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Abstract 

Mathematics achievement is a key component of student overall academic achievement. 

However, many students from Saint Vincent and the Grenadines (Vincentian students) 

continue to perform poorly on the regional Caribbean Secondary Examination Certificate 

(CSEC) mathematics examination. This poor mathematics performance is a concern for 

education stakeholders. The purpose of this quantitative, nonexperimental study was to 

explore the extent to which the CSEC mathematics scores of high-scoring Vincentian 

students versus low-scoring Vincentian students in the cognitive domains of knowledge, 

comprehension, and reasoning differ across the content domains of algebra; geometry; 

measurement; statistics; and relations, functions, and graphs (RFG). The theoretical 

foundation for the study was Bloom’s taxonomy of educational objectives. The study 

used a cross-sectional design and archival data. The sample was composed of 370 

students. Two-way multivariate analysis of variance (MANOVA) and follow-up 2-way 

analysis of variance were computed to provide answers to the research question. Based 

on the MANOVA, there was a statistically significant interaction effect between levels of 

knowledge and levels of reasoning for measurement scores. Additionally, there were 

significant main effects for each cognitive domain and algebra, geometry, measurement, 

and RFG. The findings of the study contribute to positive social change by providing 

teachers, administrators, and education policy makers in Saint Vincent and the 

Grenadines with insights into the influence of cognitive abilities on student mathematics 

achievement so that they could identify students who may be at risk for learning 

difficulties in mathematics and better plan intervention strategies for remediation.  
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Dedication 

I would like to dedicate this study to the students of the Caribbean, and 

particularly students from Saint Vincent and the Grenadines who struggle with learning 

mathematics and passing mathematics examinations. Like you, I too struggled with 

mathematics in my early academic journey, but my love for the subject, and my early 

recognition of its importance to daily existence and a successful career, motivated me to 

persevere. If I can do it, you can too. Many of you may feel like you are a failure because 

you did not achieve a certificate in mathematics, but in many cases, you did not fail, the 

system failed you. Some of the teaching strategies used by many teachers of your 

teachers encourage rote learning, they do not cater to individual learning needs, learning 

styles and interests, especially of digital novices like yourselves; neither do they foster 

the development of critical thinking and problem-solving skills, which are essential to 

success in mathematics. Hence, your teachers may have failed to provide you with the 

necessary tools and strategies for mathematics achievement. Through this research, I 

have provided recommendations to assist teachers in improving mathematics pedagogy 

and making learning meaningful and enjoyable to students.  
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Chapter 1: Introduction to the Study  

Introduction  

In this study, I investigated whether students from Saint Vincent and the 

Grenadines (Vincentian students) classified as high scoring versus those classified as low 

scoring in the cognitive domain of knowledge, comprehension, and reasoning performed 

differently in the content domains of algebra; geometry; measurement; and relations, 

functions, and graphs (RFG) in the 2017 May/June Caribbean Secondary Education 

Certificate (CSEC) mathematics examination. Through this research, I endeavored to fill 

a gap in the literature relating to the lack of research on cognitive abilities and 

mathematics achievement of students in the Caribbean, in general, and in Saint Vincent 

and the Grenadines in particular. I hoped to provide an in-depth understanding of the 

influence of the cognitive abilities of knowledge, comprehension, and reasoning on 

Vincentian student mathematics achievement in the content domains of algebra, 

geometry, measurement, statistics, and RFG. This insight may help promote positive 

social change by influencing policy decisions regarding mathematics education in Saint 

Vincent and the Grenadines. Teachers, administrators, and education policy makers could 

use the insights gained to identify students who are at risk for learning mathematics and 

plan intervention strategies for remediation, with the view to supporting mathematics 

pedagogy. The expected improvement in student learning should increase their career 

options and ultimately lead to a better quality of life. 

In this chapter, I discuss the background of the study, including a brief summary 

of the research literature relating to the topic and a description of the gap in knowledge 
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that the study addresses and why the study is needed. I describe the background to the 

study, including the developmental history and structure of the CSEC mathematics 

examination. I also include a statement of the research problem and its relevance and 

significance to the discipline, as well as the identification of a meaningful gap in current 

research literature that I sought to address in the study. Following the information on the 

gap, is a statement of the purpose of the study and the nature and type of the study, as 

well as the independent and dependent variables. I then present the research question and 

hypothesis, followed by a description of the theoretical framework of the study and an 

explanation of how the framework relates to the study approach and research questions. I 

give an outline of the nature of the study; this includes a rationale for the design selected, 

and operational definitions for the variables used in the study. I then present the 

assumptions of the study, including their likely effect on the meaningfulness of the study. 

Following the assumptions section, I provide a description of the scope and delimitations 

of the study; including treatment of the research questions, issues of internal validity, and 

the boundaries of the study that could affect the external validity of the study. The 

limitations of the study pertaining to methodological weaknesses, possible biases that 

could influence the study outcomes, and how these will be addressed follow. Finally, I 

discuss the significance of the study, including how the study will advance knowledge in 

the discipline, influence policy and practice, and have potential implications for social 

change. The chapter concludes with a summary of the main points and a transition to 

Chapter 2.  
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Background 

Mathematics is a multifaceted system of complex relationships that involves and 

invokes reasoning (Morsanyi, Prado, & Richard, 2018). According to Soni and Kumari 

(2017), mathematics is a skill that is indispensable in all facets of life. Mathematics 

achievement is a major component of overall academic achievement (Vista, 2016). 

Mathematics plays a pivotal role in nation building and a vital tool for understanding and 

predicting future phenomenon (Bassey, Joshua, & Asim, 2009). Bassey et al. (2009) 

summarized the importance of mathematics education as “mathematics education is to a 

nation what protein is to a young organism” (p. 56). Mathematics is considered an 

essential 21st-century competency for leading a fulfilling life and functioning effectively 

in a dynamic society that is becoming progressively “quantified” (Cragg, Richardson, 

Hubber, Keeble, & Gilmore, 2017; Karakolidis, Pitsia, & Emvalotis, 2016).  

A high level of mathematics proficiency is critical for success at the individual 

level as well as societal level (Lipnevich, Preckel, & Krumm, 2016). At the societal level, 

mathematics is considered to be fundamental to the advancement of economic 

development, particularly in developing countries (Bosman & Schulze, 2018). Moses and 

Cobb (2001) shared that mathematics and science literacy is crucial in liberating and 

stabilizing society and affording people economic access and full citizenship. The authors 

believed that mathematics literacy and economic access will give hope to the young 

generation and that they will close the knowledge gap and prepare citizens for the future. 

Competence in mathematics is critical to the workforce in science, technology, 

engineering, and mathematics (STEM) disciplines and to international leadership (Jordan, 
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Glutting, & Ramineni, 2010). In a competitive global economy, a workforce that is 

competent in STEM is likely to guarantee future economic prosperity (Panizzon et al., 

2018). A lack of proficient persons in mathematics-related disciplines will result in 

economic disadvantages (Lipnevich et al., 2016). 

On an individual level, success in mathematics is related to health, well-being, 

satisfaction with life, longevity, employability, and wages (Lipnevich et al., 2016; Reyna 

& Brainerd, 2007). Basic knowledge of high school mathematics is required for entry-

level employment in both private and public sectors, as well as the army (Erden & Akgul, 

2010). Mathematics creates greater career options, particularly in high-paying fields such 

as engineering, information technology, and finance (Mji & Makgato, 2006). Moreover, 

mathematics proficiency is essential for performing task of everyday living, including 

decision making (Cragg et al., 2017; Reyna & Brainerd, 2007). Achievement in 

mathematics is inextricably linked to future career opportunities. In contemporary 

societies, achievement in mathematics can be a gateway to personal and economic 

success (Primi, Bacherini, Beccari, & Donati, 2020; Waxman, 2020).  

Given the significant role that mathematics plays in student overall academic 

achievement (O’Connell, 2018), education policy makers in the Caribbean made the 

subject compulsory for students taking CSEC examinations at the secondary level. The 

government of Saint Vincent and the Grenadines, in its support for a better education 

system, has invested a substantial portion of its budget to the education sector (Prince, 

2018). Despite these efforts, Vincentian students continue to perform poorly in the CSEC 

mathematics examination. This poor performance is a major concern for education 
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stakeholders in Saint Vincent and the Grenadines. Although a minuscule number of 

Vincentian students perform well on the CSEC mathematics examination, most students 

continue to fail the examination. Analysis of the annual CSEC mathematics examination 

results for 10 years, 2008 to 2017, shows that students consistently scored below 50% of 

the available marks on the examination. Performance is generally poor in all content 

domains, and students score lowest in the cognitive domain of reasoning (Caribbean 

Examinations Council [CXC], 2018).  

Notwithstanding the persistent poor performance of students on the CSEC 

mathematics examination, the problem has not been formally investigated; hence, there 

seems to be an apparent lack of knowledge among Caribbean educators regarding 

possible factors that contribute to such poor performance. In this study, I sought to fill a 

gap in knowledge regarding the influence of Vincentian students’ cognitive abilities on 

their achievement in the CSEC mathematics examination. Such insights may help 

educators to better understand possible reasons for such poor performance and identify 

those students who may be at risk for poor mathematics achievement and plan 

intervention strategies for remediation. 

Regional Mathematics Assessment 

Regional assessments in the Caribbean are developed and administered by the 

CXC. The main role of the CXC is to provide assessments and certifications of Caribbean 

students mainly at the secondary level. However, the CXC also develops contracted 

examinations for transition of students from primary to secondary level, as well as 

professional licensure examinations. The CXC was established in 1973 by a group of 
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educators from universities and colleges in the Caribbean with a view to transforming 

education in the Caribbean (Bryan, 2014). Education policy makers believed that the 

General Certificate of Examination (GCE) offered by Cambridge, England, did not meet 

the needs of Caribbean students as the syllabi represented the culture of Britain and not of 

the Caribbean. Also, the syllabi were not geared toward the economic and social 

development of the Caribbean (Bryan, 2014). Regional educators believed that 

establishing a Caribbean-focused examination would be an asset to the Caribbean. During 

the 1960s and 1970s, a number of Caribbean governments substantially increased 

educational opportunities at the primary, secondary, and tertiary levels through sizable 

increases in their education budgets. Some countries introduced free secondary education, 

which resulted in an increased demand for secondary school education.  

 The Caribbean political directorate endorsed the establishment of a CXC. In 1964, 

a working group comprising ministers of education of Barbados, Jamaica, Guyana, and 

Trinidad and Tobago met in Barbados to discuss the composition and functions of the 

proposed CXC. After several meetings and discussions, the final agreement establishing 

the Council was reached in 1972. A committee comprising Caribbean educators 

embarked on the “Caribbeanisation” of syllabi and examinations. The committee 

employed experts from Cambridge to guide the process. They agreed to locate the 

headquarters of the CXC in Barbados and a Western Zone office in Jamaica. The first 

suite of examinations, including mathematics, was offered to 13 Caribbean countries in 

1979 (Bryan, 2014). Currently, the CXC offers 30 subjects at the CSEC level, and 33 

subjects at the Caribbean advanced proficiency level (CAPE) to 19 Caribbean countries. 
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The 19 countries are Antigua and Barbuda, Anguilla, Barbados, Belize, British Virgin 

Islands, Cayman Islands, Dominica, Grenada, Guyana, Jamaica, Montserrat, Saint Kitts 

and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Trinidad and Tobago, Turks 

and Caicos, Suriname, Saba, and Saint Maarten (CXC Annual Report, 2017). 

Structure of the CSEC Mathematics Examination 

 The CSEC mathematics examination comprises two components: Paper 01, a 60-

item compulsory multiple-choice paper that is worth 60 marks (points); and Paper 02, a 

constructed response paper that is worth 120 marks. Paper 02 is divided into two sections. 

Section 1 comprises eight compulsory questions and Section 2 comprises three optional 

questions worth 15 marks each. Students are required to answer two of the three optional 

questions. Both papers assess competencies in 10 content domains across three cognitive 

domains. The content domains are computation, number theory, sets, consumer 

arithmetic, measurement, algebra, statistics, relations, functions and graphs, geometry 

and trigonometry, and vectors and matrices. The cognitive domains are knowledge, 

comprehension and reasoning. Table 1 shows the structure of the examination by 

cognitive domain and Table 2 shows the structure of the examination by content domain.  
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Table 1 

 

Structure of CSEC Mathematics Examination by Cognitive Domain 

Cognitive domain Paper 01 

No. of Marks 

Paper 02 

No. of Marks 

Total 

No. of Marks 

Knowledge 18 36 54 

Comprehension 24 48 72 

Reasoning 18 36 54 

Total 60 120 180 

Note. Adapted from “CSEC, 2018,” p. 5 

  



9 

 

Table 2 

 

Structure of CSEC Mathematics Examination by Content Domain 

 

Content domain 

Paper 01 

Multiple-choice 

Paper 02 

Constructed response 

Compulsory No. of marks No. of marks 

  Number theory 4 10 

  Computation 6 - 

10   Consumer arithmetic 8 

  Sets 4 5 

  Measurement 8 10 

  Statistics 6 15 

  Algebra 9 10 

  Relations, functions and graphs 5 10 

  Geometry and trigonometry 9 20 

Optional    

  Algebra, relations, functions, and 

graphs 

- 15 

  Geometry and trigonometry - 15 

  Vectors and matrices - 15 

Note. Adapted from “CSEC,” 2008, pp. 2-3. 
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The ratio of the weighting of Papers 01 to 02 is 1:2. Paper 01, the multiple-choice 

paper, contributes one-third to the overall weighting of the subject, whereas Paper 02, the 

constructed response paper, contributes two-thirds to the overall weighting.  

Problem Statement 

The poor performance of students in mathematics is a global problem (di 

Gropello, 2017). According to the National Center for Education Statistics (NCES, 

2016), 60% of American fourth- to 12th-grade students performed below the proficiency 

level in the National Assessment of Education Progress mathematics examination. Poor 

mathematics achievement is a recognized problem for Caribbean educators and policy 

makers who continue to lament the poor mathematics performance of Caribbean students 

and the need to confront and arrest the problem (Bruns & Luque, 2015; Cumberbatch, 

2016; Jules, 2012; Leacock, 2015; Monteith, 2016; Quinn-Leandro, 2011; Quinn-

Leandro, 2012; Reid, 2011; Sodha, 2012). Data for the 10-year period, 2008 to 2017, 

show that more than 60% of Caribbean students fail the CSEC mathematics examination 

every year. Generally, Caribbean students achieve very low scores in all content domains, 

but particularly in algebra, geometry, measurement, statistics, and RFG (CXC, 2018). 

The scores on the content domains ranged 19% to 48% during the 5-year period, 2013 to 

2017. In addition to the overall poor performance in mathematics, students’ generally 

score lowest on the reasoning profile, demonstrating their inability to engage in higher-

order thinking skills (CXC, 2018). Although the performance of Caribbean students is 

generally poor, the performance of Vincentian students is alarming. The mean percentage 

score of Vincentian students is lower than the mean percentage scores for the Caribbean. 
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Overall, Saint Vincent and the Grenadines consistently ranks in the lowest three of the 19 

Caribbean countries in CSEC mathematics examination (CXC, 2018).  

Mathematics education comprises two dimensions: content domains, or tasks and 

cognitive domain or skills required to solve the tasks (Männamaa, Kikas, Peets, & Palu, 

2012). A search of the literature reveals that most research on cognitive abilities and 

mathematics achievement have been conducted at the primary level (Geary, 2011; Primi, 

Ferrão, & Almeida, 2010; Wong & Ho, 2017). There is a lack of research on cognitive 

abilities, as defined by based on Bloom, Engelhart, Furst, Hill, and Krathwohl (1956) 

taxonomy, and mathematics achievement at the secondary level, particularly in the 

Caribbean. Most of the research on cognitive abilities and mathematics achievement have 

been conducted in the United States and are based on the Cattel-Horn-Carroll (CHC) 

theory of human cognitive abilities, which focuses on broad cognitive abilities and 

general intelligence. Although Trends in Mathematics and Science Study (TIMSS) uses 

Bloom taxonomy (Bloom et al., 1956) in its international assessment of Grade 4 and 

Grade 8 students, the assessment does not include students from Saint Vincent and the 

Grenadines. Hence, an in-depth understanding of the influence of students’ cognitive 

abilities of knowledge, comprehension, and reasoning on their mathematics achievement 

in the content areas of algebra, geometry, measurement, statistics, and RFG as assessed in 

the CSEC mathematics examination is needed. This knowledge may help teachers, 

administrators, and education policy makers in Saint Vincent and the Grenadines identify 

students who may be at risk for poor mathematics achievement so that they could better 
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target instructional areas for remediation that will support mathematics pedagogy among 

Vincentian students.  

Purpose of the Study 

The purpose of this quantitative, nonexperimental study is to determine the extent 

to which the CSEC mathematics scores of high scoring Vincentian students versus low 

scoring Vincentian students in the cognitive domains of knowledge, comprehension, and 

reasoning differ across the content domains of algebra, geometry, measurement, statistics, 

and RFG. The theoretical framework was Bloom’s taxonomy of educational objectives 

(Bloom et al., 1956). Bloom et al. (1956) taxonomy comprises six levels of cognitive 

skills: knowledge, comprehension, application, analysis, synthesis, and evaluation 

(Granello, 2001). The CSEC mathematics examination is designed based on Bloom’s 

taxonomy. The first two cognitive domains in the mathematics examination mirror the 

first two levels of Bloom et al. (1956) taxonomy, whereas the third domain, reasoning, in 

the CSEC mathematics examination encapsulates the other levels of the taxonomy from 

application to evaluation. 

Variables  

 There were four independent variables, each with two levels, and five dependent 

variables.  

Independent variables. The independent variables included the cognitive domain 

(knowledge, comprehension, and reasoning) and the high and low categories of 

performance (CoP) groups.  
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Dependent variables. The dependent variables were the scores in the content 

domain for algebra, geometry, measurement, statistics, and RFG. 

Research Question and Hypotheses 

Research Question: How do the CSEC mathematics scores of high-scoring 

Vincentian students versus low-scoring Vincentian students in the cognitive domains of 

knowledge, comprehension, and reasoning, differ across the content domains of algebra, 

geometry, measurement, statistics, and RFG?  

H0: There are no differences in the CSEC mathematics scores between high-

scoring Vincentian students and low-scoring Vincentian students in the cognitive 

domains of knowledge, comprehension, and reasoning, across the  

content domains of algebra, geometry, measurement, statistics, and RFG. 

Ha: There are differences in the CSEC mathematics scores between high-scoring 

Vincentian students and low-scoring Vincentian students in the cognitive domains of 

knowledge, comprehension, and reasoning, across the content domains of algebra, 

geometry, measurement, statistics, and RFG.  

Descriptive statistics, correlation, two-way multivariate analysis of variance 

(MANOVA) and follow-up two-way analysis of variance (ANOVA) were used to 

determine whether students classified as high scoring and low scoring in the cognitive 

domains (knowledge, comprehension, and reasoning) would performance differently in 

CSEC mathematics examination, measured by the scores on five content domains (areas: 

algebra, geometry, measurement, statistics, and RFG).  



14 

 

Theoretical Framework 

The theoretical base for this study was Bloom’s taxonomy of educational 

objectives (Bloom et al., 1956). Bloom’s taxonomy is a hierarchical organization of six 

global educational objectives (Ursani, Memon, & Chowdhry, 2014). The objectives, 

defined in behavioral terms, are knowledge, comprehension, application, analysis, 

synthesis, and evaluation. The hierarchy represents mental processes from simple to 

complex, concrete to abstract, and mastery of each simple category is a prerequisite to 

mastering the next complex category (Anderson, Krathwohl, & Airasian, 2001; 

Lipscomb, 1985). Bloom’s taxonomy is a framework developed to provide instructors 

with a systematic assessment of student behavior as a result of participating in an 

educational experience. The taxonomy was intended to form a universal language among 

teachers and assist them in creating testing materials that more accurately assess their 

curriculum aim (Bertucio, 2017). Bloom’s taxonomy is a taxonomy of general 

competence that serves to guide educational objectives and has been used to improve 

pedagogy and assessment methods in many disciplines (Ursani et al., 2014).  

Bloom et al.’s (1956) taxonomy of educational objectives has provided a 

foundation for the understanding of learning outcomes and a platform for the 

development of other taxonomies, including the Revised Bloom’s Taxonomy (Anderson 

et al., 2001); Marzano’s New Taxonomy (Marzano & Kendall, 2006); and Mathematical 

Wellbeing (Clarkson, Bishop, & Seahs, as cited in Irvine, 2017). Despite the 

development of more recent taxonomies, the original Bloom’s taxonomy (Bloom et al., 

1956) has been used extensively by educators to identify and delineate tasks involving 
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higher-order and lower-order thinking skills (Irvine, 2017). Bloom’s taxonomy has also 

been found to be exceptionally helpful in providing clarity in designing the teaching 

process by structuring and sequencing educational objectives in needs assessment, lesson 

planning, and assessment (Ramirez, 2017).  

In addition to classroom practitioners, many large-scale assessments have been 

modelled based on Bloom et al.’s (1956) taxonomy of educational objectives. TIMSS 

uses three levels of cognitive domains (knowing, applying, and reasoning), to develop a 

content-by-process matrix to create mathematics assessment in the content domains of 

number, algebra, geometry, and data and probability, for eighth-grade students 

internationally. The description of TIMSS’s cognitive domains closely match the first 

three levels of Bloom’s taxonomy of educational objectives. The CXC has adopted and 

used Bloom’s taxonomy in the creation of its regional 11th-grade, CSEC mathematics 

examination. The CSEC mathematics assessment follows a similar content-by-process 

matrix as the TIMSS’s eight mathematics assessment as outlined in the TIMSS 

assessment framework (Mullis & Martin, 2019). The CSEC assessment includes the 

content domains of computation, number theory, consumer arithmetic, sets, 

measurement, statistics, algebra, relations, functions and graphs, and geometry and 

trigonometry and the cognitive domains of knowledge, comprehension, and reasoning.  

In this study, the assessment matrix comprised the three cognitive domains 

(knowledge, comprehension, reasoning) and five content domains (algebra, geometry, 

measurement, statistics, and RFG). These content domains represent the areas of poorest 
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performance for Caribbean students including Vincentian students, on the 2017 May/June 

CSEC mathematics examination.  

Nature of the Study 

In this quantitative study, I used a cross-sectional design and archival (secondary) 

data. The source of the data was the CXC database. The data were comprised of 

Vincentian students’ scores in the 2017 May/June CSEC mathematics examination. A 

cross-sectional design allowed for data to be collect at one point in time. In addition to 

reducing time and cost, I was able to collect a larger sample than would be feasible with 

other research designs. Using a cross-sectional design also allowed me to investigate one 

Caribbean country and generalize the findings to other Caribbean countries with similar 

characteristics. There were four independent variables that are categorical variables: three 

cognitive domain (knowledge, comprehension, and reasoning) variables and the CoP 

variable. Each independent variable had two levels: high-scoring students and low-

scoring students. There were five dependent variables that were measured at the 

continuous levels: algebra scores, geometry scores, measurement scores, statistics scores, 

and RFG scores. I used SPSS version 25 to analyze the data. The data analysis included 

descriptive statistics, correlation, two-way MANOVA statistical analysis for differences 

between groups, and two-way ANOVA. I used the two-way MANOVA and two-way 

ANOVA to test the null hypothesis (Ho)—there are no differences in the CSEC 

mathematics scores between high-scoring Vincentian students versus low-scoring 

Vincentian students in the three cognitive domains of knowledge, comprehension, and 
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reasoning, across the five content domains of algebra, geometry, measurement, statistics, 

and RFG. 

Definition of Terms 

Algebra: A way of thinking that involves the analysis of mathematical situations 

and generalization of models devised from the application of concepts and skills 

(National Council of Teachers of Mathematics [NCTM], 2006). Introductory algebra 

involves the recognition of patterns and the use of symbols and expands to involve the 

use of numbers (Lee, Collins, & Melton, 2016).  

Category of performance: Students classified as high scoring and low scoring 

based on their score in the combined five mathematics content domains in the 2017 

May/June CSEC mathematics examination (algebra, geometry, measurement, statistics, 

and RFG). 

Cognitive domain: Classification of questions or tasks based on the kind of 

cognitive demand (CSEC, 2008). Cognitive domain is also referred to as cognitive 

ability. 

Comprehension: Algorithmic thinking involving translation from one 

mathematical mode to another. The application of algorithms to familiar problem 

situations (CSEC, 2008).  

Geometry: The study of properties, relationships, and transformations of spatial 

objects within an interconnected network of concepts and representational systems 

(Crompton, Grant, & Shraim, 2018). 
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High-scoring students: Students with scores from 48 to 94 on the combined 

content domains in the 2017 May/June CSEC mathematics examination. This group 

represented students who scored above 50% on the exam.  

Knowledge: The recall of rules, procedures, definitions, and facts (CSEC, 2008). 

Low-scoring students: Students with scores from 0 to 47 on the combined content 

domains in the 2017 May/June CSEC mathematics examination. This group included 

students who scored 50% or below on the exam.  

Mathematics content domain: Strands, area, or concepts in mathematics. Content 

domain is also referred to as content area and content strand (CSEC, 2008). 

Measurement: A foundation concept in mathematics that is required for day-to-

day functioning in the world (Hurrell, 2015).  

Reasoning: Involves the translation of nonroutine problems into mathematical 

symbols and then choosing suitable algorithms to solve the problems. Reasoning also 

involves combining algorithms to solve problems and using algorithms in reverse order, 

and making inferences and generalizations, justifying results and statements, and 

analyzing and synthesizing (CSEC, 2008). 

Relations, functions, and graphs (RFG): An area in mathematics associated with 

collecting and interpreting numerical information and communicating important 

relationships (Larson & Whitin, 2010). 

Statistics: A branch of mathematics that deals with the collection, analysis, 

interpretation, and presentation of masses of numerical data (Capaldi, 2019).  
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Assumptions 

There were five assumptions associated with the study. The first assumption was 

that the 2017 May/June CSEC mathematics examination has content-related evidence of 

validity. That is, the assessment tasks adequately represent the content measured as 

defined in the test blueprint or table of specifications. The second assumption was that 

the 2017 May/June CSEC mathematics examination has construct-related evidence of 

validity. That is, there is empirical evidence that the inferred constructs exist and are 

accurately measured in the test (Popham, 2002). The third assumption was that the 

cognitive domains of knowledge, comprehension, and reasoning are accurately and 

consistently operationalized in each test item, based on their definition in the CSEC 

mathematics syllabus. The fourth assumption was that the test items accurately reflect the 

identified content domains of algebra, geometry, measurement, statistics, and RFG, as 

outlined in the CSEC mathematics syllabus. The fifth assumption was that students’ tests 

were accurately scored and the scores were accurately reported. That is, teachers 

consistently applied the scoring rubric in the scoring of students’ work, and the scores 

were accurately recorded and reported. 

Scope and Delimitations 

The problem that I addressed in this study was the poor performance of 

Vincentian students in the CSEC mathematics examination. In addressing this problem, I 

explored the extent to which the CSEC mathematics scores of high-scoring Vincentian 

students versus low-scoring Vincentian students in the cognitive domains of knowledge, 

comprehension, and reasoning differ across the content domains of algebra, geometry, 
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measurement, statistics, and RFG. The study was quantitative in nature and I used a 

nonexperimental, cross-sectional design. I explored the research problem using secondary 

data. I sought to provide educators and policy makers in Saint Vincent and the 

Grenadines with insights into the role of cognitive abilities in the learning of mathematics 

with a view to positively influencing mathematics pedagogy, and ultimately lead to 

improved student performance in the CSEC examination. However, there are certain 

scope and delimitations to the study, including threats to internal validity and external 

validity. 

According to Jackson, O’Callaghan, and Adserias (2014), threats to the internal 

validity of a study are issues or problems with procedures or participants that can 

compromise the inferences that are drawn from the study. Threats to internal validity in a 

cross-sectional design include measurement errors that could result in spurious findings, 

or common-method variance (CMV) and erroneous casual inference (Jackson et al., 

2014). Jackson et al. (2014) referred to CMV as variance attributable to the method used 

to measure the construct, rather than to the construct being measured. CMV may inflate 

or deflate the correlation among research variables, thereby threatening the validity of the 

conclusions drawn about the relationships between the measures of different constructs 

(Reio, 2010). These measurement methods may include using a single rater, item 

characteristics, item context, and measurement context (Campbell & Fiske, 1959; 

Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). As a potential source of measurement 

error, CMV in quantitative studies can be controlled by strengthening the procedural 

design of the study, and by using statistical controls (Podsakoff et al., 2003; Rindfleisch, 
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Malter, Ganesan, & Moorman, 2008). In this study, I minimized measurement errors by 

using the same measurement instrument, in the form of an examination. All the students 

in the sample wrote the same mathematics examination, and the teacher used the same 

scoring rubric to mark the examination under the same conditions. To ensure reliability in 

marking, two markers marked each sample of script. Also, the data manager used the 

same method to retrieve all the students’ scores from the CXC’s database. To strengthen 

the procedural design of the study, I requested that the data manager perform data 

cleaning by removing all indefinable student information prior to delivering the data to 

me. Prior to data analysis, I tested the assumptions of the statistical tests to guide my 

interpretation and reporting of the data. I also performed follow-up statistical tests to 

ensure that the observed differences were accurately identified. To reduce selection bias 

and chance bias as sources of internal validity, I applied the G*statistics to determine an 

adequate sample size (n = 40) for the study. However, I used a larger sample size (n = 

370) to ensure that the sample requirements were met for a small effect size and control 

for both the Type 1 error probability α and the Type 2 error probability 1−β (Mayr, 

Erdfelder, Buchner, & Faul, 2007). 

Threats to external validity are problems that threaten the generalizability of the 

findings of one study to other setting, persons, and situations (Frankfort-Nachmias, 

Nachmias, & DeWaard, 2015). To reduce threats to external validity, I used stratified 

random sampling to ensure that subgroups of high-scoring students and low-scoring 

students in the sample of Vincentian students represent the subgroups of high-scoring 

students and low-scoring students in the Vincentian student population. I have 
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generalized the findings of the study to the total sample studied and not to any subgroups. 

Additionally, I generalized the findings of the study only to the cohort of students who 

wrote the examination in May/June 2017 and no cohort who wrote the examination in 

any other sitting.  

A delimitation of a study is a systematic bias that the researcher intentionally 

introduces into the study design or instrument (Price & Murnan, 2013). There were two 

study delimitations. The first delimitation was that the influence of cognitive abilities on 

mathematics performance in this study relate only to the learning outcomes tested in the 

content domain in the 2017 May/June CSEC mathematics examination. The second 

delimitation was that given that the sample was stratified by high-scoring students and 

low-scoring students, demographic delimitations may include, age, sex, school type 

(private, public), school composition (single sex, co-educational), and school location 

(rural, urban).  

Limitations 

A limitation of a study design or instrument is a systematic bias that the 

researcher could not or did not control (Price & Murnan, 2013). The following are 

limitations to the study design: 

• The research design is a nonexperimental, cross-sectional design and I used 

archival data. This design makes it difficult to make causal inferences (Bono & 

McNamara, 2011; Levin, 2006). 

• Threats to the internal validity of the study included the reliable measure of 

student mathematics and cognitive abilities. 
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• The use of archival data eliminates the opportunity to influence how the data 

were captured and organized for analysis. Using this design, I observed the 

phenomena as it occurs naturally (see Radhakrishnan, 2013). 

• Some questions on the test included more than one content domain and the scores 

for those content domains could not be disaggregated; as a result, I omitted these 

questions from the analysis. 

• The number of marks allocated by cognitive domains and the content domains 

may not be sufficient to make a reasonable conclusion about students’ abilities.  

• The total number of marks assigned to the cognitive domains was not consistent 

across the content domains. 

• The study included data from the 2017 May/June CSEC examination only. Given 

that the data were based on students’ mathematics scores in one particular year, it 

is possible that a study conducted using students’ mathematics scores from 

another year may yield different results. 

Significance of the Study 

Globalization and the emergent knowledge-based economy, propelled by advances 

in information and communication technology, have precipitated changes in the type of 

competencies required to function effectively in a dynamic society (Brochu, Deussing, 

Houme, & Chuy, 2013). Mathematics constitutes one such key competency and is 

considered a civic right that should be a goal for all students (Karakolidis et al., 2016; 

Moses & Cobb, 2001; Schoenfeld, 2002). Mathematics education comprises two 

dimensions: content domains, or tasks, and cognitive domain, or skills required to solve 



24 

 

the tasks (Männamaa et al., 2012). The importance of content domains and cognitive 

domains has been recognized by international researchers who conducted research on 

both the cognitive domains and content domains in the TIMSS and the Programme for 

International Student Assessment (PISA; George & Robitzsch, 2018; Zhang et al., 2017). 

However, a search of the literature reveals a lack of research on cognitive abilities and 

mathematics achievement at the secondary level in the Caribbean. I sought to fill this gap 

and contribute to the field of research on mathematics cognitive domains and content 

domains by adding a Caribbean secondary perspective, targeting Vincentian students.  

The minister of education in Saint Vincent and the Grenadines noted that the 

government understands the importance of education to the socio-economic development 

of Saint Vincent and the Grenadines and, hence, continues to invest in the sector (Prince, 

2018). Investment in education today cost substantially more than it costs a century ago 

(Burnette, 2019; Psacharopoulos & Patrinos, 2018). With such sizable investments, the 

returns on investment and effectiveness of the education system are of great interest to 

governments (Cunningham, Cunningham, Halim, & Yount, 2019). The outcomes of this 

study may contribute to an in-depth understanding of how the performance of high-

scoring Vincentian students and low-scoring Vincentian students in CSEC mathematics 

cognitive domains differ across the content domains. This knowledge is intended to assist 

educators, administrators, and teachers in Saint Vincent and the Grenadines to better 

target instructional areas for remediation that will support the learning and achievement 

of mathematics among Vincentian students. The making of policy-relevant decisions in 

the education sector relies heavily on the collection and use of education statistics 
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(Caceres, de la Peña, Di Prisco, Pineda, & Solotar, 2014). Hence, the outcome could also 

influence policy decisions regarding curricular changes to more directly target students’ 

learning needs, and professional development of teachers better prepare them to deliver 

the curriculum in a more meaningful way, that will result in enhanced student learning. 

More mathematically competent persons will contribute to a more advanced society as 

these persons will be able to access higher paying career options and will enjoy better 

quality lives and contribute positively the development of the country. 

Summary 

A high level of mathematics proficiency is required for success at the individual 

and societal levels (Lipnevich et al., 2016). However, Vincentian students continue to 

perform poorly in the regional CSEC mathematics examination. The poor performance is 

evident in the low scores achieved in the cognitive domain of reasoning and across all 

content domains (areas). This phenomenon of poor mathematics performance is a 

problem for educators and policy makers in Saint Vincent and the Grenadines. A search 

of the literature revealed an absence of research on the influence of cognitive abilities, as 

defined by Bloom taxonomy (Bloom et al., 1956), on mathematics achievement at the 

secondary level in the Caribbean. In this research, I sought to fill that gap by providing 

insights into the influence of cognitive abilities on the achievement in mathematics on 

select content domains. I also sought to determine the extent to which the CSEC 

mathematics scores of high-scoring Vincentian students versus low-scoring Vincentian 

students in the cognitive domains of knowledge, comprehension, and reasoning differ 

across the content areas of algebra, geometry, measurement, statistics, and RGF. The 
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study was quantitative in nature. I used a cross-sectional design and archival data 

comprising students’ scores in the 2017 May/June CSEC mathematics examination. Data 

analysis included descriptive statistics, correlation, two-way MANOVA, and follow-up 

two-way ANOVA. The outcomes of the study may help to enact education reform in 

Saint Vincent and the Grenadines, with a view to improving students’ mathematics 

achievement. In Chapter 2, I outline the theoretical framework for the study and discuss 

its application to the present study. I also synthesize the literature relating to cognitive 

abilities and mathematics achievement.  
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Chapter 2: Literature Review 

Introduction 

Mathematics achievement is a major component of overall academic achievement 

(Vista, 2016) and fundamental to the advancement of economic development, particularly 

in developing countries (Bosman & Schulze, 2018). Hence, educators and policy makers 

in Saint Vincent and the Grenadines are deeply concerned about the poor performance of 

Vincentian students in the CSEC mathematics examination. The poor performance is 

evident across all content domains and particularly on questions that require the 

application of higher-order thinking skills. The purpose of this study was to determine the 

extent to which the CSEC mathematics scores of high-scoring Vincentian students versus 

low-scoring Vincentian students in the cognitive domains of knowledge, comprehension, 

and reasoning differ across the content domains of algebra, geometry, measurement, 

statistics, and RFG. The review of current literature presented in this chapter includes 

research relevant to this study, particularly research on the influence of cognitive factors 

on mathematics achievement. 

 A systematic search of the literature is critical in unearthing studies relevant to the 

construct to be investigated. Consequently, this chapter begins with an outline of the 

literature review strategy employed, followed by a discussion of the theoretical 

framework underpinning the study. Following the discussion on the theoretical 

framework is a discussion on large-scale assessment and an outline of the development of 

regional mathematics assessment, CXC. I then review the five mathematics content 

domains investigated in the study. The review includes an explanation of the importance 
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of each domain to overall mathematics achievement. The remainder of the chapter 

includes a review and synthesis of the literature relating to the role of cognitive abilities 

in mathematics achievement. The chapter concludes with a summary of the main findings 

of previous research that impact the present study, and I provide a context for the 

research question.  

Literature Search Strategy 

The literature review for this study includes a synthesis and analysis of research 

studies related to cognitive factors and mathematics achievement. I identified the research 

studies from relevant peer-reviewed articles, books, and websites relating to cognitive 

abilities and mathematics achievement. The databases that I searched for relevant 

literature relating to the study included Education Research Complete, Education Source, 

SAGE Journal, ERIC, Google Scholar, and ProQuest Central. I accessed the databases 

through the Walden University library. Keyword searches that yielded useful results 

included cognitive domains, cognitive abilities, mathematics achievement, mathematics 

performance, mathematics content domains, mathematics strands, algebra, geometry, 

measurement, statistics, statistics in mathematics, statistics and mathematics curriculum, 

graphs, large scale assessment, and international large-scale assessment. The initial 

searches spanned 5 years, 2015 to 2019, but due to the lack of research on this topic, I 

extended the search to include research studies for the last 10 years. It was also necessary 

to include some seminal literature, particularly regarding the theoretical framework and 

the mathematics content domains.  
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Theoretical Foundation 

The theoretical base for this study was Bloom’s taxonomy of educational 

objectives (Bloom et al., 1956). Bloom’s taxonomy of educational objective is a 

pedagogical tool designed to guide educators in developing meaningful assessment of 

learning outcomes (Ramirez, 2017). The taxonomy has filled a void by providing a basis 

by which educators can systematically evaluate students’ learning (Bertucio, 2017). 

Bloom’s taxonomy is a taxonomy of general competence and educational objectives that 

provides an organized system of classifying assessment methods. The taxonomy 

represents a cumulative hierarchical organization of six global educational objectives 

(Ursani et al., 2014). The objectives, defined in behavioral terms, are knowledge, 

comprehension, application, analysis, synthesis, and evaluation. The hierarchy represents 

mental processes from simple to complex, concrete to abstract, and mastery of each 

simple category, which is a prerequisite to mastering the next complex category 

(Anderson et al., 2001; Lipscomb, 1985).  

Summary of Bloom’s Taxonomy 

Bloom’s taxonomy (Bloom et al., 1956) comprises six levels of cognitive skills, 

hierarchically arranged from lower-order thinking skills requiring minimal cognitive 

processing to higher-order thinking skills requiring deeper learning and a greater degree 

of cognitive processing (Adams, 2015). Figure 1 shows the hierarchical arrangement of 

Bloom’s taxonomy, including the type of verbs used to assess each level. 
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Figure 1. The original Bloom’s taxonomy (Bloom et al., 1956).  

Knowledge. Knowledge is the foundational cognitive skill. Knowledge refers to 

“the retention of specific, discrete pieces of information including facts and definitions or 

methodology, such as the sequence of events in a step-by-step process” (Adams, 2015, p. 

1). The knowledge objectives address predominantly the psychological process of 

remembering (Ramirez, 2017). Students at the knowledge level merely recall and 

recognize information without demonstrating an understanding of the material (Granello, 

2001). 

Comprehension. Comprehension is defined by the ability to grasp the meaning of 

materials. Students demonstrate comprehension by interpreting or translating material 

from one form to another. They display a basic understanding of the material and can 

summarize the main points of an article and manipulate, represent, and paraphrase 

information in their own words, as well as classify items into groups and compare and 

contrast entities (Adams, 2015; Granello, 2001).  

Application. Application is defined as “the ability to use learned material in new 
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and concrete situations and includes applying rules, methods, concepts, principles, and 

theories” (Granello, 2000, p. 4). Students at the application level can select main ideas, 

apply concepts and principles to new situations, apply theories to practical situations, and 

solve problems (Granello, 2001).  

Analysis. Analysis refers to “the ability to break down material into its component 

parts, and may include the identification of the parts, analysis of the relationship between 

the parts, and recognition of the organizational principles involved” (Granello, 2001, pp. 

4-5). Students at the analysis level can recognize unstated assumptions and logical 

fallacies in reasoning, distinguish between facts and inferences, and evaluate the 

relevancy of data (Granello, 2000). 

Synthesis. Synthesis refers to “the ability to put parts together to form a new 

whole. The student originates, integrates, and combines ideas into a product, plan, or 

proposal that is new to him or her” (Granello, 2001, p. 297). Objectives at this level focus 

on creative behaviors and emphasize the formulation of new patterns or structure. 

Students at the synthesis level can integrate ideas from different areas into a plan to solve 

a problem, formulate a new schema for classifying objectives or ideas, and posing a plan 

for an experiment (Granello, 2000).  

Evaluation. Evaluation refers to “the ability to judge the value of materials for a 

given purpose. The judgements are based on defined criteria that are either developed by 

the student or given to the student by an outside source” (Granello, 2001, p. 297). 

Evaluation is the highest level in the cognitive hierarchy— it subsumes elements of the 

other categories and includes conscious value judgement based on clearly defined 
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criteria. Some of the value judgements include judging the logical consistency of written 

material, judging whether conclusions are adequately supported by data and applying 

internal and external criteria to judge one’s own performance (Granello, 2000). 

Bloom’s taxonomy has provided a framework for systematically assessing student 

behavior as a result of their participating in an educational experience. The taxonomy was 

intended to form a universal language among teachers and assist them in creating testing 

materials that more accurately assess their curriculum aim (Bertucio, 2017; 

Hadzhikoleva, Hadzhikolev, & Kasakliev, 2019). Bloom’s taxonomy is a taxonomy of 

general competence that serves to guide educational objectives and has been used to 

improve pedagogy and assessment methods in many disciplines (Ursani et al., 2014). 

Bloom (1956) presented his taxonomy of educational objectives in what was arguably 

one of the most influential education monographs of the past half century (Cullinane & 

Liston, 2016). It is also used as a model for identifying the cognitive processes examiners 

use to solve test items (Bloom et al., 1956). The taxonomy provides a useful guide to help 

instructors structure and sequence learning outcomes to reflect progressively difficult 

learning processes by providing scaffolding to help learners progress from lower levels of 

learning, such as knowledge and comprehension, to more cognitively demanding levels 

such as synthesis (Ramirez, 2017). Bloom’s taxonomy does not prescribe moving from 

one level of objective to the next in a fixed, rigid manner; however, the progression along 

the continuum facilitates a logical and sequential organization of the learning process that 

aids mastery of the material. The taxonomy provides direction and clarity in designing 

the teaching process and helps instructors to be aware of the levels of difficulty of the 
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various pedagogical activities (Ramirez, 2017). The simplicity of the taxonomy allows 

for clear distinction of higher-order and lower-order assessment tasks (Cullinane & 

Liston, 2016). Incorporating Bloom taxonomy-based objectives has been found to 

improve the attainment of learning outcomes (Almerico & Baker, 2004). 

Bloom’s taxonomy of educational objectives (Bloom et al., 1956) has provided a 

foundation for the understanding of learning outcomes and a platform for the 

development of other taxonomies, including the revised Bloom’s taxonomy (RBT) by 

Anderson et al. (2001); Marzano’s new taxonomy (MNT) by Marzano and Kendall 

(2006); and mathematical wellbeing (MWB) by Clarkson, Bishop, and Seahs (as cited in 

Irvine, 2017). Despite the development of more recent taxonomies, the original Bloom’s 

taxonomy has been used extensively by educators to identify and delineate tasks 

involving higher-order and lower-order thinking skills (Cullinane & Liston, 2016; Irvine, 

2017). Bloom’s taxonomy has also been found to be exceptionally helpful in providing 

clarity in designing the teaching process by structuring and sequencing educational 

objectives in needs assessment, lesson planning, and assessment (Ramirez, 2017).  

Bloom’s taxonomy of educational objectives (Bloom et al., 1956) has influenced 

assessment at all levels, from classroom tests to international large-scale assessments, 

including TIMSS (Abu Tayeh, Mohammad, & Mohammad, 2018; George & Robitzsch, 

2018; Mullis & Martin, 2019). These test designs begin with a table of specifications 

which is usually a 2-way matrix that specifies the content domains and cognitive abilities 

to be tested. The table of specifications provides a guideline for obtaining a representative 

sample of test items (Gierl, 1997). TIMSS’s mathematics assessment is modelled from 
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Bloom’s taxonomy of educational objectives and uses three levels of cognitive domains, 

namely, knowing, applying, and reasoning, in its fourth- and eighth-grade mathematics 

assessment. The cognitive domains are used to develop a content-by-process matrix to 

create mathematics assessment in the content domains of number, algebra, geometry, and 

data and probability for eighth-grade students internationally. The CXC has also adopted 

Bloom’s taxonomy in the creation of its regional Grade 11 CSEC mathematics 

examination. The CSEC mathematics assessment follows a similar content-by-process 

matrix in TIMSS’s Grade 8 mathematics assessment (Martin & Mullis, 2019). The CSEC 

mathematics assessment includes content domains of computation, number theory, 

consumer arithmetic, sets, measurement, statistics, algebra, relations, functions and 

graphs, and geometry and trigonometry at the cognitive domains of knowledge, 

comprehension, and reasoning. Table 3 shows the comparison of Bloom’s taxonomy with 

TIMSS’s and CXC’s cognitive domains. 
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Table 3 

 

Cognitive Domains: Bloom’s Taxonomy, TIMSS, and CXC  

Bloom’s taxonomy TIMSS cognitive domain CXC cognitive domain 

   

Knowledge - Recall of 

information, methods, 

procedures, pattern, 

structure, and settings 

Knowing - Covers facts 

concepts, and 

procedures         

Knowledge – Recall of 

rules, procedures, 

definition and facts 

Comprehension -  

Understand assessment 

material, and translate 

it into own words 

 

Applying - 

Focusses on the ability to 

apply knowledge and 

conceptual 

understanding to 

solve problems or 

answer questions 

Comprehension - 

The use of algorithms 

and the application 

of these algorithms 

to familiar problem 

situations 

Application - Apply 

knowledge to new 

situations 

Reasoning - Encompasses 

unfamiliar situations, 

complex contexts 

and multistep 

problems 

Reasoning - Solving 

nonroutine 

problems, making 

inferences and 

generalizations, 

analyzing and 

synthesizing 
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The original Bloom’s taxonomy (Bloom et al., 1956) has provided educators and 

instructional psychologists with a framework for designing instructions to capitalize on 

the way students learn. However, after almost 5 decades of using Bloom’s taxonomy, 

many educators questioned the validity of the taxonomy for meeting the needs of students 

and educators (Darwazeh, 2017). This concern led Anderson et al. (2001) to revise and 

update Bloom’s taxonomy to make it more relevant to the needs of the 21st-century 

students and teachers (Anderson et al., 2001). The changes to the taxonomy were in 

relation to the terminology, structure, and emphasis (Forehand, 2010; Krathwohl, 2002). 

Although the original Bloom’s taxonomy used nouns to describe the levels, the revised 

taxonomy used verbs. Three categories were renamed from knowledge to remember, 

from comprehension to understanding, and from synthesis to create. The evaluation 

objective was changed to evaluate and placed as the penultimate category, whereas 

synthesis was renamed create and place as the highest level (Darwazeh, 2017). 

Figure 2 shows the comparison of the original Bloom’s taxonomy (Bloom et al., 1956) 

and the revised Bloom’s taxonomy (Anderson et al., 2001). 
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Figure 2. The revised Bloom's taxonomy by Anderson et al. (2001).  

Saint Vincent and the Grenadines’ Demographic Information 

Country Profile  

 Saint Vincent and the Grenadines is a chain of 32 islands and cays (nine of which 

are inhabited) in the Caribbean, with a total area of 389 square kilometers or 150 square 

miles. Saint Vincent and the Grenadines is a volcanic, mountainous island. The climate is 

tropical. Its capital is Kingstown and the other towns are Calliaqua, Chateaubelair, 

Georgetown, Layou, and Barrouallie. The main income earner is agriculture. Saint 

Vincent and the Grenadines gained independence from Britain in 1979 (Fraiser, 2019). 

Currently, there are two main political parties. The population count as of January 01, 

2019, was 109,545, and is predominantly African Blacks which accounts for (66%), 

Mixed (19%), East Indian (6%), European (4%), Carib Amerindian (2%) and other (3%) 

(United Nations World Population Prospects, 2019). The main language is English, 
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however, there is also creole English and French patois. Saint Vincent and the 

Grenadines is a Christian country, the main religions include Anglican, Catholic, 

Methodist, Pentecostal, and Spiritual Baptist. 

The Education System 

The education system in Saint Vincent and the Grenadines comprises three 

levels–primary (7 years), two-phased secondary education (the first phase is 5 years, and 

second phase is 2 years), and tertiary (Education Act, 2006). There are 43 primary school, 

26 secondary schools, and one tertiary institution comprising various divisions. 

Secondary education usually spans Ages 11 to 18. Of the 26 secondary schools, 20 are 

government owned, and six are government assisted. There are two single sex male 

secondary school, and two single sex female secondary schools. Seven of the 26 

secondary schools are located in the urban area, 17 in the rural area, and two in the 

Grenadines. Education at the lower secondary level is modelled on a national curriculum, 

whereas education at the upper secondary school is dictated by the syllabi developed and 

examined at the CSEC level by the CXC. Students who are not in a formal school setting 

may also write the CSEC examinations as private candidates. In 2017, 1,713 students 

from 26 Secondary schools and 10 private institutions wrote the CSEC mathematics 

examination.  

Literature Review Related to Key Concepts 

Large Scale Assessment 

Large-scale assessment (LSA) is a summative assessment, or an ‘assessment of 

learning’ (Klieger, 2016). It is a tool used for educational accountability (Copp, 2017; 
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Klinger, DeLucas, & Miller, 2008). LSA of student achievement reveals how students 

perform on literacies, and the types and levels of achievement in relation to correlates of 

learning, including student background, attitudes, and perceptions, as well as home and 

school characteristics (Anderson, Lin, Treagust, Ross, & Yore, 2007). The intent of large-

scale assessment is to measure learning outcomes for accountability purposes (Cox & 

Meckes, 2016; Decker & Bolt, 2008; Klieger, 2016; & Looney, 2011). Large-scale 

assessment aims to promote student achievement by holding educators accountable 

(Decker & Bolt, 2008; Klinger et al., 2008; Miller, 2013). 

International large-scale assessments (ILSAs) began in 1958 by the UNESCO 

institute for education (Husén, 1979). The impetus for ILSAs is to study the educational 

achievement and its determinants in different countries by collecting reliable, valid, and 

comparable information about student abilities and analyzing this information to better 

understand the relationship among student abilities and educational, social, and economic 

phenomena (Yamamoto & Lennon, 2017). Countries can use the results from ILSA to 

learn from each other, and avoid pitfalls (Johansson, 2016). ILSA allows for comparative 

evaluation of the education system of countries, thereby revealing gaps between first 

world nations and high-income countries (Cox & Meckes, 2016).  

ILSA include the First International Mathematics Study (FIMS), Trends in, 

Mathematics and Science Study (TIMSS) and the Progress in International Reading 

Literacy Study (PIRLS), conducted by the International Association for the Evaluation of 

Educational Achievement (IEA). There is also, the Program for International Student 
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Assessment (PISA), conducted by the Organization for Economic Cooperation and 

Development [OECD] (Sui Chu Ho, 2016).  

The two most popular international large-scale mathematics assessment are TIMSS 

and PISA. TIMSS is an integrated assessment of mathematics and science conducted at 

fourth and eighth grade levels. The assessment is designed to measure trends in student 

performance. The assessment was first conducted in 1995, and subsequently 4 years 

thereafter. Over 55 countries participate in TIMSS, representing a wide range of 

geographical and economic diversity (Mullis, Martin, Foy, & Hooper, 2015). TIMSS 

collects information about the students, teachers and classroom characteristics, and 

includes teacher and student background and experiences. This information provides a 

context in which the results are reported (Martin, Mullis, & Hooper, 2015). Comparison 

of students’ performance is benchmarked internationally (Balázsi & Szepesi, 2018). 

TIMSS mathematics assessments at both the fourth-grade and eighth-grade levels are 

organized around two dimensions:  

• the content dimension, which specifies the subject matter to be assessed, 

and  

• the cognitive dimension, which specifies the thinking processes to be 

assessed (Lindquist, Philpot, Mullis, & Cotter, 2019). 

The content domains assessed at each grade level differ, reflecting the mathematics that is 

taught at the respective levels. However, the same cognitive domains are assessed at 

fourth-grade and eighth-grade, but with a shift in emphasis. The assessment includes a 
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range of problem-solving situations within mathematics, with emphasis on the higher-

order thinking skills, such as applying and reasoning (Lindquist et al., 2019).  

 PISA is an OECD sponsored program which aims to evaluate the education 

system of countries by testing the competencies and skills of 15-year old students at the 

end of compulsory schooling (Ninomiya, 2019; OECD, 2014; Rautalin & Alasuutari, 

2009; Yalçin & Tavşancil, 2014). The program was initiated in 2000 and currently 

includes 90 countries. Students are assessed triennially in three main literacies: reading, 

mathematics and science (Lewis, 2017; OECD, 2014). In its triennial assessment, PISA 

focusses on 1 literacy proficiency from among the three domains. In addition to the three 

subject domains, PISA includes innovative domains such as collaborative problem 

solving, global competitiveness, and financial literacy (OECD, 2016). The focus of 

PISA’s assessments is on the application of knowledge learned in school to real-life 

situations. PISA’s mathematics literacy is defined as 

an individual’s capacity to identify and understand the role that mathematics plays 

in the world, to make well-founded judgements, and to use and engage with 

mathematics in ways that meet the needs of that individual’s life as a constructive, 

concerned, and reflective citizen (Anderson et al., 2007, p. 593) 

Like TIMSS, in addition to assessments in subject domains, PISA also evaluates 

the socio-economic indicators of students and their parents as well as the school 

environment–how the school is managed. Socio-economic indicators include student 

background information, such as home resources and parents’ occupation and level of 

education (Anderson et al., 2007; İnce & Gözütok, 2018; OECD, 2016).  
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 International large-scale assessments such as TIMSS and PISA play a significant 

role in contemporary educational landscape by influencing education reform policies at 

the global, regional and international levels with a view to improving educational 

practices and performance (Elliott, Stankov, Lee, & Beckmann, 2019; Grek, 2013; 

Ninomiya, 2019; Ozga, 2012). Many countries overhaul their education system following 

the release of the results of TIMSS and PISA assessments. This was the case of Japan 

after the publication of the PISA 2003 results (OECD, 2004). The Japanese government 

refocused school teaching and curriculum from an emphasis on ‘solid academic ability’ 

to ‘PISA-style Literacy’ (Ninomiya, 2019). According to Matsushita, and Oohashi (as 

cited in Ninomiya, 2019), ILSAs have also influenced the creation of an ‘evidence-based 

improvement cycle’ and a corresponding ‘target management system’ as part of Japan’s 

education reform. ILSAs have also influenced education reform in Spain where Spanish 

students reportedly performed poorly on TIMSS, PIRLS, and PISA. The poor 

performance of students on the 2012 PISA assessment led the government of Spain to 

undertake education reform that specifically targeted the secondary level (Choi & Jerrim, 

2016). In Italy, PISA’s results have influenced the implementation of initiatives at the 

local and national levels, including teacher training and retooling, and delivery, and 

support to schools aimed at reducing education disparities between the rich and poor. The 

initiatives include the teaching of the 3 subject domains assessed by PISA, targeting areas 

of deficiencies in student ability (Damiani, 2016). 

The assessments administered by PISA and TIMSS serve as ranking for 

comparison and benchmarking tools for student achievement at the end of compulsory 
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education (Güvendi̇r, 2017; Sahlberg, 2011; Želvys, 2017). For instance, PISA’s 

benchmark for 2022 requires students to achieve at least the 3rd-level in reading with no 

less than 49%. Benchmarks for mathematics and science are set at 51% and 56% 

respectively. ILSAs respond to the global education reform movement by providing 

opportunities to compare the achievement of 15-year old students in various countries 

within a common education space (Želvys, 2017). ILSAs provide objective and global 

evidence of the comparative effectiveness of the education systems in participating 

countries (Adamson, Forestier, Morris, & Han, 2017). The ranking data provided by both 

TIMSS and PISA have inspired lower performing countries to seek educational best 

practices from the better performing countries. Policymakers from England have led fact 

finding missions to Hong Kong, Shanghai and Singapore in search of a formula for 

success and a system on which to model their pedagogical practices (Adamson et al., 

2017; You, 2018).  

ILSAs have created a sagacity of global educational accountability, thereby 

influencing the emphasis on national accountability mechanisms (Breakspear, 2012; 

Sellar & Lingard, 2014). ILSAs encourage accountability and include systems 

accountability at all levels, including students, teachers, schools and districts levels. 

System accountability can carry high stakes for schools when assessment results are used 

to streamline or reconstitute underperforming schools or districts (Goertz & Duffy, 

2003). LSA, at any level, is accompanied by many consequences including high stakes 

for schools or districts, teachers and students (Decker & Bolt, 2008). High-stakes 

consequences of LSAs for schools or districts is evident when the assessment outcomes 
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are used to restructure or reconstitute under-performing schools or districts (Goertz & 

Duffy, 2003). High-stakes consequences of LSAs for teachers is apparent when the 

assessment results are used to influence decisions regarding teachers’ evaluation, 

performance pay and continued employment (Braden, 2002). High-takes consequences of 

LSAs for students is ostensive when assessment results are used to determine a student’s 

fate, such as whether a student is promoted or retained at a grade level, whether a student 

will graduate or be assigned to a particular class, program or school (Goertz & Duffy, 

2003).  

There are both beneficial and detrimental effects associated with LSAs. LSAs 

provide a common assessment or ‘yardstick’ by which all students taking the assessment 

are measured, thereby ensuring that all students are treated fairly and equitably 

(O’Connor, 2017; Phelps, 2012). LSAs have also been found to have a positive effect on 

student achievement and to promote curricular alignment among state standards, 

classroom assessment and tests (Decker & Bolt, 2008; Phelps, 2012). LSAs also promote 

equity among traditionally at-risk groups of students, or students with special needs 

(Decker & Bolt, 2008; Roderick & Engel, 2001). LSAs follow rigorous test 

administration and result in sizeable data sets which provide opportunities for 

investigating pedagogy and classroom practice (Heyneman & Lee, 2013; Howie & 

Plomp, 2006; Wagemaker, 2013). The data sets from LSAs allow for secondary analysis 

by scholars. Researchers can measure achievement trends within countries, as well as 

engage in evidence-based enquiry (Gustafsson, 2008; Johansson, 2016).  
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Notwithstanding the benefits, LSAs have been criticized for causing a narrowing of 

the curriculum, encouraging an emphasis on lower-order thinking skills at the expense of 

higher-order thinking skills, and reducing instructional time at the expense of test 

preparation activities. It is also believed that LSAs encourage ‘teaching to the test’, and 

neglects content not covered in the assessment, rather than fostering the acquisition of 

general knowledge and skills (Decker & Bolt, 2008; Johansson, 2016; Rogers, 2014). 

LSAs provide rich data on student achievement, however, Rutkowski and Delandshere 

(2016) caution against making causal claims regarding student achievement, particularly 

where the mechanisms or causal explanations for a phenomenon may not be comparable 

across contexts such as groups and counties. The high-stakes accountability associated 

with LSAs have been thought to encourage cheating and reduce professionalism among 

teachers (Chester, 2005a; Chester, 2005b; Cizek, van der Linden, & Cook, 2012; 

Shephard, 2010). Other negative consequences associated with accountability in LSAs 

include questionable evaluation of teachers, resulting in increased teacher stress, and 

unwarranted reduction in teacher salaries and school sanctions (Rogers, 2014). 

Mathematics Content Domain 

Student success in mathematics requires mastery of key foundation mathematics 

concepts. Mathematics content is a body of knowledge organized by domains which 

provides a structured approach to the learning of mathematics. Some mathematics 

domains represent core content and concepts which are the foundation of mathematics 

and which act as the gateway for learning higher mathematics. Mastery of basic 

mathematics content provides the impetus for learning more advanced mathematics 
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content. The 5 mathematics content domains addressed in the study, are algebra, 

geometry, measurement, statistics, and RFG.  

Algebra. Algebra has been described as the foundation of mathematics (Ferrini-

Mundy, 2000; Greeno & Collins, 2008; Lee, Ng, & Bull, 2018; Litke, 2020a; Litke, 

2020b; MacGregor, 2004). Algebra is used in many phases of life, including solving 

everyday problems. It provides the tools to represent and analyze quantitative 

relationships (Knuth, Stephens, Blanton, & Gardiner, 2016). Algebra is therefore 

considered a gateway to future educational and occupational opportunities (Pedersen, 

2015). Schoenfeld (1995) likened the importance of algebra in the 20th century to reading 

and writing in the industrial age. Algebra is essential for understanding science, statistics, 

and business as well as functioning in a technological environment (Schoenfeld, 1995). 

Schoenfeld further posited: 

Algebra has become an academic passport for passage into virtually every  

avenue of the job market and every street of schooling. With a few exceptions, 

students who do not study algebra therefore are relegated to menial jobs and are 

unable often even to undertake training programs for jobs in which they might be 

interested. They are sorted out of the opportunities to become productive citizens 

in society. (pp. 11–12)  

 In contemporary society, algebra is considered a pivotal concierge to higher-level 

mathematics and a predictor of future academic success (Prendergast & Treacy, 2018). 

Given such prominence, algebra is assessed in many large-scale assessments including 

TIMSS, PISA, and National Assessment of Education Progress at the international level 
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and CSEC at the regional level. Algebra accounts for 30% of the content domain in 

TIMSS’s 8th-grade mathematics assessment (Mullis & Martin, 2019) and 26% in CSEC 

mathematics (CSEC, 2008).  

Recent researchers focused on various aspects of algebra including the teaching 

and learning of algebra at different levels of education. Some researchers focused on 

intervention strategies used by teachers to improve the learning of algebra (Cohen, 2018; 

Litke, 2020a; Litke, 2020b; Prendergast & Treacy, 2018; Rau & Mathews, 2017; 

Stylianou et al., 2019). Other Researcher investigated the optimal time for introducing 

students to algebra (Lee et al., 2018). Other researchers, including Barbieri, Miller-Cotto, 

and Booth (2019) examined the type of errors students make when solving algebraic 

problems. The researchers found that students’ general misconceptions about 

mathematics affected their algebraic problem-solving abilities as evident in the high 

number of conceptual errors demonstrated. The role of cognitive abilities in the learning 

of algebra was explored by Roegner (2013) who found that university students who rely 

on lower-order thinking processes, such as procedural approaches were least successful in 

solving algebraic problems than their counterparts who adopted a conceptual approach.  

Geometry. Geometry is considered one of the most important branches of 

mathematics (Ünlü & Ertekin, 2017). Crompton et al. (2018) defined geometry as “the 

study of properties, relationships, and transformations of spatial objects, within an 

interconnected network of concepts and representational systems” (p. 59). Geometry is 

fundamental to many aspects of everyday life (Cass, Cates, Smith, & Jackson, 2003). 

Geometry is important for understanding space. It provides students with a foundation for 



48 

 

understanding other areas in mathematics (Galitskaya & Drigas, 2020). Geometry is used 

to explore the characteristics and relationships of angles, lines, and shapes (Üstün & 

Ubuz, 2004). Success in mathematics is dependent on a sound understanding of geometry 

concepts (Education Review Office, 2018). Knowledge of geometry helps to develop 

students’ decision-making and judgement skills, and provides them with a foundation for 

advanced mathematical subjects, particularly in the area of STEM (Zhang, Ding, Stegall, 

& Mo, 2012).  

Geometry is a critical component of mathematics (Jiang, Li, Xu, & Chen, 2019). 

The geometry assessment strand is an essential mathematics strand is essential in other 

facets of mathematics (Ferrini-Mundy, 2000). Geometry was developed from the 

practical needs of daily life and influences a number of other disciplines, including 

natural sciences, and social studies (Atasoy, 2019; Ferrini-Mundy, 2000; Kilicoglu, 2020) 

and careers, such as art, architecture, and engineering (Ferrini-Mundy, 2000). Geometry 

is used to solve problems in other areas in mathematics, including measurement 

(Kilicoglu, 2020; Syarifudin, Purwanto, Irawan, Sulandra, & Fikriyah, 2019), as well as 

promoting understanding in other areas of mathematics, including number and 

operations, measurement, algebra, data analysis, and probability (Ferrini-Mundy, 2000). 

As an everyday language, geometry helps in describing places such as ‘parallel to’ and 

‘adjacent to’. Geometry is used to create an appreciation for the beauty of nature, by 

providing a way to interpret the physical environment, hence enhancing students’ 

reasoning and justification skills (Ferrini-Mundy, 2000). Student geometric knowledge 

has been found to be related to mathematics achievement, as well as overall academic 
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achievement (Giofrè, Mammarella, & Cornoldi, 2014; Giofrè, Mammarella, Ronconi, & 

Cornoldi, 2013).  

Measurement. Measurement is one of the foundation concepts in mathematics. 

Knowledge of measurement is required for day-to-day functioning in the world (Hurrell, 

2015). A comprehensive understanding of measurement is critical in the STEM field 

(Doabler et al., 2019). In the field of engineering, measurement is used to obtain precise 

estimates of mass and strain. Epistemologists also use measurement to determine trends 

in health-related events (Paules, Marston, & Fauci, 2019). Measurement is a very 

important education objective from kindergarten through the elementary years (Castle & 

Needham, 2007). Given the ubiquitous nature of measurement, Serow, Callingham, and 

Muir (2014) postulate that persons who lack knowledge of measurement, lack the 

capacity to effectively and efficiently operate in society, both personally and 

professionally, could not be considered numerate. Students with a lack of understanding 

of measurement are not likely to achieve overall mathematics proficiency (Doabler et al., 

2019). Measurement provides a context for learning other mathematics concepts, 

including place value, number, geometry, and probability (Van de Walle, Karp, & Bay-

Williams, 2013). Students are able to relate to measurement as they can often see its 

usefulness and can relate many of the tasks in measurement to their daily lives (Reys et 

al., 2012).  

Measurement is a powerful strand of mathematics. It has rich pedagogical 

possibilities and can create opportunities for rigorous and meaningful learning of 

mathematics. The teaching of measurement integrates well with other curricular subjects, 
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such as science, geography, music and history (Hurrell, 2015). In underscoring the 

importance of measurement in the curriculum, Reys et al. (2012) posit that the 

importance of measurement does not relate so much to the mathematics, but more so the 

pedagogical benefit. They summarize the importance of measurement as an effective way 

to engage and motivate students who would not normally be motivated to learn other 

topics.  

Statistics. Statistics, as a branch of mathematics, is essential for functioning in a 

society that is becoming more data-driven and digital. Statistics fosters critical thinking 

skills, and as such, the general population should be exposed to a basic understanding of 

statistics (Capaldi, 2019). A thorough understanding of statistics is required in the STEM 

field (Paules et al., 2019), as well as in achieving mathematics proficiency (Doabler et al., 

2019). We use statistics in every facet of our lives, often without being conscious 

(Spiegelhalter, 2020). Given its importance, statistics has gained prominence at all levels 

of education. According to Goldstein (2007), statistics should form a central feature in 

the mathematics curriculum. Statistics range from the simple throwing of a dice to 

statistical investigations including data collection, data representation (which involves the 

production of graphs and tables), and data reduction (finding means and ranges, and 

drawing inferences). The study of statistics, or chance and data, is as important as the 

study of algebra, and is essential in the training of students as future citizens (Callingham 

& Watson, 2017; Watson, 2001). Statistics is an area of applied mathematics which can 

be considered an appropriate vehicle for motivating students to learn mathematics. It 

incorporates a wide variety of interpretative and manipulative skills and provides 
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opportunities for students to apply these skills to other areas, including arithmetic and 

graphs. Many students can relate to statistics as it presents real-life scenarios and familiar 

problems relating to other areas of study (Goldstein, 2007).  

 In accentuating the importance of statistics as a strand of mathematics, Goldstein 

(2007) wrote: 

 A basic understanding of statistical ideas, and especially the idea of statistical 

modelling involving exposure to statistical data analysis, is as fundamental to an 

understanding of modern society and its artifacts as is language literacy. From 

this, it follows that statistical knowledge and practice should suffuse the school 

curriculum. (p. 8) 

Goldstein argued for the retention of statistics as an integral part of the schools’ 

curriculum for the foreseeable future. Goldstein’s argument is consistent with the view of 

Mills (2004), that developing statistical thinking and reasoning skills are important 

objectives in society. Moore (2007) advocated establishing synergy between content, 

pedagogy, and technology in the teaching of statistics. According to Moore (2007), the 

nature of statistic lends itself to the active participation of students in the learning process 

and should be extended to include non-mathematical statistical concepts and ideas. 

Graphs. Graphing is an important curriculum area in preparing students for 21st- 

century careers in STEM (Larson & Whitin, 2010; NCTM, 2006; STEM Education 

Coalition, 2009). Graphing is usually associated with collecting and interpreting 

numerical information and is deemed a vital skill in a world that is inundated by data. 

Graphing also provides significant opportunities for students to represent and 



52 

 

communicate important mathematical relationships (Larson & Whitin, 2010). The 

construction and interpretation of graphs are essential mathematics activities (Ellis, 

Tasova, & Singleton, 2018). The study of graphs affords students opportunities to 

integrate mathematics with other areas of learning. An understanding of graphs is critical 

to understanding chance and data, as well as working mathematically and scientifically, 

including investigating and communicating, and in general, participating effectively in 

society and the environment (Lake & Kemp, 2001). Knowledge of graphs is important to 

interpreting scientific factors, analyzing data, and analyzing patterns (Berg & Boote, 

2017). Understanding graphs is considered a higher order thinking skill as it includes 

reading, interpreting, and synthesizing information represented in various pictorial forms 

(Patahuddin & Lowrie, 2019).  

CSEC Mathematics Cognitive Domain 

The cognitive domains used in the CSEC mathematics examinations are adopted 

from Bloom’s original taxonomy of educational objectives (Bloom et al., 1956). The first 

two levels, knowledge and comprehension, are used as defined by Bloom’s taxonomy. 

The third level, application, was renamed reasoning, in the CSEC mathematics syllabus 

(CSEC, 2008). The CXC has defined the cognitive domains as following:  

Knowledge. Items that require the recall of rules, procedures, definition, and facts, 

that is, items characterized by rote memory as well as simple computation, computation 

in measurement, construction and drawings.  
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Comprehension. Items that require algorithmic thinking that involve translation 

from one mathematical mode to another. Use of algorithms and the application of these 

algorithms to familiar problems situations.  

Reasoning. Items that require:  

(i) Translation of non-routine problem into mathematical symbols and then 

choosing suitable algorithms to solve the problems; 

(ii) Combination of two or more algorithms to solve problems; 

(iii) Use of an algorithm or part of an algorithm, in a reverse order, to solve a 

problem;  

(iv) The making of inferences and generalizations from given data; 

(v) Justification of results or statement; 

(vi) Analyzing and synthesizing (CSEC, 2008).  

The Importance of Mathematics 

Mathematics competency is an important component of STEM and is critical to 

our daily lives and the success of an economy (Algarni, 2018; Hassan, Abdullah, Ismail, 

Suhud, & Hamzah, 2019; Panizzon et al., 2018; Primi et al., 2020; Waxman, 2020). 

Mathematics education helps students to develop their own knowledge and become 

active learners by equipping them with the resources and opportunities to explore, 

investigate, and make sense of real-world situations, thereby constructing a solid 

foundation for future success (Hassan et al., 2019). Mathematics and science literacy help 

to liberalize and stabilize society as well as contribute to societal development, and give 

citizens hope for the future (Bosman & Schulze, 2018). As an a priori discipline, 
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mathematics provides science with concepts, theories and techniques for interpreting and 

explaining the physical world (Waxman, 2020). Mathematics plays a pivotal role in our 

daily lives, not only for personal success, but it is indispensable in the pursuit of careers 

that are important for a country’s economic growth and development (Naidoo & Kapofu, 

2020; Primi et al. (2010). Persons who lack mathematical competence are likely to be 

economically disadvantaged (Lipnevich et al., 2016). Now, more than ever, mathematics 

is a central part of life and is critical to making informed decisions and existing as 

productive citizens (Algarni, 2018). Mathematics competency is critical for success in 

our high-paced 21st century (Karakolidis et al., 2016). The importance of mathematics is 

also recognized by students who reported that though challenging, mathematics is 

important for future careers, especially in the field of STEM (Dobie, 2019) 

Mathematics Achievement 

Students’ mathematics achievement is a major component of their overall 

academic achievement and is considered indispensable to life (Ajello, Caponera, & 

Palmerio, 2018; Soni & Kumari, 2017; Vista, 2016). Mathematics competence is an 

essential prerequisite for lifelong learning and active participation in society and culture 

(Ehmke, van den Ham, Sälzer, Heine, & Prenzel, 2020). Despite such high value 

associated with mathematics, students at all levels continue to underperform in the 

subject, thereby attracting attention locally, regionally, and internationally. ILSAs such as 

TIMSS and PISA have established benchmarks for mathematics achievement 

internationally. The results consistently show many countries performing below the 

benchmarks established for TIMSS fourth grade and eighth grade mathematics (Mullis, 
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Martin, Foy, & Arora, 2012; Mullis et al., 2015). The 2015 TIMSS mathematics 

assessment included 49 countries. Tables 4 and 5 show the percentage of students 

achieving the various benchmarks at the fourth grade level and eighth grade level 

respectively. 

Table 4 

 

Percentage of Fourth-Grade Students Achieving Benchmark 

Benchmark Definition Percentage 

Intermediate Students can apply basic mathematical knowledge in 

simple situations 

75% 

High Students can apply knowledge and understanding to 

solve problems 

65% 

Advanced Students can apply knowledge and understanding in a 

variety of relatively complex situations and explain 

their reasoning 

6% 

Note. Percentages are based on benchmark categories and do not add to 100% as they do 

not include scores that did not meet these benchmarks 

 

At the fourth-grade level, only 6% of the students in the 49 countries achieved the 

advanced benchmark. Fourteen countries showed relative weakness in numbers, 21 in 

geometric shapes and measurement and 20 in data display (Mullis et al., 2015). 
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Table 5 

 

Percentage of Eighth-Grade Students Achieving Benchmark 

Benchmark Definition Percentage 

Intermediate Students can apply basic mathematical knowledge in 

a variety of situations 

62% 

High Students can apply knowledge and understanding in a 

variety of relatively complex situations 

26% 

Advanced Students can apply and reason in a variety of problem 

situations, solve linear equations and make 

generalizations 

5% 

Note. Percentages are based on benchmark categories and do not add to 100% as they do 

not include scores that did not meet these benchmarks. 

 

Overall, only 5% of the students in the 49 countries achieved the advanced 

benchmark at the eighth grade level (Mullis et al., 2015). Twelve countries showed 

relative weakness in number, 14 in algebra, 19 in geometry, and 22 in data and chance 

(Mullis et al., 2015). 

Ehmke et al. (2020) investigated the concordance between students’ scores in the 

2012 PISA mathematics assessment, used to define international benchmarking, and their 

scores in the National Education Panel Study (NEPS) in Germany. The results showed 

that the total sample, as well as subgroups, there were almost identical distributions of the 

PISA proficiency levels. The outcomes of the study provide evidence of concordant score 

distribution, thereby supporting the validity of the PISA benchmarks for international 
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mathematics achievement. The results also provide insights of how national assessment 

could be related to international assessments (Ehmke et al., 2020). 

Mathematics is a multidimensional construct that includes different cognitive skills 

(Gilmore et al., 2018; Männamaa et al., 2012; Ӧlmez, 2020). The development of 

mathematics skills is a complex process which requires the mastery of several subskills 

(Locuniak & Jordan, 2008; VanDerHeyden & Burns, 2009) and the use of various 

cognitive abilities (Taub, Floyd, Keith, & McGrew, 2008). A variety of nomenclature 

have been used by researchers to describe cognitive abilities. The Cattell-Horn-Carroll 

(CHC) theory of human cognitive abilities describes cognitive abilities in terms of three 

strata of intelligence, namely: general intelligence (g), broad cognitive abilities, and 

narrow cognitive abilities. The broad cognitive abilities include: fluid reasoning (Gf), 

comprehension-knowledge (Gc), short term memory (Gsm), visual processing (Gv), 

auditory processing (Ga), long-term retrieval (Glr), processing speed (Gs), 

decision/reaction time or speed (Gt), reading and writing (Grt), and quantitative 

knowledge (Gq). These broad cognitive abilities subsume approximately 70 narrow 

cognitive abilities (Floyd, Evans, & McGrew, 2003; McGrew, LaForte, & Schrank, 2014) 

The CHC theory of cognitive abilities has provided a rich theoretical base for 

understanding human cognitive abilities and their relationships with various academic 

outcomes (Floyd et al., 2003). Many researchers have reported strong relationships 

between cognitive abilities and mathematics achievement. Achievement in mathematics 

is usually differentiated into two dimensions: the content of the task, which includes the 

topics, and the cognitive abilities needed for solving these tasks, such as knowing, 
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computing, knowing and using algorithms, solving word problems, as well as applying 

these skills in novel situations (Männamaa et al., 2012). According to Gilmore et al. 

(2018), a thorough understanding of mathematics achievement requires an identification 

of important relationships between cognitive skills and specific components of 

mathematics.  

Both cognitive and non-cognitive factors have been found to play a significant role 

in student mathematics achievement (Lee & Stankov, 2018; Semeraro, Giofrè, Coppola, 

Lucangeli, & Cassibba, (2020). However, within recent times, the role of cognitive 

abilities in mathematics achievement has attracted the attention of many researchers who 

have generally found strong associations between these cognitive abilities and 

mathematics achievement among students of varying ages (Areepattamannil & Caleon, 

2013; Caemmerer, Maddocks, Keith, & Reynolds, 2018; Cormier, Bulut, McGrew, & 

Singh, 2017; Cowan, Hurry, & Midouhas, 2018; O’Connell, 2018). The influence of 

general intelligence and cognitive abilities on the mathematics achievement of 5-year-old 

to 19-year-old students was investigated using Woodcook-Johnson’s (WJ) III tests of 

cognitive abilities (WJ COG) as the measure of student achievement (Cormier et al., 

2017; Floyd et al., 2003; Giofrè, Borella, & Mammarella, 2017; Taub et al., 2008; Tolar, 

Fuchs, Fletcher, Fuchs, & Hamlett, 2016). Taub et al. (2008), Cormier et al. (2017), and 

Giofrè et al. (2017) used structural equation modelling; which includes factor analysis 

and multiple regression analysis to analyze the structural relationship between latent 

structures and measured variables while Floyd et al. (2003) used multiple regression 

analysis to investigate the relationship among the variables. The results of the studies 
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were generally consistent. They all reported moderate to strong relationship between 

cognitive abilities and mathematics achievement. However, the strength of the 

relationship seemed to vary depending on the cognitive ability, the age of the student, and 

the type of mathematics task. For instance, both Floyd et al. (2003) and Cormier et al. 

(2017) found processing speed to have a moderate relationship with mathematics 

reasoning and a moderate to strong relationship with mathematics calculation skills 

during elementary years. However, Taub et al. (2008) found the relationship between 

processing speed and mathematics achievement to be significant. In the latter years, 

comprehension-knowledge (Gc) was found to be moderately related to mathematics 

calculation skills and moderately to strongly related to mathematics reasoning (Floyd et 

al., 2003). Fluid reasoning (Gf), short-term memory (Gsm), and working memory 

generally demonstrated moderate relations with the mathematics domains. 

Fluid intelligence, also referred to as fluid reasoning (Gf), is a broad cognitive 

ability that has been found to play a critical role in students mathematics achievement. 

Primi et al. (2010) investigated the association of fluid intelligence and inter-individual 

differences in intra-individual growth on mathematics achievement among 13-year-old 

and 15- year-old students in the United States. The mathematics domains investigated 

were: geometry, numbers, equations, statistics, functions, and graphs. The cognitive 

domains were numerical reasoning, verbal reasoning, spatial reasoning, and abstract 

reasoning. The study found fluid intelligence to be strongly related to mathematics 

achievement at all ages. Students with higher fluid intelligence showed faster increases in 

mathematics scores than their counterparts with lower fluid intelligence. Fluid 
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intelligence was also found to be associated with students’ reasoning and problem-

solving abilities. Green, Bunge, Chiongbian, Barrow, and Ferrer (2017) investigated the 

role of fluid reasoning in mathematics achievement among a sample of students from age 

6 to 21 also in the United States. The researchers used structural equation modelling to 

examine the direct and indirect relations between children’s previous cognitive abilities 

and their future mathematics achievement. Like Primi et al. (2010), Green et al. (2017) 

found fluid reasoning to be the only significant predictor of future mathematics for 

students in both primary and secondary school. Similar findings were reported by Gelbart 

(2007) who investigated the relationship among cognitive functioning, as defined by the 

CHC theory and mathematics achievement among a sample of high school students. 

Fluid reasoning was found to be a strong and specific predictor of mathematics reasoning. 

The results of these studies were further corroborated by the findings of a meta-analysis 

conducted by Peng, Wang, Wang, and Lin (2019), in which they sought to determine the 

relationship between fluid intelligence and reading and mathematics. Fluid intelligence 

and reading and mathematics were found to have a reciprocal relationship. However, the 

relationship between fluid intelligence and mathematics was stronger than that between 

fluid intelligence and reading, and increased with the complexity of the tasks and the age 

of the students (Peng et al., 2019). The findings of these studies support Cattell’s 

conceptualization of fluid reasoning as a precursor to the development of the mathematics 

problem solving skills. The studies included a wide spectrum of learners, ranging from 

kindergarten to university, and covered a wide range of time, in some cases, over a 

decade apart, and ultimately the outcomes were consistent across age and time. 
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Working memory (wm) is another cognitive ability that is associated with 

mathematics achievement. Research in this area have spanned kindergarten to university. 

Lee and Bull (2016) investigated the relationship between working memory updating and 

mathematics performance from kindergarten to ninth grade and the extent to which 

earlier capacities in working memory updating and mathematics contributed to later 

development. They found that students’ working memory updating capacity consistently 

predicted subsequent mathematics performance and that students with higher working 

memory or updating capacity performed better in mathematics than their counterparts 

with lower working memory updating capacity (Lee & Bull, 2016). The findings of Lee 

and Bull (2016) were supported by those of Gimbert, Camos, Gentaz, and Mazens (2019) 

who found working memory to be a significant predictor of mathematics achievement 

among 7-year-old students. Musso, Boekaerts, Segers and Cascallar (2019) analyzed the 

relationship between working memory capacity, executive attention, self-regulated 

learning, item characteristics and mathematics performance among of sample of 

university students (ages 18–27). The mathematics test consisted of multiple-choice items 

testing arithmetic, percentages, proportion, decimals, algebra and geometry. The finding 

of the study indicated a direct relationship between working memory capacity and 

mathematics performance. These findings are consistent with findings from a meta-

analysis conducted by Peng, Namkung, Barnes, and Sun (2016) to determine the 

relationship between mathematics and working memory. They found a significant 

moderate relationship between mathematics and working memory. This relationship was 

significantly affected by the type of mathematics skills. Problem-solving tasks involving 
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worded problems and whole number calculations showed the strongest relation with 

working memory, whereas geometry showed the weakest relation with working memory. 

The relation between working memory and algebra was moderate. Donati, Meaburn, and 

Dumontheil (2019) investigated the effect of working memory, inhibitory control, and 

processing speed on achievement in English, math, and science during adolescence. The 

mathematics assessment included conceptual understanding, mathematical reasoning, and 

problem solving. Donati et al. (2019) found working memory, reasoning, and slow 

processing predicted students’ mathematics performance at the adolescence stage. 

Campos, Almeida, Ferreira, Martinez and Ramalho (2013) also found working memory 

to be a significant predictor of student mathematics achievement among a sample of third 

grade Portuguese students. Although the studies included students of varying ages and 

from varying geographical locations and nationalities, they all yield consistent results.  

Problem-solving ability, as a specific cognitive domain, is a significant predictor of 

student mathematics achievement (Primi et al., 2010; Vista, 2016; Wong & Ho, 2017). 

Vista (2016) investigated the role of problem-solving ability and reading comprehension 

skills in predicting growth trajectories of mathematics achievement in Australian students 

from third grade to eighth grade. Students’ initial problem-solving ability predicted their 

initial level of mathematics achievement as well as the growth in mathematics 

achievement (Vista, 2016). The relationship between problem-solving ability and 

mathematics achievement was partially mediated by reading comprehension. The 

findings of this study support earlier findings by Geary (2011) and Primi et al. (2010) 

who found problem-solving to play a significant role in the learning of mathematics 
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among seventh and ninth grade Portuguese students. Wong and Ho (2017) examined 

students’ arithmetic word-problem solving among a sample of students from kindergarten 

to second grade in Hong Kong. The researchers’ main aim was to identify correlates of 

student problem-solving component processes of worded mathematics problems. Student 

problem-solving abilities longitudinally predicted their computation and general 

mathematics achievement. However, domain-general skills predicted students’ number-

sentence construction whereas numerical-magnitude processing, word reading, and 

domain-general skills predicted arithmetic computation. Bjork and Bowyer-Crane (2013) 

investigated whether different cognitive skills underlie mathematical word problems and 

numeric operations. The study was conducted among a sample of second grade students 

in the United Kingdom. Bjork and Bowyer-Crane (2013) found reading comprehension 

and phonological awareness to be a significant predictors of students’ mathematical word 

problem, while phonological awareness predicted students’ performance on numerical 

operations. The studies have been conducted in varying countries, but have all shown 

consistent results. Problem-solving ability has been found to play a central role in 

mathematics achievement in general. However, different aspects of student problem-

solving abilities have different effects on specific mathematics domain. An important 

general finding is that student problem-solving abilities are evident at an early age, and 

these abilities predict future mathematics achievement. These findings have important 

implications for designing mathematics instruction.  

While cognitive abilities have been found to be associated with general 

mathematics achievement, other studies have found specific cognitive abilities to predict 
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achievement in specific mathematics domain. Männamaa et al. (2012) examined the 

cognitive correlates of three domains of mathematics skills, namely: knowing, applying, 

and reasoning, or problem solving. Their aim was to identify potential deficits in 

cognitive areas that are associated with low mathematics achievement in specific 

domains among a sample of third grade students in the United States. Using confirmatory 

factor analyses (CFA), the researchers confirmed a four-factor model of mathematics 

skill: knowing-recalling, knowing-computing, applying and problem-solving. They found 

that verbal concepts contributed to the mathematics domains of knowing, applying and 

problem solving. In addition, verbal concepts and verbal reasoning were found to be most 

consistently associated with mathematics knowledge and problem-solving domains. 

Verbal working memory was also found to predict mathematics problem solving skills 

(Männamaa et al., 2012). Similar findings were reported by Zhang et al. (2017) who 

investigated the role of domain-general and numeric skills in predicting performance in 

arithmetic cognitive domains of knowing, applying and reasoning, among a sample of 

Finnish students. The researchers specifically examined the extent to which domain-

general skills, such as spatial, language, rapid automatized naming (RAN) and memory at 

kindergarten and first grade predicted students’ performance in fourth grade written 

computation, arithmetic word problems and arithmetic reasoning. CFA confirmed the 

four-factor model for the domain of general skills, spatial, language, rapid automatized 

naming and memory. These domain-general skills were found to play a central role in the 

development of students’ arithmetic competence although they contributed independently 

to the learning of arithmetic. Domain-general skills played a mediating role between the 
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development of numeric skills and arithmetic domain while spatial visualization was a 

unique predictor in arithmetic learning in the three arithmetic domains (Zhang et al., 

2017). In both studies, the researchers conducted CFA to first confirm the factors, 

however, in the CFA conducted by Männamaa et al. (2012), the researchers were 

interested in confirming the mathematics skills, while Zhang et al. (2017) were interested 

in confirming the cognitive skills. However, both studies support the view that specific 

cognitive domains predict achievement in specific mathematics domain. 

There is a lack of research on cognitive abilities and mathematics performance in 

the Caribbean. A search of the literature revealed that one such study was conducted at 

the primary level in Trinidad and Tobago. In a mixed method study, Khan (2017) 

investigated the proficiencies of students in the national Grade 4 mathematics 

examination in Trinidad and Tobago. The test included four content strands: number, 

measurement, geometry and statistics. These content strands were tested at three 

cognitive levels: recall, algorithmic thinking, and problem solving. Students’ 

proficiencies were described according to four levels: below standard, nearly meets, 

meets, and exceeds. The data analysis included descriptive statistics and ANOVA 

repeated measures. Khan (2017) reported that the lower-performing group in the study 

demonstrated poor reading comprehension skills which affected their mathematics 

performance. Students performed poorly in the measurement strand, and in questions 

involving division and multiplication of algorithms. Overall, questions which required 

higher order thinking skills posed the greatest challenges for all students.  
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Summary and Conclusions 

The literature on the mathematics content domains discussed above have 

established the importance of each strand in preparing students to become productive 

citizens and function effectively in society (Cass et al., 2003; Lake & Kemp, 2001; 

Pedersen, 2015; Reys et al., 2012; Schoenfeld, 1995; Serow et al., 2014; Tajudin & 

Chinnappan, 2016; Watson, 2001). Also of significance, is the integrative and synergic 

nature of the various content domains and the ways in which they contribute to a better 

understanding of each other and of mathematics in particular, and other curriculum 

learning areas in general (Goldstein, 2007; Van de Walle et al., 2013; Zhang et al., 2012). 

To emphasize the relatedness of the content domains, researchers consider measurement 

an amalgam of understanding numbers and geometry (Browning, Edson, Kimani, & 

Asian-Tutak, 2014). Several researchers and educators have advocated an integrative 

approach to the teaching of the various mathematics content domains for greater 

pedagogical benefits (Browning et al., 2014; Hurrell, 2015). Battista (2007) recommends 

incorporating students’ experiences in the learning of geometry and measurement and 

engaging them in activities that allow them to explore and construct geometric ideas.  

The relationship between cognitive abilities and mathematics achievement has 

been investigated using different aspects of cognitive abilities. While there have been 

some mixed results, most researchers have reported a strong positive relationship 

between these two variables across time, age, and country. Some general cognitive 

abilities, such as fluid reasoning and working memory were found to have a direct effect 

on student mathematical problem-solving skills. Bloom’s taxonomy of educational 
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objectives (Bloom et al., 1956) has provided a framework for the construction of 

mathematics assessment regionally and internationally, including TIMSS and CSEC 

mathematics. The cognitive domains adopted from Bloom’s taxonomy are associated 

with general mathematics achievement as well as specific mathematics content domains 

and have been used to assess and report student mathematics achievement. Many large-

scale mathematics assessments include mathematics content domains such as algebra, 

geometry, measurement, statistics and graphs, which are considered foundational 

concepts and are critical to day-to-day functioning and providing a foundation for higher 

learning.  

While the relationship between cognitive abilities and mathematics achievement 

has been well established in the literature, most of the research were conducted among 

students in the United States, particularly at the primary level. From a Caribbean 

perspective, Khan (2017) has added to the literature with her research on cognitive 

abilities and mathematics achievement among students at the primary level in Trinidad 

and Tobago. Through this study, I hope to add to the literature on cognitive domains and 

mathematics achievement in specific content domains, thereby extending the 

investigation of the phenomena from a Caribbean perspective, particularly among 

secondary students in Saint Vincent and the Grenadines. It is hoped that the outcome of 

this study will provide educators with an in-depth understanding of students’ cognitive by 

content achievement so that they can better target instructions to meet students’ needs 

and abilities, with a view to improving mathematics achievement at the CSEC level. In 
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Chapter 3 I describe the method used to guide the study in seeking answers to the 

research question.  
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Chapter 3: Research Method 

Introduction 

The purpose of this study was to determine the extent to which the CSEC 

mathematics scores of high-scoring Vincentian students versus low-scoring Vincentian 

students in the cognitive domains of knowledge, comprehension, and reasoning differ 

across the content domains of algebra, geometry, measurement, statistics, and RFG. The 

study was quantitative in nature and used a nonexperimental, cross-sectional design. In 

this chapter, I describe the research design, rationale for the study, and variables 

investigated. The description includes the connection between the research design and the 

ways in which the design will advance knowledge in the discipline. I also give an 

explanation of the constraints consistent with the design. I outline the methodology of the 

study, which includes a description of the population, sample, sampling procedure, and 

operationalization of the variables. Following the operationalization of the variables, I 

describe the examination process, including the development and administration of the 

examination; marking, grading and reporting; and validity and reliability of the 

examination. I then outline the data analysis plan and the procedure for accessing the 

data, including the process of data cleaning. I discuss threats to internal validity, external 

validity, construct validity, and statistical conclusion validity, as well as ethical 

procedures, including treatment and protection of the data in accordance with the 

stipulations of the institutional review board (IRB). The chapter concludes with a 

summary of the design and methodology and a transition to Chapter 4.  
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Research Design and Rationale 

 In this nonexperimental quantitative study, I used a cross-sectional design based 

on the analyses of archival (secondary) data that comprised the scores of Vincentian 

students in the 2017 May/June CSEC mathematics examination. A cross-sectional study, 

also referred to a “snapshot” of a group of individuals, is an observational study in which 

the researcher simultaneously determines the exposure and outcome for each subject 

(Carlson & Morrison, 2009). The study design was cross-sectional in nature because data 

collection took place at one point in time and was used to compare two or more 

educational groups on a practice (Creswell, 2015; Ray, 2020). Advantages of the cross-

sectional design include the ease of replication to other settings, and generating 

hypotheses, as well as the relatively low cost and the ability to study multiple outcomes 

from a single study (Bangdiwala, 2019). Constraints of the cross-sectional design include 

the inability to develop strong causal attributions, and the inability to establish change 

(Bono & McNamara, 2011; Spector, 2019). Although the cross-sectional design does not 

establish causal connection, knowledge of the association of the variables provides a 

basis for theory development and targeting intervention. Secondary data analysis is a 

methodological approach to data analysis in which the researcher uses data that are 

already in existence, such as a repository (Hosein, 2019). In the case of this study, the 

data existed in the CXC’s database. Advantages of using secondary data include the 

ability of the researcher to use a sample that spans a large geographical area and allows 

for the study of national trends unobtrusive to the study subjects. However, secondary 

data may not include all the variables of interest, or the data may not be captured in a 
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form that is useful to the researcher (e.g., group level data versus individual data). 

Additionally, the data may be dated and may not reflect current trends. Also, secondary 

data do not allow for the establishment of causality (Bangdiwala, 2019; Bono & 

McNamara, 2011; Carlson & Morrison, 2009).  

Variables 

The study included four independent variables, which are categorical variables. 

Each independent variable had two sublevels. There were five dependent variables, 

measured at the continuous level. 

Independent variables. The four variables were the three cognitive domains 

(knowledge, comprehension, and reasoning) and CoP (high-scoring students and low-

scoring students).  

Dependent variables. The five dependent variables were algebra scores, 

geometry scores, measurement scores, statistics scores, and RFG scores. 

Methodology 

Population 

 The population comprised 1,713 students from secondary schools and private 

institutions in Saint Vincent and the Grenadines who wrote the 2017 May/June CSEC 

mathematics examination. Mathematics at the CSEC level is compulsory in Saint Vincent 

and the Grenadines. The CSEC mathematics examination is usually written in Grade 11 

(age 16 years) but may also be written by Grade 10 students who are more advanced. The 

examination may also be written by private candidates (students who are outside the 
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regular secondary school setting and who may be attending private institutions, or 

students studying on their own without formal instruction). 

Sampling and Sampling Procedures 

 I used stratified random sampling to select the sample for the study. Stratified 

random sampling is a method of sampling in which a population is divided into 

subgroups based on one or more variables central to the analysis of interest, then a 

random sample is drawn from each subgroup (Frankfort-Nachmias et al., 2015). In this 

study, I selected a stratified sample based on CoP: high-scoring students and low-scoring 

students in the 2017 May/June CSEC mathematics examination. I uploaded an Excel 

spread sheet file containing the scores of all the Vincentian students who wrote the 2017 

May/June mathematics examination into the SPSS software. I ranked students by scores, 

from lowest to highest, 0 to 94. I then classified students with scores from 0 to 47 as low-

scoring, and those with scores from 48 to 94 as high-scoring. The maximum available 

score was 94, and because 47 of 94 represents 50%, I used this as the criterion to separate 

the students into two groups. I categorized those students who scored to 50% as low-

scoring, and those who scored above 50% as high-scoring. Of the 1,713 students who 

wrote the examination, 185 students met the criteria to be classified as high-scoring. I 

selected the high-scoring, then selected a random sample of 185 from the remaining 

1,528 students classified as low-scoring.  

I conducted G*Power analysis for two-way MANOVA with two levels and five 

dependent variables to determine an adequate sample size using alpha (α) of 0.05, a 

power of 0.80 and a small effect size (f = 0.15). Based on the assumptions, the G* Power 
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analysis determined that a total sample size of 40 was sufficient (see Faul, Erdfelder, 

Buchner, & Lang, 2013). However, I used a total sample size of 370. I first selected the 

maximum number of high-scoring students available (185) and randomly selected a 

corresponding number of low-scoring students (185) to have equal numbers in each 

group. The measures taken in the sample selection were to ensure that all the sample 

requirements were met for a small effect size to control both the Type 1 error probability 

α and the Type 2 error probability 1−β (Mayr et al., 2007). The maximum score available 

on each cognitive domain (knowledge, comprehension, and reasoning) were 32, 34, and 

28, respectively. I divided the scores on each cognitive domain into two strata as follows: 

knowledge, 0 to 16 (low-scoring) and 17 to 32 (high-scoring); comprehension, 0 to 17 

(low-scoring) and 18 to 34 (high-scoring); reasoning, 0 to 14 (low-scoring) and 15 to 28 

(high-scoring). I recoded the three independent variables, and the CoP, into categorical 

variables with two levels. 

 The data for the study were archival data from the CXC’s database, comprising 

Vincentian students’ scores in the 2017 May/June CSEC mathematics examination. The 

data comprised candidates’ combined scores on Paper 01, the multiple-choice paper, and 

Paper 02, the essay paper, for questions that assessed the three cognitive domains in the 

five content domains of interest. The three cognitive domains are knowledge, 

comprehension, and reasoning, and the five content domains are algebra, geometry, 

measurement, statistics, and RFG. After the examination was written, the data became the 

property of the Ministry of Education, National Reconciliation and Information, Saint 

Vincent and the Grenadines, whereas the CXC was the custodian of the data. Written 
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permission was requested and granted from both the owner and custodian of the data for 

use in the study (see Appendix F).  

Walden University’s IRB approval to advance to the data collection stage was 

received on April 4, 2020 (Approval No: 04-08-20-0402795; see Appendix G). After 

receiving approval, I sent a letter, via email, to the data manager in the Information 

System Department at the CXC, requesting the data. In the email, I attached the written 

permission received for the use of the data, from the CXC, and the Ministry of Education, 

National Reconciliation and Information, Saint Vincent and the Grenadines (see 

Appendix H). I followed up the email with a telephone conversation to ensure that the 

information was received, and the request was understood. I also sent the email to 

ascertain the earliest time by which I may receive the data. I received the data, via secure 

email on April 16, 2020. I immediately saved the data to my personal computer and 

backed up on two flash drives, which, when not in use, are password protected and kept 

in a locked filing cabinet. 

Operationalization of Variables 

There were four independent variables: the three cognitive domains (knowledge, 

comprehension, and reasoning), and CoP. Each independent variable had two levels. 

(high-scoring students and low-scoring students). The cognitive domain were the focal 

variables and CoP was the moderator variable. There were five dependent variables: 

algebra scores, geometry scores, measurement scores, statistics scores, and RFG scores. 

The operation of the independent variable of cognitive domain was demonstrated by 

students’ ability to engage in various levels of cognitive processing as defined by 
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Bloom’s taxonomy of learning objectives (Bloom et al., 1956) and operationalized in the 

CXC mathematics syllabus (Caribbean Secondary Examination Certificate, 2008). 

Knowledge represents foundational cognitive skill and requires students to recall facts, 

rules, definitions, and procedures, as well as perform simple computations. 

Comprehension is defined by the ability to engage in algorithmic thinking that involves 

translation from one mathematical mode to another, and the application of algorithms to 

solve familiar problems (CSEC, 2008). Reasoning is characterized by the ability to solve 

nonroutine problems, to make inferences and generalizations from given data and to 

analyze and synthesize information (CSEC, 2008). These cognitive domains provided the 

basis for the design of the CSEC mathematics examination, as well as for the analysis and 

reporting of students’ results. For the CoP, a high-scoring student was denoted by a 

composite score from 48 to 94, and a low-scoring student was denoted by a composite 

score of 0 to 47 in the 2017 May/June CSEC mathematics examination. The dependent 

variables were the scores in the five mathematics content domains: algebra, geometry, 

measurement, statistics, and RFG. These content areas form part of the core of the CSEC 

mathematics curriculum. They are considered foundation concepts in mathematics that 

are required for everyday functioning in society. In this study, students’ mathematics 

competence was determined by their ability to solve problems in these five content areas.  

The Examination Process  

The examination process entails the development and administration of the 

examination, marking and grading of the examination, reporting of the results, as well as 

the reliability and validity of the examination. 
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Examination development and administration. The 2017 May/June CXC 

mathematics examination was developed by a committee that comprised three 

mathematics content specialist and an assessment officer. The examination comprised 

two components: Paper 01 – a multiple choice paper, and Paper 02 – a constructed 

response paper. The multiple-choice paper was collated by the assessment officer, prior 

to the meeting, using pretested items from the item bank. The draft questions and 

accompanying key and mark schemes, or scoring rubrics for Paper 02, were written by 

the content specialist prior to the meeting, in accordance with a predetermined table of 

specifications (CXC, n.d.). A 5-day meeting was then convened to review and collate the 

draft examination papers. At the meeting, the questions were reviewed and the draft 

examination papers collated. The examination was moderated by an independent content 

expert and further reviewed and edited by three assessment officers and one copy editor 

(CXC, n.d.). The process of the examination development commenced 2 years prior to 

the administration of the examination. The mathematics examination was administered as 

a paper and pencil test to students in the 19 participating territories simultaneously (CXC, 

n.d.). 

Examination script marking. The Paper 01 was machine scored and the Paper 

02 was marked on screen by mathematics teachers in the various Caribbean countries. 

The marking of the examination scripts began with the process of standardization, where 

all potential markers were oriented to the scoring rubric (CXC, n.d.). The committee that 

prepared the examination, as well as other mathematics content specialist, engaged in a 

process of standardization during a 4–day period. The process was guided by the 
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assessment officer. Standardization of Paper 02 involved reviewing the examination 

papers, key and mark scheme, or scoring rubric to ensure that the scoring rubric 

accurately reflects the tasks required by the examination questions and amending the 

scoring rubric where necessary (CXC, n.d.). Using the electronic marking tool, the 

committee selected a random sample of students’ responses from traditional high-scoring 

schools, average scoring schools, and low-scoring schools in various territories. The 

committee then used the scoring rubric to mark the responses independently, then 

compared and discussed the scores to arrive at final agreed (definitive) scores. 

Alternative, valid methods used by students to solve the problems were accepted and 

incorporated into the scoring rubric (CXC, n.d.). After the committee completed 

standardization, they in turn standardized a group of experienced teachers, referred to as 

seed makers. The seed makers assisted the committee in marking additional responses, 

which were reviewed by the committee and classified as seeds. The seeds were used as 

quality standards, to judge the accuracy of the markers marking (CXC, n.d.). The 

committee also selected a set of responses that were used by the markers as practice 

responses, standardization responses, and an additional standardization (STM) responses, 

for markers who had to be restandardized. Prior to the markers being standardized, they 

were required to attend a virtual standardization meeting to discuss the marking of the 

responses to which they were assigned to mark. During the meeting, their supervisor 

oriented the markers to the scoring rubric, highlighting any nuances and peculiarities in 

the scoring rubric, for example, the award of partial credit for partially correct responses 

(CXC, n.d.). 
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The markers began the process by using the scoring rubric to mark the assigned 

practice responses. After marking each practice response, the markers were allowed to 

see the model responses that were marked by the committee. The markers then compared 

their marked responses against the model responses so that they could determine the level 

of accuracy and the areas that needed improving (CXC, n.d.). After the markers 

completed the practice marking, they then engaged in standardization. For the 

standardization, the markers were required to mark at least eight out of 10 responses 

within an agreed range (tolerance level) from the model responses. The markers who 

achieved this objective were automatically approved to engage in live marking. Markers 

who did not achieve the objective received feedback from their supervisors and were 

required to restandardize using a different set of responses (CXC, n.d.). Markers who 

failed standardization twice were not allowed to engage in the marking exercise. Quality 

assurance during marking included supervisors reviewing and or remarking responses 

marked by markers. Additionally, a set of responses referred to as seeds, which were 

responses previously marked by the supervisors and approved by the committee, 

appeared at random to the markers. If markers marked two consecutive seeds out of 

tolerance, they were suspended from the marking exercise (CXC, n.d.).  

Grading and reporting of examination results. After the marking of all 

responses was completed, the scores were analyzed by the assessment officer and the 

examining committee, and grades awarded based on predetermined criteria for the award 

of grades (CXC, n.d.). These scores and grades were reviewed by a technical advisory 

committee who interrogated the examination process, commencing with the development 
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of the examination through standardization, marking and the awarding of grades. The 

final sanctioning of the scores and grades was done by the final awards committee 

comprising representatives from the various territories, headed by the chairman of the 

organization (CXC, n.d.).  

Reliability and validity of the CSEC mathematics examination. Reliability and 

validity are necessary features of educational assessment required for making decisions 

regarding learners’ ability. Assessment validity refers to “the degree to which test-based 

inferences about students are accurate” (Popham, 2000, p. 94). The more evidence of 

validity, the more confidence one can place on the score-based inferences. There are 

three essential kinds of evidence that determine whether the inferences one makes from 

an educational assessment procedure are valid. The three kinds of evidence of validity 

are: content related evidence of validity, criterion related evidence of validity, and 

construct related evidence of validity. Content related evidence of validity refers to the 

extent to which an assessment procedure adequately represents the content of the 

assessment domain being sampled” (Popham, 2002, p. 52). Criterion related evidence of 

validity relates to whether performance on one assessment procedure accurately predicts 

performance on an external criterion, while construct related evidence of validity relates 

to whether there is empirical evidence that an inferred construct exists and a given 

assessment procedure is measuring the inferred construct accurately (Popham, 2002).  

Content related evidence of validity is established by using a test blueprint or 

table of specifications. The table of specifications specifies the cognitive process and the 

content to be covered by the test (Thorndike, 1997). The development of the 2017 
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May/June CSEC mathematics examination was based on the CSEC (2008) mathematics 

syllabus which was developed by the CXC and taught in the 19 territories. The 

examination process was guided by specimen papers and a table of specifications which 

together form a blueprint for the examination. The use of the table of specifications helps 

to establish validity of the examination by ensuring that the syllabus objectives and 

content are proportionately represented as stipulated by the syllabus. 

Nitko (2004) defined reliability as the degree to which students’ results remain 

consistent over replication of an assessment procedure. Reliability is established when 

students’ assessment results are the same in any of three situations; when they complete 

the same task(s) on two or more different occasions, two or more teachers mark their 

performance on the same task(s), or when they complete two or more different but 

equivalent tasks on the same or different occasions (Nitko, 2004). The reliability of the 

mathematics examination was established based on Nitko’s (2004) third condition as the 

students completed two components of the examination on two different occasions during 

the month of June 2017. The two components were the multiple-choice paper and the 

constructed response paper, both papers included the same content areas and were tested 

at the same cognitive levels. The CXC used the Kuder Richardson Formula 20 to 

estimate the reliability of the multiple-choice paper and Cronbach’s alpha to estimate the 

reliability of the constructed response paper and the whole examination. The reliability 

estimates for the three components were .91, .93, and .95 respectively (CXC, 2018). This 

means that students’ performance scores were consistent across the two components of 

the test. Hence, the test can be considered to have produced reliable scores. While 
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reliability does not guarantee validity, it is a necessary condition for validity (Nitko, 

2004; Popham, 2002). Based on the reliability estimates, the achievement domain was 

consistently measured. The table of specification ensures that the content domain was 

adequately sampled, based on the assessment requirements stipulated in the syllabus 

(CSEC, 2008), so that accurate score-based inferences can be made about students’ 

mathematics abilities. 

Data Analysis Plan 

I used secondary data in this study. Secondary data analysis is a methodological 

approach to data analysis in which a researcher uses data that are already in existence, 

such as a repository (Hosein, 2019). Some of the advantages of a secondary data analysis 

approach include access to larger datasets than would be otherwise feasible given the 

usual constraints of time and cost. Also, an existing dataset allows the data to be used 

parsimoniously (Hosein, 2019). However, the data are not always captured in a form 

required to answer the research question and sometimes proxies must be used (Hosein, 

2019). The secondary data for this study were retrieved from the CXC’s database and 

comprised the scores obtained by Vincentian students in the 2017 May/June CSEC 

mathematics examination. SPSS version 25 was used to analyze the data to answer the 

research question. 

The 2-way MANOVA has 10 assumptions that must be considered when 

choosing this statistical analysis. The first three assumptions relate to the study design 

and should be met prior to conducting the study (Ates, Kaymanz, Kale, & Tekindal, 

2019; Ito, 1980; Pituch & Stevens, 2016). The other seven assumptions relate to how the 
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data fits the 2-way MANOVA model and can be tested using SPSS. The assumptions are 

as follows: 

• Assumption 1. There should be two or more dependent variables that are 

measured at the continuous level. 

• Assumption 2. There should be two or more independent variables where 

each independent variable consists of two or more categorical independent 

groups. 

• Assumption 3. There should be independence of observation. That is, 

there should be no relationship between the observation in each group of 

the independent variable or between the groups themselves.  

• Assumption 4. There should be a linear relationship between the 

dependent variables for each group of independent variables. 

• Assumption 5. There should be no multicollinearity. That is, the 

dependent variables should be moderately correlated with each other. 

• Assumption 6. There should be no univariate and multivariate outliers. 

Univariate outliers are values of the dependent variable that are unusual 

within each group of the independent variable, whereas multivariate 

outliers are cases that have unusual combination of scores on the 

dependent variables. 

• Assumption 7. There should be multivariate normality. That is, normally 

distributed data for each combination of the independent variables for all 

dependent variables.  
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• Assumption 8. There should be an adequate sample size. That is, each cell 

of the matrix should have at least as many cases as there are dependent 

variables. 

• Assumption 9. There should be homogeneity of variance-covariance 

matrices. That is, variances and covariances of the dependent variable in 

each cell of the design (i.e., group combination) should be equal in the 

population.  

• Assumption 10. There should be homogeneity of variances. That is, there 

should be equal variances in each cell of the design for each dependent 

variable (Nimon, 2012; Pituch & Stevens, 2016).  

Data cleaning helps to improve data normality, linearity, and homoscedasticity 

(Osborne, 2010; Sakia, 1992). Data cleansing involves removing out-of-range numbers 

that can skew the results (Chan, 2003). To reduce the chance of committing either a Type 

I or Type II error, I performed data cleansing in SPSS. Data cleansing included 

generating frequency tables and inspecting each for out-of-range values and generating 

descriptive statistics using skewness and kurtosis; generating histograms and percentage 

plots (P-P plots) and performing inferential test of normality such as Kolmorogov-

Smirnow and Shapiro-Wilk’s W test. According to Chan (2003), these tests help to 

improve data normality and result in the production of more appropriate descriptive 

statistics and the application of correct statistical tests, and thereby improving the results 

of the analyses.  
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Research Question: How do the CSEC mathematics scores of high-scoring 

Vincentian students and low-scoring Vincentian students in the cognitive domains of 

knowledge, comprehension, and reasoning differ across the content domains of algebra, 

geometry, measurement, statistics, and RFG? 

 H0: There are no differences in the CSEC mathematics scores between high-

scoring Vincentian students and low-scoring Vincentian students in the cognitive 

domains of knowledge, comprehension, and reasoning across the content domains of 

algebra, geometry, measurement, statistics, and RFG. 

Ha: There are differences in the CSEC mathematics scores between high-scoring 

Vincentian students and low-scoring Vincentian students in the cognitive domains of 

knowledge, comprehension, and reasoning across the content domains of algebra, 

geometry, measurement, statistics, and RFG. 

Analysis of data included descriptive statistics, 2-way MANOVA statistical 

analysis for differences between groups, and follow-up 2-way ANOVA. The results were 

interpreted at the .05 α level of significance. The 2-way MANOVA is a statistical test 

used to test the interaction effect between two independent variables and two or more 

combined dependent variables. Hence, the 2-way MANOVA was used to test the null 

hypothesis (H0.) – there are no differences in the CSEC mathematics scores between 

high-scoring Vincentian students and low-scoring Vincentian students in the cognitive 

domains of knowledge, comprehension, and reasoning across the content domains of 

algebra, geometry, measurement, statistics and RFG. 
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Threats to Validity 

Threats to validity refers to statistical and design issues that threaten the research 

and could cause the researcher to draw false conclusion from the data (Creswell, 2015). 

Cook and Campbell (1979) identified four facets of research validation. These include 

internal validity, external validity, construct validity, and statistical conclusion validity. 

In any type of research design, it is paramount that researchers account for threats to all 

forms of validity to have meaningful research results. In the cross-sectional cohort 

design, the researcher conducts a cross-sectional sampling to obtain a study cohort and 

then performs a retrospective assessment of the history of exposure and outcomes in the 

members of that cohort (Hudson, Pope, Jr, & Glynn, 2005).  

Threats to external validity are problems that threaten the generalizability of the 

findings of one study to other setting, persons, and situations (Frankfort-Nachmias et al., 

2015). Threats to external validity include interaction of selection and treatment, 

interaction of setting and treatment, and interaction of history and treatment (Creswell, 

2015). Interaction of selection involves the inability of a researcher to generalize the 

findings of a study beyond the group that is studied (Creswell, 2015). To reduce this 

threat, I used stratified random sampling to ensure that sub-groups of high-scoring 

students and low-scoring students in the sample of Vincentian students represent the 

subgroups of high-scoring students and low-scoring students in the Vincentian student 

population. Interaction of setting and treatment arises from the inability of a researcher to 

generalize from the study setting to other settings (Creswell, 2015). The data for the study 

included students who attended regular secondary schools, students who attended private 
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institutions that are not classified as schools, and students who did not attend any formal 

institutions and wrote the examination as private candidates. To reduce the threat of 

interaction of setting and treatment, I did not generalize the findings to any one group of 

subjects. That is, I generalized the findings of the study to the total sample studied and 

not to any subgroups such as private candidates or students in school. Interaction of 

history and treatment develops when the researcher tries to generalize the findings of one 

study to past or future situations (Creswell, 2015). The data for this study comprised the 

scores of Vincentian students who wrote the 2017 May/June CSEC mathematics 

examination. To reduce the threat of interaction of history and treatment, I generalized 

the findings of the study only to the cohort of students who wrote the examination in 

May/June 2017 and no cohort who wrote the examination in any other sitting.  

Threats to internal validity are issues or problems with procedures or participants 

that can compromise the inferences that are drawn from the study. Threats to internal 

validity in the cross-sectional design include measurement errors, bias, chance, and non-

ignorable exiting and inflation of causal inference due to common method variance 

(CMV) (Hartung & Touchette, 2009; Jackson et al., 2005; Jackson, O’Callaghan, & 

Adserias, 2014). Measurement errors are internal threats to the validity of a study if 

unaccounted for in the analysis, could result in spurious findings, or CMV and erroneous 

casual inference (Jackson et al., 2014). CMV are variance attributable to the methods 

used to measure the construct rather than to the construct being measured. These 

measurement methods may include using a single rater, item characteristics, item context, 

and measurement context (Campbell & Fiske, 1959; Podsakoff et al., 2003). As a 
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potential source of measurement error, CMV may inflate or deflate the correlation among 

research variables, thereby threatening the validity of the conclusions drawn about the 

relationships between the measures of different constructs (Reio, 2010). CMV in 

quantitative studies can be controlled by strengthening the procedural design of the study, 

and by using statistical controls (Podsakoff et al., 2003; Rindfleisch et al., 2008). In this 

study, I minimized measurement errors by using the same measurement instrument, in the 

form of a mathematics examination. All students wrote the examination at the same time, 

and teachers used the same scoring rubric to mark the students’ scripts. To ensure that the 

markers applied the scoring rubric consistently, a supervisor remarked a sample of scripts 

markers by each marker. The data manager used the method to retrieve all the students’ 

scores from the CXC’s database.  

 Selection bias occurs when subjects are selected for a study in such a way that 

creates false association, whereas information bias occurs when the method of data 

collection between groups is significantly different (Hartung & Touchette, 2009). 

Selection bias creates a systematic error in the measurement of the variables. Chance as a 

threat to validity, occurs when random variations result in observable differences 

(Hartung & Touchette, 2009). Non-ignorable exiting refers to situations where subjects 

exit the study before the time of evaluation of the outcome (Hudson et al., 2005). Non-

ignorable exiting does not apply to this study because the data were collected at one 

point, hence, there were no threats to participants exiting the study. Thus, reducing 

threats to internal validity. I minimized the likelihood of selection bias and chance bias 

by increasing the sample size beyond the recommended size determined by the 
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G*statistics. I used the G*Power analysis to determine an adequate sample size for the 

study, which was determined to be 40, however, I used a sample size of 370. This larger 

sample size ensured that the all the sample requirements were met for a small effect size 

and controlled both the Type I error probability α and the Type 2 error probability 1−β 

(Mayr et al., 2007). 

Threats to construct validity are problems relating to the independent variable and 

the dependent variable used in the study that threaten the ability of the researcher to make 

correct inferences (Creswell, 2015). According to García-Pérez (2012), construct 

validation is established by using well-established definitions and measurement 

procedures for variables. To reduce threats to construct validity, I have provided 

operational definitions of the independent and dependent variables used in the study, and 

outlined clearly how the variables were measured. Since the study used secondary data, 

the measure of the variables was established prior to conducting the study. 

Statistical conclusion validity (SCV), pertains to the extent to which statistical 

analyses of the data of a research study can reasonably reveal a link (or lack thereof) 

between the independent and dependent variables (Cook & Campbell, 1979). SCV was 

summarized as “inferences about whether it is reasonable to presume covariation given a 

specified α level and the obtained variances” (Cook & Campbell, 1979, p. 41). Given this 

definition, SCV was seen as including three aspects: the statistical power of the study to 

detect an effect, the risk associated with revealing an effect that does not exist, and the 

ability to confidently estimate the magnitude of the effect. SCV is also concerned with 

sources of random error and the appropriate use of statistics and statistical tests (Cook & 
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Campbell, 1979). However, Cook and Campbell (1979) acknowledged that the potential 

occurrence of Type I and Type II errors cannot be prevented as they are an essential and 

inescapable consequence of the statistical decision theory underlying significance test. 

Further, these errors only affect SCV when there is a meaningful difference between the 

assumed and actual probability (García-Pérez, 2012). There are two main threats to SCV. 

The first threat occurs when the design used to collect the data does not match the 

characteristics of the data analysis and the statistical analyses applied in analyzing the 

data are methodically inadequate and cannot logically provide an answer to the research 

questions. The second threat occurs when the appropriate statistical tests are applied in 

analyzing the data, but the tests violate the stated risks probabilities (García-Pérez, 2012). 

To reduce these threats, I ensured that the three assumptions of the 2-way MANOVA 

which relate to the design of the study, were met prior to conducting the study. These 

assumptions are there must be two or more dependent variables that are measured at 

continuous levels; there must be two or more independent variables consisting of two or 

more categorical, independent groups; and there must be independence of observation 

(Pituch & Stevens, 2016). The other seven assumptions were tested prior to conducting 

the data analysis.  

Ethical Procedures 

 I conducted the research in accordance with Walden University IRB 

requirements. I received written permission from the Ministry of Education, National 

Reconciliation and Information, Saint Vincent and the Grenadines, the owners of the 

data, and from the CXC, the custodian of the data, for the use of the mathematics scores 
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of Vincentian students who wrote the CSEC mathematics examination in May/June 2017. 

Initial permission was also received from the CXC in 2018 for use of descriptive statistics 

and CXC related materials to establish the problem. I followed all necessary protocols in 

receiving and handling the data. In the letters to the Ministry of Education, National 

Reconciliation and Information, Saint Vincent and the Grenadines and the CXC, I 

indicated the purpose of the study, the type of data required and how I will use the data. I 

also share these specifications with the data manager, when I requested the data. Hence, 

the data manager cleaned the data by removing all student identification, including 

student age, registration number, and school. The data manager sent the data via the 

CXC’s secure email and I immediately saved the data to my personal computer. I also 

saved backed up copies on two flash drives that I password protected and keep in a 

locked filing cabinet. I will retain the data 5 years and then destroyed, as per Walden 

University IRB requirement. While I acquired the data for the study from the 

organization where I work, I did not have any contact with the construction, 

administration, marking, or grading of the 2017 May/June CSEC mathematics 

examination, neither do I know the students personally, hence there is no basis for 

researcher bias. Additionally, I did not have any direct contact with the students’ 

mathematics scores. The data manager collated the data which consisted of students’ 

mathematics scores for algebra, geometry, measurement, statistics, and RFG, by 

cognitive domains (knowledge, comprehension, and reasoning). Construct validity refers 

to how well a researcher operationalizes a construct. That is, whether the researcher 

accurately transforms or translates concepts, ideas and behavior into functioning and 
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operating reality (Trochim, 2006). I operationalized the variables in this study based on 

the way they are defined in the CSEC mathematics syllabus and used in the examination. 

Summary 

In this quantitative study, I used a nonexperimental, cross-sectional design to 

determine the extent to which the CSEC mathematics scores of high-scoring Vincentian 

students versus low-scoring Vincentian students in the cognitive domains of knowledge, 

comprehension, reasoning differ vary across the content areas of algebra, geometry, 

measurement, statistics and RFG. The sample comprised 185 students classified as high-

scoring and 185 students classified as low-scoring in the 2017 May/June CSEC 

mathematics examination based on their composite score in the five content domains. 

The study included four independent variables, each with two sub-levels, and five 

dependent variables. The independent variables were: knowledge, comprehension, 

reasoning, and CoP. The sub-levels were levels of scoring (high, low). The dependent 

variables were students’ scores in the five content domains (algebra, geometry, 

measurement, statistics, and RFG). Data analysis included descriptive statistics, 2-way 

MANOVA and follow up 2-way ANOVA. The results were reported at the .05 α level of 

significance, consistent with most educational research. I conducted the study in 

accordance with Walden University’s IRB guidelines by seeking permission to use data 

comprising students’ examination scores, and adhering to the guidelines regarding the 

treatment and confidentiality of the data. Threats to the validity of this quantitative cross-

sectional study included measurement errors, construct validity, and SCV, which I 

minimized by the procedures I utilized in the study. I ensured that ethical standards were 
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met by adhering to the Walden University IRB’s requirements regarding the collection 

and treatment of data, as well as reducing researcher bias. The next chapter, Chapter 4 

addresses the data analysis and presentation. 
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Chapter 4: Results  

Introduction 

The purpose of this quantitative, nonexperimental study was to determine the 

extent to which the CSEC mathematics scores of high-scoring Vincentian students and 

low-scoring Vincentian students in the cognitive domains of knowledge, comprehension, 

and reasoning differ across five content domains of algebra, geometry, measurement, 

statistics, and RFG. I used archival data that comprised the scores of Vincentian students 

in the 2017 May/June CSEC mathematics examination. This chapter includes a review of 

the research question and hypotheses and a description of the data collection process, 

including the population, data cleansing, and selection and composition of the sample. 

These sections are followed by the statistical analyses and findings of the study. The 

chapter concludes with a summary of the outcome of the analyses.  

Research Question and Hypotheses 

Research Question: How do the CSEC mathematics scores of high-scoring 

Vincentian students and low-scoring Vincentian students in the cognitive domains of 

knowledge, comprehension, and reasoning differ across the content domains of algebra, 

geometry, measurement, statistics, and RFG? 

Ho: There are no significant differences between the CSEC mathematics scores of 

high-scoring Vincentian students and low-scoring Vincentian students in the cognitive 

domains of knowledge, comprehension, and reasoning across the content domains of 

algebra, geometry, measurement, statistics, and RFG. 
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Ha: There are significant differences between the CSEC mathematics scores of 

high-scoring Vincentian students and low-scoring Vincentian students in the cognitive 

domains of knowledge, comprehension, and reasoning across the content domains of 

algebra, geometry, measurement, statistics, and RFG. 

Data Collection 

On February 14, 2020, I wrote official letters to the Ministry of Education, 

National Reconciliation and Information, Saint Vincent and the Grenadines (the owner of 

the student data), and the CXC (the custodian of the data) seeking permission to use 

Vincentian students’ mathematics scores in the 2017 May/June CSEC mathematics 

examination to conduct research (see Appendices C and E). Both letters outlined the 

purpose of the research, the type of data required, and how the data would be treated to 

ensure anonymity of the students. I received written permission from Saint Vincent and 

the Grenadines and the CXC on March 18 and 20, 2020, respectively (see Appendices D 

and F). These letters of permission were submitted as part of the application to the 

Walden University IRB on March 27. I received IRB approval on April 4 (Approval No: 

04-08-20-0402795) to advance to the data collection stage (see Appendix G). On April 9, 

2020, I wrote an email to the data manager at the CXC requesting the data. I attached the 

letters of approval for data use from Saint Vincent and the Grenadines and the CXC, 

including a table indicating how the data should be organized (see Appendix H). I 

received the data in an excel spreadsheet via the CXC’s email on April 16, 2020. I saved 

the data on my personal computer and saved backup files on two flash drives, which I 

kept in a locked in a filing cabinet. I password protected all files.  



95 

 

In my data plan, I indicated that I would receive the Excel file with the data on a 

flash drive. However, by the time of data collection, Barbados had declared a state of 

emergency as a result of the COVID-19 pandemic, and employees of the CXC were 

working remotely. As a result, the safest and most efficient way of receiving the data was 

via the CXC’s secure email. The data contained students’ scores on each cognitive 

domain (knowledge, comprehension, reasoning) for each content domain (algebra, 

geometry, measurement, statistics, and RFG), as well as the composite score. The data 

manager had performed data cleansing prior to releasing the data. The data file did not 

contain any student identification, such as student number or school; the cases were 

numbered from 1 to 1,713. In addition, there were no missing data; all students had 

scores for all components of the examination, including scores for each cognitive domain 

and content domain. Any student who did not complete both components (Paper 01 and 

Paper 02) were removed from the population. In addition, there were no significant 

outliers; therefore, no additional data cleansing was required.  

I used G*Power analysis to determine an appropriate sample size for the study. 

The G*Power analysis with alpha of 0.05, power of 0.80, and small effect size (f = 0.15) 

indicated the minimum sample size was 40. As I had access to a population of 1,713 

students, I proposed using a sample size of 400, including 200 in each of the CoP (high 

and low performance) groups. The reason for choosing this sample size was to ensure 

that all the sample requirements would be met for a small effect size to control for both 

the Type 1 and Type 2 errors (see Mayr et al., 2007). Based on the range of scores for 

each group, only 185 students were classified as high CoP. To maintain an equal number 
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of students in each group, I selected a random sample of 185 from the population of 

1,528 students classified as low CoP. Therefore, the total sample size was 370. I divided 

the scores on each of the four independent variables (knowledge, comprehension, 

reasoning, and CoP) into two strata (high and low) and coded them as categorical 

variables with two levels. Table 6 shows the range of scores used to determine the high 

and low groups for each of the independent variables. Table 7 shows the composition of 

the groups for each of the independent variables. 

Table 6 

 

Range of Scores for High and Low Groups for the Independent Variables 

 

Independent variable Low High 

Knowledge 0-16 17-32 

Comprehension 0-17 18-34 

Reasoning 0-14 15-28 

CoP 0-47 48-94 

Note. The score in the upper range of the high group represent the maximum score 

attainable for each variable. 
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Table 7 

 

High and Low Groups for the Independent Variables 

Independent variable Level Number of students Percentage of students 

Knowledge Low 221 59.7 

 High 149 40.3 

Comprehension  Low 174 47.0 

 High 196 53.0 

Reasoning Low 264 71.4 

 High 106 28.6 

CoP Low 185 50.0 

 High 185 50.0 

 

Results 

Descriptive Statistics  

 Descriptive statistics were generated to determine whether there were missing 

data or outliers. Table 8 shows the means and standard deviations, as well as the range of 

scores achieved by students on each content domain, and the maximum available score 

for each content domain.  
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Table 8 

 

Descriptive Statistics for the Mathematics Content Domains 

Content domain Mean St. dev Range Maximum  

Algebra 10.45 5.01 1-20 20 

Geometry 8.67 4.67 1-20 20 

Measurement 8.04 5.16 0-20 20 

Statistics 7.45 3.80 0-16 16 

RFG 7.35 4.69 0-18 18 

Note. The maximum represents the maximum available mark for each content domain. 

Assumptions Testing 

 The two-way MANOVA has 10 assumptions that must be considered (Nimon, 

2012; Pituch & Stevens, 2016). The first three assumptions relate to the design of the 

study and were met prior to conducting the study.  

Assumption 1: Two or more dependent variables. There should be two or more 

variables that are measured at the continuous level. In this study there were five 

dependent variables measured at the continuous level. These dependent variables were 

students’ mathematics scores in the 2017 May/June CSEC mathematics examination and 

comprised scores in algebra, geometry, measurement, statistics, and RFG. 

Assumption 2: Categorical independent variables. There should be two or 

more independent variables where each independent variable consists of two or more 

categorical independent groups. In this study, there were four independent variables: 
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knowledge, comprehension, reasoning, and CoP. Each variable comprised two sublevels 

(high, low). 

Assumption 3: Independence of observation. There should be independence of 

observation. That is, there should be no relationship between the observation in each 

group of the independent variable or between the groups themselves. The students in this 

study were categorized in one of the two sublevels for each independent variable. 

Students were in either the high group or the low group, for each independent variable, 

but not both. 

The remaining seven assumptions were tested prior to conducting the two-way 

MANOVA. Assumptions testing was conducted for linearity, multicollinearity, univariate 

outlier and multivariate outlier, normality, adequate sample size, homogeneity of 

variance-covariance matrices, and homogeneity of variances.  

Assumption 4: Linearity. There should be a linear relationship between the 

dependent variables for each group of independent variables. Using paired combinations 

of the independent variables, I tested for linearity to determine whether there were 

univariate outliers for each combination of the four independent variables. Forty 

scatterplots were generated. Inspection of the scatterplots indicated a linear relationship 

between 34 of the 40 pairs of dependent variables across each level of the independent 

variables. Hence, the assumption of linearity was met. Figure 3 shows the scatterplot for 

algebra and geometry for levels of knowledge. See Appendix I for additional samples of 

the scatterplots.  
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Figure 3. Scatterplots for algebra and geometry for levels of knowledge. 

Assumption 5: Multicollinearity. There should be no multicollinearity. That is, 

the dependent variables should be moderately correlated with each other. To satisfy the 

assumption of multicollinearity, the dependent variables must be related but not highly 

correlated (Pituch & Stevens, 2016). Pearson correlation was used to test for 

multicollinearity. The results of the correlation (|r| <0.09) indicated that the variables 

were positively related; the strength of the correlation ranged from 0.23 to 0.79. 

Therefore, there was no evidence of multicollinearity, and this assumption was met. 

Table 9 shows the results of the correlation. 
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Table 9 

 

Pearson Correlation for the Content Domains 

Content  

domain 

 

Algebra 

 

Geometry 

 

Measurement 

 

Statistics 

 

RFG 

 

Algebra Pearson 

correlation 

1 .793** .735** .702** .831** 

sig. (2-

tailed) 
 

.000 .000 .000 .000 

N 370 370 370 370 370 

Geometry Pearson 

correlation 

.793** 1 .723** .679** .786** 

sig. (2-

tailed) 

.000 
 

.000 .000 .000 

N 370 370 370 370 370 

Measurement Pearson 

correlation 

.735** .723** 1 .582** .743** 

sig. (2-

tailed) 

.000 .000 
 

.000 .000 

N 370 370 370 370 370 

Statistics Pearson 

correlation 

.702** .679** .582** 1 .688** 

sig. (2-

tailed) 

.000 .000 .000 
 

.000 

N 370 370 370 370 370 

RFG Pearson 

correlation 

.831** .786** .743** .688** 1 

sig. (2-

tailed) 

.000 .000 .000 .000 
 

N 370 370 370 370 370 

Note. **Correlation is significant at the 0.01 level (2-tailed). 

 

Assumption 6: Univariate and multivariate outliers. There should be no 

univariate and multivariate outliers. There should be no univariate outliers in each group 

combination of the independent variable (i.e., for each cell of the design) for any of the 

dependent variables. Multivariate outliers are cases that have unusual combination of 
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scores on the dependent variables. The 2-way MANOVA is sensitive to both univariate 

outliers and multivariate outliers (Tabachnick & Fidell, 2014). Univariate outliers are 

values of a dependent variable that are unusual within each group of the independent 

variables, whereas multivariate outliers are data points that have unusual combination of 

values within the dependent variables (Pituch & Stevens, 2016) To test for univariate 

outliers, I generated boxplots for each combination of the dependent variables and 

independent variables. Inspection of the boxplots indicated the presence of univariate 

outliers. Therefore, the assumption of no univariate outlier was not met. Figure 4 shows a 

boxplot for algebra scores. See Appendix J for other samples of boxplots. The 

Mahalanobis distance was calculated as part of the linear regression analysis to test for 

multivariate outliers. There were no multivariate outliers in the data as assessed by 

Mahalanobis distance (p > .001). The Mahalanobis recorded for the data was 19.37, 

which was less than the critical value of 20.52. Therefore, the assumption of no 

multivariate outliers was met.  
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Figure 4. Boxplot for algebra scores. 

 

Assumption 7-Multivariate normality. There must be multivariate normality. 

That is, normally distributed data for each combination of the independent variables for 

all dependent variables. According to the Shapiro-Wilk test for normality with a sample 

of 370 students, the assumption of normality was not met because the scores on the five 

cognitive domains (algebra, geometry, measurement, statistics, and RFG) were 

considered to have a non-normal distribution across knowledge, comprehension, 

reasoning, and CoP (p <.05). The non-normal distribution was also confirmed through the 

inspection of histograms. The results of the Shapiro-Wilk test for normality are presented 

in Tables 10, 11, 12, and 13. The distribution of scores represented the actual 

performance of students, and Pituch and Stevens (2016) posit that in cases where this 

assumption is violated, but the value for kurtosis is positive, departure from normality is 
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not expected to have much effect on power and should not be cause for concern. Hence, I 

did not consider the violation of this assumption to be a threat to the analysis, and I 

proceeded with the analysis of the data. 
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Table 10 

 

Tests of Normality: Levels of Knowledge and Content Domains 

 

Table 11 

 

Tests of Normality: Levels of Comprehension and Content Domains 

 

Level of 

comprehension 

Kolmogorov-Smirnova Shapiro-Wilk 

Content  

domain Statistic df Sig. Statistic df Sig. 

 Algebra Low .107 174 .000 .961 174 .000 

High .112 196 .000 .978 196 .003 

 Geometry Low .153 174 .000 .943 174 .000 

High .101 196 .000 .977 196 .002 

 Measurement Low .151 174 .000 .914 174 .000 

High .087 196 .001 .973 196 .001 

 Statistics Low .130 174 .000 .951 174 .000 

High .108 196 .000 .970 196 .000 

 RFG Low .167 174 .000 .910 174 .000 

High .110 196 .000 .982 196 .011 

Note. a. Lilliefors Significance Correction. 

 

Content  

domain 
Level of 

knowledge 

Kolmogorov-Smirnova Shapiro-Wilk 

Statistic df Sig. Statistic df Sig. 

Algebra Low .118 221 .000 .953 221 .000 

High .116 149 .000 .974 149 .006 

Geometry Low .142 221 .000 .935 221 .000 

High .120 149 .000 .973 149 .005 

Measurement Low .175 221 .000 .903 221 .000 

High .098 149 .001 .970 149 .003 

Statistics Low .116 221 .000 .958 221 .000 

High .125 149 .000 .961 149 .000 

RFG Low .151 221 .000 .927 221 .000 

High .103 149 .001 .979 149 .022 

Note. a. Lilliefors Significance Correction. 
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Table 12 

 

Test of Normality: Levels of Reasoning and Content Domains 

 

  

 

Level of 

reasoning 

Kolmogorov-Smirnova Shapiro-Wilk 

Content  

domain Statistic df Sig. Statistic df Sig. 

 Algebra Low .106 264 .000 .957 264 .000 

High .107 106 .005 .970 106 .015 

 Geometry Low .131 264 .000 .946 264 .000 

High .152 106 .000 .965 106 .007 

 Measurement Low .154 264 .000 .934 264 .000 

High .080 106 .094 .970 106 .017 

 Statistics Low .106 264 .000 .961 264 .000 

High .158 106 .000 .929 106 .000 

 RFG Low .139 264 .000 .936 264 .000 

High .117 106 .001 .969 106 .013 

Note. a. Lilliefors Significance Correction. 

 

 

Table 13 

 

Tests of Normality: Category of Performance and Cognitive Domains 

 

 

CoP 

Kolmogorov-Smirnova Shapiro-Wilk 

Content domain Statistic df Sig. Statistic df Sig. 

 Algebra LowCoP .104 185 .000 .964 185 .000 

HighCoP .105 185 .000 .980 185 .010 

 Geometry LowCoP .151 185 .000 .946 185 .000 

HighCoP .105 185 .000 .975 185 .002 

 Measurement LowCoP .165 185 .000 .886 185 .000 

HighCoP .090 185 .001 .971 185 .001 

 Statistics LowCoP .124 185 .000 .954 185 .000 

HighCoP .104 185 .000 .969 185 .000 

 RFG LowCoP .159 185 .000 .921 185 .000 

HighCoP .119 185 .000 .978 185 .006 

Note. a. Lilliefors Significance Correction. 
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Assumption 8: Adequate sample size. There should be an adequate sample size. 

In conducting a 2-way MANOVA, each cell of the design must have at least as many 

cases as there are dependent variables (Pituch & Stevens, 2016). To test this assumption, 

I generated descriptive statistics. This assumption was met except for the combination of 

CoP and high levels of reasoning, and high levels of knowledge and low CoP (see 

Appendix K). All other cells had more than the minimum five students required. The 

small numbers that are noted in some cells are expected because the students who scored 

high on knowledge and reasoning naturally scored high on the examination overall. It 

was therefore unlikely for a student to score high on a content domain and be classified as 

low CoP. Hence, I proceeded with the analyses. 

Assumption 9: Homogeneity of variance-covariance matrices. There should be 

homogeneity of variance-covariance matrices. That is, variances and covariances of the 

dependent variable in each cell of the design (i.e., group combination) should be equal in 

the population. I used Box’s M test of equality of covariances to determine whether the 

variances and covariances of the dependent variables (algebra, geometry, measurement, 

statistics, and RFG) for each combination of the cognitive domains (knowledge, 

comprehension, and reasoning) and CoP are equal in the population. This assumption was 

met for three of the five dependent variables (measurement, statistics, and RFG) as 

assessed by Box’s M test (p < .001). The assumption of homogeneity of variance-

covariance matrices is very restrictive and it is unlikely that this assumption would be 

satisfied in practice (Konietschke, Bathke, Harrar, & Pauly, 2015; Pituch & Stevens, 

2016). Bathke et al. (2018) added that plausible violation of this assumption that may 
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occur in practice may not have much of an effect on power. Hence, I did not consider the 

partial violation of this assumption to be a threat to the analysis, and I proceeded with the 

analysis. The results of the test are indicated in Table 14. 

Table 14 

 

Box’s Test of Equality of Variance Matrices 

Box's M 278.858 

F 3.362 

df1 75 

df2 9170.116 

Sig. .000 

 

Note. Tests the null hypothesis that the observed covariance matrices of the dependent 

variables are equal across groups. 

 

Assumption 10: Homogeneity of variances. There should be homogeneity of 

variances. That is, there should be equal variances in each cell of the design for each 

dependent variable. I used the Levene’s test of equality of covariance matrices to test 

Assumption 10. The result of the Levene’s test shows that the assumption was met for 

three of the dependent variables (measurement, statistics, and RGF), and violated for two 

of the dependent variables. (algebra and geometry). According to Bathke et al. (2018), 

the assumption of homogeneity of variance is not reasonable for realistic data application. 

Hence, having met the assumption for three of the dependent variables, I proceeded with 

the analysis. The results of the test are indicated in Table 15. 
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Table 15 

 

The Levene’s Test of Equality of Variance 

 F df1 df2 Sig. 

Algebra  1.723 7 361 .102 

Geometry  1.558 7 361 .147 

Measurement  7.786 7 361 .000 

Statistics  4.234 7 361 .000 

RFG  2.275 7 361 .028 

 

Note. Tests the null hypothesis that the error variance of the dependent variable is 

equal across groups. 

a. Design: Intercept + Comprehension + Knowledge + Reasoning + CoP + 

Comprehension * Knowledge + Comprehension * Reasoning + Comprehension * 

CoP + Knowledge * Reasoning + Knowledge * CoP + Reasoning * CoP + 

Comprehension * Knowledge * Reasoning + Comprehension * Knowledge * CoP + 

Comprehension * Reasoning * CoP + Knowledge * Reasoning * CoP + 

Comprehension * Knowledge * Reasoning * CoP. 

 

The 2-way MANOVA has 10 assumptions that must be considered before 

conducting statistical analyses. The first three assumptions relate to the design of the 

study (Ates et al., 2019; Ito, 1980), and were met prior to conducting the study. The three 

assumptions were: there must be two or more dependent variables at the continuous level, 

there must be two or more independent variables with at least two sub-levels, there must 

be independence of observation. The remaining seven assumptions were tested prior to 

conducting the analysis. Three of the seven assumptions were met in full, while three 

assumptions were partially met (met for some, but not all, variables). The assumptions 

met in full were Assumptions 4, 5, and 8, which were linearity, assessed by scatterplots; 

multicollinearity, assessed by Pearson correlation (|r| < 0.9); and adequate sample size, 

assessed by descriptive statistics, respectively. For Assumption 6 univariate outlier, 

assessed by boxplots was met for some of the variables, however, multivariate outliers, 
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indicated by Mahalanobis distance (p > .001), was met for all variables. Assumption 9, 

homogeneity of variance-covariance matrices, assessed by Box’s M test (p < .001); and 

Assumption 10, homogeneity of variances; were met for three of the five dependent 

variables. Assumption 7, multivariate normality, was not met. Overall, only one of the 10 

assumptions for the two-way MANOVA was not met.  

Hypothesis Testing 

MANOVA. A two-way MANOVA was conducted to test the null hypothesis that 

there are no differences in the CSEC mathematics scores between high-scoring 

Vincentian students and low-scoring Vincentian students in the cognitive domains of 

knowledge, comprehension, and reasoning, across the content domains of algebra, 

geometry, measurement, statistics, and RFG. The cognitive domains were the focal 

variables and CoP was the moderator variable. Since there was violation of the 

homogeneity of variances and covariances as assessed by Box M’s test (p < .001), Pillai’s 

Trace was interpreted. Pillai’s Trace is a superior, robust omnibus MANOVA test (Olson, 

1976). There was a statistically significant interaction effect between knowledge and 

reasoning on the combined dependent variables, F(5, 357) = 3.50, p = .004, Pillai’s Trace 

= .047, partial η2 = .047. There was no interaction effect between the other independent 

variables on the combined dependent variables. There was a significant main effect for 

each of the four independent variables. Knowledge F(5, 357) = 12.925, p < .001, Pillai’s 

Trace = .153, partial η2 = .153. Comprehension F(5, 357) = 10.025, p < .001, Pillai’s 

Trace = .123, partial η2 = .123. Reasoning F(5, 357) = 5.633, p < .001, Pillai’s Trace = 

.073, partial η2 = .073. CoP F(5, 357) = 2.414, p < .001, Pillai’s Trace = .033, partial η2 = 
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.033. The information is displayed in Table 16 and represent significant p values only. 

For the full MANOVA results, see Appendix L.  

Table 16 

 

MANOVA Multivariate Results 

Effect Value F Hypothesis df Error df Sig. 

Partial eta 

squared 

Intercept Pillai's 

Trace 

.721 184.672b 5.000 357.000 .000 .721 

Knowledge Pillai's 

Trace 

.153 12.925b 5.000 357.000 .000 .153 

Comprehension Pillai's 

Trace 

.123 10.025b 5.000 357.000 .000 .123 

Reasoning Pillai's 

Trace 

.073 5.633b 5.000 357.000 .000 .073 

CoP Pillai's 

Trace 

.033 2.414b 5.000 357.000 .036 .033 

Knowledge * 

Comprehension  

Pillai's 

Trace 

.000 .b .000 .000 . . 

Knowledge * 

Reasoning 

Pillai's 

Trace 

.047 3.500b 5.000 357.000 .004 .047 

Comprehension * 

Reasoning 

Pillai's 

Trace 

.000 .b .000 .000 . . 

Knowledge * CoP Pillai's 

Trace 

.000 .b .000 .000 .  

Comprehension * CoP Pillai's 

Trace 

.000 .b .000 .000 . . 

Reasoning* CoP Pillai's 

Trace 

.000 .b .000 .000 . . 

 Knowledge * 

Comprehension 

*Reasoning 

Pillai's 

Trace 

.000 .b .000 .000 . . 

Knowledge * 

Comprehension* CoP 

Pillai's 

Trace 

.000 .b .000 .000 . . 

Knowledge 

*Reasoning * CoP 

Pillai's 

Trace 

.000 .b .000 .000 . . 

Comprehension * 

Reasoning * CoP 

Pillai's 

Trace 

.000 .b .000 .000 . . 

Knowledge * 

Comprehension* 

Reasoning * CoP 

Pillai's 

Trace 

.000 .b .000 .000 . . 

 

Note. a. Intercept + Knowledge + Comprehension + Reasoning + CoP + Knowledge * Comprehension + 

Knowledge * Reasoning + Comprehension * Reasoning + Knowledge * CoP + Comprehension * CoP + 

Reasoning* CoP + Knowledge * Comprehension *Reasoning + Knowledge * Comprehension* CoP + 

Knowledge *Reasoning * CoP + Comprehension * Reasoning * CoP + Knowledge * Comprehension* 

Reasoning * CoP 

b. exact statistics. 
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ANOVA. As a follow up to the interaction effect between knowledge and 

reasoning, separate two-way ANOVAs, between subject analyses were conducted for 

each content domain to determine whether there was any statistically significant effect for 

each dependent variable separately (Pituch & Stevens, 2016). There was a statistically 

significant interaction effect between level of knowledge and level of reasoning for 

measurement scores, F(1, 369) = 16.634, p < .001, partial η2 = .044. There was no 

significant interaction effect between knowledge and reasoning for the other four content 

domains: algebra, F(1, 369) = 1.151, p = .284, partial η2 = .003, geometry, F(1, 369) = 

.122, p = .727, partial η2 = .000, statistics, F(1, 369) = .523, p = .470, partial η2 = .001, or 

RFG, F(1, 369) = 1.506, p = .221, partial η2 = .004. The results of the ANOVA tests are 

presented in Table 17. 
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Table 17 

 

Test of Between-Subject Effect 

Source 

Dependent 

Variable 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Knowledge * 

Reasoning 

Algebra 7.635 1 7.635 1.151 .284 .003 

Geometry .782 1 .782 .122 .727 .000 

Measureme

nt 

135.100 1 135.100 16.634 .000 .044 

Statistics 3.768 1 3.768 .523 .470 .001 

RFG 9.122 1 9.122 1.506 .221 .004 

 

I computed simple main effect of knowledge and reasoning separately using 

univariate test to determine the difference between high and low levels of knowledge and 

high and low levels of reasoning on the content domain, measurement. There was a 

statistically significant difference between high and low levels of knowledge on 

measurement scores, F(1, 366) = 78.50, p < .001, partial η2 = .177. There was a 

statistically significant difference between high and low levels of reasoning on 

measurement scores, F(1, 366) = 54.881, p < .001, partial η2 = .130. Data are mean + 

standard deviation, unless otherwise stated. The means for measurement scores were 

13.87 + 3.76 for high levels of knowledge and 10.20 + 2.75 for low levels of knowledge, 

and 9.38 + 2.79 for high levels of reasoning and 4.77 + 3.36 for low levels of reasoning. 

There was a statistically significant difference between high levels of knowledge and low 

levels of knowledge, 3.67 (95% CI, 3.855 to 6.054), p < .0005; and between high levels 

of reasoning and low levels of reasoning, 4.60 (95% CI, 3.04 to 5.24), p < .0005. 

The results are illustrated in Tables 18 and 19.  



114 

 

Table 18 

 

Univariate Tests: Levels of Knowledge and Measurement 

 

 

Sum of 

squares 

 

Df 

 

Mean square 

 

F 

 

Sig. 

 

Partial eta 

squared 

 

Contrast 889.819 1 889.819 78.499 .000 .177 

Error 4148.748 366 11.335    

Note. F tests the effect of Levels of Knowledge. This test is based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

 

Table 19 

 

Univariate Test: Levels of Reasoning and Measurement 

 

Sum of 

squares Df Mean square F Sig. 

Partial eta 

squared 

Contrast 622.102 1 622.102 54.881 .000 .130 

Error 4148.748 366 11.335    

Note. F tests the effect of Levels of Reasoning. This test is based on the linearly 

independent pairwise comparisons among the estimated marginal means. 

 

I conducted separate 2-way ANOVAs for each content domain to examine the 

main effects for knowledge, comprehension, reasoning, and CoP. There was a 

statistically significant difference between high and low levels of knowledge for four of 

the five content domain scores. For algebra scores, F(1, 369) = 11.533, p = .001, partial 

η2 = .031; geometry scores, F(1, 369) = 18.710, p < .001, partial η2 = .049; measurement 

scores, F(1, 369) = 41.182, p < .001, partial η2 = .102; RFG scores F(1, 369) = 15.36, p < 

.001, partial η2 = .056. The difference between high and low levels of knowledge was not 

statistically significant for statistics scores, F(1, 369) = 1.719, p = .191, partial η2 = .005. 

The information is displayed in Table 20.  
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 Table 20 

 

Test of Significance: Levels of Knowledge and Content Domains 

 

There was a statistically significant difference between high and low levels of 

comprehension for four of the five content domain scores. For algebra scores, F(1, 369) = 

15.096, p < .001, partial η2 = .040; geometry scores, F(1, 369) = 22.189, p < .001, partial 

η2 = .058; measurement scores, F(1, 369) = 24.791, p < .001, partial η2 = .064; RFG 

scores F(1, 369) = 13.056, p < .001, partial η2 = .035. The difference between high and 

low levels of comprehension was not statistically significant for statistics scores, F(1, 

369) = 9.875, p = .243, partial η2 = .004. The information is displayed in Table 21. 

Table 21 

 

Test of Significance: Levels of Comprehension and Content Domains 

Dependent variable F Sig Partial eta squared 

 Algebra 15.096 p < .001 .040 

 Geometry 22.189 p < .001 .058 

 Measurement 24.791 p < .001 .064 

 Statistics 1.370 p = .243 .004 

 RFG 13.056 p < .001 .035 

 

Dependent variable F Sig Partial eta squared 

 Algebra 11.533 p = .001 .031 

 Geometry 18.710 p < .001 .049 

 Measurement 41.182 p <. 001 .102 

 Statistics 1.719 p = .191 .005 

 RFG 21.405 p < .000 .056 
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There was a statistically significant difference between high and low levels of 

reasoning for four of the five content domain scores. For algebra scores, F(1, 369) = 

9.649, p = .002, partial η2 = .026; geometry scores, F(1, 369) = 10.171, p = .002, partial 

η2 = .027; measurement scores, F(1, 369) = 14.479, p < .001, partial η2 = .039; RFG 

scores F(1, 369) = 7.722, p = .006, partial η2 = .021. The difference between high and 

low levels of reasoning was not statistically significant for statistics scores, F(1, 369) = 

.341, p = .576, partial η2 = .001. The information is displayed in Table 22. 
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Table 22 

 

Test of Significance: Levels of Reasoning and Content Domains 

Dependent variable F Sig Partial eta squared 

 Algebra 9.649 p = .002 .026 

 Geometry 10.171 p = .002 .027 

 Measurement 14.479 p < .001 .039 

 Statistics .314 p = .576 .001 

 RFG 7.722 p = .006 .021 

 

There was a statistically significant difference between high and low CoP for two 

of the five content domain scores. For algebra scores, F(1, 369) = 9.815, p = .002, partial 

η2 = .026; RFG scores, F(1, 369) = 5.359, p = .021, partial η2 = .015. The difference 

between CoP groups was not statistically significant for geometry scores, F(1, 369) = 

3.475, p <=.063, partial η2 = .010; measurement scores F(1, 369) = .588, p = .444, partial 

η2 = .002; statistics scores, F(1, 369) = 1.252, p = .021, partial η2 = .015. The information 

is displayed in Table 23. 

Table 23 

 

Test of Significance CoP and Content Domains 

Dependent variable F Sig Partial eta squared 

 Algebra 9.815 p = .002 .026 

 Geometry 3.475 p =.063 .010 

 Measurement .588 p =.444 .002 

 Statistics 1.252 p= .264 .003 

 RFG 5.359 p =.021 .015 
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Answering the Research Question 

 The primary research question that guided this study was “How do the CSEC 

mathematics scores of high-scoring Vincentian students versus low-scoring Vincentian 

students in the cognitive domains of knowledge, comprehension, and reasoning differ 

across the content domains of algebra, geometry, measurement, statistics, and RFG?”. 

The related null hypothesis was “There are no differences in the CSEC mathematics 

scores between high-scoring Vincentian students and low-scoring Vincentian students in 

the cognitive domains of knowledge, comprehension, and reasoning, across the content 

domains of algebra, geometry, measurement, statistics and RFG”.  

I used 2-way MANOVA and follow up 2-way ANOVA univariate analysis to test 

the null hypothesis. The multivariate results of Pillai’s Trace indicated a statistically 

significant interaction effect between knowledge and reasoning on the combined 

dependent variables, p = .004. The null hypothesis that the combination of algebra, 

geometry, measurement, statistics, and RFG is the same for all combinations of high and 

low levels of knowledge, and high and low levels of reasoning was therefore rejected. I 

then conducted follow up ANOVA univariate to further test the hypothesis to determine 

which content domain(s) contributed to the statistically significant interaction effect 

shown between levels of knowledge and levels of reasoning. The results of the univariate 

analysis indicated that the content domain of measurement, p < .001, was responsible for 

the observed interaction effect. Separate univariate tests for levels of knowledge and 

levels of reasoning for measurement indicated that levels of knowledge explained 17.7 % 

of the variance in the interaction, whereas levels of reasoning explained 13%.  
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Statistically significant simple main effects were observed for knowledge, p < 

.001, comprehension, p < .001, reasoning, p < .001, and CoP, p =. 036. Follow up 2-way 

ANOVA was conducted to determine which content domains were responsible for the 

observed main effects among each independent variable. The difference between high 

and low levels of knowledge was found to be significant for algebra, p = .001, geometry, 

p < .001; measurement, p < .001, and RFG, p < .001. The difference between high and 

low levels of knowledge was not statistically significant for statistics, p = .191. The 

difference between high and low levels of comprehension was found to be significant for 

algebra, p < .001; geometry, p < .001; measurement, p < .001, and RFG, p < .001. The 

difference between high and low levels of knowledge was not statistically significant for 

statistics, p = .243. The difference between high and low levels of reasoning was found to 

be significant for algebra, p = .002; geometry, p = .002; measurement, p < .001, and 

RFG, p = .006. The difference between high and low levels of knowledge was not 

statistically significant for statistics, p = .576. The difference between high and low CoP 

was found to be significant for algebra, p = .002, and RFG, p < .021. The difference 

between high and low CoP was not statistically significant for geometry, p = .663; 

measurement, p = .444; and statistics, p = .264.  

Summary 

The focus of Chapter 4 was the presentation of the results of the study. The 

chapter began with an overview of the study, including the purpose, research question, 

and hypotheses. Following this, I described the data collection procedures and presented 
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the results, including the outcomes of the assumptions and the statistical tests used to 

answer the research questions. Highlights of the findings are summarized below.  

I conducted 2-way MANOVA and follow up 2-way ANOVA tests to examine the 

relationship between the cognitive domains of knowledge, comprehension and reasoning, 

and CoP, and the content domains of algebra, geometry, measurement, statistics, and 

RFG. I used the composite content domain scores to determine CoP. Prior to conducting 

the analyses, I tested the assumptions of the 2-way MANOVA. Overall, one of the 10 

assumptions for the 2-way MANOVA was violated.  

The results of the 2-way MANOVA indicated a statistically significant interaction 

effect between levels of knowledge and levels of reasoning on the combined dependent 

variables F(1, 369) = 16.634, p < .001, partial η2 = .044. There was no interaction effect 

between the other independent variables on the combined dependent variables. Follow up 

univariate 2-way ANOVA tests indicated a statistically significant interaction effect 

between levels of knowledge and levels of reasoning for measurement scores, F(1, 369) = 

16.634, p < .001, partial η2 = .044. There was a significant main effect for each of the 

four independent variables. Knowledge F(5, 357) = 12.925, p < .001, Pillai’s Trace = 

.153, partial η2 = .153. Comprehension F(5, 357) = 10.025, p < .001, Pillai’s Trace = 

.123, partial η2 = .123. Reasoning F(5, 357) = 5.633, p < .001, Pillai’s Trace = .073, 

partial η2 = .073. CoP F(5, 357) = 2.414, p < .001, Pillai’s Trace = .033, partial η2 = .033.  

I computed simple comparisons for differences in mean measurement scores 

between high and low levels of knowledge. Data are mean + standard deviation, unless 

otherwise stated. The means for measurement scores were 13.87 + 3.76 for high levels of 
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knowledge and 10.20 + 2.75 for low levels of knowledge, and 9.38 + 2.79 for high levels 

of reasoning, and 4.77 + 3.36 for low levels of reasoning. There was a statistically 

significant difference between high levels of knowledge and low levels of knowledge, 

3.67 (95% CI, 3.855 to 6.054), p < .0005; and between high levels of reasoning and low 

levels of reasoning, 4.60 (95% CI, 3.04 to 5.24), ), p < .0005. Overall, measurement 

scores were responsible for the significant interaction effect between knowledge and 

reasoning. Significant main effects were noted for algebra, geometry, measurement, and 

RFG in each cognitive domain, and in algebra and RFG for CoP. In Chapter 5, I interpret 

the findings of the study, discuss the limitations, outline recommendations, and discuss 

the implications of the study for social change, and educational practice. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

Introduction 

The purpose of this quantitative, nonexperimental study was to determine the 

extent to which the CSEC mathematics scores of high-scoring Vincentian students versus 

low-scoring Vincentian students in the cognitive domains of knowledge, comprehension, 

and reasoning differ across five content domains of algebra, geometry, measurement, 

statistics, and RFG. The secondary data used in the study comprised the scores of 

Vincentian students in the 2017 May/June CSEC mathematics examination. The study 

was conceptualized and designed in response to the poor performance of Vincentian 

students in the CSEC mathematics examination, and the particularly poor performance on 

the cognitive domain of reasoning. I conducted a 2-way MANOVA to examine the 

relationship between the independent variables of knowledge, comprehension, reasoning, 

and CoP and the dependent variables of algebra, geometry, measurement, statistics, and 

RFG.  

In this chapter, I interpret and discuss the findings of the study. The discussion 

includes how the findings relate to the literature review synthesized in Chapter 2 and in 

the context of the theoretical framework. The limitations of the study follow the 

interpretation of the findings and include the generalizability of the findings. 

Recommendations for further research are then presented in the context of the strengths 

and limitations of the study and the current literature in the field. I outline implications of 

the study for positive social change and educational practice. The chapter culminates with 
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a conclusion that summarizes the highlights of the study including the purpose, findings, 

and implications.  

Interpretation of the Findings 

 In this section, I discuss the interpretations of the findings in relation to current 

literature in the field and the theoretical framework that guided the study. 

Mathematics competency is critical to daily existence and efficient functioning in modern 

societies (Bosman & Schulze, 2018; Hassan et al., 2019; Primi et al., 2020; Waxman, 

2020). Mathematics is a multidimensional construct that encompasses different cognitive 

skills and abilities, as well as cognitive and noncognitive factors that have been found to 

play a significant role in mathematics achievement (Cirino, Tolar, Fuchs, & Huston-

Warren, 2016; Cormier et al., 2017; Gilmore et al., 2018; Männamaa et al., 2012; 

O’Connell, 2018; Passolunghi, Cargnelutti, & Pellizzoni, 2019; Semeraro et al., 2020; 

Skagerlund & Träff, 2016). Although the relationship between cognitive abilities and 

mathematics achievement has been well established, some studies have produced mixed 

or opposite results (Areepattamannil & Caleon, 2013; Caemmerer et al., 2018). Cormier 

et al. (2017) suggested that for studies that reported weak relationships between cognitive 

abilities and mathematics achievement, a number of factors may be responsible for such 

differences. These factors may include the specific area of mathematics that was 

investigated, the different components of cognitive abilities examined, or the lack of a 

common nomenclature used to identify the cognitive abilities.  
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Interpretation of Findings in Relation to Current Literature 

In the present study, there was a statistically significant interaction effect between 

two cognitive domains: levels of knowledge and levels of reasoning on the combined 

dependent variables of algebra, geometry, measurement, statistics, and RFG, F(5, 357) = 

3.50, p = .004, Pillai’s Trace = .047, partial η2 = .047. The interaction effect was 

significant for measurement scores only, F(1, 369) = 16.634, p < .001, partial η2 = .044. 

These findings indicate that the measurement scores of students in the high knowledge 

group were statistically significantly higher than those of their counterparts in the low 

knowledge group. Similarly, the measurement scores of students in the high-reasoning 

group were statistically significantly higher than those of their counterparts in the low-

reasoning group. There was no interaction effect between the other independent 

variables, namely, knowledge and comprehension, comprehension and reasoning, 

knowledge and CoP, comprehension and CoP, and reasoning and CoP, on the combined 

dependent variables. The results of the MANOVA led to the rejection of the null 

hypothesis that there are no differences in the CSEC mathematics scores between high-

scoring Vincentian students and low-scoring Vincentian students in the cognitive 

domains of knowledge, comprehension, and reasoning across the content domains of 

algebra, geometry, measurement, statistics, and RFG.  

There was a significant main effect for each of the four independent variables. 

Knowledge F(5, 357) = 12.925, p < .001, Pillai’s Trace = .153, partial η2 = .153. 

Reasoning F(5, 357) = 5.633, p < .001, Pillai’s Trace = .073, partial η2 = .073. CoP F(5, 

357) = 2.414, p < .001, Pillai’s Trace = .033, partial η2 = .033. These findings are 
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consistent with the findings of earlier studies (Caemmerer et al., 2018; Cormier et al., 

2017; Cowan et al., 2018; Floyd et al., 2003; Green et al., 2017; Khan, 2017; Primi et al., 

2010; Taub et al., 2008). Green et al. (2017), Gelbart (2007) and Primi et al. (2010) found 

fluid reasoning to be a significant predictor of student mathematics reasoning. Similar to 

the present study, the mathematics domain in the Primi et al. (2010) study included 

geometry, numbers, functions, and statistics. In the present study, students in the high-

knowledge group, high-comprehension group, and high-reasoning group performed 

significantly better than their counterparts in the low-knowledge group, low-

comprehension group, and low-reasoning group on all content domains. These findings 

support earlier findings by Primi et al. (2010) in which they reported that students with 

higher intelligence showed faster increases in mathematics scores than their counterparts 

with lower fluid intelligence. The findings of Primi et al. (2010) as well as those of the 

present study were further corroborated by the findings of a meta-analysis by Peng et al. 

(2019) in which they reported a strong reciprocal relationship between fluid intelligence 

and mathematics. In a similar study which investigated working memory capacity and 

student performance in arithmetic, percentages, proportion, decimals, algebra, and 

geometry, Musso et al. (2019) found a direct relationship between working memory 

capacity and mathematics performance. The findings of the current study support earlier 

research by Lee and Bull (2016) who found that students with higher working memory or 

updating capacity performed better than their counterparts with lower working memory 

of updating capacity. Other researchers who investigated the relationship between 

specific cognitive abilities and achievement in specific mathematics content domains 



126 

 

reported a moderate to strong relationship between comprehension knowledge and 

mathematics achievement particularly in the areas of mathematics problem solving and 

mathematics calculation skills (Cormier et al., 2017; Floyd et al., 2003; & Taub et al., 

2008). Passolunghi et al. (2019) also found student working memory and processing 

speed to be strongly associated with high performance on arithmetic problem solving. 

Overall, the findings of the present study support earlier research in the field of cognitive 

abilities and mathematics achievement. The findings also extend current literature by 

adding the influence of cognitive abilities on select mathematics content domains. 

Interpretation of Findings in Context of the Theoretical Framework  

The theoretical perspective of the study was based on Bloom’s taxonomy of 

educational objectives. Bloom’s taxonomy of educational objectives (Bloom et al., 1956) 

is a pedagogical tool designed to guide educators in developing meaningful assessment of 

learning outcomes (Ramirez, 2017). The taxonomy has filled a void by providing a basis 

by which educators can systematically evaluate students’ learning (Bertucio, 2017; 

Hadzhikoleva et al., 2019). Bloom’s taxonomy is debatably one of the most prominent 

educational monographs produced in the last 5 decades (Cullinane & Liston, 2016). 

Bloom’s taxonomy was chosen as the theoretical base for this study because of its 

simplistic nature which allows for certainty and efficiency with which higher-order 

questions and lower-order questions could be distinguished (Cullinane & Liston, 2016).  

Bloom’s taxonomy provides a framework for assessment including a model for 

identifying the cognitive processes examiners use when solving problems (Bloom et al., 

1956). Given established purpose, the CXC used Bloom’s taxonomy as the framework 



127 

 

for the development of the CSEC mathematics examination. The CXC used the cognitive 

processes defined by the taxonomy to develop a cognitive by content matrix that formed 

the blueprint for the test. Achievement in the CSEC mathematics examination is 

consistent with Männamaa et al. (2012) view of mathematics achievement, which they 

perceive as comprising two dimensions: the content of the task, which includes the 

topics, and the cognitive abilities needed for solving these tasks such as knowing, 

computing, knowing and using algorithms, solving word problems, and applying these 

skills in novel situations (Männamaa et al., 2012). A thorough understanding of 

mathematics achievement requires an identification of important relationships between 

cognitive skills and specific components of mathematics (Gilmore et al., 2018). I sought 

to contribute to the literature on the influence of cognitive abilities on mathematics 

achievement by analyzing students’ performance in the CSEC mathematics examination 

by cognitive domain based on three levels of Bloom’s taxonomy, knowledge, 

comprehension, and reasoning, and five mathematics content domain: algebra, geometry, 

measurement, statistics, and RFG. 

The results of the present study showed that students in the high-knowledge group 

and the high-reasoning group had statistically significant higher scores on the 

measurement domain than their counterparts in the low-knowledge and low-reasoning 

group. The study’s findings further corroborate the findings of other researchers who 

found that specific cognitive domains predict achievement in specific mathematics 

domain (Khan, 2017; Männamaa et al., 2012; & Zhang et al., 2017). Khan (2017) found 

that although students in the national Grade 4 mathematics test in Trinidad and Tobago 
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generally performed poorly on the measurement domain, students in the lower-

performing group have statistically significantly lower scores than their counterparts in 

the higher-performing group.  

The findings of the present study also indicated that students in the high-knowledge 

group, the high-comprehension group, and high-reasoning group had significantly higher 

scores on algebra, geometry, measurement, and RFG, than their counterparts in the low-

knowledge group, the low-comprehension group, and low-reasoning group. The scores in 

statistics were not significantly different for students in the high group and the low group 

for knowledge, comprehension, and reasoning. Additionally, students in the high-CoP 

group had significantly higher scores in algebra and RFG than their counterparts in the 

low-CoP group. These findings are consistent with those of earlier studies that found 

cognitive domain to be a significant predictor of student mathematics achievement (Primi 

et al., 2010; Vista, 2016; Wong & Ho, 2017). The findings also support the view that 

tasks requiring higher cognitive skills improve critical thinking skills and result in more 

permanent learning (Tarman & Kuran, 2015).The findings of the present study also 

support those of Khan (2017) who reported that overall, questions which required higher-

order thinking skills posed the greatest challenges for all students. According to 

O’Connell (2018), cognitive ability is a key driver of academic achievement for most 

students. Also, given the role of fluid intelligence, reasoning, and problem solving in 

predicting mathematics reasoning (Cowan et al., 2018; Green, et at., 2017; Passolunghi et 

al., 2019; Primi et al., 2010; Semeraro et al., 2020), it is not surprising that in this study, 

students in each of the high-cognitive groups of knowledge, comprehension, and 
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reasoning had significantly higher mathematics scores than their counterparts in each of 

the low-cognitive groups.  

Specific cognitive abilities have been found to predict achievement in specific 

mathematics domains (Gilmore et al., 2018; Khan, 2017; Männamaa et al., 2012; Zhang 

et al., 2017). In the present study, the scores of students in the high group for knowledge, 

comprehension, and reasoning were statistically significantly higher than those of their 

counterparts in the low groups, for four content domains, algebra, geometry, 

measurement, and RFG, but not for statistics. Students scored lowest in the content 

domains of measurement and statistics. The findings of the study partially support those 

of Khan (2017) who reported that students achieved their highest scores in statistics and 

their lowest scores in measurement. It may be important to note that Khan’s study 

included Grade 6 students, whereas the present study included Grade 11 students. A 

possible explanation for the lack of difference between the high group and the low group 

for each of the cognitive domains in the present study may be related to the type of tasks 

students were required to perform for the statistics items, and whether the cognitive levels 

for the tasks were accurately and consistently differentiated by the test developers. 

For CoP, the scores of the students in the high groups were significantly higher than 

those of the students in the low group for algebra and RFG. However, the scores of the 

students in the high group and the low group were not significantly different for 

geometry, measurement, and statistics. These results suggest that students demonstrated 

different levels of competence in the various mathematics domains. Based on this 

outcome, it is very likely that students with the same composite scores did not have the 
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same pattern of scores for geometry, measurement, and statistics, resulting in some 

students in the low CoP group having higher scores than some students in the high CoP 

group on geometry, measurement, and RFG.  

The overall findings of the study support the view that cognitive abilities have a 

significant influence on student mathematics achievement as demonstrated by students in 

the high-scoring groups in each cognitive domains: knowledge, comprehension, and 

reasoning scoring significantly higher than their counterparts in the corresponding low-

scoring groups in four of the five content domains investigated. The outcomes of the 

study are consistent with the purpose of Bloom’s taxonomy in providing educators with a 

framework for understanding learning outcomes and delineating tasks involving higher 

and lower-order skills (Irvine, 2017), as well as providing clarity in designing and 

sequencing educational objectives (Ramirez, 2017).  

The conceptual model in Figure 5 summarizes the main outcomes of the study, 

supporting the influence of cognitive abilities, as defined by Bloom’s taxonomy, on 

mathematics achievement. The conceptual model gives a diagrammatical illustration of 

the outcomes of the study. It highlights the interaction effect which occurred between 

levels of reasoning and levels of knowledge, and the main effects of each cognitive 

domain: knowledge, comprehension, and reasoning, on the content domains. In addition 

to providing a summary of the primary findings, the model consolidates the relationship 

between cognitive abilities and achievement of Vincentian students in the 2017 May/June 

CSEC mathematics examination. This model may be used as a foundation for further 
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exploration of the role of cognitive abilities in mathematics achievement in other 

contexts.  

Figure 5. Conceptual model: Mathematics cognitive abilities (Bloom’s taxonomy) and 

Content Domains in CSEC Mathematics. 

 

Limitations of the Study 

The study was nonexperimental with a cross-sectional designed that used archival 

data. The purpose of the study was to determine whether the CSEC mathematics scores 

of high-scoring Vincentian students versus low-scoring Vincentian students in the 

cognitive domains of knowledge, comprehension, and reasoning differ across the content 

domains of algebra, geometry, measurement, statistics, and RFG. Limitations of the study 

include the cross-sectional design and the use of archival data. The cross-sectional design 

makes it difficult to make causal inferences (Bono & McNamara, 2011; Levin, 2006). 
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The data used in the study were collected at one point in time and comprised students’ 

mathematics examination scores for 1 year. Data on student performance for a single 

examination does not allow for the establishing a trend in performance. Basing analyses 

on data collected at a single-point-in-time limits the generalizability of the results to other 

examination sittings. Archival data are not always organized in a form that will allow for 

maximum data usage. For instance, the data received included students’ cognitive domain 

scores and content domain scores. The gender and age of the students were not included, 

which could have been used for further exploration. Other limitations included the use of 

five content domains with total scores ranging from 16 to 20 and scores on the cognitive 

domains ranging from 28 to 34. A maximum of 20 marks or fewer for a content domain 

may not have been sufficient to give adequate content coverage for the domains to give 

an accurate determination of students’ proficiency level in the particular content domain, 

and establish content validity of the examination. Another limitation identified was that 

the cognitive domains may not have be consistently operationalized in all content 

domains throughout the examination. Accurate and consistent operationalization of 

cognitive domains is required to establish sound psychometric properties of the 

examination and produce reliable scores from which to draw valid inferences regarding 

student performance.  

Recommendations 

 The results of the present study contribute to the growing literature on cognitive 

abilities and mathematics abilities by exploring a unique combination of content domains 

using the cognitive abilities as defined by Bloom taxonomy of learning objectives 
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(Bloom et al., 1956). The study is the first of its kind to be conducted in the Caribbean 

and Saint Vincent and the Grenadines, in particular. The findings of the study support 

previous research studies in demonstrating a strong relationship between cognitive 

abilities and mathematics achievement. Based on the findings of the study, I offer 

recommendations for further research and practice. 

Recommendations for Further Research 

Given the importance of mathematics to overall academic achievement, and in 

light of the general poor performance of students in all content domains, future research 

may investigate the type of strategies teachers use when teaching mathematics. In many 

classrooms in Saint Vincent and the Grenadines, “chalk and talk” is still the predominant 

mode of teaching. This method of teaching encourages rote learning among students. In 

most cases, the teacher is the focal point of attention and dictates the solutions of 

mathematics problems. Hence, students may not be afforded sufficient opportunities to 

discover solutions for themselves. This type of rote learning does not foster critical 

thinking which is necessary for developing higher order cognitive skills, such as 

reasoning, which has been found to be related to mathematics achievement (Cormier et 

al., 2017; Cowan et al., 2018; Semeraro et al., 2020).  

Researchers may also explore the type of strategies students use when solving 

mathematics problems. Some students seem to rely on a surface approach, in which they 

simply try to recall facts and procedure, as opposed to a deep approach in which they are 

engaged with the material and able to apply their knowledge to new situations. The 

surface approach to learning is consistent with the knowledge level of Bloom’s 
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taxonomy, which is used to guide the construction of the CSEC mathematics 

examination. The outcomes of the study have shown that students in the high-reasoning 

group had higher mathematics scores, hence future research may investigate the effect of 

a surface approach versus a deep approach in solving mathematics problems.  

Researchers may also explore curriculum alignment of the CSEC mathematics 

examination to determine whether there is congruence among the students’ expectations, 

instruction, and assessment. Nonalignment of curriculum has been identified as one of the 

reasons for students’ poor performance (Bhaw & Kriek, 2020; Seitz, 2017; Squires, 

2012). Exploration of curriculum alignment may include examining balance between 

representation and cognitive complexity. Balance of representation focusses on topic 

coverage between the curriculum and assessment, whereas cognitive complexity focusses 

on cognitive demand between curriculum and assessment (Bhaw & Kriek, 2020).  

Researchers may also explore the influence of cognitive abilities on mathematics 

achievement using other content domains as the measure of achievement. Additionally, 

research may include other examination years to explore whether there is a trend in 

performance. Future research may also consider replicating this study in other Caribbean 

territories to determine whether the findings will hold true. Researchers may also 

investigate the influence of cognitive abilities on mathematics achievement using gender, 

age, school type, school location, or socioeconomic status as mediating variables.  

Recommendations for Practice 

 Insights into the influence of cognitive abilities on student mathematics 

achievement may help education administrators identify students who are at risk of 
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developing learning difficulties in mathematics so that they could plan intervention 

strategies for remediation to improve student mathematics achievement.  

Teachers can help students to improve their cognitive abilities by ensuring that 

classroom instructions and assessments are aligned to the syllabus and examination 

specifications based on the CXC’s requirements for the CSEC mathematics examination. 

Teachers are therefore encouraged to use Bloom’s taxonomy of educational objectives to 

model their classroom pedagogy. They can do so by using the specimen paper, which is a 

blueprint for the examination, as well as past examination papers to guide and develop 

their classroom assessments in which they could challenge students to engage in higher 

order thinking. Teachers may support students in developing higher cognitive abilities by 

challenging them to explore multiple solution to mathematic problems, and connecting 

procedures and concepts (Kieran, 2013; Star et al., 2015). 

Creating a classroom culture that fosters the development of critical thinking 

skills through the use of skillful questioning that allows students to hone these skills is 

likely to result in higher academic achievement in high-stakes examination for students 

(Whittle, Benson, Ullah, & Telford, 2018). In many classrooms in Saint Vincent and the 

Grenadines, teachers still utilize behaviorist approaches in the teaching of mathematics, 

where the teacher is considered the custodian of knowledge and is responsible for 

transmitting that knowledge to the students (Ampadu & Danso, 2018). In the behaviorist 

approach to teaching, students are considered tabula rasa, empty vessels to be filled 

(Tirza, 2020). The behaviorist approach to teaching has been criticized for producing 

students who are unable to engage in critical thinking (Boaler & Staples, 2008), and to 
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transfer knowledge acquired in mathematics classrooms to solving real-life problems 

(Ampadu & Danso, 2018). According to Lambert et al. (as cited in Ampadu & Danso, 

2018), teachers need to adopt a more effective approach to pedagogy such as the 

constructivist approach that incorporates the learner’s experiences, beliefs, and world 

views into the learning process. In using a constructivist approach, students will be 

actively involved in the learning process (Tirza, 2020), and would be challenged to 

construct knowledge from within (Tarman & Kuran, 2015).  

With regard to the non-significant difference in the scores between high CoP and 

low CoP for geometry, measurement, and statistics, the CXC could seek to explore the 

content validity of these examination questions by commissioning mathematics content 

specialists and psychometricians to engage in question review and analysis, where 

necessary. The review and analysis should result in improvement in the psychometric 

properties of questions to be used in future examinations, including ensuring that the 

cognitive levels of questions are accurately assigned, and are commensurate with the 

requirements of the tasks.  

Implications for Positive Social Change 

The findings of the present study contribute to positive social change by providing 

teachers, administrators, and education policy makers in Saint Vincent and the 

Grenadines with insights into the influence of cognitive abilities on student achievement 

in the CSEC mathematics examination, including influence on specific content domains. 

With such insights, education administrators are better able to plan intervention strategies 

to help students to enhance their higher order cognitive skills, which is likely to improve 
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students’ mathematics competence. Strategies for enhancing cognitive skills may include 

adopting a constructivist approach to teaching that is more student oriented as well as 

pre-service and in-service teacher training to teach teachers to write higher-order 

questions that will challenge students to engage in critical thinking. Tasks that stimulate 

students’ cognitive abilities motivate them to be fully engaged in the learning process, 

take more responsibility for their learning, and result in more permanent learning 

(Tarman & Kuran, 2015). Students who are mathematically proficient are likely to 

function more efficiently in society, lead more successful lives, and have better career 

options (Algarni, 2018; Dobie, 2019; Hassan et al., 2019; Primi et al., 2020; Waxman, 

2020). 

Conclusion 

Mathematics achievement is a major component of student overall academic 

achievement and is critical to their effective functioning in a dynamic society that is 

becoming increasing quantified. However, students at all levels continue to demonstrate a 

lack of mathematics competence. The under achievement of students in mathematics is of 

great concern to education stakeholders globally, and has captured the attention of 

researchers who continue to seek reasons for such under achievement. Researchers have 

found a number of cognitive and noncognitive factors to be associated with mathematics 

achievement at various levels (Areepattamannil, & Caleon, 2013; Cowan et al., 2018; 

Semeraro et al., 2020; Xenidou-Dervou et al., 2018).  

In this study, I sought to determine the effect of students’ cognitive abilities, as 

defined by Bloom’s taxonomy, on achievement in select mathematics content domains 
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among a sample of Vincentian students on the 2017 May/June CSEC mathematics 

examination. The findings of the study indicated significant interaction between students 

in the high knowledge group and the low knowledge group, and between students in the 

high reasoning group and the low reasoning group on the measurement domain. There 

was also a significant main effect between students in the high-cognitive domain groups 

and the low-cognitive domain groups for algebra, geometry, measurement, and RFG. 

Additionally, the scores of students in the high-scoring group on the overall examination, 

were not significantly different from those in the low-scoring group on geometry, 

measurement, and statistics. Overall, the findings of the study support earlier studies that 

found cognitive abilities to play a significant role in mathematics achievement (Cormier 

et al., 2017; Cowan et al., 2018; O’Connell, 2018; Roth et al., 2015; Semeraro et al., 

2020). Further research in the field of cognitive abilities and mathematics achievement 

are recommended. Such research may focus on cognitive abilities as defined by Bloom’s 

taxonomy and may include different mathematics content domains, as well as students’ 

data from other Caribbean territories. The research could also focus on performance 

trends and include student performance data across several years. 

The findings of this study provide insights into the influence of Vincentian 

students’ cognitive abilities on their mathematics achievement. Given the significance of 

students’ reasoning abilities in their mathematics success, educators in Saint Vincent and 

the Grenadines may use the insights from this study to transform mathematics pedagogy 

with a view to improving the overall mathematics achievement of Vincentian students. 

Educators may adopt strategies such as student-centered approaches to instruction and 
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open-ended classroom assessments that will challenge students to develop critical 

thinking and problem-solving skills that are critical to success in mathematics. 

Contemporary visions of improving mathematics achievement in the United States focus 

on teacher training that promotes student-centered learning and the solving of authentic 

problems (Ferrini-Mundy, 2000; Kieran, 2013; Litke & Corven, 2019). The findings of 

this research align with a student-centered approach and supports arguments for using a 

similar strategy to transform and support mathematics education efforts in Saint Vincent 

and the Grenadines. It is hoped that if implemented, these research-informed 

recommendations will help to produce mathematically competent students who will have 

greater access to higher paying career options and greater economic security, thereby 

positioning them to contribute in meaningful ways to their communities and society at 

large.  
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Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnic, F., & Spinath, F. M. (2015). 

Intelligence and school grades: A meta-analysis. Intelligence, 53, 118–137. 

doi:10.1016/j.intell.2015.09.002  

Rutkowski, D., & Delandshere, G. (2016). Causal inferences with large scale assessment 

data; using a validity framework. Large Scale Assessment in Education, 4(6), 2–

18. doi:10.1186/s40536-016-0019-1  



172 

 

Sahlberg, P. (2011). PISA in Finland: an education miracle or an obstacle to change? 

Center for Educational Policy Studies Journal, 1(3), 119–140. Retrieved from 

https://files.eric.ed.gov/fulltext/EJ1130792.pdf 

Sakia, R. M. (1992). The Box-Cox transformation technique: A review. The statistician, 

41, 169–178. doi:10.3102%2F0013189X031001013 

Schoenfeld, A. (1995). Is thinking about algebra a misdirection? In C. Lacampagne, W. 

Blair, & J. Kaput (Eds.), The algebra colloquium,2: Working group papers (pp. 

83–86). Washington, DC: U.S. Department of Education. 

Schoenfeld, A. H. (2002). Making mathematics work for all children: Issue of standards, 

testing and equity. Educational Researcher, 31(1), 13–25. 

doi:10.3102/0013189X031001013 

Seitz, P. (2017). Curriculum alignment among intended, enacted and assessed curricula 

for grade 9 mathematics. Journal of Canadian Studies, 15(1), 72–9 4. Retrieved 

from 

https://pdfs.semanticscholar.org/16ae/5e176e891456f3fb489cdde1483449dcd0cd.

pdf 

Sellar, S., & Lingard, B. (2014). The OECD and the expansion of PISA: New global 

modes of governance in education. British Educational Research Journal 40 (6), 

917–936. doi:10.1002/berj.3120  
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Skagerlund, K., & Träff, U. (2016). Processing of space, time, and number contributes to 

mathematical abilities above and beyond domain-general cognitive abilities. 

Journal of Experimental Child Psychology 143, 85–101. 

doi:10.1016/j.jecp.2015.10.016  

Sodha, J. (2012). Solving the math problem. Retrieved from 

https://barbadostoday.bb/2012/11/07/solving-the-maths-problem/ 

Soni, A., & Kumari, S. (2017). The role of parental math anxiety and math attitude in the 

children math achievement. International Journal of Science and Mathematics 

Education, 15, 331–347. doi:10.1007/s10763-015-9687-5  

Spector, P. E. (2019). Do not cross me: Optimizing the use of cross-sectional designs. 

Journal of Business and Psychology, 34, 125–137. doi:10.1007/s10869-018-

09613-8  

Spiegelhalter, D. (2020). The art of statistics: How we learn from data. Numeracy, 13, 1–

4. doi:10.5038/1936-4660.13.1.7  

https://doi.org/10.1080/01619561003708445
https://barbadostoday.bb/2012/11/07/solving-the-maths-problem/


174 

 

Squires, D. (2012). Curriculum alignment research suggests that alignment can improve 

student achievement. The Clearing House: A Journal of Educational Strategies, 

Issues and Ideas, 85(4),129–135. doi:10.1080/00098655.2012.657723  

Star, J. R., Caronongan, P., Foegen, A., Furgeson, J., Keating, B., Larson, M. R., ... 

Zbiek, R. M. (2015). Teaching strategies for improving algebra knowledge in 

middle and high school students (NCEE 2014-4333).  

STEM Education Coalition. (2009). Retrieved from http://www.stemedcoali- 

tion.org/content/objectives/Default.aspx  

Stylianou, D. A., Stroud, R., Cassidy, M., Knuth, E., Stephens, A., Gardiner, A., & 

Demers, L. (2019). Putting early algebra in the hands of elementary school 

teachers: Examining fidelity of implementation and its relation to student 

performance. Journal for the Study of Education and Development, 42(3), 523–

569. doi:10.1080/02103702.2019.1604021  

Sui Chu Ho, E. (2016). The use of large-scale assessment (PISA): Insights for policy and 

practice in the case of Hong Kong. Research Papers in Education, 31(5), 516–

528. doi:10.1080/02671522.2016.1225351 

Syarifudin, S., Purwanto, P., Irawan, E. B., Sulandra, I. M., & Fikriyah, U. (2019). 

Student verbal interaction in geometry problem-solving through cognitive 

activities. International Journal of Instruction, 12(3), 167–182. 

doi:10.29333/iji.2019.12311a  

Tabachnick, B. G., & Fidell, L. S. (2014). Using multivariate statistics (3rd ed.). New 

York, NY. Harper Collins. 



175 

 

Tajudin, N. M., & Chinnappan, M. (2016). The link between higher order thinking skills, 

representation and concepts in enhancing TIMSS tasks. International Journal of 

Instruction, 9(2), 1308–1470. doi:10.12973/iji.2016.9214a  

Tarman, B., & Kuran, B. (2015). Examination of cognitive level of questions in social 

studies textbooks and the views of teachers based on Bloom taxonomy. Education 

Sciences: Theory and Practice, 15(1), 213–222. doi:10.12738/estp.2015.1.2625 

Taub, G. E., Floyd, R. G., Keith, T. Z., & McGrew, K. S. (2008). Effects of general and 

broad cognitive abilities on mathematics abilities. School Psychology Quarterly, 

23, 187–198. doi:10.1037/1045-3830.23.2.187 

Thorndike, R. M. (1997). Measurement and evaluation in psychology and education (6th 

Ed.). New Jersey: Merrill. 

Tirza, J. (2020). Constructivism and teaching-learning Process in Christian School: Case 

Study in a Christian school in Tangerang, Indonesia. International Journal of 

Psychosocial Rehabilitation, 24(4), 584–590. 

doi:10.37200/IJPR/V24I4/PR201036 

Tolar, T. D., Fuchs, L., Fletcher, J. M., Fuchs, D., & Hamlett, C. L. (2016). Cognitive 

profiles of mathematical problem-solving learning disability for different 

definitions of disability. Journal of Learning Disabilities, 49(3), 240–256. 

doi:10.1177/0022219414538520  

Trochim, W. M. (2006). The research methods knowledge base. (2nd Ed.). Retrieved 

from http://www.socialresearchmethods.net/kb/ 

https://doi.org/10.37200/IJPR/V24I4/PR201036


176 

 

United Nations World Population Prospects. (2019). Revision 

worldpopulationreview.com. PAHO. Pan American Health Organization about 

Saint Vincent and the Grenadines. 
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Appendices 

Background: In this study, I used archival data which comprised Vincentian students’ 

scores in the CSEC mathematic examination, and statistics (means) on CXC mathematics 

examination. The data were used at two points in the study. Initially, data was required at 

the proposal stage to establish the problem under study. Once approved, access to data 

was requested to answer the research question. Permission for the use of the data was 

sought and granted at two different points in time, and from two entities. One entity was 

the Ministry of Education, National Reconciliation and Information, Saint Vincent and 

the Grenadines, which is the owner of the data. The other entity was the CXC, which is 

the custodian of the data.  

Contents: The following appendices, A–G, indicate the various request for and approval 

of the use of students’ examination data.  

Appendix A: Request for permission to access and use the CXC mathematics 

Examination data – Letter to registrar [preliminary proposal-level data analysis]  

Appendix B: Approval to access and use the CXC mathematics Examination data – 

Letter from registrar.[preliminary proposal-level data analysis]  

Appendix C: Request for permission to access and use Vincentian students’ scores in 

the CSEC mathematics Examination – Letter to registrar  

Appendix D: Approval to access and use Vincentian students’ scores in the CSEC 

mathematics Examination – Letter from registrar  

Appendix E: Request for permission to access and use Vincentian students’ scores in 

the CSEC mathematics Examination – Letter to Permanent Secretary  
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Appendix F: Approval to access and use Vincentian students’ scores in the CSEC 

mathematics Examination – Letter from Permanent Secretary  

Appendix G: Approval from Walden’s IRB to collect data 
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Appendix A: Request for Permission To Access and Use the CXC Mathematics 

Examination Data – Letter to Registrar  
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Appendix B: Approval To Access and Use the CXC Mathematics Examination Data – 

Letter From Registrar 
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Appendix C: Request for Permission To Access and Use Vincentian Students’ Scores 

In the CSEC Mathematics Examination – Letter to Registrar 
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Appendix D: Approval To Access and Use Vincentian Students’ Scores in the CSEC 

Mathematics Examination – Letter From Registrar  
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Appendix E: Request for Permission To Access and Use Vincentian Students’ Scores in 

the CSEC Mathematics Examination – Letter to Permanent Secretary  
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Appendix F: Approval to Access and Use Vincentian Students’ Scores in the CSEC 

Mathematics Examination – Letter From Permanent Secretary 
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Appendix G: Approval From Walden’s IRB To Collect Data 
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Appendix H: Request for Vincentian Students’ Scores in the CSEC Mathematics 

Examination – Email to Data Manager 

 

From: Brendalee Cato  

Sent: Friday, 10 April 2020 13:34 

To: Andre Blair <ABlair@cxc.org> 

Subject: Request for data 

  

  

Good afternoon Andre. I hope you and your family are keeping safe amidst COVID-19. 

  

On Wednesday 8th April, 2020, I received approval from the university Institutional 

Review Board (IRB) to proceed with data collection. For my research I am using archival 

data comprising the scores (by content domain and cognitive domain) of students from 

Saint Vincent and the Grenadines in the 2017 May/June CSEC mathematics examination. 

  

I have attached the following documents for your guidance 

-     Letter of approval for data usage from the Caribbean Examinations Council 

-     Letter of approval for use of data from Saint Vincent and the Grenadines 

-     Table indicating how the data should be organized 

  

I will greatly appreciate if this request could be honoured within the coming 

week. 

  

Thanks in Advance 

  

Brendalee 

  

 

Brendalee Cato 

Manager 

Examinations Development and Production Division 

  

Caribbean Examinations Council 

Prince Road, Pine Plantation Road, 

St. Michael BB11091, Barbados 

 

t:  +1 (246) 227-1843 f:  +1 (246) 429-5421  

e:  cxcezo@cxc.org   w:  www.cxc.org | www.cxc-store.com 

 

3 Attachments  

mailto:ABlair@cxc.org
mailto:cxcezo@cxc.org
http://t.sidekickopen13.com/e1t/c/5/f18dQhb0S7lC8dDMPbW2n0x6l2B9nMJW7t5XYg1qwgMWW3VZmy03S_Gl0F3D54CjTDKlf54x56803?t=http%3a%2f%2fwww.cxc.org&si=6433335124951040&pi=fe7aafec-e761-4c61-b2c7-3a8c93a8d545
http://t.sidekickopen13.com/e1t/c/5/f18dQhb0S7lC8dDMPbW2n0x6l2B9nMJW7t5XYg1qwgMWW3VZmy03S_Gl0F3D54CjTDKlf54x56803?t=http%3a%2f%2fwww.cxc-store.com&si=6433335124951040&pi=fe7aafec-e761-4c61-b2c7-3a8c93a8d545
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Appendix I: Scatterplots – Pairs of Dependent Variables and Levels of Independent 

Variables 
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Appendix J: Sample Boxplots  
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Appendix K: Descriptive Statistic 

 

Descriptive Statistics 

 
    

Levels 

of 

Knowle

dge 

Levels of 

Comprehe

nsion 

Levels of 

Reasoning 

Category 

of 

Performan

ce Mean 

Std. 

Deviat

ion                 N 

 Low Low Low LOWCoP 5.90 2.847 168 

Total 5.90 2.847 168 

High LOWCoP 12.00 . 1 

Total 12.00 . 1 

Total LOWCoP 5.93 2.877 169 

Total 5.93 2.877 169 

High Low LOWCoP 10.46 2.259 13 

HighCoP 13.19 2.354 27 

Total 12.30 2.633 40 

High HighCoP 14.08 2.109 12 

Total 14.08 2.109 12 

Total LOWCoP 10.46 2.259 13 

HighCoP 13.46 2.292 39 

Total 12.71 2.615 52 

Total Low LOWCoP 6.23 3.042 181 

HighCoP 13.19 2.354 27 

Total 7.13 3.773 208 

High LOWCoP 12.00 . 1 

HighCoP 14.08 2.109 12 

Total 13.92 2.100 13 

Total LOWCoP 6.26 3.064 182 

HighCoP 13.46 2.292 39 

Total 7.53 4.026 221 

High Low Low LOWCoP 10.00 1.732 3 

Total 10.00 1.732 3 

High HighCoP 12.50 .707 2 

Total 12.50 .707 2 

Total LOWCoP 10.00 1.732 3 

HighCoP 12.50 .707 2 
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Total 11.00 1.871 5 

High Low HighCoP 13.68 2.260 53 

Total 13.68 2.260 53 

High HighCoP 15.65 2.392 91 

Total 15.65 2.392 91 

Total HighCoP 14.92 2.523 144 

Total 14.92 2.523 144 

Total Low LOWCoP 10.00 1.732 3 

HighCoP 13.68 2.260 53 

Total 13.48 2.374 56 

High HighCoP 15.58 2.411 93 

Total 15.58 2.411 93 

Total LOWCoP 10.00 1.732 3 

HighCoP 14.89 2.522 146 

Total 14.79 2.597 149 

Total Low Low LOWCoP 5.97 2.879 171 

Total 5.97 2.879 171 

High LOWCoP 12.00 . 1 

HighCoP 12.50 .707 2 

Total 12.33 .577 3 

Total LOWCoP 6.01 2.907 172 

HighCoP 12.50 .707 2 

Total 6.08 2.973 174 

High Low LOWCoP 10.46 2.259 13 

HighCoP 13.51 2.289 80 

Total 13.09 2.509 93 

High HighCoP 15.47 2.404 103 

Total 15.47 2.404 103 

Total LOWCoP 10.46 2.259 13 

HighCoP 14.61 2.541 183 

Total 14.34 2.723 196 

Total Low LOWCoP 6.29 3.060 184 

HighCoP 13.51 2.289 80 

Total 8.48 4.377 264 

High LOWCoP 12.00 . 1 

HighCoP 15.41 2.417 105 

Total 15.38 2.428 106 

Total LOWCoP 6.32 3.081 185 
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HighCoP 14.59 2.538 185 

Total 10.45 5.009 370 

Total Geometry Low Low Low LOWCoP 4.65 2.275 168 

Total 4.65 2.275 168 

High LOWCoP 10.00 . 1 

Total 10.00 . 1 

Total LOWCoP 4.68 2.305 169 

Total 4.68 2.305 169 

High Low LOWCoP 8.00 2.198 13 

HighCoP 9.59 2.859 27 

Total 9.08 2.740 40 

High HighCoP 11.50 2.153 12 

Total 11.50 2.153 12 

Total LOWCoP 8.00 2.198 13 

HighCoP 10.18 2.780 39 

Total 9.63 2.794 52 

Total Low LOWCoP 4.89 2.424 181 

HighCoP 9.59 2.859 27 

Total 5.50 2.941 208 

High LOWCoP 10.00 . 1 

HighCoP 11.50 2.153 12 

Total 11.38 2.103 13 

Total LOWCoP 4.92 2.447 182 

HighCoP 10.18 2.780 39 

Total 5.85 3.210 221 

High Low Low LOWCoP 8.67 1.528 3 

Total 8.67 1.528 3 

High HighCoP 8.00 2.828 2 

Total 8.00 2.828 2 

Total LOWCoP 8.67 1.528 3 

HighCoP 8.00 2.828 2 

Total 8.40 1.817 5 

High Low HighCoP 11.58 2.583 53 

Total 11.58 2.583 53 

High HighCoP 13.84 2.918 91 

Total 13.84 2.918 91 

Total HighCoP 13.01 2.995 144 

Total 13.01 2.995 144 
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Total Low LOWCoP 8.67 1.528 3 

HighCoP 11.58 2.583 53 

Total 11.43 2.614 56 

High HighCoP 13.71 3.024 93 

Total 13.71 3.024 93 

Total LOWCoP 8.67 1.528 3 

HighCoP 12.94 3.040 146 

Total 12.85 3.074 149 

Total Low Low LOWCoP 4.72 2.322 171 

Total 4.72 2.322 171 

High LOWCoP 10.00 . 1 

HighCoP 8.00 2.828 2 

Total 8.67 2.309 3 

Total LOWCoP 4.75 2.350 172 

HighCoP 8.00 2.828 2 

Total 4.79 2.372 174 

High Low LOWCoP 8.00 2.198 13 

HighCoP 10.91 2.825 80 

Total 10.51 2.918 93 

High HighCoP 13.56 2.929 103 

Total 13.56 2.929 103 

Total LOWCoP 8.00 2.198 13 

HighCoP 12.40 3.164 183 

Total 12.11 3.294 196 

Total Low LOWCoP 4.95 2.457 184 

HighCoP 10.91 2.825 80 

Total 6.76 3.759 264 

High LOWCoP 10.00 . 1 

HighCoP 13.46 3.013 105 

Total 13.42 3.017 106 

Total LOWCoP 4.98 2.478 185 

HighCoP 12.36 3.187 185 

Total 8.67 4.666 370 

Total 

Measurement 

Low Low Low LOWCoP 3.63 2.058 168 

Total 3.63 2.058 168 

High LOWCoP 12.00 . 1 

Total 12.00 . 1 

Total LOWCoP 3.68 2.150 169 
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Total 3.68 2.150 169 

High Low LOWCoP 9.08 3.818 13 

HighCoP 9.81 3.476 27 

Total 9.58 3.558 40 

High HighCoP 9.17 2.791 12 

Total 9.17 2.791 12 

Total LOWCoP 9.08 3.818 13 

HighCoP 9.62 3.258 39 

Total 9.48 3.375 52 

Total Low LOWCoP 4.02 2.625 181 

HighCoP 9.81 3.476 27 

Total 4.77 3.364 208 

High LOWCoP 12.00 . 1 

HighCoP 9.17 2.791 12 

Total 9.38 2.785 13 

Total LOWCoP 4.07 2.683 182 

HighCoP 9.62 3.258 39 

Total 5.05 3.500 221 

High Low Low LOWCoP 11.33 2.082 3 

Total 11.33 2.082 3 

High HighCoP 8.50 3.536 2 

Total 8.50 3.536 2 

Total LOWCoP 11.33 2.082 3 

HighCoP 8.50 3.536 2 

Total 10.20 2.775 5 

High Low HighCoP 10.13 2.781 53 

Total 10.13 2.781 53 

High HighCoP 13.99 3.692 91 

Total 13.99 3.692 91 

Total HighCoP 12.57 3.857 144 

Total 12.57 3.857 144 

Total Low LOWCoP 11.33 2.082 3 

HighCoP 10.13 2.781 53 

Total 10.20 2.746 56 

High HighCoP 13.87 3.757 93 

Total 13.87 3.757 93 

Total LOWCoP 11.33 2.082 3 

HighCoP 12.51 3.871 146 
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Total 12.49 3.843 149 

Total Low Low LOWCoP 3.77 2.289 171 

Total 3.77 2.289 171 

High LOWCoP 12.00 . 1 

HighCoP 8.50 3.536 2 

Total 9.67 3.215 3 

Total LOWCoP 3.81 2.367 172 

HighCoP 8.50 3.536 2 

Total 3.87 2.421 174 

High Low LOWCoP 9.08 3.818 13 

HighCoP 10.02 3.015 80 

Total 9.89 3.133 93 

High HighCoP 13.43 3.910 103 

Total 13.43 3.910 103 

Total LOWCoP 9.08 3.818 13 

HighCoP 11.94 3.921 183 

Total 11.75 3.970 196 

Total Low LOWCoP 4.14 2.772 184 

HighCoP 10.02 3.015 80 

Total 5.92 3.926 264 

High LOWCoP 12.00 . 1 

HighCoP 13.33 3.946 105 

Total 13.32 3.929 106 

Total LOWCoP 4.18 2.824 185 

HighCoP 11.90 3.925 185 

Total 8.04 5.157 370 

Total Statistics Low Low Low LOWCoP 4.66 3.028 168 

Total 4.66 3.028 168 

High LOWCoP 4.00 . 1 

Total 4.00 . 1 

Total LOWCoP 4.66 3.020 169 

Total 4.66 3.020 169 

High Low LOWCoP 7.62 2.987 13 

HighCoP 8.63 2.169 27 

Total 8.30 2.472 40 

High HighCoP 9.75 1.960 12 

Total 9.75 1.960 12 

Total LOWCoP 7.62 2.987 13 
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HighCoP 8.97 2.146 39 

Total 8.63 2.426 52 

Total Low LOWCoP 4.87 3.113 181 

HighCoP 8.63 2.169 27 

Total 5.36 3.259 208 

High LOWCoP 4.00 . 1 

HighCoP 9.75 1.960 12 

Total 9.31 2.463 13 

Total LOWCoP 4.87 3.105 182 

HighCoP 8.97 2.146 39 

Total 5.59 3.345 221 

High Low Low LOWCoP 5.67 1.528 3 

Total 5.67 1.528 3 

High HighCoP 11.50 .707 2 

Total 11.50 .707 2 

Total LOWCoP 5.67 1.528 3 

HighCoP 11.50 .707 2 

Total 8.00 3.391 5 

High Low HighCoP 9.09 2.115 53 

Total 9.09 2.115 53 

High HighCoP 10.97 2.496 91 

Total 10.97 2.496 91 

Total HighCoP 10.28 2.524 144 

Total 10.28 2.524 144 

Total Low LOWCoP 5.67 1.528 3 

HighCoP 9.09 2.115 53 

Total 8.91 2.218 56 

High HighCoP 10.98 2.471 93 

Total 10.98 2.471 93 

Total LOWCoP 5.67 1.528 3 

HighCoP 10.29 2.511 146 

Total 10.20 2.576 149 

Total Low Low LOWCoP 4.68 3.009 171 

Total 4.68 3.009 171 

High LOWCoP 4.00 . 1 

HighCoP 11.50 .707 2 

Total 9.00 4.359 3 

Total LOWCoP 4.67 3.001 172 
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HighCoP 11.50 .707 2 

Total 4.75 3.072 174 

High Low LOWCoP 7.62 2.987 13 

HighCoP 8.94 2.131 80 

Total 8.75 2.297 93 

High HighCoP 10.83 2.463 103 

Total 10.83 2.463 103 

Total LOWCoP 7.62 2.987 13 

HighCoP 10.00 2.501 183 

Total 9.84 2.596 196 

Total Low LOWCoP 4.89 3.093 184 

HighCoP 8.94 2.131 80 

Total 6.11 3.391 264 

High LOWCoP 4.00 . 1 

HighCoP 10.84 2.442 105 

Total 10.77 2.520 106 

Total LOWCoP 4.88 3.085 185 

HighCoP 10.02 2.492 185 

Total 7.45 3.802 370 

Total RFG Low Low Low LOWCoP 3.21 2.380 168 

Total 3.21 2.380 168 

High LOWCoP 8.00 . 1 

Total 8.00 . 1 

Total LOWCoP 3.24 2.401 169 

Total 3.24 2.401 169 

High Low LOWCoP 7.08 1.977 13 

HighCoP 9.00 2.075 27 

Total 8.38 2.215 40 

High HighCoP 9.92 2.746 12 

Total 9.92 2.746 12 

Total LOWCoP 7.08 1.977 13 

HighCoP 9.28 2.305 39 

Total 8.73 2.410 52 

Total Low LOWCoP 3.49 2.553 181 

HighCoP 9.00 2.075 27 

Total 4.20 3.108 208 

High LOWCoP 8.00 . 1 

HighCoP 9.92 2.746 12 



201 

 

Total 9.77 2.682 13 

Total LOWCoP 3.51 2.568 182 

HighCoP 9.28 2.305 39 

Total 4.53 3.347 221 

High Low Low LOWCoP 7.67 3.055 3 

Total 7.67 3.055 3 

High HighCoP 9.50 .707 2 

Total 9.50 .707 2 

Total LOWCoP 7.67 3.055 3 

HighCoP 9.50 .707 2 

Total 8.40 2.408 5 

High Low HighCoP 10.40 2.106 53 

Total 10.40 2.106 53 

High HighCoP 12.48 2.884 91 

Total 12.48 2.884 91 

Total HighCoP 11.72 2.805 144 

Total 11.72 2.805 144 

Total Low LOWCoP 7.67 3.055 3 

HighCoP 10.40 2.106 53 

Total 10.25 2.218 56 

High HighCoP 12.42 2.887 93 

Total 12.42 2.887 93 

Total LOWCoP 7.67 3.055 3 

HighCoP 11.68 2.798 146 

Total 11.60 2.849 149 

Total Low Low LOWCoP 3.29 2.453 171 

Total 3.29 2.453 171 

High LOWCoP 8.00 . 1 

HighCoP 9.50 .707 2 

Total 9.00 1.000 3 

Total LOWCoP 3.31 2.472 172 

HighCoP 9.50 .707 2 

Total 3.39 2.546 174 

High Low LOWCoP 7.08 1.977 13 

HighCoP 9.92 2.186 80 

Total 9.53 2.366 93 

High HighCoP 12.18 2.973 103 

Total 12.18 2.973 103 
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Total LOWCoP 7.08 1.977 13 

HighCoP 11.20 2.879 183 

Total 10.92 3.006 196 

Total Low LOWCoP 3.55 2.607 184 

HighCoP 9.92 2.186 80 

Total 5.48 3.843 264 

High LOWCoP 8.00 . 1 

HighCoP 12.13 2.968 105 

Total 12.09 2.981 106 

Total LOWCoP 3.58 2.620 185 

HighCoP 11.18 2.870 185 

Total 7.38 4.691 370 
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Appendix L: Multivariate Analysis Tests 

 

Multivariate Testsa 

Effect Value F 

Hypoth

esis df Error df Sig. 

Partial 

Eta 

Squar

ed 

Intercept Pillai's Trace .721 184.672b 5.000 357.000 .000 .721 

Wilks' Lambda .279 184.672b 5.000 357.000 .000 .721 

Hotelling's Trace 2.586 184.672b 5.000 357.000 .000 .721 

Roy's Largest Root 2.586 184.672b 5.000 357.000 .000 .721 

K_Total_2_gr

oups 

Pillai's Trace .153 12.925b 5.000 357.000 .000 .153 

Wilks' Lambda .847 12.925b 5.000 357.000 .000 .153 

Hotelling's Trace .181 12.925b 5.000 357.000 .000 .153 

Roy's Largest Root .181 12.925b 5.000 357.000 .000 .153 

C_Total_2_gr

oups 

Pillai's Trace .123 10.025b 5.000 357.000 .000 .123 

Wilks' Lambda .877 10.025b 5.000 357.000 .000 .123 

Hotelling's Trace .140 10.025b 5.000 357.000 .000 .123 

Roy's Largest Root .140 10.025b 5.000 357.000 .000 .123 

R_Total_2_gr

oups 

Pillai's Trace .073 5.633b 5.000 357.000 .000 .073 

Wilks' Lambda .927 5.633b 5.000 357.000 .000 .073 

Hotelling's Trace .079 5.633b 5.000 357.000 .000 .073 

Roy's Largest Root .079 5.633b 5.000 357.000 .000 .073 

CategoryofPer

formance 

Pillai's Trace .033 2.414b 5.000 357.000 .036 .033 

Wilks' Lambda .967 2.414b 5.000 357.000 .036 .033 

Hotelling's Trace .034 2.414b 5.000 357.000 .036 .033 

Roy's Largest Root .034 2.414b 5.000 357.000 .036 .033 

K_Total_2_gr

oups * 

C_Total_2_gr

oups 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

K_Total_2_gr

oups * 

R_Total_2_gr

oups 

Pillai's Trace .047 3.500b 5.000 357.000 .004 .047 

Wilks' Lambda .953 3.500b 5.000 357.000 .004 .047 

Hotelling's Trace .049 3.500b 5.000 357.000 .004 .047 

Roy's Largest Root .049 3.500b 5.000 357.000 .004 .047 

K_Total_2_gr

oups * 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 
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CategoryofPer

formance 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

C_Total_2_gr

oups * 

R_Total_2_gr

oups 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

C_Total_2_gr

oups * 

CategoryofPer

formance 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

R_Total_2_gr

oups * 

CategoryofPer

formance 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

K_Total_2_gr

oups * 

C_Total_2_gr

oups * 

R_Total_2_gr

oups 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

K_Total_2_gr

oups * 

C_Total_2_gr

oups * 

CategoryofPer

formance 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

K_Total_2_gr

oups * 

R_Total_2_gr

oups * 

CategoryofPer

formance 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

C_Total_2_gr

oups * 

R_Total_2_gr

oups * 

CategoryofPer

formance 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 
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K_Total_2_gr

oups * 

C_Total_2_gr

oups * 

R_Total_2_gr

oups * 

CategoryofPer

formance 

Pillai's Trace .000 .b .000 .000 . . 

Wilks' Lambda 1.000 .b .000 359.000 . . 

Hotelling's Trace .000 .b .000 2.000 . . 

Roy's Largest Root .000 .000b 5.000 356.000 1.000 .000 

a. Design: Intercept + K_Total_2_groups + C_Total_2_groups + R_Total_2_groups + 

CategoryofPerformance + K_Total_2_groups * C_Total_2_groups + K_Total_2_groups * 

R_Total_2_groups + K_Total_2_groups * CategoryofPerformance + C_Total_2_groups * 

R_Total_2_groups + C_Total_2_groups * CategoryofPerformance + R_Total_2_groups * 

CategoryofPerformance + K_Total_2_groups * C_Total_2_groups * R_Total_2_groups + 

K_Total_2_groups * C_Total_2_groups * CategoryofPerformance + K_Total_2_groups * 

R_Total_2_groups * CategoryofPerformance + C_Total_2_groups * R_Total_2_groups * 

CategoryofPerformance + K_Total_2_groups * C_Total_2_groups * R_Total_2_groups * 

CategoryofPerformance 

b. Exact statistic 
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