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Abstract 

First-year college students experience difficulties in understanding the concepts of 

derivatives and integrals. At the postsecondary level, the use of static visualization and 

other traditional instruction delivery methods often are unable to meet students’ needs in 

calculus. This problem is current and essential in the field of education and needs 

consideration to enhance the method of teaching calculus. The rationale for this study 

was to scrutinize the effects of Maple dynamic visualization instructional activities, 

within the framework of the animation-visualization theory, on students’ conceptual and 

procedural understanding of differential and integral calculus. The usage of a quantitative 

2x2 factorial pretest-posttest control group quasi-experimental mixed design, with 

multivariate analysis of variance for data (de-identified list of 81 students’ test scores on 

derivatives and integrals) analyses, helped examine the relationships between the 

research variables. Results showed that the Maple dynamic visualization group, 

significantly (p < 0.001), outperformed the non-Maple static visualization group with a 

significant interaction between the groups with a substantial effect size of at least 0.27. 

This study augments the body of evidence that supported the efficacy of animated visuals 

over static visuals in producing more exceptional academic performance. A future 

researcher should use the random assignment to groups to minimize the possibilities of 

nonequivalent groups and the same measure for pretest and posttest. This study provides 

a groundwork for positive social change to reach a shared vision in education, enable 

learners to gain skills in calculus, and prepare students in and for science, technology, 

engineering, and mathematics majors and careers.  



 

 

 

Understanding Calculus Through Maple-Based Dynamic Visualization Tools 

by 

Segla Kossivi 

 

MS, Grand Canyon University, 2019 

MS-IDT, Walden University, 2012 

MBA, European University Toulouse, 1999 

BS, Northern Caribbean University, 1996 

 

 

Dissertation Submitted in Partial Fulfillment 

of the Requirements for the Degree of 

Doctor of Philosophy 

Education 

 

 

Walden University 

November 2020 



 

 

Dedication 

I dedicate this dissertation to my loving and caring wife, Sherry Ulis L. Kossivi, 

who encouraged and supported me, in every way, to pursue my dreams and earn my 

Ph.D. Without supports from my dearest darling, friend, and partner Sherry, earning a 

Ph.D. would have been a shattered dream. Thank you, my supportive and beloved 

partner. 

To my Princess Binah Kossivi, this is a legacy for you to emulate. 



 

 

Acknowledgments 

Many thanks to the following people for helping me get this far in my academic 

journey: 

To God, who gave me life and wisdom and my wife, who, with humor and love, 

provided a sounding board and continued encouragement; 

To my mother and late father, who, with love and guidance, instilled in me the 

values that have prepared me for life; 

Wellesley Foshay, Ph.D., my dissertation chair, who, through it all, with grace 

and patience, shaped me as a scholar and researcher; 

Jennifer Lapin, Ph.D., my methodologist, who provided encouragement and 

guidance as I sought to understand new research methodologies; 

My URR, Jose Cossa, Ph.D., my academic program director Mark Clauburg, 

Ed.D., and my program coordinator, Cheri Toledo, Ph.D., on whose shoulders I stand; 

To all my professors for their supports and words of encouragement; 

To my advisers, library and writing center personnel, Walden’s support team, 

residency committee; 

To Walden and Lehman College IRB personnel, instructors, participants, and 

researchers, who made my dissertation possible;  

Thank you all! 

 



 

i 

Table of Contents 

List of Tables .......................................................................................................................v 

List of Figures .................................................................................................................... vi 

Chapter 1: Introduction to the Study ....................................................................................1 

Introduction ....................................................................................................................1 

Background ....................................................................................................................4 

Problem Statement .........................................................................................................8 

Purpose of the Study ......................................................................................................9 

Research Questions and Hypotheses .............................................................................9 

Theoretical framework .................................................................................................13 

Nature of the Study ......................................................................................................14 

Construct Definitions ...................................................................................................18 

Assumptions .................................................................................................................19 

Scope and Delimitations ..............................................................................................19 

Limitations ...................................................................................................................20 

Significance of the Study .............................................................................................22 

Summary ......................................................................................................................22 

Chapter 2: Literature Review .............................................................................................24 

Introduction ..................................................................................................................24 

Literature Search Strategy ............................................................................................24 

Theoretical Framework ................................................................................................25 

Literature Review Related to Key Variables and Concepts .........................................27 



 

ii 

Animation and Visualization ................................................................................ 27 

The Role of Multiple Representations in Learning Calculus ................................ 31 

Maple Technology ................................................................................................ 37 

Maple as Computational Tool ............................................................................... 39 

Conceptual and Procedural Understanding of Calculus ....................................... 42 

Summary and Conclusions ..........................................................................................43 

Chapter 3: Research Method ..............................................................................................46 

Introduction ..................................................................................................................46 

Research Design and Rationale ...................................................................................46 

Methodology ................................................................................................................50 

Population ............................................................................................................. 51 

Sampling and Sampling Procedures ..................................................................... 51 

Procedures for Recruitment, Participation, and Data Collection .......................... 52 

Intervention ........................................................................................................... 54 

Instrumentation and Operationalization of Constructs ......................................... 55 

Threats to Validity .......................................................................................................64 

Ethical Procedures ................................................................................................ 65 

Summary ......................................................................................................................66 

Chapter 4: Results ..............................................................................................................68 

Introduction ..................................................................................................................68 

Data Collection ............................................................................................................72 

Preparation of Data ............................................................................................... 74 



 

iii 

Implementation Fidelity and Triangulation: Observation Notes .................................77 

Comparison and Intervention Groups ................................................................... 77 

Intervention Group ................................................................................................ 79 

Results 81 

Test for Assumptions ............................................................................................ 81 

Primary Analysis Using Quantitative Data ........................................................... 82 

Summary ......................................................................................................................94 

Chapter 5: Discussion, Conclusions, and Recommendations ............................................97 

Introduction ..................................................................................................................97 

Interpretation of the Findings .......................................................................................97 

Theoretical Framework ......................................................................................... 98 

Research from the Literature .............................................................................. 100 

Limitations of the Study.............................................................................................102 

Recommendations for Future Research .....................................................................104 

Implications................................................................................................................104 

Social Change Implications ................................................................................ 104 

Theoretical Implications ..................................................................................... 105 

Implications for Practice ..................................................................................... 105 

Policy Implications ............................................................................................. 106 

Conclusions ................................................................................................................106 

References ........................................................................................................................108 

Appendix A: Sample Lesson Plan ...................................................................................128 



 

iv 

Appendix B. Observation and Implementation Fidelity Rubric ......................................130 

Appendix C. Sample Pretest Questions ...........................................................................133 

Appendix D. Proof of NIH Web-based Training Course Completion .............................135 

Appendix E: Randomized Number for Coding ...............................................................136 

Appendix F: Sample of Coded Data for Participants .......................................................137 

Appendix G: Interview Response from Intervention Group Instructors .........................138 

Appendix H: LC Approval Letter to Conduct Research ..................................................139 

Appendix I: Observed Class Activities on Derivatives ...................................................140 

Appendix J: Pretest-Prerequisite Skills on Derivatives and Integrals .............................144 

Appendix K: Quiz (Postest1)-Derivatives and Integrals .................................................147 

Appendix L: Posttest ........................................................................................................152 

Appendix M: Descriptive Statistics and MANOVA .......................................................158 

 



 

v 

List of Tables 

Table 1. Theoretical Constructs ........................................................................................ 16 

Table 2. Gain and Triangulation ....................................................................................... 17 

Table 3. Summary of Research Design ............................................................................. 48 

Table 4. Variables Table ................................................................................................... 56 

Table 5. Monitoring Implementation Fidelity and Gain ................................................... 57 

Table 6. Observation Materials ......................................................................................... 58 

Table 7. Comparability Analysis Table ............................................................................ 75 

Table 8. Descriptive Statistics by Group and Instructor ................................................... 76 

Table 9. Difference in Mean and Standard Deviation Comparison by Instructor ............ 77 

Table 10. MANOVA -Pre_ Quiz_Post- Comparison Chart_Derivatives’ Concept ......... 83 

Table 11. MANOVA – Comparison and Intervention Derivatives’ Concept .................. 84 

Table 12. MANOVA – Pre_Quiz_Post_Comparison Chart–Derivatives’ Procedure ...... 86 

Table 13. MANOVA - Comp and Inter Comparison Chart – Derivatives’ Procedure ..... 86 

Table 14. MANOVA – Pre_ Quiz_Post Comparison Chart – Integral’s Concept ........... 88 

Table 15. MANOVA - Comp and Inter Comparison Chart – Integral’s Concept ............ 89 

Table 16. MANOVA – Pret_Quiz_Post Comparison Chart – Integral’s Procedure ........ 92 

Table 17. MANOVA - Comp and Int Comparison Chart-Integral’s Procedure ............... 93 

 



 

vi 

List of Figures 

Figure 1. Graphical Representation of a Sequence ............................................................. 6 

Figure 2. Definition of Criterion and Response Variables ............................................... 15 

Figure 3. Logic Model Diagram ....................................................................................... 16 

Figure 4. Tabular Representation of the Function f(x) = 1 + cos(x) ................................. 33 

Figure 5. Graphical Representation of the Function f(x) = 1 + cos(x) ............................. 33 

Figure 6. Graphical Representation of Rotation of Figure 5 ............................................ 34 

Figure 7. 3D Static Visualization of Figure 6 ................................................................... 34 

Figure 8. Static Visualization of Regional Representation of Solid of Revolution .......... 35 

Figure 9. Disc Method- Static Visualization of the Solid of Revolution .......................... 35 

Figure 10. Dynamic Visualization of the Solid of Revolution ......................................... 36 

Figure 11. Section on Model to Respond to Research Questions ..................................... 47 

Figure 12. Maple-Based Dynamic Visualization Learning Objectives ............................ 55 

Figure 13. Profile Plots of MANOVA – Derivatives’ Concept ........................................ 84 

Figure 14. Profile Plots of Mixed Design MANOVA – Derivatives’ Procedure ............. 87 

Figure 15. Profile plots of Mixed Design MANOVA-Integrals’ Concept ....................... 89 

Figure 16. Profile Plots of Mixed Design MANOVA – Integral’ Procedure ................... 93 

 
 



1 
 

 

Chapter 1: Introduction to the Study 

Introduction 

The students’ conceptual and procedural understanding of derivatives and 

integrals in calculus, through Maple-based dynamic visualization (animated 

visualization) tools, within the framework of animation-visualization theory (Erlich & 

Russ-Eft, 2011; Lakhvich, 2012; Nossun, 2012) became the focus of this study. At the 

postsecondary level, available research on the use of static visualization (still pictures, 

graphs, PowerPoint slides) and other traditional methods of instruction show they are 

unable to meet the students’ needs in calculus (see Sevimli, 2016a). Mathematics 

educators also recognized that college students often experienced difficulties in 

understanding the concepts of derivatives and integrals, due to the abstract nature of 

calculus (see Covington et al., 2017) and yet lacked in perception (see De Freitas, 2016). 

While some instructors used graphing calculators (GCs) with incorporated computer 

algebra system (CAS) to help students’ learning, these teachers used GCs’ features much 

more than CAS features due to the lack of motivation of learning innovative technologies 

and demands from external assessments (see Karadeniz & Thompson, 2018). 

Prior research on the uses of GCs in calculus was mostly set at the postsecondary 

level and used descriptive methods. In this study, a potential approach to enhance and 

update teaching calculus at the postsecondary level is necessary to enable students to gain 

skills in calculus, which is a gateway subject to science, technology, engineering, and 

mathematics (STEM) education. According to Ellis et al. (2016), an innovative approach 

to teaching calculus could increase the performance of students in calculus, reduce the 
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gender gap in STEM education, and enable the United States to compete globally. 

However, reducing the gender the gap was not the focus of this study. 

Dynamic visualization constituted an essential pillar in an effective instructional 

system (see Pretorius et al., 2017; Soemer & Schwan, 2016; Verhoeff, 2020), especially 

in mathematics, enhancing students’ spatial skills (see Verdine et al., 2017). 

Nevertheless, educational research had yet to ascertain the benefits of the animation-

visualization theory in teaching calculus at the tertiary level. Also, available research, on 

GCs were mostly at the secondary level and were unsophisticated case reports (see 

Karadeniz & Thompson, 2018). The lack of applying this theory in teaching calculus at 

the postsecondary level was a current research gap. 

The setting for the study was Lehman College (LC). The college’s mathematics 

and computer science department took a leadership role to transform mathematics 

learning, with the ambition to digitize its mathematics degree programs, using one of the 

innovative technology tools, such as Maple software. Maple is a mathematical software 

package with graphics, computation, and programming tools, encompassing CAS, 

dynamic interactive graphing applets, and math palettes (see Meikle & Fleuriot, 2012). It 

possesses sophisticated functionality to assist with mathematical problem solving (see 

Bunt et al., 2013). 

While instructors widely used GCs such as Texas Instruments (TI) in mathematics 

teaching, these GCs did not possess Maple technology tools (see Yu, 2014). The use of 

TI-Nspire calculators had helped provide some limited interactivity, but they still have 

limited processor speed, which is critical for dynamic and interactive math applets and 



3 
 

 

palettes (see Meikle & Fleuriot, 2012). On the other hand, the Maple platform’s use could 

help teaching analytic geometry and calculus, differential equations, and statistics (see 

Yu, 2014). Learners could benefit from the Maple three-dimensional (3D) tool to create, 

retain, retrieve, and transform structured visual images in learning calculus. 

Instructors could use the Maple platform with its animation and visualization 

tools and resources to be more productive and effective by enriching students’ learning 

(see Rusli & Negara, 2017; Salleh & Zakaria, 2016; Végh & Stoffová, 2017). Buneci 

(2014), Bunt et al. (2013), and Roanes-Lozano et al. (2014), in their research, provided 

evidence for or against an application of Maple as a computational software. This study 

and other studies sought to promote the benefits of visualization and animation that might 

foster increased learning software development that could be targeted and sold to 

households versus educational institutions. The study results indicated that the use of 

dynamic visualization could enhance the method of teaching calculus at the 

postsecondary level, to enable students to gain mathematical confidence and insight in 

calculus, a crucial subject to science, technology, engineering, and mathematics (STEM) 

education, reduce the gender gap in this field and to enable the United States to compete 

in the global market. 

Chapter 1 contains the discussion on the background of the study, problem 

statement, and purpose of the study. It comprises of the research questions and 

hypotheses, theoretical foundations, and nature of the study. It also encompasses the 

construct definitions, assumptions, scope and delimitations, limitations, significance, and 

a chapter summary. 
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Background 

Information and communication technologies have advanced to provide emerging 

software with animation and visualization techniques in computer science, meteorology, 

military, graphics, and medical field (see Agbatogun, 2013; Blazhenkova & 

Kozhevnikov, 2016; Karakus & Duressi, 2017; Kinkeldey et al., 2014; Lv et al., 2013; 

Opach et al., 2014; Persson, 2014; Sarlis & Christopoulos, 2014). However, people rarely 

found reports of using such software to teach calculus at the tertiary level. In a study on 

the use of Maple software for teaching calculus, Samson (2014) focused on the 

computational aspect of the software, while Roanes-Lozano et al. (2014) concentrated on 

using Maple codes, evidencing the benefits of Maple in visualizing and generalizing 

square arrays (n x n) of numbers to generate a formula for the arithmetic sum of the first 

n numbers. It is essential to teach calculus to go beyond this level of practice, by taking 

advantage of emerging software, such as Maple, with its animation and visualization 

tools, to challenge the traditional method of an instructor’s delivery and enhance 

students’ conceptual and procedural understanding of calculus. 

In mathematics education, effective interaction with visual representations using 

CAS-based GC could enhance students’ intellectual skills (Ghani et al., 2012; Prahani et 

al., 2016). At SRI International, study results on CAS graphing calculators, TI, and 

networked graphing calculators (TI-Navigator system) showed that TI technology incited 

innovative ways to engage the classroom learning (Leng, 2011). Ghani et al. (2012) 

postulated that advanced GCs with registered marks TI-84 plus, TI-Voyage (in Europe) 

or TI-Nspire and Casio-ClassPad 330 possessed powerful software with the programming 
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options, supported the undergraduate students’ difficult problem solving and facilitated 

student-centered teaching. Yildiz Ulus (2013) asserted that the pedagogical 

experimentation (numerical computation), educational (teaching) tool, and algorithmic 

(programming) aspects of advanced calculators and their functionality in linear algebra 

could extend to other domains of mathematics. Nevertheless, in the high school 

mathematics education, the students’ deficiency of operating skills and teachers’ 

approaches to the use of the equipped advanced CAS-based GC contributed to the 

ineffective use of the technology (Bardini & Pierce, 2015; Brown, 2015a; Brown, 2015b; 

Karadeniz & Thompson, 2018; Moy et al., 2015). Thus, students and teachers limited the 

use of those GCs to quick algebraic and numeric computations and consequently reduced 

the active interaction with visual representations with CAS-based GC (Solares & Kieran, 

2013). Individuals could recognize that CAS-based GCs might support calculus students’ 

critical thinking and increase their learning of the abstract nature of calculus (Ghani et al., 

2012), with their visualization representation capability. Hence, despite extensive 

research on visualization in math education using GCs, a less comprehensive study on 

CAS was prominent (Hitt, 2011). 

Nevertheless, Maple encompasses an advanced symbolic computation engine 

with powerful numeric algorithms, advanced visualization tools, and intuitive interfaces 

designed to enrich calculus teaching and learning experiences (see Salleh & Zakaria, 

2016). Moreover, CAS-based Maple might provide a dynamic learning environment with 

more student-centered pedagogy than traditional instruction (see Milovanović et al., 

2016). The use of Maple technology might support users in experiencing an active 
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learning environment, in explaining some difficult concepts of calculus, in facilitating 

mathematical notation (Bali et al., 2016; Kumar et al., 2019; Salleh & Zakaria, 2016; 

Samková, 2012; Vieira, 2015), and in promoting the visualization of scientific and 

mathematical concepts, without the limitations of the Microsoft equation editor. 

Graphical representations (GR) in math (number lines, strips, graphs) help 

individuals encode and respond to general information through the visual sensory channel 

(see Solares & Kieran, 2013). GR assists individuals in establishing the means of solving 

a mathematical problem (see Anderson et al., 2014). One of the advantages of GR in 

math was to assist the learner in understanding the concept of magnitudes as locations, 

lengths, areas, and volumes (see Pyke et al., 2015). For instance, students could generate 

a function rule (formula) of a sequence by observing given patterns and counting the 

number of boxes in Figure 1.  

Figure 1 
 
Graphical Representation of a Sequence 

 

Looking at Figure 1, people could count 2, 4, 6, 8, and 10 boxes in the first, 

second, third, fourth, and fifth positions, respectively, and note that the next number or 

boxes consisted of adding two boxes to the number of previous boxes or multiplying the 

number of positions by 2. That was, if n represented the position, then the number of 

boxes would be 2n. Therefore, the set of numbers: 2, 4, 6, 8, 10, …, 2n, is a sequence, 

which was a series of numbers that followed a definite pattern. The visual representation 
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of this sequence might assist individuals’ conceptual and procedural understanding of 

these numbers. 

According to Dobler and Klein (2002), Descartes might be the founder of visual 

representation in math. Descartes observed the movement of a fly jumping and landing 

from place to place on the ceiling of his room. He decided to put a grid on the ceiling. As 

the fly moved from one point to another, Descartes would mark the spot on the grid, 

noting the distance between points across, counting the number of units horizontally, and 

vertically. Thus, from a dynamic movement of the fly and a visual representation of such 

movement, Descartes developed the Cartesian coordinate system (Dobler & Klein, 2002), 

which is foundational to the visualization of mathematical relationships. Furthermore, 

graphical representations in math might help engage the learner’s mental processes, 

which were necessary for conceptual understanding of math and problem-solving. 

Scholarly articles have provided evidence of Maple’s potential as an instructional 

medium. However, they offered less information on animation-visualization theory in the 

teaching of calculus at the postsecondary level (Buneci, 2014). Jahanshahi et al. (2015), 

in their study, detailed the use of the trapezoidal rule and CAS Maple to solve, 

numerically, Abel integral equations of the first kind. Moreover, Yurttas et al. (2012) 

asserted that Maple was an efficient tool to calculate the Minimal Polynomial of 

2cos(π/n) over Q (the set of rational numbers). 

Unfortunately, research was unavailable on the application of animation-

visualization theory to the teaching of calculus using Maple’s capabilities. However, 

Haciomeroglu (2016) found that a relationship between visualization correlated with 
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spatial, verbal-logical reasoning, and mathematical problem solving. Carden and Cline 

(2015) and Kidron and Tall (2015) used a sequence of visual graphs to demonstrate the 

convergence of a series of functions to a fixed limit of functions using Mathematica. 

These authors concluded that the software helped in blending dynamic perception and 

symbolic operation as tenets of mathematical reasoning. Like in the case of Mathematica, 

it was essential to apply visualization theory to the teaching of calculus using Maple’s 

capabilities to ensure students’ readiness to embrace STEM-related careers. The proper 

techniques could enable instructors to use dynamic visualization to tie together the 

verbal, symbolic, and graphical representations of math concepts at every level from 

numbers through calculus. 

Problem Statement 

Given the difficulties that college students experience in understanding the 

concepts of derivatives and integrals due to the abstract nature of calculus (see Covington 

et al., 2017; Katsioloudis et al., 2016; Salleh & Zakaria, 2016), it is essential to 

understand the role of dynamic visualization in teaching the concept of derivatives and 

integrals. Moreover, the literature on the use of animation-visualization theory in 

teaching calculus at the postsecondary level is scarce, despite the theory’s use in other 

fields (see Kinkeldey et al., 2014; Opach et al., 2014; Persson, 2014; Sarlis & 

Christopoulos, 2014). The problem is current and relevant in math education. It needs 

attention to enabling learners to gain a mathematical understanding of calculus to prepare 

students in and for STEM majors and careers.  
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While educators can use hand-held graphing calculators to support highly 

interactive and student-centered pedagogy capabilities of a new generation of the 

classroom-based interactions, the superior power of Maple provides the opportunity to 

overcome the limitations of the prior tools. Consequently, the problem is to understand 

further the role of animation and visualization tools within the animation-visualization 

theory framework in teaching math at the postsecondary level. Specifically, this study 

seeks to understand the potential role of Maple dynamic visualization (animated 

visualization) tools to assist students in their conceptual and procedural understanding of 

derivatives and integrals in first-year college calculus. 

Purpose of the Study 

The purpose of this quantitative quasi-experimental was to ascertain the impact of 

Maple-based dynamic visualization lessons, designed within the framework of the 

animation-visualization theory (see Erlich & Russ-Eft, 2011; Paik, 2012; Zurita & 

Nussbaum, 2007), on college students’ conceptual and procedural understanding of 

derivatives and integrals in calculus. The independent variable is the type of visualization 

(non-Maple static visualization vs. Maple dynamic visualization). The dependent variable 

is the type of understanding (conceptual and procedural understanding of derivatives and 

integral in calculus). 

Research Questions and Hypotheses 

Four research questions guided this investigation. The research questions 

examined the effects of the Maple dynamic visualization activities on students’ 

conceptual and procedural understanding of derivatives (RQ1 and RQ2) and integrals 
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(RQ3 and RQ4) in calculus. The instrumentation comprised students’ pretest 

(prerequisite skills for derivatives and integrals), quiz (posttest1), and end of term exam 

(posttest) scores on the derivatives and integrals’ concepts and procedures in calculus, 

with the use of multivariate analysis of variance (MANOVA) for statistical analysis. 

RQ1: Was there a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)?  

H011: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H111: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H012: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test. 

H112: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test. 
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RQ2: Was there a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

H021: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H121: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H022: There was no significant difference in pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test.  

H122: There was a significant difference in pretest (prerequisite skills for 

derivatives’ procedure), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ procedure calculus test.  

RQ3: Was there a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 
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H031: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H131: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H032: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test. 

H132: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test. 

RQ4: Was there a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

H041: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1) and end of term exam (posttest) scores on the integrals’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 
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H141: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1) and end of term exam (posttest) scores on the integrals’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H042: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

procedure calculus test. 

H142: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1) and end of term exam (posttest) scores on the integrals’ 

procedure calculus test. 

Theoretical framework 

The animation-visualization theory was the basis for the theoretical framework of 

this study. Visualization was essential in learning, as Mayer (2014) observed that mental 

processes, which formed the cognitive procedure, stemmed from visual models. Two 

studies added detail and evidence: Nossun (2012) and Pyke et al. (2015) showed that 

learners constructed knowledge from visuals models, as learning encompassed the 

somatic and psychosomatic pillars of the theoretical cognitive process of visualization, 

and interactions between the two. According to Nossun (2012) and Pyke et al. (2015), the 

advantages of dynamic visualization (animated visualization), which transmitted 

instructional contents, realistically, in video form and procedural-motor-type of 

knowledge, exceeded those of static visualization (still picture). These two studies lead to 

infer that dynamic visualizations could enhance the learning process. Also, learners’ 
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spatial ability, and 3-D animations offered an environment that supported a learner’s 

inadequate mental model (see Castro-Alonso et al., 2016; Katsioloudis et al., 2016; Sarlis 

& Christopoulos, 2014). Consequently, it was essential to optimize the combination of 

realistic animation and visualization to explore college students’ conceptual and 

procedural understanding of derivatives and integrals in calculus. The fully described 

animation-visualization theory, in Chapter 2, provided a sound theoretical framework for 

the research question on teaching and learning calculus through Maple technology tools. 

Nature of the Study 

This study’s was a quantitative 2x2 factorial pretest and posttest control group 

quasi-experimental design (QED). The design was appropriate for examining the 

relationship between constructs. The study consisted of using the logic model (deductive 

approach): theory-hypothesis-observation-confirmation to guide the path of students’ 

conceptual and procedural understanding of derivatives and integrals in calculus. The use 

of multivariate analysis of variance (MANOVA) would contrast the intervention and 

comparison groups and establish students’ performance gains on test questions related to 

derivatives and integrals.  

The instruments were the instructors’ generated test scores on derivatives and 

integrals, which would serve as distinct elements in interactive time that might help 

learners understand the abstract nature of derivatives and integrals in calculus (see 

Aurigemma et al., 2013; Lv et al., 2013). In Figure 2 and Table 1, I displayed the study’s 

variables. While Figure 3 illustrated a logic model diagram of the constructs that would 
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interact in a predictive relationship, using design principles from animation-visualization 

theory, Table 2 featured learning gain and triangulation plan. 

Figure 2 
 
Definition of Criterion and Response Variables 

 

  

Let X1 = Non-Maple-based visualization (static visualization) tests 
(pretest/diagnostic, posttest1/quiz, and end of term exam/posttest) scores on 
derivative and integrals, 
X2 = Maple-based animated visualization (dynamic visualization) tests 
(pretest/diagnostic, posttest1/quiz, and end of term exam/posttest) scores on 
derivative and integrals, 
Let IV = Independent variables (X1 and X2), 
DV = Dependent variable (Students' conceptual and procedural understanding 
of derivatives and integrals), 
OV = My observation notes on class activities and interview response from 
intervention group professors on derivative and integral, 
Y11 = Pretest scores on derivative and integral-related questions, 
Y12 = Posttest (end of term exam) scores on derivative and integral- related 
questions, 
Y12 – Y11 = Posttest and Pretest gain, 
OV and Y12 = My observation descriptive notes on any variation between OV 
and Y12 for triangulation (on dynamic visualization).  
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Table 1 
 
Theoretical Constructs 

 Independent 
Variables (IV) 

Fidelity of 
Implementation 
Variables (OV) 

Dependent 
Variable (DV) 

Non-Maple 
Static 
Visualization 

X1 OV Y11 

Maple 
Dynamic 
Visualization 

X2 OV Y12 

    
 

Figure 3 
 
Logic Model Diagram 

 
  

Non-Maple Static 
Visualizattion
Group

Maple Dynamic 
Visualization
Group

Instructor interactive 
lessons (student to 
student interaction, 
student to content 
interaction, student to 
instructor interaction, 
feedback, 
constructivist 
principles, student-
centered 

Student’s 
conceptual and 
procedural 
understanding of 
derivatives and 
integrals.



17 
 

 

Table 2 
 
Gain and Triangulation 

 Measuring 
Gain 

Triangulation Fidelity  
Measure 

Attainment  
difference  
 

Y12 - Y11 OV and Y12 Compare and  
contrast OV and  
Y12 for  
triangulation 
(example) 

Ascertain and  
analyze any 
difference between  
OV and Y12 via my observation 
note and interview response 

  Compare and  
contrast OV and Y12 
for triangulation 

(example) 

 

This quantitative 2 x 2 factorial QED with pretest and posttest control group, as 

the initial research design, was an excellent fit to control factors that could affect the 

internal validity (see Campbell & Stanley, 1963). This design helped reduce bias, 

establish the construct and content validity, and avoid internal validity threats. The use of 

MANOVA, as statistical analysis for all four research questions, helped assess any 

statistically significant interaction between the comparison and intervention groups and 

the pretest, quiz, and posttest periods. The use of a sampling strategy, sample size, and 

power provided a way to deter any biases and empower generalizability (see Guilleux et 

al., 2014). The choice of QED stemmed from the impossibility of randomization due to 

the conditions surrounding students’ registration to the calculus classes. I detailed those 

conditions in Chapter 3. 
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Construct Definitions 

Animation: Animation is the creation of a slow or rapid series of representations, 

which individuals use to represent dynamic relationships (Haciomeroglu, 2016). 

Conceptual Understanding: Conceptual understanding (CU) encompasses the 

students’ ability to describe and explain the factors and variables related to the unknown 

to the known in the given calculus problem for an adequate solution (Ocal, 2017; Rittle-

Johnson & Schneider, 2015) 

Derivatives: Derivatives of a function are the average and instantaneous rate of 

change of a function concerning a specified index (Park, 2015; Patwardhan & Murthy, 

2015). 

Integrals: Integrals of a function are the primitives of that function. 

Maple: Maple is an essential tool for researchers, teachers, and students in any 

mathematical discipline. It allows users to explore, visualize, and solve even the most 

complicated mathematical problems, reducing errors, and providing greater insight into 

the learning of math (Salleh & Zakaria, 2016). 

Procedural Understanding: Procedural understanding (PU) depicts the students’ 

model solution, description, or explanation of the model (Ocal, 2017; Rittle-Johnson & 

Schneider, 2015). 

Visualization: Visualization is a visual representation, via static, interactive, or 

animated (2-D or 3-D) of an object’s structure, execution, behavior, and evolution, using 

software systems (Serenko, 2007). 
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Assumptions 

I considered the following assumptions for this study: (a) the participants’ honest 

behavior, following the standard administration protocols in administered tests, and 

generalizing the results to the study group, (b) the theoretical assumptions, which 

encompassed animation-visualization theory (see Erlich & Russ-Eft, 2011; Lakhvich, 

2012; Nossun, 2012), (c) student’s self-efficacy about calculus, teacher content 

knowledge, which is necessary for effective teaching and learning of mathematical 

concepts, (d) an increase in students’ intrinsic and extrinsic motivational tools for subject 

affinity, as they relie on content, communication, and collaboration, (e) a provision of the 

necessary resources to enable learners to meet established specific, measurable, accepted, 

realistic, time-bound (SMART) goals and objectives for desired learning outcomes, and 

(f) the alignment of assessments with the learning objectives. 

Scope and Delimitations 

In this study, I focused on college students’ conceptual and procedural 

understanding of derivatives and integrals of functions, through instructors’ use of 

Maple-based animation and visualization lessons. It was unfeasible to study the levels of 

technology implementation in the college, administrators’, teachers’ confidence, 

proficiency in technology use, and the technology integration process in the college. The 

focus was not on learners’ mathematical abilities and demography. 

Regarding potential generalizability, one logical fallacy I avoided was to assume 

that the animation and visualization theory found in cartography or engineering courses 

functioned equally in calculus. Another fallacy was the assumption that all math 
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instructors could use Maple to teach calculus. I avoided those overgeneralizations and 

dealt with the experts in using Maple software for the intervention group. 

Limitations 

Some limitations, discussed in Chapter 3, Chapter 4, and Chapter 5 of the study, 

related to design involved the sample size, no randomization, and inequality of the 

identified instruments in the theoretical framework session for internal, external, and 

construct validity. Threats to validity comprised internal and external threats. Relevant 

factors jeopardizing internal validity (see Campbell & Stanley, 1963) might include the 

following: 

• History: any events that might occur between the pretest and posttest scores could 

be the learning through the intervention implementation, which was the focus of 

this study. Students’ performance scores were analyzed according to the study 

design for interpretation to mitigate the threat to validity. 

• Maturation: in this study, the time was a portion (when students learned the 

concepts of derivatives and integrals) of a semester, where students might 

increase their scores on the measurement regardless of the intervention. During 

the 15 week-duration, five students dropped the course, thus reducing the sample 

size, which became a limitation of the study. 

• Testing dealt with the effects of taking a test on the outcomes of taking a second 

test. In this study, the posttest (end of term exam on derivatives and integrals) 

paralleled the pretest (prerequisite skills before the instructors taught derivatives 
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and integrals) and quizzes on derivatives and integrals, without repetition of 

questions, for a fair and valid interpretation of students’ performance gain. 

• Instrumentation: class observation notes and instructors’ e-mailed interview 

responses served as a source for triangulation. The instructors were responsible 

for the students’ graded scores for accuracy, reliability, and validity to avoid 

instrumentation as a threat to validity. 

• Differential selection biases: the biases that might result in the selection of the 

comparison group, might occur. However, resorting to a convenience sample, the 

use of an adequate sample size with G* Power 3 (Faul et al., 2009) computation 

might mitigate these biases. 

• Experimental mortality might reduce the sample size. The use of the provided 

attrition and the sample size for adjustment assisted in mitigating this threat. 

However, in this study, the sample size was smaller than the required G* Power 3 

computation, after data cleaning and checking for error, and this threat became a 

limitation in discussing generalizability in Chapter 4 and Chapter 5. 

• Selection-maturation interaction might lead to confounding outcomes, and 

erroneous interpretation might be a threat to the study. Nevertheless, there were 

no confounding outcomes. 

The use of convenience sampling in a quasi-experiment inherently sacrifices some 

internal validity in favor of external validity (see Handley et al., 2018). 
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Significance of the Study 

The study’s uniqueness resided in its contribution to an underresearched area of 

the blending of activity, animation-visualization theory in students’ conceptual and 

procedural understanding of derivatives and integrals in calculus as a gateway subject to 

other disciplines such as sciences and engineering. The study results might provide 

college math instructors and learners insights and methods of considering math as an 

organization tool for problem solving in a real-life situation and transfer of knowledge, 

through students’ activity. The study was significant, as learners gained skills to equip 

them to enroll in programs that might lead them to embrace mathematics-related careers. 

In terms of social change, at the micro- and macrolevels, the  study provided 

evidence to enhance the method of teaching calculus at the postsecondary level and 

enable learners to gain mathematical skills in calculus. At the megalevel, learners could 

gain mobile learning skills, which was necessary for a transdisciplinary approach to reach 

a shared vision in education for a better and informed society, as Covid-19 has forced 

individuals into this time, for example. Moreover, the intended positive outcomes of this 

study might help increase the number of graduates in STEM and enable the United States 

to compete in the global market with a better STEM workforce (see Hutton, 2019). 

Furthermore, the research study might contribute to educational technology and add to 

the existing literature in academia. 

Summary 

Calculus instructors’ simultaneous use of Maple-based dynamic visualization 

lessons and animation-visualization theory might enhance college students’ learning and 
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understanding of calculus. Maple-based animation and visualization activities might help 

LC students grasp the concept of graphs, envelope, and rotational-generated solids in 

calculus better than the still images of these objects they found in textbooks. Maple, with 

its applets and mathematics palettes, might become a wild card and disruptive technology 

that supports asynchronous and synchronous education and revolutionizes the American 

education system. The components of Chapter 2 included the literature review, the gap in 

the literature, animation-visualization theory, computer-based learning, and Maple 

technology. 
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Chapter 2: Literature Review 

Introduction 

College calculus is often a prerequisite requirement for advanced coursework in 

many STEM majors (see Cohen & Kelly, 2019). Students who experience difficulties 

understanding calculus (see Wismath & Worrall, 2015), a gateway subject to the STEM 

field see (Smolinsky et al., 2019), might shy away from the math-related field (see Mau 

& Li, 2018; Persaud & Burns, 2018). 

The literature is scarce on the use of animation and visualization tools within the 

framework of animation-visualization theory in teaching calculus at the postsecondary 

level. Studies on the use of Maple’s dynamic visualization are scarce. It is essential to 

examine the effect of Maple technology, within the framework of animation-visualization 

theory, on college students’ learning of calculus, especially in their conceptual and 

procedural understanding of derivatives and integrals. This study’s rationale is to 

establish the impact of Maple technology on college students’ development of the 

conceptual and procedural understanding of derivatives and integrals in calculus. Chapter 

2 comprises the literature search strategy, theoretical foundation, and ascertaining a gap 

in the literature, a related literature review on the main concepts, use of animation and 

visualization theory at the postsecondary education in calculus, Maple technology, and a 

summary of the chapter. 

Literature Search Strategy 

Library research strategies on Maple technology, mathematics education, 

calculus, animation and visualization theory, interactive learning, geometric modeling, 
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visualization, computer algebra system, graphing calculators, dynamic geometry 

environment, and Maple, generated many peer-reviewed articles on the research topic. 

Through a search of multiple databases with Thoreau and multidisciplinary databases 

(Academic Search Complete, ProQuest Central, EBSCO, and Science Direct), I obtained 

numerous articles on synthesizing literature and ascertaining the detected gap in calculus 

understanding, including those from the International Congress on Mathematical 

Education , Psychology of Mathematics Education, Association for the Advancement of 

Computing in Education, and International Society for Technology in Education. 

Theoretical Framework 

The information communication technology has advanced to provide emerging 

software with animation and visualization techniques in the medical field, computer 

science, and others, especially in, cartography, imaging, and graphics (see Kinkeldey et 

al., 2014; Opach et al., 2014; Persson, 2014; Sarlis & Christopoulos, 2014). However, 

there was little evidence of the use of such software in teaching calculus at the 

postsecondary level, especially in differential and integral calculus. Recent theoretical 

research on visualization in math focused only on visualizing and generalizing with 

square arrays (n x n) of numbers to generate a formula for calculating the arithmetic sum 

of the first n numbers (Samson, 2014) in teaching calculus. It has become essential to 

take advantage of the emerging software, such as Maple, with its animation and 

visualization tools to challenge the traditional method of an instructor’s delivery and 

enhance students’ conceptual and procedural understanding of calculus. 
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Extensive research on the use of graphing calculators with computer algebra 

systems (CAS) has contributed to effective teaching and learning of calculus (Jarvis et 

al., 2014; McCulloch et al., 2013; Persson, 2014; Solares & Kieran, 2013). More than a 

decade ago, a limited version of CAS gained popularity on some hand-held calculators to 

handle complex numbers (Vincent et al., 2017). 

Math instructors faced challenges in teaching with technology (Bunt et al., 2013). 

According to Vincent et al.’s (2017) study, teachers and students reduced the use of CAS 

and its rare usage to examining and graphing functions and missed strategies that might 

stimulate mathematical thinking and understanding. Furthermore, studies on CAS tended 

to be vague about the treatment and were often small in scale with weak methodologies; 

sometimes, the researchers did not articulate the theoretical framework. Maple 

technology offered more functionality than standalone CAS. Consequently, there was a 

need to further the understanding of the role of Maple animation and visualization tools, 

in teaching calculus at the postsecondary level, in learning differential and integral 

calculus (Salleh & Zakaria, 2016) especially, to bring across the abstract nature of 

derivatives and integrals in calculus to college students. Because static pictures could not 

directly depict these changes, Salleh and Zakaria (2016) investigated whether the 

corresponding informational disadvantage of static pictures could be compensated by 

describing the missing information in a text. Results revealed that animations still led to a 

deeper understanding of the content. Thus, according to Salleh and Zakaria, carefully 

designed animations for educational purposes could possess an informational advantage 
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over static pictures, for instance, by directly depicting dynamic changes such as changes 

in the velocity of an object.  

Literature Review Related to Key Variables and Concepts 

The fundamental concepts and variables included non-Maple static visualization, 

Maple dynamic visualization, students’ conceptual and procedural understanding of 

derivatives and integrals, and animation-visualization theory.  

Animation and Visualization 

Many have questioned the effectiveness of animation and visualization in 

learning, and several previous empirical studies have given reasons to detractors to 

support their negative views on understanding many concepts through animation and 

visualization, as those research findings suggested that animation and visualization were 

not necessarily superior to static visualizations (Ghani et al., 2012). However, other prior 

studies have shown that in various disciplines such as atmospheric science, biology, 

cartography, engineering, and physics, animation and visualization have played a crucial 

role in the delivery of instructional materials about nonconcrete concepts that were 

difficult to understand, or that encompassed abstract content such as calculus (Lin, 2011; 

Nossun, 2012). From the other accounts, people could infer that individuals’ precise 

understanding of the effect of animation on learning was still unclear (Ghani et al.). 

These blurred perceptions accentuated when people experienced a core problem of using 

animation and visualization to tie together the verbal, symbolic, and graphic 

representations of math concepts in calculus. The unsynchronized presentation of these 

representations of a function, for instance, made it all but impossible for a student to 
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solve a problem that required shifting from one representation system to another. The 

solution to this fundamental problem was to avoid teaching these three representations 

separately. Animation and visualization provided opportunities for calculus learners, 

through geometrical representations, to understand the mathematical concept of rate of 

change of objects on their trajectory (application of derivatives), and the computation of 

the area under the curve of a function, which required an application of integrals (see 

Salleh & Zakaria, 2016), which will constitute the objects of analysis in this study, 

according to the sample lesson plan (see Appendix B). 

In this study, the instructors taught the three representations concurrently. Much 

of calculus has to do with the rate of change and optimization. These concepts were 

inherently dynamic, and thus, calculus facilitators could use dynamic visualization 

(animated visualization) to help students in their learning. Hence, a well-constructed 

graphic that visualized relevant concept attributes might improve instruction. 

In a computer-based instructional (CBI) environment, accessible animations as 

pictures in motion were dynamic visual graphics that facilitated instructional and learning 

processes. In a posttest, only factorial experimental design, Lin (2011) examined the 

effect of static and animated visuals on students’ learning of different educational 

objectives in a CBI environment and found that there was superior effectiveness of 

animated visuals on students’ learning over static visuals. This statement was consistent 

with some previous studies that found significantly superior effects with animation than 

with static visuals, for a sampling of 80 analyzed items. Current research (Kühl et al., 

2018) echoed Lin’s study results that animations promoted a deeper understanding of the 
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concept of velocity than still pictures, especially in students with low spatial abilities, 

which were essential in visualizations. Lin and Kühl et al. (2018) have contributed to 

research and practice, in providing insight to teachers to view visualizations as a suitable 

support for teachers’ design inquiry of location-based learning activities, and enabled 

students to make an adequate diagnosis of their performance (Melero et al., 2015). These 

studies were significant and applicable to Maple-based animation and visualization 

interactive instructional materials.  

Seeking to propose a solution to the concern of visualizing temporal and spatial 

information in cartography, Nossun (2012) has deviated from the discussion on static 

versus animated maps that previous researchers have undertaken and proposed combining 

qualities from both and introduced the concept of semistatic. Nossum found that dynamic 

visualizations were useful for learning human and non-human movements, helping 

students remember and understand the materials they studied (De Koning & Tabbers, 

2013). The animation-visualization theory presented numerous advantages for a learner 

to gain insight into the abstractness of some mathematical concepts, using a content-rich 

and activity-based course. It might supplement the traditional non-interactive 

technologies use in teaching math at the postsecondary level. From this section, it was 

clear that the animation and visualization theory supported students’ active engagement 

for conceptual and procedural understanding, which were some requirements of efficient 

learning. 

Animation and Visualization: Teaching and Learning in STEM Education 
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At the International Carpathian Control Conference, presenters ascertained that 

the use of animation was suitable for solving local extrema (minimum or maximum) for 

functions of two-real variables x and y (Mojžišová & Pócsová, 2018). Impelluso (2018) 

found that students were able to experience 3-D dynamics through the visualization of 

interactive animations that favored students in solving physics problems. Correlational 

analysis revealed that spatial ability, verbal-logical reasoning ability, and mathematical 

performance correlated significantly. High spatial visualizers had significantly higher 

spatial ability and mathematical performance scores than high object visualizers. 

However, there were no significant differences between verbalizers and high spatial 

visualizers in their verbal-logical reasoning ability and analytical performance scores. 

Results provided support for the existence of two different groups of visualizers 

concerning their spatial ability. 

Solving calculus-related problems such as finding limits, maximum and minimum 

(see Mojžišová & Pócsová, 2018), and related-rate problems, tangent lines of a function 

at a given point, or rates of changes requires the application of derivatives. Finding the 

area under a curve or calculating the volume of a solid of revolution entails the 

application of integrals. These types of problems stand for the components of calculus 

and helping learners understand derivatives, and integrals can help students in their 

success in other advanced analysis courses (see Ocal, 2017). Solving optimization 

problems, such as finding the dimensions of a rectangular fence, requires the use of 

variables, function, which serve as an equation relating the defined variables, 

constructing a table of values, graphs, visualization, and even animation, and derivatives 
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to calculate the maximum or minimum values (see LaRue & Infante, 2015). Therefore, in 

this study, in helping students understand calculus, the intervention group’s instructors, 

concurrently, used verbal, symbolic, and graphic representations, animating all the 

visuals for students to emulate. That meant the students modeled the used Maple 

animation and visualization tools in class, their homework, the quizzes, and the end-of-

term exam. The intervention instructors and students used the maple applets, programing 

codes, and palettes in their learning and teaching (see Appendix B). 

The Role of Multiple Representations in Learning Calculus 

The use of multimedia presentations remained of prime importance to lessen the 

irrelevant cognitive load and increase the relevant cognitive load, coherent with the 

multimedia, modality, and spatial-contiguity principle (Jung et al., 2016; Mayer, 2014). 

The modality principle, which required presenting words as speech rather than on-screen 

text (Jung et al., 2016), could deepen students’ understanding of the presented material 

when an instructor explained current information by audio narration rather than on-screen 

text. The spatial-contiguity principle consisted of placing related graphics of learned 

concepts in proximity with text to minimize cognitive processing by positioning-related 

graphics and narration (text) in proximity to ensure students’ undivided attention (see 

Jung et al., 2016; Mayer, 2014). The use of words and meaningful graphics (multimedia 

principle) has contributed positively to students’ learning. Moreover, the narration and 

animation of learned concepts in a synchronized manner with visual or analytic 

processing might contribute to the students’ conceptual, procedural, and strategic 

understanding (see Foshay & Silber, 2009) of derivatives and integrals. 
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Learners need to develop the aptitude of transmuting between intangible 

conceptual representations (see Özkan et al., 2011) of mathematical concepts and real-

world representations via a body’s kinesis. Advanced technologies have increased 

individualized learning opportunities to integrate animation and visualization theories in 

teaching and to learn (Ghani et al., 2012; Lin, 2011) to enhance learners’ aptitude. Erlich 

and Russ-Eft (2011), Lakhvich (2012), and Nossun (2012), in their studies, showed that 

animation and visualization were essential elements in an effective instructional system 

that promoted student-centered education, especially in mathematics. 

Learners could benefit from the 3-D representation of a generated solid of 

revolution in calculus, in terms of understanding, creating, retaining, retrieving, and 

transforming structured visual images (see Allendoerfer et al., 2014; Choi et al., 2013; 

Nathan et al., 2013) in learning of STEM. For example, in this study, one calculus 

problem that students solved was to find the volume of the obtained figure from rotating 

the area under a curve of the given function y = f(x) = 1+cos(x), with 0 ≤ x ≤3 and 0 ≤ y 

≤2. The solution to this problem involved the concept of a definite integral. Students 

used their prior knowledge to graph the given function and use their learned integral 

concepts to arrive at the solution. The calculus instructor modeled the concept using 

Maple animation and visualization tools and engaged students to arrive at the solution. 

Solids of revolution resulted from rotating portions of curves between functions, about an 

axis (see Swift, 2017), with the displays below. Figure 4 was the tabular representation, 

and Figure 5, the graphical representation, of the symbolic representation of f(x). Figure 6 

was a result of rotating a part of Figure 5 about the x-axis. While Figure 7, Figure 8, and 
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Figure 9 were the static visualization, Figure 10 was the dynamic representation of the 

solid of revolution of f(x). 

Figure 4 
 
Tabular Representation of the Function f(x) = 1 + cos(x) 

x 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

y 2 1.87 1.54 1.07 0.58 0.20 0.01 0.06 0.34 0.80 1.28 1.71 1.96 

 

Figure 5 
 
Graphical Representation of the Function f(x) = 1 + cos(x) 
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Figure 6 
 
Graphical Representation of Rotation of Figure 5 

 

Figure 7 
 
3D Static Visualization of Figure 6 
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Figure 8 
 
Static Visualization of Regional Representation of Solid of Revolution 

 

Figure 9 
 
Disc Method- Static Visualization of the Solid of Revolution 
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Figure 10 
 
Dynamic Visualization of the Solid of Revolution 

 

Thus, the geometric diagrams in Figures 4 through 10 were the multiple 

representations, which represented the teaching of mathematical concepts with the use of 

different procedures (see Özkan et al., 2011), illustrating the nature of a given real-world 

problem, its verbal representation (as the instructor narration), tabular representation 

(numerical table of values of x and y), algebraic representation, and graphical 

representation with Cartesian connections. These representations might activate students’ 

mental processing as they constructed knowledge.  
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Dick’s and Edwards’ work (2008) on multiple representations and local linearity, 

Foshay’s and Silber’s study (2009) on improving performance, and many calculus reform 

efforts stressed the use of multiple representations instructional strategy. Those efforts 

emphasized the fundamental idea of functions in calculus by examining key concepts 

such as limits, derivatives, and integrals (Dick & Edwards, 2008) in verbal, analytic 

(symbolic formula), graphic, numeric, and tabular representations. This strategy could 

provide learners with robust support for learning, understanding derivatives, and 

integration in calculus and assist students in communicating mathematical ideas through 

the practice of proper notations in mathematics (see Shahbazi & Irani, 2016), as the 

Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, and Figure 10 showed. These 

are the core principles of visualization for understanding calculus. Maple supported the 

concept of multiple representations, which was part of hybrid approaches of teaching 

mathematics (see Wilkie, 2016) and could enhance students’ conceptual and procedural 

understanding of mathematical problems. 

Maple Technology 

Maple is a compact technology that is conducive for communication, information 

search, and teaching aid (see Awang & Zakaria, 2012) and runs on any operating system. 

Students could attain meaningful mathematics learning with active participation in hands-

on activities. With a plot command, Maple defaults to a 2-D animation for animated 

visualization graphs to reinforce abstract concepts in mathematics. Maple has editing 

capabilities with desired colors. Previous research on module for learning integral 

calculus with Maple revealed that reflective activities were able to trigger metacognitive 
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awareness among the engineering technology mathematics students (Awang & Zakaria, 

2012; Salleh & Zakaria, 2016).  

Unlike the TI networked CAS-based graphing calculators and TI-Navigator 

system, Maple technology offered various instructional tools such as powerful 

mathematical software package, which embodied graphic, computation, programming 

tools, and a spreadsheet (see Siddique, 2010), or PowerPoint presentation (see 

Wiwatanapataphee et al., 2010), which were missing on graphing calculators. Moreover, 

CAS graphing calculators run virtually on Maple. Furthermore, Maple carried many math 

apps that were missing on CAS graphing calculators. Maple carried increased 

computational power with active animation and visualization and functioned like video 

cameras for the development of vision-based intelligent monitoring systems, which could 

automatically extract useful information from visual data to analyze actions (see Padilla-

López et al., 2015). The software provided links and nodes, which represented 

interactivity and its effects on learning, between contents and students’ activities, using 

hypertext and hypermedia techniques in computer-based learning (CBL) to enhance 

geometric modeling (see Padilla-López et al., 2015). 

Maple encompassed powerful symbolic manipulations, which were programing 

languages that permitted users to implement their algorithms and constituted a powerful 

tool for teaching and research in geometric modeling problems (see Sozcu et al., 2013). 

The programing languages utilized CAS add-ons for use in applied mathematics such as 

physics, bioinformatics, computational chemistry, and packages for physical 

computation, graphic production, and editing such as computer-generated imagery and 
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sound synthesis (see Sozcu et al., 2013). The use of Maple in a math classroom could 

assist in modeling constructivist and connectivist instructional principles to assist 

students’ learning. 

Maple as Computational Tool 

The available literature on Maple’s use as an instructional tool featured Maple’s 

computational nature (see Ozturk et al., 2013; Samková, 2012; Zamuda, & Brest, 2013), 

sparing its animation and visualization capabilities. Previous research focused on the 

effectiveness of Maple for providing solutions to the characterization of parametric 

equations (see Thompson, 2013), Differential Geometry (see Anderson & Torre, 2012), 

Abel equations (see Jahanshahi et al., 2015), for instance. Anderson and Torre used 

Differential Geometry, a Maple software tool to solve equations symbolically, analyze a 

family of hypersurfaces, isolate values of functions and parameters, and solve advanced 

calculus problems.  

Ozturk et al. (2013) used Maple to solve the system of a nonlinear algebraic 

equation and compute the coefficients of the truncated Taylor sum in matrix form, by 

collocation method for solving fractional Riccati differential equation with delay term. 

Meikle and Fleuriot (2012) integrated Maple into the Prover’s Palette and found that 

Maple was a powerful and popular CAS with its plotting capabilities to provide 

significant insight into proving theorems. They discovered that Maple was useful as a 

presentation tool that could replace the chalkboard lectures and static PowerPoint slides, 

permitting users to accelerate the process of proving and verifying interactively 

sophisticated theorems and complex algorithms (Meikle & Fleuriot, 2012). Despite all 
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the contributions and benefits of Maple technology, the researchers have identified that 

none of them has dealt with animated visualization in calculus in this section. 

Awang and Zakaria (2012), in their quasi-experimental nonequivalent control 

group design, with randomly selected 101 participants on the process of integrating 

Maple software in the teaching of the first-year integral calculus topic, found that from a 

pretest-posttest gain in integral calculus, the experimental group outperformed the control 

group significantly. Moreover, Vieira (2015) used Maple to solve Euler’ type of 

nonhomogeneous fractional differential equations and ascertained that Maple’s visual 

representation enabled students to view the roots of polynomial functions in a complex 

variable. 

Additionally, Salleh and Zakaria (2016), in their research, using a quasi-

experimental nonequivalent control group design, investigated the effectiveness of a 

learning strategy using Maple in integral calculus. The research data analyses revealed 

that first-year university students who underwent the integral calculus lesson using Maple 

software outperformed the control group in terms of procedural and conceptual 

understanding. Referring to this study, one could infer that there are significant 

differences between those using Maple software with those using the conventional 

method in learning integral calculus and that the study is significant to practice. 

The rare study on the use of Maple animation and visualization was limited to its 

executable computer code in generating graphs of an elliptic paraboloid, hyperbolic 

paraboloid, and hyperboloid of one-sheet, in 3-D (Siddique & Mitchell, 2010). According 

to Siddique and Mitchell (2016), Maple codes were immensely helpful in visualizing and 
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understanding the quadric surfaces (graphs of quadratic equations in three-dimensional 

Cartesian coordinates). Hence, Maple produced high-quality visualizations and 

animations. The strength of these Siddique’s and Mitchell’s (2016) study sprung from 

providing a written code for the graphs. These authors missed stating what the students 

did with the animation and visualization tools. 

Most of the available peer-reviewed articles were more descriptive than 

analytical, and no statistic availed to support the postulated claims that Maple software 

technology-enabled the visualization of the motion of a material point on its trajectory 

and assisted students to improve their understanding of calculus (see Aan & Heinloo, 

2012). This study focused on Maple-based animation and visualization lessons and their 

impact on college students’ conceptual and procedural understanding of derivatives and 

integrals in calculus. 

Many research studies discussed CAS Maple and the appropriate software 

package for effective classroom delivery. However, the literature on the use of animation 

and visualization to teach calculus in college was scarce. The new Maple encompasses a 

software package (math applets, wolfram alpha demonstrations, GeoGebra, MathCad, 

LaTex, MathLab) for active learning (see Ozturk et al., 2013; Salleh & Zakaria ,2016; 

Samková, 2012; Zamuda, & Brest, 2013). Maple technology embraces a multimedia 

presentation platform that could help students understand abstract concepts through 

learner-centered pedagogy, constructivist, and connective teaching and learning 

principles. 
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Conceptual and Procedural Understanding of Calculus 

Serhan (2015) asserted that a salient principle of understanding was the ability to 

connect conceptual and procedural knowledge. The conceptual understanding consisted 

of a knowledge that was rich in relationships, and procedural skills were algorithms or 

sequences of steps related to problem types. Dick and Edwards (2008) viewed conceptual 

knowledge as an associated web of knowledge, networked with linking relationships. 

The conceptual understanding of mathematics was the comprehension of mathematical 

concepts, operations, and relations (see Ocal, 2017; Rittle-Johnson & Schneider, 2015). 

While procedural understanding was the fluency (skill) in carrying out procedures 

flexibly, accurately, efficiently, and appropriately, strategic competence was the ability to 

formulate, represent, and solve mathematical problems (see Ocal, 2017). 

Instruction focused on conceptual understanding tended to improve students’ 

procedural skills. However, the converse was not necessarily true (see Hodara, & Xu, 

2016; Rittle-Johnson & Schneider, 2015). Cox’s (2015) research into students' conceptual 

understanding of fundamental concepts of calculus has provided comprehensively 

designed calculus tasks to measure the students’ preference for a visual method of 

solution, which included graphic representations and analytic processing, which required 

algebraic representations, and analyses of students' difficulties (Quarles & Davis, 2017). 

Quarles and Davis (2017) expounded on criteria for a mathematical proficiency to 

include conceptual understanding, procedural fluency, strategic competence, adaptive 

reasoning, and productive disposition. They noted that conceptual understanding, as 

knowledge of mathematical concepts, included operations, and relations, while 
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procedural understanding involved aptitudes in performing procedures compliantly, 

competently, and applicably. These authors shed light on a deeper mathematical 

comprehension, which derived from students’ conceptual, procedural, and strategic 

understanding that facilitated retrieval and improved retention. In their study on learning 

in developmental math, using pretest and posttest research design, with descriptive 

statistics, linear regression, and logistic regression analyses, Quarles and Davis postulated 

that, while conceptual mathematics proficiency correlated with higher grades, procedural 

algebra skill did not. Their study bore some implications, in terms of practice: (a) 

learning math that stressed on procedural skills did not prepare learners for college-level 

math and (b) students with procedural skills could fail to recall within a few months. In 

terms of research, the study added to the literature to include the need for further research 

on students' assessments.  

Despite some limitations (variances in students’ scores by assessment tools), 

Quarles’ and Davis’ (2017) study was significant for this study on students' conceptual 

and procedural understanding. The Maple platform offered both the static visualization 

and dynamic visualization (animated visualization), which were the requirements for a 

conceptual and procedural understanding of calculus. 

Summary and Conclusions 

The animation-visualization theory constituted the theoretical framework for this 

study. Researchers highlighted the advantages of dynamic visualization calculus 

instructors could use to enhance students’ conceptual and procedural understanding. 

Calculus encompasses abstract concepts that are difficult to grasp and requires dynamic 
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visualization activities to mitigate learning difficulties. From literature, instructors could 

improve students’ spatial visualization skills with appropriate content, using Maple-CAS 

(see Höffler & Leutner, 2007; Kadunz, & Yerushalmy, 2015; Karakus & Duressi, 2017). 

Maple was useful for improving spatial visualization skills (see Kühl et al., 2018). 

Despite the advantages of the animation-visualization theory in other fields of study, 

postsecondary calculus students suffered from its disuse in calculus. It might be 

imperative, then, that calculus instructors, as subject matter experts, use Maple animation 

and visualization tools in the framework of animation and visualization theory and 

principles to increase students’ intrinsic motivation in their teaching model to help 

students’ learning of calculus. The study’s uniqueness resided in its social significance 

and the way it might address a gap in the literature. This research study examined the 

impact of Maple-based animation and visualization activities on college students’ 

understanding of calculus via the described quantitative 2x2 factorial pretest and posttest 

control group quasi-experimental design.  

The use of multiple representations could activate students’ mental processing as 

they constructed knowledge to enhance their performance (see Geiger et al., 2016; Ghani 

et al., 2012). Dick’s and Edwards’ work (2008) on multiple representations and local 

linearity, Foshay’s and Silber’s (2009) study on improving performance, and many 

calculus reform efforts stressed the use of multiple representations instructional strategy. 

Those efforts emphasized the fundamental idea of function in calculus by examining key 

concepts such as limits, derivatives, and integrals (see Dick & Edwards, 2008) in verbal, 

analytic (symbolic formula), graphic, numeric, and tabular representations. This strategy 
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could provide learners with robust support for learning, understanding derivatives and 

integration in calculus, and assist students in communicating mathematical ideas through 

the practice of proper notations in mathematics (see Shahbazi & Irani, 2016). These are 

the core principles of visualization for understanding calculus. Maple supported the 

concept of multiple representations, which was part of hybrid approaches of teaching 

mathematics (see Wilkie, 2016) and might enhance student’s conceptual and procedural 

understanding of mathematical problems. Chapter 3 presents the instructors’ use of 

written assessments to evaluate students’ conceptual and process knowledge and 

performance-based assessments in the application of knowledge as a means of evaluation. 
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Chapter 3: Research Method 

Introduction 

The purpose of this study was to investigate the impact of Maple-based dynamic 

visualization (animated visualization) activities on college students’ conceptual and 

procedural understanding of derivatives and integrals in calculus. This chapter comprises 

discussions on the research design and rationale, methodology, and threats to validity. It 

also includes a review of the procedures for data collection, analysis, and ethical 

considerations to protect participant rights. 

Research Design and Rationale 

This study was about comparing the performance of two groups, ascertaining 

between and within effect. Therefore, the use of the mixed between-group design, with a 

2x2 factorial pretest and posttest control group quasi-experimental mixed-design, which 

analyzed the independent and joint effects of the constructs in the study, was a good fit. 

The choice of the design emerged from its ability to facilitate the control of internal 

factors such as the history, maturation, testing, instrumentation, regression, mortality, and 

interaction of selection, maturation, internal validity. The factorial design offered the 

flexibility for exploring the intervention in the study, using the causal relationship to 

reduce bias and aiding in the establishment of construct and content validity, avoiding 

threats to internal validity (see Frankfort-Nachmias & Nachmias, 2008). The strength of 

this factorial design resided in the causal attributions, which resulted in consequences in 

varying an intervention. The concept of internal validity was the nucleus of cause-effect 

inferences (see Trochim, n.d.) that were legitimate deductive and logical assertions. Thus, 
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this research design was a reliable and efficient candidate as a choice for examining 

intervention variations (see Trochim, n.d.), and was consistent with research designs to 

advance knowledge in educational technology, concerning calculus. 

Students’ test scores on derivatives and integrals and their conceptual and 

procedural understanding were the study variables. Furthermore, the observation notes on 

class activities on derivatives and integrals and e-mailed interview responses from the 

intervention professors served as pillars for triangulation. The department curriculum did 

not require the use of Maple animation and visualization. The elements in Figure 11 and 

Table 1 exemplified the used variables to answer the research questions on the impact of 

Maple animation and visualization on students’ understanding of calculus. The IV were 

non-Maple static visualization (X1), and Maple dynamic visualization (X2) and 

dependent variable (DV) was the CU and PU of derivatives and integrals (see Table 1). 

One test was the foundation for measuring the conceptual and procedural understanding 

of derivatives and integrals.  

Figure 11 
 
Section on Model to Respond to Research Questions 
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Table 3 
 
Summary of Research Design 

Group Pretest/Prerequisite 
 

Intervention Posttest Remarks (LO 
Met -1 or Not-

(0) 
Comparison  Application of 

Derivative (D) and 
Integrals (I) 

Teaching 
without Maple 

Application of 
Derivative (D) 

and Integral 
(I) 

1/0 

Intervention Application of 
Derivatives (D) 
and Integrals (I) 

Teaching with 
Maple 

Application of 
Derivatives 

(D) and 
Integrals (I) 

1/0 

 

The study addressed the following research questions: 

RQ1: Was there a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

RQ2: Was there a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

RQ3: Was there a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 
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RQ4: Was there a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

procedures calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

The choice of the intervention sprung from the failure to use static visualization 

(still pictures, graphs, PowerPoint slides) and other traditional methods of instruction to 

meet students’ needs in learning calculus (see Sevimli, 2016b) at the postsecondary level. 

Besides, mathematics educators recognized that college students often have difficulties 

understanding the concepts of derivatives and integrals, due to the abstract nature of 

calculus (see Covington et al., 2017; Katsioloudis et al., 2016) and required dynamic 

visualization activities to mitigate learning difficulties (see LaRue & Infante, 2015). 

Nonetheless, the use of animation and visualization theory in teaching calculus at the 

postsecondary level was lacking. Still, there was a scarcity of studies on the use of 

Maple’s dynamic visualization to enhance students’ learning. However, Kühl et al. 

(2018) advised instructors to view visualizations as a suitable support for teachers’ design 

inquiry of location-based learning activities and enabled students to make a valid 

diagnosis of their performance (see Melero et al., 2015). 

Furthermore, other prior studies have shown that in various disciplines such as 

atmospheric science, biology, cartography, engineering, and physics, animation and 

visualization have played a crucial role in the delivery of instructional materials about 

abstract concepts that were difficult to understand, or that encompassed abstract content 

such as calculus (see Lin, 2011; Nossun, 2012). Animation and visualization provided 
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opportunities for calculus learners, through geometrical representations, to understand the 

mathematical concepts, exceptionally, in computing the rate of change of a particle on its 

trajectory and the volume of a solid. The rate of change required the application of 

derivative. In contrast, the computation of the volume of a figure resulting from a rotation 

a portion of a curve (solid of revolution) required an application of integrals (see Swift, 

2017), which constituted the objects of analysis in this study, per the sample lesson plan 

(see Appendix A). 

Therefore, it was essential to examine the effect of Maple technology, within the 

framework of animation-visualization theory, on college students’ learning of calculus, 

especially, in their conceptual and procedural understanding of abstract concepts of 

derivatives and integrals, in calculus. 

Methodology 

The inquiry was about the impact of Maple-based animation and visualization 

calculus lesson delivery on learners, using students’ pretest, quiz, and posttest 

performance scores on questions on derivatives and integrals. Consequently, the 

quantitative 2x2 factorial pretest-posttest control group QED, with MANOVA for the 

statistical analysis, was a good fit for this study. Due to the students’ choice of calculus 

classes, randomization was impossible, presenting the use of QED, which engendered 

some limitations to the study. However, despite these limitations, it was acceptable to use 

a QED, which was a feasible alternative to the original experimental design when actual 

experiments were impossible (see Campbell & Stanley, 1963; Tasker, 2014). Another 

limitation consisted of any differences in outcomes that could incur because of 
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nonequivalent nature of groups, rather than the intervention (see Hodara & Xu, 2016). 

However, the use of MANOVA could detect any between and within effects. 

Population 

The target population included four calculus professors and 120 male and female 

students, with age ranging from 20 to 30 years from a multicultural population of Black 

American, White, Hispanic, and Asian, who registered for analytical geometry calculus; 

some for Maple dynamic visualization section and others for non-Maple animation 

visualization section (static visualization). The students received an explanation of the 

difference between the Maple and non-Maple sections when they registered for their 

calculus class. All available classrooms participated in the study. Thus, students in the 

Maple classroom received the intervention by default. However, students could opt out of 

the study’s data collection (per research ethics).  

Sampling and Sampling Procedures 

Sampling and sample size can strengthen or weaken a study (see Campbell & 

Stanley, 1963; Tasker, 2014). Although the use of probabilistic sampling could have 

strengthened the study, I resorted to a nonprobability sampling (convenience sampling) 

due to the conditions surrounding students’ selection. Students’ preselection in their 

registered classes complicated random assignment, administratively. They knew the type 

of class (Maple or non-Maple technology) for which they registered, as the 

administration informed them during registration. While random assignment of students 

to comparison and intervention groups was impossible, the fixed effects for each 
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instructor in this model might statistically adjust for mean differences between 

professors. Four classes, with 120 students, formed the study’s sample. 

Sample Size 

The number of students who signed and returned the consent form constituted the 

sample size in the convenience. The sample size covered the intervention group (n = 86), 

which used Maple-based animated visualization lessons in calculus class and the 

comparison group (n = 34), which used the static visualization (non-Maple based) lessons 

in calculus class. Considering mixed-design MANOVA for statistical analysis, the use of 

G*Power 3 computation software (see Faul et al., 2009) presented an effective way of 

determining an adequate sample size. Factoring attrition problem, and using a statistical 

power (80%), level of significance alpha (0.05), and effect size (0.12), the G*Power 3 

computation required a total sample size of 84 for both groups.  

As per G*Power 3 computation, a convenience sampling of at least 84 students 

for both the comparison and intervention groups (all three subsamples) was necessary to 

achieve the accepted minimum power threshold (see Field, 2017; Pallant, 2016; 

Tabachnick & Fidell, 2018). However, after data cleaning and checking for errors, the 

number of participants reduced to 81 students with the comparison group (n = 29) and 

intervention group (n = 52). The reduction in participants became a source of limitation 

(McNeish, 2017) in this study as discussed in Chapter 5. 

Procedures for Recruitment, Participation, and Data Collection 

Before the data collection, I sought permission from the LC administrators and 

professors and followed the college policy for authorization to conduct research, with a 
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confirmatory letter from the college, according to research requirements with appropriate 

signatures, in Appendix H. The application permission letter from LC depended on 

submitting the proposal approval from Walden University. Students knew in advance 

which sections would and would not use Maple animation and visualization. They had 

the ability to opt out, without any adverse consequences, just like the student consent 

form stipulated. 

Before data collection, after receiving the approval from Walden University and 

LC institutional review boards (IRBs), I sought permission from the LC math department 

personnel, who introduced me to the calculus professors. After the introduction, I met the 

professors one on one and discussed my intentions about the study with them and gave 

them the consent form if they choose to participate. At the beginning of the academic 

term, I visited the professors and collected their signed consent forms. They allowed me 

into their classroom, introduced me to the students, and let me speak (1-2 minutes) to the 

learners about my intentions and handed to each one of them the consent form. I waited 

in the lobby until the end of class and collected some signed forms and left with the 

professors to get their schedule for my classroom observations. During my first 

observation, I collected some more students’ signed consent forms. 

Data collection was comprised of the following items:  

• Students’ de-identified list of scores on pretest (prerequisite skills on derivatives 

and integrals), quiz (posttest1), and end of term exam (posttest), on derivatives 

and integrals. 
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• Researcher’s observations (two on derivatives and two on integrals, for each 

class, with photographic pictures of class activities, with no images of students 

and professors) notes on derivatives and integrals for implementation fidelity. 

• Emailed interview response from intervention professors for triangulation. 

There were no reports on participants’ demographic information. Students exited 

the study when they took the end of term exam (full discussion in Chapter 4). There were 

no follow up for interviews apart from returning to share the study outcome with LC 

personnel, per research ethics.  

Intervention 

The professors, with a Ph.D. in Mathematics, conducted the intervention, using 

Maple-based animation and visualization tools in calculus class. I did not teach any part 

of the course and had no prior relationship with the instructors, apart from the 

professional connection for data collection. The instructors were experts in using Maple 

software and did not need any additional workshops. All students received standardized 

instructions and took all tests in their classrooms. Three professors taught the intervention 

group using Maple software, and one instructor taught the comparison group without 

Maple software. 

Students learned to use the software during their teaching periods as the instructor 

modeled a topic in the intervention group. Table 1exemplified the independent variables. 

Chapter 2 exemplified the details on the definition of animation and its effect on the 

conceptual and procedural understanding of derivative and integral in calculus. The 

calculus professors used their instructional materials to teach the curriculum (see 
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Appendix J). Three professors used Maple animation and visualization tools to teach 

calculus for the intervention group. In Chapter 2, I illustrated a sample lesson activity, as 

per learning objectives Students’ achievement tests on derivatives and integrals, served as 

a means of measuring the construct variables according to the displayed learning 

objectives (LO; see Figure 12). 

Figure 12 
 
Maple-Based Dynamic Visualization Learning Objectives 

LO1 At the end of the topic on derivatives, students would be 
able to demonstrate the application of conceptual and 
procedural understanding of the derivatives of functions, 
to solve derivatives related problems, with at least 80% 
accuracy. 

LO2 At the end of the topic on integrals, students would be 
able to demonstrate conceptual and procedural 
understanding of integrals of functions, to solve 
derivatives related problems, with at least 80% accuracy. 

 

All instructors met the learning objectives and implemented the intervention as 

expected. Thus, the professors executed the intervention the expected outcomes. The 

observation and implementation fidelity rubric is located in Appendix C with full detail 

in Chapter 4. 

Instrumentation and Operationalization of Constructs 

The instruments were the students’ tests (pretest, quiz, and posttest) scores on 

derivatives and integrals to measure the manipulated variables. These tests were relevant 

and valid and mirrored the learned concepts and aligned with the learning objectives for 

assessment. Instructors designed their lesson plans and assessment items. Tests were 
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valid and reliable, aligning with learning objectives. While the tests were not the same 

across groups, quizzes and posttest (end of term exam) of each instructor mirrored the 

pretest (prerequisite skills for derivatives and integrals), thus establishing internal 

consistency (see Appendix J, Appendix K, and Appendix L). The constructs related to the 

established instruments (concurrent validity); the variables aligned with the constructs 

(convergent validity). The independent variables caused change in the dependent variable 

(internal validity). While measures predicted students’ superior performance on posttest 

(predictive validity), the scale measured the theoretical constructs (construct validity), 

establishing sufficiency of instrumentation to answer the research questions. While 

Figure 12 displayed the objectives for assessment, Table 4 presented the summary of the 

defined variables the constructs, Table 5, the gain and implementation information and 

Table 6, the observation information. 

Table 4 
 
Variables Table 

 
 

Independent 
Variable 
 

Fidelity of 
Implementation 

Dependent 
Variable 

Non-Maple 
static 
visualization 

X1 OV Y11 

Maple dynamic 
visualization 

X2 OV Y12 
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Table 5 
 
Monitoring Implementation Fidelity and Gain 

Attainment difference Measuring Gain Triangulation Fidelity Measure 
Y12 – Y11 Posttest and 

Pretest Gain 
established 

Expectations met   Valid/Reliable 
(Appendices B, J, 
K, L) 

OV and Y12    
Ascertained and analyzed 
the existence of difference 
between OV and Y12 via 
my observation note 
learning objectives  

 Compared and contrasted 
OV and Y12 for 
triangulation 
 

Validation of 
fidelity measure 
(Appendices B, J, 
K, L) 

Maple animation lessons 
on derivatives  
and integrals 

Students demonstrated and replicated 
similar taught concepts, with at least 80% 
performance regarding the conceptual and 
procedural understanding of derivatives and 
integrals 

 Descriptive and 
MANOVA 
statistical analysis 

Depiction Depiction of treatment skills monitors that 
students demonstrate treatment-related 
behavioral skills and cognitive strategies in 
relevant real-life settings as intended 

Descriptive and 
MANOVA 
statistical analysis 
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Table 6 
 
Observation Materials 

Objectives Instructor’s 
Teaching 
Materials 

Example Instructor’s 
Assessment 

Researcher’s 
Description of 
Observed 
Materials 

Conceptual 
understanding 
of derivatives 
of a given 
function 

Derivatives of 
functions, 
using Maple 
animation tool 

See  
Appendix B 

See  
Appendices J, 
K, L 

See 
Appendix B 

Procedural 
understanding 
of the 
derivative of 
the given 
function 

Derivatives of 
a function, 
using Maple 
animation tool 

See  
Appendix B 

See  
Appendices J, 
K, L 

See 
Appendix B 

Conceptual 
understanding 
of a definite 
integral of a 
given function 

Definite and 
Indefinite 
Integrals of a 
function, using 
Maple 
animation tools 

See  
Appendix B 

See  
Appendices J, 
K, L 

See 
Appendix B 

Procedural 
understanding 
of a definite 
integral of a 
given function 

Definite and 
Indefinite 
Integrals of a 
function, using 
Maple 
animation tools 

See  
Appendix B 

See  
Appendices J, 
K, L 

See 
Appendix D 

Dynamic 
visualized 
materials 
created for 
student’s 
engagement. 

   Learners 
interacted with 
the instructor’s 
modeled 
activity 
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Data Analysis Plan 

Using numbering as a coding system, for data analysis, I assigned randomized 

computer-generated 3-digit numbers such as 351, 945 (using RAND function in Excel) to 

each participant in the study (see Appendix E). For protection, I secured the collected and 

encrypted data on a laptop, assuring that the coded information match perfectly with the 

student’s de-identified list of test scores (see Appendix F and Appendix I). The 

observation materials had neither instructors’, students’ image, name, nor identifiable 

symbol to preserve anonymity and confidentiality. The use of encrypted data helped 

preserve any used file and documents to avoid unwelcome intrusion. A collection of 

pretest and posttest scores on derivatives and integrals questions served as instruments for 

data analyses. I entered the collected data into SPSS version 24 for the variables of 

interest, examined and discarded those scores for values that were more than 3.29 

standard deviations above or below the mean, and removed any detected outliers through 

descriptive statistics (see Tabachnick & Fidell, 2018). During data cleaning, there were 

no detected outliers. However, I disregarded invalid data (data with no pretest and quiz 

scores) and excluded such from any statistical analysis. I included a plan for checking the 

reliability of tests (see Appendix F). 

The mixed-design MANOVA was the appropriate test for this research, to 

examine both between and within groups differences on a linear combination of 

dependent variables (see Pallant, 2016; Tabachnick & Fidell, 2018). The two groups were 

the non-Maple static visualization group and Maple dynamic visualization group. The 
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within factor (time) comprised three measurements: (a) pretest, (b) quiz, and (c) posttest 

measures on the linear combination of derivatives and integrals calculus scores. 

Descriptive and inferential statistics with MANOVA analysis confirmed any relationship 

between the dependent variables (students’ conceptual and procedural understanding of 

derivatives and integrals) and independent variables (non-Maple static and Maple 

dynamic visualizations). The parametric assumption for the mixed design MANOVA 

included normality and sphericity. Sphericity was the homogeneity of the error variances 

of the differences scores among the repeated measures (see Pallant; Tabachnick & 

Fidell). However, the multivariate version of the mixed-design MANOVA did not require 

the assumption of sphericity. Therefore, only normality warrant checking during the data 

analysis process (see Hair et al., 2018; Pallant; Tabachnick & Fidell). 

The specific tested null hypotheses, using mixed-design MANOVA, 

encompassed: 

RQ1: Was there a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)?  

H011: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 
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H111: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H012: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test. 

H112: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test. 

RQ2: Was there a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

H021: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H121: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 
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H022: There was no significant difference in pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

procedure calculus test.  

H122: There was no significant difference in pretest (prerequisite skills for 

derivatives’ procedure), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ procedure calculus test.  

RQ3: Was there a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

H031: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H131: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H032: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test. 
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H132: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test. 

RQ4: Was there a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

H041: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1) and end of term exam (posttest) scores on the integrals’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H141: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1) and end of term exam (posttest) scores on the integrals’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization). 

H042: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

procedure calculus test. 

H142: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1) and end of term exam (posttest) scores on the integrals’ 

procedure calculus test. 
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There were no potential covariates. There were no confounding variables. 

Interpretation of results would be p-values-based and effect size with MANOVA 

analyses for all the hypotheses. 

Threats to Validity 

Inconsistencies could originate from test scorers and lead to differences in the 

values of reliability and validity, thereby negatively impacting the accuracy of inferences 

based on test scores. Therefore, the use of students’ class test scores, for autocorrelation, 

helped mitigate bias from between-teacher effects. 

Generalizability depended on the sample size for valid generalization (see 

Campbell & Stanley, 1963; Trochim, n.d.). However, there was a possibility to generalize 

to the LC study group. The embedded pretest-posttest control group design was effective 

in controlling history, maturation, mortality, and instrumentation that could affect internal 

validity. A focus was on the assumptions, such as fidelity of implementation (see 

Creswell & Creswell, 2018; Frankfort-Nachmias & Nachmias, 2008). 

The use of convenience sampling could introduce selection bias, as the sample 

could not represent the entire population, unlike the probability sample. However, the 

convenience sample fit the occasion of the availability and readiness of the participants 

because it allowed obtaining necessary data and trends regarding this study without 

randomization. The only students who were out of the selection process were those who 

did not sign and return the consent form or chose not to be part of the study. 

For risks in the study protocol, this study required the use of numerical 

interpretation with quantitative responses. Consequently, following the procedures and 
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specific research protocols, the facts were accurate, measurable, and precise to enhance 

the trustworthiness and validity of the current quantitative study (see Creswell & 

Creswell, 2018). 

Ethical Procedures 

In a study, risks might be inevitable. However, in this study, risks to students were 

minimal. Adhering to the guidelines of Walden University’s and Lehman College’s IRBs 

and stipulations throughout the study, before collecting any data, I sought permission 

from professors to observe their class activities on derivatives and integrals. I followed 

the ethical principles of beneficence, respect for persons, and justice as the Belmont 

Report outlined (see Horner & Minifie, 2011), while conducting the research study, and 

included a copy of the required research ethics training certificate (see Appendix H). 

Before data collection, every study participant received an informed consent form 

with enough detailed information on the study. The form contained the purpose, expected 

duration, procedures, and information on the participants’ right to opt-out as they please, 

without any adverse effect from the researcher, and the benefits and risks of the study. 

The inclusion and exclusion criteria covered all students who registered for calculus 

class. Before the study, any volunteer could participate in the equitable selection. 

However, with no perceived coercion, according to Walden University research 

compliance, the university’s ethical standards, and United States’ federal regulations, 

only those who signed and returned the informed consent form took part in the study. 

Appendix G included documents for agreements to gain access to participants or data, 
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with ethical considerations on the part of the researcher, according to the Walden 

University IRB stipulations. 

Instructors were responsible for the ethical concerns of their instructional 

materials. The intervention of human participants was of minimal if not inexistent 

associated risk to the study. LC instructors provided the necessary data according to the 

LC’s ethical research processes. The data comprised a de-identified list of students’ test 

scores with no name and were confidential with no publishing of participants’ names or 

test scores. The classroom observation notes on derivatives and integrals beard no image 

of instructors or students. Participants’ test scores were number-coded, with encrypted 

analyzed data stored on the researchers’ password-protected laptop. There would be no 

data dissemination. However, the LC administrators and professors in the study would 

have access to the final research conclusions. Data would be destroyed after five years, 

according to IRB stipulations. There was no identifiable conflict of interest. 

Summary 

The quantitative 2x2 factorial pretest and posttest control group QED was a 

perfect fit for this study. The use of mixed-design MANOVA for data analysis helped 

ascertain the main and interaction effects that could exist between factors, and mediate 

threats to validity. It was necessary to adhere to accurate and reliable instrumentation 

with ethical considerations in investigating Maple-based animation visualization 

activities’ impact on college students’ conceptual and procedural understanding of 

derivatives and integrals. The use of IBM SPSS Statistics for statistical analyses of 
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reliably collected data (Chapter 4) was crucial for valid interpretation and 

recommendation (Chapter 5). 
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Chapter 4: Results  

Introduction 

The reason for this quantitative study was to determine if Maple-based animation 

and visualization lessons, designed within the framework of the animation-visualization 

theory (see Erlich & Russ-Eft, 2011; Paik, 2012; Zurita & Nussbaum, 2007), make an 

essential difference in college students’ conceptual and procedural understanding of 

derivatives and integrals in calculus. This quantitative study was causative and depended 

on the use of a 2x2 factorial pretest-posttest control group quasi-experimental mixed 

design. Four research questions, using the predictive assessment software IBM SPSS 

Statistics MANOVA to test the hypotheses and interpret research results, characterized 

this study. 

This chapter contains the procedures and associated results with the data 

collection and analysis for the study. First was a reporting of participants’ descriptive 

statistics. Next, there were three phases of the data analysis process. The first phase was 

the data preparation phase, which consisted of entering data into the SPSS Statistics 

software for checking for errors and missing values, conducting descriptive statistical 

analysis. In this phase, the computation of new variables was necessary. In phase two of 

the data preparation, the normality and sphericity test of parametric assumptions were 

effectual. The third phase was the primary analysis phase, which consisted of the 

statistical analyses used to test the null hypothesis. This section ended with a chapter 

summary. 
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The following research questions and hypotheses were used to guide and focus the 

study: 

RQ1: Was there a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)?  

H011: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ concept calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization). 

H111: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ concept calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization animation). 

H012: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ concept calculus test. 

H112: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ concept calculus test. 

RQ2: Was there a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the derivatives’ 
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procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization animation)? 

H021: There was no significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ procedure calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization). 

H121: There was a significant difference in the pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ procedure calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization). 

H022: There was no significant difference in pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ procedure calculus test.  

H122: There was no significant difference in pretest (prerequisite skills for 

derivatives), quiz (posttest1), and end of term exam (posttest) scores on the 

derivatives’ procedure calculus test. 

RQ3: Was there a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? 

H031: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the 
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integrals’ concept calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization). 

H131: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the 

integrals’ concept calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization). 

H032: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the 

integrals’ concept calculus test. 

H132: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the 

integrals’ concept calculus test. 

RQ4: Was there a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the integrals’ 

procedure calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization animation? 

H041: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1) and end of term exam (posttest) scores on the integrals’ 

procedure calculus test between the comparison group (static visualization) and 

the intervention group (dynamic visualization). 

H141: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1) and end of term exam (posttest) scores on the integrals’ 
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procedure calculus test between the comparison group (static visualization) and 

the intervention group (dynamic visualization). 

H042: There was no significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the 

integrals’ procedure calculus test. 

H142: There was a significant difference in the pretest (prerequisite skills for 

integrals), quiz (posttest1), and end of term exam (posttest) scores on the 

integrals’ procedure calculus test. 

Data Collection 

After the LC IRB and Walden University’s IRB approval (# 05-02-19-0196043), 

the LC mathematics department personnel introduced me to and briefed the MAT 155 

professors about my intentions. Then, I met each of the four professors (three for the 

intervention group and one for the comparison group) in their office to remind them of 

my intentions, hand them the consent form, and assure them that the data would be kept 

private and anonymous. Each of the professors introduced me to their classes and allowed 

me (about 1-2 minutes) to hand the consent form to the students. I sat inconspicuously in 

the back of the classroom to avoid seeing any students’ faces during the observation. 

After the first observation in each class, I stood at the door and collected some signed 

documents the students willingly returned to me. Like the first one, the subsequent 

observations proceeded for the entire lesson period.  
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Data collection spanned 15 weeks of four sections of the Fall 2019 MATH-155 

course, which met once a week for 100 minutes a week, at LC. The data gathered 

included the following: 

• Class observations (twice during the teaching of derivatives and twice during the 

teaching of integrals) for implementation fidelity. 

• Students’ pretest (homework questions on prerequisite skills for derivative and 

integral), quizzes, and end of term exam (posttest) scores, on derivatives, and 

integrals. 

• Emailed-interview response from the professors who used Maple software (for 

triangulation). 

The scores were deidentified lists from the participant instructors. The actual 

recruitment and response rates were 95.83% (115 out of 120 participant students) and an 

attrition of five students who dropped the course in the comparison group and whose data 

I excluded from the data analysis. 

There were some discrepancies in data collection from the plan I presented in 

Chapter 3. There was no administered pretest as per the original pretest-posttest control 

design. Therefore, I could not measure direct gain. I filed for an amendment to my 

existing IRB to modify the original pretest-posttest design to use assignment prerequisite 

skills for derivatives and integrals (as pretest) and include interview response from the 

intervention instructors (see Appendix G). The interview response was to ascertain a 

triangulation. That adverse event precluded direct measurement of learning gains but still 

allowed a weaker test of group equivalence, hoping that the interview response from the 
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instructors in the intervention group would triangulate with group equivalence analysis 

since direct measurement of learning gains was impossible. Moreover, data from one 

intervention professor had neither a pretest nor quiz scores and were entirely removed 

from the analysis. This loss of data reduced the sample size from 115 to 81respondents. 

Thus, the sample size of 81 participants was less than 84: the required sample size from 

G*Power 3 computations. This small sample size became a source of a discussed 

limitation in Chapter 5. Twenty-nine students formed the comparison (static 

visualization), and 52 learners constituted the intervention (dynamic visualization 

animation) group. Instructors took measures for each respondent across three time 

periods (pretest, quiz, and posttest). These professors, additionally, conducted tests for 

derivatives’ concepts and procedures and integrals’ concepts and procedures. 

Preparation of Data 

There were 81 respondents after data cleaning, in this study, with 29 participants 

in the comparison (static visualization) group and 52 students in the intervention 

(dynamic visualization) group. Using the SPSS detailed procedures (frequencies with no 

graphs) for all entered variables, I checked for errors and missing values (see Figure M1 

in Appendix M). The SPSS descriptive procedures, using frequencies, revealed that there 

were no missing values or data errors. Hence, there was no need to recode or compute 

new variables to. So, the next step in the data analysis process was the test for 

assumptions phase. 
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Descriptive Statistics: Group Comparability Analysis 

It is essential to gauge the performance outcome to ascertain gain. I used 

descriptive statistics to simplify data. Descriptive statistics consists of measures of central 

tendency and measures of variability (see Trochim, n. d.), such as the mean (M) and 

standard deviation (SD), to provide a summary of the sample and the measures (see Table 

7). 

Table 7 
 
Comparability Analysis Table 

 

Comparison Group (Static 
Visualization) 

Intervention Group 
(Dynamic Visualization) 

N M SD N M SD 
Pretest_HWK_Derivative_Concept 29 66.72 12.86 52 66.56 12.82 
Pretest_HWK_Derivative_Procedure 29 66.72 12.86 52 66.56 12.82 
Pretest_HWK_Integral_Concept 29 71.97 8.58 52 65.50 10.91 
Pretest_HWK_Integral_Procedure 29 71.97 8.58 52 65.50 10.91 
Quiz_Derivative_Concept 29 87.34 11.22 52 82.10 10.16 
Quiz_Derivative_Procedure 29 87.34 11.22 52 82.10 10.16 
Quiz_Integral_Concept 29 91.34 13.81 52 84.58 10.13 
Quiz_Integral_Procedure 29 91.34 13.81 52 84.58 10.13 
Post_Derivative_Concept 29 87.24 11.25 52 91.98 6.59 
Post_Derivative_Procedure 29 87.24 11.25 52 91.98 6.59 
Post_Integral_Concept 29 86.66 11.50 52 95.50 6.48 
Post_Integral_Procedure 29 86.66 11.50 52 95.50 6.48 

 

It was crucial to note that the tests were not identical, so scores were not directly 

comparable. However, the contents on derivatives and integrals in both comparison and 

intervention groups were the same (see Appendix B). The M and SD pretest scores in 

both groups (see Table 8) were so close with a difference of 0.16 for the mean and 0.04 
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for the standard deviation between both groups for the pretest on derivatives’ concept and 

procedure. The M and SD difference on the pretest for integrals’ concept and procedure 

were, respectively, 6.47and 2.33. A similar analysis from Table 9 showed that the 

difference in the M and SD between the comparison group instructor and the Intervention 

Group Instructor 1 were 0.16 and 0.86, respectively for derivatives’ concept and 

procedure; 7.24 and 3.43, respectively, for pretest on integrals’ concept and procedure. 

The four means and standard deviations were close enough to justify combining the 

sections into one big sample for each group (see Table 7). 

Table 8 
 
Descriptive Statistics by Group and Instructor 

 Comparison Group Intervention Group 
Instructor 1 Instructor 2 

N M SD N M SD N M SD 
Pret_HWK_DC 29 66.72 12.86 16 66.56 13.75 36 65.19 12.34 
Pret_HWK_DP 29 66.72 12.86 16 66.56 13.75 36 65.19 12.34 
PretHWK_IC 29 71.97 8.58 16 64.73 12.01 36 65.44 10.57 
Pret_HWK_IP 29 71.97 8.58 16 64.73 12.01 36 65.44 10.57 
Quiz_DC 29 87.34 11.22 16 80.94 14.25 36 81.58 7.91 
Quiz_DP 29 87.34 11.22 16 80.94 14.25 36 81.58 7.91 
Quiz_IC 29 91.34 13.81 16 85.60 13.32 36 85.31 8.47 
Quiz_IP 29 91.34 13.81 16 85.60 13.32 36 85.31 8.47 
Post_DC 29 87.24 11.25 16 92.17 9.06 36 92.17 5.29 
Post_DP 29 87.24 11.25 16 92.17 9.06 36 92.17 5.29 
Post_IC 29 86.66 11.50 16 94.13 9.25 36 96.11 4.83 
Post_IP 29 86.66 11.50 16 94.13 9.25 36 96.11 4.83 
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Table 9 
 
Difference in Mean and Standard Deviation Comparison by Instructor 

 Comparison 
Instructor 

Versus 
Intervention 
Instructor1 

Comparison 
Instructor 

Versus 
Intervention 
Instructor2 

Intervention 
Instructor1 

Versus 
Intervention 
Instructor2 

 M SD M SD M SD 
Pretest  
Derivatives 
Concepts 

0.16 0.89 1.53 0.52 1.37 1.41 

Pretest  
Derivatives 
Procedure 

0.16 0.89 1.53 0.52 1.37 1.41 

Pretest  
Integrals 
Concepts 

7.24 3.43 6.53 1.99 0.71 1.44 

Pretest 
Integrals 
Procedure 

7.24 3.43 6.53 1.99 0.71 1.44 

 

Implementation Fidelity and Triangulation: Observation Notes 

The observation notes and the intervention group professors’ interview responses 

served as pillars for the implementation of fidelity and triangulation. In this section, the 

qualitative part (implementation fidelity and triangulation) preceded the quantitative 

analysis. I reported on the activities of both groups’ instructors firstly, then the 

intervention group professors secondly. 

Comparison and Intervention Groups 

Before the four observations (two on derivatives and two on integrals), I 

introduced myself to the instructors before the class started and reminded them what I 

was there for. I assured the facilitators that the data would be kept private and 
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anonymous. In each class, the instructors routinely introduced me to the classroom. I sat 

inconspicuously in the back of the classroom, so I could not see the students’ faces and 

observed each entire lesson period. 

The instructors complied with the set learning objectives on derivatives and 

integrals in each class of both the comparison and intervention groups. The facilitators 

aligned all their assessments with the taught topics, adhering to the constructivism 

principles of learning, asking questions to enable students’ engagement. Class activities, 

which fostered conceptual and procedural understanding started with definitions and 

examples. The professors continued modeling topical activities on derivatives and 

integrals, followed by students replicating what the professors have modeled in class. 

In both the comparison and intervention groups, professors modeled and asked 

learners to use the concept of derivatives to find the extrema (minimum/maximum) of 

functions. Other activities related to finding the equations of the secant, tangent, and 

normal lines to a curve, then ascertaining the difference between the concept of average 

and instantaneous rate. Activities related to integrals consisted of finding the primitive, 

antiderivative, indefinite and definite integrals, of a given function, and using the concept 

of integral to find the area under a curve. Professors extended students’ practice of taught 

and learned concepts, which were the bases for quizzes (postest1) and end of term exam 

(posttest) in a homework assignment. 

The instructors used multiple representations, which represented the teaching of 

mathematical concepts using different procedures, formulating questions that targeted 

students’ higher thinking skills (see Maharaj & Wagh, 2016). The activities illustrated the 
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nature of a given real-world problem, its verbal representation (the professors’ narration), 

tabular representation (numerical table of values of x and y), algebraic representation, and 

graphical representation with the Cartesian connection. These representations could 

activate students’ mental processing as they construct knowledge (see Bakirtzoglou & 

Ioannou). The instructors delivered their lessons according to the set SMART goals and 

objectives. They demonstrated interactive lessons (student to student interaction, student 

to content interaction, student to instructor interaction), provided constructive feedback; 

thus, exemplifying constructivist principles, and student-centered learning pedagogy. 

Intervention Group 

In the intervention group, in addition to the above-presented information, the 

professors used Maple animation-visualization tools to enable students to visualize a 

particle’s movement along a curve of a function, its secant, and tangent line. See 

Appendix B. In one of the intervention group classes, other class activities and examples 

fostering the conceptual and procedural understanding of derivatives and integrals 3-D 

representation to generate and compute the volume of a solid of revolution (see Figure I4 

in Appendix I). 

During class activities and discussions, the professors used words as speech rather 

than on-screen text (modality principle), placed related graphics of learned concepts near 

the text to minimize cognitive processing. They positioned related graphics and narration 

(text) close to ensure students’ undivided attention (spatial-contiguity principle). The 

instructors’ use of multimedia presentation could help lessen the irrelevant cognitive load 

and increase the relevant cognitive load, coherent with the multimedia, modality, and 
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spatial-contiguity principle (see Jung et al., 2016). The use of words and meaningful 

graphics (multimedia principle) has contributed positively to students’ learning. 

Moreover, the narration and animation of learned concepts in a synchronized manner 

with visual or analytic processing could contribute to the students’ conceptual, 

procedural, and strategic understanding (see Foshay & Silber, 2009) of limits, 

derivatives, and integrals. However, the loss of invalid data from the intervention group 

caused a reduction in the sample size, which constituted a limitation of the study. The 

instructors administered the intervention as I expected, and there were no challenges that 

prevented the planned implementation, as I described in Chapter 3. However, during the 

data cleaning process, I found that 34 participants had no pretest and quiz scores, and I 

excluded their information from the data analysis. The reduction in the sample size had 

severe complications, such as the inability to generalize (external validity) I discussed in 

Chapter 5. 

Interview Response 

The interview response from the intervention group professors concurred that the 

use of Maple technology helped students grasp the taught concepts on derivatives, 

especially finding the equation of the secant, tangent, and normal lines, as well as 

establishing the difference between the average and instantaneous rate of change. 

However, some students experienced some difficulties in writing Maple codes. The 

professors testified to this occurrence of these experiences in their response to the 

interview question on what challenges did students experience using the Maple animation 

and visualization tools in learning the concepts of derivatives and integrals in calculus. 
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The facilitators also provided some examples (see Appendix G) of things students did 

well and get confused about using Maple software. The research findings across the data 

source accurately showed that the dynamic visualization group significantly 

outperformed the static visualization group for each RQ. 

Results 

The results section includes the report on descriptive statistics that appropriately 

characterize the sample. It comprises evaluation of statistical assumptions appropriate to 

the study. In addition, it contains report of statistical analysis findings, which I organized 

by research questions in the primary analysis. 

Test for Assumptions 

A mixed-design MANOVA, using the multivariate Wilks’ Lambda test, did not 

require the assumption of sphericity, which was the homogeneity of variance between the 

pretest and the two posttest scores (see Field, 2017; Pallant, 2016). The assumption of 

normality was not a concern because the central limit theorem indicated that sample sizes 

above 30 produced a normal distribution of sample means (Field; Pallant; Tabachnick & 

Fidell, 2018). Therefore, no tests of assumptions were necessary. Another assumption of 

the mixed-design MANOVA was that the with-in subject repeated measures are the same 

at each time-period (Creswell & Creswell, 2018; Tabachnick & Fidell, 2018). Meaning, if 

there were two time periods where measurements were the same, the measure was given 

at both time-periods. In this study, there was a violation of this assumption, as the pretest, 

quiz, and posttest measures were all slightly different for the treatment and control 

groups. There was also an assumption of the comparison group and intervention group 
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equivalence on the pretest. The hypothesis upheld on the derivative concept (RQ1) and 

the derivatives’ procedure (RQ2) tests, but not on the integrals’ concept (RQ3) and 

integrals’ procedure (RQ4), thus presenting a limitation (with full details in chapter 5) to 

the study. 

Primary Analysis Using Quantitative Data 

Comparing the non-Maple static and Maple dynamic groups’ outcome variables 

requires the use of inferential statistics, consisting of the statistical analyses used to test 

the null hypothesis (see Trochim, n. d.). The use of the probabilistic analysis assisted 

observing any difference between groups and ascertaining the main and interaction 

effects between factors. It was essential to recall that the scores were from slightly 

different tests; therefore, before executing the mixed-designed MANOVA in the rest of 

this chapter, the tests were equated. I classified the primary analysis by the research 

questions in the study: 

RQ1: The first question asked, Was there a significant difference in the pretest 

(prerequisite skills for derivatives), quiz (posttest1), and end of term exam (posttest) 

scores on the derivatives’ concept calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization)? There were two 

categorical independent variables. The first was a group, which contained comparison 

and intervention groups. The second independent variable was time, which contained 

three factors: a pretest, quiz (posttest1), and an end-of-term exam (posttest). The 

continuous dependent variable was the scores on the derivatives’ concept calculus test, 

where high scores represented superior performance. 
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Mixed-design MANOVA to determine any effect the intervention had on scores 

on the derivatives’ concept calculus test indicated a statistically significant group by time 

interaction, F(2,78) = 14.07, p < 0.001. The eta square, effect size value (η2 = 0.265), 

indicated that a 26.5% of the variability in derivative concept calculus test scores was 

accounted for by the group by time interaction. According to Cohen’s eta squared effect 

size standards of 0.01 for small, 0.06 for medium, and 0.14 for large, the size of the effect 

was considerable.  

For both the comparison and intervention groups, pretest scores were significantly 

lower than both the quiz and posttest scores (see Table 10). Additionally, for the 

intervention group only, posttest scores were significantly higher than quiz scores. 

However, there was no significant difference between the quiz and posttest scores for the 

comparison group. 

Table 10 
 
MANOVA -Pre_ Quiz_Post- Comparison Chart_Derivatives’ Concept 

 Pretest a Quiz b Posttest c    
 M SD M SD M SD Group Time Int 
Der-
Pr  

      0.13 125.97* 14.07* 

Comp 66.72bc 12.86 87.34a 11.22 87.24a 11.25    
Inter 66.56bc 12.82 82.10ac 10.16 91.98ab 6.59    

 

Note. * - denote p < 0.001;  

Letters indicated significant difference between mean score in the referencing column. 

Moreover, results of the mixed-design MANOVA also indicated no significant 

difference in pretest derivative concept scores between the comparison and intervention 
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groups. However, the comparison group had significantly higher scores on the quiz, but 

the intervention group had significantly higher scores on the posttest (see Table 11 and 

Figure 13). 

Table 11 
 
MANOVA – Comparison and Intervention Derivatives’ Concept 

 Comparison a Intervention b    

 M SD M SD Group Time Int 
Derivative 
Concept 

    0.13 1125.97* 14.07* 

Pretest 66.72 12.86 66.56 12.82    
Quiz 87.34b 11.22 82.10a 10.16    
Posttest 87.24b 11.25 91.98a 6.59    

 

Note. * - denoted p < 0.001; letters indicated significant difference between mean score in 

the referencing column. 

Figure 13 
 
Profile Plots of MANOVA – Derivatives’ Concept 
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Therefore, the results indicated that the intervention group had significantly (p < 0.001) 

higher scores on the posttest, with a large effect size of 0.27, but not on the quiz. 

Consequently, the results supported the expected outcomes from the animation-

visualization theorists. 

RQ2: The second research probed, Was there a significant difference in the 

pretest (prerequisite skills for derivatives), quiz (posttest1), and end of term exam 

(posttest) scores on the derivatives’ procedure calculus test between the comparison 

group (static visualization) and the intervention group (dynamic visualization)? There 

were two categorical independent variables: group (comparison and intervention) and 

time (pretest, quiz, and posttest). The continuous dependent variable was the scores on 

the derivatives’ procedure calculus test, where high scores represented enhanced 

performance.  

Results of the multivariate mixed-design MANOVA revealed a statistically 

significant group by time interaction effect, Wilk’s Lambda = 0.74, F(2. 78) = 14.07,  

p < 0.001, η2 = 0.265, where the interaction accounted for 26.5% of the variability in 

derivative procedure calculus scores. This effect size was a large effect, as it was larger 

than Cohen’s 0.14 standard for a large effect. The pretest scores for the comparison group 

were significantly lower than the quiz and posttest scores (see Table 13). However, there 

were no significant differences between quiz and posttest scores among the comparison 

group. For the intervention group, the pretest was significantly lower than both the quiz 

and posttest. The quiz was also statistically lower than the posttest scores on the 

derivatives’ procedure calculus test (see Table 12). 
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Table 12 
 
MANOVA – Pre_Quiz_Post_Comparison Chart–Derivatives’ Procedure 

 Pretest a Quiz b Posttest c    
 M SD M SD M SD Group Time Int 
Der-Pr        0.01 125.97* 14.07* 
Comp 66.72bc 12.86 87.34a 11.22 87.24a 11.25    
Inter 66.56bc 12.82 82.10ac 10.16 91.98 6.59    

 

Note. * - denoted p < 0.001;  

Letters indicated significant difference between mean score in the referencing column. 

When comparing Groups, the mixed-design MANOVA revealed no significant 

difference between groups on the pretest. However, on the quiz, the comparison group 

had significantly higher derivative procedure calculus scores than the intervention group 

but had lower scores on the posttest (see Table 13 and Figure 14). Let us remember the 

scores were from different tests. 

Table 13 
 
MANOVA - Comp and Inter Comparison Chart – Derivatives’ Procedure 

 Comparison a Intervention b    

 M SD M SD Group Time Int 
Derivative 
Procedure 

    0.01 125.97* 14.07* 

Pretest 66.72 12.86 66.56 12.82    
Quiz 87.34b 11.22 82.10a 10.16    
Posttest 87.24 11.25 91.98 6.59    

 

Note. * - denoted p < 0.001;  

Letters a and b indicated significant difference between mean score in the referencing 

column. 
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Figure 14 
 
Profile Plots of Mixed Design MANOVA – Derivatives’ Procedure 

 

Based on data analysis, there was a significant (p < 0.001) positive effect of the dynamic 

visualization on the students’ procedural understanding of derivatives in calculus, with a 

large effect size of 0.27. Again, the results supported the expected outcomes from the 

animation-visualization theorists. 

RQ3: The third research question asked, Was there a significant difference in the 

pretest (prerequisite skills for integrals), quiz, and posttest, scores on the integrals’ 

concept calculus test between the comparison group (static visualization) and the 

intervention group (dynamic visualization)? The continuous dependent variable was the 

scores on the integrals’concept calculus test, where high scores represented better 

performance on the test. The two categorical independent variables were group 

(comparison and intervention) and time (pretest, quiz, and posttest).  
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The results of the mixed-design MANOVA indicated that there was a statistically 

significant group by time interaction, Wilk’s Lambda = 0.59, F (2, 78) = 26.87,  

p < 0.001, η2 = 0.408. Based on the eta squared value, the interaction explained 40.8% of 

the variability in integral concept calculus scores, which was a substantial effect, as it 

exceeded Cohen’s standard of 0.14 or 14%. For the intervention group, the pretest 

integrals’ concept calculus scores were significantly lower than the quiz and posttest 

scores. The quiz calculus scores on integrals’ concept were significantly lower than the 

posttest scores (see Table 14). 

Table 14 
 
MANOVA – Pre_ Quiz_Post Comparison Chart – Integral’s Concept   

 Pretest a Quiz b Posttest c    

 M SD M SD M SD Grp Time Int 
Int Con       .72 130.13* 26.87* 
Comp 71.97bc 8.58 91.34a 13.81 86.66a 11.50    
Inter 65.50bc 12.65 84.58ac 10.13 95.50ac 6.48    

 

Note. * - denoted p < 0.001;  

Letters indicated significant difference between mean score in the referencing column. 

The mixed design MANOVA indicated a statistically significant difference 

between the comparison and intervention groups on the pretest, quizzes, and posttests. 

Specifically, the comparison group had significantly higher scores than the intervention 

group on the pretest and quiz. However, the intervention group had significantly higher 

scores than the comparison group on the posttest (see Table 15 and Figure 15). 
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Table 15 
 
MANOVA - Comp and Inter Comparison Chart – Integral’s Concept  

 Comparison a Intervention b    

 M SD M SD Group Time Int 
Integral 
Concept 

    .72 130.13* 26.87* 

Pretest 71.97b 8.58 65.50a 10.91    
Quiz 91.34b 13.81 84.58a 10.13    
Posttest 86.66b 11.50 95.50a 6.48    

 

Note. * - denoted p < 0.001;  

Letters indicated significant difference between mean score in the referencing column. 

Figure 15 
 
Profile plots of Mixed Design MANOVA-Integrals’ Concept 
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Here again, there was a significant positive effect of the dynamic visualization on 

students’ conceptual understanding of integral in calculus. The intervention group had 

significantly (p < 0.001) higher scores than the comparison group on the posttest on the 

integral’s concept, with a substantial effect of 0.41. Thus, the analysis results concurred 

with the animation-visualization theorists’ expectations. 

RQ4: The fourth research question inquired, Was there a significant difference in 

the pretest (prerequisite skills for integrals), quiz (posttest1), and end of term exam 

(posttest) scores on the integrals’ procedure calculus test between the comparison group 

(static visualization) and the intervention group (dynamic visualization animation? The 

dependent variable was the scores on the integrals’ procedure calculus test and was 

categorical. The two categorical independent variables were group (comparison and 

intervention) and time (pretest, quiz, and posttest). 

The mixed design MANOVA test on the pretest, quiz, and posttest phases, and 

between the comparison and intervention groups, indicated that there was a statistically 

significant interaction between the comparison and intervention groups and the pretest, 

quiz, and posttest time periods, Wilk’s Lambda = 0.72, F(2, 78) = 15.00, p < 0.001. The 

eta squared effect size value (η2 = 0.408) indicated that 41% of the variability in 

integral’s procedure calculus scores was explained by the group (comparison and 

intervention) and time (pretest, quiz, and posttest) interaction, which exceeds Cohen’s 

standard of 0.14 for a large effect. For the comparison group, the integral procedure 

pretest scores were significantly lower than both the quiz and posttest scores. However, 

there were significant differences between the quiz and posttest scores. For the 



91 
 

 

intervention group, pretest scores on integrals’ procedure were also significantly lower 

than both the quiz and posttest scores. Unlike in the comparison group, the quiz scores in 

the intervention were also significantly lower than the posttest scores (see Table 16). 

  



92 
 

 

Table 16 
 
MANOVA – Pret_Quiz_Post Comparison Chart – Integral’s Procedure   

 Pretest a Quiz b Posttest c    

 M SD M SD M SD Group Time Int 
Integral 
Procedure 

      1.53 144.35* 15.00* 

Comparison 71.97bc 8.58 91.34a 13.81 86.66a 11.50    
Intervention 64.67bc 12.65 82.45ac 10.74 94.50ac 7.66    

 

Note. * - denoted p < 0.001;  

Letters (a, b, and c) indicated significant difference between mean score in the 

referencing column. 

Additionally, there was a significant effect for the comparison and intervention 

groups across the three time periods. Specifically, the intervention group had 

significantly lower scores on the integral procedure test than the comparison group on the 

pretest and quiz. However, the comparison group had significantly lower scores on the 

posttest than the intervention group (see Table 17 and Figure 16). 
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Table 17 
 
MANOVA - Comp and Int Comparison Chart-Integral’s Procedure   

 Comparison a Intervention b    

 M SD M SD Group Time Int 
Integral 
Procedure 

    1.53 144.35* 15.00* 

Pretest 71.97b 8.58 64.67a 12.65    
Quiz 91.34b 13.81 82.45a 10.74    
Posttest 86.66b 11.50 94.50a 7.66    

 

Note. * - denoted p < 0.001;  

Letters (a and b) indicated significant difference between mean score in the  

referencing column. 

Figure 16 
 
Profile Plots of Mixed Design MANOVA – Integral’ Procedure 

 



94 
 

 

Once more, there was a significant positive effect of the dynamic visualization of 

students’ procedural understanding of integrals in calculus. The intervention group 

significantly (p < 0.001) outperformed the comparison group, with a substantial effect 

size of 0.41. Thus, the results supported the animation-visualization theorists’ 

expectations. 

While the tests were slightly different, the mixed-design MANOVA analysis 

indicated that the intervention group significantly (p < 0.001) outperformed the 

comparison group with a large effect size of 0.27 for the first and second questions, and 

substantial effect size of 0.41for the third and fourth question. Consequently, Maple’s 

dynamic visualization, within the animation-visualization theory, had a positive impact 

on the students’ conceptual and procedural understanding of derivatives and integrals in 

calculus. The implementation of fidelity and triangulation reflected performance 

outcomes, which showed that the tests aligned with the intervention's learning objectives. 

Summary 

There were 81 respondents in this study. The current study investigated four 

research questions. The first research question inquired, Was there a significant 

difference in pretest, quiz, and posttest scores on the derivatives’ concept calculus test 

between the static visualization and dynamic visualization groups? The results indicated 

that there was a statistically significant group by time interaction, with a large effect size 

η2 = 0.27. Meaning, there were no significant differences between the comparison and 

intervention groups on the pretest; however, there were statistically (p <0.001) significant 

differences between the two groups on the quiz and posttest.  
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Research question two queried, Was there a significant difference in pretest, quiz, 

and posttest scores on the derivatives’ procedure calculus test between the static 

visualization and the dynamic visualization groups? Inferential statistics indicated a 

statistically significant group by time interaction, with a large effect size η2 = 0.27, where 

there were no significant differences between the comparison and intervention groups on 

the pretest and posttest. However, there were statistically significant differences between 

the two groups on the quiz and posttest, with a 27% variance. 

The third research question inquired, Was there a significant difference in pretest, 

quiz, and posttest scores on the integrals’ concept calculus test between the comparison 

static visualization and dynamic visualization groups? Again, inferential statistic results 

indicated a statistically significant group-by-time interaction, with a large effect size  

η2 = 0.41, and the intervention group had significantly lower scores than the comparison 

group on both the pretest and quiz. However, the intervention group had significantly 

 (p < 0.001) higher scores on the posttest with a substantial effect size of 0.41. 

Finally, research question four enquired, Was there a significant difference in 

pretest, quiz, and posttest scores on the integrals’ procedure calculus test between the 

static visualization and dynamic visualization groups? The results showed a statistically 

significant group-by-time interaction, with a large effect size η2 = 0.41 and that the 

intervention group had significantly lower scores than the comparison group on both the 

pretest and the quizzes. However, the intervention group had significantly (p < 0.001) 

higher scores on the post-test, with a substantial effect of 0.41. 
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While the tests were slightly different, the MANOVA run on the assumption that 

the tests could be equated, a source of limitation of the study. Using noncomparable tests 

affected the assumption of group equivalence on the pretest, and the inability to compute 

a learning gain directly. Moreover, the comparison group was relatively small compared 

to the intervention group. There were significant differences between the comparison and 

intervention groups on the integral’s procedure and integral’s concept pretests. It is 

essential to point out that there were three instructors in the intervention group and only 

one facilitator in the comparison group; so, I could only check for a teacher effect in the 

intervention group. However, I found none. 

 The next chapter contained a discussion of the results.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

Introduction 

The purpose of the study was to determine if an instructor’s interactive Maple-

based dynamic visualization lessons, designed within the framework of the animation-

visualization theory (see Erlich & Russ-Eft, 2011; Paik, 2012; Zurita & Nussbaum, 

2007), made an essential difference in college students’ conceptual and procedural 

understanding of derivatives and integrals in calculus. Using the appropriate quantitative 

2x2 factorial pretest and posttest control group QED mixed-design with MANOVA for 

data analysis, research results indicated that the intervention group has significantly 

 (p < 0.001) outperformed the comparison group with a substantive effect size of at least 

27%.  

This chapter covers the discussion of the study results. The chapter also presents 

the limitations of the study, implications, and presented recommendations for future 

research. These implications included the impact of this study on positive social change, 

methodology, and practice. The concluding section consisted of the chapter conclusions. 

Interpretation of the Findings 

The interpretation of the findings occurs at two levels. The first domain includes 

the discussion of the study results in the context of the theoretical framework. The second 

level is the discussion of the findings related to the literature review. Thus, the 

interpretation covers the theoretical framework and previous research outcomes as I 

described in the peer-reviewed literature, Chapter 2.  
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Theoretical Framework 

The theoretical framework in this study was the animation-visualization approach. 

This theory stipulated that carefully designed dynamic visualizations activities for 

educational purposes could possess an informational advantage over static pictures, for 

instance, by directly depicting dynamic changes such as changes in the velocity of an 

object (see Kinkeldey et al., 2014; Opach et al., 2014; Persson, 2014; Sarlis & 

Christopoulos, 2014). Given that static pictures could not directly provide these changes 

(see Salleh & Zakaria, 2016), the investigative inquiry on describing the missing 

information in a text could compensate for the corresponding informational disadvantage 

of static pictures was negative. Even when individuals described the dynamic changes in 

a text, animated visuals still led to a deeper understanding of the content. The expectation 

was that calculus students who used dynamic visualization learning techniques would 

learn concepts more effectively than those who did not. 

The first research question asked, Was there a significant difference in the pretest 

(prerequisite skills for derivatives), quiz (posttest1), and end of term exam (posttest) 

scores on the derivatives’ concept calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization)? The mixed-design 

MANOVA analysis indicated a statistically significant group-by-time interaction, 

p < 0.001 with a substantial effect size value (η2 = 0.265). Thus, 26.5% of the variability 

in derivative concept calculus test scores was accounted for by the group-by- time 

interaction, where there was no significant difference between the comparison and 

intervention groups on the pretest. According to Cohen’s eta squared effect size standards 
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of 0.01 for small, 0.06 for medium, and 0.14 for large. The size of the effect was 

considerable. The intervention group had significantly (p < 0.001) higher scores on the 

posttest, with a large effect size of 0.27, but not on the quiz. Therefore, the results 

supported the animation-visualization theorists’ expectations, as the intervention group 

outperformed the comparison on the posttests. 

The second research question asked, Was there a significant difference in the 

pretest (prerequisite skills for derivatives), quiz (posttest1), and end of term exam 

(posttest) scores on the derivatives’ procedure calculus test between the comparison 

group (static visualization) and the intervention group (dynamic visualization)? The 

results indicated that there was a statistically significant group by time interaction, with a 

substantial effect of, η2 = 0.265; meaning the interaction accounted for 26.5% of the 

variability in derivatives’ procedure calculus scores, where there were no significant 

differences between the comparison and intervention groups on the pretest. Still, there 

were significant differences between the two groups on the quiz and posttest. The 

intervention group had higher scores on the posttest, but lower scores on the quiz. 

Therefore, the results supported the animation-visualization theorists’ expectations, as the 

intervention group had significantly (p < 0.001) higher scores on the posttest, with a 

considerable effect size of 0.27. 

The third research question asked, Was there a significant difference in the pretest 

(prerequisite skills for integrals), quiz (posttest1), and end of term exam (posttest) scores 

on the integrals’ concept calculus test between the comparison group (static 

visualization) and the intervention group (dynamic visualization)? The mixed-design 
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MANOVA indicated a statistically significant group by time interaction, with a 

substantial effect of η2 = 0.408 (40.8%). The test results showed that the intervention 

group had significantly lower scores on the pretest and quiz than the comparison group, 

but higher scores were on the posttest. The study’s results indicated that the intervention 

group had significantly higher scores on the posttest but lower scores on the pretest and 

quizzes. Again, like with RQ1 and RQ2, the results supported what I expected, because 

the intervention group scores were significantly (p < 0.000) higher than the comparison 

group scores on the posttest, with a substantial effect size of 0.41. 

Finally, the fourth research question asked, Was there a significant difference in 

the pretest (prerequisite skills for integrals), quiz (posttest1), and end of term exam 

(posttest) scores on the integrals’ procedure calculus test between the comparison group 

(static visualization) and the intervention group (dynamic visualization)? The mixed-

design MANOVA indicated a statistically significant interaction between the comparison 

and intervention groups and the pretest, quiz, and posttest time-periods, with a 

tremendous effect size value η2 = 0.408 (40.8%). The results of the statistical analyses 

indicated that the intervention group had significantly (p < 0.001) higher scores on the 

posttest than the comparison group, with a considerable effect size of 0.41. These results 

supported what I expected, based on the animation-visualization theory. 

Research from the Literature 

In the literature review of Chapter 2, several studies examined the effects of 

visualizations and animations on educational processes and outcomes. In a posttest, only 

factorial experimental design, Lin (2011) examined the effect of static and animated 
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visuals on students’ learning of different educational objectives in a CBI environment. He 

found that there was superior effectiveness of animated visuals on students’ learning over 

static visuals. Kühl et al.’s research (2018) echoed Lin’s study results that animations 

promoted a deeper understanding of the concept of velocity than still pictures, especially 

in students with low spatial abilities, which are essential in visualizations. Additionally, 

Nossun (2012) found that dynamic visualizations were compelling for learning human 

and non-human movements, helping students remember and understand the materials 

they studied (De Koning & Tabbers, 2013). Impelluso (2018) found that students were 

able to experience 3-D dynamics through the visualization of interactive animations 

favored student in solving problems in physics. Correlational analysis revealed that 

spatial ability, verbal-logical reasoning ability, and mathematical performance were 

significantly correlated. High spatial visualizers had significantly higher spatial ability 

and mathematical performance scores than high object visualizers. Based on these 

findings, the expectations were that calculus students who used animation and 

visualization learning techniques would learn concepts more effectively than those who 

did not. 

For RQ1, the results indicated a statistically significant  

(p < 0.001) group by time interaction, with a large effect of 26.5% variance, where there 

was no significant difference between the comparison and intervention groups on the 

pretest. However, the intervention group had significantly higher scores on the posttest, 

but not on the quiz. The results supported what I expected, based on the animation- 



102 
 

 

visualization theorists’ views, as the intervention group outperformed the comparison on 

the posttests. 

For RQ2, the results indicated a statistically significant group by time interaction, 

where there were no significant differences between the comparison and intervention 

groups on the pretest. However, there were significant (p < 0.001) differences between 

the two groups on the quiz and posttest, with a large effect size of 26.5%. The 

intervention group had higher scores on the posttest, but lower scores on the quiz. 

Therefore, the results supported what I expected, as the intervention group had 

significantly higher scores on the posttest. 

For RQ3, the results of the study revealed a group by time interaction, where the 

intervention group had significantly (p < 0.001) higher scores on the posttest, with a 

substantial effect size of 41%, but lower scores on the pretest and quiz. Again, with RQ1 

and RQ2, the results supported what I expected, because the intervention group scores 

were significantly higher than the comparison group scores on the posttest. 

Finally, for RQ4, the results of the statistical analyses indicated that the 

intervention group had significantly (p < 0.001) higher scores on the posttest than the 

comparison group, with a substantial effect size of 41%. These results supported what I 

expected, based on the animation-visualization theory. 

Limitations of the Study 

This study registered few limitations. First, the comparison group was relatively 

small compared to the intervention group. The statistical power was 1.0 for the within-

subject analysis (pretest, quiz, posttest) and 0.996 for the interaction effects 
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(comparison/intervention and pretest, quiz, posttest). These statistical power values 

indicated that there was a 100% (1.0) and 99.6% (0.996), respectively, probability of 

detecting a significant effect if one exists in the real world. Given that the sample size for 

the comparison group was small (n = 29) compared to the intervention group (n = 52), the 

between-subjects analysis (comparison/intervention group) was low (0.062), indicating 

there was only 6.2% chance of detecting a significant between-subjects effect. So, even 

though the study revealed significant differences between the intervention and 

comparison groups across the three time-periods, the mixed-design MANOVA was not 

statistically strong enough to detect the comparison group effects alone, only in 

combination with the time periods. Second, the tests used for the pretest, quiz, and 

posttest were slightly different for the comparison and intervention groups and within 

each class of the intervention group. The pretest, quiz, and posttests were also slightly 

different for the groups with the intervention group; that meant that there might have 

been variations in the difficulty of the pretest, quiz, and posttest, as they were all 

different. Given this possibility, the intervention might not induce the observed 

significant differences, but the variations in the measurements might. 

Moreover, there was a lack of group equivalency on the pretest. There were 

significant differences between the comparison and intervention groups on the integrals’ 

procedure and integrals’ concept pretests. Theoretically, if one group was more skilled in 

calculus than the other, differences in math scores from pretest to posttest, or the lack 

there off, might be due to the level of competency of the groups and not the intervention. 
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As a result, the lack of pretest group equivalency provided an alternative explanation for 

the seen significant effects in this study. 

Recommendations for Future Research 

The first recommendation for future research is related to sample size. A future 

researcher should adopt an equal size of 84 minimum for both the intervention and 

comparison groups (see Faul et al., 2009). The second recommendation for future 

research is that the pretest, quizzes, and posttest measures should be the same measure for 

both the intervention and comparison groups; this way, the assumption of the repeated 

measures design would not be violated. Third, to minimize the possibility of violating the 

assumption of group equivalency on the pretest, I recommend that future research uses 

randomization for group assignment to minimize the possibilities of nonequivalent 

groups (see Creswell & Creswell, 2018). 

Implications 

There are several implications that are associated with this study. Firstly, the 

discussion relates to the social implications. Secondly, the discussion relates to the 

theoretical implications. Thirdly, the discussion continues with the implications for 

practice. And fourthly, the discussion ends with policy implications 

Social Change Implications 

Findings from this study and other studies promote the benefits of visualization 

and animation and may foster increased development of learning software that can be 

targeted and sold to households versus educational institutions. The study results indicate 

that the use of dynamic visualization can enhance the method of teaching calculus at the 
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postsecondary level, to enable learners to gain mathematical skills in calculus, prepare 

students in and for STEM majors and careers, and enable the United States to compete 

globally. The educational software programs that incorporate visualization and animation 

programs can supplement the education the students are receiving at school and for 

students who homeschool. 

Theoretical Implications 

From a theoretical perspective, this study helps address the gap in the literature 

and provides additional evidence that carefully designed animations for educational 

purposes possess an informational advantage over static pictures and result in improved 

educational performance. Results for RQ1 and RQ2 indicate that the intervention group 

had significantly (p < 0.001) higher scores on the posttest than the comparison group, 

with a substantial effect of 26.5% variance. For RQ3 and RQ4, the intervention group has 

significantly lower scores on the pretest but significantly higher scores on the posttest. 

The results provide evidence for the animation and visualization theory, as the 

intervention group has significantly (p < 0.001) outperformed the comparison group with 

a 40.8% variance. 

Implications for Practice 

This study may have a positive impact on educational practice by influencing 

educators to employ animation and visualization learning approaches to various subjects 

at various educational levels. The current study applies dynamic visualization (animated 

visualization) to teach calculus concepts. Educators and facilitators may use the calculus 

animations to enhance teaching methods at both the secondary and postsecondary levels. 
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Additionally, other disciplines may use calculus animation training as a template for 

other topics and disciplines. 

Policy Implications 

From an educational policy perspective, the results of this study, along with other 

studies, can influence educational policy. As most of the students in the United States 

currently homeschool due to the Covid-19 pandemic, remote learning via computers has 

become the status quo. The use of educational technology will become more central, and 

curriculums may incorporate more animation and visualization in the lessons, based on 

findings from this study and other studies, to enhance the educational performance of 

studies. 

Conclusions 

The use of technology in the classroom will become more prevalent at all levels 

of education. Technology in the classroom allows for individualized learning and 

assessment, which provides students with a more adaptive and customized learning 

experience. As educational faculty and administrators look for effective ways to increase 

student performance, embedding visualization and animations in instruction can be an 

asset. Preliminarily, studies have shown that animated visuals were more effective than 

static visuals at fostering retention and positive learning outcomes. Only one previous 

study showed that visualization and animation could be useful in the STEM fields, and 

that was a study by Impelluso (2018). He showed that there were academic performance 

benefits when instructors incorporated animation into a physics curriculum. The current 

study adds to the body of evidence that supports the efficacy of animated visuals over 
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static visuals in producing more excellent academic performance. Specifically, this study 

provides additional evidence that visualization and animation can be applied effectively 

to more challenging subjects like calculus, a STEM field. As the need for professionals in 

the science and technology field grows, so will the need for curriculums that incorporate 

visualization and animation, as this makes the challenging subject matter more accessible 

to the non-technically inclined. 
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Appendix A: Sample Lesson Plan 

I . Application of Derivatives 
Learning Objective (L O 1)  

At the end of this unit, students will be able to use the concept of 

derivative, with at least 80% accuracy, to compute the:  

• Difference quotient.  

• Instantaneous rate of change 

•  Average rate of change 

•  Equation of the tangent and normal of a line to a curve. 

Vocabulary and Definitions 

Function, curve, difference quotient, derivatives, instantaneous rate of 

change, average rate of change, derivatives, extrema, minimum, 

maximum, point of inflection, equation of the tangent and normal of a 

line. Figure B1 exemplified a sample problem with a secant and tangent 

line to a curve. 
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Figure B1 

Graph-Secant and Tangent Line to a Curve 

 
 

II Application of Integrals 
LO 2  

At the end of this unit, students will be able to use integral, to: 

• Find the area under a curve of a function 

• Solve problem involving 

• Calculate the volume of a solid of revolution. 

Vocabulary and Definitions 

Integral, definite integral, indefinite integrals, primitive, anti-derivative, 

area under a curve of a function, volume, solid of revolution. 

A s ample problem instructors and students might work on was presented in 

chapter 2. 
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Appendix B. Observation and Implementation Fidelity Rubric 

Table B1 

Comparison Group 

Items Procedural  
Understanding 

Conceptual  
Understanding 

Illustration 

Yes (1) No 
(0) 

Yes (1) No 
(0) 

 

Non-Maple Static 
visualization:  
lesson and activities on  
derivative 

1  1  See Appendix A and 
Appendix I 

Non-Maple Static 
visualization:  
lesson and activities  
on integral 

1  1  See Appendix A and 
Appendix I 

Instructor’s questions  
engaging students’  
understanding of derivative 

1  1  See Appendix A and 
Appendix I 

Instructor’s questions  
engaging students’  
understanding of integral 

1  1  See Appendix A and 
Appendix I 

Instructor encourages  
students to ask questions  
on concepts (integral) 
taught 

1  1  See Appendix A and 
Appendix I 

Instructor asks students  
to explain results of  
questions on derivatives 

1  1  See Appendix A and 
Appendix I 

Instructor asks students  
to explain results of  
questions on integrals 

1  1  See Appendix A and 
Appendix I 

Reinforcement activities 
on derivatives 

1  1  See Appendix A and 
Appendix I 

Reinforcement activities 
on integrals 

1  1  See Appendix A and 
Appendix I 
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Table B2 

Intervention Instructor 1 

Observation Table Rubric 

Items Procedural  
Understanding 

Conceptual  
Understanding 

Illustration/ Definitions 

Yes 
(1)  

No  
(0) 

Yes 
(1)  

No  
(0) 

 

Dynamic 
visualization: 
lesson and 
activities on 
derivative 
 
 
 

1  1  Definitions and class work on: 
Function and Curve, Difference 
quotient, Instantaneous and 
average rate of change, 
Equations of the tangent and 
normal lines to a curve. 
See Appendix B and Appendix 
I  

Dynamic 
visualization: 
lesson and 
activities on 
integral 

1  1  Definition and class work on 
Primitive, Antiderivative, 
Definite and Indefinite 
Integrals, Area under a curve of 
functions, Volume of a Solid of 
Revolution. See Appendix A, 
Appendix, B and Appendix I 

Reinforcement 
activities on 
derivative 

1  1  The assigned homework 
questions reflected the 
activities done in class 

Instructor’s 
questions engaging 
students’ 
understanding of 
integrals 

1  1  See Appendix B and Appendix 
I 

Instructor asks 
students to explain 
results of questions 
on Integral 

1  1  See Appendix B and Appendix 
I 

Reinforcement 
activities on 
derivative 

1  1  See Appendix B and Appendix 
I 

Reinforcement 
activities on 
derivative 

1  1  See Appendix B and Appendix 
I 
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Table B3 

Intervention Instructor 2 

Observation Table Rubric 
Items Procedural  

Understanding 
Conceptual  
Understanding 

Illustration/ Definitions 

Yes 
(1)  

No  
(0) 

Yes 
(1)  

No  
(0) 

 

Dynamic visualization: 
lesson and activities on 
derivative 

1  1  See Appendix A, 
Appendix, B and 
Appendix I 

Dynamic visualization: 
lesson and activities on 
integral 

1  1  See Appendix A, 
Appendix, B and 
Appendix I 

Reinforcement activities 
on derivative 

1  1  The assigned homework 
questions reflected the 
activities done in class 

Instructor’s questions 
engaging students’ 
understanding of integrals 

1  1  See Appendix A, 
Appendix, B and 
Appendix I 

Instructor asks students to 
explain results of 
questions on Integral 

1  1  See Appendix A, 
Appendix, B and 
Appendix I 

Reinforcement activities 
on derivative 

1  1  See Appendix A, 
Appendix, B and 
Appendix I 

Reinforcement activities 
on derivative 

1  1  See Appendix A, 
Appendix, B and 
Appendix I 
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Appendix C. Sample Pretest Questions 

  
Question 1 

 
 
Question 2 
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Question 3 
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Appendix D. Proof of NIH Web-based Training Course Completion 
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Appendix E: Randomized Number for Coding 
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Appendix F: Sample of Coded Data for Participants 

Figure F1 

Coded Data 

# CU  PU CU  PU Instructor 
#  Pretest 

 
Pretest 
 

Quiz 
(Potest1) 

End of 
Term 
Exam 
(Posttest) 

D I D I D I D I 
### x%% x% x% x% x% X% X% X% # 

 Note. CU = Conceptual Understanding; PU = Procedural Understanding 
  D = Derivatives; I = Integrals 
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Appendix G: Interview Response from Intervention Group Instructors 

Instructor 1 

 

 

Instructor 2 
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Appendix H: LC Approval Letter to Conduct Research 
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Appendix I: Observed Class Activities on Derivatives 

Intervention Instructor 1-Derivatives and Integrals: Concept and Procedure 

Figure I1 

Derivatives: Concept and Procedure: Tangent and Normal Lines 
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Figure I 2 

Integrals: Concept and Procedure: Area under a curve 
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Intervention Instructor 2-Derivatives and Integrals: Concept and Procedure 

Figure I 3 

Derivatives: Concept and Procedure-Tangent Lines 
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Figure I 4 

Integrals: Concept and Procedure- The Volume of a Solid of Revolution 

 

Comparison Group -Derivatives and Integrals: Concept and Procedure 
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Appendix J: Pretest-Prerequisite Skills on Derivatives and Integrals 

Comparison Group 

Derivatives 

 

Integrals 
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Intervention Group- Instructor 1 
Prerequisite Skills- Derivatives 

 

Prerequisite Skills- Integrals 

 

Intervention Group Instructor 2 

Prerequisite Skills- Derivatives 
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Prerequisite Skills- Integrals 
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Appendix K: Quiz (Postest1)-Derivatives and Integrals 

Comparison Group 

Derivatives 
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Integrals 
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Intervention Group 

Instructor 1 

Derivatives 
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Integrals 

 

Instructor 2 

Derivatives 

 



151 
 

 

Integrals 
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Appendix L: Posttest 

Comparison Group 
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Intervention Group-Instructor 1 
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Intervention Group-Instructor 2 
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Appendix M: Descriptive Statistics and MANOVA 

Figure M1 

Descriptive Statistics: Checking Errors and Missing Values 

 N 
Valid Missing 

ID 81 0 
Instructor 81 0 
Pre_HWK_Der-Concept 81 0 
Pre_HWK_Der-Procedure 81 0 
Pre_HWK_Int-Concept 81 0 
Pre_HWK_Int-Procedure 81 0 
Quiz _Der-Cncept 81 0 
Quiz _Der-Procedure 81 0 
Quiz _Int-Concept 81 0 
Quiz _Int-Procedure 81 0 
Post _Der-Concept 81 0 
Post _Der-Procedure 81 0 
Post _Int-Concept 81 0 
Post _Int-Concept 81 0 
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Figure M2 

Descriptive Statistics-RQ1 

Descriptive Statistics 
 Group 

Pretest_HWK_Derivative_C
oncept 

Comparison Group (Static 
Visualization) 

Intervention Group 
(Dynamic Visualization 
Animation) 

Total 

Quiz_Derivative_Concept Comparison Group (Static 
Visualization) 

Intervention Group 
(Dynamic Visualization 
Animation) 

Total 

Posttest_Final_Derivative_
Concept 

Comparison Group (Static 
Visualization) 

Intervention Group 
(Dynamic Visualization 
Animation) 

Total 
 
  



160 
 

 

Figure M3 

Tests of Within-Subjects Effect-RQ1 

Tests of Within-Subjects Effects 
Measure:   MEASURE_1   

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 
Noncent. 
Parameter 

Observed 
Powera 

Time Sphericity 
Assumed 21826.502 2 10913.251 155.419 .000 .663 310.838 1.000 

Greenhouse
-Geisser 21826.502 1.759 12411.584 155.419 .000 .663 273.314 1.000 

Huynh-
Feldt 21826.502 1.818 12004.209 155.419 .000 .663 282.589 1.000 

Lower-
bound 21826.502 1.000 21826.502 155.419 .000 .663 155.419 1.000 

Time * Group Sphericity 
Assumed 1130.996 2 565.498 8.053 .000 .093 16.107 .954 

Greenhouse
-Geisser 1130.996 1.759 643.138 8.053 .001 .093 14.162 .934 

Huynh-
Feldt 1130.996 1.818 622.029 8.053 .001 .093 14.643 .940 

Lower-
bound 1130.996 1.000 1130.996 8.053 .006 .093 8.053 .800 

Error(Time) Sphericity 
Assumed 11094.477 158 70.218      

Greenhouse
-Geisser 11094.477 138.92

6 79.859      

Huynh-
Feldt 11094.477 143.64

1 77.238      

Lower-
bound 11094.477 79.000 140.436      

a. Computed using alpha = 0.05 
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Figure M4 

Tests of Between-Subjects Effects-RQ1 

Transformed Variable: Average   

Source 
Type III Sum 

of Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Noncent. 
Parameter 

Observed 
Powera 

Intercept 1437731.442 1 1437731.442 6358.083 .000 .988 6358.083 1.000 
Group 24.381 1 24.381 .108 .744 .001 .108 .062 
Error 17863.998 79 226.127      

a. Computed using alpha = 0.05 

 
Figure M5 

Descriptive Statistics-RQ2 

 

Group Mean 
Std. 

Deviation N 

Pretest_HWK_Derivative_
Procedure 

Comparison Group (Static 
Visualization) 

66.7241 12.86162 29 

Intervention Group (Dynamic 
Visualization Animation) 

66.5577 12.81912 52 

Total 66.6173 12.75399 81 

Quiz_Derivative_ 
Procedure 

Comparison Group (Static 
Visualization) 

87.3448 11.21630 29 

Intervention Group (Dynamic 
Visualization Animation) 

80.9423 11.05674 52 

Total 83.2346 11.46764 81 

Posttest_Final_Derivative 
Procedure 

Comparison Group (Static 
Visualization) 

87.5862 11.42215 29 

Intervention Group (Dynamic 
Visualization Animation) 

92.1731 7.05085 52 

Total 90.5309 9.06930 81 
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Figure M6 

Multivariate Tests-RQ2 

Multivariate Testsa 

Value F 
Hypothesis 

df 
Error 

df Sig. 

Partial 
Eta 

Squared 
Noncent. 
Parameter 

Observed 
Powerc 

.750 116.725b 2.000 78.000 .000 .750 233.449 1.000 

.250 116.725b 2.000 78.000 .000 .750 233.449 1.000 
2.993 116.725b 2.000 78.000 .000 .750 233.449 1.000 
2.993 116.725b 2.000 78.000 .000 .750 233.449 1.000 

.245 12.626b 2.000 78.000 .000 .245 25.252 .996 

.755 12.626b 2.000 78.000 .000 .245 25.252 .996 

.324 12.626b 2.000 78.000 .000 .245 25.252 .996 

.324 12.626b 2.000 78.000 .000 .245 25.252 .996 

a. Design: Intercept + Group  
 Within Subjects Design: Time 
b. Exact statistic 
c. Computed using alpha = .05 

 

Figure M7 

Tests of Between-Subjects Effects-RQ2 

Tests of Between-Subjects Effects 
Measure:   MEASURE_1   
Transformed Variable:   Average   

Source 
Type III Sum 

of Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Noncent. 
Parameter 

Observed 
Powera 

Intercept 1437731.442 1 1437731.442 6358.083 .000 .988 6358.083 1.000 
Group 24.381 1 24.381 .108 .744 .001 .108 .062 
Error 17863.998 79 226.127      

a. Computed using alpha = .05 
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Figure M7 
 
Descriptive Statistics-RQ3 
 

Descriptive Statistics 
 

Group Mean 
Std. 

Deviation N 

Pretest_HWK_Integral_
Concept 

Comparison Group (Static 
Visualization) 

71.9655 8.57522 29 

Intervention Group 
(Dynamic Visualization 
Animation) 

64.7308 12.51214 52 

Total 67.3210 11.73545 81 

Quiz_Integral_Concept Comparison Group (Static 
Visualization) 

91.4138 13.69963 29 

Intervention Group 
(Dynamic Visualization 
Animation) 

85.5962 10.35120 52 

Total 87.6790 11.91095 81 

Postest_Final_Integral_
Concept 

Comparison Group (Static 
Visualization) 

89.9655 11.08565 29 

Intervention Group 
(Dynamic Visualization 
Animation) 

96.6538 6.26814 52 

Total 94.2593 8.85830 81 
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Figure M8 

Multivariate Tests-RQ3 
Multivariate Testsa 

Effect Value F 
Hypothesis 

df 
Error 

df Sig. 

Partial 
Eta 

Squared 
Noncent. 
Parameter 

Observed 
Powerc 

Time Pillai's 
Trace 

.787 144.350b 2.000 78.000 .000 .787 288.701 1.000 

Wilks' 
Lambda 

.213 144.350b 2.000 78.000 .000 .787 288.701 1.000 

Hotelling's 
Trace 

3.701 144.350b 2.000 78.000 .000 .787 288.701 1.000 

Roy's 
Largest 
Root 

3.701 144.350b 2.000 78.000 .000 .787 288.701 1.000 

Time * Group Pillai's 
Trace 

.278 15.001b 2.000 78.000 .000 .278 30.003 .999 

Wilks' 
Lambda 

.722 15.001b 2.000 78.000 .000 .278 30.003 .999 

Hotelling's 
Trace 

.385 15.001b 2.000 78.000 .000 .278 30.003 .999 

Roy's 
Largest 
Root 

.385 15.001b 2.000 78.000 .000 .278 30.003 .999 

a. Design: Intercept + Group  
 Within Subjects Design: Time 
b. Exact statistic 
c. Computed using alpha = .05 

 
  



165 
 

 

Figure M9 

Tests of Between-Subjects Effects-RQ3 

Tests of Between-Subjects Effects 
Measure:   MEASURE_1   
Transformed Variable:   Average   

Source 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 
Noncent. 
Parameter 

Observed 
Powera 

Intercept 1553461.56
3 

1 
1553461.56

3 
9422.501 .000 .992 9422.501 1.000 

Group 251.341 1 251.341 1.525 .221 .019 1.525 .230 
Error 13024.511 79 164.867      

a. Computed using alpha = .05 
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Figure M10 
 
Descriptive Statistics-RQ4 

Descriptive Statistics 
 

Group Mean 
Std. 

Deviation N 

Pretest_HWK_Integral_
Concept 

Comparison Group 
(Static Visualization) 

71.9655 8.57522 29 

Intervention Group 
(Dynamic Visualization 
Animation) 

64.7308 12.51214 52 

Total 67.3210 11.73545 81 

Quiz_Integral_Concept Comparison Group 
(Static Visualization) 

91.4138 13.69963 29 

Intervention Group 
(Dynamic Visualization 
Animation) 

85.5962 10.35120 52 

Total 87.6790 11.91095 81 

Postest_Final_Integral_
Concept 

Comparison Group 
(Static Visualization) 

89.9655 11.08565 29 

Intervention Group 
(Dynamic Visualization 
Animation) 

96.6538 6.26814 52 

Total 94.2593 8.85830 81 
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Figure M11 
 
Multivariate Tests-RQ4 

Multivariate Testsa 

Effect Value F 

Hypo
thesis 

df 
Error 

df Sig. 

Partial 
Eta 

Squared 
Noncent. 
Parameter 

Observe
d Powerc 

Time  
Pillai's 
Trace 

.787 
144.350

b 
2.000 78.000 .000 .787 288.701 1.000 

Wilks' 
Lambd
a 

.213 
144.350

b 
2.000 78.000 .000 .787 288.701 1.000 

Hotelli
ng's 
Trace 

3.701 
144.350

b 
2.000 78.000 .000 .787 288.701 1.000 

Roy's 
Larges
t Root 

3.701 
144.350

b 
2.000 78.000 .000 .787 288.701 1.000 

Time * Group  
Pillai's 
Trace 

.278 15.001b 2.000 78.000 .000 .278 30.003 .999 

Wilks' 
Lambd
a 

.722 15.001b 2.000 78.000 .000 .278 30.003 .999 

Hotelli
ng's 
Trace 

.385 15.001b 2.000 78.000 .000 .278 30.003 .999 

Roy's 
Larges
t Root 

.385 15.001b 2.000 78.000 .000 .278 30.003 .999 

a. Design: Intercept + Group  
 Within Subjects Design: Time 
b. Exact statistic 
c. Computed using alpha = .05 
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Figure M12 
 
Tests of Between-Subjects Effects-RQ4 

Tests of Between-Subjects Effects 
Measure:   MEASURE_1   
Transformed Variable:   Average   

Source 
Type III Sum of 

Squares df Mean Square F Sig. 

Partial 
Eta 

Squared 
Noncent. 
Parameter 

Observed 
Powera 

Intercept 1553461.563 1 1553461.563 9422.501 .000 .992 9422.501 1.000 
Group 251.341 1 251.341 1.525 .221 .019 1.525 .230 
Error 13024.511 79 164.867      

a. Computed using alpha = .05 
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