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Abstract 

Many data scientists are struggling to adopt effective data governance practices as they 

transition from traditional data analysis to big data analytics. Data governance of big data 

requires new strategies to deal with the volume, variety, and velocity attributes of big 

data. The purpose of this qualitative multiple case study was to explore big data 

governance strategies employed by data scientists to provide a holistic perspective of 

those data for making decisions. The participants were 10 data scientists employed in 

multiple mid-market companies in the greater Salt Lake City, Utah area who have 

strategies to govern big data. This study’s data collection included semi-structured in-

depth individual interviews (n = 10) and analysis of process documentation relating to big 

data governance in those organizations (n = 4). Through thematic analysis, 4 major 

themes emerged from the study: ensuring business centricity, striving for simplicity, 

establishing data source protocols, and designing for security. One key recommendation 

for data scientists is to minimize the data noise typically associated with big data. 

Implementing these strategies can help data scientists’ transition from traditional to big 

data analytics, which could help those organizations to be more profitable by gaining 

competitive advantages. The strategies outlined in this study can lead to positive social 

change by proactively addressing the ethical use of personally identifiable information in 

big data. By implementing strategies relating to the segregation of duties, encryption of 

data, and personal information, data scientists can mitigate contemporary concerns 

relating to the use of private information in big data analytics.  
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Section 1: Foundation of the Study 

Background of the Problem 

Data generation has increased exponentially in recent years (Bello-Orgaz, Jung, & 

Camacho, 2016), with no signs of this trend stopping. Bello-Orgaz et al. (2016) estimated 

that globally, 2.5 exabytes of new data are being generated per day, and the Government 

Accountability Office (2017) estimated that by 2025, there would be between 25 and 50 

billion devices connected to the Internet and generating data. Even with the vast amount 

of data available to them, organizations effectively use less than 5% of their available 

data (Zakir, Seymour, & Berg, 2015). This emergence of big data has introduced data 

management challenges involving processing speed, data interpretation, and data quality 

for organizations that wish to consume complex information (Lee, 2017). The traditional 

methods, frameworks, strategies, and tools for data governance and analysis are outdated 

and no longer adequate for processing the vast amount of data available to organizations 

today, thus making current strategies ineffective for handling big data (Bello-Orgaz et al., 

2016). Big data analytics challenges arise from issues relating to data that are too vast, 

unstructured, and moving too fast to be managed by traditional means (Zakir et al., 2015).  

Companies of all sizes are dealing with this new big data environment and 

struggling to determine how best to analyze big data as a critical driver of strategic 

business decisions. Larger companies have more resources to direct toward this problem, 

but mid-market organizations face similar issues with less available capital to apply to the 

problem. To remain competitive, however, it is just as critical for them to find ways to 

address this data deluge that faces companies of all sizes. 
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Problem Statement 

Contemporary outdated data processing systems are unable to handle the data 

deluge of exponentially increasing amounts of data that we are generating daily 

(Sivarajah, Kamal, Irani, & Weerakkody, 2017).  More than 40% of organizations are 

currently challenged to attract and retain skilled data scientists, while by 2020, the U.S 

alone will need more than 190,000 skilled data analysts (Mikalef, Giannakos, Pappas, & 

Krogstie, 2018). The general IT problem is that there is a lack of knowledge regarding 

data governance principles for analyzing big data.  The specific IT problem is that some 

data scientists lack big data governance strategies that provide a holistic perspective of 

those data for making decisions. 

Purpose Statement 

The purpose of this qualitative multiple case study was to explore the big data 

governance strategies employed by data scientists to provide a holistic perspective of 

those data for making decisions. The population for this study was data scientists 

employed in three mid-market companies in the greater Salt Lake City, Utah area who 

have strategies to govern big data. The findings from this study could potentially affect 

social change by creating additional jobs in mid-market companies. Job creation would 

be accomplished through increased capability of these companies to have a better 

understanding of meaning of data which they gather and use to make strategic and 

operational business decisions daily. This increased and more targeted information could 

lead to increased profitability for these mid-market companies, which in turn could lead 

to increased jobs available in these communities. These new jobs could elevate the mid-
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market organization’s community by providing better pay for residents and improving 

their lives in general. 

Nature of the Study 

This study used a qualitative method to explore the big data governance strategies 

employed by data scientists to provide a holistic analysis of those data for making 

decisions. Qualitative studies are useful when investigating peoples’ views or human 

behavior, or when attempting to find out how well something is performed, but for which 

quantitative data does not offer a complete picture (Kelly, 2017). Because strategies for 

data governance involve understanding how well those governance activities are 

performed, the qualitative method was appropriate. Quantitative studies can demonstrate 

trends and correlations, but are not as capable of providing explanations or reasons 

(Kelly, 2017). Quantitative studies are focused on predictions and  theories based on 

cause-and-effect relationships, which are testable and generalizable (Gehman et al., 

2018). Since this study was not attempting to prove a hypothesis, a quantitative approach 

was not appropriate. A mixed methods approach would involve combining quantifiable 

data with an in-depth understanding of participants’ behavior and actions (McCusker & 

Gunaydin, 2015).  Because strategies related to data governance do not involve 

quantifiable statistical data, a mixed methods approach was not appropriate.  

I used a multiple case study methodology for this study.  A case study 

methodology allows a deep examination of an issue or phenomenon in its natural setting 

(Arseven, 2018). Because this study focused on strategies used within organizations that 

are using big data for decision-making, this design approach was warranted. An 

ethnographic approach requires embedding the researcher in a cultural context to observe 
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the behaviors of a people in a particular cultural context (Watson, 2018). I did not select 

the ethnographic design because this study was not investigating any specific culture, 

customs, or social group. Thus, it was not appropriate for this study. The 

phenomenological design was not appropriate because it involves how participants live 

through, interpret, or experience the topic under research (Sousa, 2014). Because this 

study was not investigating perceptions of participants, the phenomenological approach 

would not have been appropriate. 

Qualitative Research Question 

What big data governance strategies do data scientists employ to provide a 

holistic perspective of those data for making decisions? 

Interview Questions 

Demographic Questions 

1. What is your role in data gathering and analysis? 

2. Please describe your background concerning big data analysis. 

3.  How long have you been involved in big data analysis? 

Interview Questions 

1. How do you ensure that you are analyzing all available data for any particular 

model?  

2. How do you determine appropriate sources of data for any specific model or 

analysis? 

3. What processes are in place to ensure that all applicable data are available to you 

when needed for analysis? 
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4. What countermeasures are in place for risk mitigation regarding the validity of the 

analysis that you perform (i.e., the risk of not having current data, or of incorrect 

correlation of data from various sources)? 

5. What have you found to be most successful in building data models based on big 

data from various sources? 

6. Why do these processes give you confidence that you are analyzing all applicable 

data? 

7. How do these processes ensure the protection of the data? 

8. What controls are in place to ensure the privacy of the data? 

9. What other issues are there that we should discuss as relating to big data analysis? 

10. What other areas are there left to discuss? 

Conceptual Framework 

I selected the organizational information processing theory (OIPT) as the lens 

through which I examined data governance strategies used by data scientists to provide a 

holistic perspective of those data for making decisions. Jay R. Galbraith introduced the 

OIPT in 1974 (Galbraith, 1974). The central concept of the theory is that organizations 

need relevant information to make decisions. Three concepts primarily comprise the 

ability to use that information for decision-making efficiently: the need within an 

organization to process information, the organization's inherent ability to process 

information, and the gap between the two (Premkumar, Ramamurthy, & Saunders, 2005).   

The OIPT aligns well with this study because of the direct association between 

the amount of information that is available to an organization and the ability for that 

organization to process that information to improve the decision making within that 



6 

 

organization. Data scientists are starting to employ novel strategies in terms of 

governance and analysis of big data to transform large quantities of information into 

valuable insights for strategic business decision-making processes. By using the lens of 

the OIPT, I was able to assess strategies used by data scientists to determine whether 

these strategies are increasing the ability of the organization to process information and 

thereby reduce slack resources within the organization. By viewing governance of big 

data through the lens of the OIPT, I focused on strategies of data scientists to properly 

govern the vast amount of data available to them as a mechanism to reduce the 

uncertainty of information analysis to enable better decision-making throughout their 

organizations. 

Definition of Terms 

Data/Information Governance: An emerging discipline involving managing, 

processing, and controlling information throughout an organization. It encompasses 

processes, procedures, and rules involving the management of information throughout an 

organization (Mullon & Ngoepe, 2019). 

IT Governance: The set of processes and oversight within an organization that 

ensures that investments in IT generate business value, mitigate risks associated with IT 

initiatives, and operate with accountability and traceability for those who are funding the 

IT resources (Grossman, 2018). 

Assumptions, Limitations, and Delimitations 

Assumptions 

Walsh (2015) described assumptions as unconscious beliefs that the researcher 

accepts as accurate which can produce biases in terms of both perceptions and thoughts. I 
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assumed that participants answered my questions to the best of their abilities. I also 

assumed that individuals within organizations that I interviewed were subject matter 

experts within their organization based on job title and work performed. I assumed that 

documentation these organizations provided to me was official and reflected their current 

processes and procedures.  

Limitations 

Teichler (2014) defined limitations of a study as those aspects of the study that are 

beyond the control of the researcher, despite their best efforts. Limitations of this study 

are primarily centered around the fact that I performed a qualitative case study, and as 

such, findings may not be able to be extrapolated beyond organizations selected for the 

case study. Qualitative studies in general have inherent limitations since qualitative 

assessments are limited by incomplete understanding of judgments made by the 

researcher and lack of consensus among researchers regarding the rigor of deriving those 

judgments (Cook, Kuper, Hatala, & Ginsburg, 2016). 

Delimitations 

Delimitations are boundaries defined by the researcher that guide the study itself 

(Kongnso, 2015). This study was geographically limited to the greater Salt Lake City, 

Utah, area. Additionally, participants for this study were limited to those who were 

involved directly in data modeling and data analysis strategy and processes within case 

study companies, as well as those who were involved in the design of data governance 

processes and practices. Specific roles or job titles for this responsibility may differ 

between organizations. Finally, the organizations that I selected for the case study were 

required to have some experience analyzing big data. 



8 

 

Significance of the Study 

Contribution to Information Technology Practice 

This study may provide strategies to data scientists in mid-market companies who 

lack strategies for governing big data. This study may provide value to the overall IT 

practice by uncovering insights about successful data governance practices that are in use 

within mid-market organizations. Overall contributions to IT practice may potentially 

include additional insights into best practices that mid-market organizations have adopted 

and from which they have found success as they struggle to deal with the deluge of 

information that is available to them for making critical strategic business decisions. 

Kemp (2014) indicated that nearly 85% of Fortune 500 organizations are unable to use 

their data effectively, and a structured approach to data governance, policy, and strategy 

is a critical factor for project success. Mid-market companies have a similar need to use 

data available to them for strategic business decisions effectively, and they can typically 

react and implement new strategies more rapidly than their larger competitors.  

Implications for Social Change 

The potential for social change involves the increased ability of companies to 

meet the needs of their customer base due to an increased understanding within the 

company of the meaning of data which they gather and use to make strategic and 

operational business decisions daily.  This improved customer focus could lead to higher 

profitability, which in turn would enable these organizations to hire more employees and 

increase wages. These overall improvements in businesses could lead to overall elevation 

of residents in these communities by allowing them to earn more money and improve 

their way of life. Also, better overall management could lead to better employment 
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opportunities for all types of employees, as well as improved customer experiences for 

customers of mid-market companies. Effective use of big data could benefit customers by 

providing more specific and targeted solutions to their needs for small companies that are 

part of their local communities. In sum, the ability for data scientists to effectively use 

big data in mid-market companies could be an equalizing force that could benefit 

customers, employees, and owners of all types of mid-market companies. 

A Review of the Professional and Academic Literature 

For this study, I focused on three basic concepts when researching the 

professional and academic literature:  issues involving the adoption and use of big data as 

a reliable and viable technology, applicability of the OIPT as a conceptual model for 

applying big data governance in the enterprise decision-making process, and the use of 

the case study methodology to study this topic.  I searched for academic literature with 

Google Scholar, Science Direct, IEEE Explore, Research Gate, and the Walden Library 

as primary sources for academic research. I used the following search terms to initiate my 

search at these websites: big data governance, big data challenges, big data decisions, big 

data benefits, big data roles, big data security, big data ethics, small business big data, 

data governance, big data analytics, data scientist roles, data analysis roles, big data job 

description expectations, OIPT, organizational information processing theory, Galbraith, 

enterprise decision, small business decision making. I also employed the suggested 

search links that appeared in the search results on these various sites to continue my 

search. As I studied the literature, I frequently used reference lists of cited articles as 

alternate sources. I focused my research on contemporary publications, with the intent of 
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using articles published in 2016 or later. I also researched seminal articles and 

publications when researching the OIPT and case study topics.  

The content of the literature included in this review includes history, 

contemporary discourse, and contrasting views of the OIPT as well as all aspects of big 

data governance. I selected seminal sources where applicable and available. I focused my 

review of literature on the data governance aspects of big data, including expectations of 

big data analytics, quality and volume of data, challenges due to evolving from traditional 

to big data management, ethical and privacy concerns, organizational and human 

resource concerns, and IT and data governance in general. I intentionally left the 

discussion of specific toolsets such as Hadoop and R out of this study as these are 

analytic technologies and not explicitly related to the overall governance of big data. I 

reviewed more than 250 sources in total, eventually eliminating more than 110 sources as 

not relevant, duplicative, or repetitive. In my review, I did not encounter any studies that 

specifically addressed the governance of big data and its effect on strategic decision-

making in the manner that I am studying. 

To document this literature review, I start with a discussion of the conceptual 

framework and then proceed to relevant literature regarding big data. The review of big 

data literature starts with a definition of big data, leading to a discussion of its benefits 

and uses. I then discuss some of the challenges associated with big data, which leads to a 

discussion of related technologies such as the Internet of Things (IoT) and cloud 

computing. I end the literature review by discussing IT and data governance as relates 

specifically to big data initiatives. 
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This literature review consists of 105 articles relating to the OITP and big data 

and the associated technologies such as the IoT, cloud computing, data governance, and 

information governance. Eighty-two percent of articles reviewed were published between 

2016 and 2020. Ninety-one percent of these articles were peer-reviewed as verified 

primarily by searching Ulrich’s Periodicals Directory and reviewing journal information 

directly in many cases. 

Application to the Applied IT Problem 

The purpose of this qualitative multiple case study is to explore big data 

governance strategies employed by data scientists to provide a holistic perspective of 

those data for making decisions.  In the next sections, I will provide a thorough 

discussion of the conceptual framework and current literature regarding big data. 

Conceptual Framework 

The conceptual framework for this study is the OIPT.  I will discuss the OIPT in-

depth as well as provide an analysis of both supporting and contrasting theories.  

OIPT.  OIPT was a seminal theory on organizational design, which contributed to 

Galbraith later becoming known as the father of modern organizational design theories 

(Galbraith, 2017).  It was Galbraith’s mentor, James D. Thompson, who first introduced 

him to the concept of viewing organizations as systems and studying the inherent need 

for organizations to process information (Galbraith, 2017). Galbraith’s theory was also 

heavily influenced by Herbert Simon, a Nobel Prize-winning economist who, in 

conjunction with James Marsh, introduced the concept of slack resources within an 

organization to aid in information processing (Galbraith, 2017). The basis of the OIPT is 

that organizations are comprised of individuals who must deal with both predictable and 
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unpredictable information (Galbraith, 2017). Tushman and Nadler (1978) added that the 

OIPT directly applies to the gathering, interpretation, and synthesis of information within 

an organization for decision-making. Feurer, Schuhmacher, and Kuester (2019) explained 

that the fundamental basis for OIPT is centered around the uncertainty and complexity of 

tasks to be completed in a task workflow and is based on the concept that organizations 

should be designed to enable decision-making. All of Galbraith’s major writings also cite 

the contributions of Alfred D. Chandler, which demonstrates that Chandler’s work 

influenced Galbraith’s connection of an organization’s strategy with its structural form 

(Galbraith, 2017).    

Zelt, Recker, Schmiedel, and vom Brocke (2018) articulated that the OIPT 

describes organizations as information processing systems that collect, process, and 

distribute information, and Allegrini and Monteduro (2018) added that greater 

uncertainty is associated with the need to process more information during task 

execution. Galbraith (1974) explained that the greater the uncertainty of a task, the more 

information must be processed by decision-makers to execute that task. Gupta, Kumar, 

Kamboj, Bhushan, and Luo (2019) explained that a lack of information within an 

organization leads to uncertainty, and Tushman and Nadler (1978) explained that 

uncertainty was the difference between information processed and required to complete a 

task. Foerstl, Meinlschmidt, and Busse (2018) theorized that the OIPT evolved in 

response to organizational design problems stemming from the size-induced complexity 

of organizations in the 1970s.   

Tushman and Nadler (1978) identified management as collecting, processing, and 

combining relevant information for organizations. Bartnik and Park (2018) added that 
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management’s role is to reduce both uncertainty and equivocality by clarifying mission 

statements and organizational priorities for organizations. Gao, Liu, Guo, and Li (2018) 

explained that merely increasing information available does not resolve uncertainty as 

individuals do not have unlimited processing capacity and will reach information 

overload.  

Zelt, Recker et al. (2018) clarified that the OIPT builds on prior contingency 

theories by aligning with the concepts that the organizational structure needs to fit 

variables both inside and outside of the organization. Duvald (2019) added that the OIPT 

is one of many contingency theories that identify that while there is no one best way to 

organize, not all ways of organizing are equally valid.  DiMaggio and Powell (1983) 

established institutional theory in 1983, which establishes that processes that can 

establish practices, policies, and norms. Chrisman, Chua, Le Breton-Miller, Miller, and 

Steier (2018) indicated that governance in general is usually the domain of institutional 

theory. The application of institutional theory focuses mainly on coercive, mimetic, and 

normative pressures that shape behavior within an organization and not on the effect on 

strategic decision making (Chrisman et al., 2018). 

 Duvald (2019) explained that equivocality arises from the existence of multiple 

and often conflicting interpretations of data, which can only be mitigated by additional 

processing mechanisms rather than simply gathering more data. Zelt, Recker, et al. 

(2018) added that increasing equivocality leads to a need for systems to interpret and 

assign meaning to the information being processed. 

Galbraith (1974) theorized that as task complexity increases, organizations can 

deal with increased uncertainty of task completion in only four ways, two of which 
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address the reduction of the information needing to be processed, and the other two 

addressing the possibility of increasing the overall capacity to process information (see 

Figure 1). Premkumar et al. (2005) added that the OIPT has three primary elements: the 

need within an organization to process information, their inherent ability to process 

information, and the gap between the two. Galbraith (2012) explained that organizations 

can deal with this gap in one of two ways: they can either increase the capacity of the 

organization to process more information, or they can decentralize the interdependence 

on that information. Cao, Duan, and Cadden (2019) defined the information processing 

capability of an organization as their capacity to capture, integrate, and analyze data and 

information and use those insights in the context of organizational decision-making. 

Wang, Xu, Fujita, and Liu (2016) added that combining heterogeneous sources of data 

into new information sets is one way to reduce uncertainty. Gao et al. (2018) theorized 

that using the lens of the OIPT, it becomes clear that increasing access to information will 

only serve to create information overload rather than benefiting decision-making 

processes. Ever-increasing amounts of information coupled with the inability of the 

organization to process that information lead to organizations adopting two typical 

strategies for coping with the inherent uncertainty that ensues: developing buffers to 

reduce the effect of uncertainty and implementing structural mechanisms and 

information- processing capabilities to enhance information flow and thereby reduce 

uncertainty (Premkumar et al., 2005).  
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Figure 1. Organizational design strategies. From "Organizational Design, an Information 

Processing View" by J. R. Galbraith, 1974, Interfaces, 4(3), p.30. Reprinted with 

permission. 

While the concept was quite simple, Burton, Obel, and Håkonsson (2015) 

indicated that Galbraith’s subsequent work that built upon this theory became the 

foundation for how to make matrixed organizations work well. Because of the lack of 

vertical IT systems to analyze information, the only option was to create matrix 

organizations to process information and make business decisions. Feurer et al. (2019) 

explained that one of the general concepts of the OIPT is that as lateral organizational 

relationships are established, the number of decisions referred upward is reduced, which 

then leads to more effective decision-making. Obel and Snow (2014) posited that the 

theory of organizational design allowed many areas of research to be brought together to 

create a model of organizational design with significant predictive power and that it is 

even more relevant in today’s world of the dramatic increasing availability of information 

in the form of big data.  Intezari and Gressel (2017) added that the ability of 



16 

 

organizations to make strategic decisions amidst uncertainty and ambiguity is predicated 

their ability to learn and reconfigure their knowledge base continuously. 

Additional research regarding the OIPT led Galbraith to investigate matrix 

organizations as a means to decentralize decision making, which set the foundation for 

Galbraith’s most famous theory on organizational design, named the star model 

(Galbraith, 2017). Galbraith (2014) demonstrated the potential impact of big data on an 

organizational design using the star model, as shown in figure 2. The star model included 

five dimensions of organizational structure: strategy, structure, processes, people, and 

rewards (Miterev, Turner, & Mancini, 2017). Obel and Snow (2014) indicated that the 

star model became the most recognized and widely accepted organizational design 

model. Galbraith based the star model on his belief that organizations are inherently made 

up of individuals who need to process information to accomplish the work of that 

organization (Galbraith, 2017). 

 

Figure 2. Big data’s impact on an organization. From "Organizational design challenges 

resulting from big data" by J. R. Galbraith, 2014, Journal of Organizational Design, 3(1), 

p.12. Reprinted with permission. 
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Contemporary view. Contemporary thought regarding the OIPT shows the 

theory has remained relatively consistent since its inception with incremental additions 

and developments. Kroh, Luetjen, Globocnik, and Schultz (2018) explained that the 

evolution of IT systems was evidence that the original theory accurately described how 

better processing of information within an organization could benefit task completion, 

and the increased ability of employees to process information using technology provides 

a mechanism for improving decision-making within an organization due to the improved 

ability to process more copious amounts of information farther down within the 

organization.  

 Obel and Snow (2014) posited that Dr. Galbraith’s theory of organizational 

design is even more relevant today than it was when Galbraith developed it in 1974 

because of the dramatically increasing availability of information in the form of big data. 

Park, Sawy, and Fiss (2017) highlighted that the ability to process information for 

organizational decision making had been studied extensively, but little focus has been 

placed on the details within the IT component of that decision-making process. Cao et al. 

(2019) articulated that Galbraith’s work was later adopted to address decision-making 

within an organization.  Jia, Blome, Sun, Yang, and Zhi (2020) clarified that researchers 

Tushman and Nadler built upon Galbraith’s work by interpreting that said organizations 

are inherently information- processing systems that are intrinsically- programmed to 

manage uncertainty by gathering, processing, and acting on information from within their 

environment.   Hwang, Kim, Hur, and Schoenherr (2019) added that through the OIPT 

Galbraith highlights the essential function of an organizational structure, which is to 

facilitate the collection, analysis, and distribution of information to reduce uncertainty 
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within the organization.

Figure 3. OITP key concepts. 

Galbraith (2012) hypothesized that big data would add another dimension to the 

organizational information processing needs within organizations due to the constant 

interplay of increasing complexity and interdependence of information and systems 

within that organization. Zelt, Schmiedel, and vom Brocke (2018) articulated that the 

application of OIPT leads to an understanding of the factors influencing an organization's 

information processing capacity. Galbraith (2012) predicted that big data would become 

that technology that would finally allow for the increased information processing 

alternative to becoming an effective alternative. Galbraith became fascinated by the way 

companies were using big data to gain valuable insights into both their organizational 

decision-making capability and to learn more about their customers (Galbraith, 2017). He 

believed that big data would become the next significant dimension in organizational 
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design by providing a digital function similar in power and importance to organizations 

existing organizational structure (Galbraith, 2014).  

The literature identified some limitations of the OIPT. Haußmann, Dwivedi, 

Venkitachalam, and Williams (2012) identified that Galbraith focused mainly on 

technical aspects of information processing within an overall organizational design and 

did not address the individual and interpersonal effects of information processing 

thoroughly. Kroh et al. (2018) articulated that the OIPT emphasizes structural 

mechanisms when addressing information flows and task uncertainty. Haußmann et al. 

(2012) further clarified that the reduction of uncertainty is not the only factor to consider 

when assessing IT adaptation for improvement of decision making within an 

organization. Kroh et al. (2018) also stated that information processing capabilities 

enable organizations to receive external input and translate that into usable information 

within the organization. Haußmann et al. (2012) clarified that Galbraith mentions the 

external perspective but does not include this as essential to the overall OIPT concepts.  

Despite the limitations, Haußmann et al. (2012) pointed out that the OIPT is 

considered more than a theoretical model to serve academia and remains a theory with 

wide adaptation and practical implications within the IS community. The OIPT is very 

applicable to big data, as shown in figure 3. Before his death, Galbraith was working on 

another book that was to focus on how big data would affect decision making within 

organizations (Galbraith, 2017). Obel and Snow (2014) highlighted that his previous 

articles on big data provided critical insights about improving the scale and speed of 

dissemination of information within an organization. Galbraith believed that there were 

three main hurdles to overcome for big data to truly demonstrate valuable insights for an 
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organization: the first hurdle was the power struggle and friction caused by big data 

within the current organizational structure. The second hurdle was the creation of a 

digital information and decision process. The final hurdle was the ability of an 

organization to invest in digital resources required to develop analytic capabilities across 

the entire organization (Galbraith, 2017).  

Analysis of Supporting Theories 

Absorptive capacity theory (ACT). The ACT was introduced in 1990 by Cohen 

and Levinthal as a firm’s ability to identify, consume, transform, and apply valuable 

external information (Cohen & Levinthal, 1990). The capacity of an organization to 

assimilate such information is positively related to improved performance (Cohen & 

Levinthal, 1990). Conceptually, the ACT is similar to the information processing theory 

(IPT), but the ACT is focused on the organization level while the IPT is focused on the 

individual level. Butler and Ferlie (2019) identified that Cohen and Levinthal have been 

criticized for narrowly defining the ACT on R&D only and that subsequent definitions 

have expanded it to a broader definition centered around the acquisition of knowledge, in 

general, increasing a firm’s overall performance. This lack of clear definition has led to 

an ambiguous characterization of the ACT in contemporary terms with some scholars 

focusing on organizational learning, others on innovation, and yet others on resource-

based knowledge views of the theory (Chaudhary & Batra, 2018). While the ACT 

provides a lens for organizational learning from external sources, the OIPT is a more 

appropriate lens to apply to this study because of the clearly understood definition of the 

OIPT and the direct connection to decision making. 
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Organizational information theory. Organizational information theory (OIT) 

was first published in 1979 by Karl Weick and updated in the second edition of his book 

published in 2015 (Weick, 2015). One of the central tenets of the OIT was the premise 

that organizations that operate in an information-rich environment have a great need to 

make sense of equivocal information (Weick, 2015). Weick defined a process called 

retrospective sensemaking, which entails seeking to understand what is currently 

happening by identifying what was done in the past, understanding why those actions 

were taken, and determining if those actions were adequate for the institution’s goals 

(Weick, Sutcliffe, & Obstfeld, 2005). Weick introduced the concepts of ambiguity and 

uncertainty and posits that for an organization to progress, they must reduce or eliminate 

ambiguity and uncertainty (Chadwick & Pawlowski, 2007). This concept of reducing or 

removing uncertainty is like the central tenet of the OIPT but without the clarity of how 

to reduce that uncertainty. The OIT is focused more on the concept of sensemaking 

regarding past decisions made, while the OIPT is more concerned with understanding 

how to reduce uncertainty by gathering and utilizing more information. 

Analysis of Contrasting Theories 

Information processing theory (IPT). The IPT was established in 1956 and 

attempted to identify and explain how information is processed, captured, and retrieved 

by individuals (Mitchell, Mitchell, & Mitchell, 2009). The IPT attempted to address the 

way information is acquired, stored, and retrieved from human memory (Mitchell et al., 

2009). The central concept of the IPT was that as the volume of information continuously 

increases, it becomes more difficult for individuals to process due to their limited 

cognitive processing ability, and they experience information overload (Gao et al., 2018). 
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IPT focused more on the cognitive capabilities of the human brain when processing 

information, whereas the OIPT focused more on the impact of information processing 

within an organization. The IPT may be an appropriate lens to view the creation and 

dissemination of information from big data on an individual level, but the OIPT is a much 

more appropriate lens for viewing governance of big data at an organizational level. 

Organizational knowledge creation (OKC). Nonaka, Byosiere, Borucki, and 

Konno (1994) introduced the OKC theory to define how knowledge passes throughout an 

organization. The OKC is a theory describing knowledge creation that extends both up 

and down the organizational structure from middle management based on both explicit 

and tacit communications (Nonaka, Hirose, & Takeda, 2016). Milosevic, Bass, and 

Combs (2018) explained that the OKC highlights the interrelated phases of knowledge 

emergence and knowledge formalization within an organization. Kemp (2014) addressed 

this concept concerning big data when he explained that there is a gap between the 

amount of data that organizations can gather and the ability of that organization to 

leverage that information in meaningful ways.  Akbar, Baruch, and Tzokas (2017) noted 

that the OKC focused on the logic of appropriateness, which is a situation-driven 

response that evolves through socialization and discovery. While applicable to big data, 

the OKC focused more on the creation of knowledge within an organization, while the 

OIPT is more focused on the gap that exists between the ability to obtain information and 

the needed information to complete tasks within the organization.  

Big Data Governance 

Definition of big data. The term big data is not yet formally defined and was 

used inconsistently in the literature. The actual definition was still evolving with some 
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people defining big data by what it is, while others tried to define it by what it does 

(Gandomi & Haider, 2015), and some defined it by the processes required to leverage big 

data (Mikalef, Pappas, Krogstie, & Giannakos, 2017). Wang et al. (2016) categorized the 

various definitions of big data as being oriented around the product, process, cognitive, or 

social aspects of big data. As a case in point, Wamba et al. (2017) indicated that big data 

is actionable and delivers sustained value, measured performance and provides a 

competitive advantage, while Sivarajah et al. (2017) defined big data by the 7 V’s of high 

volume, high variety, low veracity, high velocity, high variability, effective visualization, 

and high value. Lee (2017) referred to additional dimensions of big data as including 

complexity and decay, meaning that often, data elements of big data require immediate 

processing to be of value. Kemp (2014) also referred to the value of the data as a critical 

element to the definition of big data. Herschel and Miori (2017) stated that big data refers 

to those activities around capturing, storing, analyzing, and acting upon information that 

is gathered by both humans and devices, where networks transmit that information. 

The most common definition of big data had less to do with the actual amount of 

data, and more to do with the attributes of those data. Most researchers agreed that this 

includes the following elements, often referred to as the 5 V’s: huge volume, high 

velocity, wide variety, low veracity, and high value (Jin, Wah, Cheng, & Wang, 2015). 

Bello-Orgaz et al. (2016) stated that these attributes were first identified in 2001 as the 3 

V’s, namely: high volume, high velocity, and a wide variety. Gandomi and Haider (2015) 

added that other attributes of veracity, variability, and value were added later.  Song and 

Zhu (2016) proposed that while variety and veracity are challenging to deal with, the 

value was by far the most critical dimension of big data. Gartner added a qualifier to this 
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definition in 2012 that indicated that big data also required new forms of processing to 

gain insights from those data (Bello-Orgaz et al., 2016). Sivarajah et al. (2017) indicated 

that the most recent definition now has 7 V’s: Volume, Velocity, Variety, Variability, 

Veracity, Visualization, and Value. 

Big data definitions in literature were also commonly used in conjunction with 

either the size of the data set or with the technology used to enable its utilization. Patel, 

Roy, Bhattacharyya, and Kim (2017) indicated that big data are anything over gigabytes 

of data, while others such as Bello-Orgaz et al. (2016) indicated that big data refers to 

terabytes or petabytes in size. Lee (2017) stated that the threshold for Big Data is a 

minimum of 1TB but added the qualifying sentiment that the minimum threshold would 

evolve as technology is developed to handle more copious amounts of data. De Mauro, 

Greco, and Grimaldi (2015) pointed out that the term big data is also often used in 

conjunction with the technology, such as Hadoop, that is used to enable the use of big 

data. Patel et al. (2017) defined big data simply as data sets that are too large to be 

handled by old traditional methods and technologies, while Bello-Orgaz et al. (2016) 

defined big data as data sets that are so massive as to extend beyond the ability for 

traditional database and software tools to manage and analyze them effectively. 

A proper definition for big data must extend beyond the size or attributes of the 

data and should also include the concept of the usefulness of the raw data. Bello-Orgaz et 

al. (2016) indicated that the definition of big data should include the ability to make sense 

of those data and exploit their value. De Mauro et al. (2015) articulated that one of the 

fundamental reasons for big data existing is the ability that it provides to make informed 

decisions from both structured and unstructured data and failing to include that aspect in 
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the definition would not provide a full understanding of what big data is intended to be. 

De Mauro et al. (2015) proposed the following formal definition of big data: “Big data is 

the information asset characterized by such a high volume, velocity, and variety to 

require specific technology and analytical methods for its transformational value” (p. 

103). Alternatively, Kemp (2014) offered the following definition of big data: “Big data 

is shorthand for the aggregation, analysis and increasing value of vast exploitable datasets 

of unstructured and structured digital information” (p. 483). Additionally, Wang et al. 

(2016) offered the following definition: “Big data start with large-volume, heterogeneous, 

autonomous sources with distributed and decentralized control and seek to explore 

complex and evolving relationships among data” (p. 750). Since I will be focusing on the 

governance aspect of big data, rather than the unique tools required for the analysis of big 

data, I will use the Wang definition for this study. 

Challenges with big data. While there were varying definitions of precisely what 

constitutes big data, the literature covered the challenges around gathering and analyzing 

big data in great detail. De Mauro et al. (2015) identified that the combination of 

structured, unstructured, and semi-structured data is challenging to handle with traditional 

systems. Yang, Huang, Li, Liu, and Hu (2017) pointed out that due to the heterogeneous 

and unstructured nature of big data, it is challenging for traditional systems to manage 

and analyze those data effectively. Grover, Chiang, Liang, and Zhang (2018) estimated 

that unstructured data make up 95% of big data. Siddiqa et al. (2016) clarified that 

traditional infrastructures are not designed to handle the distributed computing 

functionality required to analyze the large quantity and variety of elements found in big 

data. Lee (2017) also pointed out that managing data at velocity strain contemporary data 
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center architectures which are not sufficient to sustain the volume and velocity of 

heterogeneous data elements of both personal and corporate data. Due to the velocity 

attribute associated with big data, Lee and Kang (2015) stated that contemporary 

analyzing methods such as storing data elements in a data warehouse for later analysis is 

no longer sufficient. Lee (2017) also pointed out that big data often must be processed 

immediately, or the value will be lost, such as in the case of patient monitoring or 

environmental safety-related systems. The volume and variety attributes of big data make 

it very difficult to determine the veracity of those data (Matthias, Fouweather, Gregory, 

& Vernon, 2017).  

Complexity and velocity. Identifying and categorizing big data at both velocity 

and volume poses problems for contemporary systems. Kemp (2014) articulated that 

identifying the big data engine holistically across the entire enterprise for input, 

processing, and output is significantly different than what traditional data systems have 

required. Yang et al. (2017) pointed out that metadata can provide significant benefits for 

normalizing unstructured data elements for traditional structured data systems, but this 

brings about another challenge regarding how to automate the generation of metadata for 

such data elements. The high velocity poses an additional problem of lack of storage 

capabilities for the transient data as it flows through the analyzing systems. Yang et al. 

(2017) further described that maintaining traditional storage systems with existing 

redundancy technologies, such as a redundant array of independent disks (RAID), breaks 

down at the scale needed for big data. 

The complex nature of structured and unstructured heterogeneous data elements is 

adding strain to existing analytic systems. Jin et al. (2015) articulated that data scientists 
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currently lack an understanding of the relationship between data complexity and 

computational complexity as relates to big data processing. Yang et al. (2017) further 

noted that traditional database management systems lack the scalability for managing and 

storing the unstructured elements of big data. Jin et al. (2015) pointed out that among 

industry experts, there is not a good understanding of how to deal with the complexity 

that comes from complex data structures, complex data types, and complex data patterns 

inherent with big data. When considering the velocity associated with big data, Yang et 

al. (2017) pointed out that it is clear that high-dimensional data cannot be processed 

efficiently within the time constraints required to process big data effectively. Jin et al. 

(2015) articulated that data complexity is one of the significant challenges with big data 

as compared to traditional data. Yang et al. (2017) argued that traditional algorithms 

require structured homogenous data to be effective, and they tend to break down when 

applied to the heterogeneous environment of big data. 

Data quality is also quickly becoming an issue with analyzing big data. Data 

quality is especially problematic because, as Herschel and Miori (2017) pointed out, 

organizations tend to have a false sense of confidence in those data simply because of the 

hype around big data. Yang et al. (2017) stated that due to the heterogeneity and 

complexity of big data, the accuracy, completeness, redundancy, and consistency of those 

data become very difficult to manage, thus reducing data quality. Hashem et al. (2015) 

added that the multiple sources of big data are less verifiable than was the case with 

traditional data, which calls into question the quality of some of the data. Umer, Kashif, 

Talib, Sarwar, and Hussain (2017) stated that determining the origin and transformation 

of data elements contained in big data is one of the primary challenges of big data 
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currently, and Cervone (2016) added that external data sources are less likely to have 

internal data stewards or data governance processes established to govern its use within 

the organization. 

Poor data quality can lead to ineffective decisions within an organization. Begg 

and Caira (2012) argued that poor data quality is disruptive and dangerous to a business. 

As both the variety and volume of data increase with big data from IoT devices, Lee 

(2017) pointed out that the quality of those data tends to decrease. High velocity and real-

time analysis can create a timing issue, since not all the needed data may be available 

simultaneously for a specific analysis algorithm. Janssen, van der Voort, and Wahyudi 

(2017) argued that incomplete data can result in partial analysis, which can paint an 

inaccurate overall picture. Yang et al. (2017) pointed out that the veracity attribute of big 

data calls for preprocessing to improve the quality of the data to be processed. This need 

for real-time processing, in turn, creates an additional challenge regarding the current 

processing power of existing systems. 

Volume and security. The resource requirements associated with the analysis of 

big data are stretching traditional systems to their computing limits. Yang et al. (2017) 

articulated that the processing needs for big data currently exceed the capabilities of 

traditional systems, and Lee and Kang (2015) concluded that the limitation of processing 

power poses a significant challenge for analyzing big data. Intezari and Gressel (2017) 

added that to extract information from big data, new techniques, and advanced tools are 

required. Jin et al. (2015) identified that this is a problem at the architectural level, as the 

system architecture of traditional systems lacks the operational efficiency to analyze big 

data effectively. Lee and Kang (2015) added that this problem extends to the software 
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layer as contemporary event processing engines do not support the parallel computing 

needs required for managing complex event processing associated with big data. While 

cloud computing may offer some relief, Yang et al. (2017) pointed out that it also adds 

another set of challenges, such as networking bandwidth needed for processing such large 

amounts of data. 

Security and privacy are also challenging for big data analytics. Lee (2017) 

pointed out that big data can include many elements of personal information, which 

Sivarajah et al. (2017) indicated can raise grave concerns for individuals, companies, and 

governments, such as location-based information, which is found within many forms of 

big data. Gao et al. (2018) noted that individuals disclose very personal information on 

social networks often unconsciously, and Flyverbom, Deibert, and Matten (2019) added 

that this information now allows corporations to encroach on the private lives of 

individuals at an unprecedented scale. Metcalf and Crawford (2016) added that there are 

so many publicly available data sets about individuals that they become highly 

identifiable when correlated together.  

Utilizing big data is potentially damaging to overall security and privacy. 

Herschel and Miori (2017) found that data sources that had not previously had an issue 

with privacy may end up threatening privacy once combined with other data sources in 

the big data construct. Yang et al. (2017) demonstrated that in the cloud computing 

environment, data owners have significantly less control over data confidentiality and 

integrity due to the virtualized environment of cloud systems, and Ahmed et al. (2017) 

added that security concerns are a significant detractor to faster adoption of IoT devices. 

Carbonell (2016) added that there is a big data divide between people and the information 
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collected about them through IoT, and pointed out that individuals are rarely granted 

access to their data. 

Big data require changes to traditional security controls. Lee (2017) argued that 

weak security controls around big data can lead to financial loss and reputational damage. 

Duncan, Whittington, and Chang (2017) identified that because big data originates from 

various potentially insecure sources, it is inherently insecure. Yang et al. (2017) stated 

that traditional methods of encryption break down in the high-velocity and high-volume 

environment of big data analysis, and performance and scalability start to become an 

issue when applying contemporary encryption algorithms to big data. Sivarajah et al. 

(2017) identified that ubiquitous data sources associated with big data magnify the lack 

of advanced security controls within traditional infrastructure systems. 

Privacy issues relating to big data are significant because of the predictive 

analytical power that is associated with big data. Herschel and Miori (2017) indicated that 

combining data mining and analytics with big data creates new opportunities for 

organizations to generate new data with significant predictive accuracy relating to 

specific consumers. This concept was first publicly documented in a now-famous article 

in which Target used a teenage girl’s purchase history to predict that she was pregnant 

before she informed anyone (Mai, 2016). Herschel and Miori (2017) pointed out that the 

Target incident demonstrates the new reality that organizations may be privy to 

information that consumers never intended to share with them. Baruh and Popescu (2017) 

argued that the lack of control over information has the potential to create more harm to 

consumers than the benefits that the consumer might obtain from predictive analytics, 

such as targeted marketing to meet their current needs. With the proliferation of IoT 
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sensors, social media, and other big data sources, people today are revealing very 

personal information daily, often without their knowledge or consent (Mai, 2016), an 

activity that Jain, Gyanchandani, and Khare (2016) defined as passive data generation. 

Mehmood, Natgunanathan, Xiang, Hua, and Guo (2016) added that passive data may 

easily be combined with other publicly available sources to generate new information 

about the individual, which that person may not have intended to disclose, nor had 

permitted the organization to obtain or retain. 

Ethical issues. Passive data generation leads to significant ethical issues for 

organizations that analyze big data. Herschel and Miori (2017) posited that big data 

changes the nature of ethical debates at a fundamental level by redefining the power of 

information and the extent to which free will can guide users' actions. Carbonell (2016) 

identified three distinct classes of individuals involved in big data: those who generate 

the data, those who can collect it, and those who have the expertise to analyze it. Mai 

(2016) added that the primary ethical issue is not whether to collect the information, but 

how and when it is ethically responsible for analyzing that information. Carbonell (2016) 

posited that companies gathering big data are gaining a privileged position that provides 

them with unique insights into individuals activities of which individuals themselves may 

not be aware. 

The use of big data is also raising new consumer privacy concerns. Herschel and 

Miori (2017) identified that predictive analysis of passive data can not only generate new 

insights, but it can also violate the privacy of consumers by re-identification of data sets 

that had previously been de-identified. Metcalf and Crawford (2016) pointed out that 

publicly available data can pose significant and severe risks to individuals and 
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communities when combined with other data sets. One of the first instances of this 

occurred in 2006 as Mehmood et al. (2016) described when AOL release 20 million 

search queries that had been de-identified, only to have researcher re-identify those data 

within just a few days. Metcalf and Crawford (2016) described a similar case where 

public information regarding New York taxicab rides was combined with other sources to 

identify private information about specific cab drivers, their religious practices, and even 

to track celebrities that used the cabs in question.  

Proactive efforts to obfuscate data become less effective because of big data. 

Herschel and Miori (2017) pointed out that re-identification of previously obfuscated data 

has been documented in such cases as anonymous health information shared between 

providers, and anonymous dating profiles were combined with public Facebook profiles 

and facial recognition. In both cases, the consumers thought their data were anonymous, 

but big data analytics re-identified those data revealing private information that the 

organization did not have permission to obtain. Rocher, Hendrickx, and de Montjoye 

(2019) found that 99.98% of Americans could be re-identified with any data set with as 

few as 15 demographic data elements.  Mai (2016) stated that this concept calls into 

question the perception that has been applied to consumer data privacy since the 1970’s 

that consumers provide informed, rational consent for their data to be used by the 

organization that they are providing access to their data. Herschel and Miori (2017) 

explained that organizations analyzing big data have an ethical responsibility to 

understand how to use the data while protecting the privacy and confidentiality of those 

data. 
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The fundamental concept of individual control upon which privacy is based is 

called into question by the existence of big data. Mai (2016) pointed out that when 

combining and analyzing individual data points from multiple sources reveals new 

information about individuals, and those consumers are neither able to restrict or control 

access to their data. Jain et al. (2016) defined privacy as the ability for a person or group 

to stop information about themselves from becoming known to individuals or 

organizations that they have not provided specific authorization to possess that 

information. Baruh and Popescu (2017) referred to this as privacy as an individual good 

where users are free to negotiate their acceptable levels of privacy. Herschel and Miori 

(2017) stated that when secondary data sources can be combined to reverse-engineer 

private information about consumers, as happened with both Target and AOL, the current 

concept of privacy control as dictated by consumers is not enough to truly protect 

individual privacy. 

Organizational challenges. In addition to the technical challenges around big 

data, some companies are also experiencing organizational challenges when introducing 

big data analytics. Wang and Hajli (2017) explained that to leverage big data initiatives 

effectively, organizations must be willing to address the managerial and organizational 

changes required. Kemp (2014) explained that there is a gap between the amount of data 

that organizations can gather and the ability of that organization to leverage that 

information in meaningful ways. Lee (2017) pointed out that many big data projects fail 

to achieve their designed outcomes, thus degrading management confidence in big data 

and potentially stifling further investment in big data initiatives. Kemp (2014) warned 

that demand for the rich information that arises from big data analysis is fueling a 
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bottom-up approach to data governance, which may lack sufficient legal, compliance, and 

regulatory controls. Kemp (2014) added that a top-down approach to data governance of 

big data may result in a lack of responsiveness and flexibility. 

The demand for big data analytics combined with the new skills needed to 

analyze big data properly is creating another challenge around skilled talent within the 

industry. Lee (2017) identified that because of the complexity of analyzing the 

unstructured and heterogeneous attributes of big data, there is a shortage of qualified data 

scientists to accomplish this task. Jin et al. (2015) added that contemporary data analysts 

lack a solid understanding of how to deal with the complexity found with complex big 

data structures. In a study of 430 firms with advanced analytics capabilities, Lee (2017) 

identified that approximately 66% indicated that they are not able to employ enough 

qualified analysts to extract the value from the data that they have gathered. Lee (2017) 

added that the McKinsey Global Institute estimated that an additional 140,000 – 190,000 

big data analysts will be needed just in the U.S. to meet the demand for big data analytics 

within corporations. 

The velocity, complexity, and volume of big data, as well as the decay of the 

usefulness of those data, pose challenges for disseminating the analysis of big data in 

ways that can help meet the business need. Gupta et al. (2019) argued that escalating 

information availability and visibility improves decision making, and Mahdi, Nassar, and 

Almsafir (2019) asserted that knowledge dissemination increases teamwork. Kemp 

(2014) warned that getting that information from the data analysis to the people within 

the organization who need it in a timely and efficient manner remains a significant 

challenge. Further, Yang et al. (2017) pointed out that due to the heterogeneous attribute 
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of big data, the visualization of those data in a human-understandable manner poses a 

significant challenge.  

The value of big data is hampered by the lack of big data expertise and 

governance within the organization. Matthias et al. (2017) identified that effectively 

utilizing big data to make decisions poses a considerable challenge for companies. Paul, 

Aithal, and Bhuimali (2018) stated that big data analytics rely on fuzzy logic and 

inductive statistics, and Matthias et al. (2017) explained that improper or incomplete 

analysis of big data can lead to misinterpretation of those data, and lead to incorrect 

business decisions. Herschel and Miori (2017) added that because big data is by 

definition obtained from multiple sources, and those sources are not always known or 

validated, those data sets are often incomplete or inaccurate. To be able to access the 

benefits from the extreme amounts of data available to them, Ahmed et al. (2017) 

articulated that companies will need to develop and implement new platforms for 

analyzing the extreme volumes of data generated by connected devices. 

Opportunities for decision-making. One of the more important themes in the 

literature involved how big data can affect decision making. These decision-making 

opportunities include the IoT, the impact of big data on decision making, and big data 

analytics. Each of these are described in the following sections. 

IoT and big data. One of the primary contributors in the context of big data is the 

IoT. Lee (2017) pointed out that in 2016, 5.5 million new devices were connected each 

day to the Internet to share, process, and analyze information, and that number was 

expected to grow to 20.8 billion by 2020. Ahmed et al. (2017) stated that the number of 

human beings globally has now been surpassed by the number of connected devices, and 
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the overall number of connected devices was expected to reach 50 billion by 2020, and 

Herschel and Miori (2017) added that the number of network connections was expected 

to reach 18.9 billion, which amounts to approximately 2.5 connections for every person 

on earth. The Organisation for Economic Cooperation and Development estimated that 

by 2020, the average family of four would have 50 internet-connected devices 

(Government Accountability Office, 2017). Bilal, Khalid, Erbad, and Khan (2018) 

warned that IoT data analysis is driving new challenging requirements for traditional 

systems due to the high degree of mobility, real-time data analytics, and extreme latency 

sensitivity. 

One of the results of the proliferation of IoT devices is the phenomenon of 

merging the physical and virtual worlds. Because of the amount of data generated by IoT 

devices, Paul et al. (2018) explained that some data scientists claimed that big data 

provides a direct link between cyber and physical systems. Dourish and Cruz (2018) 

utilized the term datafication to describe the transformation of physical, social action into 

quantifiable digital data, which enables real-time predictive analytics. Flyverbom et al. 

(2019) added that datafication implies that social lives have a digital counterpart in the 

form of digital traces left by merely participating in social networking. Galliers, Newell, 

Shanks, and Topi (2017) articulated that one of the critical issues with this collision of 

physical and virtual worlds is the fact that the minutia of everyday life suddenly becomes 

part of big data that is then algorithmically assessed without further human interaction, 

often without the individual's knowledge or permission. Herschel and Miori (2017) added 

that the analysis of this minutia leads to organizations generating new insights into 

individual consumer's behaviors and activities, often without the consumer's consent. 
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The amount of new information generated daily continues to increase. Lee and 

Kang (2015) explained that extreme amounts of data were already being generated even 

without considering the IoT, as evidenced by Google which was generating about 25 

petabytes of data daily, and Sivarajah et al. (2017) highlighted that estimates are that 

globally 2.5 quintillion bytes of data are generated per day. Bughin (2016) pointed out 

that various reports predict that data creation would continue to increase by between 40% 

and 60% per year. Herschel and Miori (2017) stated that projections indicated that the 

total volume of data would increase to 40 zettabytes by 2020.  

Analytics of those vast data sets can have significant predictive power. The 

Government Accountability Office (2017) identified that new big data analytics 

technologies would be capable of extracting hidden patterns and correlations from these 

extensive data sets. Ahmed et al. (2017) stated that combining IoT and big data analytics 

promises to improve decision making within businesses significantly. Carbonell (2016) 

described the power shift that arises as organizations start utilizing big data to predict 

future events and even intervene before those events are set in motion. Chauhan and 

Sangwan (2017) added that the advantage of big data over traditional data analysis is 

better accuracy, which leads to higher confidence in data-driven decisions. This 

confidence comes because, as Wang and Hajli (2017) identified, big data analytic 

systems provide insights into hidden correlations between data elements that were 

previously impossible to determine with traditional data analytics tools. The Government 

Accountability Office (2017) predicted that businesses that could analyze data from IoT 

devices could build competitive advantages over their competition. In the manufacturing 

industry, for example, Popovič, Hackney, Tassabehji, and Castelli (2018) identified 
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multiple case studies that revealed that big data analytics has already improved 

manufacturing operations due to the insights gained from that analysis. Baruh and 

Popescu (2017) highlighted one example of this change is the fact that automobile 

insurance companies have leveraged big data from GPS sensors to shift from a risk-based 

model to a habit-based model using real-time monitoring of individual consumers. 

Impact on decision-making. Harnessing predictive analytics with big data 

provides significant competitive advantages. Intezari and Gressel (2017) articulated that 

the success of an organization is primarily affected by the competitive ability of 

managers to make strategic decisions in the face of uncertainty and ambiguity. Braganza, 

Brooks, Nepelski, Ali, and Moro (2017) predicted that the economic value of 

organizations could be elevated by effectively utilizing the deeper insights available from 

big data. Cao et al. (2019) found that by improving information processing capabilities, 

the decision-making effectiveness within the firm increased and created competitive 

advantage, especially when those capabilities were rare, valuable, and inimitable. Grover 

et al. (2018) agreed and clarified that big data analytics were likely inimitable because 

they are so closely tied to the decision-making culture and leadership within the firm. The 

Government Accountability Office (2017) added that decision making could be enhanced 

by analyzing aggregated data from IoT devices. Popovič et al. (2018) added that the 

distribution of big data analytics within organizations had a direct effect on improved 

business decisions within the organization.  

Competitive advantage from predictive analytics derives from the ability of 

organizations to quickly adjust to trends uncovered by those analytics. Ahmed et al. 

(2017) explained that companies can use big data analytics to drive consumer behavior 



39 

 

by watching for real-time trends, such as an empty parking lot, and reacting in real-time 

to promote specials that bring customers into the store. The Government Accountability 

Office (2017) suggested that advanced data analytics would be able to draw conclusions 

automatically from various discreet data sources what used to require human 

intervention, such as suggesting alternative routes in real-time due to traffic patterns, 

weather, and other conditions. Lee and Kang (2015) further added that the availability of 

personal location information from big data, such as real-time commuter information, 

was projected to save $600 billion annually by 2020.  

Big data analytics. Big data analytics and effective decision making are closely 

correlated. Braganza et al. (2017) articulated that effective analysis of big data enabled 

more evidence-based decisions, while Wamba et al. (2017) added that big data enabled 

data-driven decision making. Paul et al. (2018) further clarified that analyzing those data 

had become a critical need for every business sector. Janssen et al. (2017) stated that 

effectively analyzing big data had the potential to change the way that organizations 

make decisions fundamentally. Intezari and Gressel (2017) articulated that due to the 

uncertainty and ambiguity related to strategic decision-making organizations needed to 

reconfigure and reassess their knowledge base continuously. Zakir et al. (2015) observed 

that companies that oriented their decision making around fact-based data analytics 

outperformed their counterparts in the market. According to Jin et al. (2015), big data has 

had a significant impact on almost every business sector and significant industry already, 

and to remain competitive, Lee (2017) stated that all companies would need to build big 

data expertise. Günther, Rezazade Mehrizi, Huysman, and Feldberg (2017) pointed out 

that there is quite a bit of evidence currently that big data can have a significant impact 
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on an organization's business models. For organizations to extract value from big data, 

Günther et al. (2017) stated that it is critical for them to continually realign work 

practices, organizational designs, and stakeholder interests.  

Organizations are still struggling to understand how to effectively utilize big data 

analytics to guide real-time decisions. According to Patel et al. (2017), big data was the 

most trending contemporary topic in the computer science field. Wang et al. (2016) 

pointed out that between the years 2000 and 2016, there were a total of 7,121 

publications relating to big data, including 2,924 articles published in over 1,000 different 

journals. Matthias et al. (2017) discussed multiple case studies of organizations utilizing 

big data analytics to provide evidence that significant operational insights are now 

obtainable from big data that were previously unavailable from traditional analytics. 

Janssen et al. (2017) posited that the real value of big data is found in its potential to 

improve decision quality. Gandomi and Haider (2015) identified that one of the most 

prolific uses of big data is predictive analytics, where data analysts use a variety of 

techniques to attempt to predict future outcomes based on patterns found within big data. 

Janssen et al. (2017) warned that care must be given, however, since decision quality may 

be degraded if the decision-maker does not understand the relationships between the 

various data elements used as part of the analysis. 

Organizational and employment impact of big data. It is not yet clear how to 

most effectively organize to best utilize big data within the organization. Günther et al. 

(2017) discussed the fact that scholars were actively debating what the most appropriate 

organizational model would be to most effectively take advantage of big data analytics. 

According to Janssen et al. (2017), the collection and processing of big data were quite 
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often accomplished across departments and even across various companies, requiring 

collaboration and partnerships that do not exist with traditional data. Braganza et al. 

(2017) added that this lack of role clarity across the organization was inhibiting the 

ability to use required big data resources efficiently.  

The cross-departmental collaboration required for big data to be successful causes 

challenges for contemporary firms. Because of the value and direct relationship between 

big data analytics and improved quality of decisions within the organization, Popovič et 

al. (2018) identified that power shifts had been documented within organizations that are 

effectively utilizing big data analytics to make fact-based and real-time decisions. 

Braganza et al. (2017) added that big data processes required new roles and organizations 

to interact, which had not previously needed to work together. While there was no 

consensus regarding the impact of big data analytics from IoT on employment, the 

Government Accountability Office (2017) predicted that it was likely there would be a 

combination of both new job creation and job loss.  

The need for new organizational behavior also brings the need for new 

governance processes. Ahmed et al. (2017) articulated that integrating and analyzing big 

data were revolutionizing business processes by turning big data into valuable insights 

not available with traditional technology. Janssen et al. (2017) added that the quality of 

decisions from big data was not influenced solely by the amount of data, but more 

importantly, by how those data were collected and processed. Matthias et al. (2017) 

pointed out that without appropriate analysis, it did not matter that large amounts of data 

were collected. De Mauro, Greco, Grimaldi, and Ritala (2018) agreed that companies 

needed to acquire the right expertise to deal with these technological advances. As stated 
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by Ahmed et al. (2017), value was extracted from big data when information was 

transparent and usable to the organization. 

Cloud computing. The adoption of cloud computing capabilities enhances the 

adoption of big data within organizations. Hashem et al. (2015) articulated that big data 

and cloud computing are conjoined technologies.  Because IoT devices are generating 

much of the data, Marjan et al. (2017) highlighted that cloud computing is expected to 

provide lightning-fast analysis of fast-moving data. Nadjaran Toosi, Sinnott, and Buyya 

(2018) added that cloud computing systems are the preferred architecture for hosting 

these data-intensive applications. Although big data systems are lagging behind IoT 

development, Marjan et al. (2017) clarified that the two should be developed 

simultaneously due to their inter-dependence.  Ahmed et al. (2017) added that combining 

IoT with big data analytics allows for the processing of data closer to the source of that 

data. 

Cloud computing architecture provides the foundation for big data analytics. 

According to Zakir et al. (2015), cloud storage systems offered capabilities that were not 

available in their on-premises counterparts, such as the pay-as-you-go payment model, 

the elasticity of capacity, and risk mitigation through business continuity and long-term 

retention. Varghese and Buyya (2018) pointed out that data centers house most systems 

that encompass cloud computing, yet Stergiou, Psannis, Kim and Gupta (2018) 

highlighted that the intensive computations required to analyze big data, and the mass 

storage needed to support it, were often inefficient even in contemporary cloud systems. 

According to Marjan et al. (2017), big data analytics required the same or faster-
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processing speed of traditional analytic systems at similar or less cost and operating on 

much more volatile data sets. 

Contemporary cloud systems are still lagging behind the requirements for big data 

analytics. Nadjaran Toosi et al. (2018) identified that one of the most challenging scaling 

issues relating to contemporary data analysis solutions is the location of the data relative 

to the computing resources, with transfer latency of data often exceeding the 

computational analysis time.  Bilal et al. (2018) added that the IoT is creating new 

challenges for cloud architectures when dealing with data systems due to the latency 

associated with these large data sets. Stergiou et al. (2018) suggested that significant 

changes to the hardware and software architecture will be needed in support of a new 

generation of cloud services to support the real-time analytics of data from the IoT. 

Varghese and Buyya (2018) suggested that these changes include the decentralization of 

data center cloud services by incorporating edge devices in cloud computing architecture. 

Most contemporary big data cloud solutions assumed a centralized data center cloud 

services model, but Varghese and Buyya (2018) suggested that soon, these architectures 

would need to include the use of edge computing such as cloudlets, fog computing, and 

mobile cloud computing. 

IT governance. Without proper governance practices, technological solutions to 

big data problems will not be enough to solve the current problems. Watson and 

McGivern (2016) noted that business intelligence initiatives had a low chance of success 

without governance practices that provide access to high-quality, secure, and well-

modeled data. Braganza et al. (2017) added that extracting value from big data requires 

not only the appropriate technological solutions but also requires that big data analysis 
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becomes part of the fabric of an organization. According to Alreemy, Chang, Walters, 

and Wills (2016), IT Governance played a critical role in creating this fabric by 

establishing a link between the business and IT that has the potential to provide a 

competitive advantage by minimizing expenditures and making better use of time. 

Repeatable and efficient processes are required to extract value from any data 

initiative. Wilkin, Couchman, Sohal, and Zutshi (2016) articulated that IT governance is 

the set of systems that direct and control IT operations to meet stakeholder expectations 

regarding financial and environmental operations. Alreemy et al. (2016) defined IT 

Governance as the process that is established to control investment in IT and to guide 

those investments toward achieving business objectives. Wu, Straub, and Liang (2015) 

noted that efficient utilization of IT within an organization requires effective IT 

governance. Braganza et al. (2017) stated that the repeatability of big data processes 

requires reliable and sustainable business processes. 

Effective IT governance is critical for IT organizations to effectively meet 

stakeholder expectations in all areas of information systems. Wu et al. (2015) stated that 

the single most critical predictor of value from an IT organization was an effective IT 

governance process. Braganza et al. (2017) suggested that effective business processes 

could release value from big data initiatives that have, as of yet, been challenging to 

reproduce consistently. Wu et al. (2015) identified that IT Governance was critical due to 

the significant investment that is generally associated with IT within an organization. 

Mahdi et al. (2019) added that the processes within an organization that create, share, and 

use knowledge were highly critical strategic capabilities that create a competitive 

advantage to the organization. 
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IT organizations need to implement formal IT governance practices to align 

outcomes with stakeholder expectations. According to Alreemy et al. (2016), the most 

important critical success factor for IT governance is the alignment between the business 

and IT. Wilkin et al. (2016) noted that alignment between IT and business initiatives was 

the most widely realized benefit of IT governance processes. Alreemy et al. (2016) 

articulated that appropriately implemented IT governance practices could mitigate 

business risks. Wilkin et al. (2016) added that business alignment and risk mitigation 

were the primary driving forces for implementing formal IT governance practices.  

Smaller organizations are less likely to formalize their governance practices than 

their larger competitors. Although both smaller and larger organizations understand the 

strategic need for IT governance, Wilkin et al. (2016) noted that larger organizations 

were more likely to implement formal IT governance practices than smaller 

organizations. Wilkin et al. (2016) added that smaller organizations faced significant 

challenges in managing technology assets so that they could sustain a competitive 

advantage. Begg and Caira (2012) also added those smaller companies tended to hold the 

belief that they must first implement better overall IT governance before they can begin 

implementing data governance.  

Leadership involvement with IT governance of big data. Contemporary IT 

leaders lack strategies for managing big data initiatives. Braganza et al. (2017) noted that 

there did not appear to be evidence for the assumption within the literature that processes 

for managing big data exist and that resources are well managed. Mikalef et al. (2017) 

added that research had focused on big data technologies for data analysis, storage, and 

visualization, but there has been a gap of research regarding how organizations would 



46 

 

need to adjust to embrace these technological innovations. Braganza et al. (2017) stated 

that senior leadership needed processes that they could implement to extract strategic 

value from big data. When addressing the challenges associated with big data analysis, 

Begg and Caira (2012) noted that processes need to be very flexible and comprised of 

various roles, decision areas, and assignments of specific responsibilities, such as 

technical data steward, business data steward, executive sponsor, and other such roles. 

Braganza et al. (2017) articulated that the value of big data would continue to be limited 

until businesses could deliver repeated benefits from within the same organization over 

time and further clarified that Big data processes needed to be flexible enough to change 

due to variations in both internal and external forces. 

Data governance. In addition to IT governance, organizations also require 

specific data governance practices to effectively manage their big data initiatives. To be 

able to extract value from raw data, Song and Zhu (2016) noted that organizations require 

a well-defined, systematic approach to governing their data. Mikalef et al. (2017) 

clarified that Data Governance was the term used to describe these activities, which 

included roles, structures, and decision mechanisms around IT resources. However, Begg 

and Caira (2012) articulated that there was no evidence to date of a standard 

implementation framework for data governance. Hashem et al. (2015) noted that policies, 

principles, and frameworks around how big data are used and leveraged within an 

organization were posing enormous challenges for those organizations. Posavec and 

Krajnovic (2016) recognized that the lack of formal data governance processes was one 

of the primary reasons that organizations failed to utilize their data effectively. 
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The governance of big data is critical to the success of any big data initiative. 

Cervone (2016) articulated that while data governance was crucial in most environments, 

it was critical for big data, and organizations could not add it as an afterthought. Wang, 

Kung, and Byrd (2018) identified that the governance of big data refers to the how-to 

aspects of harnessing the data within the organization. Cheng, Li, Gao, and Liu (2017) 

added that data governance referred to the series of policies that an organization used to 

define cloud data strategy, management, operations, and optimization. Chrisman et al. 

(2018) further clarified that governance referred to both formal and informal rules, 

practices, and processes that were implemented to direct and control behavior in a 

consistent manner throughout the organization. Wang et al. (2016) described information 

fusion as the merging of information from various heterogeneous sources toward a 

consistently accurate and useful representation. They also clarified that a clear strategy 

was required for this process to be successful. 

Effective data governance can lead to improved business outcomes. When 

organizations implement governance well, Wang and Hajli (2017) identified that big data 

initiatives had the potential to provide insights into hidden data correlations for 

meaningful decision making. Wang et al. (2018) added that proper data governance 

addressed the standardization, accuracy, and availability of those data. When the 

organization implemented governance poorly, Wang and Hajli (2017) noted that 

organizations experienced substantial financial costs for little value. By effectively 

applying governance principles to data governance initiatives, Wang et al. (2018) found 

that organizations could better meet organizational goals with lower costs and shorter 
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timelines. Mahdi et al. (2019) added that to be successful at all, organizations must 

methodologically exploit their knowledge assets. 

Effective big data governance practices are not easy to implement but can have a 

significant impact on the overall business. Hashem et al. (2015) noted that adopting big 

data governance practices that provide a balance between value creation and risk 

mitigation was imperative to organizations. Mahdi et al. (2019) found that knowledge 

management practices within an organization were significantly and positively related to 

sustainable competitive advantage. Cheng et al. (2017) added that big data governance 

was critical to ensure that data are accurate, shared appropriately, and protected per 

company policies. Al-Ruithe, Benkhelifa, and Hameed (2016) further added that data 

governance was also vital to demonstrate the ability to manage and monitor data in the 

cloud environment where the organization does not control the systems and services. Due 

to the high volume and velocity of big data, Siddiqa et al. (2016) stated that key 

governance elements such as integrity, auditability, accountability, stewardship, and 

change management become extremely challenging. 

Effective data governance within the IT organization can help elevate the IT 

organization to more strategic alignment with the rest of the business. As more 

organizations rely on data as a critical differentiating asset, Watson and McGivern (2016) 

identified that governance around the data becomes more critical to the success of the 

company, which in turn shifts IT and business intelligence into a more strategic 

alignment with business initiatives. Shao (2019) added that alignment between overall 

information systems strategy and business strategy is a critical precursor to overall 

profitability and competitive advantage. Data governance refers to the people, processes 
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and technologies that are used to leverage data to create value for the organization by 

managing, protecting and using data (Watson & McGivern, 2016), as well as the control 

and authority over data-related rules and accountability of individuals and systems 

accessing and utilizing those data (Hashem, et al., 2015).  

Small companies are slower to recognize the strategic value of data as compared 

to their larger competitors. Begg and Caira (2012) found that small companies did not 

appear to have the same understanding of the inherent value of data as to their larger 

counterparts. Wilkin et al. (2016) added resource constraints in smaller organizations 

tended to limit the organization's ability to be competitive in areas such as IT 

competencies, knowledge management, and innovation. Begg and Caira (2012) found 

that many small companies still viewed data as a means to an end, as opposed to an asset 

with inherent value, and they were hesitant to undertake data governance practices out of 

concern for inappropriate data retirement or other possibilities for disruption of live data 

needed for operations. 

Small businesses face larger hurdles to effectively utilizing big data than larger 

organizations. Begg and Caira (2012) predicted that data governance would become an 

increasingly critical issue for small businesses as vendors and providers forced them into 

a cloud business model. When considering the cost of making decisions from bad data, 

Watson and McGivern (2016) stated that the cost of data governance was becoming a 

foundational cost of doing business in today’s world. However, according to Wilkin et al. 

(2016) IT governance competencies were limited in smaller organizations because of 

their reduced capacity to identify, assess, and acquire IT talent, knowledge, and skill set. 
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To remain competitive, Begg and Caira (2012) added that small businesses would soon 

be forced to adopt data governance initiatives. 

Roles in big data governance. The lack of skilled and knowledgeable personnel 

is of even greater concern than the technical challenges surrounding the adoption of big 

data within an organization. Technology is actively being developed to fill the gaps 

identified in big data analysis. However, Song and Zhu (2016) pointed out that there was 

a recognized shortage of people who can think critically about big data and who knew 

how to use these new technologies to extract value from those data. Zakir et al. (2015) 

added that this required a skill set that was new to most IT organizations. One such new 

role in the industry was the Data Scientist, which Song and Zhu (2016) identified as an 

emerging role where people were tackling these big data challenges and was considered 

one of the top 25 jobs in America in 2016. However, Hu, Luo, Wen, Ong, and Zhang 

(2018) identified that there was no agreed-upon definition of data scientist across 

different organizations and Gardiner, Aasheim, Rutner, and Williams (2018) warned that 

it was challenging to categorize job functions across different companies based only on 

job title due to the very loose interpretation of that role at each company. De Mauro et al. 

(2018) pointed out that organizations were still defining the job description of Data 

Scientist, and this role currently had unrealistically high expectations for managing big 

data. De Mauro et al. (2018) added that extracting value from big data required more than 

a single role working together across multiple disciplines. 

Because big data initiatives intersect with so many disciplines it is a challenge to 

find all of the needed skills in a single person or role. Gardiner et al. (2018) found that 

data scientists were required to possess a wider variety of skills than traditional 
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technologists due to the multi-faceted nature of this new role. De Mauro et al. (2018) 

stipulated that the main focus of the role was around the data itself, and the associated 

analytical methods for transforming those data into usable insights. However, in their 

analysis of contemporary, big data job descriptions, Börner et al. (2018) indicated that 

soft skills such as collaboration, communication, and writing and problem-solving were 

all required for the role of a data scientist. Chen and Zhang (2017) also found skills 

relating to social sciences among the most common qualifications listed for big data 

roles. Gardiner et al. (2018) identified that contemporary data scientists required both 

analytical and soft skills. 

Organizations are currently scrambling to identify individuals with this unique 

confluence of skills. Börner et al. (2018) identified 69,405 jobs posted for data scientists 

or data engineers within the six years between 2010 and 2016.  Gardiner et al. (2018) 

stated that McKinsey previously projected that by 2018, there would be a 50% - 60% gap 

between the supply and demand for big data analytics talent. As De Mauro et al. (2018) 

pointed out, the deep analytical expertise required of most data scientists was not 

requisite for maintaining the real competitive advantage expected from big data. Gardiner 

et al. (2018) added that the skills required to do so include such diversity as mathematics, 

probability, statistics, programming, data management, data visualization, data mapping, 

to name just a few. 

Relationship of the Study with Previous Research 

Existing literature on the topic of big data primarily focuses on two overarching 

topics: the analytical value of big data and the challenges associated with utilizing big 

data as a source of information. These two high-level themes categorize the various 
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studies and other literature described in the previous sections. The literature regarding 

data governance does not apply solely to big data, but rather the available studies focus 

on the benefits of data governance in general terms and on the benefits of data 

governance in general. This study adds to the body of research by focusing specifically 

on the implementation of traditional data governance principles when utilizing big data as 

the data source for analytics for decision making within an organization. 

Transition and Summary 

In this section, I defined my research by introducing both the problem and 

purpose statements and introduced my research question and the supporting interview 

questions that I used in the interview process. I defined different terms that will be 

referenced in this study and explained the limitations, delimitations, and assumptions that 

apply to this study. I further demonstrated that big data analytics brings with it both high 

expectations for a positive impact on business decisions as well as significant challenges 

in the overall governance of those data. In the review of the professional and academic 

literature, I described how Galbraith’s work on the OIPT set a solid foundation for the 

study of big data in general. I introduced the OIPT and explained how this theory was 

utilized to guide this study. The literature review provided an overview of big data in 

general, as well as some of the critical challenges that arise from big data analysis. I 

discussed the topics of security, the IoT, cloud computing, organizational impacts of big 

data analysis, and IT governance. The literature review culminated with a discussion of 

data governance and its implementation within mid-size organizations. The following 

section identifies the method for performing the study, including the role of the 
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researcher, ethical considerations, and other vital elements and details around the 

application of the study itself. 
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Section 2: The Project 

This section of the paper contains information about the participants, sample, 

population, and research methodology. I provide justifications for my decisions regarding 

the design of the study and address ethical considerations. I also describe my approach 

for data collection and analysis. 

Purpose Statement 

The purpose of this qualitative multiple case study was to explore big data 

governance strategies employed by data scientists to provide a holistic perspective of 

those data for making decisions. The population for this study was data scientists 

employed in three mid-market companies in the greater Salt Lake City, Utah area who 

have strategies to govern big data. The findings from this study could potentially affect 

social change by creating additional jobs in mid-market companies and enabling small 

and medium-size companies to better cater to the needs of their specific customers. Job 

creation would be accomplished through increased capability of these companies to have 

a better understanding of data which they gather and use to make strategic and 

operational business decisions daily. This increased and more targeted information could 

lead to increased profitability for these mid-market companies, which in turn could lead 

to increased jobs. Customers would benefit because local small and medium-sized 

businesses would now be able to customize their offerings to specifically meet the needs 

of their customers in a similar way that large companies with much more extensive 

research & development and marketing budgets do. 
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Role of the Researcher 

Qualitative research dictates that the researcher is the principal data collection 

instrument, and as such, the researcher maintains as essential a role in the research as the 

participants themselves (Draper, 2015). As the primary instrument for data collection, the 

researcher is not only an assessor or observer but also the primary analyst for 

interpretation and synthesis of data (Cook et al., 2016). My role as the sole researcher in 

this study was to perform interviews, gather data, and analyze and present those data in 

an unbiased manner. Kelly (2017) explained that in this role, it is crucial to identify 

experiences, history, and knowledge to the reader of the study to uncover and disclose 

any biases. This is essential so the reader can better comprehend my biases, as well as 

where I can apply my expertise within the context of the study. Since 1988, I have 

worked in various roles within IT, with much of my early career as a developer and 

enterprise architect. In the latter part of my career, I have worked as Chief Information 

Officer in various regulated industries, and have focused on process improvement and 

interpersonal management of technology employees in various roles within IT. My 

experience has not been with big data or data analytics specifically, although I have 

managed teams responsible for data analysis. I consider myself unbiased concerning the 

governance of big data. I have spent my entire professional career in the same general 

geographical area where I conducted this study. As data from multiple sources were 

analyzed, it was my responsibility to search for similarities and differences among those 

data while making sure to avoid any bias.  

To mitigate bias, the researcher must strive to be reflexive throughout the study, 

continuously asking if the results are consistent with the research question and whether 
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the researcher has conducted the analysis fairly (Kelly, 2017). The researcher must keep 

records and transcriptions of interviews, as well as documentation of their feelings and 

impressions from interview sessions (Kelly, 2017). While performing interviews, I kept 

this in mind and continually sought fairness as I conducted the interviews and listened to 

responses. I thoroughly documented my feelings and impressions as well as respondents’ 

answers. I also employed member checking to ensure that I accurately interpreted 

participants’ responses. I watched the body language of participants to identify any 

questions that may have made them uncomfortable and to attempt to identify any areas of 

potential participant bias. 

Studies involving human participants require ethical approval (Kelly, 2017). Ethical 

considerations require that no harm will come to participants as a result of their 

participation in this research (Kelly, 2017). The Belmont Report outlines ethical 

principles and guidelines for protecting human subjects while conducting research, 

explicitly identifying beneficence, justice, and respect for all persons in the study (U.S. 

Department of Health & Human Services, 1979). I achieved beneficence, justice, and 

respect for all participants by treating all participants fairly and with respect and both 

clarifying and protecting information they provide to me as part of this study. I adhered to 

the process outlined in the ethical research section of this study.  

Mitigating bias during data collection includes carefully planning interactions with 

participants. An interview protocol can assist in the development of an inquiry-based 

conversation (Castillo-Montoya, 2016). The researcher should make the process of data 

collection as explicit as possible by establishing a formal interview setting (Ponelis, 

2015). Semi-structured interviews provide a means for the researcher to ask specific 



57 

 

questions to elicit open-ended responses that allow participants to guide the dialogue in 

ways that the researcher could not have anticipated a priori (Brown & Danaher, 2019). 

Interview protocol should be structured to ask multiple participants the same starting 

questions as a means to maintain a steady target for data saturation and mitigation of bias 

(Fusch & Ness, 2015). Because interactions between the researcher and participants add 

value to the research, the researcher can strategically arrange the interview setting so 

participants feel invited or authorized to share interpretive knowledge that would not 

result otherwise (Malli & Sackl-Sharif, 2015). I worked to ensure that any potential 

biases were mitigated by following a planned interview protocol (see Appendix B) and 

watching for participant reactions throughout the semi-structured interview process. 

 Semi-structured interviews provide a setting for thoughtful reflexivity regarding 

the overall research question (Brown & Danaher, 2019). The research design must link 

the research question and overall purpose to processes for data collection and analysis to 

draw conclusions from those data (Ponelis, 2015). The data collection protocols include 

the types of people who will be interviewed, documents that must be analyzed, and 

observations that the researcher must make (Yin, 2017). While the researcher should 

make the data collection process as explicit as possible, a semi-structured approach is 

extremely valuable to allow for the exploration of new information that will arise during 

the interview process (Ponelis, 2015).The interviewer needs to ask well-structured 

questions while listening to and interpreting answers to find a balance between passively 

listening and overdirecting the interview (Ponelis, 2015). I followed a semi-structured 

interview approach by asking questions as outlined in Appendix B and interacted with 

participants by asking for more elaboration when responses involved new data related to 
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the research question (see Appendix B). I maintained field notes, including observations 

during the interview process. 

Participants 

Participants of qualitative studies are typically selected based on their 

involvement with the topic being studied based on the research question (Fink, 2000) and 

their ability to provide detailed descriptions regarding the study topic (Draper, 2015). 

Well-informed interviewees can provide insights into history and decision-making that 

influence organizations to end up with models that are currently in use within their 

organizations (Yin, 2017). Participants were individuals who were employees or 

contractors working within the partner organizations and had intimate knowledge of data 

management and analytical strategies of the organizations, had been in a data scientist 

type of role for a minimum of 5 years, were data analytic solutions architects at these 

companies, and had no recurring working relationship with me.  

A gatekeeper can help the researcher by providing access to key individuals 

within an organization (Fusch & Ness, 2015).  I used a gatekeeper within each 

organization to assist in identifying participants and selecting appropriately private 

locations for interviews. I met with these individuals to discuss the research question and 

overall strategy for completing this study, and we reviewed criteria for participation 

together. I used these interactions to learn about the organization as well as help clarify 

participant criteria, and I selected participants that met the criteria for this study based on 

this information. I then directly contacted participants to obtain their informed consent 

and schedule interviews with them.  
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It is critical for the researcher to both build trust and to establish a rapport with 

participants when using a semi-structured interview process in a qualitative method 

(Brown & Danaher, 2019). Rapport comes as the researcher and participant move in and 

out of empathetic moments during the interview process (Prior, 2017).  Response bias 

can arise from participants when rapport leads to behaviors that support the researcher’s 

perceived beliefs (Latkin et al., 2016).  I did not select participants with whom I had a 

prior relationship to mitigate response bias, but rather, I established rapport with 

participants by learning about the culture of their organization before meeting with them 

and adapting to their dress and behavioral standards. I used video conferencing 

technology to allow the participants to choose a location for the interviews that 

simultaneously allowed the participant to be in a comfortable location while still 

maintaining their privacy. After obtaining their agreement with the informed consent 

form, I engaged with the participants and briefly explained to them my background, 

history, and experience with data governance and big data. I did not go into too much 

detail to mitigate any potential bias. Finally, I ensured that all participants understood that 

my role was to gather information and not to judge the validity of their architectural 

decisions.  

Research Method and Design 

Research Method 

A qualitative method was most appropriate for this study. The central defining 

capability of the qualitative approach is to answer how and why questions (Ponelis, 

2015). These studies are particularly applicable to applied disciplines since the findings 

are more easily applied to improve specific processes, programs, or problems in practice 
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(Ponelis, 2015). Qualitative studies require the researcher to possess both emotional 

maturity and solid interpersonal skills to recount the experiences of the participants 

accurately in their own words (Collins & Cooper, 2014). Qualitative studies are most 

useful when investigating how well people perform something (Kelly, 2017). Because 

this study required an in-depth exploration of the strategies and methods employed by 

data scientists, a qualitative approach was most appropriate.  

Quantitative studies are focused more on correlations and trends than on 

providing explanations or reasons (Kelly, 2017). Quantitative studies are used when the 

study intends to predict outcomes or explain theories which are based on cause-and-effect 

relationships and to determine the correlation between variables (Gehman et al., 2018). 

Quantitative studies are not as capable of providing explanations for processes (Kelly, 

2017).  Since there was no hypothesis associated with this study, a quantitative approach 

was not the most appropriate methodology. If this study had been investigating 

correlations between big data analysis and specific outcomes, then a quantitative 

approach may have been more appropriate. I considered using a quantitative approach but 

deemed a qualitative approach to be more appropriate due to the research question for 

this study.   

Mixed method studies are completed by using both qualitative and quantitative 

data in the same study (Halcomb & Hickman, 2015). A researcher could employ a mixed-

method design by performing the qualitative and quantitative methods of research in 

either a sequential or concurrent process (Imran & Yusoff, 2015). A researcher should 

ask themselves whether the mixed-method approach will add more value than using a 

single research method (McKim, 2017). Adding a quantitative design element to my 
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study would not have yielded any additional insights into the research question since 

there are no statistical or quantitative elements to be measured and no hypothesis to be 

tested. Since a quantitative approach alone was not appropriate for this topic then adding 

a quantitative element by employing a mixed-method approach was also not 

inappropriate for this study. 

Research Design 

I used a multiple case study methodology for this study.  A case study 

methodology allows for a deep examination of an issue or phenomenon in its natural 

setting (Arseven, 2018). Because this study involved an exploration of strategies used 

within organizations that are using big data for decision making, this design approach 

was warranted. This design methodology is most useful when situations or phenomena 

are investigated for exploration to gain specific insights or knowledge (Elman, Gerring, 

& Mahoney, 2016). The case study methodology also allows the researcher to observe in 

person the operation of the governing body to witness the various attributes of the 

successful data governance program in the mid-market organization. This opportunity for 

personal observation was critical to this study because considerable research has been 

conducted regarding information technology governance programs but there is no 

agreement on what specific attributes constitute an effective information technology 

governance program (Alreemy et al., 2016). It was important to use the case study design 

to personally observe and document the strategies used by data scientists using big data. 

A case study design is appropriate when the study is intended to be inductive and 

attempts to make broad generalizations (Kelly, 2017). A multiple case study tends to be 

more generalizable than a single case study would be (Gehman et al., 2018). Because this 
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study was investigating different strategies used by data scientists a multiple case study 

was more appropriate for uncovering strategies that could be generalized to other 

organizations. 

An ethnographic design would require embedding the researcher in a cultural 

context to observe specific behaviors of a group of people in a specific cultural context 

(Mannay & Morgan, 2015; Watson, 2018). The researcher becomes part of the 

participant group in ethnographic design (Kassan et al., 2018). An ethnographic approach 

would have been appropriate if this study intended to identify the specific culture, norms, 

or customs of data scientists.  Since I studied the strategies used by data scientists and not 

their norms or customs an ethnographic design was not appropriate. 

The phenomenological design focuses on how the participants live through, 

interpret, or experience the topic under research (Adams & van Manen, 2017; Sousa, 

2014).  A phenomenological design is intended to explore how the participants make 

sense of a phenomenon (Adams & van Manen, 2017). Since this study was not 

investigating the perceptions of participants, the phenomenological approach was not 

appropriate. In this study, I investigated the strategies employed by data scientists and I 

was not looking specifically at their reaction to a specific phenomenon. The 

phenomenological design was not appropriate for this study. 

Data saturation is achieved when no new information is being uncovered, when 

there is enough information to replicate the study, and when further coding is not feasible 

(Fusch & Ness, 2015; Lowe, Norris, Farris, & Babbage, 2018).  Data saturation means 

justifying that the amount of data obtained is not more or less than the data needed for 

research (Saunders et al., 2018). To achieve data saturation, I needed to interview 
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participants until no new information was being revealed. Data saturation was determined 

by assessing the responses as I received them and adjusting my questions in real-time to 

identify any possible new information. Data saturation was achieved by interviewing all 

willing participants within the multiple organizations that were involved in the process of 

data analysis concerning big data. 

Population and Sampling 

This qualitative case study’s population consisted of data scientists that utilize big 

data analytics to analyze data for decision making within their organization. I selected 

organizations that are either based in the greater Salt Lake City, Utah area, or that have a 

technical presence in that geographical area. It can be challenging to gain access to 

SME’s unless the researcher has a network to leverage (Ponelis, 2015). To mitigate this 

challenge, the population for the study was drawn from companies that are known to the 

researcher, either by the association in the Utah Chapter of the Association for 

Information Management or through membership in the Big Data Meetup group. 

Participant case study organizations were those that were currently implementing or 

using big data to make business decisions. The population for this study had the 

knowledge and expertise in the area of big data analytics and the associated governance 

around those data. The population for the in-person interviews was made up of data 

scientists within the organization that were directly involved in the gathering, analysis, 

and modeling of big data elements.  

Fink (2000) indicated that the number of participants in a qualitative study should 

be as many as needed to uncover the information needed to answer the research question. 

Fusch and Ness (2015) added that when performing a case study, the researcher cannot 
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identify a specific number of interviews required to reach saturation; however, the 

researcher will take what they can get from the case study organization.  For this study, I 

used purposeful sampling to select the participants from the population. The sample 

should be determined by identifying individuals within each organization that have a high 

level of interaction with that population (Whittingham, Barnes, & Dawson, 2016). For 

this study, I determined the sample by working with the gatekeeper to identify individuals 

within the organizations who had a high level of interaction with big data. I planned to 

interview between five and 10 participants from two organizations. The final number of 

participants was dependent on achieving data saturation. I completed the study with 10 

participants from three different organizations. While different studies use distinct 

inclusion criteria, it is acceptable to select participants based on their presence in a 

specific context (Fink, 2000). Once the population was defined by the selection of the 

case study organizations, the number of participants was be determined relative to the 

number of data scientists involved in the data modeling and analysis process within those 

organizations and when data saturation is achieved.  

Semi-structured interviews can take a variety of forms that can include face-to-

face, telephone, webchat, or email (Brown & Danaher, 2019). Typically case study 

interviews are conducted in an interactive setting where the participants can feel at ease 

responding to the questions (Malli & Sackl-Sharif, 2015) and where the interviewer can 

establish rapport with the participants (Brown & Danaher, 2019). Interview settings 

should be carefully considered to ensure the comfort of the participant while 

simultaneously reducing distractions and background noise (Dikko, 2016). I conducted 

all of the interviews using video conferencing, thus allowing the participants to interview 
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in a location that is familiar to them. The interviews typically lasted for less than 60-

minutes.  

Ethical Research 

Ethical research practice includes acquiring informed consent and voluntary 

participation of participants (Eisenhauer, Tait, Rieh, & Arslanian-Engoren, 2019).  The 

researcher must protect the privacy and confidentiality of participants (Yip, Han, & Sng, 

2016). All participants should enter research voluntarily and with enough information for 

them to decide whether to participate (U.S. Department of Health & Human Services, 

1979).  I explained the interview process to each participant before providing them with 

the informed consent form for their signature.  In the email that I sent them with the 

informed consent document, I outlined the purpose of the study along with the benefits, 

risks, and nature of the study (see appendix C). I also informed them of my plans to 

record the interview, and I also asked for their consent for this recording at the start of the 

interview. Before acceptance into the study, all participants were required to respond to 

the email with their consent. This study was conducted ethically, adhering to all ethical 

guidelines as outlined by the university as well as best practices within academic 

research.  

 The Institutional Review Board is responsible for overseeing human studies 

research, ensuring that the researcher conducts the study according to generally accepted 

ethical standards and that it adheres to federal and state regulations as well as with 

university policies and procedures (Caldamone & Cooper, 2017; Cseko & Tremaine, 

2013; Qiao, 2018).  I obtained approval from the Walden Institutional Review Board 

(IRB) before contacting any participants or collecting any data. By the informed consent 
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process, all participants signed a form that informed them of their rights as a study 

participant, including the method for withdrawing from the study. Participants have 

anonymity in this process, which was enhanced by the private setting in which the 

interviews took place. Participants were also asked to maintain the confidentiality of the 

study by refraining from discussing the names of those involved in the individual 

interviews or discussing the content of the interview itself with anyone else while the 

study was underway. All efforts were made to protect all participants from any harm as a 

result of their participation in this study.  

Names of the organizations, as well as the names of the individual participants, 

are masked in the study documentation. I maintained a spreadsheet with the names of the 

organizations and participants in which I assigned generic names to each one such as 

organization I, participant I, participant II, for as many organizations and participants I 

have included in the study. This spreadsheet is the only place where the participant's 

names are associated with the masked names. This spreadsheet is stored with the other 

study documentation in an encrypted OneDrive folder, and I did not include them in the 

final study documentation. This process provides an audit trail and a simplified method of 

referring to each participant in an unidentifiable manner throughout the study 

documentation. Participants were allowed to decline to participate in the process or 

withdraw at any time. The process for withdrawal from the study was to inform the 

researcher that they are not willing to participate in the interview process. Upon receiving 

their notice to withdraw, I removed them from the interview process. There were no 

repercussions to the participant for their request to withdraw. 
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Following the Walden University process, data from this study will be maintained 

for five years after the study, and I will keep them in an encrypted OneDrive folder 

during that period. After five years, I will destroy all the data from this study. Participants 

will also have no monetary or non-monetary incentives offered for their participation in 

this study. 

I interviewed participants in a one-on-one setting, with member checking utilized 

to ensure that I had documented their responses in alignment with their intent. I did not 

use the participant's names in the study and only referred to them by a number. I asked 

that each participant maintain confidentiality and that not discuss our interactions with 

any other employees at their company. 

Data Collection 

Data Collection Instruments 

In qualitative research, the researcher is the primary data collection instrument 

(Clark & Vealé, 2018). Researchers should present their findings in a way that readers 

can understand both their approach and their findings (Sutton & Austin, 2015). 

Qualitative studies commonly use these four methods of data collection: interviews, focus 

groups, document reviews, and observation (Gill, Stewart, Treasure, & Chadwick, 2008). 

As the researcher of this qualitative study, I was the primary data collection instrument, 

and I used interviews and operational document analysis as the other data collection 

mechanisms. I followed the defined interview protocol (see Appendix B) when 

conducting the interviews. Methodological triangulation was used to correlate these 

multiple sources of information, and from which I generated the study findings. Fusch 

and Ness (2015) stated that triangulation goes a long way to achieving data saturation. 
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Process documentation and transcripts from the interviews were coded and correlated to 

uncover trends and standard practices. 

 As the primary data collection mechanism, the influence of the research cannot 

be removed entirely from the investigative equation in a qualitative study (Draper, 2015). 

Data collection in qualitative case studies may take several forms, including interviews, 

documentation review, on-site observations, and illustrative materials (Yin, 2017). Case 

study data collection should follow a formal protocol, but the specific information that 

may become relevant is not always known upfront (Yin, 2017). Establishing a rapport 

with the participants can set them at ease, which will also increase the effectiveness of the 

semi-structured interview process and generate mutually beneficial outcomes (Brown & 

Danaher, 2019). Interviews in a qualitative study can provide rich and informative data 

that expand the topic (Sutton & Austin, 2015).  During the interview process, it was also 

essential to ask multiple participants the same questions to achieve data saturation and to 

avoid trying to hit a moving target (Fusch & Ness, 2015). Semi-structured interviews 

help guide the conversation by allowing the interviewer to ask additional questions based 

on responses from the participant that enable reciprocation between the interviewer and 

the participant (McIntosh & Morse, 2015). Semi-structured interviews provide a 

mechanism for participants to be open to revealing additional relevant information that 

may not otherwise be identified (McIntosh & Morse, 2015). I used a semi-structured 

approach to the interview process. I did not interrupt responses and allowed the 

participants to share as much information as they felt was needed. I asked clarifying 

questions as needed throughout the interview.  
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Document analysis can be used by qualitative researchers to gather pertinent facts 

about the organization (Dunne, Pettigrew, & Robinson, 2016). Document analysis 

provides a mechanism for reviewing and evaluating documents from the organization 

being studied (O’Connell, Mc Carthy, & Savage, 2018). Sometimes the document 

analysis may reveal relevant information about the topic that the researcher would not 

otherwise discover (Dunne et al., 2016).  Analysis of documentation can provide the 

researcher with insights into how the organization presents itself as a business (Lawson, 

2018). Document analysis can also be used to corroborate information obtained from 

interviews to further validate the study (Dunne et al., 2016). The use of triangulation 

during data analysis significantly increases the reliability of the results by using multiple 

data sources to reach conclusions about the data (Fusch & Ness, 2015). Methodological 

triangulation is the specific type of triangulation that is utilized to correlate information 

gathered from multiple data collection sources (Fusch & Ness, 2015). Triangulation not 

only enhances reliability, but also helps to ensure data saturation, and is the method in 

which a researcher explores different levels and perspectives of the same phenomenon 

(Fusch & Ness, 2015). I used operational document analysis in addition to interviews in 

this study. By working with the gatekeeper, I gained access to the process and standards 

documentation that is used by the organization to govern their big data procedures. I 

evaluated the documentation for applicability to this study. I used methodological 

triangulation and member checking as validation mechanisms.  

Data Collection Techniques 

Data collection in qualitative research occurs primarily through unstructured 

methods of verbal interaction and observations (Morse, 2015). Thorough qualitative 
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analysis requires that data be gathered from multiple sources to enable triangulation 

(Twining, Heller, Nussbaum, & Tsai, 2017). Using multiple data sources will allow for 

the methodological triangulation of those data points to enhance the validity of the study 

(Morse, 2015). For this study, I gathered data from two distinct sources, including semi-

structured, face-to-face participant interviews, and a review of procedural documentation. 

I conducted in-depth interviews of individual participants using the questions in the 

Interview Questions section and recorded the session using GoTo Meeting software on a 

laptop computer. I also took notes where I recorded my impressions of the responses as 

well as observations about the participant's body language and other environmental 

details. The GoTo Meeting recordings of the interviews were transcribed into Word 

documents using a transcription service. I had a confidentiality agreement signed with the 

transcription service before the use of that service. 

I gained access to participants and documentation through a gatekeeper within the 

organization. I ensured that each participant understood and agreed to the informed 

consent process, and I conducted the interviews in a private and comfortable setting for 

the participants. I acquired IRB approval before initiating contact with any participants. 

Once I had their consent to participating in the study, I worked with the 

participants to arrange a time for the video conference interview, which I enabled a 

remote face-to-face setting within the greater Salt Lake City, Utah area. I worked with the 

participants to identify a date and time that fit within their schedule. I ensured that the 

interview took place in a location that is free from distractions and with which the 

participants are comfortable and familiar, and which protects their privacy. These details 

are essential because the location of the interview can influence the content and data 
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collection process itself, and distractions should be minimized as much as possible 

(Dikko, 2016).   

I informed the participant that the interview was being recorded for accuracy and 

later transcription. I also informed them that they can request that I turn off the recording 

at any time. I also informed the participant that I will be taking notes during our interview 

and that I would be recording both their responses and my impressions of the interview. I 

ensured that they were comfortable with the process before proceeding.  

One of the dangers of qualitative research is when data collection is superficial, 

such as taking participant's comments at face value (Twining et al., 2017). Participant or 

member checking is used in mitigating this danger by allowing the participant to clarify 

intent and comment on my interpretations of their input (Twining et al., 2017). A form of 

member checking can also be used during the process of the interview by asking for 

clarification and more depth of specific responses by the participants during the interview 

process (Morse, 2015). Qualitative researchers need to be both gathering and analyzing 

data concurrently in an iterative process during the interview (Twining et al., 2017).  

During the data analysis phase, my summary of the interview was provided to the 

participant for their review, and edits were made accordingly. This process continued 

until the participant was satisfied that the transcript reflected their responses accurately. 

No online or web-based software was utilized in this process. All digitized data relating 

to this study is stored on my encrypted OneDrive and will be maintained there for the 

required five-year period. The digital data will then be deleted. 
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Data Organization  

 The protection of the anonymity and confidentiality of participants is a critical 

aspect of ethical research (Castillo-Montoya, 2016). It is also critical to quality research 

to ensure that the data are transparent (Bengtsson, 2016). The use of a spreadsheet for this 

purpose makes the data readily accessible (Shapiro & Oystrick, 2018).  I used a 

spreadsheet to categorize and organize the data and findings from this study. This 

spreadsheet is stored on an encrypted OneDrive for both security and recovery purposes. 

I used participant numbers to identify the participants both within the spreadsheet as well 

as in the physical folders to ensure that the participant names are not associated with their 

data in any way. Before being imported into the computer-assisted qualitative data 

analysis software (CAQDAS), the documentation for each participant was stored in the 

folder on the OneDrive that is associated with their organization. I used the folder to store 

interview notes, emails, consent forms and other documentation from the participant or 

that was provided to me by that participant. 

Due to the remote nature of the interview process, there was no physical 

paperwork collected during this study. All electronic data, including a data backup of the 

CAQDAS application, are stored in the same OneDrive folder location. This process 

ensures accessibility to the data while protecting both the security of the data and the 

ability to restore in the case of accidental deletion. Participants were not identified in any 

way other than by their assigned numbers to protect anonymity. After five years, the 

information on the OneDrive will be deleted. 
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Data Analysis Techniques 

After collecting the data, it must be analyzed to find meaning within the data that 

is relevant to the research questions and the overall purpose of the study (Bengtsson, 

2016). Data analysis is the process by which the researcher reviews the collected data 

repeatedly to uncover either the correlation or contrast that provides meaning for the 

study (Fusch & Ness, 2015).  Grouping data into common topics and themes allows for 

better data analysis, as it focuses the large data sets into smaller and more isolated 

elements (Maguire & Delahunt, 2017). My review focused on the strategies, processes, 

and procedures identified within the organization for overseeing the governance of big 

data. I reviewed the documentation, interview notes, transcripts, and other data sources 

multiple times, searching for common themes and descriptions with each review. I 

reviewed and analyzed the operational documents as a mechanism for validating the 

descriptions from the in-depth interviews. I identified major themes from the various 

sources and used color coding of the data to identify and correlate significant themes. 

I reviewed the data gathered repeatedly to uncover meaningful information to 

inform the research.  I specifically searched for data that answered my central research 

question of what big data governance strategies do data scientists employ to provide a 

holistic perspective of those data for making decisions? Identified themes were 

highlighted in various colors on the digital documentation in the CAQDAS. 

Software packages can be used by qualitative researchers to assist in the analysis 

of qualitative data to look for dimensions, categories, and subcategories of analysis 

(Freitas, Ribeiro, Brandão, de Almeida, & de Souza, 2019). Software packages such as 

this enable the researcher to relinquish the merely technical tasks relating to the 
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organization of the findings that do not require intellectual effort (Freitas et al., 2019). A 

Computer-Assisted Qualitative Data Analysis Software (CAQDAS) tool is a computer-

based software tool that can automate the qualitative data analysis process (Moylan, Derr, 

& Lindhorst, 2015). Some researchers argue that using a CAQDAS tool for qualitative 

data analysis provides better results than manual analysis would (Moylan et al., 2015). 

For this study, I utilized a CAQDAS tool called QDA Miner. This software tool 

was used for the text-based analysis of interviews and open-ended questions. QDA Miner 

was used for coding of the various data sources from my data collection. I entered the 

information from the various data sources into QDA Miner and used the coding feature of 

the software to help me to analyze the information and categorize the data into themes, 

groups, and categories. This software helped me to discover relationships among the data 

elements. I was looking for reoccurring themes and strategies from the various sources of 

data gathered during my data collection phase.  

Reliability and Validity 

Validity in a qualitative study is the extent to which the instrument of 

measurement has measured the concept that it was intended to measure (Dikko, 2016). 

Reliability is defined as the ability to consistently and without bias, achieve similar 

results (Dikko, 2016). Trustworthiness in a qualitative study is established through four 

criteria known as credibility, dependability, confirmability, and transferability (Forero et 

al., 2018). Credibility, dependability, and confirmability in qualitative studies, replace 

internal validity, reliability, and objectivity (respectively) in quantitative studies (Morse, 

2015).  Credibility and trustworthiness in qualitative studies are enhanced using analytic 

processes around these four criteria (Twining et al., 2017).  
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Taken together, these criteria attempt to speak to the overall rigor of the 

qualitative study, but these four criteria have never been tested or questioned since their 

introduction in 1981 (Morse, 2015). While qualitative rigor is the overall goal, validity 

may be supported inherently by reliability, so researchers should be most concerned with 

overall trustworthiness, and lean more on traditional reliability and validity concepts as 

defined in general research terms (Morse, 2015). This rigor can be accomplished by 

implementing qualitative comparative analysis, which consists of clarifying the question 

of external validity, ensuring internal validity, and explicitly adopting a specific mode of 

reasoning (Thomann & Maggetti, 2017). 

Credibility 

Credibility establishes confidence that the results are accurate, credible, and 

believable from the perspective of the participants (Forero et al., 2018). Korstjens and 

Moser (2018) explain that credibility demonstrates that the viewpoints expressed by the 

participants and aligns with the researcher’s representation of those viewpoints.  Ensuring 

that the viewpoint of participants is accurately reflected in the study findings aids in 

producing research that is both ethical and reliable (Cypress, 2017). The researcher 

achieved credibility by prolonged and varied engagements with each participant, and by 

documenting the interview process and protocol (Forero et al., 2018).  

To achieve credibility, I ensured that I had enough time with each participant to 

gather the needed information, and I thoroughly documented the interview process and 

protocol. Korstjens and Moser (2018) identify triangulation as one of the critical methods 

of achieving credibility. Qualitative researchers often use triangulation to increase the 

probability that their study findings will be found credible (Nowell, Norris, White, & 
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Moules, 2017).  I utilized both methodological and data triangulation in this study to 

enhance credibility. I also employed member checking to enhance the credibility of the 

study. Korstjens and Moser (2018) explain that the use of member checking to gather 

feedback regarding the interpretations, conclusions, and analytical categories will 

enhance credibility. This process builds confidence in the accuracy of the responses. 

Ensuring the accuracy of responses helps to ensure the validity of the overall study and 

will help determine the reliability of the content. 

Dependability 

Dependability ensures the findings are repeatable if the study were repeated with 

the same set of participants, coders, and context (Forero et al., 2018). Korstjens and 

Moser (2018) define dependability as the stability of the findings over time. It is achieved 

when the researcher explains the logical and traceable research process and when the 

process is documented (Nowell et al., 2017). Dependability is also achieved by providing 

a detailed description of study methods and ensuring that a stepwise replication of the 

data is documented (Forero et al., 2018).   

To achieve dependability, I provide a detailed description of the study methods 

used. I clearly described the process that I followed to both collect and analyze data, and I 

ensured that I documented a stepwise replication of the data. Providing an audit trail of 

the research process enhances dependability (Korstjens & Moser, 2018; Nowell et al., 

2017) by providing steps for other researchers to follow if they attempt to replicate the 

study. I provide an audit trail within my findings that will help the reader to understand 

not only how the data were collected but also to clearly understand my thought process 
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during analysis, my interpretations and impressions during the interview process, and the 

logic that I employed to reach conclusions from the data. 

Confirmability 

Confirmability provides confidence that the results would be confirmed or 

corroborated by other researchers (Forero et al., 2018). This confidence is primarily 

achieved by data analytics processes such as methodological triangulation (Abdalla, 

Oliveira, Azevedo, & Gonzalez, 2018; Forero et al., 2018). Nowell et al. (2017) state that 

confirmability is achieved when credibility, transferability, and dependability are all 

reached (Nowell et al., 2017).  

To achieve confirmability, I ensured that credibility, transferability, and 

dependability were all achieved. I utilized both data and methodological triangulation to 

gather and analyze the data for this study. I also clearly described my thought process and 

the logic that I used to make decisions regarding this study.  I documented the interview 

process, including thoughts, impressions, choices, and decisions made during the data 

gathering and analysis phase of the study. 

Transferability   

Transferability provides confidence that the study results could be generalized or 

transferred to other contexts or settings (Forero et al., 2018; Nowell et al., 2017). 

Korstjens and Moser (2018) explain that transferability refers to the ability of the reader 

to assess whether the findings apply to their environment or situation, also known as the 

transferability judgment. The clear implication is that the reader determines 

transferability rather than the researcher (Korstjens & Moser, 2018). 
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As the researcher, I cannot know how individual readers will want to transfer the 

findings to their environment. The only mechanism that a researcher can use to enhance 

transferability is to provide detailed and thick descriptions of the participants and 

research process so the reader can determine applicability to their setting (Nowell et al., 

2017). Transferability is primarily achieved through the analytic process of participant 

selection and ensuring data saturation (Forero et al., 2018). I documented the selection of 

participants and provided detailed descriptions of their selection and participation criteria 

for this study to provide as much clarity to the reader as possible. 

External validity increases when findings from the population can be generalized 

beyond the individual case studied (Thomann & Maggetti, 2017). Care must be taken in 

the selection of the population for the case study. Organizations must be selected that will 

provide in-depth knowledge that is relevant, critical, and feasible for answering the 

research question (Thomann & Maggetti, 2017). Additionally, Welch and Piekkari (2017) 

point out that case studies generalize to a conceptual theory, rather than to a population. 

By generalizing to the OIPT, this study gains external validity by a selection of a 

population that is utilizing big data analytics, and the findings of the case study could be 

generalized based on the OIPT. 

Obtaining feedback on the interview protocol can enhance its reliability and 

trustworthiness as a research instrument (Castillo-Montoya, 2016).  The interview 

protocols defined in Appendix B were reviewed by my committee to ensure the reliability 

of the protocol and enhance the trustworthiness of my research. Pre-defined interview 

protocols enhance reliability and increase the quality of data obtained from research 

interviews (Castillo-Montoya, 2016).  
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Transition and Summary 

This section restated the purpose of the study and provided information regarding 

the methodology, participants, and decisions relating to the design of the study. Also 

discussed were the ethical considerations, researcher role, and approaches for data 

collection and analysis. Finally, I discussed validity and reliability. This section details 

how I conducted my study relative to my selected methodology and design. 

The next section will include a presentation of the findings of my study, as well as 

the application to practice and future research. Social change will be discussed, as well as 

personal reflections on this overall study and process. 
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Section 3: Application to Professional Practice and Implications for Change 

The focus of this study was data governance strategies that data scientists are 

using in practice for big data. I will present the findings from my data collection and 

analysis and explain how these findings may contribute to the academic literature. I will 

also explain how findings may affect social change and professional practice as big data 

analytics matures as an industry practice. Finally, I will make suggestions for future study 

and present my reflections on the overall study. 

Overview of Study 

The purpose of this qualitative multiple case study was to explore the big data 

governance strategies employed by data scientists to provide a holistic perspective of 

those data for making decisions. The data for this study came from semi-structured 

interviews that I conducted with data scientists currently working on big data solutions in 

the greater Salt Lake City, Utah area. The documents analyzed for this study are 10 

participant interview transcripts and four process documents from three organizations. 

This section begins with a brief overview of the study methodology, and then I present 

the findings from the study. 

Presentation of Findings 

I began this study with the intent of answering the following research question: 

What big data governance strategies do data scientists employ to provide a holistic 

perspective of those data for making decisions? In this section, I will present the findings 

from my data gathering and analysis relating to this question. The study consisted of 10 

participants from three different organizations with an average of 9.4 years of experience 

working in big data analytics. I used methodological triangulation by obtaining process 
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documentation from each organization in addition to the interviews held with the 

participants. The following four major themes emerged from the analysis: ensuring 

business centricity, striving for simplicity, establishing data source protocols, and 

designing for security. I will present each of these themes in this section. 

Theme 1: Ensuring Business Centricity 

Data scientists cannot provide answers to business questions without first having 

a solid understanding of the business question they are answering. The better the business 

question is understood by the data scientist, the better they can design an analytic model 

to answer that question. This theme includes four common subthemes: understanding 

business needs, partnering with businesses, maintaining contextual awareness, and 

minimizing data noise (see Table 1).  

Table 1 

Subthemes for Ensuring Business Centricity 

 Interviews Documents 

Subtheme Count References Count References 

Understanding Business Needs 10 26 3 8 

Partnering with Businesses 10 43 3 8 

Maintaining Contextual Awareness 7 21 4 6 

Minimizing Data Noise 10 34 2 4 

 

Subtheme: Understanding business needs. Having a clear understanding of 

business needs was a universal theme that came up in every participant discussion. 

Before a data scientist can provide answers to business questions, they must understand 

the needs that they are addressing. Understanding business needs is an important theme 
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from both analytic and data governance perspectives. Understanding business needs helps 

data scientists identify appropriate data sources and elements that will be needed to 

appropriately and completely address the business question. Each participant discussed 

the importance of understanding the question they were being asked to answer before 

they started assessing data sources and elements for analysis. There were a variety of 

different ways through which they engaged with their business partners. Participants 1, 3, 

4, 5, 6, and 7 discussed interviewing their business partners before initiating any analysis.  

P5 said: “I do the fact-finding into their requirements and also the composition of what 

their data looks like...Once I get adequate information … I make a determination on how 

to construct and load the model.” P6 said: “Before developing a model, we interview or 

have discussions with the business owners that have expertise in that space to tell us the 

hypothesis or reasoning …that might have an influence on the decisions that [we need to 

make].” 

 P2 and P8 referred to the long tenure of the data scientists in their organization 

and indicated that this provides them with significant business context. Because of their 

tenure in the business, they understand the business need immediately when presented 

with a new question to be answered. P8 explained that when they receive a request for a 

new model, “generally speaking, we know what we are looking for” because of their 

experience in their specific business. All 10 participants discussed the importance of 

having a clear definition of the business need as a critical step to deciding which data 

sources they needed to connect with to get their data. P7 indicated that “the more 

definition that we have upfront from the end-user of what they want to get out of it, the 
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better the process, the smoother it goes, the faster we can deliver that datamart to answer 

their questions.” 

Gardiner et al. (2018) explained that big data scientists are required to possess a 

wider variety of skills than traditional technologists due to the multifaceted nature of this 

new role. Alignment between overall information systems strategy and business strategy 

is a critical precursor to overall profitability and competitive advantage (Shao, 2019). De 

Mauro et al. (2018) found that while the main focus of the role involves the data itself, 

associated analytical methods for transforming those data into usable insights are critical 

to success because of the complex nature of big data. Data scientists cannot bridge this 

gap without having a clear understanding of business needs to which they are responding 

when creating their analysis or models from big data. 

 The concepts of the OIPT identify that pushing decisions down in the 

organization yields better decisions by those closer to the tasks. The OIPT directly 

applies to the gathering, interpretation, and synthesis of information within an 

organization for decision-making (Tushman & Nadler, 1978). Data scientists require a 

clear understanding of business needs to be able to interpret and synthesize big data for 

strategic decision-making purposes. The increased ability within an organization to 

process information using technology provides a mechanism for improving decision-

making within that organization due to the improved ability for employees to process 

more copious amounts of information farther down within the organization (Kroh et al., 

2018 ). It is only by understanding business needs within the organization that data 

scientists can build useful models for processing that information and disseminating it 

lower in the organization. 
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Subtheme: Partnering with the business. Maintaining a partnership with the 

business was also a universal theme that all 10 participants mentioned as a critical 

success factor. This subtheme is closely aligned with the subtheme of understanding 

business needs. By creating partnerships between various technical and business roles, 

data scientists can learn more about business needs. Developing a partnership between 

business roles and data scientists establishes a level of trust and communication that 

enables data scientists to better leverage data to help answer strategic business questions. 

P4 said:  

A few years ago...people weren't as educated about what data we had and what kind 

of questions to ask. [In prior years], we used to come up with the questions. They'd 

ask me some questions to see if we can get some data to answer that. And then 

usually we will try to understand what they're going to do with the data. And most 

of the time that really didn't lead to anything… But more lately, I think people are 

a lot more aware of what data we have and what kind of questions to ask.  

P9 similarly discussed the process of educating their business partners regarding the type 

of information that was needed and available to answer their business strategy questions. 

Partnerships between business roles and data scientists helps to communicate more 

clearly about what data elements are available for analysis to answer business questions. 

P8 discussed using a very iterative approach with their business partners as they 

build their models, continually having conversations about what needs to be changed, 

adjusted, or clarified as they work to answer the questions that are being asked. They 

described their partnership in this way:  
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So if you ask for something today and I deliver it to you tomorrow, the likelihood 

is it's not going to fulfill exactly what you wanted, even though you may have 

attempted to communicate to me and I attempted to receive what you were saying. 

At the end of the day, it's going to take us [several] exchanges back and forth. ‘Well, 

that's close, but I really wanted to do this.’ ‘Okay, let me go back and do that...’, 

‘That's a lot closer, but now that I'm using it, I see that it needs this other element.’ 

So … what I am looking at is kind of bringing people in and working with people 

to make sure we get it. You know, we get what has been requested. We get that 

right. 

All 10 participants stated the importance of maintaining an ongoing partnership with their 

business partners as a critical strategy to defining what data to collect and from which 

data sources to collect those data. 

Collecting and processing of big data require cross-departmental collaboration 

and partnerships that do not exist with traditional data (Janssen et al., 2017). Successful 

implementation of big data analytics requires new roles and organizations around the 

business to interact, which had not previously needed to work together (Braganza et al., 

2017). Because of these new partnerships, some power shifts have been documented 

within organizations that are effectively utilizing big data analytics to make fact-based 

and real-time decisions (Popovič et al., 2018). Effectively utilizing big data to make 

decisions within organizations is requiring new partnerships between data scientists and 

business roles that were not as clearly required previously. 

Uncertainty is defined as a key driver of information sharing within the OIPT. 

Partnerships must be cultivated with the intent of sharing and utilizing information to 
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reduce uncertainty around business decisions. The success of any organization is 

primarily affected by the competitive ability of managers to make strategic decisions in 

the face of uncertainty and ambiguity (Intezari & Gressel, 2017). One of the key tenets of 

the OIPT is that the greater the uncertainty of a task, the more information must be 

processed by the decision-makers to execute that task (Galbraith, 1974). Since 

organizations in the OIPT are simply information processing systems that collect, process 

and distribute information (Zelt, Recker et al., 2018), and since that lack of information 

within an organization leads to the uncertainty to which Galbraith refers (Gupta et al., 

2019), it follows that the greater the ability to partner across the various departments to 

share information within an organization the greater will be their ability to reduce 

uncertainty.  

Subtheme: Maintaining contextual awareness. Contextual awareness of the 

data elements is critical to providing a valid analysis. Seven of the 10 participants 

mentioned maintaining contextual awareness as a key strategy for managing information 

from big data. For the analysis to be useful to business decision-makers, data scientists 

must ensure they understand the context of the data from the various data sources before 

building a model from those data. Participants 1, 4, 5, 7, 8, and 9 each discussed 

maintaining contextual awareness while gathering, preparing, and analyzing big data. P1 

stated that “we record context around the data…there’s a tremendous amount of context” 

and clarified that “with additional context, you have a much, much richer fingerprint that 

is harder to accidentally duplicate…you have a greater chance of uniqueness when 

retaining that context and metadata.”  
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The specific strategies for how to maintain this context vary by organization. P9 

articulated that their organization maintains the data lineage throughout the analysis 

process to provide contextual validity to the analysis. They explained that by maintaining 

data lineage, they could determine that the “source provided additional information” and 

that they could then check “to see if [they] can gather additional information from that 

source.” P9 explained further that context can help them to know “if a particular column 

changes, what reports downstream of that data are going to be affected and need to be 

adjusted, rather than deal with the outcomes after the fact.” They explained that context 

helps them to determine the scope of the analysis. Using context, they can determine 

whether the report will meet with executive scrutiny as the executives attempt to correlate 

information from various reports. Context is important to help those executives 

accurately interpret the results of the analysis.  

P1 and P5 indicated that metadata can be used to maintain context. P1, P4, and P9 

indicated that the data source itself could provide some important context to the data. P7 

suggested that correlating contextual data from various sources is “when the analytics 

[are] a lot more powerful for us.”  P8 mentioned that it is important to maintain 

contextual awareness when automating results so that the context is not lost because of 

the automated manipulation. 

Big data analytics rely on fuzzy logic and inductive statistics (Paul et al., 2018). 

Considering that some big data sources may be unknown or unvalidated some big data 

analytics may be incomplete or inaccurate (Herschel & Miori, 2017). Without contextual 

awareness, big data solutions can quickly become a liability rather than an asset. 

Improper or incomplete analysis of big data can lead to misinterpretation of those data, 
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and lead to incorrect business decisions (Matthias et al., 2017). Alternatively, proper data 

governance addresses the standardization, accuracy, and availability of those data (Wang 

et al., 2018). Big data governance is critical to ensure that data are accurate, shared 

appropriately, and protected per company policies (Cheng et al., 2017). This governance 

includes maintaining contextual awareness of both the data elements and the data 

sources. 

One of the central tenets of the OIPT is the need to close the gap of uncertainty by 

processing more information within the organization. Duvald (2019) indicated that the 

OIPT includes the mitigation of equivocality in addition to uncertainty. Duvald (2019) 

also explained that equivocality arises from the existence of multiple and often 

conflicting interpretations of data. The information dispersed throughout the organization 

to close the gap identified by the OIPT must be accurate, or the analysis will not hold up 

to the scrutiny of the business partnership. Maintaining the original context of the data 

elements lends credibility to the analysis and reduces both uncertainty and equivocality of 

that analysis. 

Subtheme: Minimizing data noise. More data does not always mean better 

analysis. Eight of the 10 participants discussed the importance of minimizing the noise 

created from big data. P3 said:  

A lot of the data is really just noise. You need to be sure to pick the things that 

actually matter for the analysis... With the amount of data that we collect, you will 

never be able to use it all…but a high percentage of the data that we are collecting 

is pretty useless ... Just because you're collecting it doesn't mean that you can use it 

for anything. 
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P1 stated something very similar when discussing the amount of information that their 

organization gathers. P8 stated that reducing the noise is “a matter of narrowing the 

broader data set down to what we're specifically trying to get to.” 

P1, P2, P3, P4, and P9 stated that they do not attempt to analyze all of the data for 

any particular analysis because there is simply too much of it. P2 said: “I don't think it 

has been necessary to look at all the available data.” P3 added: “I would say that you 

don't need to analyze all the data necessarily… I don't feel like you need to or should 

actually use all the data.” P4 similarly stated: “I don't think we ever are analyzing all the 

available or all the applicable data to answer any question. Practically, I don't think it's 

possible.”  

These participants agree that analyzing all of the data is not an achievable goal 

and stated that it is more important to narrow the data sets to the most applicable data for 

the specific business question before attempting an analysis. P3 stated: “I think that right 

now there are so many more questions that can be answered with smaller data.” Simply 

adding more data into the analysis does not result in better analytics or better decisions. 

One of the key responsibilities of data scientists is to reduce the noise and 

simplify the data analysis process. This theme is confirmed in the literature, as several 

studies have highlighted the idea that leveraging big data does not simply imply that 

obtaining more raw data will lead to better information. The quality of decisions from big 

data is not influenced solely by the amount of data collected but more so by how those 

data are collected and processed (Janssen et al., 2017). Matthias et al. (2017) pointed out 

that without appropriate analysis, it does not matter that large amounts of data are 
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collected. Value is extracted from big data when information is transparent and usable to 

the organization (Ahmed et al., 2017). 

The reduction of uncertainty by processing more information is a key concept of 

the OIPT. Uncertainty in the context of the OIPT is defined as the difference between the 

information processed and the information required to complete a task (Tushman & 

Nadler, 1978). Merely increasing the information available does not resolve that 

uncertainty (Gao et al., 2018). The success of an organization is primarily affected by the 

competitive ability of managers to make strategic decisions in the face of uncertainty and 

ambiguity (Intezari & Gressel, 2017). When data scientists have a clear understanding of 

the uncertainty that the managers face, they can then design models with minimal data 

noise to assist these organizational managers in resolving that ambiguity, thus resulting in 

better decisions deeper within the organization. The ability for organizations to make 

strategic decisions amid uncertainty and ambiguity relies on their ability to continuously 

learn and reconfigure the organization’s knowledge base (Intezari & Gressel, 2017). Data 

scientists can help their organizations face uncertainty when they understand the business 

need, partner with the business to ask and answer the right questions, maintain contextual 

awareness of the data elements, and minimize the overall data noise.  

Theme 2: Striving for Simplicity 

Because of the volume, variety, and velocity attributes of big data the analytics 

can become complex very quickly. Complexity is one of the significant challenges with 

big data as compared to traditional data (Jin et al., 2015). All 10 participants mentioned 

the importance of simplicity in their responses in some manner. Process documentation 

also reminds data scientists to reduce duplication and complexity in their design. The 
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fundamental basis for the OIPT is also centered around the uncertainty and complexity of 

task completion and is based on the concept that organizations should be designed to 

reduce that uncertainty and to enable decision-making (Feurer et al., 2019). Striving for 

simplicity is a key skill that will help data scientists to deal with the inherent complexities 

of big data while simultaneously offering solutions that can be maintained over time. This 

theme consists of four subthemes: minimizing the data sources, using new tools, 

simplicity of design, and using automation (see Table 2). 

Table 2 

Subthemes for Striving for Simplicity 

 Interviews Documents 

Subtheme Count References Count References 

Minimizing the Data Sources 9 23 2 4 

Using new tools 8 23 0 0 

Simplicity of Design 10 28 3 9 

Using Automation 8 15 4 11 

 

Subtheme: Minimizing the data sources. Strategically limiting the sources of 

data was a common concept that was raised among the various participants. This theme is 

counter-intuitive when referring to big data. It is not uncommon for big data to infer 

many data sources, but high volume and velocity can also occur with a small number of 

data sources. This is particularly true of IoT where a single data source could have a 

significant number of endpoints. Big data does not necessarily have to mean copious data 

sources but could simply indicate many endpoints generating data. This theme is related 

to the number of data sources and should not be confused with the number of data-
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generating endpoints. The reduction of the number of data sources was a concept outlined 

as a strategy for maintaining the simplicity of design. This subtheme is also closely 

related to the subtheme of minimizing data noise. One potential source of noise is having 

too many data sources providing irrelevant or duplicative data elements.  

Nine participants mentioned some form of limiting the data sources in their 

responses. When explaining how they select appropriate data sources for any model or 

analysis P1 explained that “there’s always going to be more data…we don’t have 

hundreds of sources. We have a handful of core primary sources of data”. P2 identified a 

handful of core sources of data that can provide answers to most of the business questions 

asked at their organization. P3 reiterated similarly that “there are a finite set of 

sources…we know what's available to us and what's easily accessible”. P6 articulated that 

they strategically limit their data sources to only those that are valuable for the specific 

business question being analyzed. All of the participants mentioned that there could be 

more data available to them from other sources, but that minimizing the sources of data is 

one of the key strategies that they follow to deal with the ever-increasing complexity of 

various big data sources. 

Determining the origin and transformation of various data elements obtained from 

the myriad big data sources is currently one of the primary challenges of big data (Umer 

et al., 2017). Because of the difficulty of verifying the various data sources associated 

with big data the validity of analysis can be questionable (Hashem et al., 2015). 

Additionally, external data sources are less likely to have internal data stewards or data 

governance processes established to govern its use within the organization (Cervone, 

2016). Strategically determining a minimal set of sources for big data analytics within the 
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organization can provide the data scientist with confidence in both the validity of the data 

as well as confidence in the analytics. 

The OIPT defines two mechanisms for closing the gap between the need to 

process information and the ability to process information. Organizations can either 

reduce the need to process information or increase the ability to process information 

(Galbraith, 1974). Reducing the data sources in any analysis accomplishes both, and thus 

reduces the gap from both sides simultaneously. The primary goal of closing the gap is to 

reduce uncertainty. Tushman and Nadler (1978) defined uncertainty as the difference 

between the information processed and the information required to complete a task. This 

does not imply that simply gathering more information from myriad sources will result in 

the reduction of uncertainty. Merely increasing the information available does not resolve 

the uncertainty as individuals do not have unlimited processing capacity and will reach 

information overload (Gao et al., 2018). By focusing on a limited set of data sources, 

each of which can provide a high volume of data elements, data scientists can build 

confidence in their analytics while both reducing the need to process more information 

from other sources and increasing the ability to process more information by using big 

data analytics. 

Subtheme: Using new tools. Many new tools have been developed in recent 

years to simplify the analysis of big data. These new and advanced tools are required to 

extract information from big data (Intezari & Gressel, 2017). These new tools are also 

important from a governance perspective as they help data scientists to better interact 

with data in ways that traditional tools do not. Eight of the 10 participants discussed the 

use of these new big data tools as a strategy for coping with the complexity of big data. 
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The adoption of these new tools is still an ongoing process. None of the participants 

indicated that they are currently using all of the various tools available to them. All eight 

of the participants that discussed tools indicated a desire or plan to start using more of 

these specialized tools soon to further refine and enhance their data analysis.  

P2 and P5 indicated that they believe the new tools will help them become more 

efficient at interacting with big data. P2 said:  

I think there's a skill gap that we're trying to address to understand what's changed 

in…data engineering over the last five to 10 years and how do we adapt and take 

advantage of that? We've primarily been stuck in kind of one technology stack for 

a long time and we've become very efficient and good at it…so what's compelling 

them to want to change and look at other alternatives and options? 

P2, P3, P4, and P7 discussed their plans to leverage more cloud technology soon, 

and they all expressed confidence that this would bring new capabilities to their ability to 

effectively govern big data. P2 indicated that they “eventually want to put our data [in 

the] cloud…right now, it is … on-prem. And so how can we leverage some of the new 

paradigms and tools to get the flow of data a little bit quicker?” P9 said:  

The volume that they talked about were…challenges [for companies] like Google 

and Facebook and Twitter [because of] the volume of data they were processing. 

We had to create tools to meet those challenges and we were then able to use 

those tools. When they're working with a thousand times more data than we have, 

and they've built a tool that can solve that solution, it usually handles all our 

smaller problems. 
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As larger organizations adopt and utilize these new tools small and medium size 

businesses can benefit from the use of these same tools to solve their big data challenges. 

Traditional analytic systems lack operational efficiency to analyze big data 

effectively (Jin et al., 2015). Traditional tools for data governance and analysis are 

outdated and are no longer adequate for processing the vast amount of data available 

today, making current strategies ineffective for handling big data (Bello-Orgaz et al., 

2016). Intezari and Gressel (2017) added that to extract information from big data, new 

techniques, and advanced tools are required.  Many organizations are starting to analyze 

big data with traditional tools but are quickly establishing plans to implement new and 

specialized tools. 

As organizations learn to process larger amounts of data new tools will play a key 

role in that process. Application of the OIPT leads to an understanding of the factors 

influencing an organization's information processing capacity (Zelt, Schmiedel, & vom 

Brocke, 2018), which include the tools used within the organization to process 

information. Galbraith (2012) predicted that big data would become that technology that 

would finally allow for the increased information processing alternative to becoming an 

effective solution. Galbraith (2012) envisioned the implementation of big data solutions 

would be driven by the constant interplay of increasing complexity and interdependence 

of information and systems within that organization. 

Subtheme: Simplicity of design. Process documentation from one of the 

organizations sets a standard of the simplicity of design for data scientists. The 

documentation urges data scientists to “make things as simple as possible, but no 

simpler”. Another document instructed data scientists to “reduce complexity for greater 
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flexibility and lower cost”. This concept was universally reiterated by all 10 participants 

and was discussed in three of the four process documents. Designing for simplicity is not 

easy and should be considered a key skill to develop for any data scientist. P1 expressed 

that big data analytics is not being done correctly today particularly because some data 

scientists design overly complex solutions. P5 explained:  

The way we process [big data] simplifies it and makes it easier to review…I think 

the number one thing at play would be to use a simple a process as possible, 

frankly…I have so much confidence in our processes... because it's not complex. 

It's not overly complex. It's not muddied. There's not stuff all over the place. We 

keep it clean, lean, and to the point. Straight forward. The processes and the 

model itself, it's doing the work. The data doesn't have to do the work.  

P6 discussed the importance of keeping solutions simple yet not shying away from 

complexity when it is required. Finding this balance is a key skillset for any data scientist 

to effectively govern big data for analytic solutions. 

The complexity of big data sources creates a strain on traditional analytic systems 

because of the nature of structured and unstructured heterogeneous data elements. 

Complexity in big data comes from the complex data structures, complex data types, and 

complex data patterns that are inherent with big data (Jin et al., 2015). Heterogeneity 

adds to the complexity of big data making big data solutions inherently difficult to 

manage (Yang et al., 2017). Data complexity also adds to the overall complexity of big 

data as compared to traditional data (Jin et al., 2015). Because of the inherent complexity 

of big data, the solutions built from multiple big data sources can quickly become very 

complex. Maintaining simplicity in the constructs of the data governance will assist in 
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developing more useful analytic systems. Jin et al. (2015) pointed out that among 

industry experts, there is not a good understanding of how to deal with the complexity 

that comes from complex data structures, complex data types, and complex data patterns 

inherent with big data. Data scientists who can simplify these constructs form advantage 

over those who are still struggling to understand the relationship between data complexity 

and computational complexity as relates to big data processing 

Through the OIPT Galbraith posits that organizations are inherently information 

processing systems intrinsically programmed to manage uncertainty by gathering, 

processing, and acting on information from within their environment (Jia et al., 2020). 

The OIPT builds on contingency theories (Zelt, Recker, et al., 2018) which focus mainly 

on the attributes within an organization that shape behavior (Chrisman et al., 2018). The 

OIPT specifically focuses on the essential function of an organizational structure, which 

is to facilitate the collection, analysis, and distribution of information to reduce 

uncertainty within the organization (Hwang et al., 2019). As solutions are designed for 

simplicity they will be more readily adopted within that organization. According to the 

constructs of the OIPT complex information needs to be made available lower in the 

organization to reduce the uncertainty of task completion (Feurer et al., 2019). The OIPT 

helps shape behavior within organizations to take complex information systems and 

simplify them so that information can be used farther down in the organization by 

individuals closer to the task. Simplicity is a key attribute of this overall solution. 

Subtheme: Using automation. The use of automation in the overall design can 

add significant value to big data governance solutions. Because of the low veracity 

attribute of big data, it becomes important to perform preprocessing to improve data 
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quality (Yang et al., 2017). With the rapid decay of the value of big data the need for 

automation becomes clear. Eight of the 10 participants mentioned the use of automation 

to assist in the movement, validation, and correlation of data from big data sources. P4 

included automation as part of their job description when discussing their role in the 

organization. P6 indicated that they “are responsible for developing automated models to 

drive our pricing …strategies.” P7 and P10 stated that they rely very heavily on 

automated notifications and alerts from their various automated systems that gather data 

from the big data sources daily. P2 stated that they “have automated validation 

tests…we've gotten more sophisticated over the past couple of years.” Process 

documentation from one of the organizations reinforces the concept of automation by 

discussing the need for systems to handle fluctuations of batch processing automatically 

and without interruption of the overall data flow. P10 indicated that they have “automated 

processes” and stated that they “highly rely” on them. Without the heavy use of 

automation, it would be extremely difficult to keep up with the high volume, large 

velocity, and low veracity of big data and it would be impossible to maintain the validity 

of the analytic solutions. 

The value of some big data elements decays much more rapidly than traditional 

data. To extract value from many big data solutions the data elements must be processed 

immediately (Lee, 2017). This cannot be accomplished without automation. The volume 

and variety attributes of big data also tend to make it very difficult to determine the 

veracity of those data (Matthias et al., 2017).  The processing of big data and the 

validation of information from big data sources must be automated to provide value to the 
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organization. Attempting to accomplish big data solutions without automation would be a 

futile effort. 

The central tenet of the OIPT is the need for any organization to close the gap 

between their need to process information and their inherent ability to process 

information (Premkumar et al., 2005).  Kemp (2014) identified a similar gap between the 

amount of data that organizations can gather and the ability of that organization to 

leverage that information in meaningful ways. Galbraith (2012) clarified that 

organizations can deal with this gap in one of two ways: either they can increase the 

capacity of the organization to process more information, or they can decentralize the 

interdependence on that information. Combining heterogeneous sources of data into new 

information sets is one way to reduce the uncertainty identified in the OIPT (Wang et al., 

2016). When considering the temporary value of raw big data and the need to reduce 

uncertainty within an organization by processing more information it becomes clear that 

automated solutions are required to process that information quickly while it still has 

value. 

Theme 3: Establishing Data Source Protocols 

Clearly defined protocols for gathering and validating data from various sources 

are critical strategies to respond to the volume, velocity, and variety attributes of big data. 

In the absence of standards and well-defined processes for data validation, a data scientist 

could not have confidence in their analysis. Incomplete data can result in partial analysis, 

which can paint an inaccurate overall picture (Janssen et al., 2017). This theme consists 

of three subthemes: following defined standards, establishing validation processes, and 

reducing duplication (see Table 3).  
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Table 3 

Subthemes for Establishing Data Source Protocols 

 Interviews Documents 

Subtheme Count References Count References 

Following defined standards 8 18 3 17 

Establishing validation processes 10 43 3 4 

Reducing duplication 5 16 3 6 

 

Subtheme: Following defined standards. Eight of the 10 participants and three 

of the four process documents referenced following defined standards. In this context, 

standards refer to both industry standards and internal organizationally defined standards. 

P2, P6, and P7 discussed the standard practice of establishing service level agreements 

(SLAs) with their data source vendors for both timeliness and quality of data. P2 stated 

that they have “strict SLAs around…external data”, and P7 added that they “set up SLAs 

with our vendors of when that data needs to be available for us to pull in.”  Establishing 

SLAs for the timely access and gathering of data from the data sources assures that those 

data will be available when needed for analysis.  

P4, P5, P6, and P9 discussed various internal standards that have been defined 

within their organization for both quality and timeliness of departmental deliverables. 

These standards include such practices as peer review of solutions, daily review of 

exception reports and alerts, and time commitments of deliverables between departments. 

Process documentation from three of the case organizations referenced the flexibility, 

economies of scale, and support of heterogeneous environments as benefits of following 

established open standards. One of those documents explains that the “use of standards 
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provides the ability to leverage the knowledge and efforts of others. Risk is reduced, 

proven solutions are implemented, and needless diversity and duplication are prevented.” 

Another document explains that “standardization helps achieve economies of scale, 

reduces complexity, and improves flexibility.” Defining and documenting standards 

within the organization provides the data scientist with consistency and reliability in their 

big data governance solutions. Adhering to published industry standards around security 

and protection ensures the protection of data within big data solutions. 

To be successful in the current environment organizations must methodologically 

exploit their knowledge assets (Mahdi et al., 2019). This implies the establishment of 

formal processes and procedures around their data assets. Organizations experience 

substantial financial costs for little value when the organization implements data 

governance poorly (Wang & Hajli, 2017). Knowledge management practices within an 

organization are significantly and positively related to sustainable competitive advantage 

(Mahdi et al., 2019). Establishing and following defined internal standards and adhering 

to published standards provide the data scientist with a reliable and secure foundation for 

their big data solutions. 

The essential function of any organization as highlighted by the OIPT is to 

facilitate the collection, analysis, and distribution of information to reduce uncertainly 

within the organization (Hwang et al., 2019). The fundamental basis for the OIPT is 

centered around the uncertainty and complexity of tasks to be completed in workflow and 

based on the concept that organizations should be designed to enable decision-making 

(Feurer et al., 2019). Because of the vast amount of data involved with complex big data 
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solutions organizations cannot provide reliable mechanisms for reducing uncertainty 

without formal standards controlling those solutions. 

Subtheme: Establishing validation processes. Validation of data sources is a 

key protocol that participants identified for multiple data sources due to the low veracity 

attribute of big data. The volume and variety attributes of big data make it very difficult 

to determine the veracity of those data (Matthias et al., 2017). This subtheme also aligns 

well with the subthemes of minimizing data noise and minimizing data sources. This is 

because many big data sources are often insecure which leads to potentially inaccurate 

analysis (Duncan et al., 2017). Developing processes for validating data sources is a key 

governance practice for data scientists. 

All 10 of the participants discussed processes that they have in place to validate 

the various data sources in their analysis. P1 and P5 discussed applying a scoring 

mechanism to each data source. P1 explained it as follows: “We score the data sources, 

and we'll pick the [specific data elements] from the most accurate, the most available, and 

the most trusted data source and that is adjudicated in real-time”. This scoring algorithm 

provides them with confidence in the data source which can help them to determine 

which data source to leverage as new questions are posed. The score is updated and 

maintained as new information arises about the validity of the information from that data 

source. 

 P2, P3, P4, P5, P6, P7, and P8 all mentioned performing validation on the data 

themselves to ensure validity. They each do this in different ways with some performing 

a line-by-line review personally and others performing spot checks and validating their 

findings with peers and stakeholders. P6 said:  
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We also go through a process of validating data using multiple sources…we are 

getting data from the competitor, but we also review what that data is telling 

about the rates that we put in the marketplace…so we have the ability to compare 

the results …[through] multiple rounds of validation.  

P3 said:  

Everything that we do is validated by us personally. We have data coming from 

our website, our call center, from our stores, from Salesforce... hundreds of 

different sources and anytime that we use this in our analysis, we validate every 

column that we're using against some other source that we know is true to make 

sure that the data [are] correct.  

P9 articulated that they do “peer reviews to have multiple eyes take a look at an 

area …We’ll also do two sets of analysis; have two different groups do the analysis and 

compare the numbers.” P1 also described an automated validation process when they 

said, “We go through a signing process to make sure the data is not being tampered 

with.” Regardless of the specific strategy used every participant was concerned about 

utilizing some defined, documented, and replicable process for validation of their big data 

analytics. P5 said: 

In the validation process, if there's anything that needs to be changed, that's where 

you should start. You get that part sorted first. You get that approved first as 

quickly as possible. If the data simply can't be validated or can't be approved for 

whatever reason, then you can deal with it, number one. 

Establishing a validation process for data sources and specific data elements is a critical 

step in the big data governance process. 
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Organizations tend to have a false sense of confidence because of the hype around 

big data (Herschel & Miori, 2017). Validating the origin and transformation of data 

elements contained in big data is one of the primary challenges of big data (Umer et al., 

2017). The validity of big data analytics can be called into question due to the multiple 

sources of big data which are less verifiable than was the case with traditional data 

(Hashem et al., 2015). Data scientists must establish validation processes for their data 

sources and for their analytics that provide confidence to the organization in the accuracy 

of their big data systems. Big data governance is critical to ensure that data are accurate, 

shared appropriately, and protected (Cheng et al., 2017) 

The OIPT includes the mitigation of both uncertainty and equivocality (Duvald, 

2019). Management's role in any organization is to reduce both uncertainty and 

equivocality for their organization (Bartnik & Park, 2018). Ensuring that the analysis of 

information for task completion and decision making is valid, vetted, and accurate is of 

critical importance for good decision making. Knowledge management practices within 

an organization are significantly and positively related to sustainable competitive 

advantage (Mahdi et al., 2019). If the consumers of the big data analysis are not confident 

in the results, they will not be reducing uncertainty but creating more uncertainty. The 

main goal of OIPT is to reduce uncertainty, not increase it.  

Subtheme: Reducing duplication. Another strategy that arose from the study 

was that of reducing the duplication of data. This subtheme aligns well with the 

subthemes of minimizing data sources, minimizing data noise, and striving for simplicity. 

Copying data from one location to another is time-consuming and introduces risk to the 

validity of the data itself. P1 and P5 discussed using metadata to refer to the primary 
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source of the data elements as a key strategy to reduce the duplication of data. P1 

described the value of not duplicating data in this way: “We try and not lose contact with 

the source data…once you've made a copy of it and moved it, it could have been from 

anywhere and anything. And we keep our finger on the pulse at the data source”. P10 

articulated a similar concept when they explained that they “make sure that I do not 

duplicate the data…the same information should not appear in different tables in the form 

of different dimensions and different facts. That is the main thing I would look at. No 

duplication.”  

Two process documents from two different organizations also mentioned the 

importance of leveraging metadata as a key strategy for big data governance. One 

document urges data scientists to “minimize redundancy and reduce duplication” because 

it “helps reduce complexity and promotes greater efficiency”. Utilizing metadata reduces 

risk by leaving the source data untouched and maintaining information about where the 

source data reside. P5 reinforces this concept when they explain that “I think that number 

one…would have to be metadata and the critical importance of that. It has to be clean, 

crisp, consistent information and you need to get as much detail as possible about that 

dataset”. By refraining from copying the data and analyzing the data where it resides data 

scientists can avoid these traditional challenges. 

Challenges arise with big data analytics from the issues relating to data that are 

too vast, unstructured, and moving too fast to be managed by traditional means (Zakir et 

al., 2015). Using traditional strategies of copying data for analytics purposes creates 

significant challenges due to the rapid decay of many big data elements. Leveraging 

metadata is one way to normalize unstructured big data elements for analytic purposes 
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(Yang et al., 2017). Traditional data copy and retention methods break down when 

applied to big data because of the attribute of high velocity. Storage of big data becomes 

challenging as transient data flows through the analyzing systems (Yang et al., 2017). 

Minimizing the copying and duplication of data is a key governance strategy for data 

scientists as they transition from traditional analytic methods to big data analytics. 

The OIPT directly applies to the gathering, interpretation, and synthesis of 

information within an organization for decision making (Tushman & Nadler, 1978). The 

gap identified by the OIPT directly relates to the ability of an organization to gather and 

analyze data. There is a limit to the amount of data that an organization can gather and 

store, but by analyzing the data where it resides organizations increase their ability to 

analyze more data. By designing systems that analyze data without requiring that those 

data be copied onto local storage devices, organizations increase their ability to process 

larger amounts of data than what was previously available to them due to the physical 

limitations of local storage. Ensuring data source protocols by following defined 

standards, establishing validation processes, and reducing duplication of data can increase 

the validity of big data analytics by data scientists. 

Theme 4: Designing for Security 

Protection of security and privacy are critical data governance concepts for any 

solution involving personal data. Data scientists are among the first line of defense when 

it comes to protecting both the raw data and the individual privacy of the consumers who 

are represented in those data. With the ever-increasing threat of a data breach, any 

organization must ensure the protection of the information within its control. This theme 
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consists of three subthemes: segregation of duties, using encryption, and protecting 

private information (see Table 4). 

Table 4 

 Subthemes for Designing for Security 

 Interviews Documents 

Subtheme Count References Count References 

Segregation of duties 9 35 3 17 

Using encryption 3 9 4 10 

Protecting private information 10 15 4 10 

 

Subtheme: Segregation of duties. Security and privacy are best addressed in the 

data governance process before the data scientists have access to those data for analysis. 

When asked about the protection of the data nine out of 10 participants discussed the 

segregation of duties concerning the data lineage within their organization. Additionally, 

three of the four process documents referenced segregation of duties. In every 

organization studied there were either data owners or data stewards who were responsible 

for protecting access to the information. P2 described that data custodians in their 

organization prepare the various data environments for the data scientists to access and 

stated that “when the environment is ready for [data scientists] to work in, they wouldn't 

see [private] data”.  If a data scientist needed additional information to perform their 

analysis, they would need to obtain permission from the data owner or data steward 

before they were able to access the information. P3 articulated this process as follows: “if 

there's something that we want that isn't available, we have to go through steps to get that 

from the BI team…[they would] be the ones that need to give us access to that”. Security 
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controls on the various systems of record were active to prevent such access without 

appropriate permission.  

P3, P7, P8, P9, and P10 also discussed having role-based access controls within 

their systems that restrict access to private data based on role. P3 indicated that the “BI 

team…would be considered more of the gatherers, and then on the data science side we 

do more of the analysis”. P8 highlighted a role distinction between the data architect and 

reporting writing roles as follows: “I'm not a report writer, I'm not an architect... I kind of 

come before the report, I pull together the requirements”. Process documentation from 

one of the organizations also specifies that “effective [segregation of duties] ensures 

access to company…data is restricted to only authorized and appropriate personnel”. 

They also discussed the segregation of duties among the IT team with database 

administrators controlling access to the data while data scientists, business analysts, and 

business intelligence roles all accessing only the information that they require to 

accomplish their job.  

Maintaining appropriate segregation of duties between those who are responsible 

for data access and those who analyze information is critical to the protection of the data. 

P6 spoke of the inherent conflict that exists between data owners who want to protect 

data and restrict access and data scientists who want to access and review as much data as 

possible. P6 said:  

There is some conflict between data science and data warehouse on what data is 

available to the data science team. The data science team wants access to …more 

data, more raw data, more extensive data. There is some unwillingness to provide 
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access to all of the data that is needed…there are concerns about privacy and 

other aspects.  

This is a healthy conflict that forces data scientists to justify all of the access to data in 

terms of a business question that they are working to answer. This highlights the 

alignment between this subtheme and the subtheme of understanding the business need. 

 The primary ethical issue is not whether to collect the information, but how and 

when it is ethically responsible to analyze that information (Mai, 2016). Herschel and 

Miori (2017) stated that data sources that had not previously had an issue with privacy 

may end up threatening privacy once combined with other data sources in the big data 

construct. Big data analytics must be comprised of various roles and assignments of 

specific responsibilities, such as technical data steward and business data steward (Begg 

& Caira, 2012). Data owners need to stay focused on their role of protecting individual 

privacy and data security of the information that they gather. Maintaining segregation of 

duties between those who are responsible for gathering the data, those who are 

responsible for analyzing the data, and those who are responsible for protecting the data 

creates natural boundaries around data governance within the organization that lead 

toward better security overall. 

Segregation of duties is not specifically addressed in OIPT. However, the 

concepts related to pushing decision making down in the organization are relevant to this 

theme. The premise of OIPT is to minimize uncertainty within an organization by closing 

the gap between the amount of information needed for a task and the ability to process 

information around the task (Premkumar et al., 2005). This means that according to the 

constructs of OIPT those data need to be made available lower in the organization (Feurer 
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et al., 2019). Making information available lower in the organization implies having a 

larger audience for the information which in turn implies a greater need for security and 

privacy controls. By granting information to the individuals who need it when they need 

it, role-based access to that information becomes an important security control to limit 

access to private information. The net effect of pushing the decision making down within 

the organization aligns with the concept of segregating duties and limiting access to 

private and protected information to only those individuals who need to see those private 

data as part of their role within the organization.  

Subtheme: Using encryption. Encryption of data at rest and data in transit has 

long been a foundational security control of data governance. Many regulated industries 

require that encryption is implemented as one of many security controls to protect data 

against unauthorized access. When asked about the protection of the data three of the 10 

participants specifically mentioned encryption. P5 indicated that “the data is encrypted. 

So, it is not readable or hackable in any way. We keep that consistency and the data is 

always protected.” P8 said:  

Files don't go out the door without some form of protection. …our file transfers 

now happen via SFTP. We also wrap those files in a PGP or GPG 

encryption…we also want to make sure… that wherever that data is sitting and 

wherever it eventually lands that it is encrypted at rest. So, it is encrypted as it 

sits, it is basically double encrypted as it goes. And then it's still encrypted as it 

sits at its destination.  

Use of encryption is a common practice to protect personal information for both data at 

rest and data in transit. 
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The remaining seven participants stated that their security team has controls in 

place for the protection of the data which does not rule out encryption being used as part 

of that protection. In addition, three of the five process documents referred to encryption 

of the data as a key security control. One of those documents indicated that “it is 

important that we comply with security requirements, laws, and regulations as we design 

our systems.” P5 also discussed the idea that consumers are concerned about sharing their 

data with companies who are not protective of those data and stated that encryption helps 

provide a level of comfort for their customers. 

Because of the volume and velocity of big data traditional encryption at rest is 

inefficient when applied to big data solutions (Yang et al., 2017). Encryption in transit is 

also questionable when applied to big data as many data sources associated with big data 

lack advanced security controls (Sivarajah et al., 2017). It is because of these challenges 

that data scientists must take additional care within their environments to proactively 

enforce encryption of data both at rest and in transit to enhance the security of big data 

solutions. Encryption technology itself must also improve to handle the speed 

requirements that businesses are demanding from big data analytics. 

Similar to the theme of segregation of duties the specific concept of encrypting 

data is not directly addressed in the OIPT. However, the safeguarding of information is 

critical to maintaining confidence in any information-sharing solution within an 

organization. The OIPT defined the essential function of an organizational structure to 

facilitate the collection, analysis, and distribution of information (Hwang et al., 2019). 

Alignment between overall information systems strategy and business strategy is a 

critical precursor to overall profitability and competitive advantage (Shao, 2019). Data 
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governance of that information refers to the control and authority over data-related rules 

and accountability of individuals and systems accessing and utilizing those data (Hashem, 

et al., 2015). Ensuring the protection of those data through industry-standard security 

controls such as encryption is crucial to the ability of an organization to share information 

widely throughout the various organizational levels of the organization. This is critical to 

the success of the concepts outlined in OIPT. 

Subtheme: Protecting private information. Protecting the privacy of 

individuals is critical to organizations that are analyzing big data. Individuals are 

revealing very personal information on social networks and through IoT devices often 

unconsciously (Gao et al., 2018) and without their knowledge or consent (Mai, 2016). 

When implementing data governance over big data it is critical for the data scientists to 

be aware of personally identifiable information (PII) within their system and to 

proactively put controls in place to protect those data. 

When asked about privacy 10 out of 10 participants indicated that they are 

cognizant of privacy and that it is important to their organization. P4 explained that “we 

don't use customer identifying information for any analysis, but …there's one process that 

uses that and we hash [the PII to] protect the data.” Additionally, one of the process 

documents describes that the system in use in that organization will automatically 

determine whether the information being requested is PII and if so, will return obfuscated 

data rather than the raw data. P8 discusses the importance of ensuring that appropriate 

data sharing agreements are in place before sharing any PII. P1 explained that they obtain 

consumers' permission prior to accessing their information: “if I want to look at Patient 

X's x-rays, Patient X has to authorize that”. P2 explained that they scrub the PII from the 
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system on-demand: “we've invested in some scrubbing technology. So, when we, even on 

the application development side, if an engineer has to pull data down to a local 

environment…the PII’s scrubbed.” 

 Regardless of the specific manner in which the personal data are protected, it is 

critical for organizations to understand what personal information they have access to and 

to put processes and controls in place to protect that information. Big data can include 

many elements of personal information (Lee, 2017). 99.98% of Americans could be 

reidentified with any data set with as few as 15 demographic data elements (Rocher et al., 

2019).  Data scientists analyzing big data can no longer assume that consumers have 

provided informed, rational consent for their data to be used by the organization (Mai, 

2016). This means that organizations analyzing big data have an ethical responsibility to 

understand how to use the data while protecting the privacy and confidentiality of those 

data (Herschel & Miori, 2017). 

Tushman and Nadler (1978) articulated that the OIPT directly applies to the 

gathering, interpretation, and synthesis of information within an organization for decision 

making. If individuals have not provided their consent for such use the organization could 

be at risk. One of the general concepts of the OIPT is that as lateral relationships are 

established, the number of decisions referred upward is reduced, which then leads to 

more effective decision-making (Feurer et al., 2019). This means that according to the 

constructs of the OIPT those data need to be made available lower in the organization 

(Feurer et al., 2019). Hwang et al. (2019) added that OIPT highlights the essential 

function of an organizational structure, which is to facilitate the collection, analysis, and 

distribution of information to reduce uncertainty within the organization. Considering the 
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privacy requirements enacted in recent legislation in the form of the California Consumer 

Protection Act the organization must focus on privacy before providing access to such 

information for decision making within the organization. By implementing the strategies 

of segregation of duties, use of encryption, and protection of privacy data scientists can 

successfully design their solutions for security. 

Applications to Professional Practice 

By implementing the concepts outlined in these four themes, data scientists can 

implement governance practices that will assist them in working with big data. The four 

themes described in this study guide data scientists to provide a foundation for big data 

analytics that will ease the transition from traditional data analytics to the use of big data 

for decision making within the organization. These practices can help provide better 

information and insights to those individuals who are closer to the work within the 

organization as theorized in the OIPT. The implementation of the practices associated 

with these four themes will allow individuals within the organization to work more 

autonomously and to close the gap between information needed and information 

available for the front-line employees. As described in the key tenant of the OIPT this 

application to professional practice should result in better efficiencies throughout the 

organization. 

Data scientists who use the strategies described in these findings could improve 

their effectiveness as agents of change for their organization. Adopting big data 

governance practices that provide a balance between value creation and risk mitigation is 

imperative to organizations (Hashem et al., 2015). Learning and implementing these 

practices could make data scientists more valuable to their organization which could 
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result in an increase in both efficiencies of the organization and improved value of the 

data scientist. By implementing the governance practices outlined in this study the data 

scientist could improve their position within the organization by bringing them closer to 

the business itself. This increased focus on the business will benefit both the role of the 

data scientist as well as the efficiency of the solutions that the data scientist can provide 

to the organization. 

Implications for Social Change 

If the implementation of these practices results in the efficiencies theorized in the 

OIPT, the result would be better decisions being made by the organization. Better 

decision making within the organization would occur because the information would be 

made available lower in the organization and closer to those who need the information to 

do their job. Making better information available lower in the organization would in turn 

result in increased responsiveness and time to market for the organization, which could 

provide the overall organization with a significant competitive advantage. Competitive 

advantage could lead to increased profitability for the organization. The cumulative effect 

of these practices could lead to more employment opportunities for the communities 

where these mid-market companies are based.  

Implementation of these practices could also result in more efficient use of data 

within the organization, resulting in increased profitability for the overall organization. 

Increasing the efficiency of data use means that the potential for social change is the 

increased ability for companies to meet the needs of their customer base because they 

now have an increased understanding of the meaning of the data that they have. These 

business improvements could benefit the local communities where the company is 
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located by allowing the employees to earn more money and improve their way of life. 

Improved business performance could also lead to better employment opportunities and 

improved customer experiences. Effective use of the big data themes in this study could 

benefit customers by providing them more specific and targeted solutions to their needs 

by the small companies that are part of their local communities. In sum, the ability to 

effectively utilize big data in mid-market companies could be an equalizing force that 

could benefit customers, employees, and owners of all types of mid-market companies. 

A social change could also result from data scientists enacting the security 

strategies outlined in the findings from this study. Weak security controls around big data 

can lead to financial loss and reputational damage (Lee, 2017).  Implementing the 

security controls outlined in the findings can help ensure better security of big data 

solutions and thus protect the reputation of the institution and mitigate financial losses. 

By implementing the strategies relating to the segregation of duties, encryption of data, 

and protection of personal information, data scientists can mitigate the contemporary 

concerns relating to the use of private information in big data analytics.  

The use of multiple data sources that may themselves be insecure leads to 

potentially insecure solutions (Duncan et al., 2017). During the completion of this study, 

Simon Weckart tricked Google Maps into reporting that 100 cell phones in a wagon were 

a traffic jam demonstrating the ease with which some big data systems can be fooled by 

injection of IoT devices (Torres, 2020). Validation of data sources can mitigate this 

concern and enhance the overall security of big data analytic solutions, which could result 

in less possibility of injection of malicious and falsified data streams into AI-driven 

analytic systems. By protecting the privacy of individuals and ensuring the validity of the 
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data sources, positive social change can be accomplished in the embodiment of trusted 

solutions for autonomous artificial intelligence systems. 

Recommendations for Action 

Policies, principles, and frameworks around how big data are used and leveraged 

within an organization are posing enormous challenges for those organizations (Hashem 

et al., 2015). The results of this study validate this concept from literature. Data 

governance is critical for big data, and data scientists cannot add it as an afterthought 

(Cervone, 2016). By following the findings of this study, data scientists can thoughtfully 

and proactively implement data governance into their big data solutions from the start. To 

be able to extract value from raw data, organizations require a well-defined, systematic 

approach to governing their data (Song & Zhu, 2016). Data scientists can leverage the 

data governance strategies outlined in the findings of this study to design appropriate 

governance models for their big data initiatives. 

Data scientists should review the findings of this study to determine how best to 

apply these practices into their big data solution architectures.  The lack of formal data 

governance processes was one of the primary reasons that organizations fail to utilize 

their data effectively (Posavec & Krajnovic, 2016). Implementation of these themes can 

guide data scientists who are trying to move from traditional data analytics to big data 

analytics. To be able to extract value from raw data, Song and Zhu (2016) noted that 

organizations require a well-defined, systematic approach to governing their data. The 

themes outlined in this study provided a foundation for such a systematic approach to big 

data governance. Begg and Caira (2012) argued that there is no evidence to date of a 

standard implementation framework for data governance. This study helps to set a 
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foundation for that standard implementation framework. As data scientists implement 

these themes, they will also be establishing a set of best practices within the industry. 

Data scientists should review the themes identified in this study and should look for ways 

to implement these concepts as they implement big data analytics within their 

organizations. 

Recommendations for Further Study 

This study focused on the general data governance practices of data scientists who 

are utilizing big data to help make decisions within their organization. Data governance 

of big data was a broad topic about a subject that is in its infancy within current practice. 

Big data by itself is of little use when considering the application to an organization. The 

power of big data comes when combined with both IoT and Machine Learning. I would 

recommend that future studies focus on the combination of these three technologies. IoT 

is creating additional data sources for big data, and machine learning is starting to 

provide faster analysis of those data. As future studies focus on the powerful combination 

of big data governance combined with IoT and machine learning, more insights will 

emerge regarding the benefits of big data to the decision-making process within an 

organization. 

Security, privacy, and ethical use of big data are also critical aspects of data 

governance when implementing big data solutions. Re-identification of previously 

obfuscated and anonymous data has been documented in multiple cases (Herschel & 

Miori, 2017). Additional study is warranted in these areas to determine the effectiveness 

of the security controls and the extent to which the strategies outlined here are effective 

in reducing the ability to correlate big data elements into data sets that contain private 
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information not previously permitted by the data owner. The security strategies outlined 

in this study should be further studied to determine their effectiveness. 

Reflections 

As I reflect on this process, my thoughts turn first to the current state of the 

practice of big data governance. Documentation regarding data governance processes 

lacks in all the organizations that I studied. Each organization had documentation 

regarding their security processes, and one had design documentation regarding their 

overall approach to big data analysis. Still, very little of the documentation was focused 

on the data governance aspects of how to handle data within their organization. Most of 

the documentation was focused on overall IT practices and only lightly touched on the 

data specifically. While design specifications are important, it is also important to 

document decisions around the governance process. It is important to have 

documentation stating why certain governance decisions were made and how to 

implement those decisions in practice. 

It was also clear to me that the participants validated the lack of clarity described 

in literature around the definition of big data. Some of the participants did not think they 

were working with big data until I discussed the definition of big data with them. There 

are also still many different perspectives on how to handle big data in the future. One 

participant indicated that they should not collect any more data until they can effectively 

utilize all of the data collected already, and another participant opined that they should 

collect much more data and simply store it until they can determine the best use for it. 

While there was very good alignment around the four themes that emerged from this 
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study, there were also many conflicting ideas about some of the other strategies in use 

today. 

Another concept that was identified throughout this process is the fact that the 

data scientists that I spoke with take their responsibilities very seriously. Each one was 

very conscious of the fact that they do not own the data that they are accessing, and the 

need to maintain privacy and security is paramount to them. As I reviewed my notes from 

the interviews, I noticed that there are several occasions where I noted from their body 

language that the participant took their role as data steward seriously and that they clearly 

understood that they were interacting with other people's data. The stewardship that these 

participants feel became clear early in the process when some potential participants 

declined to participate because they were concerned about sharing too much information 

about the data that they gather. The concept of data stewardship versus data ownership is 

well understood by the individuals that I interacted with for this study. 

As I reflect on the process, my thoughts also turn to the environment in which I 

conducted the study. I entered the data gathering phase of this study during the COVID-

19 pandemic of 2020. The environmental changes that came as a result of the pandemic 

caused some added challenges to the data gathering process that I had not previously 

anticipated. Some of the partner organizations had to delay scheduling interviews because 

their employees were busy responding to the challenges of providing support to their 

company while employees transitioned to working from home. Others had to delay their 

participation because their department had gone through a layoff, and the remaining 

employees were dealing with the emotional stress of having lost some co-workers while 

having to take on the added work that was left by these departing employees. These 
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various effects of the pandemic caused the data gathering phase to take longer than I had 

initially anticipated. 

I was surprised at the difficulty of finding partner organizations willing to 

participate in this study. During the proposal phase of my study, I had identified two 

organizations that I was planning to use as partner organizations. I spoke with the 

leadership of both organizations, and they both seemed excited to participate. Once I 

obtained the approval of the proposal and approached these two organizations to obtain 

their Letter of Cooperation, both backed out. In one case, the leadership was 

uncomfortable with the fact that they would not be able to review and approve the 

individual interview content before inclusion in my data analysis. They were concerned 

that something might be revealed that might reflect poorly on their company, even though 

I assured them that confidentiality would be paramount. As I searched for other 

organizations to participate, it was challenging to find organizations mature enough in 

their big data processes to participate in this study. In one case, the potential partner 

company had been gathering quite a bit of data from IoT devices, but they were not yet 

doing any analysis of those data. The difficulty of locating companies that are currently 

using big data to make decisions is a clear indication that we are still incredibly early in 

the adoption of big data analytics as a true strategic capability within mid-market 

organizations. 

After I found organizations that met the criteria, I then met with the challenge of 

obtaining permission from the potential participants to agree to the interview process. 

Several potential participants declined to participate because they were uncomfortable 

sharing details of their data governance practices outside of their organization. As I 
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discussed the process with potential participants, it became clear to me that many of the 

individuals involved in the data gathering and analysis process take their role in 

protecting information very seriously. Thus, they are more reluctant to discuss details of 

their process with others. While not completely surprising, this reluctance to share details 

regarding their big data governance processes did pose an additional challenge to the 

overall study process. 

Summary and Conclusions 

The focus of this study was to explore big data governance strategies that data 

scientists are currently using in practice. I presented four major themes that provide 

insights into those strategies: ensuring business centricity, striving for simplicity, 

establishing data source protocols, and designing for security. Implementation of these 

strategies can assist mid-market organizations in making the transition from traditional 

data analytics to big data analytics, which could, in turn, help those organizations to be 

more profitable by gaining competitive advantages. I explained the possibility of social 

change in the way that individuals' private information is gathered as part of a big data 

strategy. Following the strategies outlined in the four themes of this study for big data 

governance can lead to the improved overall protection of individual privacy. 
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Appendix B: Interview Protocol 

Interview Protocol for Individual Interviews 

1. Introduce myself to the participant and describe my role as a doctoral student and 

researcher 

2. Ensure the Informed Consent Form has been signed 

3. Remind participants of their voluntary participation in the study and their right to 

withdraw at any time 

4. Briefly discuss the concept of big data and data governance with the interviewee 

and explain that we are here to discuss the governance mechanisms in place that 

assist in the analysis of big data with a focus on its effect on strategic decision 

making within the organization 

5. Remind the participant that all answers should be based upon their current 

experience and current organization 

6. Remind the participant that the interview will be recorded and let the participant 

know that the audio recording is about to begin 

7. Begin the recording. State again that the interview is being recorded, and have 

them provide approval for the recording 

8. Ask the defined questions in a semi-structured fashion, allowing for re-ordering of 

the questions as the interview progresses 

Demographic Questions 

9. What is your role in data gathering and analysis? 

10. Please describe your background concerning big data analysis. 
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11. How long have you been involved in big data analysis? 

Interview Questions 

12. How do you ensure that you are analyzing all the available data for any particular 

model?  

 

13. How do you determine the appropriate sources of data for any specific model or 

analysis? 

14. What processes are in place to ensure that all applicable data are available to you 

when needed for analysis? 

15. What countermeasures are in place for risk mitigation regarding the validity of the 

analysis that you perform (i.e., the risk of not having current data, or of incorrect 

correlation of data from various sources)? 

16. What have you found to be most successful in building data models based on big 

data from various sources? 

17. Why do these processes give you confidence that you are analyzing all applicable 

data? 

18. How do these processes ensure the protection of the data? 

19. What controls are in place to ensure the privacy of the data? 

20. What other issues are there that we should discuss as relating to big data analysis? 

21. What other areas are there left to discuss? 

22. Thank them for their participation, and remind them of the member checking 

process that 

23. End the recording 
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Appendix C: Participant Invitation Email 

Subject: Invitation to participate in a Big Data research study  

Dear [Recipient], 

My name is Ken Knapton, and I have been given your name as someone who is 

knowledgeable about big data in your company. I am a doctoral student at Walden 

University, and I am conducting a doctoral study regarding the governance of big 

data. The purpose of this study is to identify big data governance strategies used 

by data scientists. 

 

 I would like to request your participation in the study.  Participation is voluntary, 

and you may withdraw from participation at any time.  Please see the attached 

consent form for a detailed description of the research study. Please reply and let 

me know if you are interested in participating in this study. 

 

Thank you for your consideration, 

 

Ken Knapton, MBA, MIT 

DIT Student 

College of Management, & Technology 

Walden University 
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Appendix D: Letter of Cooperation from a Research Partner 

 

[Community Research Partner Name] 

[Contact Information] 

 

[Date] 

 

Dear Ken Knapton,  

   

Based on my review of your research proposal, I give permission for you to 

conduct the study entitled “Exploring Mid-Market Strategies for Big Data Governance” 

within the [Insert Name of Community Partner].   

 

As part of this study, I authorize you to: 

Contact the data scientists that we identify as potential participants, either via 

email or by phone 

Obtain their informed consent from each potential participant 

Conduct an initial interview and a follow-up member checking interview with 

them of approximately 60 minutes each, and each using GoTo Meeting or a private 

location where the interviewee is comfortable 

Collect documentation related to the big data governance process within our 

organization 
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Individuals’ participation will be voluntary and at their own discretion.  

 

We understand that our organization’s responsibilities include:  

 

Identify potential participants by using the following criteria, as outlined in your 

proposal: 

Data Scientists (not necessarily using this formal job title) who are actively 

participating in the analysis of big data within our organization 

Individuals that are employees or contractors working within the organization and 

who have intimate knowledge of the data management and analytical strategies of the 

case study organizations 

Individuals that have been in a data scientist type of role for a minimum of 5 years 

Individuals that have architected the data analytic solutions at these companies 

Individuals with whom you do not have a recurring working relationship 

Provide you with contact information for all the individuals that meet these 

criteria 

Work with you to identify the initial set of individuals from this population to 

interview 

Provide any documentation regarding the big data analysis process, policy and 

procedure within our organization 

Help to ensure the privacy of each participant by not discussing this study in any 

meetings or other open forums 
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Provide authorization by emailing this form to both Ken.Knapton@WaldenU.edu 

and IRB@mail.waldenu.edu 

 

We reserve the right to withdraw from the study at any time if our circumstances 

change.  

 

 

I understand that you will not be naming our organization in the doctoral project 

report that is published in Proquest. 

 

I confirm that I am authorized to approve research in this setting and that this plan 

complies with the organization’s policies. 

 

I understand that the data collected will remain entirely confidential and may not 

be provided to anyone outside of the student’s supervising faculty/staff without 

permission from the Walden University IRB.   

 

Sincerely, 

 

[Authorization Official] 

[Contact Information] 

 

mailto:Ken.Knapton@WaldenU.edu
mailto:IRB@mail.waldenu.edu


153 

 

Walden University policy on electronic signatures: An electronic signature is just 

as valid as a written signature as long as both parties have agreed to conduct the 

transaction electronically. Electronic signatures are regulated by the Uniform Electronic 

Transactions Act. Electronic signatures are only valid when the signer is either (a) the 

sender of the email, or (b) copied on the email containing the signed document. Legally 

an "electronic signature" can be the person’s typed name, their email address, or any 

other identifying marker. Walden University staff verify any electronic signatures that do 

not originate from a password-protected source (i.e., an email address officially on file 

with Walden). 
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