Nurses arrive in hospital settings poorly prepared to provide quality patient care. To address this problem, the researcher compared the effectiveness of using high-fidelity simulation (HFS) in addition to traditional hospital-based clinical experiences versus traditional hospital-based clinical experience alone. Results indicated that HFS supports clinical success.

A key factor contributing to this condition is the lack of available clinical experiences that promote critical thinking and enable students to apply theory to practice.

The purpose of this study was to use maternity nursing test scores and proficiency levels to determine the effectiveness of implementing high-fidelity simulation in addition to traditional hospital-based clinical experiences as opposed to traditional hospital-based clinical experiences alone. The researcher’s goal was and continues to be to improve clinical nursing experiences for senior maternity nursing students.

The use of HFS has been found to (a) improve knowledge acquisition and enhance the transfer of knowledge to the clinical setting (Beamson & Wikker, 2005; Birch et al., 2008; Brannon, White, & Bezanson, 2008; Ruggenberg, 2008), (b) promote improved practical skills (Shoemaker et al., 2009), (c) promote critical thinking skills (Radhakrishnan, Roche, & Cunningham, 2007), and (d) improve student self-confidence and self-efficacy (Feingold et al., 2004; Smith & Roehrs, 2009).

Ultimately, by providing practical experience, simulation supports effective learning (Issenberg & Scalese, 2007; Wagner et al., 2009)—allowing nursing students to become confident, competent (Feingold et al., 2004; Smith & Roehrs, 2009; Terman, 2007), and able to perform nursing practices safely (Garrett et al., 2010).

Inferential statistics (Mann-Whitney test) for NCLEX performance potential indicated a significant difference between the simulation students (n = 132) and the nonsimulation students (n = 147). Inferential statistics (t tests) for ATI content scores (practical and critical thinking skills) indicated a significant difference between the simulation students (n = 132) and the nonsimulation students (n = 147).

Descriptive and inferential statistics were calculated. Inferential statistics included • independent sample t tests (at a .05 significance level) on the two dependent variables (practical skills and critical thinking skills), and • A Mann-Whitney test on the third dependent variable (NCLEX performance potential).

Descriptive statistics for NCLEX performance potential indicated that • 133 (90.5%) of the students from the simulation group scored at Level 2 or above (indicating students are likely to exceed performance expectations on the NCLEX), whereas • only 81 (61.4%) of the students from the nonsimulation group scored at Level 2 or above. Inferential statistics (t tests) for content mastery series test, than students who are traditionally taught by HBCI instruction alone?