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Sickle cell anemia (SCA) is a genetic disease that affects mostly individuals of African 

and/or Hispanic descent, with the majority of cases in sub-Saharan Africa. Individuals 

with this disease show slowed growth, delayed sexual maturity, and poor immunologic 

function. These complications could partly be explained by the state of undernutrition 

associated with the disease. Proposed mechanism of undernutrition include protein 

hypermetabolism, decreased dietary intake possibly from interleukin-6-related appetite 

suppression, increased cardiac energy demand/expenditure, and increased red cell 

turnover. All the above mechanisms manifest as increased resting energy expenditure. 

Nutritional intervention utilizing single or multiple nutrient supplementation has led to 

improved clinical outcome, growth, and sexual maturation. Studies are currently 

underway to determine the best possible approach to applying nutritional intervention in 

the management of SCA. Management of SCA will, of necessity, involve a nutritional 

component, given the sociodemographic distribution of those most affected by the 

disease, the ease of a nutritional approach, and the wider reach that such an approach 

will embody. 
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Background 

Sickle cell anemia (SCA) is a genetic disease that results from the substitution of valine for glutamic 

acid in the β-globin chain of the hemoglobin molecule (Pauling & Itano, 1949) and affects mostly 

people of African or Hispanic descent. The consequence of this amino acid substitution is the 
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formation of hemoglobin S (HbS). Under low oxygen tension and/or conditions of acidosis. HbS 

precipitates and forms polymerized crystals called tactoids (hemoglobin polymers), which distort the 

red blood cells (Ganong, 2003; Nelson & Cox, 2005). The resulting sickle-shaped red cells lose their 

pliability and cannot navigate the small capillaries, become sticky, and adhere to the small veins, 

small arteries, and other blood vessels causing vaso-occlusion (Aster, 2005; Bunn & Forget, 1977). In 

addition, red blood cells homozygous for HbS (i.e., HbSS) are susceptible to premature destruction, 

with a red blood cell life span of 8–25 days as opposed to 100–120 days for normal red blood cells 

(Solanki, McCurdy, Cuttitta, & Schechter, 1988).  

Sickle-cell anemia has a high prevalence throughout equatorial Africa; additionally, the genetic 

defect is now known to be widespread in parts of Sicily and southern Italy, northern Greece, 

southern Turkey, the Middle East, Saudi Arabia, much of central India, and the Americas 

(Feldenzer, Mears, Burns, Natta, & Bank, 1979). This wide geographical distribution is thought to be 

a result of the survival advantage, which the heterozygous genotype (HbAS) confers against malaria 

infection, causing the genetic defect to persist in the population (Aidoo et al., 2002; Serjeant, 2001) 

and the movement of people from Africa to other parts of the world. The burden of SCA is highest in 

sub-Saharan Africa—especially in the West African country of Nigeria, where more than 130,000 (or 

19–20:1000) children are born with the disease annually, and approximately 4 million people are 

afflicted with the disease (Aliyu, Tumblin, & Kato, 2006; Olabode & Shokunbi, 2007; World Health 

Organization, 1996; World Health Organization, 2006).  

In the last few decades, more studies have documented the presence of micro- and macronutrient 

deficiency among individuals with SCA and their possible association with immunologic (Bao et al., 

2008; Fraker, King, Laakko, & Vollmer, 2000; Heyman et al., 1985), nutritional (Gray et al., 1992; 

Heyman et al., 1985), and growth (Serjeant, Singhal, & Hambleton, 2001; Zemel, Kawchak, Ohene-

Frempong, Schall, & Stallings, 2007) abnormalities. Studies using direct measure of nutritional 

status (Enwonwu & Lu, 1991; Gray et al., 1992; Kennedy et al., 2001; Leonard, Zemel, Kawchak, 

Ohene-Frempong, & Virginia, 1998; Nelson et al., 2002), indirect assessment of nutritional status 

(Borel, Buchowski, Turner, Goldstein, & Flakoll, 1998; Buchowski, de la Fuente, Flakoll, Chen, & 

Turner, 2001; Buison et al., 2005; Henderson, Saavedra, & Dover, 1994; Serjeant et al., 2001; Silva & 

Viana, 2005), and application of nutritional supplementation (Heyman et al., 1985; Prasad & 

Cossack, 1984; Waugh, 2005; Williams et al., 2004) have established the association between SCA 

and the presence of nutritional deficiency among patients with the disease. These studies showed 

that although intake might be sufficient when measured against the recommended daily dietary 

allowance for age and sex, it is still insufficient for the individual with SCA due to the increased 

nutritional demand imposed by the disease. The result is the manifestation of malnutrition-like 

features (Al-Saqladi, Cipolotti, Fijnvandraat, & Brabin, 2008; Hyacinth, Gee, & Hibbert, 2010; 

Prasad, 1997).  

This review seeks to draw attention to the link between this unapparent nutritional deficit and some 

observed SCA-related complications. The purpose is to demonstrate that the pathogenesis of some 

common SCA-associated complications might be related to caloric deficiency,; not caused by 

inadequate intake, if measured by the standard for individuals without the disease. It further shows 

that nutrient diversion for propagating and/or compensating for the disease and disease processes 

might be responsible for the observed undernutrition-like feature of sickle cell disease. Finally, it 

draws attention to the paucity of research and data on the interaction between nutrition and SCA in 

humans and the need for further research to understand this relationship and its vital role in the 

management of the disease. 
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Sickle Cell Anemia and Undernutrition 

Previous studies have hypothesized and documented that SCA leads to a state of undernutrition and 

poor growth. A hypothesis that has gained traction is that of hypermetabolism. Simply put, 

hypermetabolism is a state of increased caloric demand with a high rate of catabolism (nutrient 

breakdown) compared with anabolism (nutrient buildup). In SCA, however, there is a shift toward 

increased catabolism, leading to increased nutrient demand. Some studies have documented 

hypermetabolic states among children with SCA (Borel et al., 1998; Hibbert et al., 2006). Hibbert 

and colleagues (2006) reported that increased myocardial energy demand, along with increased 

production of proinflammatory cytokines, is associated with increased resting energy expenditure 

(REE), a surrogate marker of a state of hypermetabolism. Other investigators supported their 

findings with the observation that, although individuals with SCA may consume diet deemed 

adequate for a person without the disease, it might be insufficient to maintain normal body function 

and metabolism, as reflected by delayed growth, slowed maturation, and low weight/height for age 

(Henderson et al., 1994; Leonard et al., 1998; Silva & Viana, 2005; Zemel et al., 2007); thus, they are 

in a state of increased energy demand. The shortened life span of sickle red blood cells compared 

with normal red blood cells (Solanki et al., 1988) explains this finding. The increased destruction of 

these cells creates a need for increased erythropoiesis (i.e., the process of making red blood cells), 

which leads to increased protein turnover and thus increased energy demand (Borel et al., 1998; 

Buchowski et al., 2001; Hibbert et al., 2006; Salman et al., 1996).      

Furthermore, increased hemolysis results in decreased red cell count and anemia. As a compensatory 

mechanism to maintain tissue oxygenation, the heart rate is increased, leading to increased 

myocardial energy demand (Hibbert et al., 2006; Salman et al., 1996), with the net effect of an 

increase in myocardial energy requirement and thus total energy requirement. As stated earlier, the 

patient with SCA is in a state where catabolism exceeds anabolism, resulting in an energy 

requirement that exceeds the apparently adequate nutrient intake in the absence of SCA. This 

hypermetabolism has been documented as increased REE, which is a measure of the energy 

consumption of an individual at rest. Studies show that individuals with SCA have a higher REE 

compared with age- and sex-matched healthy controls (Akohoue et al., 2007; Barden et al., 2000; 

Williams et al., 2004).  This hypothesis thus posits that hypermetabolism leads to undernutrition 

because it causes a diversion of nutrients from growth and other required body functions to support 

the increased requirement for red cell production, increased myocardial energy demand due to 

increased heart rate (a compensatory mechanism for anemia), and propagation of the state of chronic 

subclinical inflammation reported among SCA patients (Akohoue et al., 2007; Hibbert et al., 2005; 

Hibbert et al., 2006). 

Another hypothesis states that reduced dietary intake exists in SCA patients, and that the state of 

undernutrition is due wholly or in part to reduced dietary and energy intake (Fung et al., 2001), with 

the adequacy of dietary intake decreasing as the individual gets older (Kawchak, Schall, Zemel, 

Ohene-Frempong, & Stallings, 2007). This hypothesis has not gained as much traction as expected 

because other studies have reported little to no difference between the dietary and energy intake of 

children and adults with SCA compared with healthy non-SCA controls (Gray et al., 1992; Heyman 

et al., 1985; Singhal, Parker, Linsell, & Serjeant, 2002). Despite this, some investigators have 

posited that repeated ill health and hospitalization might affect the frequency of dietary and energy 

intake (Hyacinth et al., 2010; Malinauskas et al., 2000). Furthermore, high levels of interleukin-6, a 

circulating cytokine that is involved in inflammation and host immune defense, has been 

documented to be associated with appetite suppression and, by extension, decreased dietary intake 

in cancer patients (Rich et al., 2004; van Lettow, van der Meer, West, van Crevel, & Semba, 2005). 

Elevated levels of this cytokine have also been reported in SCA patients (Hibbert et al., 2005) and 
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transgenic SCA mice (Archer et al., 2008). It is believed that the elevated Interleukin-6 levels 

observed in SCA patients might act to suppress their appetite, reducing dietary and energy intake. 

In theory, SCA produces a form of protein energy malnutrition due not to poor intake, but to 

increased energy demand. 

Implication for Infection 

Infections occur as a complication of SCA. These patients are particularly prone to infection with 

encapsulated organisms because of the occurrence of autosplenectomy from repeated subclinical 

splenic infarction associated with this disease (Aster, 2005). In addition, lower serum 

immunoglobulin M levels, impaired opsonization, and sluggish alternative complement pathway 

activation further increases susceptibility to other common infectious agents, such as Mycoplasma 

pneumoniae, Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli. Low serum 

immunoglobulin level is a widely documented feature of malnutrition, thus malnutrition from 

increased demand reported in patients with SCA can also account in part for their increased 

susceptibility to infection (Fock, Vinolo, de Moura Sá Rocha, de Sá Rocha, & Borelli, 2007; Hughes et 

al., 2009; Katona & Katona-Apte, 2008; Lesourd & Mazari, 1997), similar to what has been described 

in children with non-SCA-associated malnutrition. These studies show that non-SCA children and 

mouse models with protein energy malnutrition have impaired immune response to infection and/or 

challenge with a component (lipopolysaccharide) of an infectious organism (Fock et al., 2007; Hughes 

et al., 2009), as seen among children with malnutrition due to SCA. Serjeant (2005) reported that 

septicemia among African SCA patients has been documented as being from organisms other than 

Streptococcus pneumoniae, making traditional intervention to reduce mortality (Cummins, 

Heuschkel, & Davies, 1991; Gaston et al., 1986; John et al., 1984) less effective. This increased 

susceptibility to non-pneumococcal septicemia could be explained in part by the prevalence of 

malnutrition in this region and a further increased prevalence among individuals with SCA. In 

addition, the state of nutrient and energy deficiency caused by SCA could lead to increased 

susceptibility, consequent upon a depressed immune system and response.  

Studies in the last 2 decades using dietary supplement in patients (children and adults) with or 

without SCA had reported—in addition to improved growth—a decrease in the incidence of infection 

among the patients receiving these supplements (Bao et al., 2008; Heyman et al., 1985; Lesourd & 

Mazari, 1997; Prasad et al., 2007; Salman et al., 1996). This evidence demonstrates a clear 

association between the increased incidence of infection among patients with SCA and their “state of 

[undernutrition].”  Zinc, an often deficient nutrient in patients with SCA (Khan, Trottier, & 

Naydenov, 2009; Leonard et al., 1998; Prasad, 2002), is also linked with increased risk for infection 

when deficient, with supplementation resulting in a decrease in the incidence of infection (Bao et al., 

2008; Bhutta et al., 1999; Muskiet, Muskiet, Meiborg, & Schermer, 1991; Prasad et al., 2007; 

Sazawal et al., 1998).    

Implication for Growth and Maturational Abnormality 

Growth and maturation is affected by SCA, resulting in growth retardation (Henderson et al., 1994; 

Heyman et al., 1985) and slowed maturity (Serjeant et al., 2001). Children with SCA attain 

maturational milestones such as menarche or adrenarche significantly later than their age- and sex-

matched peers without SCA (Zemel et al., 2007). Their growth is also compromised as a result of 

diversion of nutrient from buildup of tissues, in favor of the provision of energy for increased 

myocardial demand, propagating inflammation and replenishing red blood cells, which are 

constantly being hemolyzed (Hibbert et al., 2006). Studies using dietary supplementation in humans 

with SCA (Heyman et al., 1985; Ohnishi, Ohnishi, & Ogunmola, 2000; Waugh, 2005; Williams et al., 
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2004; Zemel, Kawchak, Fung, Ohene-Frempong, & Stallings, 2002) and mouse models of human SCA 

(Archer et al., 2008; Dasgupta, Hebbel, & Kaul, 2006; Fasipe, Ubawike, Eva, & Fabry, 2004; Kaul, 

Zhang, Dasgupta, & Fabry, 2008) have reported various benefits of nutritional supplementation. 

Delayed growth and maturation among individuals with SCA is associated with low plasma zinc 

(Leonard et al., 1998), which is also associated with low levels of serum testosterone among males 

(Prasad, 2008; Sandstead et al., 1967) and decreased pubertal development in general (Leonard et 

al., 1998). Investigators have demonstrated that providing micronutrient supplements to individuals 

with SCA led to improvement in growth and maturation by way of improved serum testosterone 

levels. Parasad and Cossack (1984), as well as Zemel and colleagues (2002), demonstrated that 

administering zinc supplements to growing children with SCA led to improvement in growth. 

Supplementing other micronutrients like vitamin A (Schall, Zemel, Kawchak, Ohene-Frempong, & 

Stallings, 2004), vitamin B, and magnesium (De Franceschi et al., 2000) resulted in clinical benefits 

such as improved growth, decreased hospital emergency room visits, decreased frequency of pain 

crisis, and reduced frequency of infection. It also led to improvement in muscle function, cognition, 

and coordination; decreased inflammation; and improvement in antioxidant and anemia status. 

These results, apart from demonstrating the benefits of nutrition in the management of SCA, 

provide further support to the hypothesis that some SCA-associated complications have as much 

nutritional underpinning as they do genetic. 

Nutritional Intervention to Manage Sickle Cell Anemia 

As earlier mentioned, several attempts have been and are being made to correct the nutritional 

deficiency in SCA in order to improve growth (Heyman et al., 1985; Prasad & Cossack, 1984), body 

composition (Zemel et al., 2002), and vascular and immune function (Kaul et al., 2008; Peranzoni et 

al., 2008); compensate for the hypermetabolism associated with the disease (Williams et al., 2004); 

and decrease inflammation (Archer et al., 2008; Dasgupta et al., 2006); among other improvements . 

The great majority of these have been single-nutrient supplementation, with mixed results 

(Hyacinth et al, 2010). A few have utilized a combination of nutrients, with really impressive results 

even with a small sample size (Chan, 2000; Heyman et al., 1985; Ohnishi et al., 2000, Hibbert, Stiles, 

Umeakunne, & Hyacinth, 2011). Some researchers believe that an approach that utilizes a 

combination of nutrients (macro- and micronutrients) is likely to produce the best results (Chan, 

2000; Ohnishi et al, 2000; Hyacinth et al., 2010). These investigators suggested that because 

nutrient utilization in the body is a multistep process, with different nutrients feeding into the 

process at various points, insufficient quantities of one component of this multistep process could 

have a deleterious (Chan, Chow, & Chiu, 1999) effect on the entire body. Chan (2000) proposed that 

an antioxidant will end up producing reactive oxygen species and, thus, oxidant stress if adequate 

quantity of the antioxidant agent was not given ab initio. It was reasoned that in the absence of more 

antioxidant nutrients, the oxidized form of the initially administered antioxidant ends up 

propagating the oxidant damage it was administered to prevent. 

Future Directions in Finding a Nutritional Remedy for  
Sickle-Cell-Anemia–Associated Undernutrition 

Currently, there are few ongoing pilot clinical trials in the United States with the aim of identifying 

nutritional approaches to managing SCA, using a combination of macro and micro nutrients (Hibbert 

et al, 2011) to provide additional calories in a low-bulk but high-calorie format that is appealing to 

children. Some approaches use single macro or micro nutrients or a combination of micro nutrients. 

An example is the recently published vitamin D study (Osunkwo et al, 2012) conducted at Emory 

University. In this study, the investigators provided vitamin D supplement to children with SCA in 
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order to prevent some of the pathologic bone changes observed in these patients. They reported an 

increase in serum vitamin D and vitamin D precursor level among the supplemented group 

compared with placebo. Additionally, they observed a decrease in the number of pain days and an 

increase in the quality-of-life scores among the supplement compared with the placebo group. As 

described by Ohnishi and colleagues (2000) and Chan (2000), a combined nutritional approach is 

most appropriate because the combination of antioxidants exhibit a synergistic effect, and we expect 

the same effect on improvement in health outcomes for individuals with SCA from an interaction 

between macro and micro nutrients when administered at the same time by the same nutritional 

supplement. With that in mind, our center designed and carried out a pilot clinical trial, which 

adopted an approach that utilizes a combination of both micro and macro nutrients. The supplement 

developed at our center will provide additional calories equal to 40% of that recommended for age 

and sex to the normal daily dietary intake of the individual. This ensures that the extra caloric 

requirement due to the pathological processes of the disease is adequately compensated for.  

Additional funding is needed to enable further studies. Priority needs to be afforded this area of SCA 

research, as it has the potential to address more than one problem (malnutrition in general, 

maternal mortality, and child mortality), in addition to addressing the complications of sickle cell 

disease. Multicenter studies that would enable the understanding of the relationship between 

nutrition and SCA, in addition to informing patient care, can only be conducted with improved 

funding. Although a lot has been learned from mouse models (Archer et al., 2008; Dasgupta et al., 

2006; Kaul et al., 2008; Capers et al., 2010; Romero, Suzuka, Nagel, & Fabry, 2002), our recent work 

(yet to be published) indicates that the dietary requirements are different. For example, while a 

normal balanced human diet contains 12–15% of calories from protein, that of mice contains about 

20% of calories from protein. Furthermore, mice with SCA have other hematological and pathological 

features that are different from what has been described among humans with SCA (Manci et al., 

2006). This necessitates additional funding to enable more robust human studies, although it should 

still be informed by data from studies using mouse models.  

Sickle-cell-anemia–associated complications such as stroke and acute chest syndrome are being 

managed using chronic packed red blood cell transfusion and hydroxyurea. Results from the Stroke 

Prevention in Sickle Cell Anemia (STOP) trial, Hydroxyurea to Prevent Organ Damage in Children 

With Sickle Cell Anemia (also known as the Pediatric Hydroxyurea Phase III, or BABY-HUG, 

clinical trial), and Pediatric Hydroxyurea in Sickle Cell Anemia (PED HUG or HUG-KIDS) clinical 

trial all suggest these approaches alone are unable to promote growth and maturity to any 

appreciable level (Adams et al., 1998; Thompson et al., 2010; Wang et al., 2002). It is the position of 

the authors, however, that if these interventions were coupled with additional caloric 

supplementation, the results might be different. This is because neither packed red blood cell 

transfusion nor hydroxyurea provide any appreciable decrease in caloric need or provide any 

appreciable amount of added calories for patients with sickle cell disease. 

Finally, the importance of finding a nutritional remedy lies in the fact that currently available 

approaches for managing sickle cell disease are either too expensive and not readily accessible (e.g.,  

bone marrow transplantation) or have side effects, such as alloimmunization and iron overload in the 

case of blood transfusion and potential risk for malignancy in the case of hydroxyurea. Furthermore, 

it will be essential for more studies to adopt a nutritional approach as a part of the management 

modality for SCA in the light of the fact that more than two-thirds of the patients with SCA live in 

areas of the world with low socioeconomic status and have little to no means of accessing the 

aforementioned management approaches.  
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Conclusion 

Sickle cell anemia still remains a devastating global disease that reduces the life expectancy of 

millions of children of African descent. It is a serious cause of health disparity between countries and 

between races within the same country. Many complications associated with the disease have a 

nutritional underpinning. Addressing this problem requires further—and larger—multicenter 

studies that will enable the development of a tailored daily dietary requirement for individuals 

(children, adults, and pregnant women) with SCA. Additionally, multinational collaboration is 

required in order to identify the differences in caloric requirement that might exist between 

individuals with SCA residing in developed, developing, and emerging-economy countries. Finally, a 

nutritional approach for the management of this disease holds a lot of promise for improving the 

clinical outcome, quality of life, and future prospects of those with SCA.  
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