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Abstract

Estimation via least squares is a mature area of statistics, but a phenomenon that
occurs under certain conditions has escaped attention for hundreds of years, and is the
focus of this dissertation. This new discovery demonstrates, both graphically and
mathematically, the fact that certain conditions cause data points to have no influence on
predictions made using ordinary least squares models. Least squares predictions are
widely used in many disciplines to make decisions or to determine what may happen in
the future. The loss of data when predicting y-values in a linear model is a loss of
information, and such a prediction may be suboptimal in comparison to some other
prediction technique that uses all the y-data points in its calculation. Since
noncontributory data can be identified before the dependent variable data is even
collected, this research can be used as a tool to help statisticians structure their input data
more efficiently and analyze existing data with better understanding.

In this dissertation, the mathematical relationships between predictions and data
points that are independent of those predictions have been developed and proven for least
squares straight-line models, general polynomial models, and general univariate models
that are linear in the unknown coefficients. The effect of noncontributory data were
analyzed and shown graphically via numerous examples and mathematically in the
general form. The important concept of data wells was introduced, defined, and
examined to demonstrate the far reaching effect of this new discovery on least squares

estimation. Data wells show that the phenomenon of noncontributory data is a continuous
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rather than a discrete phenomenon, a fact that extends the impact of this discovery
dramatically. Finally, recommendations were made regarding future research in least
squares sensitivity analysis, including work that will ultimately find a remedy for the
phenomenon discussed in this dissertation.

This dissertation provides a foundation for future work in sensitivity analysis, and
will help researchers better understand their data both before and after collection. Future
research in this area should ultimately result in better predictions, and will have the effect

of saving researchers both time and money in their work.
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Chapter 1:
Introduction to the Research

Introduction

Least squares modeling is a mature area of statistics. However, sensitivity
analysis, specifically the identification of the influence of particular data points on
various aspects of the model, has largely been neglected, and is not nearly as well
developed as other areas of least squares modeling (Belsley, Kuh, & Welsch, 2004). The
identification of influential data points or subsets of data are important because this
information can be used to identify sources of collinearity among regression variates.
However, an important phenomenon in sensitivity analysis in least squares appears to
have been missed altogether. Surprisingly, when making predictions using linear least
squares models, some data points have no influence at all on the predictions. Further, this
phenomenon occurs in an infinite number of cases, and mathematical relationships can be
derived that allow the calculation of exactly which data points do not contribute and
which predictions will be affected by the noncontribution of data.

The fact that not all data are necessarily contributing to least squares predictions
is important because it is usually assumed that all data are used in such predictions, and
predictions may be biased if a data point is independent of prediction calculations,
especially for small data sets. Further, the loss of a data point when predicting y-values in
a linear model of the form y = 8 + B, x + € indicates a loss of information, and such a

prediction may be suboptimal in comparison to some other prediction technique that uses
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all the y-data points in its calculation. In addition, this phenomenon extends beyond

straight-line models to other models that are linear in the unknown coefficients.

Background

The amount of literature on sensitivity analysis is very small, especially when
compared to the literature concerning least squares in general. Authors such as Belsley,
Kuh, and Welsch (2004), Chatterjee and Hadi (1988), Fox (1991), have produced some
of the best known works on sensitivity analysis in least squares regression. However, the
vast majority of this work is aimed at determining how different data points and subsets
of data affect the unknown coetficients of linear models. A standard equation does exist
for hat values, which are the contribution that the ith data point makes to the jth
prediction (Belsley, et al., 2001; Chatterjee & Hadi, 1988). Cases when a data point
makes no contribution can theoretically be computed by setting the equations for hat
values equal to zero. In practice, however, hat value equations exist in closed form only
for certain simple models, and the small amount of research aimed at determining how
the ith data point affects the jth prediction from a model has been done for the purpose of
finding the most influential data points rather than finding ones that have no influence at
all on prediction equations. In fact, no references could be found that address the issue of
noncontribution of data in prediction calculations, but the research that does exist on
sensitivity analysis applied to regression models will be covered thoroughly in chapter 2.
In addition, a brief introduction to least squares will be given at the beginning of

chapter 2.
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Developmental Theory

Consider the linear models of the form y; = B;x; + By + & and
v = /J’kxlk + /J’k_lxl-k_l +o 4 [J’zxiz + P1x; + Po + €, where k1s an integer greater than one.
In these models, y; represents the ith predicted value based on one of these models. This
research will use mathematical derivation and proof to define the specific conditions
under which predictions are independent of some collected data for certain statistical
models, and develop the mathematical relationships between the data point(s) that do not
contribute to predictions and the predicted y-values for which this happens. For this

purpose, define y p as the prediction that is independent of at least one data point, and
define y, as the data point that y p does not depend on. x ), and x, are defined as the
x-values corresponding to y p and y, respectively. The x-values are the independent

variables and the y-values are the dependent variables.

In addition to a statistical application that relates y pand yg, the two values also

have exactly the same relationship in an application in physics. The physical application
helped to inspire the statistical relationship for the straight-line model. The physical

application and relationship between y p and y, will be described as it relates to the

straight-line model, followed by the statistical relationship for the same model. The
statistical relationship will also be described for the polynomial model in the x data of
degree greater than one and the general univariate model. There is no known physical
meaning for polynomial models of degree greater than one or any other models. All of
the normal assumptions that pertain to ordinary least squares regression and prediction

will be assumed in this work.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



While this research will show that some data ( y;) contribute nothing to certain

predictions ( y p) made from certain ordinary least squares models, it is also the case that
the contribution of those data points ( y d) quickly approach zero in the neighborhood of
( y p). The noncontributory data points can therefore better be called data wells rather

than single noncontributory data points. The mathematics and meaning of this
phenomenon will be discussed fully in chapter 4.

It is by no means a new discovery that some data points affect least squares
models and predictions more than others. However, since the discovery that some data
have no influence at all on least squares prediction calculations is new, no previous work
exists to build upon. Hence, the first task to be done is to derive relationships between the

variables and to prove mathematically that under certain conditions, y p 1s indeed

independent of y,. It is also necessary to discuss the relevance of these relationships.
This derivation and validation for the linear models, polynomial models, and general
univariate models linear in the unknown coefficients is the objective of the current
research. The derivation and validation of the relationship for the linear model will be
developed in chapter 3, and the relationships for the polynomial and general univariate

statistical models will be developed in chapter 4.

Summary
This research is not intended to give remedies for problems that might arise as a
result of noncontributory data. It is instead meant to give a basis for finding such data.

However, it is important to note that there is an error commonly made when making
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predictions using least squares models. It is common to assume that outliers are a
problem for predictions, and so outliers are often deleted from data sets before modeling.
In fact, outliers may or may not have much influence over predictions (Belsley, et al.,
2004). Instead of the measured data (the y-values) determining which data are most or
least influential in predictions, it is the number of data points collected () and the values
of the independent variables (x-values) that actually determine how much weight any data
point or set of points will have for any specific prediction. This fact will be made clear in
this dissertation, and it is hoped that it will lead to better techniques in data collection and
analysis. In fact, judicious choices about how many data points are collected and which
independent variable values are used can allow a researcher to determine which data
points will be most and least influential to predictions before data are even collected.
Any theoretical result that shows a potential problem with predictions made
through least squares modeling has significance for researchers in many fields. These
include but are not limited to business, economics, psychology, sociology, engineering,
and astronomy, to name a few. The purpose of this work is to accurately describe the
circumstances in which some data will not affect predictions for linear and polynomial
models. These are some of the most widely used models used to make predictions,
particularly so the linear model, because linear relationships accurately describe the
behavior of many real life situations. Examples will also be shown where one or more
prediction is independent of a data point. The ramifications of this will be discussed in
light of applications. There are many cases where least squares predictions could be
adversely affected by this phenomenon. For example, predictions made using small data

sets will be adversely affected by the non-influence of a data point, as will applications
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where data collection is expensive or difficult. In that case, a data point that is not used
would be a literal waste of time and money.

Prediction is not the only reason that least squares models are developed, but it is
one of the major reasons. When prediction is the goal of modeling, data are often
collected that describes what has happened between an independent variable (x) and a
dependent variable (y). The resulting model is then used to predict what will happen at
some x-value that is not included in the collected data. However, least squares can only
appropriately be used to predict data points either between the collected values, or in the
neighborhood of collected the known data (Montgomery, et al., 2001). Therefore it will
be of particular interest to determine which predictions in that category are independent
of some data point that has been collected. For example, given data points from x = 1 to
n, it will be of interest to see when data points do not contribute when making predictions
for x=n+1.

While most past research about hat values has concentrated on influential data,
data that do not contribute are important as well. Influential data can tell a researcher that
some data are “skewing” the model and/or the predictions when it is not apparent that this
is happening. On the other hand, data that lend low or no contribution to predictions can
appear to be helping pull a prediction towards a central value, while actually it has little
or no effect at all. Either way, it is important for researchers to have this information.
Remedies for this could range from fixing the problem before data are collected to
adjusting something afterward. However, the first necessity is to know which data are

influential and non-influential to predictions.
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Integer values of x, are of special significance because predictions are so often

made using integer values of the independent variable. Therefore, special consideration

will be given to finding relationships between y, and y,, where the x-value

corresponding to y, is whole number. One particular value of interest is the prediction
¥,+1 When n data values are collected and modeled. x-values in collected data often
represent time, and the (n + 1)st prediction would then represent what is predicted to
happen at the next incremental future time period. For example, if the x-values 1 through
n represent what has happened for the last n years, then the (n + 1)st prediction represents
what is predicted to happen next year.

Interestingly, data that do not contribute to prediction calculations are not limited

to integer values of .x,. The derivations of these relationships will be developed in
chapter 4 for integer and real values of x, for the straight-line model, and for real values
of x, for the polynomial and general univariate models.

This dissertation will include the derivations regarding relationships between y P

and y, for straight-line model, higher order polynomial models, and the general case of

the univariate linear model in the unknown coefficients. Though a straight line is a
special case of a polynomial model where the degree is one, the case for straight-line
models will be handled separately from higher order polynomial models. The straight-
line model is the most widely used in applications, and therefore has special significance.
The other reason for the separate handling of lines and higher order polynomial models is

due to the fact that the mathematics and the relationship that exists between pand yg is
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elegant for straight-line models, and can be expressed easily in closed form. In other
words, a mathematical formula relating the two values can be written. Further, this
formula depends only on the x-data and the number of data points (#). On the other hand,
the relationship for polynomial models cannot be expressed easily in closed form and
therefore must be described as a solution process rather than a set of simple equations.

While this research will include the development of relationships for straight-line
models, higher order polynomial models, and the general univariate model that is linear
in the unknown coefficients, it will not include derivations of the relationship between

y p and y, for multivariate models that are linear in the unknown coefficients, or any

models that are nonlinear in the unknown coeftficients. These additional models will be
discussed in chapter 5 as opportunities for future research.

A process will be derived in chapter 4 that describes the relationship regarding
noncontributory data and their corresponding predictions for the general case of the
univariate linear model, but exhaustive analysis of the implications of these relationships
is beyond the scope of this research. However, the process will allow these relationships
to be derived for any specific univariate linear model and corresponding data set.
Suggestions for future research to be done will be described in chapter 5, both for
describing further relationships between predictions and noncontributory data, and for
examining the implications of these relationships.

The relationship between 3, and y, for the model y; = Bx; + By + & can be

readily found by setting the “hat value™ equation for this model equal to zero. However,

the derivations for the polynomial and general univariate linear models are much more
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complex, and the straight-line relationship will be derived from the beginning in order to
establish the methodology for the derivation of the relationship for the more general
models.

It is hoped that this work will be the beginning of a study of some of the hidden
limitations of least squares prediction. As a result, researchers will be able to determine in
advance, at least to some extent, whether or not a given data point will actually contribute
to predictions that need to be made. Depending on the specific situation, this may
influence what data are collected or determine that a prediction technique other that least
squares should be used. This should eventually lead to better overall predictions and a
better knowledge of how collected data are used in prediction calculations.

This research is the beginning of work studying data that do not contribute to
predictions made with ordinary least squares. This is especially important when making
predictions using small data sets or in cases where data collection is expensive or
difficult. Chapter 2 of this dissertation gives a brief introduction to least squares and
reviews the limited literature that is available concerning the contribution that individual
data points make to predictions using ordinary least squares modeling. Chapter 3
examines the physics application that helped to motivate the statistical problem, and
derives and proves the statistical relationship between predictions and noncontributory
data for the straight-line model. Chapter 4 extends this work to general polynomial
models in the x-data as well as to the general univariate model that is linear in the
unknown coetfficients. The concept of data wells that was introduced earlier in this
chapter will also be examined more fully in chapter 4. Chapter 5 will discuss conclusions,

a call for action, and recommendations for future work on the topic.
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Chapter 2:
Literature Review

Introduction

The method of least squares is probably the most popular technique today to fit
data to functions, estimate parameters, and determine the statistical properties of those
estimates. A description of the technique was first published in 1805 by the French
mathematician Legendre, but the German mathematician Gauss later claimed that he had
been using it for years before Legendre’s publication (Plackett, 1972). Like the dispute
between Leibniz and Newton over the invention of The Calculus, an argument between
Gauss and Legendre followed Legrendre’s 1805 publication. (Plackett, 1972). Despite the
problems surrounding its invention, least squares modeling has now been used for over
200 years and has proven to be one of the most useful and well known techniques in
statistics (Plackett, 1972).

Gauss’s technique began as a method that is now well known to solve £ linear
equations when there were & unknown variables (Farebrother, 1988). Regression analysis
was eventually developed by Gauss to solve for & variables when there were more than &
equations (or data points) available (Farebrother, 1988). Solving for & variables when
there are more than k& data points is called solving an overdetermined system of equations.
Gauss’s regression analysis is a statistical technique used to model the relationship
between variables. This is useful in many areas of social science, business, physical
science, engineering, and many other fields. A few examples of fields that use least
squares modeling are psychology, finance, biology, and systems engineering. However,

the ways in which regression analysis can be used are virtually limitless. Accurate
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11
predictions have become a vital need in our society in order to maintain and increase the
efficiency that businesses and other organizations have come to expect and depend upon
as part of their daily operations.

Least squares regression is the use of the least squares method to fit a model to
data. Most often the data are measured or observed from some real world phenomenon.
Least squares is one of many possible norms in that it is a particular way to measure
optimality of a model. The method of least squares is the technique of minimizing the
sum of the squares of the difference between the model and the measured data points.
Unless otherwise specified, it should be assumed in this research that regression means

least squares regression.

Uses of Regression

Regression has multiple uses. These include data description, parameter
estimation, prediction and estimation of dependent (response) variables, and the control
of one variable by varying another (Montgomery, et al., 2001). All of these uses include
the development of a model to describe the relationship between two or more variables.
For example, equations are often used to describe relationships between variables. Once
available data are fitted to a function, the function is a convenient and efficient way to

describe the relationship between the variables. Parameters can also sometimes be
estimated using regression. For example, the well-known equation s() = sy + vt + 4.9¢?
describes the position of a falling object at time ¢ given the initial position sy and the
initial velocity v(. If the initial position and velocity are unknown, random measurement

error is assumed, and several measurements of time and position are taken, the
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12
parameters sg and v can be estimated using regression. Prediction is one of the most
common uses for regression. Many researchers and others regularly collect data using
two or more variables, fit it to a model believed to be accurate, and then predict values of
one of the variables for some future time or point for which the response variable is
unknown. Regression can also be used to control one variable by manipulating another.
For example, Montgomery (2001) uses an example of a chemical engineer that wants to
control the tensile strength of paper using the hardwood concentration in the pulp. The
engineer could develop a model relating the two variables and then use the resulting
function to change the hardwood concentration until the desired tensile strength is
reached.

It is important to note that a cause and effect relationship is not necessarily
required if a model is developed using regression and is only going to be used for
prediction purposes (Montgomery, et al., 2001). The only requirement in this case is that
the relationship between the variables that existed when the data were collected still
exists when the predictions are made using the model. In this case, causation is not
required and cannot be assumed. It also must be stressed that a model is only as good as
the data that created it. If the data have large or nonrandom measurement errors or are
otherwise invalid, the model generated from the data will likewise be invalid. Further, if
the relationship between the variables is not the same as the model fitted to the data, then
the model will do a poor job predicting and estimating other data points or parameters. It
is therefore imperative to verify that the data are likely to be related in the way that it is

being modeled.
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Regression is also often misused by attempting to predict values far outside the
range of the independent variable(s) (regressor variables). Regression models are best
used to interpolate values in between the range of the independent variables. The further
outside the range of the regressor variables an extrapolation, the more careful one must
be in using the resulting prediction (Montgomery, et al., 2001). It will also become clear
later in this dissertation that some data affect models more than others. For example, very
different models are obtained if the data at the ends of the data set are eliminated or
changed. In fact, it will be shown in chapters 3 and 4 that there are data points that don’t
affect certain predictions at all.

Measured data that falls far outside the pattern shown by the rest of the data are
called outliers. Outliers can cause serious problems with regression models because the
outliers generally have a much stronger effect on the model than the statistician would
desire. Outliers must be examined carefully before a decision is made whether or not to
include them in a model, and they are often deleted from the data set before fitting the
data to any model.

While exhaustive coverage of the cautions and limitations of regression would
require hundreds of pages and therefore cannot be thoroughly covered in this work, it
should also be noted that particular models should be fitted to data with caution. For
example, linear models often do not properly describe the relationship between variables.
Before selecting a particular model, data must be plotted and visually examined, and
certain simple tests should be run to insure a minimum level of fit. The computation of a
correlation coefficient between two variables is a minimum standard that should be used

before a linear model is applied to data to be used for prediction or any other purpose.
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However, even if computations indicate a strong correlation between variables, it cannot
be assumed that the one variable actually causes the other. While causation necessitates
high correlation, the reverse is not necessarily true. Therefore, regression is not intended
as a tool to determine causation.

The following section describes the most widely used of regression models, the
simple linear model. It is important to keep all the aforementioned cautions in mind when
reading the rest of this dissertation, as the cautions apply to all of the models discussed

and are an important part of good modeling.

The Simple Linear Model

A model with a single independent variable (regressor), that has a linear
relationship with the dependent variable (the response variable) can be modeled as a
straight line where the slope and intercept are “fitted” to the data to minimize the sum of
the squared errors. The errors in this case are the perpendicular (shortest) distance
between the model and the data point corresponding to it.

The simple linear model is generally denoted as

vi =P+ Px;+g.fori=1,2,...,n

where the x;’s are the independent variables, the y;’s are the measured values
corresponding to the x;’s, B is the slope of the model, f is the y-intercept of the

model, and the g;’s are random errors. The errors are assumed to be random measurement

errors with a mean of 0 and an unknown variance of o2, Further, the errors are assumed
to be independent of one another in that the value of any one error does not depend on

any of the others. The errors are assumed to be errors on the response variable y. The
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parameters f; and f3; are generally called the regression coefficients and are unknown.
The sample data values (xl-, )’i) are used to estimate the regression coefficients. The

calculations used to do this are what is generally called a regression (Farebrother, 1988;
Montgomery, et al., 2001; Younger, 1979).

The basis for finding the best By and f; in the least squares sense is to minimize

the sum of the squared errors. The error is defined as the difference between the

measured data point and the model evaluated at that data point, or y; — By — B;x;. Define
L(/a’(), ﬁl) as the function denoting the sum of the squared errors. Then for the simple

linear model this can be written as

=

/’0,f3’1=2 ﬁlx)-

To minimize this function simple calculus can be used by taking the partial derivatives of

L with respect to By and B}, and then setting them equal to 0. The regression coefficients

ﬁo and /3’1 must satisty

JL < P
— =23 (vi - Bo-Prxi )= (1)
Polg,. i=1( )0
and
aL & ~ A
Bl =—2E(yi - Po —ﬁlxi)xi =0. (@
A Bo- P i=1

Simplification of equation (1) yields
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Similarly, equation (2) can be simplified as follows:

(yi - Bo - Bix; )Xi =0

n
i=1

—”/’0296 —/o’lEx

M:

~.
I
—

Then, when /;’0 =y- /;’1)? is substituted into the equation above, the equation can be

simplified to yield

zm_;

Ex
E» (x; -
Ecn—m
_ 20 - %)
S -5’

A

B =

where X = — Ex andy—li

1 1 n
Therefore, the fitted model is then

5 =B+ B, 3)
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which allows an estimate of y for any particular value of x (Farebrother, 1988;

Montgomery, et al., 2001; Younger, 1979).

Multiple Linear Regression

Often data are not linearly related, or there is more than one regressor variable. In
these cases, there is a generalized theory for least squares fit. While there are methods
available to deal with many different types of models, this dissertation will only deal with
models that are linear in the unknown coefficients. This does not eliminate models that
are nonlinear in the x-data, and some models that are nonlinear in the unknown
coefficients can also be transformed to be linear models. To begin, start with the model

Y = Xf3 + &, where in this case the X matrix is an n x p matrix which helps form the

model. For example, to form a model of the form y; = By + B x; + /J)zxiz + & that is linear

in f but quadratic in the x;’s, the X' (n x 3) matrix would take the form

1 X X12

| 5 Bo
X=[ "2 2| and B=|B
: B>

1 x x2

A model of the form y; = o + f1x;| +---+ -1 X; p-1 + & 18 represented in matrix form

as
|l |1 xir xi2 o xpa| Bo | e
vaf [V var vz o ] B e
Yn Ioxy Xy o Xn,p-1 ﬁp—l &y
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Solving this equation for the unknown coefficients once again requires writing the
function that represents the sum of the squared errors. In this case it is a matrix

computation, and can be represented as

L(p) - :jlgiZ _ o= (Y - XB) (Y - XP)

Expansion of the function yields

L(B) =YY - BX'Y - Y'XB + BXXP
—YY -2BX'Y + BXXp

since BX'Y is a scalar value. Just as in the case of the simple linear model, calculus is

used to find the minimum value of L( p )

9Ll XY +2XXB=0

ap F
When solved, this becomes
XXB=XY
which can be solved for /§ by multiplying both sides of the equation by (X ’X)_1 on the

left to obtain

~

p=(xx)"xv
Therefore, the least squares solution for any model that is linear in its unknown
coefficients can be obtained with the above matrix computation.

It is sometimes possible to transform a model that is nonlinear in its unknown
coefficients into a model that is linear in its unknown coefficients and therefore can be

solved in closed form. For example, consider the model
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vi =log(By)x; + o +é;
This model is clearly nonlinear in the unknown coefficient f;. However, a simple
transformation [3’1* = log(p;) will make this model into a model linear in all of the

unknown coefficients. Namely,

Vi =B xi+Po+e
which can easily be solved using the standard least squares solution for ﬁA Models that
are nonlinear in the unknown coefficients and nonlinearizable must be solved using

nonlinear techniques. The methods for solving nonlinear problems are generally iterative.

Alternative Norms

Two alternative methods to least squares involve minimizing the sum of the
absolute values of the errors or minimizing the maximum error. Both of these methods
precede Gauss’s discovery of least squares regression in 1794 or 1795 (Plackett, 1972).
The method of minimizing the sum of the absolute values of the errors goes back to
Boscovich in the eighteenth century. This is now known as the L, or absolute value
norm, and predates Laplace’s 1783 discovery of a method to minimize the maximum
error, known now as the minimax norm (Plackett, 1972). This method is based upon
minimizing a function of the residuals that takes the form

n n

Mini/)fnize Y ple;) = Minigmize Y o(y; - xiB)

‘ i=1 i=l

where x} is the ith row of the X matrix.
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Unfortunately, even if the errors (Si) are multiplied by a constant, the optimal
answer may be different from the original when using the L; norm. This nonscalability
has to be corrected for by finding a robust scaling constant. However, the biggest
problem with the Z; norm is the fact that it must be found by iterative means since no
closed form solution exists. In general, one takes the first partial derivatives of p with

respect to f3 ( j=0,1, -, k) of the equation to be minimized and sets them each equal

to zero. This yields a system of p =k + 1 equations, which are often nonlinear and is
either solved using nonlinear iterative techniques or by using iteratively reweighted least
squares (Beaton & Tukey, 1974).

Another norm that is sometimes used in lieu of the least squares norm is the
Minimax Norm. The implementation of the minimax norm, sometimes called the L,
norm, consists of fitting data to a particular function such that the maximum error
between the model and the data is minimized. This technique would be appropriate when,
for example, the concern is that no error be greater than a certain threshold. Minimizing
the maximum error will by definition result in the sum of the squared errors (the least
squares norm) being higher than it would be if least squares regression were used to fit
the data to the model. It also normally results in all the errors being fairly close to the
maximum error. Therefore, it is not appropriate to compare techniques using different
norms in the sense of which is the “best” answer. By definition, each norm provides the
best answer to the specific function it is minimizing. One final note about the minimax
norm is that the techniques used to fit data using this norm are iterative like the L; norm

techniques. The lack of closed form solutions makes the L, and L., norms less
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convenient and practical to use than least squares. Further, the least squares norm is
mathematically and practically more elegant than the alternative norms. Two reasons are
that the linear least squares technique provides a closed form solution for the unknown
coefficients and these solutions are unbiased estimates of the true parameters. These and
many other convenient mathematical properties make least squares the most used norm

for prediction and modeling.

Sensitivity analysis in Least Squares Regression

This research concerns the fact that some least squares predictions are
independent of some data point(s) in linear models, polynomial models, and general
univariate models. The literature that relates to this research is in the general field of
sensitivity analysis in regression, and the specific topic is the determination of how the
ith data point affects the jth prediction. The amount of literature on sensitivity analysis
overall is small, particularly when compared to the literature on least squares and
regression in general. Belsley, et al. (2004) commented that sensitivity analysis has
largely been ignored as an area of research in statistics. This is not because the field is
unimportant. To the contrary, good sensitivity analysis techniques can help analysts to
find data points and subsets of data that are most and least influential to both the model
parameters and to predictions. This is an efficient way to find sources of collinearity in
data and ultimately to remedy other potential problems in data sets (Belsley, et al. (2004);
Chatterjee & Hadi, 1988).

A typical method of analysis when computing predictions using least squares

models is to simply delete outliers from the data set and then model without them. This is
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often done because it is assumed that observations that fall far from the pattern that the
rest of the data imply are somehow “invalid” data values, and also because it is assumed
that they will have a profound effect on predictions if incorporated into the model
(Belsley, et al., 2004). Both of these assumptions are often wrong. While outliers can be
measurement errors or some other kind of anomaly that does not properly describe the
relationship between independent and dependent variables, sometimes outliers are valid
data points that lend valuable information to the model (Belsley, et al., 2004;
Montgomery, Peck, & Vining, 2001). Further, no matter what the cause, outliers may not
always have a large effect on predictions in any case (Belsley, et al., 2004). Sensitivity
analysis has not provided all the remedies to deal with issues such as outliers and
collinearity, but relationships are continuously being developed that will eventually lead
to such remedies (Belsley, et al., 2004). There are many examples of such work
(Beckman, R. J., 1990; Chave & Thompson, 2003; Cook, 1977; Cook & Weisberg, 1980;
Johnson, 1985).

The relationships that have generally been developed to date have involved the
detection of influential observations in a model (Cook, 1977; Johnson, 1985; Johnson &
Geisser, 1983; Thomas & Cook, 1990). There are various measures of influence that are
used, but perhaps one of the best known is a measure based on confidence ellipsoids that
was developed by R. Dennis Cook (1977).

To measure the influence of an observation using Cook’s Distance for a

multivariate linear model, a joint confidence region is formed for the unknown
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coefficients . Under the assumption of normality, these 100(1 - ct)% joint regions are

ellipsoids centered at ﬁ and given by

B-BXX)B-P)

k&2

= F(a;k,n—k)’

where Fy.x 4—k) is the upper a point of the central F distribution with & and

(n — k) degrees of freedom. Then the influence of the ith observation is measured by
computing the change in the center of the confidence ellipsoid when the ith observation is

removed. This distance can be thought of as the scaled distance between the least squares

estimate of the unknown coefficient ﬁA and ﬁ(i) , the same estimate with the ith

observation removed (Chatterjee & Hadi, 1988).

Influential observations can potentially yield a lot of information about a model.
Besides helping to detect collinearity, sometimes a small subset of data exerts a
disproportionate amount of influence and a regression model can change greatly based on
just a few points (Montgomery, et al., 2001). It can therefore be very important to
identify such data or subsets of data. Once identified, a variety of measures can be taken
to deal with the problems. Currently, there are two specific types of corrective measures
that are most often used. The first type are Bayes-like methods that use prior information
to correct for collinearities, and the second employes the collection and introduction of
additional data to provide the independent variation necessary to correct for collinearities.

For the model y; = B,x; + By + &, a standard formula has been developed that
describes the contribution that the ith data point has on the jth predicted value. These

relationships are known as fat values, and are described by the notation ;. This term is
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attributed to John W. Tukey, and the mathematics were apparently derived in or about
1967 (Hoaglin & Welsh, 1977).

The relationship between the ith data point and the jth predicted value for the

model y; = Bix; + g + & 1s

. o B
where 7 is the number of data points in the sample, and x = — Exi (the well known
n:
i=1

sample mean). This formula is generally used to help in finding influential data points in

a data set (Hoaglin & Welsch, 1977). Since f;; indicates the contribution of the ith data

point to the jth prediction, high hat values often indicate influential data. However, to
find precisely which data points are highly influential and the degree of influence, hat
values are generally examined along with residuals and variance of the data.

In general, hat values are part of a matrix representation of the influence of the ith

data point on the jth prediction, where /;; are the elements of a matrix A that is given by
H=X (X X )_l X' (Belsley, et al., 2004). Though these values can theoretically be

expressed in closed form as in the formula for 4;; related to the straight-line model, this

becomes impractical in practice because the relationships are extremely complex.
Therefore hat values have traditionally been computed numerically for specific models
and data sets (Belsley, et al., 2004; Chatterjee & Hadi, 1988). This is quite possibly one

of the reasons that the phenomenon of noncontributory data was not discovered earlier.
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In this work, however, hat values will be used to find data that have no influence
on the model. For the linear model described above, the case when a data point makes no
contribution can easily be computed by setting the equation for the individual
components of the hat matrix equal to zero. Note that the entire hat matrix H cannot be
set equal to zero. In general, however, each model has its own hat value relationships,
and most are not easily expressed in closed form in terms of the x values and n. Hence the
problem at hand cannot be solved by setting a closed form expression equal to zero and
solving it to find the desired relationships.

While the literature does address the contribution of the ith data point on the jth
predicted value, no references could be found that address the issue of noncontribution of
data in prediction calculations. Further, only one reference could be found regarding
small hat values. Belsley, et al. (2004) said that a large coefficient change in a model in
the presence of small values of /; may be more important to the structure of a model than
to predictions from that model. However, this comment misses the point that data that do
not contribute to a predicted value may appear to a researcher to be helping to pull the
prediction towards a central value, while in fact it is having no effect at all. This is a
particular problem for small data sets, and when a particular subset of data points is
deemed to be more important or more accurate than other data. If some of this data are
not contributing to a predicted value, it is important that the researcher be aware of this
fact. The issue also arises that there may be no reason to collect a particular data value if

it is not going to be used anyway. A dummy point will do just as well.
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With this past literature in mind, chapter 3 will proceed to develop the
relationship between y, and 3, for the linear model of the form y; = o + Byx; + & This
will be accomplished by briefly examining an application from physics that has a
relationship that is analogous to the statistical phenomenon to be examined. The
theoretical background in least squares that leads to this relationship will also be

examined, ultimately leading to a description between the key variables under study.
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Chapter 3:
The Linear Case

Introduction

The method of least squares is probably the most popular technique today to fit
data to functions, estimate parameters, and determine the statistical properties of those
estimates. In chapters 1 and 2 it was discussed that most previous work in the field of
sensitivity analysis has concentrated on finding data that have a large influence on
statistical models or predictions. In this section a new finding regarding least squares is
developed. This involves the fact that certain conditions cause data points to have no
influence at all on predictions for particular y; values. This finding is important because
it is usually assumed that all data are being used in such predictions, and results can be
skewed if data points are not contributing to certain predictions, especially for small
values of n or in cases where data collection is expensive or difficult. It seems clear that
the loss of a data point when predicting y-values in a linear model is a loss of
information, and such a prediction may be suboptimal in comparison to some other
prediction technique that uses all the y-data points in its calculation. While the effect of
noncontributory data on predictions must someday be determined systematically, the first
step is to define the relationships between data that have little influence and the
predictions those points affect.

The finding regarding noncontributory data applies to straight-line models and
extends to other models that are linear in the unknown coefficients. This chapter
describes the specific conditions under which the dth observation has no influence at all

on particular y p predictions for straight-line models. This chapter derives the
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relationships between the data points that have no influence and the predicted y-values
for which this happens in straight-line models. Higher order polynomial models and
general univariate models that are linear in the unknown coefficients will be covered in
chapter 4. A physical application of this phenomenon is also discussed for the straight-
line model, and examples are shown to illustrate the phenomenon and its importance in

statistical modeling.

Notation and Assumptions

Consider the linear model ¥ = X [ + ¢ , where the ¢; values are assumed to
nxl nxppy) nxl

have a Normal distribution with mean 0 and unknown variance o~. Additionally, the

errors are assumed to be uncorrelated. X'is an n x p “design” matrix. The x-values in this

model are the independent variables, while the Y vector contains the observed values.
Because the errors are uncorrelated, the observations are also uncorrelated. The px1
p vector contains the regression coefficient, or unknown values. It is assumed in this
work that all models are univariate and linear in the unknown coefficients.

An example of a linear model of the form ¥ = X+ ¢ is

v;i =P+ Px; + /32xl~2 + ¢ . In this example, the n x 3 X matrix is

I x x12
I x x%
x| . -l
2
R
2
l xn ‘xﬂ i

the B vector and Y vector are
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T
Bo Y2
p=|By|and Y =| :
/32 Yn-1
[ Vn
respectively.

As seen in the example above, a model that is linear in the unknown coefficients
is not necessarily linear in the independent variable. Another example of a model linear

in the unknown coefficients is y; = By + B logx; +¢;. In this case the design matrix is

1 logx
I logx»
1 logx,

The individual data points can be represented as ordered pairs of the form (xl-, Vi ) Data
points that have no influence on a prediction will be denoted (xd, Y ), where y; is the
observed data point in the dth position. The prediction for which (xd, y d) has no
influence is denoted by (x P y p), where y p 1s the predicted value computed by
substituting x by x, in the model. The indices ¢ and p are integer valued, but x; and x,

are real numbers, unless otherwise specified.

It will be shown that the measure of influence that an observed value has on a
prediction is determined by the independent variables (x-values) and the value of » rather
than the dependent variables (y-values). For this reason, the relationship between a data
point that has no influence on a prediction, and the prediction for which this happens will

be given as a relationship between x; and x .
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For linear models with the assumptions given, the method of least squares can be
used to estimate the unknown parameters. The famous solution to this problem is
B=(xx)"x,
where the symbol ﬁA denotes the best fit for  using the least squares norm. In other

words, the sum of the squared errors between the observed data and the fitted values of
the model is minimized. The predicted values using the least squares estimators is given
by

Y =xp=x(xx)"xv.

For the purposes of derivations performed in this chapter, define 7; as the

indicator function at d. In other words,

o

d

_0_
where the vector contains zeros in every position and a “1” in the dth position. Let / Xy

denote the same indicator function, except the “1” in the dth position is replaced by an
X4 in the same position.

This chapter will describe the mathematics behind the phenomenon of non-
influential data points as they relate to predictions. Since there is an application from
physics that helped inspire the discovery of the statistical phenomenon being studied, the

physical relationship between x, and x, that is analogous to the statistical relationship
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between the variables will be discussed and derived before the statistical development is

presented. Following this, the statistical relationships between x; and x, will be derived

for the special case of the straight-line models where the x-values are evenly spaced and

the value of x, corresponding to y p 1s an integer. Then the relationship between x; and

x p will be derived for the general linear model of the form y; = Sy + Bx; +¢;, where the
x-values are not necessarily equally spaced or integer valued. A theorem regarding this

relationship will also be stated and proven. Next, the statistical relationship between x

and x, will be derived for the general polynomial model of the form

vi =Po+Pi1x; + [J’le-z + [J’k_lxik_l + /J’kxl-k + & 1n chapter 4. Finally, the case of the general
univariate linear model will be addressed at the end of chapter 4. While the relationship

between x; and x, can be elegantly expressed in closed form for the straight-line model

of the form y; = B + P x; + ¢, the relationship cannot be easily expressed in closed form
for polynomials of degree greater than one or for the general univariate linear model.
Hence, the relationship will be derived in the form of processes rather than equations, and
examples will be shown to illustrate the methods. The implications of this work and

recommendations for action and future work will be discussed in chapter 5.

A Physical Application

Consider the following well-known physical application:
Suppose there are N x-values where the x-values are allowed to be arbitrary, (i.e., not
necessarily equally spaced). For each x-value, place a point mass at the corresponding

point on the number line, where all the masses are 1 unit in magnitude. Now suppose all
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these masses are joined by massless rod connectors to form a single rigid body that is
floating in space, as seen in Figure 1 below.

Point of application
of Force F,

unit R tationary poir
masses 1 center of mass St/a onary point
: j : z : — -
0 5 2 *2 Y3 : N
X ¥

Figure 1. Point masses joined by a massless rod to form a single rigid body.

If one were to press sideways against this linear body at some arbitrary point x;
that is not the center of mass, then the body will now begin to translate and to rotate.
There will, however, be a point x pat which the effects of translation and rotation cancel
out, a point that will remain stationary. The linear body will pivot about that point. (See
Figure 2 below). The relationship between x; and x, can be derived from simple
physical relationships.

We know from basic physics that

F = ma, where I is force, m is mass, and ¢ is acceleration

and

T =lo = Fd, where Tis torque and /o is the moment of inertia multiplied by the
angular acceleration.

For our massless rod,

ma = Nayz (ay =acceleration of the center of mass, N is the number of points),

Fd=F-(X-xg4).
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N
and the moment of inertia is /=Y (x - x; )2 .
i=1
Then Fd = Ia becomes
N
F(x-x,)= E(f—xi)z xa.
i=1

The displacement, d X, of an arbitrary point x , along the rod, is the displacement

of the center of mass dx plus the displacement due to the rod rotating an angle 6 about

the center of mass d, (see Figure 2), so

rod’s initial position

X X X
Cp~ . {-}' . %,_,. B e NI "t,»*‘ h§€:

4

Figure 2. Pivoting massless rod.
dxq =d, +d5. and
dp =(X - xg)sinf
Differentiating twice yields

ay, = (X —xy)a+as.
Now, the point where a x, = 0 is the point x,, which is the point that does not move

when force is applied at x;. At that point,
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) F/N
FE-xg)/ Dx-x)?

_E()_C—Xi)2 _
T NG-xg

+ X (by substitution of initial equations)

which, after some simplification becomes

_ Exiz _XdEXi

P Exi—xd'N ’

where X is the statistical notation for the physical quantity of the center of mass, x; is

X

the x-value that is independent of the prediction y p» and x, 1s the x-value corresponding

to Jp

This application from physics helped inspire the work that follows and develops
an analogous statistical relationship to the physical application just described. To look
briefly ahead at the analogous statistical phenomenon, consider that the point at which the
force is applied is the analogue of the x-coordinate of the point that would not affect y P>
the point called x;. The point that remains stationary is the analogue of the x-coordinate
corresponding to the point y p- the point called x,. In fact, it will be found later in this

chapter that the relationship between x ), and x, is exactly the same in the statistical

realm as it is in the physical realm. The relationship between the physics application and
the statistical one stems from the fact that the rod seeks a position in which the total

kinetic energy is minimized. The kinetic energy is directly proportional to the square of
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the displacement so that minimizing the kinetic energy is the same as minimizing the sum
of squares.

However, in statistics the application is that some data are not contributing to
particular predictions when modeling with least squares. The fact that these two different
disciplines yield an identical relationship is interesting, but the focus throughout the rest
of this dissertation will be on the statistical relationships between predictions and data

points that make no contribution to those predictions.

The Phenomenon of Noninfluential Data Points in Least Squares Predictions

The analysis of this statistical phenomenon begins with a simple example,
followed by a short general analysis of a linear model of the form y = fy + f,x + . The
implications of this analysis are then explored at length in two phases, beginning with the
special case where the x-values are evenly spaced, and followed by a full analysis of the
general case for the straight-line model. The case of the second order polynomial model
is then analyzed in chapter 4, and this is followed by a derivation of the relationship

between x; and x , for the general polynomial model of degree . Finally, the derivation

of the relationship is performed for the general univariate model that is linear in the
unknown coetfficients. Some of the impact of this discovery will also be discussed in
chapter 4. This includes the concept of data wells, first described in chapter 1. The
examination begins with a simple example that shows how the second data point has no

effect on the fifth prediction in a straight-line model with four observations.
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36

The enrollment in Kindergarten at Allen Elementary School in San Jose, California for

the last 4 years is as follows: (2001, 62), (2002, 43), (2003, 78), (2004, 82) (CA

Department of Education, 2005). The data are plotted in Figure 3 below along with the

least squares regression line.

L

1201

Tamess
%
i

T 80

Kindergarten
Enrollment

601

X

¥

»

2001 2002 2003 2004 2005 2006
Year

Y

T

Figure 3. Allen Elementary School kindergarten enrollment from 2001 to 2004.

Suppose the school wishes to estimate the enrollment for 2005. Assume that the

enrollment behaves according to a linear function ¥ = X3+ ¢, with X =

, Where the

—
N S R S
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62
/30].

43
first row corresponds to 2001, the second row to 2002, etc., Y = 23|’ and = [/3
1

82

When the least squares solution is computed, the solution is
5= Xp = X(X’X)_lX’Y =42.5+9.5x;. To estimate enrollment for 2003, x5=35 is
substituted into the model to obtain y5 =42.5 +9.5(5) = 90. Now, suppose the second
y-value is changed so that y, =20 instead of the original value of y, = 43. This changes
the regression line so that y; =31+ 11.8x;, but y5=31+11.8(5) =90 as before.
Similarly, the second y-value can be changed again so that y, =120. Now the regression
yields §; = 81+1.8x;. Since the value of y, is so large, it seems reasonable to expect that
the new estimate for 2005 enrollment would be much higher than before. Yet the
computation for ys5 is ¥5=_81+1.8(5) =90 just as before. This is the case even though
the regression line itself has certainly shifted. In short, it appears that the value of y, has
no effect at all on the estimate for the 2005 Kindergarten enrollment.

It is helpful to look at this phenomenon graphically. The three regression lines,

y; =42.5+9.5x;, y; =31+11.8x;, and y; = 81+ 1.8x; are graphed below on the same set

of axes along with the original data.
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Figure 4. Allen Elementary School kindergarten enrollment prediction lines.

It is easy to see in Figure 4 that the three lines intersect at (5, 90), which
corresponds to the prediction that there will be 90 students in the 2005 Kindergarten
class. In fact, it will later be shown that y, can be changed arbitrarily, and all of the
regression lines will intersect at (5, 90). Notice, however, that the lines only intersect at
this one point, and that for all other values of x the predictions for enrollment will be
different when y, is changed. This phenomenon occurs for other values of 7 and y as
well, and it will be useful to derive a mathematical relationship between the data point

that has no influence on a prediction and the predicted value for which the data point is

independent.
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The Theoretical Basis for the Phenomenon
To set up the basis for the analytical exploration of this phenomenon, assume that
the x-data and y-data values are unrestricted real numbers. In other words, assume
X, Xxp, =+ x, and v, yp, -+ y, where the x-values and y-values are
unrestricted real values. Then assume there is a linear model in x such that
y; =B + Bx; + ¢ . This is often represented as

Yy = X B + ¢

nxl nx2 2xI1 nxl

or, in matrix form

il |1 x £
2| |1 x2 [/30]+ &
: co B '
Yn L x, €n

The well established least squares solution for this model is

~

B=(xx)"'xY.

As noted in chapter 2, an expression for hat values has been derived for this
model. The contribution that the dth data point makes to the pth prediction is given by
I (xg- )_C)(xp - )_C)

(x; -76)2

h
dpn

JUR

i=l

(Belsley, et al., 2004). Note that this expression is dependent only on the independent
variables (x-values), and the number of observed values collected (n). The observations
(y-values) do not affect the amount of influence that any given data point has on

predictions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

When £, =0, this means that the dth observation y, has no effect on the pth
predicted value y p- Therefore, If the expression for 4, is set equal to zero and solved

for x ,, the result is the value of x,; corresponding to observed value y, that has no

P

influence at all on the predicted value y P

i+(xd—)?)(xp—f)=0
n n

XEY -76)2

i=l1

T ()
$ 2
2 (x - %)
__i=l -
Xp 2(rg =) +X

Though it is clear that the relationship between x; and x, for the linear model

y; =B + B1x; + & can be easily computed in closed form as was done above, the
derivation of this relationship is important in order to develop the relationships between
these variables for other models. Therefore, the derivation of the above relationship will
be derived from its theoretical beginning in this section, and then the technique used also
be employed to find a process for finding the relationship for other univariate linear
models.

The formal derivation of the relationship between x; and x ), begins with the

matrix representation of the estimated regressor variables for the linear model of the form
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v; =By + P1x; + & as described above. To clarify, the well-known matrix form of the

solution for ﬁ is developed below:

L x i
3 [1 1 1}1 X5 [1 1 1]y2
x| Xp Xt X X Xp
I x, Yn
» Y1
n EX,‘ l l 1])/2
2 .
le- Exi X1 X2 Xl -
VI’l

_ 1 > 2 _Exi][zyi
w3 (SufZn o S
B | -Exizz)’i - Exi)’iExi
nzxiz—(zxi)z_”Exiyi_zxizyi

(D

This result can then be simplified to obtain a more convenient form.

First recall that X = lzx,- .
n

Therefore,
n nx 1 2 - .
XX=| _ 2| (XX)_1=;2 ”Ex’ land XY= Ey’ )
nx Exi E(Xi_f) -5 1 Exiyi

Some simplification yields the more well-known form

B o220 30 -9 - D)
US0-nr Sor-®?

(2)

A

Po=7-Pix (3)

and
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i =PBo+Bix;
= y + [a’l(xi - )_C)
Now consider the special case where the x;’s are equally spaced. The simplest
case isto let x; =i, for i =1, 2,--- However, this simple case can be generalized to any

equally spaced x-values by taking a linear transformation on x; =i so that x; =ai + b,

where ¢ and b are scalar constants.

Note that if x; — x 1s multiplied by the scalar constant b, then the new predicted

value for y, named y; 0, can be expressed as

. D0 =B -3 )

yinew =Yy Ebz(xl. ~ x)z (-xi - X)
(30D - D) - F)
=y+
b2 (x; - %)

=T+ B - %)

1
St

1

In other words, the scalar multiple on x; — X does not affect ;.

Now, instead of x; =i, use the more general case where x; = ai + b and examine the
change, if any, in 3;. Then since the only part of the equation for y; that is affected by
the transformation is the quantity (x; — x), it is sufficient to look at the effect of the

transformation on this quantity. It is easily shown that
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X; —)_c=(a+bxi)—l2(a+bx,-)
n
|
=a+bx; —;(na+b2xi)

b
=a+bx; —a—;Exi
1

= b )Cl' — ; E)Ci

= b(.)Ci - )_C)
Since the transformation only results in a scalar transformation of x; — x, and it was
previously shown that a scalar multiple of x; — X does not affect y;, this result shows
that x; =i can be used without loss of generality to represent any evenly spaced x-values
so long as the only concern is y;. The following analysis makes the assumption that

X; =i, but the results are valid for any equally spaced x-values.

The Case whenn = 4
Now suppose that n=4. Then x| =1, xp =2, x3=3, x4 =4 is the simplest case

for the x-values if they are evenly spaced. Using (1), the calculations yield

302 yi— IOE XiYi
4% x;y; =10 y;

In order to estimate ys, the value for x5 is substituted into the model to yield

1
20

Sx =10, 3 x,% =30, (Exi)z =100, and f§ =

A

V5 =P+ P - x5, Where x5 =5.

Then simplification yields
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~ 3 1 1 1
ys= EE%’ _szi)’i +5 gExi}'i —EEM’}
3 1 5
= EEW —EEXM‘ + Exiyi _EE“W
|
=_Ey[ +52Xiy‘i

1
=—(y +y2+y3+yg)+ E(M +2y, +3y3+4yy)

1 1
=——V|+—Vy3+ V.
> 1 > 3 4

Interestingly, this least squares estimator for 35 is completely independent of y,,
illustrating the theory behind Example 1. Since the estimate of y5 is independent of y,,
it is clear why the various graphs of regression equations when y, is varied intersect at

one point.

The Development of the General Case for the Model y; = Bix; + B + &

Now the result for the simple linear model shown above is generalized for »n, and
one of the simplest cases to consider is a model with » observations with the goal of
predicting y, ;. On the way to the general case, a brief look is taken at the case when
n =7 in order to help find the pattern for general n.

If the x-values are evenly spaced as before, then

o L ,=n(n,+l)
Exl_El 2 ?

i=lI

n
Exiz _ Eiz _ n(n+1D2n+1) and
6
i=l

2 w21
(St
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The result is now generalized for ﬁ Using (1) gives
f= I ExiZEYi_ExiyiExi
nzxiz—(zxi)z ”Exiyi_zxizyi

n(n+ l)(2n+1)2y. _ n(n+ I)Ex%
1 2 171

- ! 6
nz(n+16><2n+1> _ n%?l)z 2 iy - MZ%
] " nn+ 1)6(2n +1) E)’i _ n(n2+ 1) Exi)’i
202+ D20 +1) = 3> (n+1)> 03 ;i - ”(”2+ b Sy,
] " nn+ 1)6(2n+1)E)’i _ n(n;l)EXiyi
n2(n+ 1)(4n+2-3n-3) 0S5y, —@E%
) " n(n+ l)6(2n +1) z)’i _ n(n2+ ) Exiyi
2+ D -1) nExiyi—@Eyi

Therefore,

. 22m4D Q. 6 .
[/30]= T T R

. , 4)
12 6
/31 n(n+l)(n—l)2xiyi B n(n—l)Eyi
and
~ 22n+1) 12 6
V. = XV + x| — X:V; — — v 5
Y- 1)E - 1)E Vi ln(n+l)(n—l)2 i n(n-l)z“’ )

Now, for what values of nis y,,,| independent of some y;?
When n =4, 5 is independent of y,, as was seen in Example 1.

The following shows the result when n = 7.

When n = 7, (with the same other assumptions as before), equation (5) yields
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_22@®)+ 1D 1) 0@+ g

12 6
88— 8(8 Exiyi+8 8(8+l)(8—1)2xiyi_8(8—1)Eyi

3 12 6
4(7)2)’z 4(7)2 Xy + 9(7)E'xiyi_;z))i
21
___EYZ 2522xiyi
=—ZE%’+EEXM

From this result it can be seen that when n =7, yg is independent of y3 because the term
including y 1s

1 1
- —(3y2}=0.
4Y%+12( y%)

An example when 7 =7 is now briefly explored on the way to generalizing the result for

nand y,.,|.

Example 2.
According to AGI (2004), the numbers of legal abortions in the United States for women

aged 18 and 19 by year are as follows:
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Table 1
Legal U.S. Teen Abortions

Year Number of Legal Abortions
in the United States for
Women Aged 18 and 19

1994 164,560

1995 156,960

1996 159,000

1997 157,180

1998 153,870

1999 152,520

2000 150,700

A plot of the data points is shown below in Figure 5 below.

Number of Legal Abortions in U.S,

180,000 4 for Women Aged 18-19
£ 170,000 +
E 3
’%
= 160,000+ .
]
S . .
2 .
§ 150,000 + .

3 g i b3 1 i i i
i 2 3 4 5 6 7 8 g
{1994 (1995) (1996) (19973 (1998) (1999 (20007 (2001) (2002)

Year

Figure 5. Legal abortions in the U.S. from 1994 to 2000 for women aged 18 and 19.
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By representing 1994 by 1, 1995 by 2 and so on, and running a linear regression on the

data, the equation y; = 164,340 - 1985.36.; is obtained. This leads to the prediction

yg = 148,457. Now, change the value of y; arbitrarily and rerun the regression. For
example, if y3 =170,000, the regression equation changes to y; = 167,483 -2378.21x;,
but the value of yg = 148,457 remains unchanged. In fact, the predictor for yg does not
depend on y5 at all. This is illustrated graphically in Figure 6 below, using several

different values for y3 and showing that they all intersect at (8, 148, 457).

Number of Legal Abortions in U.S,

180.000 + for Women Aged 18-19

T
/

170,000 -
160,000 1

150,000 -

N

Number of Abortions

; e ; ; ; f ;
i 2 3 4 3 6 7 8 9
(1994) (1995 (1996 (19975 (1998) (1999 (2000) (2001) (2002)

Year
Figure 6. Regression lines for U.S. abortions with various values of y;.
It is clear that the prediction yg, representing the predicted number of abortions in 2001,

is independent of the third data value, the number of abortions that occurred in 1996.
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Now a general result is sought for arbitrary ». In general, (4) and (5) give

o= Do S e S S
=:<Z+_f>2y"_n6<2+_?>2y' TR
;?Z :;E -+ (6_I)Exiyi
_nz((:+12))2 n(n - sziyz‘
_S 21426 ©)

nn-1) n(n -1
It can be seen from equation (6) above that the integer cases where y; has no influence

on some y , can be found when the coefficient of y; is 0. So,

—2(n+2)+ 6 X =0
nn=-1) nn-1
Therefore,
2n+4 =6x;
2n=>06x; -4

n=3x; -2, x; =2, 3, -
Note that the case where n = 1 is eliminated because it is a trivial case.
By manipulating the above equation, a more convenient form of the sequence can be
written in terms of # and k and beginning with £ = 0.
Specifically, when n =4+ 3k, k=0, 1, 2, 3,---then y;,» has no influence on the

prediction for y,, .
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In particular, substituting n = 4 + 3k in the above equation for y,,; and simplifying
shows the result that the (k + 2)th y-data point has no influence when estimating y, ., as

stated.

The Relationship Between y pand y,

The simplified case where the x;’s are equally spaced helped to determine which
integer values of k cause y; to have no influence when estimating some y;, and to find
the relationship between £ and i. While the integer cases have an obvious use, it is also

possible to derive a closed form relationship between x, and x ,. In this case, d is

restricted to be a value for which x,; exists as measured data, while x, may be any real

p

value. Here the x; values are unrestricted. Supposing such a relationship exists, the

derivation of the relationship between x, and x, follows.

Recall the solution for [3’ = (X X )_1X 'Y, where X and Y are defined as before.
Assuming that there exists a value of y p that is not dependent on y,, the relationship

between x , and x; is independent of the actual values of the y-data. This can be seen by

~

taking the derivative of y p With respect to y, (%

). This literally shows the change in
Yd

y p With respect to y,. If the observation y, does not affect the prediction v p» then this

derivative should be equal to zero. Now, the 9 p values are dependent on the value of x,
and the /§ -values, and these values are related by the equation y p= /§0 + /§1x p- However,

the f-values are linear combinations of the y; values. Therefore, once the derivative is
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taken, there is no y in the expression. Even without stating the expression for y P
explicitly, we can say that taking the derivative of this value with respect to y; will
eliminate all expressions that have to do with any value of y except for y,. At that point
the only thing left is the coefficient of anything having to do with y ., since we know
based on our model that there would be no expression that is nonlinear in y,;.

Since the change in y p With respect to y, does not depend on any of the
y-values, any values of y can be used in order to derive the relationship between y pand
Y4~ and their corresponding values x , and x;. Therefore, in order to derive the

relationship between x,, and x,, the values of the y-vector can be varied at will without

p
loss of generality. Visually, the desired result is the point x, at which all the various
regression lines corresponding to different values of y; intersect when the other y-values
are held constant. For this purpose any two lines will suffice, and thus y-values can be
chosen for maximal convenience.

It is convenient to let all the y-values other than y,; equal 0. The other y-values do
not matter for this purpose anyway, so it is easiest to let them equal 0. Thus Y is the
indicator function on Y at d, denoted 7. Then

o
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and

e ol MU A

Now, by performing the matrix multiplications, the individual components of ﬁA can be

expressed in terms of x,; as

/;)1= )Cd'l’l—E)Ci .
I’IE)CZ'Z —(E)Cl')

(7)

and

[;,0 _ Exiz _XdExiz '
nzxiz—(zxi)

We wish to find values of x, that cause any data having to do with the data point

(8)

(xd, y d) to drop out of the prediction equation. Now since the prediction equation as it is

currently written only depends on the data point (xd V4 ), then this is true when

Yp= ﬁlx pt [3’0 =0. This yields the equation

or

xp =20 9)

Substituting equations (7) and (8) into (9) yields,

=_@= Exiz_xdzxi‘
p /3l Exi—xd-n

X

(10)
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By solving the equation (10) for different values of n and x,, the same integer

results as before are obtained. Namely, when n =4+ 3k, k=0, I, 2,---, y;,» hasno

influence when estimating y,,;. A theorem and the proof of this result follows.

Theorem 1. Given y = 3o+ xf +¢& Y (nx1), X (nx2), specified. Let ﬁp with

corresponding x , ( x, real), be a prediction based upon [;’ = (X X)_lX 'Y . Then there
exists an observed data value y,; with corresponding x, (x, real, d an integer,

l=d=n), and d # p, such that y p does not depend on y ;. The relationship between x

Exiz_xdExi
Exi -n-xy '

p

and x, is specified by x, =

Proof: It needs to be shown that y p does not change when y, is varied arbitrarily,

and the other y-values are fixed.

$i = Bo+Brx;
=7+ By(x; - %)
and /§1 = E(§(_ y)(fi)z_ )_c)’ (11)
Xl' - X
Bo=7-PiX (12)

Also,  V,=¥+pi(x,-X).

Note that with some simplification,

_ E)Cl'Z —Xdle'

P Exi—n-xd

X can be written as
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_ 2
L2l (13)

Pon(x¥-xg)
Now, by substituting equation (13) for x, into the equation v p=y+ ﬁl (x, —X) and

substituting for (11) for /3’1 as well, the equation becomes

. =y+2<yi—.»‘~><xi—f> 2(»?—)@)2”_)_(
P Y- | n@-xg) '

Since E(xi -x)?%= E(f - x,‘)2 , the equation above simplifies to

C o = =)
Yp= YT n(x-xg4) '

Expanding gives

>

R | (X;y; =Xy; =X, y+X°)
yp=—Eyi+E (i = Wi Y+ X
n n(x—xd)

and multiplying both sides of the equation by n(x — x;) gives

(T = 5007 =~ = )3 + B (i = Ty = T + 5 )
If y, has no influence on the equation for y p» only the parts of v p thatinvolve y, need
to be calculated. It needs to be proven that these terms equal zero. Therefore, noting that

1 1 C . "y
X= —Ex,- and y = —E y; . and eliminating all the terms not depending on y, by writing
n n

D yi=Ya+ Dy; vields
izd
X =X)Yp=XYq=XqVa+Xq¥a =XYq4 -?Exi + ETC'?
=-nx-y+nx-y
0. QED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55
Conclusion
This chapter developed the relationship between noncontributory data and their
corresponding predictions for a straight-line statistical model y; = 8 + B x; + ¢;. Chapter
4 will extend these results to the second order polynomial model, the general polynomial
model in x, and then the general univariate model that is linear in the unknown
coefficients. The concept of data wells will also be explored, which expands this result to

predictions in the neighborhood of values of y p rather than just at discrete values of y P

Chapter 4 will also present and discuss some additional examples using real data.
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Chapter 4:
Polynomials and the General Univariate Model

Introduction

Chapter 3 introduced the concept of observations ( v,) that do not contribute to
certain predictions ( y p) for a simple model of the form y; = By + B x; + ¢;, where the

predictions are made using ordinary least squares. This chapter will extend this result to
other univariate models, as well as explain how the phenomenon affects predictions in the

neighborhood of y p- In other words, this phenomenon is a continuous phenomenon

rather than one that affects only a finite number of points.

The extended analysis begins with an example that uses artificial data in order to
introduce the concept of data wells. Afterwards, the relationships between predictions
and noncontributory data are developed for a general second order polynomial model, a
general polynomial model, and finally for the general univariate model that is linear in its
unknown coefficients. Examples using real data are shown at appropriate points in the

development.

Example 3.

The finance manager of a major fast food chain suspects that the gradually
increasing number of tacos sold can be usefully modeled by a linear function. She has
decided to compile data on the number of tacos sold for several years in order to estimate
the number of tacos likely to be sold over the next several years if the pattern continues.
She knows she can compile data for the last 11 years, except that the year 3 data was

irretrievably lost due to a computer crash several years ago. Therefore, she can compile
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data for years 1, 2, 4, 5,6, 7, 8,9, 10, and 11, where year 11 corresponds to last year. The
finance manager has noted that the data were recorded in an inconvenient manner, and it
will therefore take a considerable amount of effort to retrieve the data for the number of
tacos sold each year. Therefore, she wants to make sure that all the data she collects will
be used in her estimates for years 12, 13, 14, and 15. Will any of the predicted values the
manager needs to calculate be independent of any of the available data values?

Using Theorem 1, it is clear that the relationship between a data point (xd, yd)

and any predicted value (x ) that is independent of that data point is

p Yp

- E)Cl'z —XdEXl' ‘

P Exi—n'xd

In this case, the above equation needs to be solved for x; four separate times, once for

each of years corresponding to x,, =12, 13, 14, and 15.

The required calculations are Exi =63, Exiz =497, and n = 10. The solutions
to the equation for each value of x, are given in the table below. These values of x,

correspond to the observed values of y,.

Table 2
Values For Which y, Does Not Affect y P

Xp x4 That Does Not Affect y,

12 4.5
13 4.8
14 5.0
15 5.1

From Table 2, the fourth data value (when x =5) will not affect the predicted

value of y;4. This might be a reason for the finance manager not to bother retrieving the
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data for that year. Admittedly, given that the fourth data value is still apparently relevant
to the predictions for years 12, 13, and 15, there might still seem to be a reason to go
ahead and compile the fifth data value. However, we see a hint emerging that the fifth
data value may not have much effect on the predictions for years 12, 13, and 15 after all.

Note the fact that data point corresponding to x; = 4.5, an observation that does not in
fact exist, would theoretically not affect the prediction for y,,. Likewise, the observation
corresponding to x,; = 4.8 would not affect y;3, and the observation corresponding to

x4 =5.1 would not affect y,5. There are actually “degrees of relevance” for various data
points that would strengthen the case for omitting the fifth data point. This is true because
the hat values (what can be thought of as the influence function) are linear in x ,. This
implies that the function is continuous in the neighborhood of x;, and the influence

function concerning y, is continuous in the neighborhood of x ,. This means that y,,
will have almost no influence on y p In the neighborhood of points y, that actually make

no contribution. The graph of the function that shows the influence of the fourth data

point (Where X = 5) for predictions between x = 0 and x = 20 is shown below.
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Figure 7. Degree of influence vs. x, from Example 3.

The graph is of the hat value function for the linear model y; = B + Bx; +¢;

using the x-values from Example 3. In this case that function is given by

I, =D, =)

g = —+ L
E(Xi—f_f)z
i=l1

)

D

where /14, is the influence that y, hason y .

In this case x; =5, which is the x-value of the fourth observation. It was shown
in Example 3 that the observation corresponding to this x-value will have no influence on
¥14- The value of n is 10 because of the 10 observations used in Example 3. The graph
shows the degree of influence (between —1 and 1) that the fourth observation will have on

each prediction corresponding to x,,. Notice that the graph shows that the fourth data

point has no influence on the prediction y;4, and very little influence anywhere around
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this prediction. Similar graphs could be shown for each of the 10 possible values of x .,
and all would show linear relationships of influence versus x .

Therefore, as x,, in our example nears 15, the point corresponding to x; =5 will

p

make little contribution to any prediction made in that neighborhood. For this reason,

there is a strong case for omitting the fourth data point (when Xg = 5) when predicting
points around ;5 if the collection of that data point is difficult or expensive. After all, if

will have almost no influence on the prediction anyway.

The Second Order Polynomial Case

Consider the quadratic model of the form y; = B + B x; + /a’zxiz +¢&;, where the ¢;

values have a Normal distribution. Then the f§; values can be found using least squares.

This model can be written in matrix formas Y = X f + ¢ ., where
(nx1) (n><3)(3x1) (nx1)

Y I x xlz €]

Y I x, X3 Po €
v=|"2 x=|. "2 2| poip| ande=

. ' B2

Yn I x, X,% €p

The solution for the f vectoris f = (X X )_l X'Y. In order to derive the relationship
between any predictions y p and collected data value y, that does not contribute to v p>

look at the matrix algebra of the solution for the f vector.
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2
-l [ 1 1 )Cl Xl
2
1 )Cz X2
XX=|x; xp - x, i
X X2 Xy )
1 x, x

n Exl- Exlz
||3n 3¢ 34
S i 3o

Therefore,
I x x12 27! Y1
e 2 X X 2 3 2
Y=XB=|. "2 Dy Xx X5 |u o o x|l
R 5 3 4 2 2 20| ¢
X5 X3 X: Xl Xz - X
I x, x,% E ' E ' E ' "yn

Recall that if there exists a value of y p that is not dependent on y,, the

relationship between x,, and x,; is independent of the actual values of the y-data. This

p

~

~ d
can be seen once again by taking the derivative of y, with respect to y, (ﬁ) This
Yd

literally shows the change in y p with respect to y,. If the observation y, does not atfect

the prediction y p- then this derivative should be equal to zero. Now, the v p values are
dependent on the value of x, and the /§ -values, and these values are related by the

equation y p=PBotPixp+ /32x12,. However, the f-values are linear combinations of the

y; values. Therefore, once the derivative is taken, there is no y in the expression. Just as
in the case of the linear model, it can be seen that taking the derivative of this value with

respect to y,; will eliminate all expressions that have to do with any value of y except for
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y4- This can be seen even without stating the expression for y p explicitly. At that point
the only thing left is the coefficient of anything having to do with y ., since we know
based on our model that there would be no expression that is nonlinear in y,;.

Since the change in y p With respect to y, does not depend on any of the
y-values, any values of y can be used in order to derive the relationship between y pand
4~ and their corresponding values x , and x;. Therefore, in order to derive the

relationship between x,, and x,, the values of the y-vector can be varied at will without

p
loss of generality. Visually, the desired result is the point x, at which all the various
regression models corresponding to different values of y,; intersect when the other

y-values are held constant. For this purpose the y-values can be chosen for maximal

convenience. Thus, let all the y-values other than y; equal 0, and let y, be either 0 or 1.

(Thus Yis either the zero vector or the indicator function on Y at d.) Therefore let the ¥

vector consist of zeros except let y,; =1. Recall this is indicated by 1.

o

In other words, let Y =|1|, where the 1 is located in the dth position.

Then
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ol
I 1 - 110 1
XY=|x; x2 - x,|1|=]xy4
xlz x% x,zl 0 x?[

_0_

and

—1 .

BEE IS NG
B=|Su a2 3ad| |ua|=|An
Ex,-z x,-3 Exf Xczl B2

By taking the inverse and multiplying the matrices, the /§ ; values can be expressed in
terms of x, and xczl. Now, the y-value corresponding to x , is 0. This yields the equation

s A N
/32)61) +/31xp + o =0.

This equation can be solved using the quadratic formula

By = \//3A12 ~4Bops (14)

X, = -
P
20,
1
But ﬁ= (X’X)_IX'Y = (X?()_l x4 |- and this depends on x .
2
Xd

Substituting for the /§ ; values in (14), an explicit equation for x, can be written in terms

of x,. Unfortunately, the closed form solution is rather complex and inelegant, so the

solution is illustrated as a process rather than a closed form equation.
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From equation (14) it is clear that for each value of x; there will be exactly two
corresponding values of x,. Therefore, two predictions are independent of each collected

data value. In practice, however, some of these values will not be practical in use. This

will become clear from the results in Example 4.

Example 4.
The following table shows the strength of kraft paper and the percentage of hardwood in
the batch of pulp from which the paper was manufactured (Montgomery, Peck, & Vining,

2001).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 3
Hardwood Concentrations in Pulp vs. Tensile Strength of Paper

X; Vi

Hardwood Concentration (%)  Tensile Strength of Paper (psi)

1 6.3
1.5 11.1
2 20.0
3 24.0
4 26.1
4.5 30.0
5 33.8
5.5 34.0
6 38.1
6.5 39.9
7 42.0
8 46.1
9 53.1
10 52.0
11 52.5
12 48.0
13 42.8
14 27.8
15 21.9

A scatterplot of the data is shown below in Figure 8 below.
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Figure 8. Scatterplot of hardwood concentration vs. tensile strength of paper.

Since the scatterplot looks a lot like a second order polynomial function, use the
model y; = /J’inz + P1x; + Bo + & . When least squares is used to find the f-values, the
fitted model is y; = —0.635x7 +11.764x; — 6.674, where
ﬁz =~ -0.635, ﬂAl =~11.764, and [3’0 =~ —6.674. The fitted model is shown with the

scatterplot of the data in Figure 9 below.
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Figure 9. Quadratic model for hardwood concentration vs. tensile strength data.

Since the matrix X in the model ¥ = X + € is a 19 x 3 matrix where each row is

{1, Xi, x,-z}, (X’X)_1 can be computed as

19 138 1335]"
138 1335 14935.5
1335 14935.5 181427
0.591508 -0.157583  0.00862011
=| -0.157583 0.0514625 -0.00307696
10.00862011 -0.00307696 0.000195385

(xx)”"

So,
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1
(xX) xy = (xx) 7 xy

xq

0.591508 - 0.157583x; +0.0086201 1x7

=[-0.157583 + 0.0514625x ; - 0.00307696)6621
0.00862011-0.00307696.x; + 0.0001 95385)6621

This gives a representation of the ﬁA vector in terms of x ;. Substituting one of the 19

values of the x-vector into the expression for ﬁA and then solving the quadratic equation
/,%2)612) + lep + BO =0

gives the numerical relationship between x, and x,. By repeating this procedure for

each of the 19 values in the x-vector, the following table results.
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Table 4
Values For Which 'y, Does Not Affect y pJor Example 4 Data

xp, Values
Observation Xy for which
Number y p s not
Affected by
Yd
1 1 59,132
2 1.5 6.3,13.3
3 2 7.0, 13.6
4 3 10.3, 16.6
5 4 -14.2,12.5
6 4.5 -3.5,12.7
7 5 —0.8,12.9
8 5.5 0.5,13.1
9 6 1.2,13.2
10 6.5 1.6,13.4
11 7 2,13.5
12 8 2.4,14.0
13 9 2.7,14.7
14 10 2.9,16.0
15 11 3.2,20.0
16 12 3.6,97.0
17 13 0,53
18 14 2.4,8.0
19 15 2.8,93

From looking at the row corresponding to observation number 8 in Table 4 it is

clear that the data point corresponding to x = 5.5 has no effect on the predicted values
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when x = 0.5 or for x = 13. In fact, the table is comprehensive, in that it shows all the
relationships between the measured data values and predicted values that are independent
of them. However, not all the results are useful or meaningful. For example, the third row
of the table indicates that the predictions corresponding to x = 7 and x = 13.6 will be
independent of the data point corresponding to x = 2. However, it is unnecessary to
predict a value for x = 7 because it was a measured point and is already part of the
original data set. Also, the table indicates that the prediction corresponding to x =97 is
independent of the data point corresponding to x = 12. In practice, one would never
predict a y-value when x = 97 because for this data set such a prediction would be useless.
Least squares is not meant to predict values far outside the neighborhood of the collected
data.

Even with these limitations, the table indicates useful information about
predictions that will be independent of a data point. Note that in this example x # i, or

even a linear transformation of 7, so care must be taken to refer to the value of x,; whose

corresponding y, contributes nothing to some y p- Inthis case x; =d.

Again in this case, the concept data wells, or “degrees of relevance” of data points
applies. This is true because the hat values (what can be thought of as the influence

function) are continuous in x , since this function can be represented as the derivative of

p

yp with respect to y,;. When the model in y; is a polynomial its derivative is also a

polynomial, and polynomials are continuous everywhere. This implies that the function is

continuous in the neighborhood of x;, and the influence function concerning y; is

continuous in the neighborhood of x ,. This means that y; will have a/most no influence
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on y p In the neighborhood of points y, that actually make no contribution. From this

analysis it should be clear that the concept of data wells will apply for any polynomial
model as well as any model that has a derivative that is continuous everywhere. When a
model has discontinuities in its derivative then the concept of data wells will apply in any
area of the model for which the derivative is continuous.

Note that rounding errors and near-singularity problems can arise when taking

matrix inverses and doing calculations with them. This means that the values of y; may

sometimes appear to make a slight contribution to values of y p- This only happens due

to numerical problems with taking inverses or with rounding errors. There are also
significant calculation costs to taking matrix inverses. The field of numerical analysis
offers much insight and direction on how to find and handle these problems. While this
dissertation will not go into the details of numerical computations, the potential is worth
mentioning, and some evidence of these problems will even be seen in examples to

follow in this research.

The General Polynomial Case

Consider the polynomial model of the form

k k=1 2
Vi =BrXi +Br_1x;i e+ Poxi + Py + Po+ &

where the ¢; values have a Normal distribution as usual. Then the f; values can be found

using the usual least squares method. This model can be written in matrix form as

(nx1) (nx(k+1))((k+1)x1) (nx1)

where
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y I x x12 xlk Bo ¢
1 |
N I x» x% xlz( B c
=" x=: t .t | B=|Ba] ande=|Z|.
: » 3 .
1 X1 Xp-1 " Xp—i ) s
Yn 2 k n
L xy, Xn 0 Xy ] Br |

The solution for the 8 vector is 8= (X X)_lX 'Y. In order to derive the relationship
between any predictions y p and the collected data value y, that does not contribute to
y p- look at the matrix algebra of the solution for the 8 vector. It will become apparent
that there are exactly & such values y p that are independent of each collected data value.
The solution for the 8 vector is = (XX )_1X 'Y. In order to derive the
relationship between any predictions y p and collected data value y, that does not
contribute to y p» We proceed as before and look at the matrix algebra of the solution for

the B vector.

T e R 1 T
X| Xy v X x, |1 2. k
1 2 n-1 n X2 %) X2
XX = xlz x% x,%_l x,% :
. . . . . 2 k
‘ r k .I» 1 Xp—l Xp-1 7 Ap—
¢ ¢ ¢ 2
X1 X2 Xpor X |Lox,  ox, e x,]; |

n Sy S Sk ]
PRI 3!
(|37 3 B 3

DEENCED W tey

Therefore,
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Xy, :
x’/;_ Yn

s
1

Using the same arguments as before, let the ¥ vector be 1, "

In other words, let ¥ =|1], where the 1 is located at x ;.

o
0
0
0]
Then
11
X| X
XY= x12 x%
B
and
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Again, we wish to find values of x, that cause any data having to do with the
data point (xd, y d) to drop out of the prediction equation. Now since the prediction

equation as it is currently written only depends on the data point (xd, Y ), then this is

0 k-1

true when y; = ﬁkxf) + B Xy ot ﬁzx]% + /§1xp + /§0 = 0. This yields the equation

ook D k-1 o 2 D o
ﬁkxp +/3k—lxp +"'+ﬁ2xp +/31xp + o =0.

This is a kth degree polynomial, and it has & roots. The nature of the Y vector that helped
determine the f values makes it likely the all the roots of this polynomial are likely to be
unique and real valued. (Recall that the } vector used was the indicator function denoted
1;.) The reason for this is that it seems intuitive that maximizing the number of sign
changes in the f§ values, and thus the coefficients of the polynomial, will be needed for a
best approximation to the model. However, the actual proof of this seemingly simple
concept is likely to be quite difficult and is related to the area of mathematics known as
approximation theory. However, if all the roots of the polynomial are real and unique,
then there are exactly k predictions (where £ is the degree of the polynomial) that are
affected by noncontributory data for each observed value in the Y vector.

Now the general process for computing the values of x, and corresponding x,

values can now be explained. This is the main result for the general polynomial model:
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Process for finding data wells for a polynomial model:

Given the polynomial model ¥ = Xf3 + ¢ of the form

k k-1 2 .
Vi = BrXi +BroyXi oo+ Poxi + Pry; + fo + g

Set a counting variable (/) to 1: i = 1.

Step 1: Compute (X’X)_la , where the o vector is the vector [1 Xy x?i xd] .

This gives a vector representation of the f-values in terms of x,;.
Step 2: Set x; = x;
Step 3: Substitute the value for x,; into the expression for /3’ = (X ’X)_la .

k-1

Step 4: Solve the equation /§kx5‘; + /§k_1xp +ot ﬁlez) + /§1xp + /§0 =0 for x,

numerically if necessary, where the values for ﬁA were computed in Step 3.

Step 5: Increment the counter variable i i =i + 1. Go back to step 2 if i < n.

In this way, the relationship between x, and x ), value(s) will be found for all values of
xq- Note that there will be exactly & values of x, corresponding to every value for x,.

This process is now illustrated with an example.
Example 5.
The following table shows the observed voltage drop in a guided missile motor in

relation to the time of the missile flight (Montgomery, Peck, & Vining, 2001).
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Table 5
Voltage Drop Data vs. Time

Observation number  Time (Seconds)  Voltage Drop

1 0.0 8.33
2 0.5 8.23
3 1.0 7.17
4 1.5 7.14
5 2.0 7.31
6 2.5 7.60
7 3.0 7.94
8 3.5 8.30
9 4.0 8.76
10 4.5 8.71
11 5.0 9.71
12 5.5 10.26
13 6.0 10.91
14 6.5 11.67
15 7.0 11.76
16 7.5 12.81
17 8.0 13.30
18 8.5 13.88
19 9.0 14.59
20 9.5 14.05
21 10.0 14.48

A scatterplot of the data is shown in Figure 10 below.
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Figure 10. Scatterplot of voltage drop data.

Since the scatterplot looks a lot like a third order polynomial function, use the

model y; = [3’3x,-3 + /a’le-z + P1x; + Bo + €. When least squares is used to find the f-
~0.024x7 +0.425x7 —1.228.x; +8.392, where

values, the fitted model is y; =

By ==0.024, B, ~0.425, B =-1.228, and By =8.392. The fitted model is shown with

the scatterplot of the data in Figure 11 below.
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Figure 11. Cubic model for voltage drop data.

Now the process described above is used to find the relationships between the x, and x,

values.
Step 1: Compute (X?()_la.

The design matrix X is a 21 by 4 matrix where the elements in each row are
{l, X, xiz, x?} Therefore, (X’X)_l is a 4 by 4 matrix,

0.543 -0.396 0.077 -0.004
-0.396 0429 -0.098 0.006
0.077 -0.097 0.024 -0.001
-0.004 0.006 -0.001 0.000

(xx)™" =
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The values shown in the square matrix above are rounded. Since rounding errors can be
greatly increased when numbers are small, all the calculations were carried out to six
decimal places throughout and only rounded at the end.
The vector a was computed by multiplying the transpose of the design matrix by

I, . This yields

1

Xd
o= 2|

Xd
3
Xd

Hence,

~0.004x +0.077x3 - 0.396x; +0.543
0.006x) —0.098x7 +0.429x ; —0.396
~0.005x) +0.024x3 - 0.097x, +0.077
~0.001x5 +0.006x ; —0.004

(XxX) e =

Finally, substituting x; = x; = [0, 0.5,1.0,---,9.0,9.5, 10.0] one element at a time yields

the following table:
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Table 6
Values For Which 'y, Does Not Affect y pJor Example 5 Data

Xp Values for

Observation X4 which y p 1s not

Number Affected by y,
1 0 2.2,6.1,93
2 0.5 3.2,6.8,9.5
3 1.0 -23.5,5.1,9.1
4 1.5 -1.3,5.7,9.2
5 2.0 -0.2,5.9,9.3
6 2.5 0.2,6.2,94
7 3.0 0.4,6.5,94
8 3.5 0.6,7.1,9.6
9 4.0 0.7,7.9,10.1
10 4.5 0.8,8.7,13.1
11 5.0 0.9,9.0,2058.4
12 5.5 -3.1,1.3,9.2
13 6.0 -0.1,2.1,9.3
14 6.5 0.4,2.9,94
15 7.0 0.6,3.4,9.6
16 7.5 0.6, 3.8, 9.8
17 8.0 0.7,4.1,10.2
18 8.5 0.7,43,11.4
19 9.0 0.9,4.9,353
20 9.5 0.5,3.2,6.8
21 10 0.7,3.9,7.8

Note that all the values in the right column (values of x ) are approximate.

However, this does not present a problem because of the concept of data wells that was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81

described earlier. Any prediction in the neighborhood of the actual value of x, will be

essentially independent of the related observation taken at x ;. Because of data wells, the

closer x is to the actual value of x,, the closer the corresponding observation at x is to a

zero contribution to the predicted value. Note that the slope of the derivative will affect
the degree to which data wells apply. A full analysis of the sensitivity of data wells to
various models is out of the scope of this research, but should be examined in future
research.

As in Example 4, the table shows some values that are not meaningful or not
useful. An example of a value that is not meaningful is the row corresponding to
observation 20. Note that the table indicates that the prediction when x = 0.5 does not
depend on the observation when x = 9.5. An observation already exists for x = 0.5, so a
reference to a prediction at x = 0.5 is not meaningful. An example of a value that is not
useful is in the row corresponding to observation 11. This row indicates that the
prediction when x = 2058.4 is not dependent on the observation when x = 5.0. Least
squares would not be an appropriate modeling method to predict what would happen at a

point so far outside the neighborhood of the observed x-data.

General Linear Model

In previous sections, the relationship between x, and x; has been derived for

straight-line models, quadratic models, and then for the general polynomial model. The
same derivation technique can now be used to derive the relationship for any univariate

model. Because the relationship between x, and x; changes with each unique model,
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the computation technique must be described as a process, just as it was for the general

polynomial model.

Given the general univariate model Y = Xf + ¢ of the form
yi = X|;|B +¢;, where
X| ;| represents the ith row of the design matrix X.
Then the least squares estimate for the f-vector is
B=(xx)"x,
and predicted values from the model are given by
Y =xp=x(xx)"'xy (15)
Process to find the relationship between x, and x, follows:
Step 0: Set a counting variable (i) to 1: i = 1.
Step 1: Compute (X?()_la , Where the ¢ = X’de.
This gives a vector representation of the f-values in terms of x,;.
Step 2: Set x; = x;
Step 3: Substitute the value for x,; into the expression for ﬁ = (X ’X)_l a.
Step 4: Solve the equation Y (x p) =0 for x,. numerically if necessary, where the values

for /§ were computed in Step 3, and Y is computed as indicated in (15) above.

Step 5: Increment the counter variable i i =i + 1. Go back to step 2 if i < n.
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In this way, the relationship between x, and x ), value(s) will be found for all values of

xy- Note that the number of values of x, corresponding to every value for x; will

depend on the number of solutions to the general equation Y (x)=0.
As before, the phenomenon is continuous rather than only applying to a finite
number of points. Recall the previous discussion about data wells. Predictions in the

neighborhood of actual predictions y p that are independent of some observation y, will

be virtually independent of y, so long as the derivative of the model is continuous in that

neighborhood.

Conclusions

The research presented about observations that do not contribute to certain
predictions raises a new area of research in least squares sensitivity analysis. This area of
sensitivity analysis has been long neglected compared to other areas of research in least
squares (Belsley, et al., 2004), but sensitivity analysis may contribute to better prediction
techniques in the future. It is hoped that this research will add to the knowledge that will
result in a better understanding of how to deal with observations, models, and predictions.

The relationships between predictions and related noncontributory data were
derived in this research for the straight-line model, the second order polynomial model,
the general polynomial model, and the general univariate model linear in the unknown
coefficients. The concept of data wells was also introduced, defined, and discussed. Data

wells show that noncontributory data are a continuous, rather than discrete, phenomenon.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84
Examples were shown throughout that illustrated the effect that noncontributory data
might have on data collection decisions as well as data analysis.
Since the phenomenon studied in this research is brand new, it raises a large
number of future research possibilities that could not be covered in this dissertation. A
number of ideas about future research avenues will be suggested in Chapter 5 along with

some preliminary findings about some of the topics.
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Chapter 5:
Summary, Conclusion, and Recommendations

Introduction and Brief Overview of Findings

Least squares sensitivity analysis was examined in this research in light of how
any particular observation affects a particular prediction made calculated using a least
squares modeling technique. Past research has centered almost exclusively on finding
very influential observations, while this research concentrated on finding observations
that had no influence.

The influence of a data point on predictions was studied for two specific models,

and then for two general models. A closed form relationship relating y, and y p was

derived for the straight-line model of the form y; = By + B x; + &, and numerical
processes were developed to find those relationships for the second order polynomial in
x, the general polynomial in x with degree £, and for the general univariate model that is
linear in its unknown coefficients.

The lack of influence of certain data points on specific predictions was found to
be more than a discrete phenomenon affecting a finite number of cases. It is actually a
continuous phenomenon affecting an infinite number of data points. The idea that a

prediction y p that is independent of an observation y, is also virtually independent of
the observation y,; anywhere in the neighborhood of y p Was developed and defined as

data wells. The concept of data wells implies that any problem arising out of

noncontributory data points cannot simply be fixed by adding some value 6 to the value
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of p before calculating the prediction y p- Data wells are active in all areas of a model
where the derivative of y p With respect to y, is continuous.

Preliminary results indicate that the phenomenon of noncontributory data extends

beyond univariate models to multivariate models as well, and that there are j values of y P

corresponding to every observation y;, where j is the number of unique variables in the

model. The analysis of this concept is beyond the scope of this research, but appears to be

a promising area for future work, and is described in the future research section below.

Interpretation of Findings

If all data are not being used when making a prediction, this represents a loss of
information; this therefore implies that other prediction techniques that use all the
available observations could potentially give more accurate predictions. How much this
loss of data actually affects the accuracy of predictions is almost certainly in itself a
function that is dependent upon the number of observations and the variance of those
observations. It also seems likely that such a function would be dependent on other
variables such as the distance the x-value of the prediction is from the x-value of the
unused data point, but future research will have to make such determinations. Minimally,
the results given in this research call loudly for more research into predictions that are
affected by the phenomenon of noncontributory data.

Further, the phenomenon of noncontributory data will almost certainly be most
important when predictions are made using small data sets, where data collection is
difficult or expensive, or when a particular data point that does not contribute to the

desired predicted value is deemed to be more accurate than other observations. This
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research suggests that care should be used when making predictions with small data sets,
and alternative prediction techniques should be considered in cases where a data point is
known to have no contribution to a desired predicted value.

The well-known analogy from physics that was shown in chapter 3 gives further
credibility to the concept of noncontributory data. The relationship between the physical
example and the statistical example for the straight-line model also makes it interesting
that this phenomenon was not discovered earlier. However, this also underlines the need

for further research in the general area of sensitivity analysis in least squares.

Implications for Social Change

The major potential for social change arising from this research has to do with the
way researchers might approach data collection and prediction computations in the
future. The following paragraphs describe how accuracy might be improved as a result of
knowledge about noncontributory data. It is also possible researchers might save time and
money as a result of changing data collection methods. In fields where human life is at
stake or quality of life is influenced, better prediction techniques that may arise out of this
research have the potential to make an even bigger difference. Though the calculation of
predictions is not the only reason that least squares modeling is employed, it is one of the
most common reasons for modeling data. Until now it was generally assumed that all
data were used in making predictions derived from a least squares model. Though it was
recognized that observations contributed to predictions in an uneven manner, it was a
surprise to learn that some data are actually irrelevant for the purpose of certain

predictions.
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Forecasting is utilized in almost every field in current academic research and
practice. Modeling and prediction are commonplace in virtually every area of the social
sciences. These include but are not limited to sociology, psychology and business. The
hard sciences also routinely use modeling and prediction. Some examples are biology,
genetics, chemistry, physics, and medicine. Any phenomenon that has a potential effect
on the accuracy of predictions has broad implications for research in every field in which
modeling and prediction are used. In fields of medicine, for example, better predictions
could literally help doctors to make more accurate diagnoses and patients to make
decisions about treatment based on more accurate information. In general, a better
understanding of data that we collect may eventually result in better, more accurate
predictions.

In cases where data collection is difficult or expensive, it may not be necessary to
collect data for values of the independent variable where that observation would not be
used in the desired prediction calculation anyway. Therefore, the knowledge gained by
this research could potentially save both time and money for researchers or anyone
collecting data for the purpose of prediction. In cases where researchers only have access
to small data sets, it will be important for them to know that one of their data points may
not have any effect on predictions made. This knowledge may lead to better prediction
techniques for small data sets, lead to more accurate disclosure of potential problems, or
both.

A more accurate understanding of how observations are actually used in the
computation of predictions has the potential of helping researchers design experiments

better so that the most useful data are collected. It is possible to know in advance of data
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collection what degree of influence each observation will have. If it is known in advance
that a particular observation will be particularly valuable, an experiment should be able to
be arranged so that this particular observation will have a reasonable degree of influence
on a desired prediction. While this idea certainly has its limits, in that it is not possible to
design an experiment so that all observations collected will have the degree of influence
desired), the knowledge that one or two data points can be manipulated in this way may

be helpful in some cases.

Recommendations for Action

The fact that the fairly simple phenomenon of data that does not contribute to
predictions was missed until now underlines the fact that sensitivity analysis in general
has not received much attention. The research done in this dissertation raises many new
potential areas of research in sensitivity analysis, some of which may lead to better
prediction techniques. At the very least, sensitivity analysis allows researchers and data
analysts to better understand the data they are working with. Predictions and models will
only be as good as the understanding of the processes and methods that are used to
analyze the data and make predictions. To this end, sensitivity analysis needs to be given
more attention by statisticians who work in least squares, and even with other norms such
as the L; norm (absolute value norm) and the L, norm (the minimax norm). Future
research may show that there are cases that clearly indicate the use of one norm over
another when making predictions under certain conditions.

Even before further research is done in sensitivity analysis, researchers who are

using or have used least squares for prediction with small data sets should look at their
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analysis to see if important predictions are affected by the phenomenon of
noncontributory data. In cases where noncontributory data has had an effect on
predictions, an assessment should be made about whether another prediction technique
(like minimax modeling) should be used, at least for comparison purposes. In cases
where further analysis is not feasible, the fact of noncontributory data should at least be

explicitly disclosed.

Recommendations for Further Research

The research described in this dissertation involved an addition to current
knowledge regarding sensitivity analysis in least squares. Because the discovery of data
that does not contribute to certain predictions is brand new, it raises many possibilities for

future research. Some of these are briefly described below:

1. Now that calculations can be performed to find predictions that are
independent from a data point, thorough sensitivity analysis needs to be performed to
determine when this noncontributory data actually begins to make a significant difference
to the predictions. In other words, in which situations are predictions adversely affected
by the loss of a data point? Another way to look at this is that there should be a curve
showing the distance one is from a prediction for which a data point contributes nothing
vs. the degree of effect on that prediction. The effect of an observation on that prediction
would be 0 right at the x-value corresponding to the prediction, and would change as one
moved away from that point. The effect would seemingly be sensitive to the number of

observations, and would be larger when the value of » is small than when # is large. The
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sensitivity may also be affected by variables such as the variance of the data and the
actual model used, among others. An ideal result would find some numerical measure of
the effect of the “loss™ of a data point, and relationships that describe how the key
variables affect this measure.

2. The concept of data wells was introduced in this dissertation. This
dissertation clearly defined predictions that are independent of an observation.
Fortunately, a desired predicted value will rarely lie directly on a point where an
observation does not contribute to it. However, these predictions are also essentially
independent of the same observation anywhere in the neighborhood of the actual point
where the observation drops out. Hence the predictions are called data wells rather than
just individual points. A clear area of inquiry would involve sensitivity analysis about
data wells, and how far away from the actual prediction one can go before the
independent observation becomes a factor (i.e., does contribute to the prediction). This
relationship is almost certainly defined by a continuous function of some sort. Factors
that may affect this function are the number of observations, specific model in use, and
variance of the data. The definition of a function or set of function dependent on one or
more of these variables would be very useful in determining where noncontributory data
becomes a factor in a prediction.

3. Matrix inverses are well known to be sensitive to rounding errors and near
singularities. It is unknown how sensitive the issue of data wells is to these numerical
issues. Near singularities in matrices are well understood in the field of numerical
analysis, but a good future study would be one to discover how sensitive noncontributory

data are to rounding errors. This itself would make an interesting sensitivity analysis.
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4. The hat matrix is documented to be described by the matrix expression

H=X(X 9()_1 X' (Belsley, et al., 2004). The most efficient method to find

noncontributory data, however, required a numerical approach for all but the simplest of
linear models. The literature on sensitivity analysis in least squares also suggests the use
of numerical methods to find the hat matrix as well (Belsely, et al., 2001; Chatterjee &
Hadi, 1988). It is therefore currently believed that no single formulaic relationship
between noncontributory data and the predictions corresponding to this data exists. A
future study could either find a formulaic relationship or prove that none exists. Since the
expression for the hat matrix is valid for multivariate as well as univariate models that are
linear in the unknown coefficients, the same question exists for multivariate linear
models.

5. A general procedure was found in this dissertation to relate
noncontributory data points to the particular predictions that correspond to them. This
procedure was developed for general univariate models that are linear in the unknown
coefficients. Initial findings indicate that the phenomenon of noncontributory data
extends to multivariate models and that there are exactly & predictions affected for each
observation for which a linear multivariate model has & degrees of freedom. A future
study could find a procedure to find the relationships for general multivariate models.

6. This research studied noncontributory data only for models that are linear
in the unknown coefficients. A study could be made of nonlinear models that are fitted

via least squares. Is there a similar phenomenon that occurs in nonlinear models?
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7. This research examined only the least squares norm. In other words, the
coefficients of all models in this research were fitted using the least squares error norm.
The L, (least squares) norm finds the coefficients that minimize the sum of the squared
errors of the distance between the fitted values and the observations. Other error norms
are well known, however. Two of the most well known norms are the L; (absolute value)
norm and the L, (minimax) norm. The L; norm finds the coefficients that minimize the
sum of the absolute value of the distance of the fitted values from the observed values,
and the L., norm finds the coefficients that minimize the maximum error, or distance
between fitted and observed values.

The use of other norms may be a possible way to correct predictions for the loss
of information arising from noncontributory data, but it is unknown whether a
phenomenon of noncontributory data may also exist when making predictions using a
norm other than the least squares norm. Future research could determine whether this
phenomenon exists when making predictions using one or more of these other error
norms.

8. This research aimed to determine when an observation failed to make any
contribution to a prediction or set of predictions. Future studies could determine what
corrective action should be taken in such cases, and under what circumstances corrective
action is necessary. Presumably the phenomenon will have a greater effect on predictions
when 7 is small, but even then it is not known what corrective action to take. The concept

of data wells makes it useless to simply make a prediction at a point very close to the
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desired point. Whether a different error norm should be used in these cases, or whether
there is some corrective estimator is unknown and needs to be studied.

9. Any data point that isn’t used in the calculation of a prediction is a loss of
information. However, it needs to be determined exactly how much information is really
lost, and how this affects predictions. One way to determine this would be to use least
squares to make predictions for which the actual observation is already known. Least
squares predictions that are independent of a data value could be compared with
predictions made with the same number of data points, but in cases where there is no
noncontributory data. By repeating this procedure and comparing the results, a
determination could be made about how much information is lost because of
noncontributory data.

In addition, least squares predictions with noncontributory data could be
compared to predictions made using some alternative method. Then the results from each
method could be compared to determine whether the least squares predictions are, on the
average, suboptimal to predictions made using some other method where all the data
points are used.

10. A physical application that is equivalent to noncontributory data was
shown in chapter 3. However, this application only applied to straight-line models.
Though there are no obvious physical applications to models other than the simple
straight-line model, further research could determine whether any similar physical

applications exist that correspond to other linear models.
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11. The polynomial in x, from chapter 4 that has the §§ values as coefficients

intuitively will have exactly k£ unique, real roots, where £ is the degree of the polynomial.
A study in approximation theory could possibly prove this result. This would determine
exactly how many predictions are affected by noncontributory data for each observed

value.

Concluding Statement

The idea that all observations are not necessarily used to make predictions using
least squares is a fairly simple phenomenon that has escaped attention until now. This
research made the important first step of defining under what conditions this phenomenon
occurs. However, it will ultimately be imperative to determine how much of an effect this
phenomenon really has on the predictions that are involved, and to find alternative
prediction techniques to compensate in cases where predictions are detrimentally
affected.

Further, the discovery of a new phenomenon in such a mature area of statistics
underlines the need for further research in sensitivity analysis. This will hopefully lead to
better understanding of data that is collected and analyzed, and better prediction and

analysis techniques for the future.
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