per second

(Richardson, 2014). Solid-state drives (SSDs) can perform about 60 times faster than the

standard hard drives, but SSDs also have a fixed number of reads and writes before they

fail. Chrόszcz, Łukasik, and Lupa (2016) confirmed these findings in their experiments

with different database management systems on standard disks and SSDs. Using SSDs

can load spatial data 4 times faster and can return query results up to seven times faster

(Chrόszcz et al., 2016). Proper implementation of indexes can improve performance, as

well as using the right database management system for the type of data being stored

(Richardson, 2014). For example, researchers found the document-oriented database

MongoDB to be less effective in handling spatial data when compared to standard

relational databases (Chrόszcz et al., 2016).

 In a different approach to hard drive considerations, Sharma et al. (2016)

discussed different striping options for databases. With striping, data is written to

multiple disks simultaneously, which improves the I/O rate (Sharma et al., 2016). If the

database is capable of striping, there may be a processing overhead associated with

separating and finding the data (Sharma et al., 2016). The operating system layer can

also manage striping, which would move the processing overhead away from the

database software and onto the operating system (Sharma et al., 2016). Using a

redundant array of independent disk (RAID) hardware technology, striping at the

physical layer removes any processing overhead away from the database or operating

system. However, striping may make it more challenging to monitor the status of the

38

disks or the I/O (Sharma et al., 2016). In all cases, separating the data from the indexes

and avoiding chained rows can also reduce disk contention (Sharma et al., 2016).

 A different approach to improving data retrieval is the concept of hot-data and

cold-data. In this approach, frequently accessed data is kept in an area where the system

can locate it quickly, and less-frequented data remain in the regions that are slower to

respond. One approach made use of the system’s main memory as the storage for hot

data. While effective, it can increase costs to provide enough main memory for adequate

storage of hot data (Afify, El Bastawissy, & Hegazy, 2015). In their work, Afify et al.

(2015) introduced an algorithm to determine the differences between hot and cold data,

and when to move data between the main memory and the hard drives. Using a slightly

different model, Saharan and Kumar (2015) introduced the idea of keeping frequently

accessed data at the edge of a network rather than sending the data to a cloud-based

database. In Fog computing, multiple nodes within a network share the data, keeping the

data only one hop away (Saharan & Kumar, 2015). Fog computing can provide low

latency access to data, while still allowing for the data to be geographically dispersed,

provided fog nodes are in the same location where the data is collected and accessed

(Saharan & Kumar, 2015).

Software Methods of Improving Database Efficiency

 In looking at different ways of improving database efficiency, researchers have

considered the different ways that the InnoDB engine functions and altering some of the

variables of the engine. Other researchers have focused on different approaches for

handling buffer management. Many of the approaches taken by researchers consider

39

ways in which the MySQL database software functions in their attempt to improve on the

existing product. Because I am using one of the buffer configuration settings as a factor

in this study, it is only appropriate to discuss a review of the InnoDB engine, as well as

how buffers can affect database performance.

The InnoDB database engine. One focus of attention among researchers was

the InnoDB engine that controls the buffer pool, indexes, and other essential database

operations (Yu & Pradel, 2018). Most of the authors focused on methods to alleviate

locking and contention, while others concentrated on the InnoDB I/O to the disk. One

commonality among all but one of the articles discussed in this section was the use of the

TPC benchmark previously discussed.

 The most basic article compares MySQL to Microsoft’s SQL server. In their

work, Almeida, Furtado, and Bernardino (2015) examined the performance of the two

database management systems in handling progressively larger decision support systems

in a star schema. In the experiments, both database management systems performed

roughly the same with smaller databases. MySQL began performing worse with the

increase of the size of a database, with differences becoming significant with database

sizes around 6 gigabytes (GB) and larger (Almeida et al., 2015). The authors suggested

that it is the columnar indexing present in Microsoft SQL Server that allows it to

outperform MySQL in this testing. However, the authors fail to mention any variables of

the InnoDB engine could have been any values other than the default values, which may

also explain the differences in performance.

40

 Two different articles approached the disk I/O, but from slightly different

perspectives. One researcher looked at the buffer pool on different types of media and

compared performance from each. In his work, Kong (2012), considered buffer pools

stored on a striped RAID array, an SSD, and on the flash cache of the RAID controller.

Overall, the solid-state storage for the buffer pools outperformed the standard disk-based

storage, with the flash cache on the RAID controller performing better than SSD (Kong,

2012). Taking the data closer to the final storage solution, other researchers looked at the

performance of the compression the InnoDB engine uses to store the data. In his

experiments, Lee (2014) looked at the performance of non-compressed data, the default

compression of the InnoDB storage engine, and an experimental compression proposed

by the author. The proposed method uses a data compression method that puts less

processing overhead on MySQL, which allows the overall system to perform much better

than the default data compression (Lee, 2014).

 Buffer management. Database management systems use buffers to improve the

speed of data between the memory and the CPU and avoiding the slower I/O to the disk

(Guo, Yu, Liao, Yang, & Lu, 2017). Researchers have focused on buffers in their search

for improving performance. In general terms, bigger buffers can improve performance,

but making the buffer too large can affect other parts of the system requiring memory

(Yang, Jin, Yue, & Yang, 2016). Researchers also considered the algorithms used to

decide when data is written to the disk and removed from the buffer.

 There are several variables in the configuration of MySQL that can be adjusted to

improve database performance, such as query_cache_size, key_buffer_size, and

41

innodb_buffer_pool_size. Vilaplana et al. (2014) used the open-source tool

MySQLTuner to modify several variables in the MySQL configuration to improve

performance for their application. Most researchers focused on online transaction

processing (OLTP) database models, but Vilaplana et al. (2014) focused on databases

supporting applications used for metabolic pathway reconstruction. By increasing the

values of five different variables, the researchers reported they were able to improve

performance by 30%.

 Of course, if you could have an unlimited buffer, performance could improve

significantly. Guo, Yuan, Sun, and Yue (2015) proposed an infinite buffer in the form of

virtual tables used in a new approach to the job of extracting, transforming, and loading

(ETL) data. In a normal ETL process, a query retrieves data to a temporary table where it

can be manipulated to meet the users’ needs, then loaded into another database. The

transform, extract, and load process introduced by the researchers transform the data

during the load process into “virtual tables” which exist in memory, or the cloud, much

like an unlimited buffer. The researchers did find a little performance improvement, but

they also focused on disk efficiency in reporting the results of the experiments. The

authors admitted that their approach does have limited use cases and that the focus is

more on reducing disk I/O and reducing storage needs in the ETL process (Guo et al.,

2015).

 But increasing the values of the buffer variables is limited by the amount of

memory available in the system. While additional memory is one option, there are limits

and other costs incurred, such as increased energy usage. In their work, Guo et al. (2017)

42

focused on the optimal values for the buffer variables to improve performance while

keeping energy usage down, as additional physical memory or memory usage boosts

power usage. Guo et al. created a system that measured energy usage and CPU activity

and varied the buffer variables to reduce energy consumption while providing acceptable

database performance. The researchers suggested that cloud providers should report

slightly diminished performance in the service level agreement (SLA; Guo et al., 2017).

 Other researchers suggested that the SLA be used to outline diminished

performance for some customers. In multitenant database systems, multiple users have

databases hosted on the same database server and are usually unaware of the other users

in the system. Narasayya et al. (2015) outlined an SLA metering technique that would

allow for overprovisioning of a buffer pool in a multi-tenant database system, giving

favor to the higher paying customers by taking away available memory from the lower-

paying customers. In their approach, Narasayya et al. outline a multitenant buffer page

replacement algorithm named MT-LRU. Many researchers suggested different

algorithms to replace buffer pages to improve performance. One approach frequently

referenced is the work done by Jiang and Zhang (2005) in their algorithm low inter-

reference recency set (LIRS) as an improvement to LRU. While LRU considers the

recently used data, LIRS also uses the frequency that the data was accessed to predict

future data requests. LIRS was used to improve database performance without

interfering with system performance (Jiang & Zhang, 2005).

 One team considered the storage media when designing a buffer algorithm. As

previously mentioned in the Disk and Storage Variation section, databases can get a

43

performance increase using SSD’s. However, SSD’s are not efficient with random writes

(Yang, Jin, et al., 2016). The Clean-First and Dirty-Redundant-Write algorithm reduces

the number of small random writes and marks buffer pages that have already been written

to disk, called clean pages, for removal before the buffer pages that will require writing to

the disk, known as dirty pages. The dirty pages are then written in bulk to the SSD when

no clean pages are left to remove from the buffer (Yang, Jin, et al., 2016). Experiments

showed the Clean-First and Dirty-Redundant-Write algorithm reduced the number of

random writes to the disks as well as improved performance over standard buffer

algorithms (Yang, Jin, et al., 2016).

Complications in Database Performance in Multitenant Environments

 With database management systems and virtualized systems, there is a distinct

possibility that there may be other users on the system. Weather at the database level, or

the virtualization layer, conflicts can arise in I/O, CPU utilization, or memory utilization.

Researchers considered these limitations in several directions. It is these considerations

that lead me to include the time of day as a factor. I started with the idea that most VMs

in the cloud in an American data center would experience larger loads during a traditional

American workday, from 9 a.m. to 5 p.m., since this was my observations having

administrated hundreds of servers during my career. The following articles speak to the

complications that could be happening on the cloud provider platform that may interfere

with database throughput on a VM in the cloud.

Virtual machines. The consensus seems to be that MySQL runs slower on a VM

than on a physical machine. In testing the performance of MySQL on Microsoft’s

44

Hyper-V server, Ahmed (2013) found that the response time was slower, and the CPU

usage when idle was higher for a VM running MySQL. Chung and Nah (2017) found

similar results with lower disk utilization and lower CPU utilization on the physical

server when experimenting with a MySQL backed web application. The MySQL-backed

web application did perform a little better in CPU utilization when provided with more

processing cores (Chung & Nah, 2017). In a virtualized environment, researchers have

found more issues with disk I/O in database applications than other areas of shared

hardware such as memory or CPU. One team compared the performance of MySQL, a

disk based DBMS, and DB2, with in-memory databases, on both physical and virtualized

systems (Tajbakhsh, Dehsangi, & Analoui, 2017). Experiments showed DB2 performing

slightly better than MySQL in the areas of CPU utilization in all tests, and faster response

times and more TPS in DB2 as the number of users increased on a physical machine.

MySQL did do slightly better with TPS and response times with smaller numbers of

users. For both DBMSs, performance in these areas was worse when virtualized on the

Xen platform (Tajbakhsh et al., 2017).

 Researchers reported similar results in testing MySQL with the Xen

virtualization platform in a clustered environment. Tapdiya and Xue (2014) ran

experiments with a MySQL front end and DBMS on a single VM, and again with the

MySQL front end on a separate VM from the DBMS. The results from the two different

VMs were usually less consistent, with spikes in response time and CPU utilization on

one or more nodes of the cluster. The explanation for these spikes was the inadequacy of

the Xen network I/O system in communicating between the front end and back end of the

45

MySQL server (Tapdiya & Xue, 2014). When the same experiments were ran using

virtualized servers in Amazon’s public cloud in the same configuration, the results were

very similar between the single and dual VMs on a three-node cluster. However, the dual

VM setup would stop responding when the number of simulated users increased. The

dual VM setup would timeout with about half as many users as the single VM

experiments (Tapdiya & Xue, 2014).

In recognition of how all the different moving parts of a DBMS on a virtualized

system can be complicated, one team developed a tool to detect bottlenecks at the

virtualization layer. In their work, Dean et al. (2016) created a tool called PerfCompass,

which monitors the VM’s CPU, memory, buffers, and dropped network packets. The

team then tested PerfCompass with several different applications on a VM: Apache web

server, MySQL, Tomcat, Cassandra, and Hadoop (Dean et al., 2016). In the tests,

PerfCompass was able to successfully alert the researchers to I/O interference, CPU

overutilization, memory spikes, and packet loss when testing MySQL in a virtualized

environment (Dean et al., 2016).

Cloud considerations. Since this study took place on VMs in the cloud, it is only

appropriate to review the literature concerning cloud considerations for VMs and

databases. The cloud is appealing to administrators due to the elastic nature of storage,

networking, memory, and processing power (Hummaida, Paton, & Sakellariou, 2016).

While the administrator and the cloud provider can tweak many factors, the final

determining factor for QoS is the SLA, and the amount of money the customer is willing

to pay for improved performance (Whaiduzzaman, Haque, Chowdhury, & Gani, 2014).

46

Cloud users will need to ensure they have sufficient internet speeds to access the cloud,

as well as understand the fact that they will be running databases in a multi-tenant

environment (Januzaj et al., 2015).

There is much in the academic literature reviewing the many approaches to

provisioning cloud computing services and attempts to optimize the services. In their

work, Whaiduzzaman et al. (2014) consolidated these articles into categories of strategies

for cloud provisioning. The literature has taken many different approaches towards cloud

provisioning, such as the areas of objectives for migrating to the cloud, requirements for

cloud services, metrics required of the cloud services, and the approaches to cloud

provisioning like SLA or statistical-based approaches (Whaiduzzaman et al., 2014). In a

slightly different overview, Silva Filho, Monteiro, Inácio, and Freire (2018) aggregated

and categorized academic articles on a VM placement and migration. Areas such as

resource usage, optimizing migration, SLA fulfillment, reduced energy and costs, and

clustering considerations are groupings in the literature for VM migration and placement

(Silva Filho et al., 2018). In yet a third angle in categorizing the literature, another

research team looked at the critical features needed in cloud adaptation. In their review

of the literature, Hummaida et al. (2016) categorized the needs into the areas of

resources, objectives, techniques, engagement, decision architecture, and type of

managed infrastructure.

Amply available in the literature were articles that fell in the categories listed

above. One team developed and tested a process that used software-defined networking

(SDN) to determine a location for a VM, selected resources to support the VM, and

47

monitored the status of the VMs (Gharbaoui et al., 2016). With their proposed SDN

model, Gharbaoui et al. (2016) were able to realize higher traffic flow and more efficient

resource utilization. Similarly, Henneberger (2016) developed a stochastic mathematical

model that was proven to reduce peak demand costs and total overall costs of hosting

VMs in the cloud. Researchers also reported on the many ways of approaching

performance improvements. Working on the assumption that cloud providers desired to

move active VMs to physical servers with less active VMs, one team developed a

methodology to decide where to move the active VM. In their work, Tseng, Chen, Chou,

Chao, and Chen (2015) use machine learning to observe the behavior of VMs in deciding

which physical machine to migrate highly active VMs. Looking more deeply into VM

migration, Kumar and Saxena (2015) explained the process of VM migration down to the

memory page level. Their experiments showed the performance of live migration of a

VM depended on the amount of memory assigned to a VM, bandwidth of the

environment, and the rate at which the application hosted on the VM is writing to the

memory (Kumar & Saxena, 2015).

Other researchers didn’t look at such minute parts of the virtualized systems in the

cloud but chose to look at the bigger picture. Lang et al. (2016) proposed a system of

using historical data to determine the best location for VM placement. Similarly, Tseng et

al. (2015) proposed a system that emphasized overprovisioning the physical machines as

much as possible without violating the SLA. Lang et al. also went so far as to propose

releasing only a few high-performance SLAs and more low-performance SLAs. One

team specifically studied how the cloud would perform for scientific computing. Iosup et

48

al. (2011) tested the performance of four different public clouds using high-performance

computing tasks, high throughput computing using database benchmarking, and many-

task computing. The conclusion, at least at the time of the article, was that cloud

computing is enough for temporary solutions, but may not be financially viable for long-

term scientific computing solutions (Iosup et al., 2011).

One newer technology has come into more substantial use over the past few years

that deserves consideration. Some companies are beginning to use container-based

virtualization over hypervisor-based virtualization. From the user perspective, there is

little difference between the two. Containers are like VMs in that they do run an

operating system and software services. However, containers provide only the bare

essential libraries and supporting software (Kozhirbayev & Sinnott, 2017). In their

experiments, Kozhirbayev and Sinnott (2017) found that databases use about the same

amount of memory and processing power in containers as VMs. However, containers

perform poorly in I/O operations, which are critical for database management systems.

Since containers are stateless, DBAs should not store data in a container, but store the

data on persistent storage (Bhimani et al., 2016).

Gaps in the Literature

 Many layers can affect database efficiencies such as the hardware, operating

system, virtualization software, DBMS, database structure, data types, and query

organization. Furthermore, there can be several factors at each level that can also impact

database performance. With so many areas of focus, one theme missing from the

literature was consistency in focus. In much of the literature, the researchers would come

49

upon a novel approach to addressing one particular factor and compare the proposed

approach to a standard database installation. Another gap in the literature was a

comparison of the most popular relational DBMSs with each other in how they

performed using the researcher’s approach. When researchers compare multiple DBMSs,

researchers tended to include not only structured query language (NoSQL) databases.

Developers designed NoSQL databases to function differently, and with different types of

data, as opposed to relational databases (Chandra, 2015). As such, a comparison of

relation to NoSQL databases is not an equal comparison.

Furthermore, there are differences between the types NoSQL databases

(document, columnar, graph, key-value) in their intended use case and how they handle

data (Chandra, 2015), and the literature fails to address comparing NoSQL database

systems of similar types. Since I began down this path of research, there has been a

significant rise in the offerings of database-as-a-service (DBaaS), where cloud providers

now offer many different standard relational databases and many different NoSQL

databases where the cloud provider manages the DBMS. Because cloud providers have

only recently provided these services, there is currently a lack of research in comparing

the efficiency of DBaaS services.

Transition and Summary

As shown in the review of the literature, database performance is affected by

hardware and software configurations, some of which can be set by the DBA. When the

hardware is virtualized and shared in a multitenant environment, there can be factors that

affect database performance that is not only outside of the control of a DBA but outside

50

of a DBA’s ability to view. Most DBMS manufacturers have recommended settings for

optimizing databases, both on-premises and in the cloud. Because of these limiting

factors, this research focuses on the InnoDB buffer pool size and the InnoDB I/O

capacity, which are factors that can be controllable by the DBA and see how these factors

interact with the number of users and the time of day.

In Section 2, I will explain the role of the researcher, and explain the use of the

design of experiment methodology needed to quantify the various possible factor levels

for the InnoDB buffer pool, InnoDB I/O capacity, simulated number of users, and the

time of day of the measurements. I will also justify the use of the TPC-C benchmarking

standard as implemented by HammerDB, which measured the dependent variable for this

experiment.

51

Section 2: The Project

In Section 2, I restate the purpose of the research, overview my role as a

researcher, and review the methodology and tools that I applied to the research. The

research method was quasi-experimental in nature and was focused on the manipulation

of MySQL database instances running on MVs hosted in public cloud environments. In

the review of the tools and methodology that I used to run the experiments, I focus on

justifying why I chose these tools to help me explain the analysis of the data and the

validity of the selected method for analyzing the data for this experiment. In closing out

this second section of the study, I also justify the validity of the experiments and analysis

performed here.

Purpose Statement

This experiment was about finding the optimal combination of four factors that

affect MySQL database performance. Specifically, I controlled four factors: time of day,

the number of concurrent users, the InnoDB buffer pool size, and the InnoDB I/O

capacity at a high and low level. The dependent variable was the throughput of MySQL

as measured by the number of TPS. I conducted these experiments on similarly

provisioned VMs on the public cloud platforms of AWS, Google Cloud, and Microsoft

Azure provisioned in datacenters in the United States to avoid latency. I selected these

platforms because they are the top three public cloud providers (see Sikeridis et al.,

2017). All three cloud providers also allow the provisioning of MySQL for free for small

scale instances. This study contributes to social change because it informs DBAs on

identifying the combination of controllable factors that maximize throughput, improve

52

query effectiveness and overall database utilization, and reduce costs for organizations

utilizing the cloud. These efficiencies can help nonprofit organizations and schools

provide better services more efficiently to their clients and make better use of their

resources.

Role of the Researcher

In experimental research, the researcher’s role is to determine if a cause-effect

relationship exists between one or more factors by selecting and manipulating the

independent variables and observing the effects on the dependent variables in an unbiased

way (Ellis & Levy, 2009). For research to be credible, the researcher must have a

persistent and prolonged engagement in the subject area and spend sufficient time

engaging in case studies and field observations (Houghton & Casey, 2013).

I have been actively working with databases at a professional level for 20 years

now. While observing database usage in the enterprise, I would notice database usage

would follow the same patterns over time. The database usage would tend to be higher

during the late morning and midafternoon of the workday. This experience led me to

choose the time of day and the number of simulated users as two of the key factors

included in this experimental research. If a database were experiencing slow query

responses, some hardware-related approaches an individual could take would be to

increase the size of the cache or increase the amount of memory available to the DBMS.

These performance-boosting approaches, along with the academic literature, led me to

choose the InnoDB buffer pool size as well as the InnoDB I/O capacity as two additional

factors to evaluate in this experiment. For the number of simulated users, the low and

53

high values chosen represent a light or heavy load that may be experienced by an

enterprise-level database. The low values for the I/O capacity and buffer pool were the

default values given in a MySQL installation, and the high values were recommended by

MySQL for the specifications of a VM running the DBMS. I chose the times of day

chosen based upon the peak business hours and off-peak business hours as experienced in

the United States.

The database selected for this experimental research was MySQL. MySQL is an

open-source DBMS and was chosen partly due to the free nature of open-source software.

I also chose MySQL because of its frequent use in the academic literature in experiments

involving relational databases (see Luo, Zhou, & Guan, 2015; Raza, Kumar, Malik,

Anjum, & Faheem, 2018; Tapdiya & Xue, 2014). Other options for open-source

databases are MariaDB and PostgreSQL, but the academic literature did not mention

these DBMSs as frequently as MySQL. Microsoft offers a freely available version of its

SQL Server under the developer edition; however, there would have been extra costs

involved in the licensing of the Windows operating system in addition to the lack of

academic literature on this DBMS.

 I used HammerDB as the tool to simulate the users and user activity.

HammerDB (2018a) implements the TPC-C benchmarking standard against the database.

The TPC-C benchmark was chosen as the appropriate measure here because this is the

benchmark mentioned frequently throughout the literature. HammerDB reported the

resulting activity of the database in TPS. I performed the final analysis of variance using

the statistical software of Statistical product and Service Solutions (SPSS), which is a

54

popular software used for statistical analysis (see Marshall & Jonker, 2010). Just as with

MySQL, HammerDB is an open-source product and freely available. Other

benchmarking tools are capable of implementing the TPC-C benchmark, but there are

licensing costs associated with them. Another benchmarking tool mentioned less

frequently in the literature is sysbench, which is freely available. Sysbench is capable of

emulating OLTP workloads, but there is no mention of implementing the TPC-C

benchmark standard, which researchers frequently used in the literature.

In performing experiments, a researcher must engage in ethical behavior at

multiple levels. In general, a researcher must show respect, make efforts for the well-

being of those involved in the study and avoid injustice to the participants (CITE). Those

participating must grant their informed consent to be involved with the study and that

they understand the ramifications in volunteering for the study (Department of Health,

Education, & Welfare, 1979). Since this study only involved changing settings for a

DBMS or benchmarking tool on a virtual server in a public cloud environment, no human

subjects were involved in any part of this study. Therefore, my role as a researcher was

contained in the experimental database settings alone and was not related to the choice

and treatment of sample participants.

Participants

As stated in the preceding section, there were no human participants in this study.

This experiment involved changing DBMS settings at different times of day by

simulating queries to the database originating from simulated users employing a

commonly used, freely available, database-benchmarking tool called HammerDB

55

(2018a), which implements the TPC-C benchmarking standard. It was necessary to use

simulation software like HammerDB to maintain a static number of users at high and low

levels. It would have been resource prohibitive to coordinate large numbers of real users

simultaneously and have all actual participants utilizing the database in the same way for

every testing instance.

Research Method and Design

In this study, I considered whether a combination of a specific number of variable

factors determines the optimal throughput of data as measured by TPS. The research

question was focused on finding the optimal combination of various factors that will

positively affect MySQL performance hosted in a cloud environment. The research

method used in this study was quantitative in an attempt to quantify the relationships in

the numerical data (see Albers, 2017). Specifically, I applied an experimental design

using a full-factorial analysis, in which I changed each factor from a low to a high level

until all combinations of levels were attempted (see Reddy & Shyamala, 2016).

Method

The three methods used in research are quantitative, qualitative, and mixed

methods (Ellis & Levy, 2009). Quantitative research methods are essential in justifying

the research, while qualitative methods are excellent tools for discovery, testing, and

revising (Ellis & Levy, 2009; Park & Park, 2016). In the academic literature, most of the

research in finding optimal database performance uses quantitative experimentation (see

Chang & Lin, 2016; Raza et al., 2018; Shmueli, Vaisenberg, Gudes, & Elovici, 2014). In

this study, my intention was to justify the optimal combination of factors that can lead to

56

optimal database performance. Qualitative studies are more exploratory, seeking to

understand why a phenomenon occurs (Barnham, 2015; Ellis & Levy, 2009; Park & Park,

2016). In this quantitative, quasi-experimental research, the goal was to quantify the

optimal outcome based on a combination of measurable-factor levels but not why this

combination was optimal or the opinions or experiences of users who implement this

combination. Since mixed-methods research is a combination of qualitative and

quantitative approaches (Kansteiner & König, 2020) and this experiment did not involve

qualitative methods, the mixed-methods approach was not suitable.

Research Design

In the realm of quantitative methods, the research design used depends on what

the researcher is trying to determine (Abramson et al., 2018). For example, there are

many correlational designs in the academic literature in the study of the performance of

databases (Raza et al., 2018; Xu et al., 2015; Zhou, Taneja, Qin, Ku, & Zhang, 2017) in

which the relationship between variables is studied (Gabbiadini & Greitemeyer, 2017).

As I mentioned in the Nature of the Study section, since the relationship between two

variables was not under investigation or was how changes in one variable affect the other,

a correlational study was not appropriate in this experiment. Since a casual-comparative

design does not involve a researcher controlling the independent variable, as I did in this

experiment, a casual-comparative design was not appropriate either (see Ellis & Levy,

2009).

On the other hand, the use of descriptive designs, in which the researcher uses the

data to draw a general conclusion from the data (Fisher & Marshall, 2009), was also not

57

in common in the explored literature. Drawing general conclusions from the data, as a

researcher would do with a descriptive design, would not have been useful in answering

the research question posed in this study. In terms of experimental treatment and control

types of designs, there were many articles in which the researchers measured the effects

of a proposed intervention on a database or system to improve performance (CITE).

Since this study lacked randomness in the selection of subjects or the application of a

treatment, an experimental design was not appropriate (see Abramson et al., 2018).

Quasi-experimental designs are used when the researcher intervenes with a treatment

(Bärnighausen et al., 2017). Since I intervened by way of applying all combinations of

high and low values for the factors in this experiment, the quasi-experimental design was

the most appropriate for this study.

In terms of quasi-experimental designs, two groups of researchers discussed the

use of factorial designs in studying the effects of different factors on database

performance (Bizarro, 2015; Gonçalves, Guimarães, & Souza, 2014); however, neither

group chose a similar sets of factors. Bizarro (2015) used DBMS platforms as one of the

main factors, along with task characteristics, user characteristics, and database

representations as additional factors. Gonçalves et al. (2014) used query algorithms,

query shapes, and the quantity of table joins as factors in their experiments. In a

literature review and research spanning over 2 years, I was unable to find research that

used a full-factorial analysis to optimize throughput on a database using the combination

of factors used in this study. This combination of MySQL running on a VM on a public

58

cloud provider meets all of the criteria as a platform to address the research question for

this study.

Population and Sampling

The population for this study was the public cloud providers with the capability to

host the MySQL DBMS. My sample selection from this population was the three largest

public cloud service providers measured by market share: AWS, Microsoft Azure, and

Google Cloud Platform (see RightScale, 2019; Sikeridis et al., 2017). Each of these

platforms offers free introductory trial periods for the small instances used in these

experiments. I chose these platforms so that my research would be the most applicable to

more DBAs. By definition, this sampling method was purposive, nonprobabilistic

sampling, where the researcher deliberately selects the population for important

information (see Taherdoost, 2016). I provisioned the VMs on all cloud platforms to

enable uniformity in platform testing and comparisons. I installed the latest production

version of Debian Linux on each VM, and the DBMS installed was the latest production

version of MySQL as provided by the Debian package manager.

The benchmarking software, HammerDB (2018a), implements the TPC-C

benchmarking standard, which outlines the method for emulating OLTP and measures

throughput as the benchmark. During the throughput testing, HammerDB samples and

averages the throughput every 10 seconds during the scheduled testing time. As

previously mentioned in the Hypothesis and Design of Experiments sections, this full-

factorial design involved four factors at two levels, each for 24 = 16 factor combinations.

I performed the TPC-C benchmarking test for all 16 factor combinations with three

59

replications (see NIST/SEMATECH, 2012a), for a total of 48 samples across all factor

levels. Replications at the same factor combination help produce more precise regression

coefficients, which allows for the study of variation in the outcomes, and are used to

estimate the errors for statistical tests on the effect of factors and insure against bad runs

or measurements (Minitab, 2018).

One tool used that calculates sample sizes based on desired effect and power is

G*Power (Hancock & McNeish, 2017). The power of a statistical test is the probability

that a researcher will correctly reject the null hypothesis (Hancock & McNeish, 2017).

Given that the factorial experiment was analyzed in SPSS using the Generalized linear

model (GLM), I can select a multiple linear regression a priori power analysis in

G*Power (Faul, Erdfelder, Lang, & Buchner, 2007). The most common level for

avoiding a Type I error is α = 0.05 (Smith, 2012). Acceptable power levels to avoid a

Type II error are above 0.8 (Dien, 2017), so for this experiment, I selected β = 0.1,

leading to a power of 1 – β = 0.9. A smaller effect size is required to detect smaller

differences between the groups (Sullivan & Feinn, 2012), so for this experiment, I chose

a smaller effect size of f2 = 0.35. With four factors, G*Power calculates that 50 samples

will give an actual power of 0.907, as shown in Figure 1. Fifty samples divided among 24

= 16 different factor combinations averages to 3.1 samples per factor combination, which

I rounded down to 3 samples or three replications per factor combination. In all, I

collected 48 samples from each of the three public cloud providers, with the results for

each provider reported separately. Justifications for the values used above are discussed

60

further in the Validity and Reliability section in the explanation on how I will address

Type I and Type II errors for this experiment.

Figure 1. G*Power calculations determining sample size and power.

Ethical Research

Since there are no humans involved in this testing, there is no one to consent to

these experiments. With no participants, there is no process for withdrawing from the

study since there will be no person to withdraw. I did not provide any incentive to any

participant. With no participants, there are no agreement documents are necessary. With

61

no participants, there is no risk of loss of privacy, emotional or psychological distress, or

economic loss to any individual or organization. The data written to the database by the

benchmarking software HammerDB contains randomized text, for example,

FKaak9ZBgtJr3Tr6gESW (HammerDB, 2018c). Since the data are random, there is no

personal data to protect contained in the database. The dependent variable of throughput

does not relate to any person or organization. I am not an employee or customer of the

companies whose cloud services used for these experiments, and therefore, have no

vested interest in the outcomes as they may compare to each other. I conducted these

experiments within the parameters stated in the acceptable user agreements and terms of

use for each cloud provider. Because any researcher or DBA has access to public cloud

platforms to repeat this research, nor is any private company information collected, there

is no need to keep the organizations confidential.

On the conclusion of the experiments, I will store the data on a thumb drive and

compact disk, with copies saved in a safety deposit box for 5 years. The Walden

Institutional Review Board approval number is 06-25-0623603, and I have provided a

copy of the National Institute of Health Training Certificate of Completion in Appendix

C.

Instrumentation

The benchmarking software HammerDB is the primary instrument that generated

queries simulating an OLTP database that will create the results of the 2k factorial

experiment representing the k = 4 factors each at two levels tested and the

operationalization of the instrument.

62

The primary instrument used for data collection in this study is HammerDB.

HammerDB is an open-source database benchmarking tool used for benchmarking

databases such as MySQL, Oracle, Microsoft SQL, MariaDB, DB2, PostgreSQL, and

Redis (HammerDB, 2018a). Steve Shaw of Intel leads the HammerDB project team in

the development of HammerDB (HammerDB Blog, n.d.). HammerDB applies the TPC-

C benchmarking standard to the DBMS by creating a database schema specified by TPC-

C, as well as adding sample data that is also defined by the TPC-C benchmarking

standard. HammerDB allows the user to select the number of virtual users committing

transactions against the database, and report the results as transactions per minute (TPM).

To get the TPM, HammerDB applies the types of queries specified in the TPC-C

standard, which simulate new orders placed on an OLTP database (TPC, 2010).

The response variable, throughput as measured by TPS, is measured using a ratio

scale. The TPC-C specification defines a transaction as any business transaction that is

successfully committed within the database and has the result reported back to the user

(TPC, 2010). As supported in the literature review, throughput is the defining measure

provided by the TPC-C standard, as established by the TPC.

Before starting a benchmarking test, the user must instruct HammerDB on the

number of simulated users to create. In choosing the number of simulated users, I intend

to have a significant difference between the high and low values to change the amount of

workload on the database. On the low level, there should be enough users to see activity,

so I decided on ten users for the low value. After some testing with HammerDB, I settled

on 100 users for the high value. With 100 users, HammerDB takes quite a bit of time to

63

create the simulated uses as well as conducting the benchmarking test. Many more users

may be time prohibitive, causing the benchmarking analysis to venture outside of the

time window specified. Higher numbers of users would also incur more costs. The

number of people is considered a discrete value. Still, with high and low values used in

this factorial study, the number of simulated users will be ordinal in this experiment.

For the time factor, I manually initiated the tests between 10 a.m. and 11 a.m.

Central Standard Time on a standard workday, Monday through Friday, representing the

low value for the time factor in these experiments. The high value for the time factor will

be between 10 p.m. and 11 p.m. Central Standard Time on a standard workday, Monday

through Friday. During my time as a DBA for an enterprise organization, the usage

patterns for most databases would peak later in the morning as most people came to work

and began working. The usage would taper off during the standard lunch hours, and the

usage pattern would have a second smaller peak in the midafternoon. I chose the window

of 10 a.m. to 11 a.m. as the earlier window to mimic the usage peak I observed in an

actual working environment. Similarly, I chose the latter window because this time

frame was usually one of the least busy times for databases. While time is continuous by

nature, in this factorial study, I will be using time as an ordinal data type.

The setting for InnoDB buffer pool size is a MySQL variable that I can set using

MySQL commands. The values used for this variable are the low default value of 128

MB and the high recommend value of 80% of the VM’s physical memory (Oracle

Corporation, 2019a). The developers of MySQL version 8.0 have configured the DBMS

to use 512 MB of system memory (Oracle Corporation, 2019b), but this value is not

64

much greater than the default value of 128 MB. I allocated 2 GB of memory for the VMs

so that there may be sufficient difference between high and low values for the buffer pool

size. Consequently, the high value for the InnoDB buffer pool size was 80% of 2 GB or

1.664 GB. To manually set the low value of the InnoDB buffer pool size, I issued the

SQL command: SET GLOBAL innodb_buffer_pool_size=134217728; This

value is 128 MB in bytes. For manually setting the high value of the InnoDB buffer pool

size, I executed the following command in MySQL: SET GLOBAL

innodb_buffer_pool_size= 1744830464; which is 1,664 MB in bytes. While the

buffer pool size can be set as a discrete data type, I treated this variable as an ordinal type

with high and low values only.

Similarly, for the InnoDB I/O capacity, I set the factor levels to the low default

value of 200 input-output operations per second (IOPS) and the high value of 1,000 IOPS

recommended for faster storage (Oracle Corporation, 2019a). I set the low value for the

InnoDB I/O capacity using the MySQL command: SET GLOBAL

innodb_io_capacity=200; and the SQL command to set the high value SET

GLOBAL innodb_io_capacity=1000. As with the buffer pool size, in practice, the

I/O capacity is discrete by nature but was treated as an ordinal data type in this study.

Data Collection Technique

On each of the three public cloud providers, I provisioned identical VMs. The

latest production version of Debian Linux was installed and fully updated on each of the

VMs on the public cloud provider. To ensure an identical environment and database

management system on all three VMs on each public cloud platform, a bash script named

65

db_install.sh, found in Appendix A, was uploaded and executed. This script first

downloads the latest production version of MySQL Community Server (8.0) from the

MySQL repositories by adding the MySQL repositories to the server. After the

installation of MySQL, the script creates an empty database named tpcc that will

eventually contain the schema for testing. After this, the script downloads and installs

HammerDB on the same cloud-based VM and registers the appropriate libraries to allow

HammerDB to interact with the MySQL Server. Once the script db_install.sh is

completed, the VMs, MySQL instance, and HammerDB is prepared to run the tests for

each factor combination on the cloud-based VM. This initial step only happened once on

each of the three VMs before any benchmark tests take place.

For each test with differing factor combinations, I used HammerDB to execute a

TLC script named sqlrun.sh, listed in Appendix B. This script is based heavily on the

example provided by HammerDB (2018b) in the documentation for scripting in the

command-line interface for HammerDB. The command-line script configures

HammerDB to use the MySQL instance located on the local cloud-based virtual server

using the standard MySQL port of 3,306. Next, the script directs HammerDB to

implement the TPC-C benchmarking standard, which specifies the schema for the tpcc

database and the types of queries that will run against the database. The script goes on to

configure HammerDB to take 2 minutes to ramp up before HammerDB begins tracking

the average data throughput in the implementation of the TPC-C benchmark. The script

also specifies that the entire test lasts for 5 minutes, including the 2 minute ramp-up time.

During the final 3 minutes of the testing, HammerDB averages the throughput in 10

66

second intervals and reports the final averaged throughput in the resulting logfile. The

script also sets the details for the log file produced during testing that will contain the

results, the dependent variable for these experiments, after each test. The script sets the

option for HammerDB to give the log file a unique name so that no log file gets

overwritten during testing. At this point in the second script, the database is an empty

shell with no tables or data, and the script has configured HammerDB to execute the

TPC-C benchmarking standard.

The script then commands HammerDB to generate the SQL code necessary to

create the database schema as indicated by the loadscript command in Appendix B. Next,

the build schema command found in Appendix B executes the SQL script which builds

the schema in the specified database and loads sample data as dictated by the TPC-C

benchmarking specification. Figure 2 shows the TPC-C specified schema that is built by

HammerDB. HammerDB loads the data into the tables in the database that meet the

TPC-C specification with random data that meets the data types specified for each field,

and other constraints specified in the database such as foreign key relationships. For

example, the TPC-C specification calls for the field W_CITY in the Warehouse table to

have up to 20 variable characters (TPC, 2010), to which HammerDB may enter text like

FKaak9ZBgtJr3Tr6gESW (HammerDB, 2018c). These text fields do not need to be

human-readable or understandable, as the TPC-C specification is only testing the

throughput simulating an OLTP database, and these transactions do not need to be

humanly actionable.

67

Figure 2. TPC-C Schema. From “Understanding the TPC-C workload,” by HammerDB,

2018d (https://www.hammerdb.com/docs/ch03s05.html). Copyright 2018 by

HammerDB. Reprinted with permission.

Depending on the factor level combination, the script instructs HammerDB to

create either 10 or 100 virtual users for the database, with 10 virtual users being the low

level and 100 virtual users the high level. HammerDB records the average number of

TPM to a unique log file after each 5-minute test. It is the TPM listed at the end of the

log file, shown in Appendix C, that is the data for the dependent variable in the analysis

for this experiment.

On each of the three VMs, there were three replications of the experiment at each

combination of factor levels. With 24 = 16 factor level combinations, and three

replications (NIST/SEMATECH, 2012a) of each combination on each VM will be 48 test

runs on each VM.

68

I adjusted each of these factor levels until all combinations of high and low levels

for all factors are tested, for a total of three replications on each cloud platform. One

disadvantage of this technique is that it does require proper timing to ensure that the tests

are performed within the allotted window, mainly since many of the factors must be

manually applied. Another disadvantage is the fact that I had to be proficient on multiple

cloud providers, and I had to manage accounts on each platform. One significant

advantage of this testing process is that the operating system, the DBMS, and the testing

instrument are all freely available open-source software with thorough documentation. I

have cited the open-source documentation often throughout this document.

As the testing completes for each combination of factors, I downloaded the log

files resulting from the 48 runs of the experiment and backed up the log files to multiple

locations. This log file contains the time and date stamp of the test, the number of users

simulated during the testing, and the average TPM reported by HammerDB. I have

provided a sample of the output log from HammerDB in Appendix C, with the last line

stating the TPM. I read each of these values from the result log files and manually enter

the data into SPSS.

Data Analysis Technique

As a reminder, the research question I am asking is: what are the optimal levels of

the number of users, time of day, InnoDB buffer pool size, and InnoDB I/O capacity that

will maximize throughput of MySQL, measured by TPS, running on a cloud-based VM.

The hypothesis and null hypothesis for the main and interaction effects are:

• Main Effect Hypothesis:

69

H0a: The main effect Fi of factor i is not significant on the outcome.

H1a: The main effect Fi of factor i is significant in the outcome.

• Two-Factor Interaction Effects hypotheses:

H0b: The interaction effect of FiFj of the pair of factors i and j are not significant

on the outcome.

H1b: The interaction effect of FiFj of the pair of factors i and j are significant on

the outcome.

• Three-Factor Interaction Effects hypotheses:

H0c: The interaction effect of FiFjFk of the triplet of factors i, j, and k is not

 significant on the outcome.

H1c: The interaction effect of FiFjFk of the triplet of factors i, j, and k is

 significant on the outcome.

For repeatability, I replicated each experiment three times at each factor level

combination, on each cloud platform, with the results for each cloud platform reported

individually. In total, there are three cloud platforms with three replications each for the

24 = 16 factor combinations with all experiments facilitated via the scripts and

HammerDB. Table 1, located below, shows the design required to specify all feasible

combinations of the high and low factor levels. For any missing data, I ran the

experiment for the combination of factors needed again. If any results appeared to be

significantly different from other similar results, I re-ran the benchmarking test to verify

that the results.

70

Abramson et al., (2018) defined quasi-experimental design as one in which the

researcher controls the independent variables, and analyzes the results. Since I changed

each factor one at a time and measuring the results, this experiment meets the definition

of quasi-experimental design. This study involves four of the many possible variables

that may affect database throughput. A correlational analysis typically studies the

strength of the relationships between two variables (Chen & Popovich, 2002), which

would not suffice for the research questions in this study. Experimental reasearch

involves a random assignment of treatment (Abramson et al., 2018), which was not done

here. In the realm of factorial designs, an alternative would be a fractional factorial

design, where a researcher uses a portion of the possible combinations of high and low

factors in the experiment (Collins, Dziak, & Li, 2009). With only sixteen possible factor

level combinations, it wasn’t too much effort to perform all combinations of factor levels,

and fractional factorial design is unnecessary. What follows is an outline of how I

performed factorial ANOVA calculations in SPSS.

In Variable View in SPSS (Version 25), I added the four independent variables

(time of day, number of simulated users, InnoDB buffer pool size, and InnoDB I/O

71

capacity) as shown in Figure 3.

Figure 3. Variable view in SPSS with the independent and dependent variables.

The low level for each factor has a value of zero and the high level of each factor

as one corresponding to the “-“ or “+” signs in Table 1. I entered the dependent variable

of throughput as the variable Throughput. Once I register the variables with SPSS, I

added the data on the datasheet in SPSS. Sixteen different combinations of 0 and 1 for the

independent variables and these 16 rows were repeated three times for each of the

replications of the dependent variable from the three trials at each combination of factor

levels.

72

 Table 1

Database Performance Factor Level Combinations

Run ID Treatment

Combination

Level of Factor Replicate

a b c d I II III

1 1 - - - - Y(1, A-, B-, C-, D-) Y(2, A-, B-, C-, D-) Y(3, A-, B-, C-, D-)

2 a + - - - Y(1, A+, B-, C-,D-) Y(2,A+, B- ,C-, D-) Y(3, A+, B-, C-, D-)

3 b - + - - Y(1,A-, B+, C-, D-) Y(2, A-, B+, C-, D-) Y(3, A-, B+, C-, D-)

4 ab + + - - Y(1, A+,B+ ,C-, D-) Y(2, A+,B+ ,C-, D-) Y(3, A+,B+ ,C-, D-)

5 c - - + - Y(1, A-, B-, C+, D-) Y(2, A-, B-, C+, D-) Y(3, A-, B-, C+, D-)

6 ac + - + - Y(1, A+, B-, C+, D-) Y(2, A+, B-, C+, D-) Y(3, A+, B-, C+, D-)

7 bc - + + - Y(1, A-, B+, C+, D-) Y(2, A-, B+, C+, D-) Y(3, A-, B+, C+, D-)

8 abc + + + - Y(1, A+, B+, C+, D-) Y(2, A+, B+, C+, D-) Y(3, A+, B+, C+, D-)

9 d - - - + Y(1, A-, B-, C-, D+) Y(2, A-, B-, C-, D+) Y(3, A-, B-, C-, D+)

10 ad + - - + Y(1, A+, B-, C-, D+) Y(2, A+, B-, C-, D+) Y(3, A+, B-, C-, D+)

11 bd - + - + Y(1, A-, B+, C-, D+) Y(2, A-, B+, C-, D+) Y(3, A-, B+, C-, D+)

12 abd + + - + Y(1, A+, B+, C-, D+) Y(2, A+, B+, C-, D+) Y(3, A+, B+, C-, D+)

13 cd - - + + Y(1, A-, B-, C+, D+) Y(2, A-, B-, C+, D+) Y(3, A-, B-, C+, D+)

14 acd + - + + Y(1, A+, B-, C+, D+) Y(2, A+, B-, C+, D+) Y(3, A+, B-, C+, D+)

15 bcd - + + + Y(1, A-, B+, C+, D+) Y(2, A-, B+, C+, D+) Y(3, A-, B+, C+, D+)

16 abcd + + + + Y(1, A+, B+, C+, D+) Y(1, A+, B+, C+, D+) Y(1, A+, B+, C+, D+)

Note: a = F1 = Time of Day, b = F2 = Number of simulated users, c = F3 = InnoDB Buffer Pool Size, d = F4 = InnoDB I/O

Capacity

73

Figure 4. Data view from SPSS with factor combinations in Yates order.

In the Data View, the combination of factor levels were entered in the factor

columns in Yates order, the same as Table 1, where the first factors alternate more

frequently than the latter factors (NIST/SEMATECH, 2012b). Figure 4 shows the

resulting data sheet before the execution of the experiments with the 16 factor-

combinations possible, repeated three times for replication, for a total of 48 rows.

 To initiate the analysis in SPSS, I chose Univariate from the GLM available

under the Analyze menu. I added the four independent variables to the fixed factor(s)

group, and the throughput was placed under the dependent variable, as shown in Figure 5.

The model for this experiment is full factorial, which was specified by clicking on

the Model button shown in Figure 5, and ensuring that the correct combination of build

terms was used for each combination of factors. Full factorial is the model defined, as

74

shown in Figure 6. After the full factorial model is confirmed, I clicked continue button

seen in Figure 6, returning to the univariate dialog in Figure 5. At this point, I clicked the

OK button in Figure 5 to begin the calculation of the results.

Figure 5. Populating the factors and dependent variables for analysis.

 SPSS is a powerful tool, and running a full factorial ANOVA analysis with four

factors is asking a lot. There are four factors in the SPSS model at all times. There are

also six two-factor interaction terms possible four three-factor interactions possible, and a

75

single four-way interaction using all factors. These factor combinations can be found

below in Table 2.

Figure 6. Specifying a full factorial model and interaction effects.

Due to professional experience and being informed by the literature, I do not

expect many of the multi-factor interactions to produce significant results. In general, I

am interested in the main effects (the significance of the coefficients of F1, F2, F3, and

F4). Assuming that so-called “higher-order interactions” such as interactions of the

second, third, and possibly fourth-order may be significant, a researcher may be tempted

to include such higher-order interactions for SPSS to consider. The factor levels and

interaction justifications are shown below in Table 2. However, such higher-order

interactions are more difficult to interpret, tend to be less significant, and do not answer

76

the original research question and hypothesis. Thus, in this research, I chose only to

include a subset of two-factor interactions, namely the combinations of time of day and

number of users, and the combination of InnoDB buffer pool size and InnoDB I/O

capacity. The selection of these specific factor pairs is based on my experienced-backed

assumptions to expect a significant effect between F1 representing the number of users

and F2 representing the time of day. From my professional observations, more users

increased the demands on the DBMS. This demand would taper off near the end of the

workday. The number of users being higher, and the overall increased demands of the

workday suggest that increased users early in the day may show lower performance, and

decreased users in the evening may experience higher throughputs. As suggested by the

literature, an increase in the buffer pool size, represented by F3, combined with an

increase in the input-output to the DBMS, represented by F4, should also result in higher

throughput.

For each single and multi-factor combination selected, SPSS calculates the sum of

squares using the GLM (IBM, 2017). GLM uses linear regression modeling variance

involving a continuous dependent variable and categorical or discrete input variables

representing the groups, or in this case, the combination of factor levels (Pennsylvania

State University, 2018). In this case, I calculated a factorial ANOVA using GLM with

four factors operating at two levels each. SPSS solves the GLM model in the form of the

linear equation y = b0 + b1F1 + b2F2 + b3F3 + b4F4, with Fi representing the ith factor

operating at two levels. Thus each Fi is a binary instead of a continuous variable.

77

Table 2

Justification of Factor Level Interactions

Interaction Type Possible Factor

Interactions

Relevant Interactions

1-Factor interactions F1, F2, F3, F4
All single factor interactions are

significant.

2-Factor interactions
F1F2, F1F3, F1F4,

F2F3, F2F4, F3F4

The number of users and time of day

(F1F2) interaction should give higher

throughput with a lower load on the

DBMS. The academic literature also

suggests that a larger buffer pool and I/O

pipeline (F3F4) should give improved

throughput.

3-Factor interactions
F1F2F3, F1F2F4,

F1F3F4, F2F3F4

Some combination of time of day, reduced

numbers of users in conjunction with

either a larger buffer pool (F1F2F3) or I/O

throughput (F1F2F4) may give significant

results, but only if one of the last factors

has more of an effect than the other.

4-Factor interactions F1F2F3F4 Not relevant.

Models such as F1F2 which would consider the interactions of the first two

factors, or F3F4, modeling the interactions between the third and fourth factors, and use

more complicated GLM models of the form y = b0 +b1 F1 + b2 F2 + b3 F3 + b4 F4 + b5 F1

F2 + b6 F3 F4. Continuing in this line of examples, models considering interactions of

three factors such as F1F0F3 may take an even more compliated GLM form such as y = b0

+b1 F1 + b2 F2 + b3 F3 + b5 F1 F2 F3. Once SPSS calculates the sum of squares for that

factor or factor combination, SPSS calculates the mean square for that factor or factor

combination by dividing the sum of squares by the degrees of freedom for that factor

combination. This final calculation gives us the F score for the factor combination

(Sajid, 2016). The F score indicates if a combination of factors has a statistically

78

significant effect on the outcome (Glen, 2013). If this F score is significantly higher than

the critical F value, then I can reject the null hypothesis, which in this case, would be that

the factor or factor combination does not have a significant effect on the outcome. SPSS

calculates the critical F value by a combination of the degrees of freedom for single

factor or factor combination, the degrees of freedom for the entire experiment, and the

desired alpha value for the experiment, in this case, 0.05 (Sajid, 2016). The p value is the

probability that the F score is not due to randomness. If the p value is below the

significance level of 0.05, then I have further confirmation that I can reject the null

hypothesis (Glen, 2014).

For each factor and factor combination test where the p value, displayed as Sig. in

the SPSS output, where the significance is below 0.05 for any factor or combination of

factors, I rejectred the null hypothesis for that particular factor or combination of factors.

This data analysis procedure was repeated and reported separately for each public cloud

provider.

In the event of a significant result, researchers often perform a post hoc analysis

to determine if one of the groups differs from one of the other groups. For this analysis, I

also included a post hoc analysis using the estimated marginal means. The estimated

marginal means calculates the marginal means for each factor adjusted for the other

variables in the GLM, and in the case of a significant interaction, tells us if one of the two

or more factors is still significant (Grace-Martin, 2019). SPSS can perform the

calculations for the estimated marginal means by clicking on the EM Means button

shown in Figure 5, which brings up the factors available for inclusion, as seen below in

79

Figure 7. I included any factor combination that had significant results. Clicking the

continue button brings the user back to Figure 4 so that the user can begin the analysis

chosen for the data.

When conducting a factorial ANOVA, I am making four basic assumptions about

the data: variables are of the correct scale, the dependent variable data is normally

distributed, the dependent data has the same variance, and the data is independent

(Statistics Solutions, n.d.). In this experiment, the dependent variable is a ratio, as

measured in megabytes per second, and the independent variables, being high and low

values, are nominal. The correct scales for the independent and dependent variables

required for ANOVA are inherent in the experiment, so this assumption is satisfied

(Statistics Solutions, n.d.). Using SPSS, I confirmed that the dependent variable is

normal by running a Kolmogorov-Smirnov (K-S) test for normality. The null hypothesis

Figure 7. Estimated marginal means for SPSS.

80

of the K-S test is that the dependent data is normally distributed (Van den Berg, 2020). If

the significance of the K-S test is less than 0.05, then I reject the null hypothesis, and

therefore, the data is not considered normally distributed (Van den Berg, 2020). If the

data is not normally distributed, I applied a log transformation to the dependent data,

which changes the data to an index that will meet the assumption (Statistics Solutions,

n.d.). The third assumption is that the dependent data has the same error variances,

otherwise known as homogeneity of variance. Levene’s Test of Homogeneity of

Variance is one test that can be used to meet this assumption. Levene’s Test is performed

on the dependent variable over each of the four factors. A significance above 0.05

indicates that we can reject the null hypothesis that the variances are not equal

(NIST/SEMATEC, 2012c). If p < 0.05, then we can accept the null hypothesis that the

variances are not equal. However, the ANVOA test is considered robust and unequal

variances shouldn’t violate the underlying assumptions of ANOVA, particularly if the

sample sizes are equal for all factor levels (Pennsylvania State University, 2020). In

these experiments, n = 8 for each factor level, so the sample sizes are balanced. For the

last point, the easiest way to avoid violating the assumption of independence is to ensure

that the throughput is not measured too closely in time (McDonald, 2014). By avoiding

repeated runs of the benchmarking test with the same factor combinations, and not

performing more than measurement at the same time, I can assure that the observations

are independent of each other, and not affected by other factors such as query results

remaining in the database cache.

81

Validity

Validity is critical for the quality of a measure and indicates that the

interpretations of the results of a test are reliable (Kimberlin & Winterstein, 2008). As

discussed in the literature review, each of the independent variables chosen for this

experiment affects database performance in some way. Yu and Pradel (2018) spoke to

the importance of the InnoDB engine in controlling the flow of data between the database

and the disks. Other articles supported the importance of buffer pools and disk I/O in

database performance (Kong, 2012; Lee, 2014). Tajbakhsh et al. (2017) showed that

more virtual users lead to less throughput. Other studies introduced various methods to

handle different workloads in a multi-tenant environment (Henneberger, 2016; Tseng et

al., 2015). These studies support the inclusion of the independent variable of time of day

for this study, to find potential differences in and out of the standard workday in the

United States. Since higher processing power and more memory can positively affect

database performance (Hwang et al., 2016), these factors will be controlled by

provisioning VMs with identical specifications across all public cloud providers. It is

with the supporting literature that I have attempted to address the internal validity of the

variables as well as the interaction of external variables that may affect the outcome

measured.

A Type I error occurs when a researcher incorrectly concludes that the null

hypothesis when they should not (Sedgwick, 2014). The smaller the acceptable level of

error gives a lower chance of encountering a Type I error. The most common level

acceptable is 5%, or p < 0.05, although the researcher can fix this value at any level

82

(Smith, 2012). For these calculations, I followed the literature in using p < 0.05 as

acceptable in avoiding a Type I error. Working to avoid a Type I error should yield a

valid conclusion and avoid irrelevant results (Jackson & Brashers, 1994).

Conversely, a Type II error occurs when a researcher fails to reject a false null

hypothesis (Oehlert, 2010, p. 150). The higher the power of a statistical test will reduce

the chances of a Type II error (Faul et al., 2007). As explained in the Population and

Sampling section, I used 48 samples, which will give a power of 1 - β = 0.9. Typical

acceptable rates of 0.80 are the minimum generally accepted level for power (Dien,

2017).

The key instrument in measuring the dependent variable used in this experiment is

the TPC-C benchmarking standard. It was after an extensive review of the literature that

I chose this benchmarking standard for this study (Ferretti, Colajanni, et al., 2014; Loghin

et al., 2015; Tian et al., 2018). This instrument also has the added benefit of being able to

alter the number of simulated users, which is one of the factors selected for an

independent variable. As mentioned above, I controlled other external variables, such as

hardware, that are likely to affect the dependent variable by running the experiments on

identically provisioned VMs so that resources, so that hardware wasn’t a factor in this

experiment. I performed the benchmarking tests on the same VM as the database, so any

delays in networking did not affect the outcomes because the test data was only

transmitted locally within the VM, and not over a network. Due to the extensive support

of the TPC-C benchmark in the literature and HammerDB’s implementation of the TPC-

83

C standard in addition to controlling one of the factors for these experiments makes

HammerDB a valid benchmark for this test.

Transition and Summary

In this section, I have outlined the role of the researcher and described the

participants for this study. After justifying the research methods and designs, I reviewed

and supported the population for the study, and how I ethically completed this research.

In the discussion of the data collection, I have outlined and supported the instruments and

exact processes that I used to collect and analyze the data. This section concludes with a

discussion of the validity of the data analysis process and the instruments chosen for this

experiment. In the following sections, I will describe the outcomes of the study and how

the experiments apply to professional practice and promote social change.

84

Section 3: Application to Professional Practice and Implications for Change

On the big three public cloud providers, Microsoft Azure, AWS, and Google

Cloud Platform, I created three equally provisioned VMs with Debian 10 as the operating

system. I have included complete specifications for the VMs in Appendix E. Using a

script, I installed Version 8.0 of the MySQL database management system on each of the

servers. I used the benchmarking software HammerDB to implement the TPC-C

benchmarking standard on each of the VMs. I ran each benchmark test at combinations

of high and low levels for the factors of time of day, the number of virtual users, InnoDB

buffer pool size, and InnoDB I/O capacity for a total of 16 different combinations of trials

ran on each VM. For replication, I ran each factor combination trail three times for a

total of 48 trails on each virtual server.

What follows is the outcomes of the experiments, the statistical analysis, and the

overall findings. I will support these findings from the peer-reviewed literature and

explain how the results fit into the theoretical framework of Six Sigma. I also discuss

how this study applies to professional practice and its implications for social change.

This section concludes with recommendations for future actions and research.

Overview of Study

The purpose of this quantitative, quasi-experimental study was to evaluate the

relationship between the time of day, the number of concurrent users, InnoDB buffer pool

size, InnoDB I/O capacity, and transaction throughput to a MySQL database running on a

cloud, virtual, database server. I could not find any statistically significant results on any

of the cloud providers at any factor levels.

85

I also noticed significant differences in throughput and costs on each of the cloud

providers. While finding the optimal factor combination for throughput was the focus of

this study, AWS consistently provided the fastest throughput at all factor levels compared

to the other two cloud providers. Google was slightly slower than AWS but more

inconsistent with results, occasionally having throughput at one third of the average

speeds. Microsoft Azure was consistently slower than the other two cloud providers,

with performance averaging just over one 10th of AWS results. For the total costs of

these experiments, Google’s were $0.80, AWS costs were $1.19, while Microsoft’s total

costs were $9.35.

Presentation of the Findings

For this study, I performed a full-factorial ANOVA analysis in SPSS. The

explanation of how SPSS calculates the sum of squares using the GLM to determine an F

score for each factor and factor combination can be found on p. 76. As shown in Figure

4, the high values of each factor are represented by 1 and the low values are represented

by a zero. The low value for the time of day was between 10 a.m. and 11 a.m., and the

high value was 10 p.m. to 11 p.m. Ten virtual users were the low value for virtual users,

and 100 virtual users were the top value. I used the default value of 200 IOPS for

InnoDB I/O capacity for the low value, and 1,000 IOPS for the high value because it was

Oracle’s recommended value for faster storage (Oracle Corporation, 2019a). Finally, I

used the default value of 134,217,728 bytes (i.e., 128 MB) for the low setting of InnoDB

buffer pool size. I used 80% of the available memory; Oracle’s recommended highest

value (Oracle Corporation, 2019a). For these experiments, I provisioned the VMs with 2

86

GB of memory each, so I used 1,664 MB or 1,744,830,464 bytes in the MySQL

configuration.

For repeatability, I ran each test three times at each factor level combination on

each cloud platform. With each test, I ran a script that recorded the date, time, InnoDB

buffer pool size, and InnoDB I/O capacity into a text file. Each time I ran the

benchmarking test, I configured the benchmarking software to use a unique file name.

The benchmarking software recorded the time of day, the number of virtual users, and the

throughput measured in TPM. I recorded the throughput in TPM in a spreadsheet for all

three trials, averaged the results, and divided the average by 60, which gave me TPS. I

recorded this final calculation in SPSS in the empty column labeled Throughput in Figure

4. I have included the data used for the calculations in Appendices F, G, and H.

Overall, there were differences in each cloud provider’s mean values, as shown in

Table 3. There were no significant outliers for any of the cloud platforms under any

factor combinations; however, there was a distinct difference in the throughput on the

Google Cloud Platform, most likely stemming from two of the primary factor levels, as

discussed further later in this section. There were no missing values from any of the

trials.

87

Table 3

Descriptive Statistics for Throughput on Each Cloud Provider

 N Minimum Maximum M SD

Azure 16 37.86 44.39 42.2594 1.84825

Amazon 16 296.57 329.35 314.1912 8.47406

Google 16 96.19 263.66 178.7033 45.68022

As discussed in the Data Analysis Technique section, most of the ANOVA testing

assumptions are inherent in the experiments. The independent variables are all nominal

in practice, either high or low in value, and the dependent variable is ratio in scale, all of

which are an assumption of ANOVA (Statistics Solutions, n.d.). In running the

experiments, I met the assumption of independence by ensuring that I did not run the

same combination of factor levels sequentially (see McDonald, 2014), verified by the

time and date stamps on the output logs. Another assumption in ANOVA testing is that

the dependent variable approximates a normal curve (Statistics Solutions, n.d.). One way

to test for normality is to use the K-S test (Van den Berg, 2020). If the significance of the

K-S test is p < 0.05, it can be assumed that the data are significantly different from a

normal distribution (Van den Berg, 2020). For AWS, K-S indicated that the data are not

significantly different from normally distributed data, with D(16) = 0.115, p = 0.200. For

Microsoft Azure, D(16) = 0.192, p = 0.119, indicating that this set of throughput data are

not significantly different from normally distributed data. And the K-S test for Google

Cloud showed D(16) = 0.202, p = 0.080, indicating that the throughput data for Google

Cloud are not significantly different from normally distributed data.

88

The final assumption for ANOVA testing is that the data has the same error

variances or homogeneity of variance (Statistics Solutions, n.d.). One test to show

homogeneity of variance is to use the Levene’s Test of Homogeneity of Variance. This

test is performed on the dependent variable over each of the four factors. A significance

above 0.05 (p > 0.05) means that it can be concluded that the variances are equal

(NIST/SEMATECH, 2012c). In performing this test across all factors on all platforms, I

found that SPSS was unable to calculate Levene’s statistic due to lack of degrees of

freedom. With only a single sample for each cloud provider, degrees of freedom = k – 1,

with k representing the number of factors. In this case, DF = 1 – 1 = 0, lacking the

degrees of freedom necessary to calculate Levene’s statistic. However, I can ignore this

assumption because the ANOVA test is robust, particularly with balanced sample sizes

for all factors (see Pennsylvania State University, 2020).

After completing the calculations, I found that there were no significant results.

In all cases, p > 0.05, showing that none of the main factor or factor combinations had a

significant effect on the throughput. Only significant factors should be used for the GLM

model to show the relationship between the significant factors and the dependent variable

(Šoltés, Zelinová, & Bilíková, 2019). Without significant factors, there is no GLM model

to create.

Main Effect Hypotheses

H0a: The main effect Fi of factor i is not significant on the outcome.

H1a: The main effect Fi of factor i is significant in the outcome.

89

Amazon Web Services. As previously stated in the Population and Sampling

section, the most common level for avoiding a Type I error is α = 0.05 (see Smith, 2012).

In using this level, I found no main factors where p > 0.05, so I failed to reject the null

hypothesis and conclude that none of the main effects significantly affect the throughput.

The results for the main factor effects on AWS can be found in Table 4.

Table 4

Statistical Analysis Results for Main Factor Effects on AWS

Factor Sum of Squares df Mean Square F p η²p

Time of day 319.87323 1 319.87323 17.6262 0.149 0.946

Virtual users 421.48090 1 421.48090 23.2252 0.130 0.959

InnoDB buffer 81.72160 1 81.72160 4.5032 0.280 0.818

InnoDB I/O 46.78560 1 46.78560 2.5781 0.355 0.721

Microsoft Azure. None of the main effects on Microsoft Azure were found to

have statistical significance, as shown in Table 5. Therefore, I failed to reject the null

hypothesis that the main factors do not significantly affect the throughput of the database.

Table 5

Statistical Analysis Results for Main Factor Effects on Microsoft Azure

Factor Sum of Squares df Mean Square F p η²p

Time of day 2.53606 1 2.53606 1.62964 0.330 0.449

Virtual users 0.32206 1 0.32206 0.20695 0.694 0.094

InnoDB buffer 12.33766 1 12.33766 7.92803 0.106 0.799

InnoDB I/O 6.77301 1 6.77301 4.35225 0.172 0.685

Google Cloud Platform. On Google Cloud, as with the other platforms, none of

the main factor effects achieved p > 0.05, meaning that I failed to reject the null

hypothesis that the main factors do not significantly affect the throughput on Google

Cloud. The results of ANOVA testing can be found in Table 6.

90

Table 6

Statistical Analysis Results for Main Factor Effects on Google Cloud

Factor Sum of Squares df Mean Square F p η²p

Time of day 1182.844 1 1182.844 0.42521 0.632 0.298

Virtual users 5484.513 1 5484.513 1.97159 0.394 0.663

InnoDB buffer 1291.504 1 1291.504 0.46427 0.619 0.317

InnoDB I/O 14953.010 1 14953.010 5.37536 0.259 0.843

Two-Factor Interaction Effects Hypotheses

H0b: The interaction effect of FiFj of the pair of factors i and j are not significant

on the outcome.

H1b: The interaction effect of FiFj of the pair of factors i and j is significant on the

outcome.

Amazon Web Services. None of the combinations of two factors showed

significant interactions on AWS, as shown in Table 7. I failed to reject the null

hypothesis that any pair of factors have significant interaction effects on the throughput

of the database.

91

Table 7

Statistical Analysis Results for Two-Factor Effects on AWS

2-Factor

Combination

Sum of

Squares
df

Mean

Square
F p η²p

TimeofDay ✻

VirtualUsers
0.65610 1 0.65610 0.0362 0.880 0.035

TimeofDay ✻

InnoDBBuffer
56.85160 1 56.85160 3.1327 0.327 0.758

VirtualUsers ✻

InnoDBBuffer
20.93062 1 20.93062 1.1534 0.477 0.536

TimeofDay ✻

InnoDBIO
4.24360 1 4.24360 0.2338 0.713 0.190

VirtualUsers ✻

InnoDBIO
1.55002 1 1.55002 0.0854 0.819 0.079

InnoDBBuffer

✻ InnoDBIO
59.98502 1 59.98502 3.3054 0.320 0.768

Microsoft Azure. One two-way interaction effect, InnoDB I/O capacity and

InnoDB buffer pool size, came close to showing significance with F(1,11) = 12.51130, p

= 0.071, ηp
2 = 0.862, as shown in Table 8; however, this combination still failed to fall

below the significance level of p < 0.05. The result here is that I failed to reject the null

hypothesis and conclude that none of the two-factor combinations have a significant

effect on the throughput of the database.

92

Table 8

Statistical Analysis Result for Two-Factor Effects on Microsoft Azure

2-Factor

Combination

Sum of

Squares
df

Mean

Square
F p η²p

TimeofDay ✻

VirtualUsers
1.48231 1 1.48231 0.95251 0.432 0.323

TimeofDay ✻

InnoDBBuffer
0.94576 1 0.94576 0.60773 0.517 0.233

VirtualUsers ✻

InnoDBBuffer
0.07981 1 0.07981 0.05128 0.842 0.025

TimeofDay ✻

InnoDBIO
2.22756 1 2.22756 1.43140 0.354 0.417

VirtualUsers ✻

InnoDBIO
0.20476 1 0.20476 0.13157 0.752 0.062

InnoDBBuffer

✻ InnoDBIO
19.47016 1 19.47016 12.51130 0.071 0.862

Google Cloud Platform. As with AWS and Azure, none of the combinations of

two factors showed significant interaction in the Google Cloud Platform, as displayed in

Table 9. Therefore, I failed to reject the null hypothesis that any pair of factors have a

significant interaction effects on the throughput.

93

Table 9

Statistical Analysis Results for Two-Factor Effects on Google Cloud

2-Factor

Combination

Sum of

Squares
df

Mean

Square
F p η²p

TimeofDay ✻

VirtualUsers
2172.259 1 2172.259 0.78089 0.539 0.438

TimeofDay ✻

InnoDBBuffer
0.107 1 0.107 3.86e-5 0.996 0.000

VirtualUsers ✻

InnoDBBuffer
11.577 1 11.577 0.00416 0.959 0.004

TimeofDay ✻

InnoDBIO
2.038 1 2.038 7.33e-4 0.983 0.001

VirtualUsers ✻

InnoDBIO
1875.107 1 1875.107 0.67407 0.562 0.403

InnoDBBuffer

✻ InnoDBIO
519.726 1 519.726 0.18683 0.740 0.157

Three-Factor Interaction Effects Hypothesis

H0c: The interaction effect of FiFjFk of the triplet of factors i, j, and k is not

significant on the outcome.

H1c: The interaction effect of FiFjFk of the triplet of factors i, j, and k is

significant on the outcome.

No significant interaction effects were found for all three public cloud providers

for any combination of three factors. Consequently, I failed to reject the null hypotheses

and conclude that any combination of the three factors will not significantly affect

throughput on any of the three cloud providers. Results for three-way interaction effects

for AWS can be seen in Table 10, Microsoft Azure results are listed in Table 11, and

Google Cloud Platform results are listed in Table 12.

94

Table 10

Statistical Analysis Results for Three-Factor Effects on AWS

3-Factor

Combination

Sum of

Squares
df

Mean

Square
F p η²p

TimeofDay ✻

VirtualUsers ✻

InnoDBBuffer

24.45302 1 24.45302 0.78089 1.3475 0.574

TimeofDay ✻

VirtualUsers ✻

InnoDBIO

0.00302 1 0.00302 1.67e-4 0.992 0.000

TimeofDay ✻

InnoDBBuffer ✻

InnoDBIO

11.93702 1 11.93702 0.00416 0.6578 0.397

VirtualUsers ✻

InnoDBBuffer ✻

InnoDBIO

8.52640 1 8.52640 7.33e-4 0.4698 0.320

Table 11

Statistical Analysis Results for Three-Factor Effects on Microsoft Azure

3-Factor

Combination

Sum of

Squares
df

Mean

Square
F p η²p

TimeofDay ✻

VirtualUsers ✻

InnoDBBuffer

2.89851 1 2.89851 13.55036 0.169 0.931

TimeofDay ✻

VirtualUsers ✻

InnoDBIO

1.08681 1 1.08681 5.08076 0.266 0.836

TimeofDay ✻

InnoDBBuffer ✻

InnoDBIO

0.66016 1 0.66016 3.08619 0.329 0.755

VirtualUsers ✻

InnoDBBuffer ✻

InnoDBIO

0.00181 1 0.00181 0.00844 0.942 0.008

95

Table 12

Statistical Analysis Results for Three-Factor Effects on Google Cloud

3-Factor

Combination

Sum of

Squares
df

Mean

Square
F p η²p

TimeofDay ✻

VirtualUsers ✻

InnoDBBuffer

64.762 1 64.762 0.02328 0.904 0.023

TimeofDay ✻

VirtualUsers ✻

InnoDBIO

265.120 1 265.120 0.09531 0.809 0.087

TimeofDay ✻

InnoDBBuffer ✻

InnoDBIO

621.879 1 621.879 0.22356 0.719 0.183

VirtualUsers ✻

InnoDBBuffer ✻

InnoDBIO

73.917 1 73.917 0.02657 0.897 0.026

Research Question Answer

 The final answer to the research question on what is the optimal levels of time of

day, number of users, InnoDB buffer pool size, and InnoDB I/O capacity maximizes the

throughput of MySQL running on a cloud server is that none of these factors,

individually or in combination, have a significant effect. The biggest factor that seemed

to affect throughput was the cloud provider, and by extension, the underlying hypervisor.

Amazon uses the Xen hypervisor (Badola, 2019), Microsoft uses their product Hyper-V

as the underlying hypervisor for Azure (Microsoft, 2019), and Google’s Cloud is

supported by the KVM hypervisor (Honing & Porter, 2017). The underlying hypervisor

software may have more to do with the performance differences than the individual

companies themselves.

96

Amazon Web Services. Of the three cloud providers, AWS consistently gave the

highest throughput at all factor level combinations. One of the initial assumptions was

that the three cloud providers would perform about the same, and these experiments have

shown that this was an incorrect assumption. While Google came close in performance

overall, Google was more inconsistent with the throughput. Of all the factors, the number

of users and time of day was the most influential factors, but these factors still did not

reach significance. I had expected these two factors to have more value based on my

experiences. From my observations as a DBA, I would have thought there to be a

synergy between a few users and less overall system usage at night.

Microsoft Azure. Since the throughput for MySQL running on a Linux VM on

Microsoft Azure was the lowest, on average, nearly twice as slow as AWS, I would not

recommend any DBA use Microsoft Azure in the manner used in this study. The analysis

of the data shows that no factor or factor combination will provide optimal throughput.

However, tweaking the InnoDB buffer pool size and InnoDB I/O capacity may improve

performance since this combination had the most significant levels, although not

statistically significant. The poor performance of MySQL running on a VM on Microsoft

Azure was suggested by Ahmed (2013), who found that MySQL running on Hyper-V

suffered slower response times than running on a physical computer. Chung and Nah

(2017) found similar results on the Xen hypervisor, but their results were not reflected in

AWS's results as profoundly as in Microsoft Azure.

Google Cloud. As with the other cloud providers, Google Cloud showed no

significant results. Google had the least significant results overall at all factor levels. I

97

expected InnoDB I/O capacity to be a significant factor when I observed consistent

differences on this factor level when all other factors were equal. Disk I/O was also one

of the biggest performance bottlenecks for databases in multitenant cloud databases

(Xavier et al., 2016). When I set the InnoDB I/O capacity to a lower value, the

throughput was generally higher and more consistent. Since I/O is recognized as a

bottleneck, I casually observed better performance by sending shorter bursts of

information to the disks.

Unexpected with Google was the inconsistency with results. In 18 out of the 48

trials performed on Google Cloud, I saw significantly lower throughput. The lower

results were slightly higher than Azure, but roughly one third of the speed was found in

the other 30 trials. In the other 30 trials, the throughput on Google was marginally lower

than Amazon. In their experiments, Reddy and Shyamala (2016) also found that KVM

used slightly more memory and processing power than Xen, which may explain the

differences between AWS and Google.

Theoretical famework. For these experiments, Six Sigma provided a sound

framework to test the different factors. One unexpected outcome was that I would find

that none of the identified factors seemed to make a significant difference in throughput,

but that the cloud providers themselves appeared to have the most significant difference.

One goal of Six Sigma is to reduce variation in a system (LeMahieu et al., 2017). It is

easiest to see the reduction in a variation on the Google Cloud Platform. Even though I

found no factor to be significant, the InnoDB I/O capacity was the factor that seemed to

98

have the most significant difference. The throughput changes are more subtle on the

other two cloud providers and not as easily observed.

 Another benefit provided by Six Sigma was the reduced costs of the overall

experiment. I ran the same number of trails on each cloud provider and shut down the

VMs between testing windows to keep costs down. Both AWS and Google costs

remained less than $1.20 US total. Microsoft’s expenses for the same number of trails

was over $9.00 US. If I had run ongoing trials, observing throughput by the second for

an extended time, all providers’ costs would have been significantly higher since cloud

providers charge by the amount of processing power. By selecting the time of day as a

factor and only using processing power for 2 hours each weekday, Six Sigma helped keep

the cost of testing to a minimum.

Applications to Professional Practice

The most significant application to professional practice is the performance of

each of the cloud providers. This fact is contrary to my initial assumptions that each of

the cloud providers, and the underlying hypervisors, would perform similarly under

identical circumstances. Averaging the trials on each of the cloud providers, AWS

averaged 314 TPS, Google averaged 179 TPS, and Microsoft averaged only 42 TPS.

Looking at the optimal trials implemented on Google, which occasionally had low

results, a DBA could see averages above 200 TPS. This result indicates that if a DBA

wishes to run MySQL on a VM and get better overall performance, their best option

would be to use AWS. Implementing the optimal factors of fewer users and running

more intensive queries at night, a DBA could achieve the best performance given these

99

factors. The experiments also indicate that running MySQL on a Linux VM is not the

best use case on Microsoft Azure’s platform, and DBAs should consider other

approaches for processing MySQL data if a company is locked into the Azure

framework.

From my personal experiences as a DBA, the factor of the time of day is most

likely evident to many DBA. Most of the significant ETL jobs were scheduled at night to

avoid contention with user queries and optimal throughput. My experiments have failed

to confirm that this practice will yield optimal performance, allowing the ETL jobs to

process more quickly.

Implications for Social Change

As mentioned in the previous section, there are substantial cost and performance

implications for nonprofit organizations. First, if a nonprofit organization plans to run

MySQL on a Linux VM, Microsoft’s Azure platform would not be the best cloud

provider for this kind of architecture. Not only from a performance consideration but

cost considerations as well. From a cost perspective, there is not a significant difference

between Google and AWS. Still, a nonprofit will likely see the best combination of

steady performance and lower costs if they run a Linux VM hosting MySQL. From my

experiments, it would also be helpful if such an organization runs any major ETL jobs at

night, as my results have shown that database performance is better at night and with

fewer users on AWS. A nonprofit can process more data more efficiently and at a lower

cost allowing the organization to dedicate its dollars and processing power to help more

people.

100

Recommendations for Action

Based on these experiments’ results, any DBA who is running MySQL on a VM

on Microsoft Azure should consider migrating to another cloud platform or use a DBMS

that functions better on the Azure platform. As suggested in the research reported by

Almeida et al. (2015), a DBA may want to consider running Microsoft’s SQL server

instead of using Azure’s SQL database-as-a-service.

The second recommendation for DBA would be to run intensive queries at night

or when there are fewer users, particularly if they are running MySQL on a Linux VM on

AWS or Google. The results of my experiments show that these two factors will help

improve throughput. Finally, I recommend keeping the InnoDB I/O capacity at the

default value. The InnoDB I/O capacity was shown to have significant results on Google,

and there were observable improvements in throughput on AWS. However, the results on

AWS were not found to be significant.

In the short term, I intend to present these results to a local developer’s group,

where I have presented in the past. The steering committee for that group has expressed

interest in hearing the results. Since I currently teach a database course at a small

university, I intend to include my findings as part of the course. If I were to attempt to

publish these results, I might consider the journal Proceedings of Very Large Databases

(PVLDB). Several articles were published by this journal cited in this paper, and I found

many more articles of interest published by the PVLDB.

101

Recommendations for Further Study

When I started down this research path, AWS had just begun a relational database

as a service. Since then, all three public cloud providers have multiple types of databases

as a service. I hope to follow one research path to determine any significant differences

in performance between the relational database as a service across the three platforms.

All three public cloud platforms have also started offering different types of NoSQL

databases as a service. I would also like to study how different types of NoSQL database

service performs on each cloud platform.

My professional experience with working on the cloud has been minimal before

these experiments. One possible reason for the vast differences in performance between

the three cloud providers is that there may be minor aspects that need to be tweaked on

the operating system or at the cloud control panel on each cloud provider to improve

performance. For this experiment, I only chose the default options in creating each VM.

It may be worthwhile to study the operating system’s overall performance on these

platforms and implement improvements at this level before repeating the experiments

described above. In a similar vein, another path of exploration may be to use a database

profiler to see where the choke points are when the databases are under stress to

understand where each of the cloud platforms. By extension, the hypervisors may be

having issues.

Reflections

Since I have not used any cloud platform before this study, I had no bias towards

any platform. One of my initial assumptions was that all cloud providers would perform

102

similarly. This assumption proved to be incorrect. AWS has consistently had the most

significant market share since I started this study, and Microsoft has gained a lot of

market share since it enhanced its offerings a few years ago. I initially, and wrongly,

assumed that I would get roughly the same performance from each of the platforms. I

also hoped that consistent results from the three cloud providers showed one or more

factors or factor interactions as significant on all platforms. I feel my results could be

more conclusive if I could show that one or two factors stand out. While Azure had a

poor showing in my experiments, I believe that the environment used in these trials was

not the use case for the Azure cloud platform. There is likely a different environment in

Azure that will run queries much faster. My results also hint at the notion that the servers

on Google’s platform may be overprovisioned, which would lead to the inconsistent

throughput found in my experiments.

In the academic literature, there is such a vast array of methods researchers have

used to improve some database performance aspects. Many of the approaches used were

novel systems developed by the researchers. With all the minor settings available to

DBAs, I do not see unique systems being of much use to those responsible for databases’

day-to-day operations. If I were to continue with this research, it would be interesting to

use the Six Sigma approach and find other database settings that may significantly

improve database performance.

Summary and Study Conclusions

This research’s main takeaway is that Microsoft Azure is not the right platform to

run MySQL on a Linux VM, both from a cost and performance perspective. However, I

103

do not think this advice would be new to a DBA. When I worked as a DBA, most ETL

jobs were scheduled at night, mostly to avoid table locks during the daytime.

Surprisingly, this factor was not significant on any of the platforms. While disk I/O was

cited throughout the literature as the bottleneck for database throughput, I could not find

significance in changing the I/O settings. However, I did see minor improvements by

keeping the InnoDB I/O capacity at a lower level. The academic literature has supported

the TPC specifications. More DBAs should use this benchmarking standard to test their

DBMS and settings to ensure they are getting the expected performance from their

systems.

With the proliferation of databases-as-a-service, I feel this is the next area for

exploration. While Azure had a poor showing in my experiments, I believe there is an

opportunity to find the services where Azure can excel. Similarly, it would be interesting

to try different Google services to find one that would provide more consistent results

than I found in these experiments. Since I started this program, all three cloud providers

have greatly expanded the services they offer. If they continue adding services

simultaneously, a researcher could be busy continuing my work on each new service,

trying to find the most efficient service for the lowest price.

104

References

Abadi, D., Franklin, M. J., Gehrke, J., Haas, L. M., Halevy, A. Y., Hellerstein, J. M.,…

Doan, A. (2016). The Beckman report on database research. Communications of the

ACM, 59(2), 92–99. doi:10.1145/2845915.

Abdelmaboud, A., Jawawi, D., Ghani, I., Elsafi, A., & Kitchenham, B. (2015). Quality of

service approaches in cloud computing: A systematic mapping study. Journal of

Systems and Software, 101, 159–179. doi:10.1016/j.jss.2014.12.015.

Abourezq, M., & Idrissi, A. (2016). Database-as-a-service for big data: An overview.

International Journal of Advanced Computer Science and Applications, 7(1), 157–

177. doi:10.14569/IJACSA.2016.070124.

Abramson, E. L., Paul, C. R., Petershack, J., Serwint, J., Fischel, J. E., Rocha, M.,… Li,

S.-T. T. (2018). Conducting quantitative medical education research: From design to

dissemination. Academic Pediatrics, 18(2), 129–139.

doi:10.1016/j.acap.2017.10.008.

Afify, G. M., El Bastawissy, A., & Hegazy, O. M. (2015). A hybrid filtering approach for

storage optimization in main-memory cloud database. Egyptian Informatics Journal,

16(3), 329–337. doi:10.1016/j.eij.2015.06.007.

Ahmed, M. (2013). Physical server and virtual server: The performance trade-offs.

European Scientific Journal, 9(12), 222–232. Retrieved from

http://www.eujournal.org/index.php/esj/article/view/1009.

105

Albers, M. J. (2017). Quantitative data analysis—In the graduate curriculum. Journal of

Technical Writing and Communication, 47(2), 215–233.

doi:10.1177/0047281617692067.

Almeida, R., Furtado, P., & Bernardino, J. (2015). Performance evaluation MySQL

InnoDB and Microsoft SQL Server 2012 for decision support environments. In

Proceedings of the Eighth International C* Conference on Computer Science &

Software Engineering - C3S2E ’15 (pp. 56–62). New York, NY: ACM Press.

doi:10.1145/2790798.2790808.

Anthony, S., & Antony, J. (2015). Academic leadership and Lean Six Sigma.

International Journal of Quality & Reliability Management, 33(7), 1002–1018.

doi:10.1108/IJQRM-03-2015-0047.

Antony, J., Gupta, S., Sunder, V. M., & Gijo, E. V. (2018). Ten commandments of Lean

Six Sigma: A practitioners’ perspective. International Journal of Productivity and

Performance Management, 67(6), 1033–1044. doi:10.1108/IJPPM-07-2017-0170.

Antony, J., Snee, R., & Hoerl, R. (2017). Lean Six Sigma: Yesterday, today and

tomorrow. International Journal of Quality & Reliability Management, 34(7), 1073–

1093. doi:10.1108/IJQRM-03-2016-0035.

Antony, J., Sony, M., Dempsey, M., Brennan, A., Farrington, T., & Cudney, E. A.

(2019). An evaluation into the limitations and emerging trends of Six Sigma: An

empirical study. The TQM Journal, 31(2), 205–221. doi:10.1108/TQM-12-2018-

0191.

106

Argilaga, M. (2003). Observational methods (general). In R. Fernández-Ballesteros

(Ed.), Encyclopedia of psychological assessment (Vol. 1, pp. 633-638). London,

England: SAGE Publications. doi:10.4135/9780857025753.n136.

Aryanezhad, M. B., Badri, S. A., & Rashidi Komijan, A. (2010). Threshold-based

method for elevating the system’s constraint under theory of constraints.

International Journal of Production Research, 48(17), 5075–5087.

doi:10.1080/00207540903059505.

Assunção, M. D., Calheiros, R. N., Bianchi, S., Netto, M. A. S., & Buyya, R. (2014). Big

data computing and clouds: Trends and future directions. Journal of Parallel and

Distributed Computing, 79, 3–15. doi:10.1016/j.jpdc.2014.08.003.

Babcock, C. (2016). AWS, Microsoft Azure top Gartner’s magic quadrant for IaaS.

Retrieved from http://www.informationweek.com.

Badola, V. (2019). AWS AMI virtualization types: HMV vs PV. Retrieved from

https://cloudacademy.com/blog/aws-ami-hvm-vs-pv-paravirtual-amazon.

Barata, M., Bernardino, J., & Furtado, P. (2014). YCSB and TPC-H: Big data and

decision support benchmarks. In 2014 IEEE International Congress on Big Data

(pp. 800–801). doi:10.1109/BigData.Congress.2014.128.

Barnham, C. (2015). Quantitative and qualitative research: Perceptual foundations.

International Journal of Market Research, 57(6), 837–854. doi:10.2501/IJMR-2015-

070.

107

Bärnighausen, T., Røttingen, J.-A., Rockers, P., Shemilt, I., & Tugwell, P. (2017). Quasi-

experimental study designs series—Paper 1: Introduction: Two historical lineages.

Journal of Clinical Epidemiology, 89, 4–11. doi:10.1016/j.jclinepi.2017.02.020.

Bernstein, D. (2014). Containers and cloud: From LXC to Docker to Kubernetes. IEEE

Cloud Computing, 1(3), 1–84. doi:10.1109/MCC.2014.51.

Bhimani, J., Yang, J., Yang, Z., Mi, N., Xu, Q., Awasthi, M.,… Balakrishnan, V. (2016).

Understanding performance of I/O intensive containerized applications for NVMe

SSDs. In 2016 IEEE 35th International Performance Computing and

Communications Conference (pp. 1–8). doi:10.1109/PCCC.2016.7820650.

Bizarro, P. A. (2015). Effect of different database structure representations, query

languages, and task characteristics on information retrieval. Journal of Management

Information and Decision Sciences, 18(1), 27–53. Retrieved from

https://www.abacademies.org/journals/journal-of-management-information-and-

decision-sciences-home.html.

Bonthu, S., Thammiraju, S., & Murthy, Y. (2014). Study on database virtualization for

database as a service (DBaaS). International Journal of Advanced Research in

Computer Science, 5(2), 31–34. Retrieved from http://www.ijarcs.info.

Brutus, S., Aguinis, H., & Wassmer, U. (2013). Self-reported limitations and future

directions in scholarly reports: Analysis and recommendations. Journal of

Management, 39(1), 48–75. doi:10.1177/0149206312455245.

Chandra, D. G. (2015). BASE analysis of NoSQL database. Future Generation Computer

Systems, 52, 13–21. doi:10.1016/j.future.2015.05.003.

108

Chang, H.-T., & Lin, T.-H. (2016). A database as a service for the healthcare system to

store physiological signal data. PLOS ONE, 11(12), 1–27.

doi:10.1371/journal.pone.0168935.

Chen, P., & Popovich, P. (2002). Correlation. Thousand Oaks, CA: SAGE Publications,

Inc.. doi:10.4135/9781412983808.

Chrόszcz, A., Łukasik, P., & Lupa, M. (2016). Analysis of performance and optimization

of point cloud conversion in spatial databases. IOP Conference Series: Earth and

Environmental Science, 44(5), 1-6. doi:10.1088/1755-1315/44/5/052011.

Chung, H., & Nah, Y. (2017). Performance comparison of distributed processing of large

volume of data on top of Xen and Docker-based virtual clusters. In Database

Systems for Advanced Applications: 22nd International Conference, DASFAA 2017,

Suzhou, China, March 27-30, 2017, Proceedings, Part I (pp. 103–113). Cham,

Switzerland: Springer International Publishing. doi:10.1007/978-3-319-55753-3_7.

Collins, L. M., Dziak, J. J., & Li, R. (2009). Design of experiments with multiple

independent variables: A resource management perspective on complete and reduced

factorial designs. Psychological Methods, 14(3), 202–224. doi:10.1037/a0015826.

Cox, S., Elton, V., Garside, J. A., Kotsialos, A., Marmo, J. V., Cunha, L.,… Gill, C.

(2016). A new method to improve the objectivity of early Six Sigma analysis.

International Journal of Quality & Reliability Management, 33(9), 1364–1393.

doi:10.1108/IJQRM-02-2015-0023.

109

Dean, D. J., Nguyen, H., Wang, P., Gu, X., Sailer, A., & Kochut, A. (2016). PerfCompass:

Online performance anomaly fault localization and inference in infrastructure-as-a-

Service clouds. IEEE Transactions on Parallel and Distributed Systems, 27(6),

1742–1755. doi:10.1109/TPDS.2015.2444392.

Department of Health, Education, & Welfare. (1979). The Belmont Report. Retrieved

from https://www.hhs.gov/ohrp/sites/default/files/the-belmont-report-

508c_FINAL.pdf.

Dien, J. (2017). Best practices for repeated measures ANOVAs of ERP data: Reference,

regional channels, and robust ANOVAs. International Journal of Psychophysiology,

111, 42–56. doi:10.1016/j.ijpsycho.2016.09.006.

Ding, X., Shan, J., & Jiang, S. (2016). A general approach to scalable buffer pool

management. IEEE Transactions on Parallel and Distributed Systems, 27(8), 2182–

2195. doi:10.1109/TPDS.2015.2484321.

Duarte, J. (2017). Data disruption. Quality Progress, 50(9), 20–24. Retrieved from

https://asq.org/quality-progress/.

Dusick, D. (2015). Assumptions and limitations. Retrieved from http://bold-

ed.com/barrc/assumptions.htm.

Ellis, T., & Levy, Y. (2009). Towards a guide for novice researchers on research

methodology: Review and proposed methods. Issues in Informing Science and

Information Technology, 6, 323–337. doi:10.28945/1062.

110

 E. V., G., Antony, J., & Sunder M., V. (2019). Application of Lean Six Sigma in IT

support services –A case study. The TQM Journal, 31(3), 417–435.

doi:10.1108/TQM-11-2018-0168.

Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: A flexible statistical

power analysis program for the social, behavioral, and biomedical sciences.

Behavior Research Methods, 39(2), 175–191. doi:10.3758/BF03193146.

 Ferretti, L., Colajanni, M., & Marchetti, M. (2014). Distributed, concurrent, and

independent access to encrypted cloud databases. IEEE Transactions on Parallel

and Distributed Systems, 25(2), 437–446. doi:10.1109/TPDS.2013.154.

Ferretti, L., Pierazzi, F., Colajanni, M., & Marchetti, M. (2014). Performance and cost

evaluation of an adaptive encryption architecture for cloud databases. IEEE

Transactions on Cloud Computing, 2(2), 143–155. doi:10.1109/TCC.2014.2314644.

Fisher, M. J., & Marshall, A. P. (2009). Understanding descriptive statistics. Australian

Critical Care, 22(2), 93–97. doi:10.1016/j.aucc.2008.11.003.

Foss, N. J., & Hallberg, N. L. (2017). Changing assumptions and progressive change in

theories of strategic organization. Strategic Organization, 15(3), 410–422.

doi:10.1177/1476127016671099.

Gabbiadini, A., & Greitemeyer, T. (2017). Uncovering the association between strategy

video games and self-regulation: A correlational study. Personality and Individual

Differences, 104, 129–136. doi:10.1016/j.paid.2016.07.041.

111

Gharbaoui, M., Martini, B., Adami, D., Giordano, S., & Castoldi, P. (2016). Cloud and

network orchestration in SDN data centers: Design principles and performance

evaluation. Computer Networks, 108, 279–295. doi:10.1016/j.comnet.2016.08.029.

Gholami, M., Daneshgar, F., Low, G., & Beydoun, G. (2016). Cloud migration process—

A survey, evaluation framework, and open challenges. Journal of Systems and

Software, 120, 31–69. doi:10.1016/j.jss.2016.06.068.

Glen, S. (2013). F statistic/F value: Simple definition and interpretation. Retrieved from

https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/f-

statistic-value-test/.

Glen, S. (2014). P-value in statistical hypothesis testing: What is it? Retrieved from

https://www.statisticshowto.datasciencecentral.com/p-value/.

Gonçalves, F. A. C. A., Guimarães, F. G., & Souza, M. J. F. (2014). Query join ordering

optimization with evolutionary multi-agent systems. Expert Systems with

Applications, 41(15), 6934–6944. doi:10.1016/j.eswa.2014.05.005.

Grace-Martin, K. (2019). Why report estimated marginal means in SPSS GLM?

Retrieved from https://www.theanalysisfactor.com/why-report-estimated-marginal-

means-in-spss-glm.

Guo, B., Yu, J., Liao, B., Yang, D., & Lu, L. (2017). A green framework for DBMS

based on energy-aware query optimization and energy-efficient query processing.

Journal of Network and Computer Applications, 84, 118-130.

doi:10.1016/j.jnca.2017.02.015.

112

Garg, N., Singla, S., & Jangra, S. (2016). Challenges and Techniques for Testing of Big

Data. Procedia Computer Science, 85, 940–948. doi.:10.1016/j.procs.2016.05.285.

Guo, S.-S., Yuan, Z.-M., Sun, A.-B., & Yue, Q. (2015). A new ETL approach based on

data virtualization. Journal of Computer Science and Technology, 30(2), 311–323.

doi:10.1007/s11390-015-1524-3.

HammerDB. (2018a). About. Retrieved from https://www.hammerdb.com/about.html.

HammerDB. (2018b). CLI scripting. Retrieved from

https://www.hammerdb.com/docs/ch08s08.html.

HammerDB. (2018c). Creating the schema. Retrieved from

https://hammerdb.com/docs/ch04s04.html.

HammerDB. (2018d). Understanding the TPC-C workload. Retrieved from

https://www.hammerdb.com/docs/ch03s05.html.

HammerDB Blog. (n.d.). About. Retrieved from

https://www.hammerdb.com/blog/hammerdb/.

Han, R., Ghanem, M. M., Guo, L., Guo, Y., & Osmond, M. (2014). Enabling cost-aware

and adaptive elasticity of multi-tier cloud applications. Future Generation Computer

Systems, 32(1), 82–98. doi:10.1016/j.future.2012.05.018.

Hancock, G. R., & McNeish, D. M. (2017). More powerful tests of simple interaction

contrasts in the two-way factorial design. The Journal of Experimental Education,

85(1), 24–35. doi:10.1080/00220973.2015.1065220.

113

Henneberger, M. (2016). Covering peak demand by using cloud services – An economic

analysis. Journal of Decision Systems, 25(2), 118–135.

doi:10.1080/12460125.2016.1141275.

Hilier, F., & Lieberman, G. (2015). Introduction to operational research. In Introduction

to Operational Research (10th ed., pp. 731–784). New York, NY: McGraw Hill

Education. doi:10.2307/2077150.

Honing, A., & Porter, N. (2017). 7 ways we harden our KVM hypervisor at Google

Cloud: Security in plaintext. Retrieved from

https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-

at-google-cloud-security-in-plaintext.

Houghton, C., & Casey, D. (2013). Rigour in qualitative case-study research. Nurse

Researcher, 20(4), 12–17. https://rcni.com/nurse-researcher.

Hsieh, C.-T., Lin, B., & Manduca, B. (2007). Information technology and Six Sigma.

Journal of Computer Information Systems, 47(4), 1–10.

doi:10.1080/08874417.2007.11645975.

Hudson, J. (2017). CL6 allows three shots at better improvement. ISE: Industrial &

Systems Engineering at Work, 49(10), 43–48. Retrieved from

https://iise.org/ISEmagazine/.

Hummaida, A. R., Paton, N. W., & Sakellariou, R. (2016). Adaptation in cloud resource

configuration: A survey. Journal of Cloud Computing, 5(1), 7. doi:10.1186/s13677-

016-0057-9.

114

Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.-G., & Wu, Y. (2016). Cloud performance

modeling with benchmark evaluation of elastic scaling strategies. IEEE

Transactions on Parallel and Distributed Systems, 27(1), 130–143.

doi:10.1109/TPDS.2015.2398438.

IBM. (2017). ANOVA method. Retrieved from

https://www.ibm.com/support/knowledgecenter/en/SSLVMB_25.0.0/statistics_cases

tudies_project_ddita/spss/tutorials/varcomp_anova_method.html.

Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R., Fahringer, T., & Epema, D. H. J.

(2011). Performance analysis of cloud computing services for many-tasks scientific

computing. IEEE Transactions on Parallel and Distributed Systems, 22(6), 931–

945. doi:10.1109/TPDS.2011.66.

Jackson, S., & Brashers, D. (1994). Random factors in ANOVA (Vol. 17). Thousand

Oaks, CA: SAGE Publications, Inc. doi:10.4135/9781412985567.

Januzaj, Y., Ajdari, J., & Selimi, B. (2015). DBMS as a cloud service: Advantages and

disadvantages. Procedia - Social and Behavioral Sciences, 195, 1851–1859.

doi:10.1016/j.sbspro.2015.06.412.

Jha, M., Jha, S., & O’Brien, L. (2016). Combining big data analytics with business

process using reengineering. In 2016 IEEE Tenth International Conference on

Research Challenges in Information Science (RCIS) (pp. 1–6). IEEE.

doi:10.1109/RCIS.2016.7549307.

115

Jia, X., Li, Y., Sharma, A., Li, Y., Xie, G., Wang, G., … Ding, X. (2017). Application of

sequential factorial design and orthogonal array composite design (OACD) to study

combination of 5 prostate cancer drugs. Computational Biology and Chemistry, 67,

234–243. doi:10.1016/j.compbiolchem.2017.01.010.

Jiang, S., & Zhang, X. (2005). Making LRU Friendly to weak locality workloads: A

novel replacement algorithm to improve buffer cache performance. IEEE

Transactions on Computers, 54(8), 939–952. doi:10.1109/TC.2005.130.

Jones, B., & Montgomery, D. C. (2017). Partial replication of small two-level factorial

designs. Quality Engineering, 29(2), 190–195.

doi:10.1080/08982112.2016.1254797.

Kaltenecker, N., Hess, T., & Huesig, S. (2015). Managing potentially disruptive

innovations in software companies: Transforming from on-premises to the on-

demand. The Journal of Strategic Information Systems, 24(4), 234–250.

doi:10.1016/j.jsis.2015.08.006.

Kansteiner, K., & König, S. (2020). Role of qualitative content analysis in Mixed

Methods research designs. Forum: Qualitative Social Research, 21(1), 221-242.

Retrieved from http://www.qualitative-research.net.

Kimberlin, C. L., & Winterstein, A. G. (2008). Validity and reliability of measurement

instruments used in research. American Journal of Health-System Pharmacy, 65(23),

2276–2284. doi:10.2146/ajhp070364.

Kingman, J. F. C. (2009). The first Erlang century—and the next. Queueing Systems, 63

(1–4), 3–12. doi:10.1007/s11134-009-9147-4.

116

Kong, X. (2012). Research on performance optimization of OLTP systems based on

InnoDB. Journal of Theoretical and Applied Information Technology, 46(2), 638–

642. Retrieved from http://jatit.org/.

Kozhirbayev, Z., & Sinnott, R. O. (2017). A performance comparison of container-based

technologies for the cloud. Future Generation Computer Systems, 68, 175–182.

doi:10.1016/j.future.2016.08.025.

Kumar, N., & Saxena, S. (2015). Migration performance of cloud applications - A

quantitative analysis. Procedia Computer Science, 45, 823–831.

doi:10.1016/j.procs.2015.03.163.

Lang, W., Ramachandra, K., DeWitt, D. J., Xu, S., Guo, Q., Kalhan, A., & Carlin, P.

(2016). Not for the timid. Proceedings of the VLDB Endowment, 9(13), 1245–1256.

doi:10.14778/3007263.3007264.

Laux, C., Li, N., Seliger, C., & Springer, J. (2017). Impacting big data analytics in higher

education through Six Sigma techniques. International Journal of Productivity and

Performance Management, 66(5), 662–679. doi:10.1108/IJPPM-09-2016-0194.

Lee, K.-H. (2014). Performance improvement of database compression for OLTP

workloads. IEICE Transactions on Information and Systems, E97-D(4), 976–980.

doi:10.1587/transinf.E97.D.976.

LeMahieu, P. G., Nordstrum, L. E., & Cudney, E. A. (2017). Six Sigma in education.

Quality Assurance in Education, 25(1), 91–108. doi:10.1108/QAE-12-2016-0082.

117

Liaqat, M., Chang, V., Gani, A., Hamid, S. H. A., Toseef, M., Shoaib, U., & Ali, R. L.

(2017). Federated cloud resource management: Review and discussion. Journal of

Network and Computer Applications, 77, 87–105. doi:10.1016/j.jnca.2016.10.008.

Loghin, D., Tudor, B. M., Zhang, H., Ooi, B. C., & Teo, Y. M. (2015). A performance

study of big data on small nodes. Proceedings of the VLDB Endowment, 8(7), 762–

773. doi:10.14778/2752939.2752945.

Luo, Y., Zhou, S., & Guan, J. (2015). LAYER: A cost-efficient mechanism to support

multi-tenant database as a service in cloud. Journal of Systems and Software, 101,

86–96. doi:10.1016/j.jss.2014.11.038.

Maleyeff, J., & Kaminsky, F. C. (2002). Six Sigma and introductory statistics education.

Education + Training, 44(2), 82–89. doi:10.1108/00400910210419982.

Mandelbaum, M., & Hlynka, M. (2009). History of queueing theory in Canada prior to

1980. INFOR: Information Systems and Operational Research, 47(4), 335–353.

doi:10.3138/infor.47.4.335.

Mann, Z. Á. (2015). Allocation of virtual machines in cloud data centers—A survey of

problem models and optimization algorithms. ACM Computing Surveys, 48(1), 1–

34. doi:10.1145/2797211.

Marshall, G., & Jonker, L. (2010). An introduction to descriptive statistics: A review and

practical guide. Radiography, 16(4), e1-e7. doi:10.1016/j.radi.2010.01.001.

McDonald, J. (2014). Handbook of biological statistics (3rd ed.). Baltimore, MD: Sparky

House Publishing. Retrieved from

http://www.biostathandbook.com/independence.html.

118

Microsoft. (2019). Isolation in the Azure public cloud. Retrieved from

https://docs.microsoft.com/en-us/azure/security/fundamentals/isolation-choices.

Minitab. (2018). Mulligan? How many runs do you need to produce a complete data set?

Retrieved from https://blog.minitab.com/blog/mulligan-how-many-runs-produce-

complete-data-set.

Mouaky, M., Benabbou, L., & Berrado, A. (2018). DMADV approach to evaluate the

Adaptive Kanban performance for inventory management process: The case of

Moroccan public pharmaceutical supply chain. Supply Chain Forum: An

International Journal, 19(3), 178–190. doi:10.1080/16258312.2018.1484249.

Nanda, R., Chande, S., & Sharma, K. (2017a). Determining appropriate cache-size for

cost-effective cloud database queries. International Journal of Computer

Applications, 157(6), 29–34. doi:10.5120/ijca2017912651.

Nanda, R., Chande, S., & Sharma, K. (2017b). Determining the effect of similar queries

in cache-based cloud datastores. International Journal of Advanced Research in

Computer Science, 8(3), 906–911. Retrieved from http://www.ijarcs.info/.

Narasayya, V., Menache, I., Singh, M., Li, F., Syamala, M., & Chaudhuri, S. (2015).

Sharing buffer pool memory in multi-tenant relational database-as-a-service.

Proceedings of the VLDB Endowment, 8(7), 726–737.

doi:10.14778/2752939.2752942.

Nedelcu, B., Ionescu, A. M., Ionescu, A. M., & Vasile, A. G. (2014). Reshaping smart

businesses with cloud database solutions. Database Systems Journal, V(4), 21–38.

Retrieved from http://dbjournal.ro/.

119

Nguyen, T. L. H., & Nagase, K. (2019). The influence of total quality management on

customer satisfaction. International Journal of Healthcare Management, 12(4),

277–285. doi:10.1080/20479700.2019.1647378.

National Institutes of Standards and Technology/Semiconductor Manufacturing

Technology. (2012a). 5.3.3.3.2. Full factorial example. In e-Handbook of Statistical

Methods. Retrieved from

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3332.htm.

National Institutes of Standards and Technology/Semiconductor Manufacturing

Technology. (2012b). 1.3.5.18. Yates algorithm. In e-Handbook of Statistical

Methods. Retrieved from

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35i.htm.

National Institutes of Standards and Technology/Semiconductor Manufacturing

Technology. (2012c). 1.3.5.10. Levene Test for equality of variances. In e-

Handbook of Statistical Methods. Retrieved from

https://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.htm.

Oehlert, G. (2010). A first course in design and analysis of experiments. Kluwer

Academic Publishers. Retrieved from

http://users.stat.umn.edu/~gary/book/fcdae.pdf.

Oracle Corporation. (2019a). 15.13 InnoDB startup options and system variables.

Retrieved from https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html.

Oracle Corporation. (2019b). 8.12.3.1 How MySQL uses memory. Retrieved from

https://dev.mysql.com/doc/refman/8.0/en/memory-use.html.

120

Orair, G. H., Teixeira, C. H. C., Meira, W., Wang, Y., & Parthasarathy, S. (2010).

Distance-based outlier detection. Proceedings of the VLDB Endowment, 3(1–2),

1469–1480. doi:10.14778/1920841.1921021.

Park, J., & Park, M. (2016). Qualitative versus quantitative research methods: Discovery

or justification? Journal of Marketing Thought, 3(1), 1–7.

doi:10.15577/jmt.2016.03.01.1.

Pennsylvania State University. (2018). 6.1 - Introduction to generalized linear models.

Retrieved from https://newonlinecourses.science.psu.edu/stat504/node/216/.

Pennsylvania State University. (2020). 10.2.1 – ANOVA assumptions. Retrieved from

https://online.stat.psu.edu/stat500/lesson/10/10.2/10.2.1.

Psomas, E. (2016). The underlying factorial structure and significance of the Six Sigma

difficulties and critical success factors. The TQM Journal, 28(4), 530–546.

doi:10.1108/TQM-04-2015-0049.

Raza, B., Kumar, Y. J., Malik, A. K., Anjum, A., & Faheem, M. (2018). Performance

prediction and adaptation for database management system workload using case-

based reasoning approach. Information Systems, 76(2018), 46–58.

doi:10.1016/j.is.2018.04.005.

Reddy, P. V. V., & Shyamala, K. (2016). New scoring formula to rank hypervisors’

performance complementing with statistical analysis using DOE. Future Generation

Computer Systems, 61, 54–65. doi:10.1016/j.future.2016.02.012.

121

Reosekar, R., & Pohekar, S. (2014). Six Sigma methodology: A structured review.

International Journal of Lean Six Sigma, 5(4), 392–422. doi:10.1108/IJLSS-12-

2013-0059.

Richardson, R. (2014). Disambiguating databases. Communications of the ACM, 58(1),

54–61. doi:10.1145/2687880.

RightScale. (2019). RightScale 2019 state of the cloud report from Flexera. Retrieved

from https://www.rightscale.com/press-releases/rightscale-2019-state-of-the-cloud-

report.

Saharan, K., & Kumar, A. (2015). Fog in comparison to cloud: A survey.

International Journal of Computer Applications, 122(3), 10–12. doi:10.5120/21679-

4773.

Sajid, M. (2016). Two way ANOVA calculation by hand (ANalysis Of VAriance).

Retrieved from https://stepupanalytics.com/two-way-anova-calculation-by-hand-

analysis-of-variance.

Sakr, S. (2014). Cloud-hosted databases: Technologies, challenges and opportunities.

Cluster Computing, 17(2), 487–502. doi:10.1007/s10586-013-0290-7.

Sanchez, S. M., & Wan, H. (2015). Work smarter, not harder: A tutorial on designing and

conducting simulation experiments. In 2015 Winter Simulation Conference (WSC)

(Vol. 2016-Febru, pp. 1795–1809). IEEE. doi:10.1109/WSC.2015.7408296.

Sedgwick, P. (2014). Pitfalls of statistical hypothesis testing: Type I and Type II errors.

British Medical Journal, 349, 1-2. doi:10.1136/bmj.g4287.

122

Sharma, H., Nelson, S., & Singh, S. (2016). Tuning I/O subsystem: A key component in

RDBMS performance tuning. Database Systems Journal, 7(1), 3–11. Retrieved from

http://dbjournal.ro/.

Shmueli, E., Vaisenberg, R., Gudes, E., & Elovici, Y. (2014). Implementing a database

encryption solution, design and implementation issues. Computers & Security,

44(2), 33–50. doi:10.1016/j.cose.2014.03.011.

Sikeridis, D., Papapanagiotou, I., Rimal, B. P., & Devetsikiotis, M. (2017). A

comparative taxonomy and survey of public cloud infrastructure vendors, 1–20.

Retrieved from http://arxiv.org/abs/1710.01476.

Silva Filho, M. C., Monteiro, C. C., Inácio, P. R. M., & Freire, M. M. (2018).

Approaches for optimizing virtual machine placement and migration in cloud

environments: A survey. Journal of Parallel and Distributed Computing, 111, 222–

250. doi:10.1016/j.jpdc.2017.08.010.

Smith, C. J. (2012). Type I and Type II errors: What are they and why do they matter?

Phlebology: The Journal of Venous Disease, 27(4), 199–200.

doi:10.1258/phleb.2012.012j04.

Šoltés, E., Zelinová, S., & Bilíková, M. (2019). General linear model: An effective tool

for analysis of claim severity in motor third party liability insurance. Statistics in

Transition New Series, 20(4), 13–31. doi:10.21307/stattrans-2019-032.

Sommer, T., & Subramanian, R. (2013). Implementing cloud computing in small & mid-

market life-sciences. Journal of International Technology and Information

Management, 22(3), 55–76. Retrieved from https://scholarworks.lib.csusb.edu/jitim/.

123

Sony, M., & Naik, S. (2019). Six Sigma with C-K theory for innovations in operational

excellence: A case study. Benchmarking: An International Journal, 26(7), 2105–

2121. doi:10.1108/BIJ-08-2018-0241.

Sreedharan, R. V., Sunder, V. M., & Raju, R. (2018). Critical success factors of TQM,

Six Sigma, Lean and Lean Six Sigma. Benchmarking: An International Journal,

25(9), 3479–3504. doi:10.1108/BIJ-08-2017-0223.

Srivastava, R. (2018). Exploration of in-memory computing for big data analytics using

queuing theory. In Proceedings of the 2nd International Conference on High

Performance Compilation, Computing and Communications - HP3C (pp. 11–16).

New York, NY: ACM Press. doi:10.1145/3195612.3195621.

Statistics Solutions. (n.d.). Assumptions of the factorial ANOVA. Retrieved from

https://www.statisticssolutions.com/assumptions-of-the-factorial-anova/.

Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the P value is not enough.

Journal of Graduate Medical Education, 4(3), 279–282. doi:10.4300/JGME-D-12-

00156.1.

Taherdoost, H. (2016). Sampling methods in research methodology; How to choose a

sampling technique for research. International Journal of Academic Research in

Management, 5(2), 18–27. Retrieved from http://elvedit.com/journals/IJARM/.

Tailor, P., & Morena, R. (2017). A survey of database buffer cache management

approaches. International Journal of Advanced Research in Computer Science,

8(3), 409–414. Retrieved from http://www.ijarcs.info/.

124

Tajbakhsh, H., Dehsangi, M., & Analoui, M. (2017). Performance profiling of database

systems in Xen. In 2017 7th International Conference on Computer and

Knowledge Engineering (ICCKE) (Vol. 2017–Janua, pp. 90–97). IEEE.

doi:10.1109/ICCKE.2017.8167935.

Tak, B. C., Urgaonkar, B., & Sivasubramaniam, A. (2013). Cloudy with a chance of cost

savings. IEEE Transactions on Parallel and Distributed Systems, 24(6), 1223–1233.

doi:10.1109/TPDS.2012.307.

Tapdiya, A., & Xue, Y. (2014). Performance variations in profiling MySQL server on the

Xen platform: Is it Xen or MySQL? International Journal of Computer Science and

Information Technology, 6(2), 1–19. doi:10.5121/ijcsit.2014.6201.

Tian, B., Huang, J., Mozafari, B., & Schoenebeck, G. (2018). Contention-aware lock

scheduling for transactional databases. Pvldb, 11(5), 648-662.

doi:10.1145/3177732.3177740.

Transaction Performance Council. (n.d.). Active TPC benchmarks. Retrieved from

http://www.tpc.org/information/benchmarks.asp.

Transaction Performance Council. (2010). TPC benchmark C. Retrieved from

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf.

Tseng, F.-H., Chen, X., Chou, L.-D., Chao, H.-C., & Chen, S. (2015). Support vector

machine approach for virtual machine migration in cloud data center. Multimedia

Tools and Applications, 74(10), 3419–3440. doi:10.1007/s11042-014-2086-z.

125

Ustinova, T., & Jamshidi, P. (2015). Modelling multi-tier enterprise applications

behaviour with design of experiments technique. In Proceedings of the 1st

International Workshop on Quality-Aware DevOps - QUDOS 2015 (pp. 13–18).

New York, NY: ACM Press. doi:10.1145/2804371.2804374.

Van den Berg, R. (2020). SPSS Kolmogorov-Smirnov test for normality. Retrieved from

https://www.spss-tutorials.com/spss-kolmogorov-smirnov-test-for-normality.

Vilaplana, J., Solsona, F., Teixido, I., Usié, A., Karathia, H., Alves, R., & Mateo, J.

(2014). Database constraints applied to metabolic pathway reconstruction tools.

The Scientific World Journal, 2014, 1–12. doi:10.1155/2014/967294.

Whaiduzzaman, M., Haque, M. N., Chowdhury, R. K., & Gani, A. (2014). A study on

strategic provisioning of cloud computing services. The Scientific World Journal,

2014, 1–16. doi:10.1155/2014/894362.

Xavier, M. G., Matteussi, K. J., Lorenzo, F., & De Rose, C. A. F. (2016). Understanding

performance interference in multi-tenant cloud databases and web applications. In

2016 IEEE International Conference on Big Data (Big Data) (pp. 2847–2852).

IEEE. doi:10.1109/BigData.2016.7840933.

Xiang, T., Li, X., Chen, F., Guo, S., & Yang, Y. (2016). Processing secure, verifiable and

efficient SQL over outsourced database. Information Sciences, 348, 163–178.

doi:10.1016/j.ins.2016.02.018.

126

Xu, B., Wang, W., Wu, Y., Shi, Y., & Lu, C. (2017). Internet of things and big data

analytics for smart oil field malfunction diagnosis. In 2017 IEEE 2nd International

Conference on Big Data Analysis (ICBDA) (pp. 178–181). IEEE.

doi:10.1109/ICBDA.2017.8078802.

Xu, Z., Tu, Y.-C., & Wang, X. (2015). Online energy estimation of relational operations

in database systems. IEEE Transactions on Computers, 64(11), 3223–3236.

doi:10.1109/TC.2015.2394309.

Yang, C., Jin, P., Yue, L., & Yang, P. (2016). Efficient buffer management for tree

indexes on solid state drives. International Journal of Parallel Programming,

44(1), 5–25. doi:10.1007/s10766-014-0340-7.

Yang, K. K., Cayirli, T., & Low, J. M. W. (2016). Predicting the performance of queues-

A data analytic approach. Computers and Operations Research, 76, 33–42.

doi:10.1016/j.cor.2016.06.005.

Yu, T., & Pradel, M. (2018). Pinpointing and repairing performance bottlenecks in

concurrent programs. Empirical Software Engineering, 23(5), 3034–3071.

doi:10.1007/s10664-017-9578-1.

Zhao, Y., Li, S., Hu, S., Wang, H., Yao, S., Shao, H., & Abdelzaher, T. (2016). An

experimental evaluation of datacenter workloads on low-power embedded micro

servers. Proceedings of the VLDB Endowment, 9(9), 696–707.

doi:10.14778/2947618.2947625.

127

Zhou, Y., Taneja, S., Qin, X., Ku, W.-S., & Zhang, J. (2017). EDOM: Improving energy

efficiency of database operations on multicore servers. Future Generation Computer

Systems, 2017, 1-14. doi:10.1016/j.future.2017.02.043.

128

Appendix A: Script db_install.sh

#!/bin/bash

#get file to add official MySQL repository to apt-get

wget https://dev.mysql.com/get/mysql-apt-config_0.8.9-1_all.deb

#install mysql repositories

dpkg -i mysql-apt-config_0.8.9-1_all.deb

#Tell Debian to refresh repositories

apt-get update

#Request MySQL Community get installed

apt-get -y --force-yes install mysql-community-server

#create the database for testing

mysql --user=root --password=db-test1 -e "create database tpcc;"

mysql --user=root --password=db=test1 -e "show databases;"

#install the connector library for HammerDB

apt-get -y --force-yes install libmysqlclient20

#Download HammerDB 3.1

wget "https://sourceforge.net/projects/hammerdb/files/HammerDB/HammerDB-

3.1/HammerDB-3.1-Linux-x86-64-Install"

#Change to executable

chmod +x HammerDB-3.1-Linux-x86-64-Install

#Run the self installer-sending yes and path to answer installer prompts

echo -e "Y /usr/local/HammerDB-3.1" | ./HammerDB-3.1-Linux-x86-64-Install

129

Appendix B: sqlrun.sh

#!/bin/tclsh

puts "SETTING CONFIGURATION"

#sets the correct database

dbset db mysql

#sets the connection location of MySQL

diset connection mysql_host localhost

#Sets the port of the MySQL connection

diset connection mysql_port 3306

#Sets the root password for MySQL

diset tpcc mysql_pass db-test1

#declares a timed TPC-C test on MySQL

diset tpcc mysql_driver timed

#ramps test up for two minutes before recording TPM

diset tpcc my_rampup 2

#sets test to run for five minutes

diset tpcc my_duration 5

#logging details

#turns on the log file

vuset logtotemp 1

#makes logfile name unique so they aren't overwritten

vuset unique 1

#includes timestamps in log file

vuset timestamps 1

#loads the SQL script to create tables and load values into tables

loadscript

#executes the script

buildschema

#remove the virtual user that built the script

vudestroy

#indicates the testing has started

puts "SEQUENCE STARTED"

#sets the number of users

vuset vu 10

#command to create users

vucreate

#command to run TPC-C benchmark

vurun

130

#Indicates the test setup is done

puts "TEST STARTUP COMPLETE, TRANSACTIONS STARTED"

131

Appendix C: Sample HammerDB Log

Hammerdb Log @ Wed Jan 01 20:41:06 CST 2020
+-
Timestamp 1 @ Wed Jan 01 20:41:25 CST 2020
Vuser 1:Beginning rampup time of 2 minutes
Timestamp 2 @ Wed Jan 01 20:41:26 CST 2020
Vuser 2:Processing 1000000 transactions with output suppressed...
Timestamp 3 @ Wed Jan 01 20:41:26 CST 2020
Vuser 3:Processing 1000000 transactions with output suppressed...
Timestamp 4 @ Wed Jan 01 20:41:27 CST 2020
Vuser 4:Processing 1000000 transactions with output suppressed...
Timestamp 5 @ Wed Jan 01 20:41:27 CST 2020
Vuser 5:Processing 1000000 transactions with output suppressed...
Timestamp 6 @ Wed Jan 01 20:41:28 CST 2020
Vuser 6:Processing 1000000 transactions with output suppressed...
Timestamp 7 @ Wed Jan 01 20:41:28 CST 2020
Vuser 7:Processing 1000000 transactions with output suppressed...
Timestamp 8 @ Wed Jan 01 20:41:29 CST 2020
Vuser 8:Processing 1000000 transactions with output suppressed...
Timestamp 9 @ Wed Jan 01 20:41:30 CST 2020
Vuser 9:Processing 1000000 transactions with output suppressed...
Timestamp 10 @ Wed Jan 01 20:41:30 CST 2020
Vuser 10:Processing 1000000 transactions with output suppressed...
Timestamp 11 @ Wed Jan 01 20:41:31 CST 2020
Vuser 11:Processing 1000000 transactions with output suppressed...
Timestamp 1 @ Wed Jan 01 20:42:25 CST 2020
Vuser 1:Rampup 1 minutes complete ...
Timestamp 1 @ Wed Jan 01 20:43:25 CST 2020
Vuser 1:Rampup 2 minutes complete ...
Timestamp 1 @ Wed Jan 01 20:43:25 CST 2020
Vuser 1:Rampup complete, Taking start Transaction Count.
Timestamp 1 @ Wed Jan 01 20:43:26 CST 2020
Vuser 1:Timing test period of 5 in minutes
Timestamp 1 @ Wed Jan 01 20:44:26 CST 2020
Vuser 1:1 ...,
Timestamp 1 @ Wed Jan 01 20:45:26 CST 2020
Vuser 1:2 ...,
Timestamp 1 @ Wed Jan 01 20:46:26 CST 2020
Vuser 1:3 ...,
Timestamp 1 @ Wed Jan 01 20:47:26 CST 2020
Vuser 1:4 ...,
Timestamp 6 @ Wed Jan 01 20:47:45 CST 2020
Vuser 6:mysqlexec/db server: Lock wait timeout exceeded; try restarting
transaction
Timestamp 1 @ Wed Jan 01 20:48:26 CST 2020
Vuser 1:5 ...,
Timestamp 1 @ Wed Jan 01 20:48:26 CST 2020
Vuser 1:Test complete, Taking end Transaction Count.

132

Timestamp 1 @ Wed Jan 01 20:48:26 CST 2020
Vuser 1:10 Active Virtual Users configured
Timestamp 1 @ Wed Jan 01 20:48:26 CST 2020
Vuser 1:TEST RESULT : System achieved 4849 MySQL TPM at 1606 NOPM

133

Appendix D: NIH Training Certificate

134

Appendix E: Virtual Machine Specifications

 AWS Azure Google Cloud

of CPUs 1 1 1

CPU Type Xeon 2.3 GHz Xeon 2.4 GHz Xeon 2.3 GHz

CPU Cache 46080 kb 30720 kb 46080 kb

Memory 2043412 kb 1956444 kb 2043648 kb

OS Debian 10 Debian 10 Debian 10

Hard Drive 8.3 GB 32 GB 11 GB

Region us-east-2c Central US us-central1-a

135

Appendix F: Final Data for Amazon Web Services

Time Users Buffer Pool I/O Trail 1 Trial 2 Trial 3 Mean TPS

10am 10 134217728 200 19549 18662 19242 319.18

10am 10 134217728 1000 19120 18307 19116 314.13

10am 10 1744830464 200 18145 18796 19427 313.16

10am 10 1744830464 1000 18059 18762 19363 312.13

10am 100 134217728 200 18783 17895 18672 307.50

10am 100 134217728 1000 17000 17963 18420 296.57

10am 100 1744830464 200 17579 18252 18856 303.82

10am 100 1744830464 1000 18940 18207 18881 311.27

10pm 10 134217728 200 19675 19457 19133 323.69

10pm 10 134217728 1000 18870 19294 18685 315.83

10pm 10 1744830464 200 19677 19976 19630 329.35

10pm 10 1744830464 1000 19632 19848 19402 327.12

10pm 100 134217728 200 18027 19113 19010 311.94

10pm 100 134217728 1000 18446 18531 18213 306.61

10pm 100 1744830464 200 19218 19159 18965 318.57

10pm 100 1744830464 1000 18959 19210 18745 316.19

136

Appendix G: Final Data for Microsoft Azure

Time Users Buffer Pool I/O Trail 1 Trial 2 Trial 3 Mean TPS

10am 10 134217728 200 2406 2652 2729 43.26

10am 10 134217728 1000 2502 2358 2412 40.40

10am 10 1744830464 200 2628 2475 2679 43.23

10am 10 1744830464 1000 2556 2659 2775 44.39

10am 100 134217728 200 2399 2836 2530 43.14

10am 100 134217728 1000 2502 2620 2310 41.29

10am 100 1744830464 200 2499 2617 2464 42.11

10am 100 1744830464 1000 2547 2676 2596 43.44

10pm 10 134217728 200 2645 2343 2683 42.62

10pm 10 134217728 1000 2568 2230 2215 38.96

10pm 10 1744830464 200 2393 2661 2417 41.51

10pm 10 1744830464 1000 2507 2571 2585 42.57

10pm 100 134217728 200 2503 2589 2741 43.52

10pm 100 134217728 1000 2168 2456 2190 37.86

10pm 100 1744830464 200 2396 2806 2698 43.89

10pm 100 1744830464 1000 2583 2629 2701 43.96

137

Appendix H: Final Data for Google Cloud

Time Users Buffer Pool I/O Trail 1 Trial 2 Trial 3 Mean TPS

10am 10 134217728 200 16619 14864 4032 197.31

10am 10 134217728 1000 12703 9654 10120 180.43

10am 10 1744830464 200 13998 13227 5960 184.36

10am 10 1744830464 1000 5989 14198 6052 145.77

10am 100 134217728 200 15716 13952 13910 242.10

10am 100 134217728 1000 3815 3569 9930 96.19

10am 100 1744830464 200 13648 6077 12739 180.36

10am 100 1744830464 1000 6497 5830 11851 134.32

10pm 10 134217728 200 17312 14708 15439 263.66

10pm 10 134217728 1000 12128 11033 10464 186.81

10pm 10 1744830464 200 15330 14429 10294 222.52

10pm 10 1744830464 1000 14819 14472 6148 196.88

10pm 100 134217728 200 15915 4789 13992 192.76

10pm 100 134217728 1000 11062 4391 10151 142.24

10pm 100 1744830464 200 14546 6931 12924 191.12

10pm 100 1744830464 1000 6520 6077 5838 102.42

	Factors That Influence Throughput on Cloud-Hosted MySQL Server
	tmp.1611111963.pdf.qWBOE

