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Abstract 

Exposure to high levels of ambient air particulates < 2.5 microns in diameter (PM2.5) in 

the Fairbanks North Star Borough (FNSB) and the resulting impact on cancer incidence 

is the focus of this study. Climate, geography, and culture influence PM2.5 levels, 

particularly during the long cold season. While this study considers lung cancer 

incidences from PM2.5 exposure, the primary focus of the study is the incidences of all 

other types of cancers from exposure to PM2.5, because of the limited research done on 

this topic. This quantitative, retrospective, cohort study considered the incidences of new 

cancer diagnoses in the population during a 10-year period (January 1, 2008-December 

31, 2017). The 2 FNSB Zip Codes, designated “hot spots,” frequently see spikes in PM2.5 

during the long cold season. These areas are densely populated and contain the EPA-

regulated air quality monitors. Cancer diagnoses in the hot spot Zip Codes were 

compared to cancer diagnoses in outlying Zip Codes (non-hot spots) that experience less 

PM2.5 and are more consistently within the EPA air quality guidelines. EPA monitors are 

not yet located in the non-hot spots. Cancer patient data were obtained from the 

Fairbanks Memorial Hospital Cancer Center. The results demonstrated that a strong 

association was found between PM2.5 exposure and non-lung cancers (OR = 1.37; RR = 

1.36; p < 0.001); and between PM2.5 exposure and lung cancer (OR = 1.87; RR = 1.88; p 

< 0.001). These findings may be used to promote an increased awareness among FNSB 

residents of the potential impact on cancer diagnoses from inhaling high levels of PM2.5, 

so residents may change their behavior in favor of alternatives to biomass burning to 

improve air quality. 
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Section 1: Foundation of the Study and Literature Review 

Introduction 

A serious public health problem exists in the Fairbanks North Star Borough 

(FNSB) area, located in the interior of Alaska. During the long cold season, which 

generally runs from mid-October through March (U.S. Climate Data, 2018), frequent 

spikes in air particulate matter equal to or less than 2.5 microns in diameter (PM2.5) occur 

(FNSB Air Quality Division, n.d.). These spikes in fine particulate levels often exceed 

the United States Environmental Protection Agency (EPA) standard for PM2.5. In 2006, 

the National Ambient Air Quality Standards (NAAQS) for PM2.5 was lowered to not 

exceed 35 micrograms/m3 for a 24-hour period. (EPA, 2006). In 2017, the FNSB was 

reclassified by the EPA from a moderate to a serious nonattainment area (EPA, 2017). 

According to the American Lung Association (2018), Fairbanks ranks number one in the 

nation for the number of people at risk for adverse health effects due to annual PM2.5 

levels. In December, 2012, in the small FNSB town of North Pole located just 20 miles 

south of Fairbanks, the daily average concentration for PM2.5 was 170 micrograms/m3 

(Wang & Hopke, 2014), greatly exceeding the NAAQS standards. North Pole 

experiences more frequent spikes in PM2.5 than any of the other areas of the FNSB, and 

thus is considered to be a “hot spot” for PM2.5 during the cold season, as is the downtown 

Fairbanks zip code area (Alaska Department of Environmental Conservation Division of 

Air Quality, 2019). The speciation network of the EPA identifies seven major sources of 

PM2.5 in the FNSB region including wood smoke (40.5%), sulfate (19.5%), gasoline 

(16.3%), diesel (14.3%), nitrate (4.5%), soil (3.4%) and road salt (1.5%). Wood smoke 
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contributions could be doubled during periods of air quality violations (PM2.5 > 35 

micrograms/m3), and because wood is a primary source of heat in the Alaskan interior, it 

is the main contributor to unhealthy air during the cold season (Wang & Hopke, 2014). 

There have been many studies linking the inhalation of high levels of PM2.5 to 

respiratory, cardiovascular, and cerebrovascular health issues (Apte, Marshall, Cohen, & 

Brauer, 2015; Du, Xu, Chu, Guo, & Wang, 2016; West et al. 2016; Xing, Xu, Shi, & 

Lian, 2016). Other validated studies have linked PM2.5 exposure during pregnancy to 

negative pregnancy outcomes (Stieb et al. 2016; Sun et al. 2015; Zhang et al. 2016). 

However, there have been few studies published on the carcinogenic effects of inhaling 

high levels of PM2.5 beyond causing lung cancer, and many of the lung cancer studies 

encourage additional research in this area (Fu, Jiang, Lin, Liu, & Wang, 2015; Huang, 

Pan, Wu, Chen, E. & Chen, L. 2017; Poirier, Grundy, Khandwala, Friedenreich, & 

Brenner, 2017; Pun, Kazemiparkouhi, Manjourides & Suh, 2017). 

From numerous studies conducted over the past 30-40 years, PM2.5 is emerging as 

one of the most harmful substances that can be inhaled. This is because these fine 

particulates are so tiny that they bypass the mucociliary escalator found in healthy upper 

respiratory tracts in humans. This “escalator” using the pseudostratified ciliated columnar 

epithelium of the upper respiratory tract is able to capture larger particulates, such as 

those 10 microns in diameter and larger (PM10), by trapping them in mucous secreted by 

the extensive mucous-secreting “goblet” cells of the epithelial lining, then, via ciliated 

action, the larger particulates are packaged up and moved upward toward the throat, 

where they are then swallowed and ultimately destroyed and/or eliminated by the 
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digestive system (Shei, Peabody, & Rowe, 2018). PM2.5 however, are small enough to 

bypass the mucociliary escalator of the upper respiratory tract and are inhaled deep into 

the alveoli, where they cross the alveolar-capillary membranes and enter the bloodstream. 

Once in the capillaries and arteries, damage to the endothelial lining of the blood vessels 

begins, causing oxidative stress and inflammation of the tissues. PM2.5 can directly 

damage vascular and cardiac endothelium and is also known to induce the release of 

interleukin-6 and proinflammatory cytokines that cause the liver to release C-reactive 

proteins, which further stimulate inflammation (Dai et al., 2016). PM2.5 is also known to 

be more harmful than PM10 because the tiny size of the fine particulates actually gives 

them a much greater surface area for carrying toxins. Thus, by the physical nature alone 

of the tiny particulates, they are much more hazardous to human health than larger 

particulates (Xing et al., 2016). Additionally, epidemiological evidence has shown that 

injury to DNA and the induction of chromosomal abnormalities due to exposure to PM2.5 

are primary causes of lung cancer pathogenesis (Kim, Chen, Zhou, & Huang, 2018). Fine 

particulates are known to carry toxins that have carcinogenic properties such as 

polycyclic aromatic hydrocarbons (PAHs), arsenic, chromium, and nickel (Harrison, 

Smith, & Kibble, 2004). When carcinogens such as PAHs come into contact with DNA, a 

covalent bond between the DNA and the carcinogen can form, resulting in substitutions 

in nucleic acid nucleotides, deletions of nucleotides, and rearrangement of chromosomes 

during DNA replication, all contributing to the development of cancer (Demetriou et al. 

2012). Fine particulates are strongly linked to lung cancer (Deng et al. 2013; Fu et al. 

2015; Huang et al. 2017; Poirier et al. 2017; Wei et al. 2017). The World Health 
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Organization’s (WHO) International Agency for Research on Cancer (2013) classified 

PM2.5 as a level 1 human carcinogen for lung cancer, but the literature is sparse regarding 

the impact of PM2.5 on non-lung type cancers. A number of studies have recommended 

additional research on the impact of PM2.5, and its possible link to DNA alterations that 

might lead to cancers of various types beyond lung cancer (Andersen et al., 2018; 

Montrose et al. 2015; Parikh & Wei, 2016; Turner et al. 2017; Wei et al. 2017; Wong et 

al. 2016). Additionally, there is significant evidence to support a possible link between 

PM2.5 and cancers of the breast, digestive system, lymphatic system, and hematopoietic 

systems, supporting the need for more studies on the link between exposure to high levels 

of PM2.5 and cancers beyond lung cancers (Parikh & Wei, 2016; Pun et al. 2017; Wong et 

al. 2016). 

As more is learned about the harmful effects of PM2.5, particularly particulates 

resulting from biomass burning, it is expected that there will be positive changes in 

attitudes among people living in the FNSB toward responsible use of wood stoves, burn 

bans, and close adherence to air quality advisories. 

Section 1 reveals the problem related to this study, the theoretical theory on which 

this study is based, a thorough review of scholarly studies that have addressed the 

numerous adverse health effects of breathing high levels of PM2.5, definitions of the 

independent and dependent variables, and the research questions and hypotheses. 

Additionally, I address assumptions that will guide the study, the scope of the study and 

its limitations, and the study’s significance. 
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Problem Statement 

Breathing clean air is essential for optimal health. Inhaling polluted air can cause 

serious health conditions and can even lead to death. The long cold season in the Alaskan 

interior significantly reduces the quality of air, particularly in more populated areas such 

as in the towns of Fairbanks and North Pole, as opposed to outlying areas where many 

people, both wealthy and economically challenged live. In addition to more people 

contributing particulate matter to the air by burning wood, coal, and other substances for 

warmth, the climate, as well as the geography of the area, significantly influences the 

quality of air during the cold season.  

The climate in the Fairbanks area during the cold season is cold, dry, and desert-

like. Temperatures during the cold season typically don’t rise above zero for months and 

can reach as low or lower than -40o F. Local rivers usually freeze in October and will 

usually support the weight of a person by October 27th. Rivers continue to remain frozen 

and are safe for travel by car, plane, dog sled, and other means, usually until about the 

first part of April. River ice break-up usually occurs early in May. Cold snaps can last 

from 1 to 3 weeks and are often accompanied by the formation of ice fog, causing low 

visibility and trapping fine particulates at the surface. Because daylight is limited from 

mid-fall throughout the winter, temperatures generally don’t rise significantly during the 

day, further contributing to the problem (National Climate Data Center, n.d.).  

Geographically, Fairbanks is located in the Alaskan interior at the confluence of 

the Tanana and Chena Rivers in the Tanana Valley. Both the city of Fairbanks and the 

town of North Pole are surrounded on three sides by hills reaching as high as 2,000 feet 
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above sea level (National Climate Data Center, n. d.). This geography causes severe 

temperature inversions during the cold season. These temperature inversions are very 

effective at trapping air particulates in the very cold air at breathing level during the cold 

season and further contribute significantly to the PM2.5 levels during cold snaps. 

The more densely populated areas of downtown Fairbanks, and the town of North Pole in 

particular, experience the highest levels of cold season PM2.5 spikes (area hot spots). 

PM2.5 levels above the NAAQS of 35 micrograms/m3/24 hours in these hot spot areas 

during the cold season are due primarily to the residential burning of wood and other 

biomass for heat (Huff, 2017). Gaining a better understanding of cancer incidences that 

may be influenced by frequent elevated PM2.5 levels that are due to cold season biomass 

burning and its contributions to severe increases in PM2.5 levels, together with PM2.5 

exposure due to summer wildfires, could contribute to understanding the impact of PM2.5 

exposure on all types of cancers. However, the major confounders to this study include 

tobacco smoking and the latency period between exposure and cancer diagnoses. These 

are addressed in the section presenting limitations to this study.  

It is expected that consequent to having a better understanding of potential 

adverse health effects of breathing high levels of PM2.5, and particularly PM2.5 comprised 

primarily of wood smoke particulates, policies that regulate the residential burning of 

wood would be enhanced, voluntarily abided by residents, yet enforced if needed. Policy 

development, adherence to policy, and enforcement of policy, will most likely occur if 

the population is educated about the health dangers from breathing high levels of PM2.5. 
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The findings of this study were able to contribute to the limited number of 

previously published studies that have considered to what extent inhaling high levels of 

PM2.5 have on the incidence of cancers beyond lung cancers. The literature review in this 

section has illustrated how research is revealing similarities in the etiology of many 

adverse health effects from PM2.5. However, to date, a significant gap remains in the 

effect of PM2.5 on non-lung cancers, particularly in high latitude, cold climate areas such 

as the FNSB. 

Purpose of Study 

This study’s purpose was to determine if there is a significant difference in the 

incidence of both lung cancer and all type cancer incidences in people living within the 

FNSB area PM2.5 hot spots compared to those living in the FNSB areas that are non-hot 

spots. 

Research Questions and Hypotheses 

RQ1: Is there a significant difference in the incidence of all cancer types other 

than lung cancer in people living within the FNSB area PM2.5 hot spots compared 

to those living in FNSB areas that are non-hot spots? 

H01: There is no significant difference in the incidence of all cancer types 

other than lung cancer in people living within the FNSB area PM2.5 hot spots 

compared to those living in FNSB areas that are non-hot spots.  

Ha1: There is a significant difference in the incidence of all cancer types other 

than lung cancer in people living within the FNSB area PM2.5 hot spots 

compared to those living in FNSB that are non-hot spots.  
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RQ2: Is there a significant difference in the incidence of lung cancer in people 

living within the FNSB area PM2.5 hot spots compared to those living in FNSB 

areas that are non-hot spots?  

H02: There is no significant difference in the incidence of lung cancer in 

people living within the FNSB area PM2.5 hot spots compared to those living 

in FNSB areas that are non-hot spots. 

Ha2: There is a significant difference in the incidence of lung cancer in people 

living within the FNSB area PM2.5 hot spots compared to those living in 

FNSB areas that are non-hot spots. 

RQ2 served as a validation study question because PM2.5 is already recognized as 

a cause of lung cancer. (Huang, et al., 2017; Poirier, et al., 2017; Wei et al., 2017). 

Theoretical Foundation of the Study 

The theory on which this study was based was Bandura’s social cognitive theory 

(SCT; 1986). The SCT began in the 1960s as the social learning theory. In 1986 it was 

developed into the current SCT. The primary concept of the SCT is reciprocal 

determinism in which there is a reciprocal and dynamic interaction between human 

cognition, the environment, and human behavior (in terms of a person’s response to 

stimuli in order to achieve goals). The SCT takes into consideration many aspects of the 

social ecological model in addressing individual behavior changes (Bandura, 1986).  

Application of the SCT continues to effect positive cultural changes globally as it 

addresses the influences on human agency, including self-motivation and individual 

cognition, which, in this case, is knowledge of the carcinogenesis of PM2.5 and 
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consequent behavioral changes such as voluntary decrease or elimination of biomass 

burning. The interaction of human agency along with the influences of 

socioenvironmental factors can lead to significant positive individual and social changes. 

(Bandura, 2018). The SCT framework aligned well with this study because it addressed 

physical environmental factors over which people can choose to exercise control in order 

to improve the health of everyone in the community. Increased public knowledge of the 

negative impact of PM2.5 on health in the FNSB could contribute significantly to 

decreasing cold season PM2.5 emissions by residents. 

The SCT has been widely used in public health research. A study by Heydari, 

Dashtgard, and Moghadam (2014) examined implementation of the SCT on research in 

patients with addictions who were referred to the addiction-quitting clinic at the Imam 

Reza Hospital. The results of the study revealed that patients in the experimental (test) 

group were significantly more successful than those in the control group in quitting their 

addiction, and that patients’ self-efficacy scores in the experimental group were improved 

using the SCT approach. 

Other theoretical frameworks that I considered included the social ecological 

model and the integrated behavioral model. The social ecological model is closely related 

to the SCT. However, the social ecological model is more appropriate for qualitative 

studies such as the study by Salihu, Wilson, King, Marty, & Whiteman (2015). They used 

this model as the framework to overcome challenges in attaining and maintaining high 

rates for recruitment of participants as well as high rates of retaining participants for their 

study of minorities and the effect of folic acid on fetal brain size in pregnant smokers. 
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The integrated behavioral model, which considers constructs from the theory of 

reasoned action and is also referred to as the theory of planned behavior, was also a 

possible theoretical basis for this study. However, this model considers a person’s attitude 

toward perceived norms and the ultimate pressure on individuals as a major part of this 

theory. Theorists believe that a person’s attitude comprises both cognitive and affective 

dimensions (Conner, Godin, Sheeran, & Germain 2013; French et al., 2005). The 

problem with this is that in the FNSB, perceived norms are deeply integrated into the 

culture, and it is therefore critical to educate the population about the adverse effects of 

PM2.5 on their health before significant change can occur. This is one of the reasons that 

the SCT is a strong theoretical foundation for this study. 

Nature of the Study 

This research is a retrospective, quantitative study. I used quantitative data from 

secondary data sets for the study. A quantitative methodology was most appropriate to 

this research issue, allowing an examination of the relationship between breathing high 

levels of PM2.5 as a potential causal factor for all cancer types. This type of methodology 

emphasizes objective statistical measurements using existing data. 

Engaging community partners in this study was critical. The Cancer Center at 

Fairbanks Memorial Hospital (FMH) has provided support through the provision of data 

from the tumor registry through the FMH Cancer Center. Data from cancer subjects were 

de-identified by FMH prior to my receiving the data. Additionally, only the zip codes that 

could accurately be used for the geographical distribution of subjects and for the 

determination of area hot spots in which PM2.5 spikes significantly during the cold season 
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were used for this study. The Alaska Department of Environmental Conservation’s 

Division of Air Quality provided PM2.5 data for the study. Data came from three EPA-

approved air monitors. Two of the monitors are located in downtown Fairbanks and one 

is located in North Pole. Two local organizations, Citizens for Clean Air Fairbanks and 

the Fairbanks Climate Action Coalition were also valuable resources for providing a 

historical, political, and cultural perspective to the air pollution issue in the FNSB. 

The dependent variable was incidence of all cancer types other than lung cancers. 

Using all cancer types (collectively) rather than individual cancer types provided for a 

more than adequate number of subjects for the study. Because the primary focus of this 

study was to consider the extent to which exposure to high levels of PM2.5 influences all-

type cancer incidences in the FNSB area, and the population in this area is relatively 

small at slightly less than 100,000 (U.S. Census Bureau, 2017), I did not break down data 

into specific types of cancers beyond lung cancer. The independent variable for this study 

was the FNSB PM2.5 levels, which included both the cold season PM2.5 levels (> 

35micrograms/m3/24 hours during the months November through March in area Zip 

Codes that represent hot spots and are areas with significantly increased cold season 

PM2.5 levels), along with area Zip Codes that are outside of the hot spot Zip Codes (non-

hot spot areas) in which the PM2.5 levels are generally less than the 35 micrograms/m3/24 

hours. The non-PM2.5 hot spots were used as controls. In addition, it must be noted that 

non cold-season PM2.5 levels are generally due to wildfires in and around the FNSB and 

also are expected to influence this study. However, wildfires in the FNSB are varied in 
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geographical locations, so therefore, the inclusion of specific wildfires and their potential 

effects on PM2.5 levels in various Zip Codes was not included in this study. 

In order to prevent a spurious conclusion about the association between exposure 

to high levels of PM2.5 and cancers, controlling for the effects of confounders is the most 

ideal approach for quality research. A major confounder in this study was tobacco 

smoking. However, the dataset provided by the FMH Tumor Registrar only would have 

been able to provide about a two- year period of smoking data for cancer patients within 

the 10 year time frame of this study (this data was collected for a previous study). 

Because this limited data is only about 20% of the total number of study participants, I 

was unable to control for smoking as a potential confounder. Another confounder that I 

considered in this study was the latency/lag time period that exists between exposure and 

the onset of symptoms of various cancers. The latency/lag period is the time period 

between exposure to the presumed cancer-causing agent and the first signs or symptoms 

of the particular type of cancer. Latency periods are also generally related to the age of 

patients. For example, Nadler and Zurbenko (2014), reported that for acute lymphocytic 

leukemia, which is much more common in young people, the time from onset to 

diagnosis is 35.7 years with a median age at cancer onset of 8.3 years. However, for 

chronic lymphocytic leukemia, which is almost exclusively a cancer type occurring in 

older and elderly people, the time from onset to diagnosis is 2.2 years with a median age 

at cancer onset of 67.8 years. While age is an important confounder for cancer research, it 

was beyond the scope of this study to control for age associated with each individual type 

of cancer reported.  
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Data from subjects were not identified beyond the subject’s residential Zip Code, 

each subject’s specific type of cancer upon initial diagnosis, and the year of diagnosis 

(which was included to confirm that this study only recognized data between January 1, 

2008, and December 31, 2017). Accessibility to the data was established by the FMH 

Cancer Center Committee. The stipulation was that before I have access to the patient 

data, I receive necessary Institutional Review Board (IRB) approval from Walden 

University, and that once my study is completed, that I give a presentation with the 

results from this study to the FMH Cancer Committee. IRB approval from Walden 

University was granted on 3/9/2020. The IRB approval number for this study was 03-09-

20-0621354 

Literature Review 

Introduction 

It is important to recognize that knowledge of the adverse health effects of 

breathing high levels of PM2.5 is evolving. This literature review will confirm that studies 

have proven a link between inhaling high levels of PM2.5 to lung cancer. Other studies 

linking breast cancer to PM2.5 exposure have also been reported (Andersen et al., 2017; 

Parikh & Wei, 2016; Wong et al., 2016). In addition, there have been few studies that 

suggested the possible link between PM2.5 and other non-lung cancers beyond breast 

cancer (Andersen et al., 2018; Wong et al., 2016; Yeh et al., 2017). However there has 

yet to be a study linking non-lung cancers to high PM2.5 levels in a high latitude 

community that repetitively experiences extreme cold during a long cold season and 

where the burning of wood is a common source of heat. Thus, this literature review 
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included studies that have specifically linked wood smoke as the primary source of PM2.5 

to cancers as well as other adverse outcomes in human health. 

Wood smoke emits particularly hazardous PM2.5, including carcinogens that are 

carried on the PM2.5, and it is increasingly suspect in significantly contributing to adverse 

health effects, including cancers. The specific carcinogens that have been identified on 

PM2.5 include the following: hydrocarbons (PAHs, benzene, styrene, 1, 3 butadiene); 

oxygenated organics (aldehydes such as formaldehyde and acrolein, and phenols), and 

other possibly carcinogenic agents such as quinones and semiquinones (Loomis et al., 

2013). Because high levels of PM2.5 become trapped at breathing level during severe 

temperature inversions that occur during the cold season, the particulates and the toxins 

that they carry pose a serious health threat (Krapf et al., 2017; Marabini et al., 2017; 

Montes de Oca et al., 2017; Oudin, Segersson, Adolfsson & Forsberg, 2018; Weichenthal 

et al., 2017). Fine particulates emitted from wood smoke also pose a particular threat to 

the unborn and to children (Lai et al. 2017; Rodriguez-Villamizar, Magico, Osornio-

Vargas & Rowe, 2015). The residential burning of wood in the FNSB area is a common 

practice and is estimated to contribute to between 60%-90% of the PM2.5 spikes in the 

FNSB area during the cold season (Huff, 2017). PM2.5, which is primarily due to wood 

smoke, carries a number of known carcinogens, and PM2.5 from summer wildfires also 

poses a serious health concern in the FNSB. 

The major health conditions addressed in this literature review included the 

following: lung cancer, cancer types other than lung cancer, adverse cardiovascular 

events, adverse respiratory events other than lung cancer in adults and children, adverse 
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cerebrovascular events, and adverse outcomes for the fetus and during pregnancy. It is 

important to introduce all potential adverse physiological effects of PM2.5 because many 

of the mechanisms of harm have common characteristics to cancer. Fine particulates have 

the ability to induce reactive oxygen species mediated oxidative stress within cells, which 

can alter intracellular proteins and lipids, altering cellular permeability. Reactive oxygen 

species is also involved in signaling pathways that regulate gene expression of substances 

that are related to inflammation, apoptosis, and fibrosis (Cachon et al., 2014). Fine 

particulates also contain PAHs and metals that can induce oxidative stress and are 

considered to be strong carcinogenic and mutagenic agents that may increase cancer 

frequency in humans (Falcon-Rodriguez, Osornio-Vargas, Sada-Ovalle, Segura-Medina, 

2016). A brief history of PM2.5 and its effects on disease is also presented in the literature 

review. 

Because a quality literature review should provide evidence of research into other 

adverse health effects from exposure to PM2.5 resulting from mechanisms similar to those 

that initiate cancer, as previously explained, in this section I also review select studies 

that have confirmed the serious cardiovascular, cerebrovascular, and respiratory effects of 

inhaling high levels of ambient PM2.5. It is important to illustrate that PM2.5 induces 

similar physiological and immunological mechanisms that occur in triggering cancers as 

well as other adverse effects on the cardiovascular system (particularly the heart 

endothelium and arterial inflammation), the brain, the respiratory system, and other 

systems of the body, predominantly with regard to inflammation (Li, Zhou, & Zhang, 

2018; Lin et al., 2016).  
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Literature Search Strategy 

For this literature review, a number of databases were used in the discovery of 

articles pertinent to the topic. They included Medline Plus, CINHAL, Pubmed, Semantic 

Scholar, Google Scholar, and Directory of Open Access Journals. 

The strategy for literature discovery included searching for peer-reviewed articles 

published less than seven years previous with the exception of articles providing an 

historical perspective on the PM2.5 issue as it relates to disease and those studies cited in 

more recent articles used for this research. Select articles must address one or more of the 

following: impact of PM2.5 on human health; sources of PM2.5 with an emphasis on cold 

season, high latitude air pollution; wood smoke fine particulates and their components; 

and the various major health conditions that can result in increased morbidity and 

premature mortality in the population, with an emphasis on cancer. Articles must be 

published in English by the original author(s) or translated into English. 

Medical Subjects Headings (MeSH) terms used for the literature review included 

the following: ambient PM2.5; cold season PM2.5; cold season air pollution; wood smoke; 

ambient air fine particulates; PM2.5 and cancer, PM2.5 and lung cancer, cardiovascular 

diseases, cerebrovascular diseases, respiratory conditions, and adverse pregnancy and 

fetal outcomes; PM2.5 and children; PM2.5 mortality and morbidity rates; EPA. 

History of Air Particulate Matter 

Air particulate matter was first observed experimentally, in the early18th century 

(Ramazzini & Porzio, 1703). Ramazzini and Porzio observed air particulates with the use 

of a primitive optical microscope and were able to relate particle counts to a number of 
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different respiratory conditions in people from 52 different occupations. However, it was 

not until 1963 that the Clean Air Act enabled the establishment of standards for 

environmental air pollution control in the United States. In 1970, the Clean Air Act 

Extension allowed for the creation of the EPA and directed the EPA to launch the 

NAAQS. The indicator for particulate matter at that time was total suspended 

particulates. In 1977 another Clean Air Act Amendment mandated that the EPA review 

and make necessary revisions to the NAAQS every 5 years based on the most recent 

scientific evidence. In 1987, the total suspended particulates was replaced with an 

indicator that took into account air particle’s aerodynamic equivalent diameter less than 

or equal to 10 microns (PM10). In 1997 another indicator for NAAQS was incorporated to 

account for particulate matter with an aerodynamic equivalent diameter less than or equal 

to 2.5 microns (PM2.5; EPA, n.d.).  

An important historical example of the dramatic effects of severe air pollution is 

from 1952. While air pollution in urban environments had long been considered a public 

health threat, the dense smog covering London in December, 1952, brought heightened 

awareness globally to the consequences of breathing air that was extremely thick with 

particulates due primarily to coal burning. The serious air pollution event lasted 5 days 

and mortalities from this ambient air disaster ended up being close to 12,000 people (Bell 

& Davis, 2001). Studies from this naturally occurring event continue today. For example, 

Bharadwaj, Zivin, Mullins, and Neidell (2016) studied the long-term effects of exposure 

to high levels of air pollution early in life with an emphasis of the development of asthma 

later in life.  
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PM2.5 and Effects on Lung Cancers 

Lung cancer is known to be the world-wide leading cause of deaths from cancers 

in men and women (Horn, Pao, & Johnson, 2012) and in 2012 alone was responsible for 

approximately 1.59 million deaths worldwide (International Agency for Research on 

Cancer, 2012). While inhalation of tobacco smoke is the leading cause of lung cancer, 

inhalation of particulates from the incomplete combustion of wood or coal also induces 

lung cancer (Reid et al. 2012). 

It has been established from numerous studies that inhaling high levels of PM2.5 is 

a risk factor for lung cancer. In 2013, WHO’s International Agency for Research on 

Cancer  classified PM2.5 in air pollution as a group 1 lung carcinogen. A study by 

Harrison et al., (2004) looked at data from the American Cancer Society (ACS) study that 

compared PM2.5 levels containing several known chemical carcinogens with lung cancer 

incidence between 1979 and 1983 and between 1999 and 2000 and found a positive 

correlation between PM2.5 levels and lung cancer. This was one of the earlier studies 

linking PM2.5 to cancer, but only to lung cancer. Further studies on the effects of PM2.5 on 

lung cancer incidence successfully built on this and other early studies on the topic.  

Huang et al. (2017) conducted a meta-analysis that found a relationship between 

PM2.5 exposure and incidence of lung cancer and lung cancer mortality. There were 17 

studies meeting the author’s criteria for inclusion in the analysis. An interesting aspect to 

the findings from this study was regarding lung cancer mortalities in developing countries 

compared to developed countries. Mortality estimates in developed countries was 1.14 

(95%CI: 1.06, 1.23) compared to developing countries (1.03 [95%CI: 1.00, 1.07]). 
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However lung cancer incidences that were associated with PM2.5 exposure were highest 

in Asia (1.09 [95% CI: 1.03, 1.15]), compared to North America (1.06 [95% CI: 1.01, 

1.11]), and then Europe (1.03 [95% CI: 0.61, 1.75]). Other studies suggest that lung 

cancer mortalities associated with PM2.5 are lower in developed countries compared to 

lung cancer mortality levels in developing countries. (Huang et al., 2017).  

Fu et al. (2015) explored the relationship between PM2.5 and lung cancer 

mortalities in China using a geographical weighted regression model. They compared the 

number of cancer mortalities based on long-term exposure to fine particulates. They 

compared the number of deaths from lung cancer, according to both the WHO air quality 

guidelines and the ACS. The WHO air quality guidelines found that over a 3 to 4 year 

period there were between 531,036 and 532,004 deaths from lung cancer associated with 

PM2.5. The ACS found that the number of PM2.5 related lung cancer deaths was 614,860. 

This study concluded that there is a positive relationship between PM2.5 and lung cancer 

mortalities in China. This study however only considered long-term exposure. While this 

research contributed to the limited studies published on the impact of PM2.5 exposure 

over a 3 to 4 year period and lung cancer deaths in China, the authors were only able to 

estimate lung cancer mortality rates from the data. Therefore, it should be noted that this 

could lead to bias when interpreting the relationship between lung cancer mortalities and 

exposure to high levels of PM2.5 over a long term. 

It is estimated that there are over 400,000 premature deaths each year in the 

European Union due to PM2.5 exposure, with Poland having the greatest concentration of 

PM2.5 among all countries in the EU. A study between 2007-2011 found that Poland had 
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unusually high death rates due to lung cancer and cardiopulmonary diseases, both 

attributable to elevated PM2.5 in eleven of Poland’s largest cities (Badyda, Grellier, & 

Dabrowiecki, 2017). 

The effect of biomass smoke on health has been reported in a number of studies 

reviewed by Rajendra, Shukla, Gautam, Hansbro, and O’Toole (2018). For example, for 

lung cancer, a meta-analysis considering 28 epidemiological investigations found that 

there is a much greater risk of developing lung cancer in women (OR 1.81, 95% CI, 1.54-

2.2; p = .034) compared to men (OR 1.16 95% CI 0.79-1.69). The conclusion was that 

this is likely due to women having smaller lung sizes than men, so women’s exposure to 

the same level of PM2.5 would have a greater impact than it would in men, and that 

women might have been exposed to the smoke for greater periods of time. 

PAHs have been observed to be released when biomass fuel is incompletely 

combusted. PAHs can cause the formation of active carcinogens such as radical cations, 

diol-epoxides, and o-quinones, which ultimately result in mutations in DNA, 

tumorigenesis, and gene expression alterations. PAHs can also alter tumor-suppressor 

genes such as p53. PAHs have been shown to increase the susceptibility to developing 

cancer in all age groups, ethnicities, and genders. Consequently, PAHs are considered 

important carcinogens found in biomass smoke and inhaling PAHs is known to increase 

lung cancer risk (Eom et al., 2013; Osgood et al., 2013; Tsay et al., 2013). 

Wei et al. (2017) sought to explain the role that PM2.5 plays in lung cancer 

etiology. They described the carcinogenic means of PM2.5 by considering properties of 

cancer stem cells and epithelial-mesenchymal cells in non-small cell lung cancer cells. 
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They found that PM2.5 exposure, both acute and chronic, increased the migration and 

invasion of cancer cells. The study also implicated microRNAs as potential biomarkers 

for predicting the carcinogenicity of PM2.5. 

Hystad, Demers, Johnson, Carpiano, and Brauer (2013), considered PM2.5 

exposure over a 3 year period and found that lung cancer incidence, for each 10 

microgram/m3 increase in PM2.5 concentration in ambient air, the odds ratio was 1.29 (CI, 

95% [0.95-1.76]). They also included covariates such as smoking in their model. 

Additionally, the study by Turner, Krewski, Pope, Chen, Gapstur, and Thun (2011) that 

showed that lung cancer mortality risk increases by 8% for every 10 microgram/m3 

increase in the concentration of PM2.5. This association was much stronger amongst 

people who had never smoked (never smokers). In never smokers lung cancer mortality 

risk increased by 15%-27% for each 10 microgram/m3 increase in exposure to PM2.5.  

Li et al. (2018), illustrate a number of epidemiological studies that illustrate the 

pathogenesis of chronic inflammatory diseases of the respiratory system, as well as lung 

cancer, when exposed to high levels of PM2.5. There are many diseases that contribute to 

early mortalities from exposure to PM2.5, including strokes (40.3%), ischemic heart 

disease (26.8%), lung cancer (23.9%), and chronic obstructive pulmonary disease 

(COPD; 18.7%; Song et al., 2017).  

There are a number of physiological mechanisms that are common to all of these 

diseases. PM2.5 has the capability of using micro RNAs to activate oncogenes, which can 

lead to lung cancer. Micro RNAs are tiny non-coding RNA strands that help to regulate 

post-transcription gene expression (Fabian, et al., 2010). Li et al. (2018), point out 
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however, that just how lung cancer is induced, following the introduction of PM2.5 into 

cells is not yet clear, although there are other studies into the specific role of micro RNAs 

in inducing cancer. p53 is a gene that regulates cell growth and proliferation, damage 

repair, and cell apoptosis. PM2.5 can cause mutations in p53 that can lead to non-small 

cell lung cancer (Deben et al., 2017). PM2.5 can also increase the release of 

immunological cytokines and cells associated with inflammation. Inflammatory 

cytokines are linked to inflammatory diseases of the respiratory system as well as the 

proliferation of lung tumor cells (Vendramini-Costa, & Carvalho, 2012). When PM2.5 

stimulates inflammation, it also causes oxidative stress responses that are linked to a 

number of respiratory diseases, including COPD, as well as lung cancer (Rahman & 

Adcock, 2006). 

Cao, Rui, and Liang (2018) studied the relationship between ambient PM2.5 and 

lung cancer in China based on a geographical model. They studied the number of lung 

cancer deaths over a 5 year period from 2004-2008 in all provinces in China. They found 

a statistically significant relationship between ambient PM2.5 levels and lung cancer 

mortality (r = 0.0052, p = 0.036). In addition, lung cancer morbidities increased with 

increasingly longer PM2.5 exposure times. The study also showed that lung cancer 

mortalities rose by 13.73% over the 5-year period. In 2004, the average PM2.5 

concentration was 37.48 micrograms/m3 and mortality rates from lung cancer were 

0.27/million. In 2008 the average PM2.5 was 41.36 micrograms/m3 and mortality rates 

from lung cancer were 0.53/million, indicating a rising trend in rates of lung cancer 

mortalities in China. The study concluded that in 2004, PM2.5 was responsible for 23.23% 
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of lung cancer deaths, and in 2008, PM2.5 was responsible for 26.42% of deaths due to 

lung cancer in China. 

The studies that are summarized above indicate that exposure to increased levels 

of PM2.5 can be definitively linked to lung cancer. However, the question remains 

whether or not exposure to higher levels of PM2.5 can be linked to cancers other than lung 

cancer.  

PM2.5 and Cancer Types Other Than Lung Cancer 

There have been relatively few studies on the relationship between exposure to 

high levels of PM2.5 and cancers other than lung cancers. Turner et al. (2017) conducted a 

large prospective study using data from the Cancer Prevention Study II (CPS-II) to 

determine whether there is an association between ambient fine particulate air pollution 

and deaths due to non-lung cancers in general. Over 600,000 U.S. adults participated in 

the study. The participants were followed from 1982-2004. The CPS-II team studied 

cancer mortalities from 29 sites where participants had long-term exposure where they 

lived, to PM2.5, ozone (O3), and nitrogen dioxide (NO2). There were over 43,000 deaths 

from non-lung cancers. Ambient PM2.5 was associated with deaths due to bladder and 

kidney cancer. For each 4.4 microgram/m3 increase in PM2.5 there was a 13% increase in 

bladder cancer and a 14% increase in kidney cancer. Colorectal cancer mortalities were 

associated with NO2 exposure. Mortalities from other types of non-lung cancers were not 

statistically significant in this study. The authors concluded that ambient fine particulate 

air pollution was not associated with mortalities from the majority of non-lung cancers, 

but that there needs to be further studies to investigate a possible association between air 
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pollution due to PM2.5 and colorectal, bladder, and kidney cancer mortalities. Again, my 

study seeks to contribute to the impact of PM2.5 on cancers other than lung cancers, and 

to contribute to this area of research that is lacking knowledge on this important subject. 

In one of the few studies published on the relationship between PM2.5 and its link 

to cancers beyond lung cancer, Wong et al. (2016), found strong associations between 

PM2.5 and the upper gastrointestinal tract, and digestive accessory organs, as well as 

hematopoietic and lymphatic organs and the breast. The authors looked at the long-term 

effects of PM2.5 exposure on all type cancers in 66,820 Hong Kong residents who were 

enrolled in the study from 1998-2001, and followed up for mortality outcomes due to all 

type cancers until 2011. They used satellite data and fixed-site monitors with sampler 

inlets that met the electronic code of federal regulations (e-CFR) for neighborhood 

special scale PM2.5 sites. For those sites the sampler inlet probe or at minimum 80% of 

the monitoring path is required to be positioned between 2 and 15 meters above ground to 

meet vertical location standards. For microscale PM2.5 sites, the inlets must be between 2 

and 7 meters above ground for vertical location standards. For horizontal locations, if 

either the inlet probe or a significant part of the monitoring pathway is near a wall, such 

as the side of a building, it must be on the windward side, relative to the direction of the 

prevailing winds during the season in which the potential for highest concentration of 

PM2.5 occurs (Cornell Law School, n. d.; EPA, 2008). In this study, the Cox regression 

model was used to determine the HR of cancer mortality for each 10 microgram/m3 

increase in PM2.5. PM2.5 was linked to an increase in risk of mortality for all cancers (HR 

1.22[95% CI: 1.11, 1.34]); for upper digestive tract cancers (1.42 [95% CI: 1.06, 1.89]), 
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for accessory organs of the digestive tract in male participants (1.135 [95% CI: 1.06, 

1.71]), for female breast cancer (1.80 [95% CI: 1.26, 2.55]); and for lung cancer in males 

(1.36 [95% CI: 1.05, 1.77]). This study illustrates the increased risk of cancers other than 

lung due to PM2.5 exposure and further substantiates the need for my study in the FNSB 

region of the impact of PM2.5 on all type cancers. 

Parikh and Wei (2016) examined the relationship between both PM2.5 and PAHs 

and incidence of breast cancer in women living in rural versus metro Georgia (Atlanta). 

They used data from the EPA, the End Results Program, and epidemiological and 

surveillance studies to determine whether PM2.5 and PAHs increased breast cancer in 

women and if there was a difference in the city versus the rural areas. Both PM2.5 and 

PAHs increased breast cancer incidence in all women, but in Atlanta there was a 

considerably higher incidence in breast cancer compared to rural areas in Georgia (132.6 

vs 113.7 per 100,000) respectively, from 1992-2011. In metro Atlanta, breast cancers 

associated with PM2.5 emissions were (adjusted beta = 2.964 [95% CI: 0.468, 5.459] p = 

0.023), and for emissions of PAHs (adjusted beta = 0.568 [95% CI: 0.209, 0.927] p = 

0.004). They concluded that living in particular metro areas have an impact on breast 

cancer incidence in women due to PM2.5 and PAHs exposure. The results also indicate 

that PM2.5 exposure poses more of a threat to developing breast cancer than exposure to 

PAHs. This particular study is significant to my proposed study because the PM2.5 hot 

spots are located in the urban-like areas of the FNSB. The outlying areas/zip codes (non-

hot spots) are all rural. Therefore, the probability of seeing an increase in breast cancers 
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in residents living in the FNSB hot spots is likely greater than the probability of seeing an 

increase in breast cancer in residents living in the FNSB non-hot spot areas. 

A study by Yeh et al. (2017) found a relationship between air pollution and 

bladder cancer in males living in the north of Taiwan, and women living in the majority 

of townships in Taiwan. According to the authors, this was the first evidence-based study 

that linked PM2.5 exposure to bladder cancer. The study was based on data that was 

obtained from a geographically available 13-year mortality rate in Taiwan, due to bladder 

cancer linked to PM2.5 air pollution. There has been intensive regulatory attention in 

PM2.5 in Taiwan since 2000. The mortality rate for bladder cancer in males slowly 

declined from 3.66 to 3.01 per 100,000 between 2000 and 2012. In females the mortality 

rate for bladder cancer decreased from 1.69 to 1.49 per 100,000 between 2000 and 2012. 

Reductions such as these are examples of what may occur following the research that I 

am proposing in the FNSB region. This study illustrates how intensive regulation can 

lower cancer incidents due to PM2.5 exposure, with the ultimate goal being to reduce 

mortalities and morbidities related to exposure to high levels of PM2.5 in those areas of 

the world where this is of great concern. 

The possibility that pancreatic cancer might be associated with fine particulate 

matter in high concentrations in ambient air, was addressed by Wang et al. (2018), in a 

study that was conducted using data from a China database from 1991-2009, as part of 

the National Disease Surveillance Point System. In this study the relative risks of death 

from pancreatic cancer due to a 10 microgram/m3 increase in PM2.5 were 1.16 (95% CI: 

1.13, 1.20) for the entire population, 1.21 (1.17, 1.25) for ages 65-84, 1.08 (1.05, 1.13) 
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for ages 40-64, 1.19 (1.14, 1.24) for females, 1.14 (1.10, 1.18) for males, 1.29 (1.22, 

1.37) for the rural population, and 1.23 (1.16, 1.30) for the urban population. The authors 

were able to conclude from this study that ambient PM2.5 pollution has the potential to 

increase the risk of death from pancreatic cancer due to exposure to PM2.5. The results of 

this study further highlight how ubiquitous the threat of developing cancer from PM2.5 

exposure is. Therefore, control of PM2.5 pollution is most imperative, as is the need for 

further studies on the effects of exposure to high levels of PM2.5 on all non-lung cancers. 

 My study provided additional knowledge in the evolving research on PM2.5 

exposure and incidents of cancers other than lung cancers, and was able to contribute to 

existing (yet weak) public education programs regarding this threat to the health of 

Fairbanks residents and visitors. 

PM2.5 and Adverse Respiratory Events Other Than Lung Cancer 

Adverse respiratory events primarily seen in adults. Adverse respiratory 

events in susceptible individuals are generally expected when breathing polluted air. 

However, polluted air, particularly air that is high in PM2.5, is increasingly being 

recognized as contributing to a number of different respiratory conditions such as asthma 

(Nachman & Parker, 2012), and COPD, and pneumonia (Pun et al., 2017). Additionally, 

when the primary source of PM2.5 is from the burning of biomass, such as wood and 

animal dung, risk of adverse respiratory conditions, including COPD, are significantly 

higher than when fine particulates come from combustion of other sources such as 

gasoline and diesel. For example, a study conducted by da Silva, Saldiva, Saldiva, and 

Dolhnikoff (2012), there was an increase in the odds ratio (OR) for dyspnea, wheezing, 
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and cough in adults exposed to outdoor biomass (OR= 1.80, 1.78, 1.78, respectively) 

compared to gasoline exposure.  

According to the WHO (2018), there are nearly 4 million premature deaths 

globally, due to health issues and illnesses that develop from exposure to residential 

biomass smoke. It is estimated that about 55% of those deaths are due to diseases of the 

respiratory system, which include lung cancer, COPD, and pneumonia. Tobacco Smoking 

is a well-established risk factor for developing serious lung diseases. Globally, there are 

about 1.1 billion tobacco smokers, however close to 3 billion individuals are exposed to 

smoke from biomass combustion. In epidemiological research conducted in Europe, Asia, 

Africa, and South America, it has been consistently demonstrated that exposure to smoke 

from biomass combustion is associated with serious lung diseases, even after tobacco 

smoking, as a confounder, has been controlled in the studies (Rajendra et al., 2018). 

Pun et al. (2017) considered cardiovascular and respiratory events, and cancer in 

older adults in the United States due to exposure to PM2.5. This was a very large study of 

the Medicare population with a cohort of 18.9 million. Between 2000 and 2008 there 

were 4.2 million fatalities in the contiguous United States associated with PM 2.5 

exposure. The study revealed that there were statistically significant positive associations 

of PM2.5 respiratory conditions, COPD, and pneumonia deaths associated with PM2.5 

exposures per 10 microgram/m3 increases, with the risk ratios varying between 1.10 to 

1.24. They also found that lung cancer and cardiovascular mortality increases with longer 

PM2.5 exposure. A 60 month moving average of exposure to PM2.5 had a relative risk 

(risk ratio) of 1.33 for lung cancer (95% CI: 1.24, 1.40), compared to a relative risk of 
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1.13 (95%CI: 1.11, 1.15) for a 12 month moving average of exposure to PM2.5. While this 

study provides evidence that long-term exposure to PM2.5 can significantly increase 

mortalities from lung cancer, cardiovascular disease, and respiratory disease in patients 

65 years of age and older, it is not conclusive with regard to lung cancer mortalities. This 

is due to a number of European and United States cohort studies in which null 

associations between PM2.5 and lung cancer, have been described (Carey et al., 2013; 

Cesaroni et al., 2013; Lipsett et al., 2011). 

In a meta-analysis conducted by Hu, Zhou, Tian, Yao, Li, Li, … and Ran (2010), 

a strong association was found between exposure to biomass smoke and development of 

COPD, compared to those who were unexposed to biomass smoke. Their study revealed 

that individuals who are exposed to smoke particulates from biomass have an OR of 2.44 

(CI: 1.9-3.33) for developing COPD, relative to individuals unexposed to biomass smoke. 

A study conducted by Krall et al. (2017) considered emergency room admissions 

to determine associations between specific sources of PM2.5, such as wood smoke, 

vehicle gasoline, vehicle diesel, coal, metals, and dust, and respiratory disease in four 

cities in the United States. Coal and metal sources varied significantly across the four 

cities. They concluded that PM2.5 from gasoline and diesel combustion had less impact on 

health than did PM2.5 burning of biomass, and there was also limited evidence that dust, 

as a source of PM2.5, was associated with respiratory disease. However, the study made 

clear that biomass burning such as wood was most intensely associated with diseases of 

the respiratory system and was associated with increases in emergency room visits. This 
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research may contribute significantly to understanding potential dangers of PM2.5 coming 

from the burning of wood. 

Xing et al. (2016) conducted a study focusing on the epidemiological and 

experimental evidence of the impact that PM2.5 has on the respiratory system, looking at 

evidence from areas around the world. They summarized the established mechanisms of 

how PM2.5 causes damage to lung tissue, confirming the results from multiple studies 

previously discussed in this literature review. They illustrated how fine particulates are 

linked to a wide variety of lung conditions including asthma, multiple cardiopulmonary 

abnormalities, lung cancer, pneumonia, and others. Finally, their detailed guidelines to 

limit ones exposure to high levels of PM2.5 during serious smog alerts, provide both 

scientists and the lay community, practical ways to protect their own health as well as 

those populations at greater risk. 

Using cell culture models from donors, Krapf et al. (2017) were able to illustrate 

the adverse impact on respiratory tract epithelium that combustion of different types of 

wood can cause. The cell models were clearly differentiated as normal human epithelium 

from bronchi, and epithelium from diseased bronchi such as those with asthma and cystic 

fibrosis. They looked at both atmospherically aged wood, and primary wood sources in 

hopes of identifying significant chemical fractions in the different particulates. Cell death 

and inflammatory processes were significantly increased in all cell models except for the 

asthma models. The authors were unable to identify a particular chemical fraction from 

the particles as a primary cause, but both the aged and primary wood sources caused 

bronchial epithelial cell disease.  
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Another study that considered the exposure to PM2.5 due to both wood smoke and 

traffic pollution in residents living in Vancouver, Canada over a 5 year period 

(n=467,994) and who did not exhibit a baseline COPD, found that both exposure to wood 

smoke and traffic pollution causes an increased risk of developing COPD. However the 

authors of the study found that wood smoke PM2.5 exposure more than doubled the 

number of hospitalizations due to COPD than did traffic-related PM2.5 exposure (CI: 

95%). There was a 15% (2-29%) increase in hospitalizations due to COPD attributed to 

pollution from woodsmoke compared to a 6% (2-10%) increase in traffic carbon 

emissions (Gan, FitzGerald, Carlsten, Sadatsafavi & Brauer, 2013). 

Adverse respiratory events other than lung cancer seen primarily in 

children. Asthma in children has long been a concern, but the underlying cause is not yet 

fully understood. Using emergency room visits as a way to determine the extent of acute 

exposure to high levels of ambient PM2.5, a study conducted by Fan, Li, Fan, Bai and 

Yang (2016), was able to conclusively determine that such exposure significantly 

increases emergency room visits due to acute asthma symptoms. The study concluded 

that children are at a higher risk than adults for such emergencies. Children showed an 

increased risk of emergency room visits at 3.6%/10 microgram/m3 increase in PM2.5 air 

concentrations (95% CI 1.8, 5.3%) where the adult population showed an increased risk 

of 1.7%/10 microgram/m3 increase in PM2.5 (95% CI 0.5, 6.9%).  

A Canadian study by Rodriguez-Villamizar et al. (2015) on the impact that 

ambient air pollution has on the health of children, considered twenty seven 

heterogeneous studies with regard to air pollution exposure (particularly PM2.5), 
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population, study design, and respiratory consequences. They evaluated epidemiological 

research between 2004 and 2014 and found that children are exceptionally susceptible to 

disease when exposed to air pollution, because their immune systems are immature and 

there is significant potential for developmental disturbances. Children also exhibit a 

higher volume of air exchange in relation to their body mass index as compared to adults.  

Bateson and Schwartz (2008) also considered the effects of air particulates on 

children. Since lungs in children of all ages are still developing, air pollution has the 

potential to cause serious respiratory harm. Furthermore, children, inhale relatively more 

air pollutants than do adults. This is because of their smaller size, their minute volume of 

respiration (pulse/minute X tidal volume) per body weight unit is higher than adults, as is 

their basal metabolic rate. Furthermore, people in the United States tend to spend more 

time indoors compared to people in other countries (Klepeis et al., 2001). Consequently, 

the level of indoor air pollution and its components, particularly pollution due to indoor 

cooking using wood as fuel, is an increasing concern, particularly for the respiratory 

health of children. It is estimated that more than 3 million U.S. children live in homes 

that use wood stoves as a primary means of heating (Noonan, Ward, & Semmens, 2015). 

 Burning wood emits significant amounts of harmful PM2.5. Using wood stoves 

results in incomplete combustion of firewood, yielding smoke particulate emissions that 

are heterogeneous, consisting of significant amounts of PM2.5, with organic compounds 

and elemental carbon such as PAHs, organic carbon, inorganic materials such as salts, 

and acids, all of which condense on the surface of the fine particulates, and since these 

particulates go deep into the alveoli and cross into the blood, they are particularly 
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harmful (Badyda et al., 2017). PM2.5 emissions increase when burning moist wood, when 

burning wood in unregulated and poorly functioning stove, and when burning certain 

types of wood (EPA, 2013). The more incomplete the combustion of the wood when 

burning, the more PM2.5 is emitted, and the more harm it can cause to human health. 

Ambient pollution from wood smoke in developed countries poses a significantly greater 

threat to childhood health than in-home wood smoke. This is based on the fact that 

correctly installed modern wood stoves that properly vent to the outside can significantly 

decrease in-home exposure to PM2.5. (EPA, 2013). Ward et al. (2012) found that up to 

80% of wintertime ambient PM2.5 in Fairbanks, Alaska comes from residential burning of 

wood.  

The above studies reflect the broad range of respiratory conditions that can be 

caused by or exacerbated by increased PM2.5 exposure. This information, together with 

increased knowledge of how PM2.5 affects other systems and potentially all types of 

cancer, is expected to significantly contribute to the efforts to decrease PM2.5 exposure in 

the FNSB region. 

PM2.5 and Cardiovascular Events 

Many studies have indicated that the heart may be susceptible to the adverse 

influences of PM2.5 and the toxic effects of exposure to PM2.5. For example, Du et al. 

(2016) explain the two established pathways, direct and indirect, that link fine 

particulates to CVD. In the direct pathway, PM2.5 crosses from the alveoli directly into 

lung capillaries and are carried to target organs such as the heart. The presence of PM2.5 

in the vascular system damages endothelium directly, through aggravation of localized 
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inflammation and oxidative stress. This can intensify plaque instability. Fine particulates 

have also been shown to have cardiotoxic effects, which can directly impact heart 

performance. The indirect pathways include cascading pulmonary inflammation and 

oxidative stress, which increases pro-inflammatory cytokines, which are linked to 

increased blood coagulation, further disrupting endothelial function. This contributes to 

atherosclerosis, arrhythmias, and myocardial damage. Additionally, particulates have 

been linked to altered autonomic balance, in favor of an increase in sympathetic tone. 

This increases adverse cardiovascular events by inducing vasoconstriction and 

hypertension. 

With the link between CVD and PM2.5 established, being able to identify 

individuals who are more at risk for CVD from long or short term exposure to PM2.5 

could benefit higher risk individuals by alerting them to their increased susceptibility to 

the adverse cardiovascular effects from PM2.5. Since there have been no recent studies 

that considered the relationship between PM2.5 and inflammatory biomarkers for the risk 

of CVD, Dabass et al. (2015) examined this relationship in a large population of adults, 

using the National Health and Nutrition Examination Survey from the 2001-2008 cycle. 

They linked data on air pollution in the contiguous United States with participant’s 

addresses from the National Health and Nutrition Examination Survey study. Considering 

the effects of both long and short term PM2.5 exposure on C-reactive protein, 

homocysteine, fibrinogen, and leukocytes would provide insight into the CVD risk from 

PM2.5 exposure in different individuals. However, no association between cardiovascular 

biomarkers and PM2.5 exposure was found, except in specific sensitive groups of 
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individuals: diabetics, smokers, and those with multiple risk factors for CVD. It would be 

interesting to conduct a similar study on the FNSB population. Being able to screen 

known sensitive groups for CV biomarkers following PM2.5 spikes during the cold season 

could alert health care providers and patients in these groups to impending adverse 

cardiovascular events. For example, the Dabass et al. (2015) study found that for each 10 

micrograms/m3 increase in PM2.5, a 39.6% increase (95% CI: 0.1%, 87.2%) in C-reactive 

protein levels occurred in diabetics. In smokers, for each 10 micrograms/m3 increase in 

PM2.5, a 2.6% increase in homocysteine levels occurred (95% CI: 0.1%, 5.1%) at lag 0. 

Burning organic biomass is a known source of ambient air PM2.5 and has been 

linked to numerous diseases in humans (Gan et al., 2013; Krapf et al., 2017; Montes de 

Oca et al., 2017; Rokoff et al., 2017). Perhaps the most significant impact of PM2.5 on the 

human body is adversely affecting heart function. The anatomy and physiology of this 

has previously been discussed in the introduction section of this paper.  

PM2.5 and Cerebrovascular Events 

The effects of PM2.5 on the brain is only beginning to be understood. 

Cerebrovascular accidents (strokes) are known to be the second leading cause of death 

and the leading cause of morbidities in the world (Leiva, Santibanez, Ibarra, Matus & 

Seguel, 2013). The Leiva et al. (2013) study found that for every 10 micrograms/m3 

increase in PM2.5, emergency admissions due to cerebrovascular accidents increased by 

1.29% (95% CI 0.552%–2.03%) in metropolitan Santiago. 

A study by Oudin et al. (2018), has found a relationship between the incidence of 

dementia (declined cognition and memory due to Alzheimer’s disease or vascular 
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dementia), and exposure to the residential burning of wood from residents living in 

Northern Sweden. There were 1806 participants in the study who were followed from the 

time they entered the study (1993-1995) until the study ended in 2010. They found a 

hazard ratio of 1.55 for each 1 microgram/m3 increase in the level of ambient PM2.5 (95% 

CI: 1.00-2.41, p=.05), suggesting more than just a casual association between PM2.5 and 

dementia. Additionally, participants in the study who lived in an area with PM2.5 due to 

burning wood were in the highest quartile, and who also had a wood stove, had an 

increased likelihood of developing Alzheimer’s disease or vascular dementia than those 

who lived in the lower three quartiles and didn’t have a wood stove (hazard ratios of 1.74, 

95%CI: 1.10-2.75, p value 0.018). 

PM2.5 and Effects on Pregnancy and the Fetus 

Stieb et al. (2016) studied the association between exposure to fine particulates 

and outcomes from pregnancy in women living near air pollution monitors in both rural 

and urban areas. This was a large Canadian study on nearly three million pregnancies and 

their outcomes, using single, live births only. Adjusting for socioeconomic status and 

individual covariates of the mother, the authors of the study found that a 10 

microgram/m3 elevation in PM2.5 over the course of the pregnancy increased the risk of 

the newborn weighing less than 5.5 pounds (low birth weight), and small for gestational 

age (odds ratio = 1.04; CI 95% 1.01, 1.07). The authors reported that there were 

variations among subgroups in this study that were based on the time period (1999-2003 

versus 2004-2008) and the mother’s place of birth. 
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The relationship between inhaling fine particulates during pregnancy and 

premature births was investigated in a study by Sun et al. (2015). The authors conducted 

a meta-analysis to summarize quantitatively, the association between PM2.5 exposure 

during pregnancy and pre-term births, and to consider sources and reasons for 

heterogeneity in past findings on this issue. After the search process, which used 

PUBMED, MEDLINE, and databases from Embase, Wanfang, and China Biological 

Medicine, 18 studies were included in the author’s final analysis. Using a random-effects 

model (for studies with heterogeneity) and a fixed-effects model (for studies with no 

heterogeneity), the association between premature births associated with each 10 

micrograms/m3 increase in exposure to PM2.5 was calculated. The odds ratio of exposure 

to PM2.5 during the first, second and third trimester of pregnancy were 1.08 (95% CI: 

0.92, 1.26), 1.09 (95% CI: 0.82, 1.44), and 1.08 (95% CI: 0.99, 1.17) respectively. 

Although these ORs were slightly above 1.00, which could indicate a positive 

relationship between PM2.5 exposure and negative pregnancy outcomes, the margin of 

error results (95% CI) indicate that since each were not entirely above or below 1.0, then 

PM2.5 exposure does not affect the odds of experiencing negative pregnancy outcomes. 

Therefore these results are not statistically significant. The authors also considered the 

impact of PM2.5 exposure at the regional level, the semi-individual level, and the 

individual level. The three classifications used to assess exposure were centered on 

residential level of exposure. Individual-level was determined using particulate dispersion 

models that were based on meteorology, traffic, geometry of roadways, air quality 

monitoring, vehicle emission and land use databases, which together allowed highly 
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accurate estimations of each of the subject’s daily exposure level to PM2.5. Semi-

individual level was determined by using 24 hour ambient PM2.5 concentrations from a 

monitoring station that was located closest to the subject’s residence. Regional-level was 

determined by calculations that used the average concentration of PM2.5 in a region or by 

using a low-resolution grid. The results yielded the following odds ratios for regional-

level, semi-individual level, and individual level of exposure: 1.07 (95% CI: 0.94, 1.23), 

1.14 (95% CI: 0.97, 1.35) and 1.11 (95% CI: 0.89, 1.37), respectively. The use of the 

semi-individual level in this study allows for individual PM2.5 studies with ecological 

(group) exposure assignment. These odds ratios indicated that exposure to PM2.5 at the 

semi-individual level did have a slightly greater impact on negative pregnancy outcomes 

than exposure at the individual and ecological level (1.14 for semi-individual-level versus 

1.07 and 1.11 for regional and individual levels, respectively [CI:95%]). However a 

statistically significant association is not indicated by these results since the margins of 

error bracket 1.0 and the 95% CI doesn’t state a measured value’s statistical significance.  

In the Zhang et al. 2016 cohort study, there were 105,998 infants that were born 

alive, fetal deaths, and stillbirths. Mothers in the two-year study (June 2011 to June 2013) 

lived in Wuhan district. The authors studied both PM2.5 and PM10 exposure during the 

first trimester of pregnancy. There were only 2 ambient air quality monitoring stations for 

PM2.5 in Wuhan so the district was divided into two areas for PM2.5 study, compared to 9 

monitoring stations for PM10 and thus 9 areas for PM10 study. Using multivariate logistic 

regression to odds ratios and 95% CIs for the association between both congenital heart 

defects and Ventricular Septal Defect (VSD), and ambient PM2.5, the authors found a 
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statistically significant risk of the baby developing both congenital heart defects and VSD 

during the second and third months of pregnancy. The effect estimate during the second 

month was an adjusted OR of 1.10 per 10 microgram/m3 increase in PM2.5 (95% CI: 

1.03-1.08) and for the third month it found an adjusted OR of 1.08 (95% CI: 1.01-1.06). 

No statistically significant association to congenital heart defects was found during the 

first month of exposure to PM2.5 nor anytime during the first trimester for exposure to 

PM10. The association between PM2.5 and VSD was found to be statistically significant 

during the first trimester. The association between PM10 and VSD was not found to be 

statistically significant during the first trimester. It is interesting to note that PM2.5 levels 

in the Wuhan district were significantly higher than in other areas of the world, with the 

mean concentration of PM2.5 over the two year study period documented to be 65.61 

micrograms/m3, with only 12% of the daily PM2.5 levels in Wuhan achieving the WHO 

guidelines of a maximum of 25 micrograms/m3.  

The impact of PM2.5 on embryonic and fetal development continues to illustrate 

the importance of research in this area. The Wuhan study in particular, highlights the 

impact of very high levels of PM2.5 on health. In the FNSB, the cold season spikes in 

PM2.5 are likely having a significant impact on health of people living in the FNSB. My 

study on the impact of PM2.5 on all-type cancers is hoped to add to the growing body of 

knowledge on the influence of PM2.5 on human health. 

While the focus of my study is on the impact of PM2.5 on non-lung cancers as well 

as lung cancer, it is important to recognize that it has already been established, as noted in 

the representative samples of studies above, that exposure to high levels of fine 
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particulates can also cause serious non-cancer related adverse respiratory, cardiovascular, 

cerebrovascular, and pregnancy events, and that many of the underlying adverse 

physiological mechanisms from the influences of PM2.5 is the same for cancers as well as 

for a large number of non-cancer adverse effects. 

Conclusion 

The select studies reported above have shown that exposure to high levels of 

ambient PM2.5 has a significant negative impact on health. Studies have repeatedly shown 

that PM2.5 increases the risk of lung cancer and other various negative respiratory health 

outcomes in both adults and children, as well as negative cardiovascular outcomes. 

Additionally, negative cardiovascular, non-cancer respiratory illnesses and 

cerebrovascular outcomes such as strokes, due to PM2.5 exposure have been revealed. 

Studies on cancers other than lung cancers are only beginning to emerge. Those few 

studies that have been reported have shown a likely link to various types of non-lung 

cancers and merit further studies in this important area, particularly in high latitude cold 

climates. Thus, my study on the impact of PM2.5 on non-lung cancer incidences in the 

FNSB region added to the body of knowledge in this relatively new area of concern. 

Definitions 

Dependent Variable: The dependent variable is incidents of all cancer types. The 

independent variable for this study is the frequent FNSB ambient PM2.5 levels 

>35micrograms/m3/24 hours in area zip codes that represent hot spots, (areas with 

significantly increased cold season PM2.5 levels), and area zip codes that are less exposed 

to cold season PM2.5 levels. The hot spot zip codes are the two zip codes in which EPA 
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regulated air quality monitors are strategically located (99701 and 99705) and are 

designated by the EPA as “serious non-attainment areas.” 

Assumptions 

There are several assumptions that guided this study and that impacted the study’s 

design and statistical approach. PM2.5 levels will constantly vary due to climatic and 

unpredictable weather conditions. The three EPA-approved ambient air monitors in the 

FNSB are strategically located in the hot spot areas of the Borough, since these locations 

consistently experience the highest cold season, inversion-induced PM2.5 levels in these 

two areas. These include the ambient air monitor in North Pole (zip code 99705), and two 

ambient air monitors in downtown Fairbanks (zip code 99701) (FNSB Air Pollution 

Control Commission Air Quality Comprehensive Plan, 2016). For this study, it was 

assumed that data from these air monitors accurately represent cold season PM2.5 levels 

in the zip code areas of greatest concern. It is also assumed that the zip code areas outside 

of 99705 and 99701 consistently experience lower levels of ambient PM2.5 during strong 

atmospheric inversions. These zip codes include the following: 99702, 99703, 99709, 

99712, 99714, 99775, and 99790. It should be noted that within the 99709 zip code area, 

there are several micro hot spots. These were addressed in the section on scope and 

delimitations.  

It is assumed that the data from the FMH Cancer Center and the EPA-approved 

ambient air monitors are reliable since both the Cancer Committee and the EPA-approved 

monitors must continually meet established quality control standards. FMH has 

accreditation by the Commission on Cancer of the American College of Surgeons and 
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notably, is the only hospital in Alaska that has also obtained accreditation by the National 

Accreditation Program for Breast Cancer of the American College of Surgeons. 

Scope and Delimitations 

The scope of the proposed study is limited to ambient PM2.5 data from the three 

main EPA approved monitors in the FNSB; two in downtown Fairbanks (99709) and one 

in North Pole (99705), with both zip codes considered to be hot spots for PM2.5 during the 

cold season. This study is also limited to the cancer registry data from the FMH J. 

Michael Carroll Cancer Center. The registry only provided data on the year and type of 

primary cancer diagnosis for cancer patients; the zip code of residence in the FNSB of 

cancer patients, and the specific histology of the cancer type diagnosed. Military patients 

living in Fort Wainwright and Eielson Air Force Base zip codes were not considered in 

the study. This was due to the inability to access military cancer patient data, and the fact 

that military patients are more transient, and thus would become a threat to the external 

validity of the study. 

Not being able to control for the two major confounders in this research (tobacco 

smoking and the latency period for each cancer type are significant limitations to this 

study. Future studies with more comprehensive patient information included in the data 

set, such as smoking, and being able to analyze each cancer type latency period with 

other data on cancer latency such as age, will provide even more information.  

Another limitation to this study that deserves mention is exposure to radon. Radon 

is known to be one of the leading causes of lung cancer. A study by Grundy et al. (2017), 

reported that in Alberta in 2012, 16.6% of lung cancer cases were due to radon exposure, 
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and is an example of the importance of considering radon as another contributing factor 

to developing cancer. However it was beyond the scope of this study to consider radon 

exposure in the FMH cancer patient dataset. This is a potential area of focus for future 

studies on environmental causes of cancers. 

An additional consideration in this study is the impact of random and 

unpredictable periods of summertime wildfires that typically expose residents in all areas 

of the FNSB to short-term high-level PM2.5. The effects of PM2.5 exposure due to 

wildfires is an area of intense interest in this field, however it is beyond the scope of this 

study to address the impact of wildfire PM2.5 on cancer incidences in the FNSB.  

This study was able to provide preliminary data on the relationship between 

ambient PM2.5 exposure and all-type cancer incidences, as well as lung cancer incidences. 

This generalizable data could be used for the development and guiding of future 

prospective research and studies in this area. 

Significance, Summary, and Conclusions 

It was the intent of this research to advance our knowledge of the impact of 

exposure to high levels of PM2.5 with regard to cancer incidences that include both all-

type cancers as well as lung cancers, in a high latitude, cold climate environment. There 

have been many studies confirming that high levels of PM2.5 is a risk factor for lung 

cancer, as select studies in the literature review section revealed. No study such as this 

has been conducted in the FNSB. As residents of the FNSB struggle to improve the long 

cold season air pollution problem, having more knowledge on the adverse health effects 

can further encourage policy makers as they work to bring the FNSB PM2.5 levels to 
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within mandated EPA standards. Additionally, medical and health providers will be able 

to better counsel patients on the carcinogenic effects of inhaling high levels of PM2.5. As 

more of the public becomes educated on this critical issue, the strong differences in 

opinion that socially divide the community on air quality regulations should fade and the 

community will hopefully come together to reduce cold season PM2.5 emissions with the 

goal of improving health for everyone. 

The relationship between PM2.5 exposure and non-lung cancers remains more 

elusive. Some of the more recent studies looking into this include Turner et al. (2017), 

who found a 13% and 14% increase in bladder and kidney cancers, respectively, for each 

4.4 micrograms/m3 increase in ambient PM2.5. Yeh et al. (2017) demonstrated a 

relationship between ambient air pollution and bladder cancers in Taiwan. Parikh, and 

Wei (2016), discovered a relationship between PM2.5 and breast cancer, and Wang et al. 

(2018), found that PM2.5 exposure may increase the risk of death from pancreatic cancer, 

and as with these and other non-lung cancer studies, the authors recommend future 

studies on ambient PM2.5 and its link to non-lung cancers.  

My study added to the limited body of knowledge on the relationship between 

ambient PM2.5 and non-lung cancers. Furthermore, since there have yet to be any studies 

of cold climate ambient PM2.5 due primarily to biomass burning, my study filled this gap 

in the research on this topic and contributed to our knowledge in the field of oncology 

and its relationship to human exposure to high levels of ambient PM2.5. 

Acronyms and Abbreviations 

ACS  American Cancer Society 
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ALA  American Lung Association 

CCA  Citizens for Clean Air Fairbanks 

CHD  Congenital Heart Defects 

CoC  Commission on Cancer 

COPD  Chronic Obstructive Pulmonary Disease 

CPS II  Cancer Prevention Study II 

CVA  Cerebrovascular Accident (Stroke) 

CVD  Cardiovascular Disease 

DEC  Department of Environmental Conservation 

EPA  Environmental Protection Agency 

FCAA  Federal Clean Air Act 

FCAC  Fairbanks Climate Action Coalition 

FEV  Forced Expiratory Volume 

FMH  Fairbanks Memorial Hospital 

FNSB  Fairbanks North Star Borough 

FVC  Forced Vital Capacity 

Micro RNA   Micro Ribonucleic Acid 

NAAQS National Ambient Air Quality Standards 

NAPBC National Accrediting Program for Breast Cancer 

NQMBC National Quality Measures for Breast Cancer Program 

O3  Ozone 

PAHs  Polycyclic Aromatic Hydrocarbons 

PELL  Pregnancy to Early Life Longitudinal (study) 

PM2.5  Particulate Matter less than or equal to 2.5 microns in diameter 

PM10  Particulate Matter less than or equal to 10 microns in diameter 

ROS  Reactive Oxygen Species 
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Section 2: Research Design and Data Collection 

Introduction 

This study’s purpose was to determine if there is a significant difference in the 

incidence of both lung cancer and all type cancer incidences in people living within the 

FNSB area PM2.5 hot spots compared to those living in the FNSB areas that are non-hot 

spots. In Section 2, I address the design of the research and the rationale for that design, 

as well as the study’s population and sampling procedures used. I also present the plan 

for data analysis and ethical considerations. 

Research Design and Rationale 

This study was a quantitative retrospective cohort study in which I considered the 

incidence of new cancer diagnoses in the FNSB population during a 10-year period from 

January 1, 2008, to December 31, 2017. Both the number of lung cancer and non-lung 

cancer diagnoses in the two hot spot Zip Codes (99701 and 99705) were compared to the 

number of lung cancer and non-lung cancer diagnoses in the six outlying (non-hot spot) 

residential Zip Codes (99706, 99709, 99712, 99714, 99775, and 99790).  

In determining the most appropriate design for this study, I considered the value 

of a retrospective review of the data provided to me by the FMH Cancer Committee. I 

accessed the following data from de-identified cancer patient information that is included 

in the cancer registry at the FMH Cancer Center: patient’s type of cancer, Zip Code of 

residence of cancer patients, and year of initial diagnosis. Patient’s names and addresses 

were not made available to me, and if there was any way in which a single cancer patient 
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could be identified based on Zip Code of residence or any other data, that patient was 

omitted from the study.  

The dependent variable was incidents of all cancer types. The independent 

variable for this study was the frequent FNSB ambient PM2.5 levels >35 

micrograms/m3/24 hours in area Zip Codes that represent “hot spots,” (areas with 

significantly increased cold season PM2.5 levels) and area Zip Codes that were less 

exposed to cold season PM2.5 levels. The hot spot Zip Codes were the two Zip Codes in 

which EPA regulated air quality monitors are strategically located (99701 and 99705). 

The major confounders in this study were age, tobacco smoking, and the latency period 

that occurs between carcinogen exposure and onset of symptoms. 

There were no resource constraints with this choice of study design, as this 

doctoral student study was not funded by outside sources, rather only by me, the author 

of this study. I expected that because this study was basically a community service effort 

on my part, that the Cancer Committee would provide the requested data as part of 

service to their community. 

Methodology 

Population 

The target population included all patients in the FNSB initially diagnosed with 

cancer at FMH from January 1, 2008, through December 31, 2017. There are a total of 

41,563 residents living in the hot spot Zip Codes and 46,365 residents living in the non-

hot spot Zip Codes (Zip-codes.com, n.d.). On average, there are approximately 300 new 

cancer diagnoses each year at FMH (FMH Cancer Committee Annual Report, 2017). 
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Sampling and Sampling Procedures 

The type of sampling procedure that I used for this study was nonprobability, 

purposeful sampling. All patients living in the FNSB, excluding those living at Fort 

Wainwright and Eielson Air Force Base, who were initially diagnosed with any type of 

cancer between January 1, 2008, and December 31, 2017, were included in the study, 

unless the patient was able to be identified by Zip Code of residence (such as if there 

were only one diagnosis in a Zip Code). I obtained data on cancer patients from the tumor 

registrar at FMH. I obtained PM2.5 data from the Alaska Department of Environmental 

Conservation Division of Air Quality and the EPA. Data from subjects was not identified 

beyond the subject’s Zip Code of residence and diagnosis.  

The procedure for accessing the data set included getting both verbal and written 

permission from the FMH Cancer Committee to access the data. A permission letter is 

attached in an appendix at the end of this document. Additionally, I was in regular 

contact, both in person and online, with the FMH Tumor Registrar for the past year to 

ensure that we both had a clear understanding of the process I was to follow in obtaining 

and using the data set.  

Because the FMH Cancer Committee uses patient information including chart 

reviews, I have thus referred to “chart reviews.” I did not personally review patient 

charts, only the compilation of data obtained by the Cancer Committee and submitted to 

the licensed Tumor Registrar at FMH. The chart inclusions and exclusions were 

recognized to ensure that patient confidentiality was well established and also that the 

coders for patient cancers were appropriately ascertained. 
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FMH maintains its accreditation by the Commission on Cancer of the American 

College of Surgeons. FMH has maintained Commission on Cancer accreditation since 

1976. The Commission on Cancer accreditation is maintained by American College of 

Surgeons on-site surveys performed every 3 years to make certain that FMH continues to 

enhance patient quality of care and meets or exceeds national standards (American 

College of Surgeons, Commission on Cancer, n. d.) 

FMH is currently the only hospital in Alaska that, since 2009, also maintains 

accreditation through the ACS’s National Accreditation Program for Breast Cancers. This 

requires cancer centers to undergo rigorous on-site evaluations every 3 years to determine 

the breast cancer center’s compliance with National Accreditation Program for Breast 

Cancer Standards (https://www.facs.org/quality-programs/napbc). In 2014, the breast 

cancer center at FMH was given a distinguished honor when it was recognized by the 

National Quality Measures for Breast Centers Program as a Certified Quality Breast 

Center of Excellence (http://www2.nqmbc.org/). 

In order to determine the sample size for this study, I performed a G* power 

analysis using G* Power 3.1.9.2 for Macs. I used the following input parameters: test 

family = z test; statistical test = logistic regression; tails = 2; OR = 1.2; correlation = 0.3; 

alpha = 0.05; power = 0.80. The output parameters were as follows: critical z = 1.96; total 

sample size needed = 1138; actual power = 0.80. Given approximately 3,000 cancer cases 

over the 10-year period of study, there was a more than adequate sample size for this 

study. 

https://www.facs.org/quality-programs/napbc
http://www2.nqmbc.org/
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Operationalization 

Cancer patient Zip Codes representing hot spots (99701 and 99705), and non-hot 

spots (99706, 99709, 99712, 99714, 99775, and 99790) were the independent variables. 

All type cancers composed the dependent variable for the first research question, and 

lung cancers constituted the dependent variable for the second research question. Hot 

spots are areas within the FNSB that frequently exceed the NAAQS maximum allowable 

24 hour ambient PM2.5 levels of 35 micrograms/m3 (EPA, 2006). There are about 300 

new cancer cases/year (all-type cancers), so there were about 3,000 new cancer cases 

over the 10-year period of data that I used. As an initial estimate, I computed that if there 

are 40,000 people living in the hot spot areas, and 40,000 people living in the non-hot 

spot areas, then there would be 80,000 residents overall. This computes to an average 

new cancer rate among all residents to be about 4%. The question was to determine if 

there is a higher rate of cancer diagnosis among residents living in the hot spot areas 

versus those living outside the hot spot areas. Therefore, a two by two table was 

constructed by which I considered the following: a = the number of people in the hot spot 

areas diagnosed with any type of cancer; b = the number of people in the hot spot areas 

that are not diagnosed with cancer; c = number of people in the non-hot spot areas that 

are diagnosed with cancer; d = number of people in the non-hot spot areas that are not 

diagnosed with cancer. An odds ratio was determined using the following formula: OR= 

a/c divided by b/d (ad/bc), and the relative risk was determined using the following 

formula: RR= a/a+b divided by c/c+d. 
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Data Analysis Plan 

The software used for this study was SPSS version 24. The research questions and 

hypotheses were: 

RQ1 Quantitative: Is there a significant difference in the incidence of all cancer 

types other than lung cancer in people living within the FNSB area PM2.5 hot 

spots compared to those living in FNSB areas that are non-hot spots?  

H01: There is no significant difference in the incidence of all cancer types 

other than lung cancer in people living within the FNSB area PM2.5 hot spots 

compared to those living in FNSB areas that are non-hot spots.  

Ha1: There is a significant difference in the incidence of all cancer types other 

than lung cancer in people living within the FNSB area PM2.5 hot spots 

compared to those living in FNSB that are non-hot spots.  

RQ2: Quantitative: Is there a significant difference in the incidence of lung cancer 

in people living within the FNSB area PM2.5 hot spots compared to those living in 

FNSB areas that are non-hot spots?  

H02: There is no significant difference in the incidence of lung cancer in 

people living within the FNSB area PM2.5 hot spots compared to those living 

in FNSB areas that are non-hot spots. 

Ha2: There is a significant difference in the incidence of lung cancer in people 

living within the FNSB area PM2.5 hot spots compared to those living in 

FNSB areas that are non-hot spots. 

 



 

 

52 

Because I had two categorical variables and a very large sample size, I determined 

the Chi-square statistic to be most appropriate for this quantitative study. Additionally, 

there was insufficient data to control for smoking as a confounder because smoking data 

on cancer patients was not part of the 10-year dataset that was provided by the FMH 

Tumor Registrar. The same was true for determining the potential confounder of latency 

period for specific types of cancers.  

Regarding the interpretation of results, I considered that those Zip Codes that are 

further above the population Mean would be assumed to have more cancer incidences. If 

the two hot spot areas are above the population Mean in cancer incidences compared to 

those in the non hot spot areas, and the p value obtained is < 0.01, then the results were 

considered to be statistically significant and the null hypothesis could be rejected. The 

final Chi-square output and computed ORs and RRs are located in the results section of 

this paper. 

Threats to Validity 

Threats to external validity in this study were limited. This is because the cancer 

data is factual information from patients and medical staff based on absolute results from 

highly controlled medical testing. With regard to this study being reproducible by other 

researchers in the future, and because PM2.5 levels in the hot spots areas could be affected 

by climate change and even changing air quality laws, policies, and enforcement, future 

results could vary significantly in either direction. An additional threat to external 

validity was the omission of FNSB residents who live at Ft. Wainwright Army Base and 
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Eielson Air Force Base. This was due to the inability to access patient data from the 

military sites. 

Threats to internal validity included the inability to control for the two major 

confounders: tobacco smoking and latency period for different types of cancers in 

different age groups. These were limitations to this study that the data either doesn’t 

include (smoking), or that is beyond the scope of this study (evaluation of each cancer 

type and each age of the patient).  

Threats to construct validity for this research doesn’t apply, since all variables are 

already well-defined. Statistical conclusion validity is reported in the results section of 

this paper. 

Ethical Procedures 

Since this study involved the collection of patient data, a Walden University 

Institutional Review Board (IRB) application was submitted and approved prior to 

obtaining the dataset. The Walden University IRB approval number for this study is 03-

09-20-0621354. Following IRB approval on March 9, 2020, the dataset was obtained 

from FMH and analyzed. 

The FMH Tumor Registrar made certain that no patient names were included in 

the data set and that the researcher did not have access to patient identification codes. If 

there was only one case of a cancer patient in one Zip Code, that might enable 

identification of a patient, it was to be omitted from the study. There were no such cases 

with this study.  Following completion of the study, the dataset will be destroyed after a 

period of five years. The data is stored in a password-protected laptop computer. 
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A signed letter from the FMH Tumor Registrar is attached to this document and 

can be found in Appendix A.  

Summary 

This study was a quantitative retrospective cohort study that considered the 

incidence of new primary all-type cancer diagnoses and primary lung cancer diagnoses in 

the FNSB population over a ten-year period from January 1, 2008 to December 31, 2017. 

The relationship between the number of cancer diagnoses in patients living in the two hot 

spot Zip Codes (99701 and 99705) was compared to the number of cancer diagnoses in 

the 6 outlying residential zip codes (99706, 99709, 99712, 99714, 99775, and 99790). 

Cancer data was obtained by the FMH Tumor Registrar and was analyzed using the Chi-

square statistic and SPSS software. The OR and RR were computed manually. The 

independent variable was Zip Code (hot-spot versus non-hot spot) of residence of cancer 

patients and non-cancer residents. The dependent variables in this study are all-type 

cancer diagnosis and lung cancer diagnosis. 

In section 3 the study’s results and findings were presented. In addition, the 

implications and impact on positive social change in the FNSB was presented, as well as 

recommendations for future research in this area of study. 
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Section 3: Results 

The purpose of this study was to determine if there is a significant difference in 

both lung cancer and, particularly, all other types of cancer incidences in people who live 

in areas of the FNSB, which see frequent episodes of high levels of ambient PM2.5 (area 

hot spots) compared to people living outside the hot spot areas of the FNSB. The 

following research questions guided this study: 

RQ1: Is there a significant difference in the incidence of all cancer types other 

than lung cancer, in people living within the FNSB area PM2.5 hot spots compared 

to those living in FNSB areas that are non-hot spots? 

RQ2: Is there is a significant difference in the incidence of lung cancer in people 

living within the FNSB area PM2.5 hot spots compared to those living in FNSB 

areas that are non-hot spots?  

RQ2 served as a validation study question because PM2.5 is already recognized as 

a cause of lung cancer. (Huang, et al., 2017; Poirier, et al., 2017; Wei et al., 2017). 

In this section, I present the study demographics, the statistical results, and an 

overall summary of the results and conclusions. 

Data Collection of Secondary Dataset 

The number of new primary site cancer diagnoses in the FNSB between January 

1, 2008, and December 31, 2017, excluding lung cancers, was 1,526. The number of lung 

cancers diagnosed in the same 10-year period was 214. This data is based on cancer 

diagnoses in patients residing in the following postal Zip Codes: 99701 and 99705 (hot 

spot zip codes), and the five FNSB areas located outside of the hot spot areas (99709, 
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99712, 99714, 99775, and 99790). The Zip Codes 99702 (Eielson Air Force Base), and 

99703 (Fort Wainwright) were omitted from this study because complete data on military 

residents could not be obtained. Additionally, all Zip Codes for P.O. box addresses were 

omitted because population data in these zip codes was either reported as zero or a 

number negligibly small and the fact that many residents with secure P.O. boxes often 

have postal mailbox Zip Codes for their actual residence or live out of State during the 

cold season.  

Table 1 

Population of Hot Spots and Non-Hot Spot Zip Codes 

________________________________________________________________________ 
              

Hot spots      Non-hot spots  

________________________________________________________________________ 

Zip Codes  Population   Zip Codes  Population 

 

99701   19,019    99709   29,830 

99705   22,544    99712   13,866 

       99714     1,385 

       99775     1,251 

       99790       *20 

 

Total   41,563    Total   46,352 

________________________________________________________________________ 

*No cancer cases 

 



 

 

57 

Table 2 

Total Number of Primary Site Diagnoses in the Hot Spot and Non-Hot Spot Areas 

________________________________________________________________________ 
              

 All types of cancers    Lung cancers 

excluding lung cancers. 

________________________________________________________________________ 
 

Hot spots   838           134 

Non-hot spots   688             80 

________________________________________________________________________ 

 

According to zip-codes.com (2010) and the United States Census Bureau (2019), 

the total population of the FNSB in 2010 was 97,581, with 47.3% of the population living 

within the hot spot areas and 52.7% of the population living outside of the hot spot areas. 

Males make up 52.8% of the population and females make up 47.2%. The median age of 

the FNSB population is 31 years. Additionally, the following demographics regarding 

race are as follows: 77% white, 7% Native Alaskan and Indian, 6% Hispanic, 5% African 

American, 3% Asian and 2% other races. These demographics are important to consider 

in understanding and evaluating cancer diagnoses in the population. While detailed 

analysis of each of the above demographics with regard to PM2.5 exposure and cancer 

diagnoses is beyond the scope of this study, these demographics may shed some light on 

the existing study. It is also important to note that the population within the FNSB is 

relatively well educated with 94.5% of residents 25 years of age and older having 

graduated from high school or higher, and 32.6% of the population having a bachelor’s 

degree or higher. Also of note is that 13.2% of the population under 65 years of age have 

no health insurance (U.S. Census Bureau, 2019). 
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Results 

SPSS version 24 was selected for the chi-square analysis for this study. For the 

first research question, the chi-square result of 36.35 was significant at an alpha level set 

at 0.001. Therefore, I can reject the null hypothesis of RQ1 and conclude that there is a 

significant difference in the incidence of all cancer types other than lung cancer in people 

living within the FNSB area PM2.5 hot spots compared to those living in FNSB areas that 

are non-hot spots. The odds ratio (OR) and the relative risk (RR) values were OR = 1.37, 

RR = 1.36. Both also reflect an association of living in hot spot areas and having an 

increased incidence in all types of cancer other than lung cancer. 

Table 3 

All Cancers Other Than Lung Cancers in Hot Spot Areas Vesus Non-Hot Spot Areas 

(Research Question 1)  

 

    Value  df Asymptotic significance (2-sided)  

Pearson chi-square  36.35a  1  .000     

N of valid cases  87915         

Note: a 0 cells (0.0%) have expected count less than 5. The minimum expected count is 

721.44. 

x2(1, N = 87915) = 36.35, p < 0.001 

 

The chi-square result for the second research question was 20.25 and significant 

at an alpha level set at 0.001. Therefore, I can reject the null hypothesis of RQ2 and 

conclude that there is a significant difference in the incidence of lung cancer in people 

living within the FNSB area PM2.5 hot spots compared to those living in FNSB areas that 

are PM2.5 non-hot spots. Additionally, the OR = 1.87 and the RR = 1.88, indicating a 
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strong association between living in a hot spot area and increased incidence of lung 

cancer.  

Table 4 

 

Lung Cancers in Hot Spot Areas Versus Non-Hot Spot Areas (Research Question 2)  

 

    Value  df Asymptotic significance (2-sided)  

Pearson chi-square  20.25a  1  .000     

N of valid cases  87915         

Note: a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 

101.7. 

x2(1, N = 87915) = 20.25, p < 0.001 

 

Interpretation of Findings 

The chi-square statistic is computed from expected frequencies and observed 

frequencies and applies effectively to determine the association between variables that 

make up a table’s rows and columns in order to determine whether or not to reject the 

null hypothesis. Thus, the chi-square statistic was appropriate for this study, the variables 

of which composed a two by two table. The alpha level of the analysis of both RQ1 and 

RQ2 was set at 0.001. The consequent p-values for both RQs were extremely low. For all 

cancers other than lung cancers in hot spot areas versus non-hot spot areas, I can 

confidently say that the chi-square value of 36.35 is statistically significant and can reject 

the null hypothesis. Therefore, the alternative hypothesis can be accepted and answered, 

that there is a significant difference in the incidence of all cancer types other than lung 

cancer, in people living within the FNSB area PM2.5 hot spots compared to those living in 

FNSB that are non-hot spots. Likewise, I can confidently conclude for RQ2 that the chi-
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square value of 20.25 is statistically significant and the null hypothesis can be rejected. 

Again, the alternative hypothesis can be accepted and answered, that there is a significant 

difference in the incidence of lung cancer in people living within the FNSB area PM2.5 

hot spots compared to those living in FNSB areas that are non-hot spots. 

The odds ratio of 1.37 for the first RQ indicates that the odds of a cancer 

diagnosis other than lung cancer in people living in the PM2.5 hot spots is 37% greater 

than those living in non-hot spot areas. The relative risk of 1.36 indicates that residents in 

a PM2.5 hot spot have a 36% higher risk of a cancer diagnosis other than lung cancer than 

residents in non-hot spot areas.  

The OR of 1.88 indicates that the odds of a lung cancer diagnosis in people that 

live in a PM2.5 hot spot is 88% greater than those living in a non-hot spot area. The RR of 

1.87 indicates that residents in a PM2.5 hot spot area have an 87% higher risk of a lung 

cancer diagnosis than those living in non-hot spot areas. 

The results for RQ1 provide new knowledge for understanding the relationship 

between exposure to high levels of PM2.5 and incidences of all cancer types beyond lung 

cancer, particularly in a high latitude, cold climate. While other studies have provided 

information on specific types of cancers and PM2.5 exposure, such as the study done by 

Wong et al. (2016), who found strong associations between PM2.5 and cancers of the 

upper gastrointestinal tract and other digestive accessory organs, as well as cancers of 

lymphatic organs, bone marrow, and the breast. A recent study by Wang et al. (2018), 

found a link between PM2.5 and pancreatic cancer. Another study by Yeh et al. (2017) 

provided the first evidence-based study linking exposure to PM2.5 and bladder cancer in 
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both men and women. While these studies have provided valuable information in this 

area, they are limited to only specific types of cancer and do not consider cold-climate 

PM2.5 due primarily to biomass burning. 

As I expected to see a relationship between PM2.5 exposure and lung cancer 

because this has been confirmed in numerous studies (Badyda, et al., 2017; Cao et al., 

2018; Rajendra et al., 2018), I was surprised for my study to reveal such a strong 

association between PM2.5 and lung cancer. Therefore, a future study to consider what 

effect inhaling ice fog containing high levels of PM2.5 compares to inhaling warmer air 

with high levels of PM2.5 on the incidence of lung cancer is advised. 

These findings can clearly support how the concept of reciprocal determinism on 

which the social cognitive theory is based, can lead to positive personal choices among 

residents of the FNSB with regard to how to safely heat homes and businesses. 

Ultimately, the public’s knowledge of the significant health risks due to biomass burning 

and inhalation of PM2.5, will expectantly lead to changes in behavior that result in a 

healthier environment for everyone, and thus, more positive public health outcomes. 

Overall Summary and Conclusions 

The first RQ reflected the primary intent of this study. Determining if exposure to 

high levels of PM2.5 in the type of climate and geographical location of the FNSB 

influences the incidences of cancers other than lung cancer is an important question in 

cancer and air pollution research. The statistically significant chi-square result (at an 

alpha level of 0.01) indicated that there is an association between PM2.5 exposure and an 
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increase in all types of cancers beyond lung cancer. The OR and RR for the first RQ also 

support the statistically significant chi-square result.  

The second research question was a validation study because many previous 

studies have demonstrated an association between exposure to high levels of PM2.5 and 

development of lung cancer. However, regarding the second research question, and as 

previously stated, few studies have considered PM2.5 exposure in an extremely cold 

climate with very long cold seasons and strong weather inversions. As with the first RQ, 

the chi-square result was statistically significant at an alpha level of 0.01. The OR and RR 

for the second RQ also supported the statistically significant chi-square result. 

Section 4 provides a detailed interpretation of the results of this study. I also 

consider limitations of the study as well as recommendations for future studies in this 

area. I also address the implications that this study will have on positive social change in 

the FNSB, followed by a final conclusion. 
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Section 4: Application to Professional Practice and Implications for Social Change 

This study’s purpose was to determine if there is a significant difference in the 

incidence of both lung cancer and all type cancer incidences in people living within the 

FNSB area PM2.5 hot spots compared to those living in the FNSB areas that are non-hot 

spots. 

This research was a retrospective quantitative study. I used quantitative data from 

secondary data sets for the study. A quantitative methodology was most appropriate to 

this research issue, allowing an examination of the relationship between breathing high 

levels of PM2.5 as a potential causal factor for all cancer types. This type of methodology 

emphasizes objective statistical measurements using existing data. 

Engaging community partners in this study was critical. The Cancer Center at 

FMH has provided support through the provision of data from the tumor registry through 

the FMH Cancer Center. Data from cancer subjects were de-identified by FMH prior to 

my receiving the data. Additionally, only the Zip Codes that could accurately be used for 

the geographical distribution of subjects and for the determination of area hot spots in 

which PM2.5 spikes significantly during the cold season were used for this study. The 

Alaska Department of Environmental Conservation’s Division of Air Quality provided 

PM2.5 data for the study. Data came from three EPA-approved air monitors. Two of the 

monitors are located in downtown Fairbanks and one is located in North Pole. Two local 

organizations, Citizens for Clean Air Fairbanks and the Fairbanks Climate Action 

Coalition were also valuable resources for providing a historical, political, and cultural 

perspective to the air pollution issue in the FNSB. 
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The positive associations between cancer diagnoses and exposure to ambient fine 

particulates revealed by the results of this study can provide a basis for future expanded 

research in this area, further justify the need for strengthened and enforced policies to 

reduce air pollution levels in the FNSB during the long cold season, and significantly 

increase public awareness of the serious adverse health effects from exposure to high 

levels of PM2.5, particularly during the cold season. In this final section I interpret the 

results of the study and discuss the study’s limitations, including significant unmeasured 

confounders. I detail further recommendations and the positive impact on social change. 

Limitations of the Study 

There were several limitations to this study. One limitation was the lack of 

continuous monitoring of air pollutants by an EPA regulated monitor in the areas outside 

of the hot spot Zip Codes to give a more precise comparison of PM2.5 levels in each Zip 

Code in the FNSB. Another limitation was the lack of data from the two military bases 

located within the FNSB, Fort Wainwright and Eielson Air Force Base. Because Fort 

Wainwright is a PM2.5 hot spot zip code (99703) and has a larger population than Eielson 

Air Force Base, which is a PM2.5 non-hot spot zip code (99702; U.S. Census Bureau, 

2019, and zipcodes.com, 2010), it is possible that cancer data from these populations 

could have made an even stronger case for rejection of the null hypothesis.  

Limitations of this study also included two unmeasured potential confounders. 

The first was the latency period (the elapsed time period between exposure to a 

carcinogen and the initial signs or symptoms of cancer) for all of the cancer types, 

including lung cancer, and the second limitation of the study was cancer patients’ 
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smoking habits. With regard to latency period for cancers, it is important to note that 

latency periods vary for different cancer types (Nadler & Zurbenko, 2014). Therefore, it 

would be necessary to consider each specific type of cancer. The cancer dataset for this 

study included over 135 different types of cancer, and of those cancer types counted, no 

cancers such as breast, colon, or lung were subdivided into the specific type of breast, 

colon, or lung cancer. Thus, for a study to consider cancer latency periods, it would be 

necessary to have a well-funded study that included a team of researchers, each with their 

own specific expertise in cancers who were also familiar with current studies on latency 

periods in their area of expertise. Furthermore, it is known that for many cancer types, 

latency period is also influenced by age (Nadler & Zurbenko., 2014).  

The second limitation and potential confounder to this study was the lack of 

enough data on cancer patients’ tobacco smoking history and habits. There was some 

limited data on cancer patients’ tobacco smoking habits that was collected for a previous 

study, but there were not enough data to be statistically significant for this study.  

Recommendations 

The first recommendation for future studies on this topic would be to advise the 

FMH Cancer Committee to consider including data on patient’s smoking history and 

current smoking habits. Tobacco smoking has been well established as contributing to the 

development of many different diseases, including respiratory and CVDs, and lung, oral, 

pharyngeal, and laryngeal cancers, among others (West, 2017). Most certainly, future 

studies similar to this study will be using the FMH Cancer dataset, and having smoking 
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data will provide researchers with valuable information and enable researchers to 

quantify the impact of smoking on their subjects.  

Ideally, there will be improved air quality monitoring in strategic areas of PM2.5 

non-hot spot Zip Codes. This would provide valuable data for future research. Future 

studies could also include specific dates and lengths of weather inversions during the cold 

season, as well as locations, dates, and lengths of time for wildfires in the summer. 

Because this study resulted in a very strong association between inhaling high 

levels of PM2.5 in a very cold climate area and increased lung cancers, a study 

considering the effect on lung cancer incidences from inhaling high levels of PM2.5 

embedded in tiny ice fog crystals when the temperature drops way below zero as 

compared to inhaling high levels of PM2.5 in warmer air would be useful.  

Finally, in the aftermath of the coronavirus disease (COVID-19) pandemic, I 

would recommend future research that considers mortality rates during the COVID-19 

pandemic at strategic areas around the world: those that have demonstrated historically 

high levels of ambient PM2.5 and those areas that have had historically low levels of 

ambient PM2.5. It would be interesting to see if there is a difference in mortalities in 

people who presumably have already had some lung damage from chronic exposure to 

fine particulates versus those who have not. Additional research following the COVID-19 

pandemic could follow individuals who have recovered from a severe case of the disease 

to see what kinds of lung problems develop in the future in these individuals.  

As of the final writing for this study, I discovered that indeed there has already 

been research published on the impact of chronic PM2.5 exposure and mortality rates from 
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COVID-19, based on data thus far into the pandemic. Wu, Nethery, Sabath, Braun, and 

Dominici (2020) revealed that only a PM2.5 increase of 1 microgram/m3 is associated 

with an increase in COVID-19 mortalities by 15% (95% CI: 5%, 25%). Their research 

found that only a small increase in fine particulate exposure over time leads to a sizeable 

increase in COVID-19 mortality rates, with a scale of escalation 20 times greater than 

what is observed for PM2.5 exposure and all causes of PM2.5 mortalities. This study 

emphasizes the importance of enforcement of current regulations to control air pollution 

both now, during the pandemic, and after the pandemic crisis is over. In the FNSB, both 

current regulations on air pollution control and their enforcement remains weak.  

Implications for Professional Practice and Social Change 

The statistically significant results of this study provide cause for concern with 

regard to the PM2.5 hazards in the FNSB, and indicate the serious need for changes in the 

way people heat their homes and provide for their other energy needs. As the residents of 

the FNSB learn more about the dangers of biomass burning, and in particular that there is 

a relationship between PM2.5 exposure and incidences of cancers of all types, it is 

expected that more and more people will take responsibility for their energy practices. 

Bandura’s SCT has been used extensively in public health research, particularly research 

similar to this study, and has been shown that as an individual’s cognition on a topic or 

problem improves, so does their behavior. Heydari et al. (2014) demonstrated how 

effective the application of the SCT was in their study on addictions. While the practice 

of burning biomass for heat and other energy needs in the FNSB is seen as an economic 

and somewhat efficient way to provide heat during the long cold season, I believe the 
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practice to also be a form of addiction. On a bitter cold winter day, the warmth and 

ambience of a wood fire is most soothing. However, with an increased understanding of 

the vast number of serious adverse health effects in people of all ages due to PM2.5 

exposure, positive social change should occur in the FNSB. With knowledge that a 

healthier environment will directly lead to a healthier population, biomass burning will 

hopefully significantly decrease. Just as people have come together to decrease COVID-

19 exposure by social distancing, in order to decrease mortalities and preserve health for 

the masses and themselves, residents in the FNSB should come together to improve their 

air quality for their own health, their children’s health, and for the health of the 

population. I expect that using cleaner forms of energy and keeping biomass burning to a 

minimum will become the “new normal” in the FNSB.  

It is also important that health care providers recognize the dangers of PM2.5 

exposure and take measures to educate their patients on the issue, just as they educate 

their patients on other ways to achieve optimum health. Providers should also be aware of 

disease processes in their patients that could be the result of high levels of PM2.5 exposure 

and take appropriate clinical measures to address the issue. The Public Health 

Department (PHD) can play a major role in an educational offensive for the purpose of 

decreasing biomass burning and promoting the use of cleaner energy. The PHD should 

have the tools necessary to implement educational programs designed to improve the air 

quality. The PHD should also have the expertise to appropriately market the movement 

away from biomass burning and toward promoting clean energy. 
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In summary, education is our greatest tool for improving public health, and in the 

case of the practice of biomass burning in the FNSB area, it provides an opportunity to 

change the way people think about their energy needs and what they can individually do 

to help improve the health of the community as a whole. 

Conclusion 

This study considered the impact of PM2.5 exposure and incidences of all types of 

cancers other than lung, and lung cancer separately, and found that that in both cases, 

there is an association between PM2.5 exposure and increased incidences of cancers. This 

study may contribute to the existing body of knowledge on the relationship between 

cancers and PM2.5 exposure and in particular the limited research on non-lung cancers 

and PM2.5 exposure. It is hoped that this study can contribute to social changes in the 

FNSB that result in greatly improved air quality and significantly lowering PM2.5 by 

decreasing the number of residents who currently practice the burning of biomass for heat 

and other energy needs. The ultimate goal is improved health outcomes for the entire 

FNSB community in the near and distant future. 
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