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Abstract  
The job shop problem is among the class of NP- hard combinatorial problems. This 
Research paper addresses the problem of static job shop scheduling on the job-based 
representation and the rule based representations. The popular search techniques like the 
genetic algorithm and simulated annealing are used for the determination of the 
objectives like minimizations of the makespan time and mean flow time. Various rules 
like the SPT, LPT, MWKR, and LWKR are used for the objective function to attain the 
results.  The summary of results from this paper gives a conclusion that the genetic 
algorithm gives better results in the makespan time determination on both the job based 
representation and the rule based representation and the simulated annealing algorithm 
gives the better results in the mean flow time in both the representations. 
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Introduction 

A general job shop scheduling problem (JSSP) can be defined as n job, m 

machine problem, where the aim is to optimally allocate series of operations for each job 

across available machines, respecting temporal and resources constraints. Scheduling in 

the job shop is an important aspect of a shop floor management system, which has 
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significant impact on the performance of the shop floor (Holthaus and Rajendran, 2000). 

The job shop problem may be characterized by a number of jobs to be processed, in 

which jobs consists of one or more operations to be performed in a specified machine 

with in amount of time. JSSP is worst among the NP hard problems and among the worst 

combinatorial problems.  Not only it is hard, but even among the members of the latter 

class, it appears to belong to the more difficult ones (Wang and Zheng, 2001). 

Many researchers used search algorithms to solve combinatorial optimization 

problems.  Some authors have shown that the optimal schedules can be found the set of 

active schedules based upon regular performance measures (Giffler and Thomson 1960, 

Kenneth Baker 1974).  Genetic Algorithms (GA) are stochastic, guided search strategy.  

They work on a population of points, and follow the Darwinian principle of survival of 

the fittest in nature.  A population of solutions is evolved to a next set of solutions 

through genetic operators, and mechanism of selection just like the process of evolution 

in nature (Dirk and Christian, 2004).  Simulated Annealing (SA) is a stochastic heuristic 

algorithm in which the solutions are searched for in hill climbing processes constantly 

commenced by random moves.  Because of its ease of use, SA is an extremely popular 

method for solving large-sized and practical problems like job shop scheduling, time 

tabling and traveling salesman (Aydin, 2004). 

Modern heuristic search for job shop scheduling 

 

There have been a number of papers, in which meta-heuristics is used to solve job 

shop scheduling problems.  In this section, the literature that addresses the scheduling 

problems in the job shop manufacturing context is reviewed. 
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Genetic Algorithms 

Genetic Algorithm is an adaptive search method used to solve hard combinatorial 

problems. GA mimics the mechanics of natural selection and evaluation. In any 

evolutionary process, only the most suited elements in a population are to survive and 

generate offspring, thus transmitting biological heredity to the new generations. In a 

similar way, GA also starts with a particular initial population and subsequent 

generations are created using generic operators. Population is a set of strings, each 

representing a potential solution to the given problem. Each string is called a 

chromosome and the elements of the chromosome are called genes. For creating the 

offspring only promising string are selected so that the generic material is transferred 

effectively. `Generic operators’ are applied on the mating pool to create offspring. The 

set of strings chosen to create offspring is called mating pool. After the creation of new 

set of strings, the population is evaluated and only the best elements are chosen for the 

next generation and finally the search ends with a best possible set of solutions.           

Hybrid GA (Kopfer and Mattfeld,  1997) proposed by the authors that applies a 

local search operator in an evolutionary framework and evaluated with the results 

obtained for a well-known test suite of particularly hard, but medium-sized job shop 

scheduling problems (including the famous MT 10x10 problem).  Their results 

encourage using GA framework for future research. 

The researchers (Ponnabalam and Jawahar, 1999) proposed to solve job shop 

scheduling problems with the makespan objective.  Three perturbation schemes were 

used to study the effect on the problems considered. Which were pair wise exchange, 

insertion, and random insertions.  The performance of the Simulated Annealing (SA) has 
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been compared with the GA often SA gives better results.  The CPU time was also very 

close to the time of Genetic Algorithm.  

  Solving stochastic job shop scheduling problems (Yasunari Yoshitomi, 2002) 

based on a genetic algorithm; it was expanded for stochastic programming.  The roulette 

strategy is adopted for selecting the optimum solution in terms of the expected value.  

Within this algorithm, it is expected that the individual that appears most frequently must 

give the optimum solution. The effectiveness of this approach is confirmed by applying it 

to stochastic job shop scheduling problem. 

An approach (Ivan, 2004) for scheduling of customers orders in factories of 

plastic injection machines as a case of real world flexible job shop scheduling problem.  

As an approach addressing the issue of efficient scheduling routine a hybrid evolutionary 

algorithm combining priority dispatching rules with GA is developed. The results 

obtained for evolving a schedule of 400 customers orders on experimental model of 

factories of plastic injection machines indicate that the business delays in order of half-

an-hour can be achieved.    

An approach (Goncalves, 2005) of hybrid genetic algorithm for job shop 

scheduling problem proposed.  The chromosome representation of the problem is based 

on random keys.  The schedules are constructed using a priority rule in which the 

priorities are defined by the genetic algorithm. This approach is compared with other 

approaches.  The computation results validate the effectiveness of the proposed 

algorithm. 
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Open job shop scheduling (Senthilkumar, 2006) is a kind of job shop scheduling 

in which operations can be performed in any order. An approach was developed a 

heuristic for the open job shop scheduling problem using GA to minimize makespan.  

The results are statistically compared and found to be significantly better than the earlier 

reported results. 

To minimize production losses (Yu-Su Shum and Dah-Chuan Gong, 2007) due to 

unanticipated machine breakdown, a preventive maintenance plan must be implemented 

to ensure machines are kept in good condition.  When the system size increases, with 

many more machines, the corresponding mathematical programming becomes 

complicated. The proposed GA problem solving procedure gives the solution quality. 

Simulated Annealing Algorithms     

The Simulated Annealing (SA) is a search technique proposed by (Kirkpatrick et 

al, 1983) this is based on the statistical mechanics and motivated by an analogy to the 

annealing of solids in statistical physics where a solid is cooled to the ground state noting 

its behavior at intermediate temperature. On the other hand it can be used for 

improvement approach to combinatorial optimization problems. As in solid annealing, 

this method starts with an initial temperature. The temperature is reduced slowly and at 

each step, the solution is repeatedly improved by making small local perturbations until 

no further improvements. But SA technique differs from other search methods in that 

respect and it accepts inferior solutions with certain probability. In this way it attempts to 

reduce the danger of getting stuck with local optimal solutions. It has been found that the 

mentioned proposing simulated annealing for scheduling problem show good results.  
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The simulated annealing technique appears to be a robust approach to scheduling 

problems.  

Two results (Kolonko, 1999) about heuristic solutions to the job shop scheduling 

problems are presented.  The novel features are an adaptive temperature control that 

allows reheating of the SA and a new type of time oriented crossover of schedules.  

Though the procedure uses only standard properties of the job shop scheduling it yields 

excellent results on the classical test examples. 

The authors (Esin Onbasoglu, Linet and Ozdamar, 2001) developed five different 

parallel simulated annealing algorithms and compare them on an extensive test bed used 

previously for the assessment of various solution approaches in global optimization.  

Previous attempts with other approaches, such as sequential SA, adaptive partitioning 

algorithms and clustering algorithms, to identify the global optima of these functions 

have failed without exception. 

New stochastic learning algorithm developed (Albrecht et al, 2001, 2002) and 

first results of computational experiments on fragments of liver CT images.  The 

algorithm is designed to compute a depth-three threshold circuit, where the first layer is 

calculated by an extension of the perceptron algorithm by a special type of simulated 

annealing.  They present a pattern classification method that combines the classical 

perceptron algorithm with simulated annealing. For a sample set S of n-dimensional 

patterns labeled as positive and negative, their algorithm computes threshold circuits of 

small depth where the linear threshold functions of the first layer are calculated by 

simulated annealing with the logarithmic cooling schedule. 
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A hybrid algorithm (Purushothama and Jenkins, 2003) has been developed for the 

solution of the unit commitment problem.  This hybrid technique uses simulated 

annealing as the main algorithm. At each temperature, fresh solutions are generated 

randomly, and with a high likelihood of being feasible.  Local search is made in the 

neighborhood of the best solution, using a heuristic decommitment technique.  The 

hybrid algorithm is robust and has improved convergence, compared with earlier 

algorithms.  The results obtained in system studies indicate its potential for solving the 

unit commitment problem. 

The evolutionary simulated annealing (Aydin and Fogarty, 2004) algorithm, its 

distributed implementation and its application to two combinatorial problems are 

presented.  This consists of a population, a simulated annealing operator, instead of the 

more usual reproduction operators used in evolutionary algorithms, and a selection 

operator.  The problems tackled are well known combinatorial optimization problem, 

namely, the classical job shop scheduling problem and the uncapacitated facility location 

problem. They used to measure the efficiency of metaheuristics with respect o both the 

quality of the solutions and the central processing unit (CPU) time spent. 

The new approach (Saber et al, 2006) presented to the fuzzy unit commitment 

problem using the absolutely stochastic simulated annealing method.  All the solutions, 

both higher and lower cost, are associated with acceptance probabilities, for example the 

minimum membership degree of all the fuzzy variable. Besides the number of bits 

flipping is decided by the linguistic fuzzy control.  Excess units with system dependent 

distribution handle constraints efficiently and reduce overlooking the optimal solution.  
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To reduce the economic load dispatch calculations, a sign bit vector is introduced with 

imprecise calculation of the fuzzy model as well. 

Job Based Representation 

    This job based (Esquivel et al, 2002; Viswanath Kumar Ganesan, 2006) 

representation consists of a list of n jobs and a schedule is constructed according to the 

sequence of jobs. For a given sequence of jobs, all operations of the first job in the list are 

scheduled   first, and then the operations of the second job in the list are considered .The 

first operation of the job under treatment is allocated in the best available processing time 

for the corresponding machine the operation requires and the second operation is 

allocated, and so on, until all operations of the job are scheduled. This process is repeated 

with each of the jobs in the list considered in the appropriate sequence. 

  Any permutation of the jobs corresponds to the schedule. Suppose a 

chromosome is given as [2,3,1]. The first job to be processed is job2. The operation 

precedence constraint for the job j2 is [m1, m2, m3] and the corresponding processing 

time for each machine is [3,2,3]. Each of its operation is scheduled in the best available   

processing time for the corresponding machine the operation requires. 

Priority Rule Based Representation 

In a priority rule based (Ivan, 2004; Jayamohan, 2004; Goncalves, 2005; Tsung, 

2007) genetic algorithm, a chromosome is encoded as a sequence of dispatching rules for 

job assignment and a schedule is constructed with priority dispatching heuristic based on 

the sequence of dispatching rules. Priority dispatching rules are the one most frequently 

applied heuristics for solving scheduling problems in practice because of their easy 

implementation and their low time complexity. 

    In this paper the Priority dispatch rules used are: 

1. SPT (Shortest imminent Processing Time) 
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2. LPT (Least imminent Processing Time) 

3. LWKR (Least Work Remaining) 

4. MWKR (Maximum Work Remaining) 

 

Methodology   

This research paper interested to bring out suboptimal solutions through 

metaheuristics like Genetic Algorithm and Simulated Annealing methods. Heuristic 

techniques are often motivated by the question ‘what is the best way to generate a good 

solution’ while a genetic algorithm targets the specific question ‘what is the best solution 

to the problem’.  Two representations like Priority Dispatching Rules based and job based 

representations are consider to select the operations.   Priority rules are type of heuristic 

rules, which tend to guide the scheduling process.  Job based representation uses a list of 

n jobs, the schedule from which is constructed according to the sequence of jobs.  The 

chromosome is a set of permutation of jobs, defining the scheduling priority of each job 

with respect to others. Ten bench mark problems are taken for both representations the 

performances are compared on each of the algorithms with the objective measures of 

makespan time and mean flow time. 

GA Job Based Representation   

Determination of makespan and mean flow time in the job based representation is 

done through the inputs of number of machines and number of jobs. Once these are 

known, the routing matrix is got considering that all the jobs go through all machines. 

From this source   the population size is got from the user. The population size represents 

the different combination of the routings. On this different combination the makespan 

and the mean flow time of the schedule is got from this makespan and the mean flow 

times.  



48______________________________________________________________ iJAMT 

_______________________________________________________________________ 
The International Journal of Applied Management and Technology, Vol 6, Num 2 

The   probability of occurrence is got by dividing the makespan by the sum of 

makespan and similarly the mean flow time by the sum of mean flow times. This gives 

the probability of the function. The total sum of the probabilities gives the cumulative 

probability of the individuals, which gives ‘1’ now a mutation probability, is given. This 

determines a value between the probabilities the corresponding chromosomes are 

selected. Crossover is applied here to determine a new set of schedule this gives a new set 

of population and makespan and the mean flow time goes on till the best of the makespan 

and the mean flow time is achieved. 

A genetic algorithm to any problem would involve the following stages: 

• Representation of feasible solution to the problem as chromosomes and 

generation of the initial population. 

• Evaluation of the population using fitness function. 

• Generation of new population using the generic operators. 

• Selection of new population using the offspring generated. 

 

Representation of the chromosome 

A population consists of strings called the chromosomes, each representing a   

sequence of schedule.  The schedules form a makespan and the mean flow time out of the 

process involved in each of them. 

Creation of initial population 

Population is a set of chromosome, which consists of different schedules, each 

representing the same sequence of operations given by the user. 

Evaluation of the population 
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Survival of the fittest is the concept of genetic algorithm. The resulting makespan 

and the mean flow time is the fitness function of the chromosome. It is done by the 

determination of the makespan and the mean flow time then the probability of occurrence 

is calculated summing up the makespans and the mean flow times individually and 

getting divided with each individual makespan and the mean flow time. The sum of them 

gives the cumulative probability of the population. 

Generation of offspring 

The mating pool is selected from the population; the crossover operator is used in 

the process to get the new offspring. These new offspring gives the next set of generation. 

Crossover   

Crossovers as the name suggests swaps a portion of the two parent chromosomes 

of the mating pool to create two new chromosomes for the new generation single point 

crossover is used in the process. In this a single point is selected and they are 

interchanged. This results in a new set of chromosome, which undergoes the process.  

Termination 

After the crossover is over the new set of chromosomes are derived, this set of 

chromosomes are used to for further iterations and the optimal results are obtained. 

GA Rule Based Representation     

In this paper Giffler Thompson algorithm is used for the determination of 

makespan and the mean flow time. The rules are used here for solving the conflicts 

occurring in the problem. When a problem arises for usage of rule, in this case the genetic 

algorithm is used to determine the rule to be used at the correct place to get the optimal 

result.     In this process the genetic algorithm is used as follows. The set of rules are 

selected and the genetic algorithm concept is applied to the input.  
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SA Job Based Representation 

The simulated annealing technique is used to determine the makespan and the 

mean flow time of the job based representation. The simulated annealing uses the solid 

annealing technique to under take the process. In this technique an initial temperature is 

set up and from that initial temperature the improvement is made through several 

neighborhood temperatures to attain the best solution. In this problem the makespan and 

the mean flow time   is considered as the temperature.  

The generic procedure applied for the SA to function                                         

 Step 1: Get an initial solution, S. 

      Step 2: Set an initial temperature T>0. 

      Step 3: While not frozen, do the followings. 

         Step 3.1: Do the following L times. 

              Step 3.1.1: Sample a neighbour NS from S. 

               Step 3.1.2: Let ∆ = value (NS)-value (S). 

               Step 3.1.3: lf ∆< 0 , then  set S = NS. 

                                 Else 

                                S = NS with the probability exp. (-∆/T) 

      Step 3.2: Set T = r x T  ,    where r is reduction factor. 

      Step 4: Return S. 
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Here the makespan or the mean flow time initially obtained is considered as the 

initial temperature. The temperature of the neighbor point or the schedule is considered. 

The makespan or the mean flow time obtained is then compared with the previous; the 

better solution is then considered with the usual increment in the simulated annealing. 

This process is continued for further iterations then the optimal result is got from the 

iterations. 

SA Rule Based Representation  

The makespan and the mean flow time are determined through the simulated 

annealing. Considering the various set of rules mentioned above the makespan and the 

mean flow time are found out.  The set of rules are considered as the set of temperatures.  

An initial temperature is taken or the initial rule is selected randomly the makespan and 

the mean flow time of the problem given in the data are calculated through the initial 

rule. Upon the determination of the neighborhood the makespan of the adjacent rule is 

calculated its compared with the previous makespan the better result is selected. If it 

doesn’t satisfy an increment is made to determine the next immediate neighborhood.  

Continue the process of getting the better result obtained. 

Comparison of Various Objectives Using the Job Based 

Representation with GA and SA 

 

Pro

blem 

No.&Size 

JOB BASED REPRESENTATION 

 Genetic Algorithm Simulated Annealing 
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Mak

espan 

Mea

n flow time 

Mak

espan 

Mean 

flow time 

1(3

X3) 

28 27.0

0 

35 11.67 

2(4

X4) 

29 25.0

0 

18 18.25

0 

3(4

X4) 

36 32.2

5 

47 24.67 

4(6

X6) 

54 50.8

30 

54 37.83 

5(6

X6) 

55 51.3

33 

75 20.67 

6(5

X5) 

104 90.6

00 

83 54.00 

7(5

X5) 

495 479.

200 

866 442.2

00 

8(7

X7) 

477 453.

000 

1044 254.7

1 

9(8

X8) 

668 624.

750 

535 535.0 

10(

9X9) 

684 642.

666 

599 293.5 

 

From the above table, it is inferred that under the Job based representation the 

makespan time is minimum in both the algorithms. From the 10 problems 5 times GA got 

the minimum makespan time, when compared with Simulated Annealing Algorithm. 

When the objective of minimizing the mean flow time Simulated Annealing Algorithm 

performs better in all the cases when compared with Genetic Algorithm. 
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In chart 1 the comparison of makespan objective using the job based 

representation with GA and SA. 
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In chart 3 the comparison of mean flow objective using the job based 

representation with GA and SA. 

 

Comparison of Various Objectives Using the Rule Based 

Representation with GA and SA 

 

Pr

oblem 

No.&Size 

RULE BASED REPRESENTATION 

 Genetic 

Algorithm 

Simulated 

Annealing 

M

akespan 

Me

an flow 

time 

M

akespan 

Mean 

flow time 

1(

3X3) 

21 31.

23 

31 25.0 

2(

4X4) 

30 23.

30 

32 17.7

5 

3(

4X4) 

32 30.

85 

35 24.6

7 

4(

6X6) 

87 28.

89 

91 27.6

7 

5(

6X6) 

67 43.

22 

95 29.0 

6(

5X5) 

79 89.

0 

91 81.8

0 
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7(

5X5) 

64

1 

62

1 

64

9 

599 

8(

7X7) 

82

7 

60

4.55 

63

4 

567.

33 

9(

8X8) 

71

3 

68

5.20 

84

3 

654.

7 

1

0(9X9) 

74

5 

78

2.7 

87

9 

765.

6 

 

 

From the above table, it is inferred that under the Rule based representation the 

makespan time is minimum in the most of the cases under the algorithm of Genetic 

Algorithm.  From the 10 problems 9 times it got the minimum makespan time, when 

compared with Simulated Annealing Algorithm. When the objective of minimizing the 

mean flow time Simulated Annealing Algorithm performs better in all the cases when 

compared with Genetic Algorithm.  



56______________________________________________________________ iJAMT 

_______________________________________________________________________ 
The International Journal of Applied Management and Technology, Vol 6, Num 2 
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In chart 2 the comparison of makespan objective using the Rule based 

representation with GA and SA. 

From the above chart, it is absolutely clear that the Genetic Algorithm is better 

than the Simulated Annealing Algorithm for makespan time under rule based 

representation. 
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In chart 4 the comparison of mean flow objective using the Rule based 

representation with GA and SA. 

From the above chart, it is absolutely clear that the Simulated Annealing 

Algorithm is better than the Genetic Algorithm for mean flow time under rule based 

representation. 

Conclusion 

The over all result shows that the simulated annealing provides better results in 

the determination of mean flow time in both the representations. The genetic algorithm 

and the simulated annealing give equal results in the makespan time determination in the 

job based representation. In the rule-based representation, the genetic algorithm gives 

better results in the determination of the makespan time than the simulated annealing. All 

the results of the simulated annealing algorithm seem to be better than the genetic 

algorithm for the objective mean flow time.  Genetic algorithms seem to be better than 

the simulated annealing algorithm for the objective makespan time.  
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Assumptions 

The assumptions made in the job shop are as follows: 

          1. A Machine can process only one job at a time. 

          2. An operation cannot be interrupted, implying no job pre-emption. 

          3. A job has at most “m” operations where “m” is the number of machines.        

          4. The processing order of a job is given. 

          5. The processing times are deterministic and include all times such as set   

              time and move times.       

          6. There are no any machine breakdowns. The machines are continuously   

              available. 

          7. Set up times are sequence independent and are usually included in the  

             processing times. 

         8. There are no any manpower constraints, no material constraints and no  

             any tool constraints. The only limitation is that the machine availability. 
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