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ABSTRACT

The need for change in the mathematics curricula in our public schools 

has been well documented (Kirwan, 1990; National Commission on 

Excellence in Education, 1983; National Research Council, 1989; Overby, 

1993). Testing surveys show low overall performance at every age 

throughout the K-12 levels. The Curriculum and Evaluation Standards for 

School Mathematics. (Standards! issued by the National Council of Teachers 

of Mathematics (NCTM) in 1989 are designed to move mathematics curricula 

forward to meet the needs of students for the future. The analysis of new 

curricular materials is essential in order to produce materials that meet 

recommended standards.

Migrant students represent one segment of the student population with 

deficiencies in mathematics training at the K-12 level. The Portable Assisted 

Study Sequence (P.A.S.S.) Program serves migrant students in 165 schools in 

California, and must provide materials which comply with the Standards.

This study analyzed and compared this compliance in two mathematics 

courses written in 1989 and 1995 for P.A.S.S. An evaluative instrument was 

designed to measure the extent to which reform ideas in the Standards are 

represented in the curricular materials. Content analysis procedures were 

used to analyze the curricula with the assistance of Nud*Ist software.
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Research design for the instrument included procedures for content validation 

and interrater reliability. The results of this study showed the 1995 P.A.S.S. 

curricular materials measurably improve upon the 1989 curricular materials 

with respect to the Standards. The evaluative instrument was found to 

effectively and reliably measure the extent to which curricular materials meet 

the Standards.

This study provides guidance and direction for teachers, students, 

curriculum developers, and future researchers at local, state, and national 

levels. Standards are a major component of education, and this study 

represents a pioneering effort to quantify the changes that can hopefully help 

our society meet these goals. This process can be replicated in other 

disciplines, which increases the potential for social change. Significant 

curricular reform will have significant social impact.
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CHAPTER 1

Introduction

Up in the mountains, he knew, the ants changed with the season. Bees 

hovered and darted in a dynamical buzz. Clouds skidded across the 

sky. He could not work the old way any more.

-J. Gleick (1987, p. 317)

The need for change in the mathematics curricula in our public schools 

is well documented (Kirwan, 1990; National Commission on Excellence in 

Education, 1983; National Research Council, 1989; Overby, 1993). The 

National Research Council's Committee for the Mathematical Sciences in the 

year 2000 released a final report in January 1991. The chairman of the 

committee, William Kirwan, reported that "too few people are learning 

mathematics at all levels of our educational system" (Kirwan, 1990, p. 23). 

Our attrition rate in mathematics from ninth grade on is about 50%. We fail 

to keep women and minorities in mathematics, and "mathematics has one of 

the poorest attrition rates of all the sciences for women from the bachelor's to 

the Ph.D" (p. 24). Children of migrant workers are reflected in these dismal 

statistics. Overby (1993) reports dropout rates for migrant students of 43%
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2

as compared to Mexican-Americans of 35.8%. Many of the reasons for these 

failures point to deficiencies in mathematics training at the K-12 level.

Testing surveys show low overall performance at every age throughout the 

K-12 levels. Even "the most able U.S. students—the top 1% in ability-scored 

the lowest in algebra and among the lowest in calculus" (Kirwan, 1990, 

p. 25) when compared to high school seniors from 13 countries. The 

Curriculum and Evaluation Standards for School Mathematics (the Standards) 

issued by the National Council of Teachers of Mathematics (NCTM) in 1989 

are designed to move mathematics curriculum forward to meet the needs of 

students for the future. The NCTM News Bulletin (1995) cites a study by the 

Council of Chief State School Officers that indicates "that a majority of states 

are now involved in developing, revising, and implementing state frameworks 

in mathematics . . .  [and]. . .  that many mathematics frameworks agree with 

the thrust of the Standards" (p. 1).

The analysis of new curricular materials is essential in order to produce 

materials that meet recommended standards. Assessing the curriculum in 

relationship to the Standards is not an easy task. The Standards states this 

explicitly:
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A deep, thorough analysis is necessary to determine the extent to which 
a curriculum and its materials are compatible with the Standards. The 
Standards offer a framework for curriculum development but not a 
scope and sequence. Simply checking topics on a scope-and-sequence 
chart is insufficient to determine the extent to which a curriculum and 
its materials are compatible with the Standards. A comparative 
analysis must provide qualitative documentation of the degree of 
consistency between the Standards and the curriculum. Such results 
can then be used to make decisions about the adoption of materials and 
how the curriculum needs to be modified to be more consistent with the 
Standards, (pp. 241 - 242)

The migrant student population in California is served through the 

Portable Assisted Study Sequence (P.A.S.S.) Program. The students 

frequently relocate to other school districts in California and in other states 

throughout the school year. This creates a problem when transferring 

academic credits because generic descriptions such as "algebra" or 

"geometry" do not readily define the content in the student's mathematics 

experience. The P.A.S.S. Program meets the needs of migrant students by 

providing courses designed in units. Students carry the portable units with 

them to other school sites to continue the course of study. Each mathematics 

course is divided into 10 units, and each unit is self-contained with content 

clearly defined. A multiple-choice test is given upon completion of the unit 

and students must exhibit mastery at 70% before they can continue to the
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next unit. This process enables teachers and counselors to more easily 

determine credits for transferring students.

This study analyzed the content of a lst-year mathematics course 

written for P.A.S.S. and compared it to the course it replaced with respect to 

the NCTM Standards. A major contribution of this process included the 

design of an evaluative instrument meeting the Standards that can be used for 

both development and assessment of further mathematical curriculum. The 

instrument was used in this study to analyze the P.A.S.S. curricular materials 

in relationship to NCTM Standards.

Statement of the Problem

Educating the migrant student population is one of the greatest 

challenges that the California educational system and the United States 

educational systems face today. Students from this population frequently 

relocate to other schools and to other states. The Portable Assisted Study 

Sequence (P.A.S.S.) Program serves 165 schools in California and was 

created to help assuage some of the difficulties that these students encounter. 

The PA.S.S. Program must not only provide materials that will be 

appropriate for the migrant student, but must also comply with the National

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Council of Teachers of Mathematics Standards for School Mathematics 

(NCTM Standards or Standards!. Until now, no study has been conducted 

that has analyzed the P.A.S.S. mathematics curricular materials in relationship 

to the Standards. Furthermore, an evaluative instrument designed to measure 

the extent to which reform ideas in the Standards are represented in the 

curricular materials has been sorely needed, and to date, has not existed.

Background of the Problem

Everyone depends on the success of mathematics education, 

everyone is hurt when it fails.

- National Research Council (1989, p. 7)

This study focuses on the content analysis of the mathematics 

curricular materials designed for the migrant student in relationship to 

National Council of Teachers of Mathematics (NCTM) reform Standards 

ideals. The development of curriculum aligned to reform standards is a 

complex process. Furthermore, developing curriculum for the migrant student 

requires an understanding of the issues surrounding that segment of the school 

population.
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Curriculum and Reform Standards

Curriculum is "a plan, a set of directions whose chief purpose is to

guide the work of the schools. That work is called teaching or instruction"

(English, 1987, p. 9). Curriculum has a variety of forms such as textbooks,

study guides, district, state, and board regulations and policies, and any

supplementary materials which are used to make decisions pertaining to

content or subject matter. The National Council of Teachers of Mathematics

defines curriculum as

an operational plan for instruction that details what mathematics 
students need to know, how students are to achieve the identified 
curricular goals, what teachers are to do to help students develop their 
mathematical knowledge, and the context in which learning and 
teaching occur. (Standards. 1989, p. 1)

The Commission on Standards for School Mathematics was established 

in 1986 by the Board of Directors of NCTM. This was in response to a need 

to improve school mathematics expressed in publications such as A Nation at 

Risk (National Commission on Excellence in Education, 1983). Many of the 

reform ideas in the Standards are supported by data found in publications 

such as Everybody Counts (National Research Council, 1989). One of the 

major recommendations made in this report involved the inclusion of all

permission of the copyright owner. Further reproduction prohibited without permission.



students in a core of broadly useful mathematics. Furthermore, "all students 

should study mathematics every year they are in school" (p. 50). The NCTM 

Standards were published in 1989 as a response to this need for mathematics 

reform.

A standard is a "statement about what is valued" (National Council of 

Teachers of Mathematics, 1989, p. 2) and ensures quality, indicates goals, 

and promotes change. The Standards assert that the educational system must 

meet new social goals. These are defined as providing for society 

mathematically literate workers, lifelong learning, opportunity for all, and an 

informed electorate. Students must learn to value mathematics, become 

confident in their mathematical abilities, become mathematical problem 

solvers, learn to communicate mathematically, and leam to reason 

mathematically (p. 5).

The Standards emphasize the need to "do" rather than "know" (1989, 

p. 7). Interdisciplinary curriculum must be included to supplement and 

replace portions of traditional engineering and physical science applications. 

Technology must be included and updated to reflect the nature of 

mathematics. The curriculum must be available to all students if "they are to
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be productive citizens in the twenty-first century” (p. 9). Students must 

participate in activities that model genuine problems, and be encouraged to 

experiment, discuss, and discover ideas and concepts.

An important component in meeting Standards recommendations is 

determining the extent to which curriculum is aligned to the reform ideas. 

Assistance is given in A Guide for Reviewing School Mathematics Programs 

(NCTM, 1991). This publication provides guides for the K-12 mathematics 

program to "determine the level of implementation that currently exists.. . .  

Users should feel free to modify these outlines or develop new ones" (p. 1). 

The general guides for two curricular areas, Grades 5-8, and Grades 9-12, 

which were considered to be "the most useful for systematically analyzing 

textbooks or other materials that are being considered for adoption" (p. 3), 

were followed for this study. These guidelines were used in the design of an 

evaluative instrument meeting the Standards that can also be used in 

curriculum development.
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The Migrant Student

The ethnic population of our public schools is rapidly changing. It is

estimated that by the year 2010 more than one half of our children "under 18 

years of age will be minorities: Hawaii (80%), New Mexico (77%), 

California (57%), Texas (57%), District of Columbia (93%)" (Klauke, 1989, 

p. 1). Projections to 2020 indicate an Hispanic population o f over 47 million 

in the U.S., representing 15% of the total population (Bedard, Eschholz, & 

Gertz, 1994, p. 72). The U.S. Census Bureau reported nearly 13,000,000 

Mexican-Americans living in the United States in 1989. Headden (1995) 

reports nearly three million students in the American educational system are 

designated as limited English proficient (LEP), and 45% of these students live 

in California. Most of the LEP students in California are Latino (p. 45), and 

many of these students are children of migratory workers.

The migrant student is a child defined by family mobility and type of 

labor. Migratory workers move from one state to another for the purpose of 

finding temporary or seasonal employment (U. S. Department of Education, 

1985). Most are agricultural workers or migratory fishermen who move from 

one district to another during the regular school year (Cahape, 1993;
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California Department of Education, Handbook, 1992). Cahape (1993) 

reports there are over half a million migrant children enrolled in public 

education in the 50 states, the District of Columbia, and Puerto Rico. Trotter 

(1992) argues that many migrant children are unidentified and claims 

"estimates of all those engaged in migrant labor range between 1.7 million 

and 6 million" (p. 16). The Migrant Education Program was authorized in 

1965 through the Elementary and Secondary Education Act. Federal program 

regulations require state Departments of Education to identify and educate 

migratory children. The California Department of Education assumes 

responsibility for all statutory and regulatory requirements of the program 

including subgrantees. Funding is based on a "Full-time Equivalent (F I E) 

count of each individual child for each day of residence in the State. This 

count is based upon the entry of data into the Migrant Student Record 

Transfer System (MSRTS) for each State for each year" (California 

Department of Education, Handbook, 1992, p. 1-2). The California Portable 

Assisted Study Sequence (P.A.S.S.) program is based in part on a newer 

Federal Law, P. L. 100-297, which was passed in 1988, and California 

Assembly Bill No. 1382, which was passed in 1981. This program serves the
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migrant students in California and provides services throughout the U.S. to 

other migrant programs.

California Portable Assisted Study Sequence fP.A.S.S.') Program

The California Portable Assisted Study Sequence (P.A.S.S.) program

serves migrant students throughout California. The P.A.S.S. Program's goals

are described in the P.A.S.S. Handbook:

Provide portable learning packages adapted for migrant students, 
enabling them to proceed at their own pace, provide competency-based 
credits for skills, interests, and educationally related-life experiences, 
supplement the regular instruction for targeted migrant students at 
secondary-level schools in California, and utilize existing counseling 
and tutorial support through regular migrant education personnel, and 
the California Mini-Corps to accomplish the goals of the P. A.S.S. 
Program, (p. 1)

The P.A.S.S. Program allows migrant students to accumulate credits 

that are transferable within the state and to many other states. The list of 

states include Arkansas, Arizona, California, Colorado, Florida, Georgia, 

Idaho, Illinois, Indiana, Kansas, Michigan, Montana, Nevada, New York, 

North Dakota, Oregon, Texas, Utah, Washington, and Wisconsin. Ten units 

provide credits for two semesters. The portable units can be continued at 

new school sites throughout California "thanks to the coordination of services
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among the migrant staff at the school sites" (p. 2). The California P.A.S.S. 

Program is accredited through Fresno Unified School District, and the 

Western Association of Schools and Colleges.

Study Background

The investigator is a mathematics teacher at a secondary school in a 

small community of approximately 10,000 residents in California. The 

school's student population of approximately 1,100 is comprised largely of 

rural students with two thirds from Latino ethnic backgrounds, many of whom 

are migrant students from Mexico.

The P.A.S.S. Program offers four sequential 1-year mathematics 

courses to secondary migrant students. The 1989 general mathematics course 

General Math A and General Math B was the first course in the sequence 

until it was replaced with the 1995 P.A.S.S. integrated mathematics course 

Integrated Math A and Integrated Math B. The 1995 course was written to 

update the 1989 curriculum by emphasizing interdisciplinary connections and 

higher-order thinking skills in alignment with the California Framework
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(California Department of Education, 1992). The NCTM Standards affirm 

and enhance the goals of the California Framework.

Purpose of the Study 

This study was undertaken because no research has analyzed the 

Portable Assisted Study Sequence (P.A.S.S.) mathematics curricular materials 

in relationship to the NCTM Standards. Furthermore, an evaluative 

instrument designed to measure the extent to which reform ideas in the 

Standards are represented in the curricular materials did not exist. These are 

needed because it is becoming increasingly important to evaluate curriculum 

with respect to the Standards if we intend to radically change our 

mathematics curriculum.

Significance of the Study 

This study has value at three levels: local, state, and national. The 

P.A.S.S. materials are used locally, throughout the state, and manually carried 

by students to many other states as part of the P.A.S.S. program. The 

P.A.S.S. Program offers four sequential 1-year mathematics courses to 

secondary migrant students. The 1989 general mathematics course is the first
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course in the sequence. The 1995 materials are intended to provide content 

and experiences in alignment with NCTM Standards to direct and guide 

teachers and students. This updated curriculum can be developed further as 

sequential courses are written. This will result in a new curriculum designed 

around the concepts and transitions inherent in the NCTM Standards. 

Analysis of this important first course (1995) is valuable for future course 

developers as they make decisions to continue developing the courses to meet 

NCTM Standards.

Mathematics teachers throughout the state and nation can benefit from 

this study. The flexibility and adaptability of curriculum to meet NCTM 

Standards require mathematics teachers to provide and evaluate 

supplementary material to determine its applicability to the Standards. The 

analysis of content in relationship to the Standards is complex and time- 

consuming. This study can help secondary mathematics educators interpret 

and select the supplementary materials they produce or provide in their own 

mathematics classroom. The instrument itself will provide guidance and 

direction in curriculum selection and development.
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The process of content analysis of mathematics curricular materials in 

respect to their relationship to the NCTM Standards, and the evaluative 

instrument that was developed and used in this study will have value to 

further researchers. Content analysis was conducted to determine the best 

way to analyze the units. The NCTM Standards are replete with subjective 

goals. This study examined previous content analysis studies that have dealt 

with subjective text, as well as objective text. An instrument and methods for 

reliable and valid content analysis were also investigated and developed.

The culminating research produced an evaluative instrument meeting NCTM 

Standards that can be used in curricular materials development, and which 

was used in this study.

Finally, this study can help mathematics educators at all levels identify 

problems that are encountered by the classroom teacher in the process of 

implementing NCTM Standards. The Standards reflect "a vision of 

appropriate mathematical goals for all students" (NCTM, 1995, p. 1). It 

assumes that all students are capable of learning mathematics, and that 

previous curriculum has "underestimated the mathematical capability of 

most students and perpetuated costly myths about students' ability and
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effort” (p. 1). The Standards were enacted to address this vision, and "many 

schools and teachers have responded enthusiastically . . .  by changing both 

the mathematical content o f their courses and the way in which the content is 

taught” (p. 3). This study can serve to simplify and demonstrate some of the 

problems faced in the distribution of the Standards' ideals to the mathematics 

curriculum.

Nature of the Study 

This study utilized the methodology of content analysis to analyze the 

content of the 1989 and 1995 Portable Assisted Study Sequence (P.A.S.S.) 

mathematics curricular materials in relationship to the goals and spirit of the 

National Council of Teachers of Mathematics (NCTM) Curriculum and 

Evaluation Standards for School Mathematics (1989). Narrative descriptions 

and comparisons, manual data collection and coding, and computer analyses 

using Nud*Ist qualitative data analysis software (Richards & Richards, 1995) 

have been performed. This combination of analyses has resulted in a concise 

and complete analysis of the curricular materials.
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An evaluative instrument to measure the relationship between the 

curricular materials and the recommendations made in the NCTM Standards 

(1989) was also developed for this study. This process included content 

validation using an expert panel consisting of three educators who are familiar 

with, and experienced in, the vision of the NCTM Standards. Interrater 

reliability was established through a pilot study.

Theoretical Framework

Mathematics curriculum in the period from the 1970s to the 1980s has 

been influenced by two types of thought. One is the fixed, static view 

described by Dossey (1992) as external conceptions. This view establishes a 

body of knowledge that is available in curriculum materials. An extended 

version of this view allows adjustment of the curriculum, but still focuses on 

student mastery and applications of technology to mathematics instruction.

The second view is one of internal conception (Dossey, 1992; Polya, 

1965; Romberg, 1988; Schoenfeld, 1988; Steffe, 1988; von Glasersfeld,

1988). There are three groups of thought in this second view. First, 

mathematics is a process and is the result of "experimenting, abstracting,
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generalizing, and specializing,. . .  not a transmission of a well-formed 

communication1' (Dossey, 1992, p. 45) This is the view of constructivists. 

The second group employs psychological models of cognitive procedures and 

schemata. The third group views mathematics as knowledge resulting from 

social interaction. Context is important and students must "participate 

aggressively in analyzing, conjecturing, structuring, and synthesizing 

numerical and spatial information in problem settings" (p. 45).

In mathematics education, Stefife and Kieren (1994) identify a 

"preconstructivist revolution in research. . .  beginning in 1970 and 

proceeding on up to 1980" (p. 711). They consider the publication of von 

Glasersfeld's work in the early 1980s on radical constructivism as the 

beginning of the constructivist revolution that marks the "reform movement 

that is currently underway in school mathematics" (p. 711). Radical 

constructivism in mathematics education means "although there can be well- 

defined tasks or spaces for experience, there are no pregiven prescribed ends 

toward which this construction strives" (p. 721). This translates into "no 

optimal selection of the individual's actions or ideas by the environment, nor
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is some perfect internal representation or match against an external 

environment the test of the constructed 'reality'" (pp. 721 - 722).

The constructivist view is a strong component of many of the 

recommendations made in the Curriculum and Evaluation Standards for 

School Mathematics (NCTM, 1989). NCTM Standards are based upon the 

belief that all students should learn more (and different) content than is 

contained in traditional programs, and new teaching strategies need to be 

introduced. The thinking processes of problem solving, communication, 

reasoning, and connections are emphasized at all levels. Bridging the gap 

between constructivist theory and teaching practice is a major challenge for 

mathematics educators. Teachers must become "facilitators of learning 

rather than imparters of information" (NCTM, 1989, p. 41.)

The Commission on Standards for School Mathematics was established 

in 1986 by the Board of Directors of NCTM. This was in response to a need 

to improve school mathematics expressed in publications such as A Nation at 

Risk (National Commission on Excellence in Education, 1983). Many of the 

reform ideas in the Standards are supported by data found in publications 

such as Everybody Counts (National Research Council, 1989). One of the
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major recommendations made in this report involved the inclusion of all 

students in a core of broadly useful mathematics. Furthermore, "all students 

should study mathematics every year they are in school” (p. 50). The NCTM 

Standards were published in 1989 as a response to this need for mathematics 

reform. A comparative analysis of the P.A.S.S. courses required the 

researcher to thoroughly understand the recommendations made in the NCTM 

Standards for grades 5-8 and grades 9-12.

Educating our youth depends upon understanding the complexity of the 

changing world. Our universe is experiencing tremendous turmoil and 

disruption. Famine, plague, violence, poverty, overpopulation, environmental 

pollution, and geological disasters demand our attention at the same time that 

changing political systems are bringing new freedom as well as tyranny to 

nations of the world. Segments of our society enjoy health, wealth, and 

opportunity while other segments of our society experience despair. The 

societal forces that impact our students and our world are economic, 

psychological, environmental, ecological, biological, political, social, and 

moral. They are interrelated, as are the specific events or situations that 

result. For example, overpopulation may result in famine, plague, violence,
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poverty, and environmental pollution. Geological disasters may cause 

poverty, famine, plague, and environmental pollution. Moral attitudes may 

encourage overpopulation, disease, and violence. Economic inequities may 

produce poverty, poverty may produce violence. Biological discoveries may 

affect the environment and the economy. Political upheavals may affect the 

economy and the social structure. Psychology may affect ecology, and so on. 

Everybody Counts states the mathematical connection to these problems in 

this way:

Our students need to know enough about chance to understand health 
and environmental risks, enough about change and variability to 
understand investments, enough about data and experiments to 
understand the grounds for scientific conclusions, enough about 
representation to interpret graphs, and enough about the nature of 
mathematics to be supportive parents to their children who will learn 
aspects of mathematics that their parents never studied. (National 
Research Council, 1989, p. 49).

Providing curriculum that is aligned to the Standards requires an

understanding that

the Standards offers a vision of, and a direction for, a mathematics 
curriculum but does not constitute a curriculum in itself. If a 
mathematics program is to be consistent with the Standards, its goals, 
objectives, mathematical content, and topic emphases should be
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compatible with the Standards' vision and intent. Likewise, the 
instructional approaches, materials, and activities specified in the 
curriculum should reflect the Standards' recommendations and be 
articulated across grade levels. In addition, the assessment methods 
and instruments should measure the student outcomes specified in the 
Standards. (NCTM, 1989, p.241)

Hypotheses and Research Questions 

This study stated the following hypotheses and asked the following 

research questions:

Hypotheses:

1. The 1995 P.A.S.S. curricular materials are more likely than the 

1989 P.A.S.S. curricular materials to reflect reform ideas expressed in 

the Standards.

2. There is no difference between coding performed by human coders 

and coding performed with a computer in relationship to the 1989 and 1995 

P.A.S.S. curricula.

Research questions:

1. To what extent do the 1995 P.A.S.S. curricular materials 

improve upon the 1989 P.A.S.S. curricular materials with respect to the
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Standards of mathematics education delineated by the National Council of 

Teachers of Mathematics?

2. Can a researcher-designed evaluative instrument measure the extent 

to which curricular materials meet the NCTM Standards ?

Limitations and Scope of Study 

This study focused on specific material that is available to migrant 

students throughout California. The material that has been analyzed in this 

study is the 1995 1-year course in the Portable Assisted Study Sequence 

(P.A.S.S.) Program curricular materials entitled Integrated Math A and 

Integrated Math B. It was designed to replace the 1989 1-year course 

entitled General Math A and General Math B for migrant students in grades 

9-12 that was also analyzed.

The content analysis findings cannot be generalized to other courses 

because the P.A.S.S. course is unique. The P.A.S.S. Program's goals are 

described in the P.A.S.S. Handbook:

Provide portable learning packages adapted for migrant students,
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enabling them to proceed at their own pace, provide competency- 
based credits for skills, interests, and educationally related-life 
experiences, supplement the regular instruction for targeted migrant 
students at secondary-level schools in California, and utilize existing 
counseling and tutorial support through regular migrant education 
personnel, and the California Mini-Corps to accomplish the goals of 
the P.A.S.S. Program, (p. 1)

The contact person on-site is responsible for providing instruction, 

grading the unit, and administering the unit tests. However, the tests are 

scored by the P.A.S.S. office. Two thirds of the final semester grade is based 

on the average of unit tests, and multiple choice tests must be used for the 

convenience of the scorers. Other assessment methods can be used within 

the unit as one third of the semester grade is based on the student's 

performance in the unit books. The semester grade, based upon completion 

of five unit books, must be at least 60% to receive credit, and students receive 

five academic units per semester.

The P.A.S.S. Program allows migrant students to accumulate credits 

that are transferable within the state and to many other states. The list of 

states include Arkansas, Arizona, California, Colorado, Florida, Georgia, 

Idaho, Illinois, Indiana, Kansas, Michigan, Montana, Nevada, New York, 

North Dakota, Oregon, Texas, Utah, Washington, and Wisconsin. Ten units
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provide credits for two semesters. The portable units can be continued at 

new school sites throughout California "thanks to the coordination of services 

among the migrant staff at the school sites" (p. 2). The California P.A.S.S. 

Program is accredited through Fresno Unified School District, and the 

Western Association of Schools and Colleges.

The agreement with P.A.S.S. for the 1995 course entitled Integrated 

Math A and Integrated Math B was to provide materials aimed mainly at 

Latino students because they comprise the majority (99%) of the migrant 

population served by P.A.S.S. The course is therefore designed primarily for 

Latino migrant students in Grades 9-12, many of whom are academically 

below grade level 9. This study therefore developed and utilized an 

evaluative instrument geared to grade levels 5-8 and grade levels 9-12 to 

cover the scope of content in the 1989 and 1995 curricular materials.

Specific instructions from P.A.S.S. for the 1995 curriculum also included 

instructions to use Latino surnames and problems that are relevant to Latino 

life experiences and ambitions. Content analysis of this material was 

therefore also performed from a multicultural perspective. This emphasis on 

the Latino migrant population and the broad range of academic grade levels
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represented in the curriculum also restrict the applicability of this study.

Content analysis methodology for this study required extensive coding 

and interpretation by the researcher. However, the researcher's in-depth 

knowledge of the material can be viewed as valuable to coding the materials, 

and ultimately the integrity of any researcher must also be considered.
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CHAPTER 2
The Literature Review

The mathematician does not study mathematics because it is useful, he 

studies it because he delights in it and he delights in it because it is 

beautiful.

- Henri Poincar'e

Educational needs are determined by the society in which we live. We 

will first examine the changes in western society and the respective needs in 

mathematics education from an historical perspective. The professional 

response from the educational community and the specific issues surrounding 

migrant students will then be addressed. Finally, the methodology of content 

analysis will be discussed, and the studies which relate to content analysis of 

new curricula will be reviewed.

Societal Changes 

To appreciate the changes that are needed in our mathematics 

curriculum requires an historical perspective of the changes in our society. 

Our western society has developed in three distinct stages or eras of change 

called waves (Toffler, 1980). Toffler describes the first era from 8000 B.C.
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to A.D. 1650-1750 as the first wave of change. The population could easily 

be divided into two categories: primitive and civilized. The primitive 

population lived in small tribes. The civilized population fanned and 

produced their own goods and food. Villages were organized, labor was 

divided, and religious and governmental authority was established. Scientists 

and mathematicians such as Galileo Galilei, Johannes Kepler, and Rene 

Descartes lived in this time, but their contributions were not greatly 

appreciated until the second wave.

The second wave has lasted 300 years and has become known as the 

Industrial Revolution and the Age of Enlightenment (Toffler, 1980, Etzioni, 

1968). A mechanistic viewpoint emerged as scientific discoveries and 

theories became known. The Age of Scientific Revolution began in the 16th 

century with "Nicolas Copernicus, who overthrew the geocentric view of 

Ptolemy and the Bible that had been accepted dogma for more than a 

thousand years" (Capra, 1982, p. 54). Descartes, a brilliant mathematician 

who is regarded as the founder of modem philosophy, "did not accept any 

traditional knowledge, but set out to build a whole new system of thought"

(p. 56). The scientific method of deduction was bom, and mathematics was
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an integral part of it. Mind was separate from matter, and the universe was a 

machine that man could leam to manipulate and control. Scientific theory 

became reductionist theory in the biological sciences allowing life organisms 

to be studied as mechanisms. Isaac Newton completed the vision. "Newton 

developed a complete mathematical formulation of the mechanistic view of 

nature, and thus accomplished a grand synthesis of the works of Copernicus 

and Kepler, Bacon, Galileo, and Descartes" (Capra, 1982, p. 63). His 

methodology combined the inductive, empirical method with the deductive, 

rational method, and is the method of scientific inquiry today.

Mechanistic elements are evident in the second wave civilization. A 

"half-dozen principles-standardization, specialization, synchronization, 

concentration, maximization, and centralization-were applied in both the 

capitalistic and socialist wings of industrial society" (Toffler, 1980, p. 76). 

Class structure becomes important in maintaining these relationships. A 

property class inherits rights of ownership, an acquisition class acquires their 

property and rights of ownership, and the social class determines the 

individual's rights, lifestyle, prestige, and power within the society. (Parsons, 

1947). The second wave is evident in our western society, but it is becoming
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engulfed by the third wave.

Toffler (1980) describes the third wave as interrelated spheres: 

technosphere, biosphere, infosphere, sociosphere, and psychosphere. He sees 

the need for decentralized reorganization to meet the needs of the changing 

world. Third wavers are "a combination of consumers, environmentalists, 

scientists, and entrepreneurs in the leading-edge industries, along with their 

various allies" (p. 153). They are proficient at technology, which is 

distinguished as "new industries—computers and data processing, aerospace, 

sophisticated petrochemicals, semiconductors, advanced communications, 

and scores of others" (p. 155). This technology has already given us fiber 

optics, antinoise technology, neural networks, antisense technology and 

recombinant DNA technology; we are familiar with terms such as virtual 

reality and artificial intelligence (Simon, 1995). In the public arena, the 

newest computer program for personal computers was introduced with a 

1-year advertising budget of 1 billion dollars: Windows 95 sells for $89 and 

"has moved stock markets worldwide. . .  and has attracted the attention of 

Washington antitrust officials" (Murphy, 1995, p. D l). It is obvious that 

technology has impacted every area of our fives, and that second wave skills
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Educational Response 

Educational practices can be seen to respond to these changes. In the 

first wave, formal education was reserved for the privileged few who 

assumed the powers of authority. Kilpatrick (1992) describes mathematics in 

the curriculum of liberal arts, and as providing the foundation for mechanics 

and the ensuing revolutions in science and technology. Textbooks included 

Socratic dialogue to deal with matters of proof, definition, and understanding. 

Students were given opportunities to discover rules by induction.

The second wave provided impetus for mathematical study and public 

education. The Industrial Revolution required skilled workers and 

mechanistic responses. The Age of Enlightenment inspired a desire for 

higher levels of education for the public. Mathematics did not develop as a 

field of study until the end of the 19th century in "response to the need for 

more and better prepared teachers" (Kilpatrick, 1992, p. 5). Teaching 

methodology began to emerge with concrete experience and educational aims 

influencing the teaching of mathematics in the U.S. throughout the entire 

public school system.
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The establishment of standards became important. Kilpatrick (1992) 

discusses the use of testing to establish standards, which began in earnest in 

the U.S. with the published doctoral dissertation in 1908 of Cliff W. Stone. It 

provided data concerning the measured achievement of 3,000 sixth graders in 

26 school systems. Stone recommended standards of achievement to make 

courses of study more uniform and to reduce the variability in average test 

scores.

Controversies arose over topics in elementary curricula. Another 

doctoral thesis published in 1919 described by Kilpatrick (1992) refers to the 

unnecessary inclusion of traditional processes in arithmetic at elementary 

grade level. This study analyzed the everyday use of arithmetic and found 

real-life problems to be concrete and business-oriented. This reductionist 

movement caused many reactions. Kilpatrick (1992) discusses the social 

value of arithmetic and the "informational, sociological, and psychological 

functions of arithmetic" (p. 18). Readiness theory came into being in the 

1930s and 1940s with one researcher even claiming to have found the 

"minimum mental age at which each of the topics should be taught" (p. 19). 

Extreme proponents of readiness theory advocated the elimination of formal
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instruction in mathematics altogether, thereby allowing the child the freedom 

to discover mathematics by experience (p. 19).

Secondary education felt the effects of these controversies. Unified 

courses, also called integrated courses, were developed and tested from 1903 

to 1923 by the University of Chicago; the resulting findings favored unified 

courses, but evidence was rather weak (Kilpatrick, 1992, p. 21). All students 

were required to study mathematics in secondary school in the 1920s and 

1930s (Kilpatrick, 1992). This was seriously challenged and the National 

Council of Teachers of Mathematics (NCTM) was formed as a result of the 

crisis. Research was also undertaken at this time on such questions as ability 

grouping, and unified mathematics versus traditional separated courses.

Many of the findings were published in NCTM yearbooks and journals.

Mathematics education was influenced primarily by psychological 

theory in the period from the 1930s to the 1960s. The ideas of Piaget,

Bruner, humanistic psychology, Marxist psychology, and contemporary 

behaviorism flourished (Kilpatrick, 1992, p. 24). Mathematicians reentered 

the educational field in the 1960s in response to declining enrollments in 

university mathematics courses. The mathematics curricula had changed in
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the lower schools and students were unmotivated and unprepared for the 

traditional university curriculum.

Mathematics curricula in the period from the 1970s to the 1980s has 

been influenced by two types of thought. One is the fixed, static view 

described by Dossey (1992) as external conceptions. This view establishes a 

body of knowledge that is available in curriculum materials. An extended 

version of this view allows adjustment of the curriculum, but still focuses on 

student mastery and applications of technology to mathematics instruction. 

The second view is one of internal conception (Dossey, 1992; Polya, 1965; 

Romberg, 1988; Schoenfeld, 1988; Steffe, 1988; von Glasersfeld, 1988). 

There are three groups of thought in this second view. First, mathematics is a 

process and is the result of "experimenting, abstracting, generalizing, and 

specializing,. . .  not a transmission of a well-formed communication" 

(Dossey, 1992, p. 45) This is the view of constructivists and is a strong 

component of many of the recommendations made in the Curriculum and 

Evaluation Standards for School Mathematics (NCTM, 1989). The second 

group employs psychological models of cognitive procedures and schemata. 

The third group views mathematics as knowledge resulting from social
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interaction. Context is important and students must "participate aggressively 

in analyzing, conjecturing, structuring, and synthesizing numerical and spatial 

information in problem settings" (Dossey, 1992, p. 45).

The National Council of Teachers of Mathematics (NCTM) has played 

a major role in curriculum reform since it was founded. It began publishing 

summaries and analyses of research as well as analyses of math textbooks. In 

1950, NCTM became affiliated with the National Education Association 

(NEA). The Journal for Research in Mathematics Education was published in 

January 1970, and provided reports of research aimed at mathematics 

teachers (Kilpatrick, 1992, p. 26).

Curriculum and Standards

The third wave creates the demand that environmental, biological,

sociological, and technological issues be confronted (Shane, 1990). Many

educators believe integrated curriculum design is the only way to meet the

challenge of holistic learning.

An integrative curriculum is one which gives both knowledge of past 
systems and the desire and power to create new ones.. . .  Students 
who experience opportunities to construct their own integrating 
structures must also possess the knowledge of structures common to
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their culture, so that they may take advantage of the collective wisdom 
of past generations. The common structures provide the tools to 
converse with others about the world they share, while their own new 
structures provide avenues for new ideas. (Harter & Gehrke, 1989, 
p. 13)

English defines curriculum as "a plan, a set of directions whose chief 

purpose is to guide the work of the schools. That work is called teaching or 

instruction" (English, 1987, p. 9). It has a variety of forms such as textbooks, 

study guides, district, state, and board regulations and policies, and any 

supplementary material that is used to make decisions pertaining to content or 

subject matter. English believes there are three types of curriculum: written, 

taught, and tested. They are interactive and work together in a tight 

relationship if they have a definite purpose.

Glatthom (1987) proposes there are at least six types of curriculum: 

recommended, written, taught, supported, tested, and learned. The 

recommended curriculum is ideal and is recommended through state 

frameworks and national guidelines. The written curriculum is found in the 

district's scope and charts, site and board policies and goals, study booklets, 

and any "attempts to translate district policies and goals into documents that 

will enable teachers to implement those policies and meet those goals"
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(Glatthom, 1987, p. 3). The taught curriculum is what is occurring in the 

classroom. The supported curriculum is the staff, time, texts, space, training, 

and other essential resources that support the curriculum. The tested 

curriculum measures performance.

The learned curriculum is what the students actually learn. Pratt 

(1994) sees the curriculum as overt and hidden. The overt curriculum is "the 

blueprint for teaching and learning that is publicly planned and adopted" 

(Pratt, 1994, p. 29). The hidden curriculum "refers to conscious or 

unconscious intentions reflected in the structure of schools and classrooms 

and the actions of those who inhabit them" (p. 29). Curriculum development 

concerns itself mainly with the overt curriculum, but elements of the hidden 

curriculum should be considered.

Glatthom (1987) believes a sound program of studies is goal oriented, 

balanced between knowledge and skills versus special interests, and is 

integrated and interdisciplinary. Interdisciplinary studies require an 

improvement in critical thinking across the curriculum. Glatthom asserts 

"you may safely experiment with integrated courses as long as you keep your 

eyes on the basic skills" (p. 50). He also believes "interdisciplinary courses
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are as effective as separate-subject courses in teaching basic skills" (p. 50).

Forman and Steen (1995) discuss the need to prepare all students for

the world of work. "Math at work is concrete. It is spreadsheets and

perspective drawings, error analysis and combinatorics" (p. 6). It is

estimating, exploring, classifying, optimizing, representation of relationships,

process modeling, and anticipation of consequences. "Most people now

recognize that doing mathematics (reasoning logically, solving problems) is

more important that just knowing it (remembering formulas, memorizing

algorithms)" (p. 7).

The Curriculum and Evaluation Standards for School Mathematics

(NCTM, 1989) addresses the needs of the third wave. The Standards reflect

the reform needed in mathematics. They define curriculum as the "intended

curriculum" or the "plan for a curriculum."

A curriculum is an operational plan for instruction that details what 
mathematics students need to know, how students are to achieve the 
identified curricular goals, what teachers are to do to help students 
develop their mathematical knowledge, and the context in which 
learning and teaching occur. (National Council of Teachers of 
Mathematics, 1989, p. 1)

A standard is a "statement about what is valued" (p. 2) and ensures 

quality, indicates goals, and promotes change. The Standards assert that the
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educational system must meet new social goals. These are defined as 

providing for society mathematically literate workers, lifelong learning, 

opportunity for all, and an informed electorate. Students must learn to value 

mathematics, become confident in their mathematical abilities, become 

mathematical problem solvers, learn to communicate mathematically, and 

learn to reason mathematically (p. 5).

The Standards emphasize the need to "do" rather than "know" (1989, 

p. 7). Interdisciplinary curricula must be included to supplement and replace 

portions of traditional engineering and physical science applications. 

Technology must be included and updated to reflect the nature of 

mathematics. The curriculum must be available to all students if "they are to 

be productive citizens in the twenty-first century" (p. 9). Students must 

participate in activities that model genuine problems, and be encouraged to 

experiment, discuss, and discover ideas and concepts.

The NCTM Standards (1989) are based upon the belief that all 

students should leam more (and different) content than is contained in 

traditional programs, and new teaching strategies need to be introduced. 

"Cultural background and language must not be a barrier to full participation
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in the mathematics programs" (NCTM, 1995-1996, p. 20). The thinking 

processes of problem solving, communication, reasoning, and connections are 

emphasized at all levels . Content standards are separated into elementary, 

middle, and high school grades with specific topics and subtopics that should 

be addressed. Content in the elementary grades consists of estimation, 

number sense and numeration, whole number operations and computation, 

geometry and spatial sense, measurement, statistics and probability, fractions 

and decimals, and patterns and relationships. Content in the middle school 

grades consists of number and number relationships, number systems and 

number theory, computation and estimation, patterns and functions, algebra, 

statistics, probability, geometry, and measurement. Content in the high 

school grades consists of mathematical connections, algebra, functions, 

geometry from a synthetic perspective, geometry from an algebraic 

perspective, trigonometry, statistics, probability, discrete mathematics, 

conceptual underpinnings of calculus, and mathematical structure.

Mathematics curriculum within the classroom is defined largely by the 

textbook used for instruction (Flanders, 1994; Chandler & Brosnan, 1995). 

Dossey (1992) lists four textbook models: mechanistic, structuralist, 

empiricist, and the realistic or applied. The texts are used in three ways:
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instrumental, subjective, or fundamental. Instrumental use is linear and rule- 

oriented; teachers follow the table of contents and the teacher guidelines. 

Subjective use is flexible; teachers use the text as a guide but employ their 

own experiences and constructive overview. Fundamental use is the 

development of curriculum from a constructivist viewpoint; teachers and 

students develop the curriculum as they learn together. In many classrooms, 

the prevailing model is mechanistic-instrumental. Modem reform documents 

such as the Standards advocate the use of a realistic-fundamental model 

(Dossey, 1992, p. 43).

The adequacy of the textbook is integral to the implementation of the 

Standards. A study of mathematics textbooks for grades 1-8 published after 

the Standards were implemented in 1989 found publishers have moved 

towards the Standards by adding "more material rather than making decisions 

of what to omit" (Chandler & Brosnan, 1994, p. 8). The mismatch of material 

was confirmed in a later study by the same researchers. "The content in the 

mathematics textbooks studied was disproportionate to the content of the 

proficiency test studied" (Chandler & Brosnan, 1995, p. 122) which is based 

on NCTM Standards. The researchers conclude that the major changes in
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textbooks are "superficial changes such as rewording headings and adding 

more pages" (p. 123).

Garet and Mills (1995) emphasize the lack of research "on the effects 

that the Standards document has had on practice" (p. 380). An interim survey 

was conducted in the Midwest in 1991 and will be completed in 1996. 

Department chairs were asked to reflect upon practices in lst-year algebra 

between 1986 and 1991, and anticipated practices in 1996. Four areas were 

selected: curriculum content, technology, methods, and assessment. "The 

evidence indicates that in all four areas, change has occurred, at least in 

norms and beliefs, and that more change is anticipated by 1996" (Garet & 

Mills, 1995, p. 383). The use of technology reflected the greatest increase. 

However, the variation in school responses was substantial. The schools 

experienced consistent practices before 1986, but displayed inconsistencies of 

practice after 1986. "By 1996, schools in the major urban centers also 

anticipate practice more consistent with the Standards document than do the 

smaller cities and rural areas" (Garet & Mills, 1995, p. 383).

Webb (1995) discusses the political and marketing strategies used to 

provide textbooks, and claims "there is little evidence to suggest that
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classroom practice has changed much since the late 1970s" (p. 1).

"The best teachers are not using textbooks very much anymore,” says 
Harold Howe II, former U.S. Commissioner of Education. "Good 
teachers help kids to discover the sources of learning and create their 
own texts in the process." (Webb, 1995, p. 3).

Teaching Strategies

The NCTM Standards (1989) emphasize new teaching strategies are

needed to help students at all levels develop new thinking processes of

problem solving, communication, reasoning, and connections. Teaching

strategies are part of curriculum development and may be experiential or

systematic, or a combination of both:

The experiential approach emphasizes creativity and encourages 
learners to choose their own curriculum, but does not teach basic skills. 
The systematic approach teaches basic skills, but does not encourage 
creativity and learner choice. (Nelson, 1990, p. 17).

Instructional strategies are important to successful adaptation of the 

Standards proposed by NCTM. Students must have access to manipulatives, 

calculators, computers, and other appropriate tools and techniques. 

Interactive, cooperative groupwork is essential, and students must work 

independently and collaboratively. Assessment must be varied, practical,
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fair, and meet new standards of quality. Students should be given time to 

master material and opportunities to improve the quality of their work. 

Projects and investigations should be large-scale, and reflect social issues that 

help connect mathematics to society. Students should learn to communicate 

their learning and ideas in mathematics through written, oral, and electronic 

reports.

Teachers must adapt their styles in the classroom to the new 

instructional strategies. Teachers must become "facilitators of learning rather 

than imparters of information" (NCTM, 1989, p. 41.) They must be 

conscious of their prejudices and overcome them in the classroom. They 

must provide equal learning opportunities for all students, and adapt 

curriculum to multicultural needs in the classroom. Teachers must become 

practicing mathematicians to provide role models for their students and 

thereby encourage an interest in mathematics. Teachers must encourage 

discussion and freedom for students to make errors, while exercising caution 

to fit their own teaching style. They must "produce a classroom climate that 

encourages students to take risks and venture incomplete thoughts, knowing
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that others will try to understand and will value the individual's thinking" 

(NCTM, 1989, p. 53).

Teachers' Experiences and Recommendations

Teachers have been involved in rewriting curricula on a regular basis 

since the Standards were published. There are numerous articles that itemize 

and categorize recommendations for implementation of the Standards. 

Schmalz (1994) proposes an exploration of themes at a leisurely pace. She 

divides the year's content into broad categories that contain subcategories 

traditionally taught in sequential order. Her recommendation is to integrate 

the material and provide richer learning experiences. Wiske and Levinson

(1993) discuss the survey results from 50 teachers who reach consensus on 

the need to overcome barriers of incompatible texts and materials, 

inaccessible technology, inappropriate assessments, and inadequate 

professional knowledge. The motivation for these teachers to overcome the 

barriers is "the gratification they receive from seeing engaged, achieving 

students" (p. 10).

The successful implementation of NCTM Standards depends on the
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classroom teacher. Webb (1995) states there is "little evidence to suggest 

that classroom practice has changed much since the late 1970s" (p. 1). Many 

textbook publishers are not helping to implement the Standards. Webb cites 

observations from the Textbook Letter that claims "not nearly enough 

American textbook publishers are prepared to take on real world issues, and 

that with every passing year, with each passing textbook production cycle, the 

books get farther and farther from reality" (p. 3).

Classroom teachers must find and develop curricula to supplement their 

texts. They must also evaluate the degree of success to which they align 

their curricula to the Standards.

Immigration and The Migrant Student 

The impact of immigrants upon our society is often touted in economic 

terms. Their contribution to our economic system is generally divided into 

skilled and unskilled labor. "Immigrants constitute the main workforce for 

firms that operate by informal labor subcontracting, and/or produce goods and 

services directed at the affluent or low-income sectors of the population" 

(Ziolniski, 1994, p. 2307). These firms use immigrants as the primary labor
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force for low-wage jobs in industries such as apparel, electronics, or 

footwear. In addition, immigrant workers work in unskilled jobs as 

subcontractors in janitorial, landscaping, construction, and restaurant 

industries. "Many Mexican immigrants have found. . .  casual employment as 

home and street vending, house cleaning, baby-sitting, day labor, and 

recycling" (p. 2308). Many are migratory workers who move from one state 

to another for the purpose of finding temporary or seasonal employment 

(U. S. Department of Education, 1985). Most migratory workers are 

agricultural workers or migratory fishermen who move from one district to 

another during the regular school year (Cahape, 1993; California Department 

of Education, Handbook, 1992). Their children are deemed "migrant 

students" in our school system, and therefore, the migrant student is a child 

defined by family mobility and type of labor.

Many of these immigrants are illegal. Immigration arrests have 

rocketed from "1.6 million during the 1960s to 8.3 million in the 1970s"

(p.86) and are continuing to rise dramatically. Federal legislation is 

constantly in a state of change to alleviate economic pressures on our system 

as "newcomers, both legal and illegal, are taking jobs from U.S. citizens and
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straining public assistance programs" (Idelson, 1996, p. 698).

California is presently struggling with the issue of illegal immigration 

due to the great influx of two to three million illegal residents (Schuck, 1995; 

O'Halloran, 1994). Proposition 187, approved by California voters in 

November 1994, is an anti-illegal immigrant initiative that has caused much 

controversy and alarm throughout the United States and even the world. It 

seeks to eliminate educational, medical, and welfare funding for illegal 

residents, with many Mexican-Americans supporting the proposition (Schuck, 

1995). Support for the proposition is fueled by the illegal immigrant's fierce 

allegiance to Mexican nationalism and defiance of Americanization 

(assimilation, acculturation, and citizenship) (Aldama, 1995). The California 

"voters responded angrily to the vivid television images of Mexican officials 

denouncing the measure and to the marchers in Los Angeles waving Mexican 

flags and protesting its limits on welfare benefits" (Schuck, 1995, p. 90). 

Proposition 187 is being challenged in court by opponents who claim it 

violates federal and state guarantees of equal protection, of state and federal 

privacy rights, and of international law. The federal courts have temporarily 

blocked the amendment as many citizens favor continuance of benefits.
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California laws specifically give its citizens "a right to a basic education and 

the Legislature has a constitutional duty to provide one" (OHalloran, 1994, 

p. 370).

The migrant worker is in the midst of this battle. Agriculture is 

California's largest industry and it now produces "more than half the fruits, 

nuts, and vegetables consumed in the United States" (Schlosser, 1995, p. 80). 

Schlosser maintains from 30% to 60% of the migrant workers in California 

are illegal immigrants. "Illegal immigrants, widely reviled and depicted as 

welfare cheats, are in effect subsidizing the most important sector of the 

California economy" (p. 82). Illegal immigrants are so essential to the U.S. 

agricultural economy that legislators often find ways to provide temporary 

guest worker programs for states that are dependent upon them. "Skillful 

manipulation of an increasingly vulnerable administrative system" (Schuck, 

1995, p. 92) provides that the legal status of aliens "who enter surreptitiously 

should be called 'undocumented' rather than 'illegal' because their legal status 

remains uncertain for months or years during which the aliens can usually 

obtain work permits" (p. 92).

The agricultural employment is a lifeline to the migrant families. The 

cheap wages in the U.S. are up to 10 times the wages earned by Mexican
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peasants in their native villages. It is at a cost to Mexico and the United 

States. Mexico loses its surplus workers and the United States increasingly 

pays higher costs as migrants marry and raise children within the U.S. The 

Immigration and Naturalization Service "has traditionally rounded up and 

deported illegal immigrants in California immediately after the harvest" 

(Schlosser, 1995, p. 99). The workers who are overlooked often become 

American citizens and eventually find less physically demanding and more 

financially rewarding kinds of work in factories and other skilled trades. "As 

a result, the whole system now depends on a steady supply of illegal 

immigrants to keep firm  wages low and to replace migrants who have either 

retired to Mexico or found better jobs in California" (p. 99).

This is having a dramatic effect on the ethnic population in our schools. 

It is estimated that by the year 2010 more than one half of our children "under 

18 years of age will be minorities: Hawaii (80%), New Mexico (77%), 

California (57%), Texas (57%), District of Columbia (93%)" (Klauke, 1989. 

p. 1). Projections to 2020 indicate a Latino population of over 47 million in 

the U.S., representing 15% of the total population (Bedard, Eschholz, & 

Gertz, 1994, p. 72). The U.S. Census Bureau reported nearly 13,000,000 

Mexican-Americans living in the United States in 1989. Headden (1995)
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reports nearly three million students in the American educational system are 

designated as limited English proficient (LEP), and 45% of these students live 

in California. Most of the LEP students in California are Latino 

(p. 45), and many of these students are children of migratory workers.

Velazquez (1994) discusses the movement of migrant workers along 

three identifiable streams: Eastern, Mid-Continent, and Western. The 

Western stream is the largest, "extending from California and Arizona to 

Oregon and Washington" (p. 32). The migrant student is a child defined by 

family mobility and type of labor. Migratory workers move from one state to 

another for the purpose of finding temporary or seasonal employment (U. S. 

Department of Education, 1985). Most are agricultural workers or migratory 

fishermen who move from one district to another during the regular school 

year (Cahape, 1993; California Department of Education, Handbook, 1992). 

Cahape (1993) reports there are over half a million migrant children enrolled 

in public education in the 50 states, the District of Columbia, and Puerto 

Rico. Trotter (1992) argues that many migrant children are unidentified and 

"estimates of all those engaged in migrant labor range between 1.7 million 

and 6 million" (p. 16). Illegal immigration plays a major role in these
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statistics.

There is some disagreement on statistics relating to these farm workers. 

"The vast majority of aliens [foreigners] who enter illegally are more or less 

seasonal migrants" (Schuck, 1995, p. 90). Trotter (1992) estimates that 95% 

of illegal immigrants are farm workers, and 90% of these are Latino. 

Velazquez (1994) claims undocumented workers comprise only 15% of all 

migrants. Doyle (1990) cites studies that support this smaller number, and 

claims that many of the labeled migrant students maintain stable residences. 

OHalloran (1994) claims more than two million of those enrolled in public 

institutions in the last decade were immigrant youth, and 70% reside in just 

five states, "the majority having settled in California" (p. 371). The Migrant 

Student Record Transfer System (MSRTS) is a computerized information 

network used by approximately 17,000 sites in the U. S. that regulates and 

transfers data on migratory students as they move from school site to school 

site. MSRTS figures for 1990 show there are approximately 600,000 

migrant children in the U.S. with the following concentrations:

California (209,006), Texas (123,187), Florida (59,195), Washington 

(30,000), Arkansas (20,000), Oregon (20,000), New York (10,000), and the
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least, District of Columbia (190), and West Virginia (94).

Authorized recruiters for the migrant student programs identify these 

students, but many are not found. The 1993-1994 National Report for the 

California Portable Assisted Study Sequence (P.A.S.S.) Program, which 

serves migrant students in California, shows it served only 8,326 of the 

estimated 209,006 migrant students in California in 1993-1994. Nearly all of 

these students (8,243 or 99%) were Latino. The California Handbook for 

Identification and Recruitment (California Department of Education, 1992) 

discusses the difficulty of finding children in rural settings who may be living 

temporarily in abandoned buildings, orchards, and cars. The "culture of 

migrancy" (Velazquez, 1994, p. 32) contributes to the difficulty. Children 

assume adult roles in the fields, and "most migrant children drop out of school 

when they are able to work in the fields and earn money" (p. 33). MSRTS 

reports that the drop-out rate for migrant students is between 35% and 60%, 

and that most have dropped out by 10th grade. Overby (1993) reports 

dropout rates for migrant students of 43% as compared to Mexican- 

Americans of 35.8%. This reflects an improvement for migrant students over 

previous dropout rates as high as 90% in the 1970s, however (Cahape, 1993), 

and graduation rates have also increased. "Between 1984 and 1990, the
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number of migrant students enrolled in 12 th grade climbed from 21,493 to 

30,745~a 43% rise" (Trotter, 1992, p. 17). Trotter points out that most do 

not graduate however, and that student enrollment had actually increased by 

13% during the same period. He reports only 13.8% of migrant students 

graduate, compared to 87.8% of the general population, and 67.6% of the 

Latino population.

Grade level retention rates are also a problem. Migrant students are 

retained at grade level at least 1 year twice as often as the general population, 

largely due to academic deficiencies that result from problems associated with 

their lifestyle. MSRTS reports "33% are one year below grade level and 17% 

are two years or more below grade level" (Cahape, 1993).

The types of problems faced by migrant students are varied. Prewitt- 

Diaz (1991) lists four factors affecting migrant children in school: ecological, 

educational, psychological, and economical. Many families are seeking 

refuge from tyranny in their native countries. Others seek a better lifestyle 

and job opportunities. Children move regularly from district to district, and 

experience absenteeism and falling behind in academic areas. Their self- 

image is affected as they struggle with their language and new relationships.
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Cultural differences create problems of inclusion within the classroom. 

Children are contributors in their families and "are essential in the economy of 

the migrant family" (Prewitt-Diaz, 1991, p. 485). They have power and may 

control their parents as they become the interpreters between the school and 

the home. Romo (1993) lists similar problems, and adds that many 

secondary-age students have only attended grades 1-6 in Mexico. Velazquez

(1994) describes their feeling of powerlessness combined with their respect 

for authority. Families have little formal education and trust the schools.

They "feel that their questions about the appropriateness of their children's 

educational program will be construed as a challenge to the teacher's authority 

and prestige" (p. 33).

In a study conducted by Bedard, Eschholz, and Gertz (1994), the 

Latino community ranked its most important problems facing the 

community as:

Crime 21%

Gangs 17%

Drugs 18%

Unemployment 12%
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Education 7%

Economy 5%

Racism 2%

Health care 1%

Not sure 10%

Other 7%

Furthermore, 49% of Latinos surveyed who were bom in Mexico 

considered lack of parental involvement to be the major cause of Latino youth 

dropping out of school. The next highest ranking (19%) cause of dropping 

out of school was considered to be gangs and delinquency (Bedard, Eschholz, 

& Gertz, 1994, p. 77).

The federal government remains dedicated to its commitment to 

migrant children and families as demonstrated by the government's blocking 

of Proposition 187 and other legislation. The Migrant Education Program 

was authorized in 1965 through the Elementary and Secondary Education 

Act. Federal program regulations require state Departments of Education to 

identify and educate migratory children. The California Department of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Education assumes responsibility for all statutory and regulatory requirements 

of the program including subgrantees. Funding is based on a "Full-time 

Equivalent (FTE) count of each individual child for each day of residence in 

the State. This count is based upon the entry of data into the Migrant Student 

Record Transfer System (MSRTS) for each State for each year" (California 

Department of Education, Handbook, 1992, p. 1-2). The California Portable 

Assisted Study Sequence (P.A.S.S.) program is based in part on a newer 

Federal Law, P. L. 100-297, which was passed in 1988, and California 

Assembly Bill No. 1382, which was passed in 1981. This program serves the 

migrant students in California and provides services throughout the U.S. to 

other migrant programs.

California Portable Assisted Study Sequence (P.A.S.S.1 Program

The California Portable Assisted Study Sequence (P.A.S.S.) program 

serves 165 schools in California and was created to help assuage some of the 

difficulties that migrant students encounter. The P.A.S.S. Program's goals 

are described in the P.A.S.S. Handbook:

Provide portable learning packages adapted for migrant students,
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enabling them to proceed at their own pace, provide competency-based 
credits for skills, interests, and educationally related-life experiences, 
supplement the regular instruction for targeted migrant students at 
secondary-level schools in California, and utilize existing counseling 
and tutorial support through regular migrant education personnel, and 
the California Mini-Corps to accomplish the goals of the P.A.S.S. 
Program, (p. 1)

The P.A.S.S. program allows migrant students to accumulate credits 

that are transferable within the state and to many other states. The list of 

states include Arkansas, Arizona, California, Colorado, Florida, Georgia, 

Idaho, Illinois, Indiana, Kansas, Michigan, Montana, Nevada, New York, 

North Dakota, Oregon, Texas, Utah, Washington, and Wisconsin. Ten units 

provide credits for two semesters. The portable units can be continued at 

new school sites throughout California "thanks to the coordination of services 

among the migrant staff at the school sites" (p. 2).

The P.A.S.S. Program courses "have the same content as the regular 

high school courses" (p. 2). The mathematics courses are sequential. The 

first course in the program was General Math A and General Math B. which 

has now been replaced by Integrated Math A and Integrated Math B. Other 

math courses include Consumer Math. Pre-Algebra, and Algebra A and 

Algebra B. A fifth course, Geometry is planned for 1997. The Consumer
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Math course is being rewritten for 1996-1997 as Consumer Education to 

integrate new reform ideas with career math into the program.

The California P.A.S.S. Program is accredited through Fresno Unified 

School District, and the Western Association of Schools and Colleges.

The Methodology o f Content Analysis

Krippendorff (1980) discusses the historical growth of content analysis

methodology. He finds it has been dated to the late 1600s in church-

conducted research to assess nonreligious content in newspapers. Early

content analysis, in fact, came to be called quantitative newspaper analysis.

The emergence of social sciences and electronic media produced survey

research and polling. Opinion research and attitude surveys appeared in the

early 1900s. Propaganda analysis was conducted during World War II as an

"instrument for identifying individuals as 'unethical' sources of influence"

(Krippendorff, 1980, p. 16). It became useful in other areas as well.

Among the most outstanding predictions actually made by British 
analysts was the date of deployment of the German V-weapon against 
Great Britain. Monitoring Goebbel's speeches, the analyst inferred 
interferences with the production of these weapons and extrapolated 
the launching date which was accurate within a few weeks, (p. 17)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

Content analysis became useful in many disciplines after World War II. 

The methodology was used in television surveys, population trends, cultural 

indicators, and political surveys. Psychology found applications to discover 

motivational, psychological, and personality characteristics. Anthropologists 

analyzed myths, folktales, and riddles to determine kinship terminology. 

Historians added the methodology as another systemic tool to examine 

historical documents. Educational material was analyzed to "understand 

larger political, attitudinal, and value trends" (Krippendorff, 1980, p. 18).

The first conference on content analysis, sponsored by the Social Science 

Research Council's Committee on Linguistics and Psychology, was held in 

1955. Participants "came from such disciplines as psychology, political 

sciences, literature, history, anthropology, and linguistics" (Krippendorff, 

1980, p. 19).

Computers began to be used in analysis at this time. Weber (1990) 

discusses two computer-aided studies conducted in the 1970s. One analyzed 

differences in narrative form in American black and white song lyrics, and the 

other studied differences in sex-roie relationships. Frisbie (1986) used 

computer-aided analysis to establish its value in creating and coding survey
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category responses. Some contemporary studies that relate to textbook 

analysis are those conducted in mathematics, science, history, and health. 

Flanders (1994) analyzed the content of nonalgebra mathematics books and 

compared them to items on the Second International Mathematics Study 

(SIMS) test. Lumpe and Scharmann (1991) analyzed the content of lab 

activities in biology as they related to the Task Section of the Laboratory 

Structure and Task Analysis Inventory. Wolf (1992) analyzed eighth grade 

history books and compared them to multicultural content in the California 

History Social-Science Framework. Huetteman (1989) analyzed six college 

health textbooks to assess coverage of the Surgeon General's Report on 

Health Promotion and Disease Prevention. The four studies provide a broad 

perspective of the methodology as it is used in textbook content analysis.

Researchers offer varied definitions of content analysis. Berelson 

(1952) defines content analysis as "a research technique for the objective, 

systematic and quantitative description of the manifest content of 

communication" (p. 18). His definition implies structure and quantifiable 

content, and "manifest content means the apparent content, which means that 

content must be coded as it appears rather than as the content analyst feels it
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is intended" (Stempel & Westley, 1989, p. 125). Krippendorff (1980) 

believes "content analysis is a research technique for making replicable and 

valid inferences from data to their context" (p. 21). He states it must be 

specific about the data, context, and target, but it is an intuitive "method of 

inquiry into symbolic meaning of messages" (p. 22). Messages are 

interpreted by the researcher, and inferences are made. Weber (1990) states 

that "content analysis is a research method that uses a set of procedures to 

make valid inferences from text" (p. 9). He states there is "no simple right 

way to do content analysis. Instead, investigators must judge what methods 

are most appropriate for their substantive problems" (p. 13).

Weber (1990) describes content analysis as a process that involves 

selecting a unit of analysis, constructing category systems, selecting a sample 

of content, and providing reliable and valid coding. The unit of analysis may 

be a word, a phrase, a sentence, a paragraph, or a theme. Categories should 

be mutually exclusive to prevent interpretative errors. The categories may be 

narrowly defined or broad with many entries. Stempel and Westley (1989) 

say the categories should be pertinent to the objectives of the study, 

functional, and manageable. They believe 10 to 20 categories are adequate
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for most studies. Weber (1990) states "the best test of the clarity of category 

definitions is to code a small sample of the text. Testing not only reveals 

ambiguities in the rules, but also often leads to insights suggesting revisions 

of the classification scheme" (p. 23). Krippendorff (1980) discusses the 

sampling schemes that can be employed: random, stratified, systematic, 

clustered, or proportional. Multistage sampling uses one or more of these 

procedures at different time periods. The sample size can be limited 

to a cost-effective point "at which a further increase will not appreciably 

improve the generalizability of the findings" (Krippendorff, 1980, p. 69).

There is a large variety of computer software available to today's 

qualitative researcher (Kelle, 1996; Prein, Kelle, & Bird, 1995). Kelle 

(1996) discusses the software as first-, second-, and third-generation 

programs. First-generation programs are largely "word-processors and 

standard database management systems" (p. 34). Second-generation 

programs provide techniques for coding and retrieval and have "facilitated the 

mechanization of rather mundane mechanical tasks, namely the building of 

indexes, concordances and index card systems" (p. 34). Third-generation
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programs extend the capabilities of second-generation software and "require a 

coding of qualitative data that is much closer to that applied in classical 

content analysis" (p. 34). This includes building indexes, cross references, 

and decontextualization and comparison of text passages (cut-and-paste 

techniques). The advanced features of these programs allow coding linkages, 

network building, hypothesis testing, and theory building. The extended 

features "are only seldom used" (p. 34) and "offer fascinating new 

possibilities for analysts to 'play' with their data and thereby help to open up 

new perspectives and to stimulate new insights" (p. 59). He warns, however, 

that the "qualitative researcher runs the danger of reifying the codes and 

losing the investigated phenomenon by confusing two analysis strategies"

(p. 59).

Finally, the reliability and validity of coding is imperative to assure a 

reputable study. Reliability of coding is "consistency of classification" 

(Stempel & Westley, 1989, p. 132). Coding can be performed manually or 

with computers. Frisbie (1986) found that computer programming output did 

not help participants create more reliable and valid category systems for the 

responses to open-ended survey questions, but did help participants to "more 

reliably and validly code the open-ended responses in terms of the category
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system (p. 32). Krippendorff (1980) proposes reliability should be 

established through the duplication of efforts. He distinguishes between three 

types: stability, reproducibility, and accuracy. Stability can be established by 

the repetition of coding by the same coder. Reproducibility requires more 

than one coder and is "a minimum standard for content analysis" (Weber, 

1990, p. 17). Coders must work independently to prevent agreement through 

communication as the "lack of independence is likely to make data appear 

more reliable than they are" (Krippendorff, 1980, p. 132). Accuracy is the 

"strongest reliability test available" (p. 131).

Validity is the most important test, it is the assurance that the analytical 

results are true, predictive, and consistent with established knowledge.

Content analysis is "valid to the extent its inferences are upheld in the face of 

independently obtained evidence" (Krippendorff, 1980, p. 155). Internal 

validity is synonymous with reliability. External validity "assesses the degree 

to which variations inside the process of analysis correspond to variations 

outside that process and whether findings represent the real phenomena in the 

context of data as claimed" (p. 156). Weber (1990) divides validity into 

themes of correspondence and generalization. Krippendorff (1980) provides
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five types. He differentiates between data-related validity (semantical validity 

and sampling validity), pragmatical or product-oriented validity (correlational 

validity and predictive validity), and process-oriented validity or construct 

validity. He states it is important to decide on standards of reliability and 

validity "before an analysis is conducted" (p. 175).

Content Analyses of Curriculum

Many of the ideas in the Standards are complex and subjective. It is 

difficult to evaluate subjective ideas, but it is essential for successful 

implementation of the Standards. Evaluation of curricula is integral to 

successful mathematics reform, and establishing criteria for content analysis 

is essential.

One useful breakdown comes from a study conducted in the early 

1980s by the International Association for the Evaluation of Educational 

Achievement (IEA). The Second International Mathematics Study (SIMS) 

included an extensive curriculum analysis. It studied the mathematics 

curriculum at three levels: intended curriculum, implemented curriculum, and 

attained curriculum (Robitaille & Travers, 1992, p. 693). The intended
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curriculum is defined at the national or system level, the implemented 

curriculum is that which is taught by the teachers in the classroom, and the 

attained curriculum is what is learned by students and demonstrated through 

their achievement and attitudes.

Content analysis of textbooks should "concentrate on the 

characteristics of the textbook which emphasize the main objectives of the 

curriculum" (Dreyfus, 1992, p.8). The main objectives of the curriculum are 

stated in the intended curriculum. In this researcher's study, they are stated in 

the NCTM Standards. Subjective interpretation is necessary for many of the 

objectives. Other objectives are can be measured with descriptive statistics.

A combination of these was used in a study that compared American 

and Japanese mathematics textbooks (Robitaille & Travers, 1992). The 

researchers found that many topics were introduced 1 year later in American 

textbooks than in Japanese textbooks except for ratio and proportion, problem 

solving, fractions, and weight (p. 707). Material was spiraled or reviewed in 

American textbooks more often than in Japanese textbooks. More than 70% 

of the concepts were reviewed at least once, almost 25% were reviewed 

twice, and 10% were reviewed three times. Japanese textbooks reviewed
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38% of the concepts once and only 6% more than once (p. 707). American 

texts were longer and less complicated than Japanese texts. Problems began 

simply in the Japanese texts but quickly became difficult. The process of 

mathematics was explained in detail in American textbooks; steps were 

omitted in Japanese textbooks. American mathematics texts were also longer 

than Japanese texts. American texts ranged from 400 to 856 pages with an 

average of 540 pages; Japanese texts averaged 178 pages with a maximum of 

230 pages.

Content analysis of two secondary biology textbooks was carried out 

byLumpeand Scharmann (1991). They used an instrument from a previous 

study that was "designed specifically for content analysis of written lab 

activities" (p. 232). Lumpe acted as one of two judges and worked 

independently to assess 10% of the lab activities with the instrument. 

Interrelater reliability was established and Lumpe then proceeded to judge the 

remaining activities from both texts.

Linguistic content analysis was used to measure science as a process of 

inquiry in a high school biology textbook series (Eltinge & Roberts, 1993, 

p. 65). The researchers used a scheme developed by a previous researcher, 

Tamir, for use on chapters of science textbooks. Sentences were classified as
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"rhetoric of conclusions" or "narrative of inquiry" (p. 67). The categorization 

scheme included 23 items that listed examples of what might appear in a 

narrative of inquiry. Eltinge and Roberts write that two general techniques of 

content analysis were used. The first involved the researcher's "subjective, 

impressionistic application of a classification scheme to the phenomena of 

interest" (p. 68). The second applied "computers in classifying words and 

phrases from texts of transcripts" (p. 68). They caution against the varying 

interpretations of subjective schemes, while also pointing out the limitations 

of computer-aided interpretations taken out of context.

Another approach to content analysis is the evaluation and analysis of 

two eighth grade history books with respect to the California History Social- 

Science Framework (Wolf, 1992). The author isolated multicultural 

perspectives and criteria for evaluating instructional materials from the 

Framework. He employed an instrument from previous studies that used 

"descriptive concepts and quantitative data (number of pages and pictures)"

(p. 24). A narrative compared and contrasted the findings.

Krippendorff (1980) considers content analysis to be "fundamentally 

empirical in orientation, exploratory, concerned with real phenomena, and
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predictive in intent.. . .  (It) enables the researcher to plan, to communicate, 

and to critically evaluate a research design independently of its results" (p. 9). 

Data must be unitized, separated, and identified. Recording and coding of 

data can be done manually or with computers, but it must be replicable. 

Finally, it must be understood that "although a good content analysis will 

answer some question, it is also expected to pose new ones. . . .  The 

beginning and end of a content analysis mark but an arbitrary segment in 

time" (p. 169).

Summary

In summary, the changes in society have created a new need for 

mathematics reform in the 1990s. The issues are interrelated and require a 

flexible, holistic viewpoint, and complex problem-solving abilities. Students 

in today's educational system will need to solve these complex problems. The 

NCTM Standards (1989) address these needs, but purposely do not provide 

an easy checklist for curriculum developers (pp. 241-242). Mathematics 

teachers need assistance in aligning their curriculum to NCTM Standards 

(Chandler & Brosnan, 1995; Rivers, 1990). Subjective, interpretative
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analysis, as well as objective analysis, is needed to determine if new 

curricular materials are meeting many of the objectives. This researcher was 

unable to locate an adequate evaluative instrument based upon the NCTM 

Standards for textbook analysis. Therefore, the researcher developed an 

instrument that was used in this study to analyze the P.A.S.S. curricular 

materials with respect to the Standards.
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CHAPTER 3

Methodology

A considerable portion of my high school trigonometry course was 
devoted to the solution of oblique triangles. I pride myself on the fact 
that I was the best triangle solver my high school ever turned out. 
When I went to Princeton I found that I was up against very stiff 
competition. But whereas other freshmen might outdo me in many 
ways, I felt confident that I would shine when the time came to solve 
triangles. All through my undergraduate years I was waiting for that 
golden moment. Then I waited all through graduate school, through 
my work with Einstein, at Los Alamos, and while teaching and 
consulting for more than a dozen years. I have still not had an excuse 
for using my talents for solving oblique triangles.

If a professional mathematician never uses these dull techniques 
in a highly varied career, why must all high school students devote 
several weeks to the subject?

- John G. Kemeny 
(Schmalz, 1993, p. 260)

This lengthy quote succinctly expresses the vision behind the National 

Council of Teachers of Mathematics (NCTM) Standards. Mathematics 

curricula must reflect the needs of the society. The California Portable 

Assisted Study Sequence (P.A.S.S.) Program is a unique program that 

provides educational opportunities to students who are often underserved in
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the regular system. The P.A.S.S. mathematics curriculum is periodically 

rewritten to reflect changes in educational theory and instruction.

Educating the migrant student population is one of the greatest 

challenges that the California educational system and the United States 

educational systems face today. Students from this population frequently 

relocate to other schools and to other states. The P.A.S.S. Program serves 

165 schools in California and was created to help assuage some of the 

difficulties that these students encounter. However, the P.A.S.S. Program 

must not only provide materials that will be appropriate for the migrant 

student, but must also comply with the National Council of Teachers of 

Mathematics Standards for School Mathematics (NCTM Standards or 

Standards!. Until now, no study has been conducted that has analyzed the 

P.A.S.S. mathematics curricular materials in relationship to the Standards.

This study analyzed the 1-year secondary level courses entitled 

Integrated Math A and Integrated Math B written in 1995 and the 1989 

course General Math A and General Math B. This analysis compared the 

curricula in relationship to the National Council of Teachers of Mathematics 

(NCTM! Curriculum and Evaluation Standards for School Mathematics
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(1989). An evaluative instrument was designed to measure the extent to 

which the curricular materials meet NCTM Standards and was used in this 

study to analyze the P.A.S.S. curricular materials.

Design of the Study 

This study used content-analysis as the main methodology to analyze 

the text of the P.A.S.S. curricula for 1989 and 1995. The 1995 curricular 

materials entitled Integrated Math A and Integrated Math B replaced the 

1989 curricular materials entitled General Math A and General Math B. 

Comparisons were made in reference to the NCTM Curriculum and 

Evaluation Standards for School Mathematics (1989).

Content analysis is a specialized technique in research that can provide 

important information. Krippendorff (1980) defines content analysis as "a 

research technique for making replicable and valid inferences from data to 

their context" (p. 21). Berelson (1952) defines it as "a research technique for 

the objective systematic and quantitative description of the manifest content 

of communication" (p. 18). Borg and Gall (1989) describe its use in 

education as being "aimed at answering questions directly relating to the
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material analyzed" (p. 520). They point out that "recent content-analysis 

studies consider not only content frequencies but also the interrelationships 

among several content variables, or the relationship between content variables 

and other research variables" (p. 521).

Content analysis methodology requires the research design to remain 

open and flexible during the study. Krippendorff (1980) considers the 

content analysis research design to be sequential. Outcomes from one step 

determine the next step, and "in sequential processing of information, errors 

are thus cumulative or multiplicative" (p. 50). Therefore, the design must 

allow room to compensate for any loss of information or an opportunity to 

recreate what was destroyed if results are to be trusted. With this caveat in 

mind, this study adhered to the following recommended procedures.

Procedures

Krippendorff (1980) lists the components or steps o f content analysis 

as the process as (a) data making, which includes unitization, sampling, and 

recording, (b) data reduction, (c) inference, (d) analysis, (e) direct validation, 

(f) testing for correspondence with other methods, and (g) testing hypotheses
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regarding other data (p. 52). Kelle (1996) discusses classical content analysis 

as building indexes, including cross references, and "decontextualization and 

comparison of text passages" (p. 36) also known as "cut-and-paste." "The 

crucial point in the hermeneutic analysis of large amounts of textual data is 

that at any given point the analyst must be able to draw together all text 

passages, chunks of data and memos that relate to a certain topic" (p. 38).

This researcher utilized the third-generation qualitative data analysis 

software Nud*Ist (Richards & Richards, 1995). This qualitative data analysis 

software offers coding and retrieving functions, as well as exploration of the 

data. Kelle (1996) considers this type of program to be "a major 

methodological innovation" (p. 41). The use of this program required online 

documents to provide maximum indexing opportunities. The 1989 Portable 

Assisted Study Sequence (P.A.S.S.) curriculum materials General Math A 

and General Math B were scanned into the computer in the Fall of 1995. The 

1995 P.A.S.S. curriculum Integrated Math A and Integrated Math B existed 

online in the researcher's computer because the researcher was a co-author.

The evaluative instrument, Mathematics Materials Analysis Instrument 

(MMAD (see Appendix A), was designed in the fall of 1995 and given to the
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content validation panel in January 1996. (The content evaluation process for 

this study is described in detail on p. 80.) It was edited and panel approval 

was received in March 1996. The pilot study to establish interrater reliability 

using the validated instrument was conducted at that time. Interrater 

reliability in this study is defined as the extent to which similar ordinal values 

are assigned using the validated MMAI by various coders at separate 

locations.

Computer coding and indexing began in April and continued through 

June 1996. The most common analytic techniques in content analysis are "in 

terms of frequencies: absolute frequencies, such as the numbers of incidents 

found in the sample, or relative frequencies, such as the percentages of the 

sample size" (Krippendorff, 1989, p. 109). Nud*Ist (Richards & Richards, 

1995) provided the capability for frequency counts and percentage statistics 

for text units. In addition, two assistants collected data manually over a 

three-month period. This consisted of counting types of problems, recording 

number of pages, determining percentages of text to graphics, and compiling 

thematic word lists from sorted word lists. Coding retrieval in Nud*Ist and 

subsequent data analysis were then performed.
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Population

The population affected by this study are the California Portable 

Assisted Study Sequence (P.A.S.S.) 1989 and 1995 mathematics curricula 

titled respectively General Math A and General Math B. and Integrated 

Math A and Integrated Math B. The courses are themselves the units of 

analysis. "Regarding unitization, the general recommendation is to aim for 

the empirically most meaningful and productive units that are efficiently and 

reliably identifiable and that satisfy the requirements of available techniques" 

(Krippendorff, 1980, p. 64).

The appropriateness of the 1995 P.A.S.S. curriculum materials for 

migrant students has been attested to in a letter (see Appendix J) submitted by 

Dr. Rudy Miranda, an educational consultant and the Director of Counseling 

at the researcher's school site. Dr. Miranda is directly involved with Latino 

students and the P.A.S.S. program and reviewed the materials for this study.

Instrumentation

An evaluative instrument was designed for this study to quantify the 

relationship between mathematics materials and the recommendations in the
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NCTM Standards. This instrument is entitled Mathematics Materials 

Analysis Instrument (MMAD (see Appendix A) and is divided into two grade 

levels: grades 5-8 and grades 9-12. A Guide for Reviewing School 

Mathematics Programs (NCTM, 1991) provided guides for the K-12 

mathematics program to "determine the level of implementation that currently 

exists.. . .  Users should feel free to modify these outlines or develop new 

ones" (p. 1). The researcher and a validation panel modified guides from 

two curricular areas, Grades 5-8, and Grades 9-12. The materials chosen 

were considered to be "the most useful for systematically analyzing textbooks 

or other materials that are being considered for adoption" (p. 3). These 

modified materials were used to create MMAI that has been used in this 

study to analyze the P.A.S.S. curricular materials.

The evaluative instrument MMAI consists of eight categories for 

grades 5-8 and eight categories for grades 9-12. There are 3 to 12 

subcategories for each category in grades 5-8 and 6 subcategories for each 

category in grades 9-12. The instrument includes an ordinal value scale 

that measures the extent to which material in the curricular materials meet 

NCTM Standards. The ordinal values assigned to each subcategory are 

"1-None, 2-Low, 3-Moderate, 4-High." These values measure the extent of
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alignment of content in the curricular materials to the content in the 

subcategories on MMAI that reflects the NCTM Standards. Supplementary 

attachments were included with MMAI to assist the coders in assigning 

values (see Appendixes B-E).

Content Validity. The content validity of the evaluative instrument 

was determined by a panel of three expert educators who are familiar with 

and experienced in the vision of the NCTM Standards. Dr. Jane D. 

Gawronski is co-author of the NCTM Assessment Standards, and is the 

Superintendent of Escondido Union High School District in Escondido, 

California. Dr. Carol Fry Bohlin is an Associate Professor of Mathematics 

Education at California State University, Fresno, and Director of the 

California Mathematics Project for the San Joaquin Valley. Dr. Roy M. 

Bohlin is an Associate Professor of Instructional Technology at California 

State University, Fresno, Principal Investigator for the California 

Mathematics Project for the San Joaquin Valley, and the Coordinator of 

Evaluation for the National Science Foundation (NSF) Project PROMPT 

(Professors Rethinking Options in Mathematics for Preservice Teachers).

The California Mathematics Project is designed to update teacher knowledge
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in the California Framework (California Department of Education, 1992) and 

NCTM Standards.

The panel was approached in the fall of 1995, and agreed to review 

and edit the instrument. A draft copy of the evaluative instrument, various 

supplementary attachments, and a letter of instructions (see Appendix F) were 

submitted to the panel in January 1996. Several revisions to the instrument 

occurred over the next two months; the supplementary attachments were 

accepted with minor editing changes. The panel gave their approval of 

content to the final revision in March 1996 (see Appendix G). The final 

instrument was titled Mathematics Materials Analysis Instrument fMMAD 

and included supplementary attachments (see Appendixes A-E).

The following changes were made to the original draft of the 

instrument based upon recommendations and suggestions from the panel.

1. Categories and subcategories: The weighting of items in categories 

was deemed reasonable for Grades 5-8, which contained eight categories with 

each category containing from 3 to 12 subcategories. This distribution was 

maintained in the final instrument. The distribution for Grades 9-12 was 

deemed unreasonable because there were six categories with each category 

containing from 4 to 22 subcategories. This distribution was changed
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to eight categories with each category containing six subcategories.

2. The words curriculum and curricula were replaced with curricular 

materials and materials throughout much of the instrument. This was done to 

reflect the intent of use for the instrument to measure curricular materials 

rather than curriculum as a whole. The title of the instrument was also 

changed to reflect this emphasis, and the acronym MMAI was added.

3. Editing changes were made throughout the instrument to separate 

compound statements, to correct the improper use of terms such as reference 

materials instead of source materials, and other semantical errors.

4. The instrument worksheet was edited to provide more detail and 

consistency of wording to ensure ease of use.

5. Ordinal values originally included the subcategory "0 - Not 

Applicable." The panel recommended deleting this subcategory. This was 

done during the pilot study when participants found the subcategory to be 

confusing.
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Interrater Reliability. Reproducibility requires more than one coder 

and is "a minimum standard for content analysis" (Weber, 1990, p. 17). 

Coders must work independently to prevent agreement through 

communication as the "lack of independence is likely to make data appear 

more reliable than they are" (Krippendorff, 1980, p. 132). Accuracy is the 

"strongest reliability test available" (p. 131).

Interrater reliability in using the evaluative instrument MMAI was 

established through a pilot test conducted with secondary mathematics 

teachers from the researcher's school site. A team of five secondary 

mathematics teachers presently teaching all levels of secondary mathematics 

from general mathematics to calculus participated in the study. Two of the 

teachers each have over 25 years of teaching experience; both have served or 

are serving as chairman of the mathematics department. Both teachers 

unabashedly subscribe to a traditional philosophy of mathematics teaching 

based upon their experience and training. The remaining three teachers have 

less extensive experience. The third team member has approximately 5 years 

teaching experience. The fourth and fifth team members are new to the
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profession: one is in her 2nd year of teaching, and the other is in his 3rd year. 

The newest members have been exposed to contemporary training in the 

Standards and updated teaching techniques in their college programs.

The five teachers were divided into two teams of three members, with 

one teacher participating on both teams. Teams were given the choice of two 

textbooks: Integrated Mathematics. (Rubenstein, Craine, & Butts, 1995) or 

Informal Geometry (Cummins, Kenney, & Kanold, 1988). The researcher 

chose these textbooks because their publishing dates suggested there might be 

recognizable philosophical differences in the curricula. The instrument could 

therefore be tested from two distinctly different viewpoints.

The two traditional teachers immediately selected Informal Geometry 

because they were interested in obtaining it as a replacement text in their 

geometry courses. Their comments included statements to the extent that the 

text was advertised as a transition text between traditional teaching and 

teaching strategies recommended by the Standards. The other team 

enthusiastically agreed to assess Integrated Mathematics and recognized it as 

the first published mathematics text advertised in California as meeting the 

Standards. The third team member also agreed to assess Informal Geometry.
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The enthusiasm of the participants was important to the study because they 

were more likely to be thoughtful and careful while coding.

The Mathematics Materials Analysis Instrument (MMAD and 

supplementary attachments (see Appendixes A-E) were distributed to each of 

the team members. Both teams were asked to objectively survey the texts 

based upon an item-by-item assignment of values using the instrument, and 

they agreed to be objective. The coding values were discussed, and it was 

decided the value "0 - Not Applicable" was confusing. Therefore, the teams 

were advised to eliminate this item from the coding. The team members were 

asked to read the supplementary attachments and to form their own 

interpretations from those materials. The two traditional teachers asked for a 

moment to discuss the Informal Geometry text together, but the researcher 

advised them that research procedures required them to work independently. 

Coders must work independently to prevent agreement through 

communication as the "lack of independence is likely to make data appear 

more reliable than they are" (Krippendorff, 1980, p. 132). All team members 

then moved to separate sections of the room and independently used the 

instrument and materials. They completed the process in approximately one
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hour and offered comments to the extent that they felt the instrument was 

straightforward and relatively easy to use.

Data Collection Methodology

Content analysis is "valid to the extent its inferences are upheld in the 

face of independently obtained evidence" (KrippendorfF, 1980, p. 155). 

Triangulation refers to the use of multiple methods of data collection to 

ensure trustworthiness and enhance the validity of research (Kelle, 1995; 

Patton, 1990). The triangulation in this study consisted of (a) qualitative 

examination of the materials, (b) descriptive statistics compiled from manual 

counts and observations, and (c) computer analysis using Nud*Ist (Richards 

& Richards, 1995), a third-generation qualitative data analysis software. The 

materials examined were the California Portable Assisted Study Sequence 

(P.A.S.S.) mathematics curricula for 1989 and 1995 entitled respectively 

General Math A and General Math B. and Integrated Math A and Integrated 

MatfaB.

Qualitative data were compiled by the researcher from examinations of 

the 1989 and 1995 curricula. This included an examination of unit titles,
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tables of contents, introductory instructions, student directions, and other 

topics of interest Descriptive statistics were accumulated with the use of a 

data collection worksheet (see Appendix H) given to two assistants who 

worked diligently and carefully to manually record the data from the 1989 and 

1995 curricula. Krippendorff (1980) discusses the need to choose observers 

and coders not only "familiar with the nature of the material to be recorded 

but also capable of handling the categories and terms of the data language 

reliably" (p. 72). The assistants were chosen because they are 

mathematically inclined and data-oriented. One is a manager for a major 

engineering corporation and is an electrical engineer in computer design; he 

compiled the data on the data collection worksheet for the 1995 curriculum. 

The other is a secondary mathematics teacher with 2 years teaching 

experience and 6 years engineering experience as an intern in high school and 

during college. She has a mathematics degree from California State 

University, Bakersfield, CA., which included updated training in reform 

curriculum in mathematics. Her real-world experience, teaching experience, 

and updated training made her an ideal candidate for coding the 1989 and 

1995 curriculum using the evaluative instrument Mathematics Materials
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Analysis Instrument (MMAD. She also searched sorted word lists and 

compiled topical or categorical word lists for both years, and compiled data 

for the 1989 curriculum on the data collection worksheet.

The 1989 and 1995 curricula were then assigned quantitative coding 

values by the researcher and the secondary mathematics teacher previously 

described, using the validated Mathematics Materials Analysis Instrument 

(MMAD and supplementary attachments (see Appendixes A-E). This 

provided two human coders (Coder 1 and Coder 2) as well as computer 

coding (Coder 3). "Classification by multiple human coders permits the 

quantitative assessment of achieved reliability. Classification by computer, 

however, leads to perfect coder reliability” (Weber, 1980, p. 15). The 

researcher then began the computerization process of coding.

Data Computerization Process

Classical content analysis consists of several basic steps. Weber

(1990) lists these steps as (a) defining recording units, (b) defining the 

categories, (c) test coding on a sample of text, (d) assessing accuracy and 

reliability, (e) revising coding rules if necessary, (f) return to step d until
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reliability is achieved, (g) coding all the text, (h) assessing achieved 

reliability and accuracy, and reexamining subtle meanings.

The recording unit or "unit of analysis (for example, sentences or 

paragraphs) has to be determined and a precise coding strategy has to be 

constructed" (Seidel & Kelle, 1995, p. 53). Text units can be defined in 

several ways. Weber (1990) lists six commonly used options: word, word 

sense, sentence, theme, paragraph, and whole text.

The size of a single text unit for this study varied from a sentence to 

several paragraphs depending on theme or context. For example, the text unit 

was often an entire word problem including all questions pertaining to that 

word problem. Another text unit would often be an entire page of skill-and- 

drill exercises that required the same thought processes. A text unit would 

sometimes be a simple one-line definition or sentence that was dissimilar to 

surrounding text. The researcher's objective in determining text units was to 

isolate meaningful information while minimizing the amount of raw data.

This is considered to be "condensing the information contained in the raw 

data to a minimum" (Seidel & Kelle, 1995, p. 53).

In classical content analysis, once the recording units are established
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the researcher then assigns codes to text units "in a systematic and consistent 

way. . .  (that i s) . . .  inclusive and exhaustive.. . .  A precise coding scheme 

is developed before coding starts" (Seidel & Kelle, 1995, p. 54). This is a 

deductive process, which fit nicely with this study.

The validated content in the Mathematics Materials Analysis 

Instrument (MMAD had been established as a third-order hierarchy of items 

and categories. The first order applied to the grade levels of the instrument: 

grades 5-8 or grades 9-12. These were assigned nodes 1 and 2. The second 

order applied to eight categories A - H for each grade level. These were 

assigned nodes with spaces included: 1 1,1 2,1 3,1 4,1 5,1 6 ,1  7,1 8,2 1, 

2 2 ,2  3 ,2  4 ,2  5,2 6,2 7, and 2 8. For example, node 2 7 referred to grades 

9-12, category G, node 1 4 referred to grades 5-8, category D. The third 

order applied to the specific items in each category: there were 3 to 12 items 

in the eight categories in grades 5-8, and 6 items in each of the eight 

categories in grades 9-12. An example of node assignment for this hierarchy 

level were nodes: 1 1 1,1 1 2,1 1 3,1 1 4,1 1 5,1 1 6,1 1 7,

1 1 8,1 1 9,1 1 10,1 1 11, and 1 1 12 for category A in grades 5-8, and 

2 1 1 , 2 1 2 , 2 1 3 , 2 1 4 ,  2 1 5 ,  and 2 1 6 for category A in grades 9-12.
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The category system was then entered into the computer as nodes (see 

Appendix I) using Nud*Ist, the qualitative data analysis software chosen for 

this study (Richards & Richards, 1995). The same categorizing system was 

used for the 1989 and the 1995 curricula. The process required two separate 

coding projects for comparison purposes.

The 1989 and 1995 Portable Assisted Study Sequence (P.A.S.S.) 

curricular materials were directly introduced to Nud*Ist as on-line documents. 

The 1989 curriculum had previously been scanned into the computer, the 

1995 curriculum existed online. This process involved the researcher’s 

preparation of the documents for Nud*Ist that consisted of dividing the 

curriculum into smaller documents that could be processed by the program. 

Headings were attached to each document, and the text units were marked 

with carriage returns. Spiral review and practice exercises were eliminated 

from the text as they represented repetitions of core content. The spiral 

review and practice exercises were accounted for in other data collection 

procedures (see Appendix H). "While each additional unit in a sample adds 

to the costs of an analysis, there comes a point at which a further increase will 

not appreciably improve the generalizability of the findings. This is the point
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at which the sample size is most efficient" (KrippendorfF, 1980, p. 69). The 

documents were then introduced to Nud*Ist.

The Nud*Ist program was then tested for accuracy and reliability. Test 

coding on sample text was performed by the researcher, and no errors were 

found. The researcher had previously participated in a 2-day training seminar 

in Portland, OR., with Lyn Richards, the co-author of Nud*Ist. This 

experience undoubtedly smoothed the process of using the program. Nud*Ist 

is also recognized as a reputable software for research (Prein, Kelle, & Bird, 

1995; Kelle, 1996) and has eliminated many of the programming bugs.

Text units were then indexed to nodes. "The best practical strategy is 

to classify each word, word sense, or phrase in the category where it most 

clearly belongs . . .  (and). . .  each investigator will have to find the resolution 

that makes the most sense in light of the goals of the analysis" (Weber, 1990, 

p. 36). The researcher looked at every text unit and compared them to 

every item on the Mathematics Materials Analysis Instrument (MMAD 

(see Appendix A) for grades 5-8 and grades 9-12. The text units were then 

indexed to single or multiple nodes. This process lasted several months. It 

was performed on the 1989 and 1995 curricula, and coding reliability
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depended largely at this point on the researcher's own integrity and 

understanding of the materials.

It should be mentioned at this point that a sample of text units were 

selected and indexing was discussed with the other coder in this study prior to 

computer coding. Agreement was reached as to basic coding strategies, but 

there was not a prolonged pilot study. Kelle and Laurie (1995) discuss this 

type of coding as referential coding, which in many cases do "not represent 

specific, precisely defined facts or incidents, but generally, vaguely defined 

topics" (p. 25). Therefore, while consistency of coding is important, "a more 

sophisticated investigation of the reliability problem is needed" (p. 25). The 

researcher thus decided consistency would be maintained as much as humanly 

possible. This consistency would later be measured by checking interrater 

reliability between the two human coders who manually coded the curriculum 

using MMAI, and the data retrieved from this computer analysis. This is, in 

fact, in line with the strategies recommended by Weber (1990) and 

Krippendorff (1980). Weber lists the assessment of reliability and accuracy 

as the last step of the coding scheme. Krippendorff proposes reliability 

should be established through the duplication of efforts. He distinguishes 

between three types: stability, reproducibility, and accuracy. Stability can be
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established by the repetition of coding by the same coder. Reproducibility 

requires more than one coder and is "a minimum standard for content 

analysis1' (Weber, 1990, p. 17). Coders must work independently to prevent 

agreement through communication as the "lack of independence is likely to 

make data appear more reliable than they are" (Krippendorff, 1980, p. 132). 

Accuracy is the "strongest reliability test available" (p. 131).

Data Analysis

Content data analysis involves "word-frequency counts, key-word-in- 

context listing, concordances, classification of words into content categories, 

content category counts, and retrievals based on content categories and co­

occurrences" (Weber, 1990, p. 41). Krippendorff (1980) considers 

measurement in terms of frequencies to be the most "common form of 

representation of data" (p. 109).

Measurement in this study involved calculating percentages and 

proportions of text units, word counts, category topics, and other items. 

Nud*Ist and human coders provided frequency counts and calculated 

percentages. Excel spreadsheet software for Windows was used to calculate
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statistics from the ordinal data. Frequency counts were conducted for words 

assigned to topical categories.

Each word classified in a particular category need not equally represent 
the category content. Nevertheless, counting each entry equally is 
desirable because we currently lack procedures that reliably and validly 
assign weights indicating the unequal representation of category 
content by different entries in a single category. (Weber, 1990, p. 72)

The process of assigning ordinal values to Nud*Ist's code retrieval data

involved several steps. The researcher chose a conservative approach to

minimize co-author bias in reference to coding the curricula. Coded

retrievals in Nud*Ist provided statistical printouts for each node. For

example, the retrieval for node 1 1 1 for the 1989 curriculum, Grades 5-8 was

shown in its node retrieval report:

Total number of text units retrieved =185 
Retrievals in 12 out of 15 documents = 80%.
The documents with retrievals have a total of 645 text units, 
so text units retrieved in these documents = 29%.
All documents have a total of 796 text units, 
so text units found in these documents = 23%.
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There were 61 nodes for grades 5-8, and 48 nodes for grades 9-12 for 

each of the 1989 and 1995 curriculum. Node retrieval reports were compiled 

for each of the nodes, and three distinct percentages were retrieved for each 

node report. The first percentage was deemed highly misleading since one 

text unit would automatically qualify as retrieval from a document.

Therefore, the second and third percentages were deemed to be the most 

useful and were used in the calculations for the mean as a percentage for each 

row or item (see Table 1).

The weighted average was then calculated for each category for each 

grade level of MMAI. For example, category A for grades 5-8 contained 12 

out of 61 items or a weighted average of 19.7%. The weighted averages were 

established for each category (see Table 1 and Appendix S). Grades 5-8 

had 61 items in 8 categories with 3 to 12 items in each category; thus, 

weighted averages varied for each of those categories. Grades 9-12 had 

6 out of 48 items in each of 8 categories so the weighted average was 12.5% 

for each of those 8 categories.
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Table 1

Assignment of Ordinal Values to P. A.S.S. Curricula bv Coder 3 (Nud*Isf) 
Using the Mathematics Materials Analysis Instrument (MMAD

Node X Y Ma
Ordinal
Value

1995 curriculum, grades 1 00

1 1 1 62.0 59.0 60.5 4
1 12 20.0 11.0 15.5 2
1 13 54.0 51.0 52.5 4
1 14 63.0 56.0 59.5 4
1 15 31.0 15.0 23.0 3
1 16 19.0 1.5 10.3 2
1 17 68.0 47.0 57.5 4
1 1 8 49.0 46.0 47.5 4
1 19 44.0 38.0 41.0 4
1 1 10 74.0 58.0 66.0 4
1 1 11 44.0 39.0 41.5 4
1 1 12 46.0 38.0 42.0 4

1 2 1 73.0 73.0 73.0 4
1 2 2 39.0 36.0 37.5 4
123 15.0 6.6 10.8 2
1 2 4 26.0 16.0 21.0 3
1 25 50.0 23.0 36.5 4
1 2 6 31.0 17.0 24.0 3
1 2 7 25.0 18.0 21.5 3
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved

text to all documents. M = (X + Y)/2. “The weighted average for node 1 1 is 

19.7% and for node 1 2,11.5%.
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The third step in this process involved assigning the weighted averages 

to ordinal values on the instrument (MMAI). The evaluative instrument 

includes an ordinal value scale that measures the extent of alignment of 

content in the curricular materials to content reflecting the NCTM Standards 

in the subcategories. The ordinal values are assigned to each subcategory as 

follows: 1-None, 2-Low, 3-Moderate, 4-High. As mentioned, a conservative 

rating strategy was chosen to alleviate measurable researcher bias. The 

ordinal value 1 was assigned to weighted averages between 0% and 1%. The 

ordinal value 2 was assigned to weighted averages greater than 1% and less 

than the computed weighted average to the next greatest integer, e.g., 19.7% 

became 20%. The ordinal value 3 was assigned to the weighted averages 

exceeding the previously calculated upper boundary, e.g., 20%, and less than 

approximately twice this boundary, e.g., 40%. The ordinal value 4 was 

assigned to all weighted average percentages greater than the prior upper 

boundary, e.g., 40%. An example of this assignment follows for category A 

in grades 5-8 with a computed weighted average of 19.7%. Appendix S 

shows the assignment of ordinal values for Coder 3 using this ordinal scale 

for the mean percentages (M) for the 1989 and 1995 curricula.
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Ordinal Value Weighted Average A

1
2
3
4

0% < A < 1% 
1% < A <  20% 
20% < A <40% 
A >40%

The 1989 and 1995 curriculum had therefore been coded to MMAI by 

three coders. Two of the codings were completed manually by human coders 

(Coder 1 and Coder 2) and one was based upon Nud*Ist node reports (Coder 

3). The data analyses for the hypotheses and research questions were now 

performed.

Hypotheses. There were two null hypotheses for this study.

H(o) i • There is no statistically significant difference between the 1989 

and 1995 P.A.S.S. curricula materials in relation to the NCTM Standards.

H(R) i : There is a statistically significant difference at the significance 

level .05 between the 1989 and the 1995 P.A.S.S. curricula in relation to the 

NCTM Standards, jxi * p2.

Pi = P2 .
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H<o) 2 : There is no statistically significant difference between human 

coders and computer coding in relationship to the 1989 and 1995 P.A.S.S. 

curricula, pi = P2 = P3-

H(R) 2: There is a statistically significant difference at the .05 

significance level between human coders and computer coding in relationship 

to the 1989 and 1995 P.A.S.S. curricula, pi * p2 * P3 •

The evaluative instrument designed for this study, Mathematics 

Materials Analysis Instrument fMMAD (see Appendix A), includes an 

ordinal value scale that measures the extent of alignment of content in the 

curricular materials to content reflecting the NCTM Standards in the 

subcategories. The ordinal values are assigned to each subcategory as 

follows: 1-None, 2-Low, 3-Moderate, 4-High. Supplementary attachments 

were included with MMAI to assist the coders in assigning values (see 

Appendixes B-E). Nonparametric statistical tests were used to test the data 

for these hypotheses.

The first hypothesis was tested with a nonparametric test designed for
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ordinal data. Chi-square analysis was used to determine if there were any 

significant differences between the frequencies of ordinal value coding and 

the 1989 and 1995 curricula.

The second hypothesis was tested with the nonparametric Kruskal- 

Wallis H-test for ordinal data. This test was used to determine interrater 

reliability between the two human coders and Nud*Ist computer coding.

The mean of ordinal values for each category for each coder was computed 

for each grade level 5-8 and 9-12. This was done for the 1989 and 1995 

curricula. The H-test was then used to test for significant differences 

between the rankings of the category means for each year.

Research Questions. There were two research questions for this

study.

1. To what extent do the 1995 P.A.S.S. curricular materials improve 

upon the 1989 P.A.S.S. curricular materials with respect to the Standards 

of mathematics education delineated by the National Council of Teachers of 

Mathematics?
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2. Can a researcher-designed evaluative instrument measure 

the extent to which curricular materials meet the NCTM Standards ?

The research questions were answered in multiple ways. Qualitative 

analysis allows the researcher to maintain flexibility while considering new 

findings and discoveries. Descriptive statistics and narrative descriptions 

were used to answer the first research question. This also completed the 

triangulation process of analysis for comparing the 1989 and 1995 curricula. 

The triangulation in this study consisted of (a) qualitative examination of the 

materials, (b) descriptive statistics compiled from manual counts and 

observations, and (c) computer analysis using Nud*Ist (Richards & Richards, 

1995), a third-generation qualitative data analysis software.

The second research question involved multiple steps of analysis. The 

first step involved content validation of the evaluative instrument designed for 

this study. This was accomplished through the use of a validation panel.

The second step involved interrater reliability of coding using the validated 

instrument. This was accomplished through a pilot study with different 

curriculum materials and different coders than were used in this study. This
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pilot study was evaluated through the use of the nonparametric Kruskal- 

Wallis statistical test at the .05 level of significance. The third step involved 

interrater reliability for three coders who used the validated instrument 

MMAI to code the 1989 and 1995 P.A.S.S. curricular materials. The three 

coders included two human coders (Coder I and Coder 2) and Nud*Ist 

computer coding (Coder 3). Hypothesis 2 refers to this portion of the 

analysis.
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Findings

A content analyst is obligated to make everything transparent,. . .  at 

least for those interested in using the findings, replicating the analysis, 

or further developing the techniques.

- K. Krippendorff (1980, p. 180)

This study utilized the methodology of content analysis to analyze the 

content o f the 1989 and 1995 Portable Assisted Study Sequence (P.A.S.S.) 

mathematics curricular materials in relationship to the goals and spirit of the 

National Council of Teachers of Mathematics (NCTM) Curriculum and 

Evaluation Standards for School Mathematics (1989). Narrative descriptions 

and comparisons, manual data collection and coding, and computer analyses 

using Nud*Ist qualitative data analysis software (Richards & Richards, 1995) 

have been performed. This combination of analyses has resulted in a concise 

and complete analysis of the curricular materials.

An evaluative instrument, Mathematics Materials Analysis Instrument 

(MMAD (see Appendix A), to measure the relationship between the
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curricular materials and the recommendations made in the NCTM Standards 

(1989) was designed for this study. This process included content validation 

by an expert panel familiar with and experienced in the vision of the NCTM 

Standards. Interrater reliability was established through a pilot study as well 

as for this study.

Ordinal data from the 1989 and 1995 curricula were obtained through 

coding using the evaluative instrument MMAI. Coding was performed by 

three coders (two human coders and Nud*Ist computer coding). These data 

were converted to statistical measures of dispersion for analysis.

Content data analysis involves "word-frequency counts, key-word-in- 

context listing, concordances, classification of words into content categories, 

content category counts, and retrievals based on content categories and co­

occurrences" (Weber, 1990, p. 41). Krippendorff (1980) considers 

measurement in terms of frequencies to be the most "common form of 

representation of data" (p. 109). These types of data were collected through 

the use of a data collection worksheet (see Appendix H) and word sort lists 

containing frequency counts for each curriculum. These word lists were 

manually examined for key-word-in-context listings, classifications of words
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into content categories, content category counts, and retrievals based on 

content categories and co-occurrences.

The 1989 and 1995 curricula were also examined by comparing titles, 

subheadings, sections headings, student directions, and teacher guidelines. 

Discoveries made during this process led to further examination of 

classifications of words into content categories, content category counts, and 

other interpretative analyses.

This chapter is divided into five sections. The first two sections list the 

two hypotheses and discuss the findings for each. The next two sections list 

the two research questions and discuss the findings for each. The final 

section discusses other findings that were discovered in the process of this 

qualitative study.

Hypothesized Findines

Null Hypothesis 1

H(0 ) i : There is no statistically significant difference between the 1989 

and 1995 P.A.S.S. curricula materials in relation to the NCTM Standards.

M'l = M-2 •
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% ) i : There is a statistically significant difference at the significance 

level .05 between the 1989 and the 1995 P.A.S.S. curricula in relation to the 

NCTM Standards, pi * p2.

One of the most commonly used nonparametric methods for testing 

ordinal data is the chi-square test (Borg & Gall, 1989; Vaillant & VaiUant, 

1985). Chi-square analysis was used in this study to determine if there were 

any significant differences between the frequencies of ordinal value coding 

using Mathematics Materials Analysis Instrument (MMAD on the 1989 and 

1995 curricula. Table 2 shows the data and findings for these computations. 

The coded values for each of the three coders were tallied for the 1989 and 

1995 curricula for each grade level 5-8 and 9-12. The total frequencies for 

each coder were inserted in 4x2 contingency tables. Expected values were 

also calculated in 4x2 contingency tables. The null hypothesis was rejected at 

both grade levels. This was interpreted as there is a statistically significant 

difference between the 1989 and the 1995 P.A.S.S. curricula in relation to the 

NCTM Standards.
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Table 2

Chi-square Analysis of Observed and Expected Coding Values Using

Mathematics Materials Analysis Instrument (MMAD on P.A.S.S. Curricula

Coding
Value

Observed 
1989 1995

Exnected 
1989 1995

Grades 5-8 

1 63 2 32.5 32.5
2 65 35 50.0 50.0
3 40 77 58.5 58.5
4 15 69 42.0 42.0

X2= 112.66 a  = .05 df=3

Grades 9-12 

1 73 17 45 45
2 42 25 33.5 33.5
3 20 56 38 38
4 9 46 27.5 27.5

X2 = 81.1 a  = .05 df=3
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Null Hypothesis 2

H(0 )2  : There is no statistically significant difference between human 

coders and computer coding in relationship to the 1989 and 1995 P.A.S.S. 

curricula, pi = P2 = M-3 •

H(R) 2 : There is a statistically significant difference at the .05 

significance level between human coders and computer coding in relationship 

to the 1989 and 1995 P.A.S.S. curricula, pi * \x.z *= p.3 .

Interrater reliability in this study was defined as the extent to which 

similar ordinal values were assigned by various coders at separate locations 

using the evaluative instrument Mathematics Materials Analysis Instrument 

(MMAD (see Appendix A). This involved testing to see if there were 

significant differences in the coding assigned by two human coders (Coder 1 

and Coder 2) and Nud*Ist computer coding (Coder 3) using Mathematics 

Materials Analysis Instrument (MMAD on the 1989 and 1995 P.A.S.S. 

curricula. The nonparametric Kruskal-Wallis H-test was chosen to test for 

these differences. The means of ordinal values assigned by each coder were
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computed and ranked for the 1989 and 1995 curricula at each grade level 5-8 

and 9-12. The H-test was then performed for each curriculum at each grade 

level, and no significant differences were found in any of the tests. Therefore, 

the null hypotheses were retained for both years and both grade levels. This 

was interpreted to establish interrater reliability between the coders using 

MMAI on the P.A.S.S. curricula in this study. These computations are 

shown in Tables 3-4.

Unhvpothesized Findings

Research Question 1

To what extent do the 1995 P.A.S.S. curricular materials improve upon 

the 1989 P.A.S.S. curricular materials with respect to the Standards of 

mathematics education delineated by the National Council of Teachers 

of Mathematics?

NCTM Standards are based upon the belief that all students should 

learn more (and different) content than is contained in traditional programs, 

and new teaching strategies need to be introduced. The thinking processes of
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problem solving, communication, reasoning, and connections are emphasized 

at all levels. The Standards assert that the educational system must meet new 

social goals. These are defined as providing for society mathematically 

literate workers, lifelong learning, opportunity for all, and an informed 

electorate. Students must learn to value mathematics, become confident in 

their mathematical abilities, become mathematical problem solvers, learn to 

communicate mathematically, and leam to reason mathematically (p. 5).

The Standards emphasize the need to "do" rather than "know" (1989, p. 7). 

Interdisciplinary curriculum must be included to supplement and replace 

portions of traditional engineering and physical science applications. 

Technology must be included and updated to reflect the nature of 

mathematics. The curriculum must be available to all students if "they are to 

be productive citizens in the twenty-first century" (p. 9). Students must 

participate in activities that model genuine problems, and be encouraged to 

experiment, discuss, and discover ideas and concepts.

The researcher began the analysis for this question with an examination 

of unit titles, which offered a cursory overview of contents in the 1989 and 

1995 curricula. Table 5 lists the unit titles for each curriculum. Tables of
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Table 3

Kruskal-Wallis H-test to Establish Interrater Reliability Between Coders 
Using the Mathematics Materials Analysis Instrument (MMAD on 1989 
Curriculum

MMAI
Category

Coder 1 Rank Coder 2 Rank Coder 3 Rank

Grades 5-8 

A 2.08 11.5 2.08 11.5 2.17 13.0
B 1.71 4.5 1.86 6.5 1.86 6.5
C 2.25 16.0 2.25 16.0 2.25 16.0
D 2.44 20.0 2.22 14.0 2.56 21.0
E 2.40 19.0 2.60 22.5 2.60 22.5
F 1.71 4.5 2.00 9.0 2.29 18.0
G 1.00 2.0 1.00 2.0 1.00 2.0
H 2.00 9.0 2.00 9.0 3.33 24.0

Ni =  8 N 2=  8 N 3 =  8
Rsum= 86.5 Rsum = 90.5 Ram, = 123

H = 2.004 a  = .05

table continued
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MMAI
Category

Coder 1 Rank Coder 2 Rank Coder 3 Rank

Grades 9-12 

A 1.83 13.0 2.17 22.0 2.33 24.0
B 1.67 9.0 2.00 18.0 1.83 13.0
C 2.00 18.0 2.00 18.0 1.50 6.5
D 1.83 13.0 1.83 13.0 2.17 22.0
E 1.33 5.0 1.17 4.0 1.50 6.5
F 1.67 9.0 1.83 13.0 2.17 22.0
G 1.00 2.0 1.00 2.0 1.00 2.0
H 2.00 18.0 1.67 9.0 2.00 18.0

H = 0.915

Ni = 8 

a  = .05
Rsum 00 

<

II 00

Rsum = 99
N3 = 8 

Rsum= 114
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Table 4

Kruskal-Wallis H-test to Establish Interrater Reliability Between Coders 
Using the Mathematics Materials Analysis Instrument (MMAD on 1995 
Curriculum

Category Coder 1 Rank Coder 2 Rank Coder 3 Rank

Grades 5-8

A 3.42 17.0 3.25 11.5 3.58 22.0
B 3.14 8.5 3.57 20.0 3.29 13.0
C 3.75 23.0 3.25 11.5 3.50 19.0
D 2.78 4.0 2.44 2.0 2.56 3.0
E 3.40 16.0 3.20 10.0 3.30 14.0
F 3.43 18.0 3.14 8.5 3.57 20.5
G 2.22 1.0 3.00 6.5 2.89 5.0
H 3.33 15.0 3.00 6.5 4.00 24.0

2! ll 00 n 00 ll 00
Rsum-  102..5 Rsum =  77 Rsum = 120.5

H = 2.389 a  = .05

Grades 9-12
Category Coder IRank Coder 2 Rank Coder 3 Rank

A 3.17 21.0 3.00 17.0 3.83 24.0
B 3.00 17.0 3.00 17.0 3.00 17.0
C 2.33 1.5 2.50 3.5 2.83 10.5
D 2.83 10.5 3.00 17.0 3.00 17.0
E 3.50 22.0 2.50 3.5 3.67 23.0
F 2.33 1.5 2.67 6.0 2.67 6.0
G 2.83 10.5 2.83 10.5 3.00 17.0
H 2.83 10.5 2.67 6.0 2.83 10.5

Ni =  8 N2= 8 N 3 =  8
Rsum =94.5 Rsum = 80.5 Rsum =125

H - 2.589 a  = .05
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contents for each unit were also examined (see Appendixes M-N). The 1995 

curriculum titles clearly indicate a broader range of content and an implied 

potential for greater opportunities to engage higher-level thinking skills than 

are represented by the 1989 curriculum titles. The titles for the 1995 

curriculum are, in fact, 10 of the curriculum standards (NCTM, 1989, 

pp. 65, 123) The 13 curriculum standards for grades 5-8 are problem 

solving, communication, reasoning, mathematical connections, number and 

number relationships, number systems and number theory, computation and 

estimation, patterns and functions, algebra, statistics, probability, geometry, 

and measurement. The 14 curriculum standards for grades 9-12 are problem 

solving, communication, reasoning, mathematical connections, algebra, 

functions, geometry from a synthetic perspective, geometry from an algebraic 

perspective, trigonometry, statistics, probability, discrete mathematics, 

conceptual underpinnings of calculus, and mathematical structure.

The tables of contents for all units in both courses were also examined. 

This examination further supported the researcher's viewpoint that the 1995
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curriculum was more aligned to the Standards than the 1989 curriculum (see 

Appendixes M-N).

Descriptive statistics were used to explore the curricula in more detail. 

Data were obtained from data collection worksheets (see Appendix H) and 

from coding values obtained in the use of the evaluative instrument designed 

for this study, Mathematics Materials Analysis Instrument (MMAD (see 

Appendix A). This instrument includes an ordinal value scale that 

measures the extent of alignment of content in the curricular materials to 

content reflecting the NCTM Standards in the subcategories. The ordinal 

values are assigned to each subcategory as follows: 1-None, 2-Low, 3- 

Moderate, 4-High. Three coders assigned values on MMAI to the 1989 and 

1995 P.A.S.S. curricula. This included two human coders (Coder 1 and 

Coder 2) and the Nud*Ist computer coding (Coder 3). Supplementary 

attachments were included with MMAI to assist the coders in assigning 

values (see Appendixes B-E).

Krippendorff (1980) states "the most common form of representing 

data is in terms of relations between variables" (p. 111). The mean of ordinal 

values, group mean, and standard deviation for each category for each coder
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Table 5

Unit Titles of P.A.S.S. Curricula

Course Unit Titles

1989

General Math A I Numeration Systems and Place Value
n Addition and Subtraction
in Multiplication
rv Division
V Application

General Math B VI Fractions
vn Decimals
vm Percent
DC Measurement
X Metrics

1995

Integrated Math A I Number and Number Relationships
n Number Systems and Number Theory
m Computation and Estimation
IV Patterns, Functions, and Mathematical Connections
V Measurement

Integrated Math B VI Statistics and Probability
vn Algebra
vm Geometry
DC Problem Solving
X Mathematics as Communication
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were computed for grade levels 5-8 and 9-12. This was done for the 1989 

and 1995 curricula. The median, mean, group mean, and standard deviation 

were also computed for each coder. Tables 6-7 present the central measures 

of tendency for the assigned coding values for the 1989 and 1995 curricula. 

The 1989 data in Table 6 clearly show the mean and median measures 

centering around or below 2.0 with small standard deviations (with one 

exception). This indicates the coders agreed that the 1989 curriculum 

represented low levels of content relating to the NCTM Standards.

Category H in grades 5-8 has an exceptionally high standard deviation of 0.77 

compared to the other categories. Closer examination shows a higher rating 

by Nud*Ist that clearly affected this standard deviation. This proved to be 

true for most categories in both grade levels. This is not surprising because 

the computer does not forget data and the assignment of ordinal values 

depended upon memory. Human coders are more likely to forget specific 

details and therefore assign lower ordinal values on MMAI. At any rate, the 

group standard deviation remained small showing agreement between the 

three coders.
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The 1995 data in Table 7 clearly show the mean and median measures 

centering around or above 3.0 with small standard deviations (with several 

exceptions). This indicates the coders agreed that the 1995 curriculum 

represented moderate levels of content relating to the NCTM Standards. 

Categories G and H in grades 5-8 have standard deviations of 0.42 and 0.51, 

and categories A and £  have standard deviations of 0.44 and 0.63. These 

measurements are a little higher than the other standard deviations. Closer 

examination again shows a higher rating by Nud*Ist that clearly affected 

these standard deviations. Again, this seems to indicate the computer coding 

isolated more applicable text units than the human coders were able to 

observe and remember.

Figures 1-2 demonstrate the distributions of the group means data in 

Tables 6-7. The scatterplot in Figure 1 compares the distributions of the 

group means for grade level 5-8 for the 1989 and the 1995 curricula. The 

scatterplot in Figure 2 compares the distributions for grade level 9-12 for the 

1989 and the 1995 curricula. The graphs confirm the interpretations made 

from the dispersion measurements. The distributions are fairly consistent and
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the scatterplots depict the higher ratings for the 1995 curriculum in grades 5-8 

and 9-12.

Content analysis involves "word-frequency counts, key-word-in- 

context listing, concordances, classification of words into content categories, 

content category counts, and retrievals based on content categories and co­

occurrences'' (Weber, 1990, p. 41). Krippendorff (1980) considers 

measurement in terms of frequencies to be the most "common form of 

representation of data" (p. 109).

The completed data collection worksheets (see Appendix H) provided 

frequency counts for various categories. Three major categories chosen for 

analysis in this study were word problems, skill and drill problems, and 

projects and investigations. The category for skill and drill problems was 

chosen as highly representative of problems found in traditional mathematics 

courses. The category for word problems was chosen as representative of 

problems found in both traditional and integrated courses. The category for 

projects and investigations was chosen as indicative of problems requiring 

the higher order thinking processes envisioned in the NCTM Standards. 

Projects and investigations were combined into one category because they
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Table 6

Measures o f Dispersion for Coding Values on MMAI for 1989 P.A.S.S. Curriculum

MMAI Category

Coder 1 Coder 2 Coder 3

Mean Mean Mean
Group

Mean
Standard
Deviation

Grades 5-8

A 2.08 2.08 2.17 2.11 0.05
B 1.71 1.86 1.86 1.81 0.09
C 2.25 2.25 2.25 2.25 0.00
D 2.44 2.22 2.56 2.41 0.17
E 2.40 2.60 2.60 2.53 0.12
F 1.71 2.00 2.29 2.00 0.29
G 1.00 1.00 1.00 1.00 0.00
H 2.00 2.00 3.33 2.44 0.77

Median 2.08 2.08 2.25 2.11
Mean 1.95 2.00 2.26 2.07 0.17
Standard Deviation 0.47 0.46 0.67 0.50

Coder 1 Coder 2 Coder 3
Group Standard

MMAI Category Mean Mean Mean Mean Deviation

Grades 9-12

A 1.83 2.17 2.33 2.11 0.26
B 1.67 2.00 1.83 1.83 0.17
C 2.00 2.00 1.5 1.83 0.29
D 1.83 1.83 2.17 1.94 0.20
E 1.33 1.17 1.5 1.33 0.17
F 1.67 1.83 2.17 1.89 0.26
G 1.00 1.00 1.00 1.00 0.00
H 2.00 1.67 2.00 1.89 0.19

Median
Mean
Standard Deviation

1.67
1.67 
0.35

1.83
1.71
0.42

1.83
1.81
0.45

1.83
1.73
0.37

0.08
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Table 7

Measures of Dispersion for Coding Values on MMAI for 1995 P.A.S.S. 
Curriculum

Coder 1 Coder 2 Coder 3

MMAI Category Mean Mean Mean
Group
Mean

Standard
Deviation

Grades 5-8 

A 3.42 3.25 3.58 3.42 0.17
B 3.14 3.57 3.29 3.33 0.22
C 3.75 3.25 3.50 3.50 0.25
D 2.78 2.44 2.56 2.59 0.17
E 3.40 3.20 3.30 3.30 0.10
F 3.43 3.14 3.57 3.38 0.22
G 2.22 3.00 2.89 2.70 0.42
H 3.33 3.00 4.00 3.44 0.51

Median 3.37 3.17 3.40 3.36
Mean 3.15 3.09 3.30 3.18 0.11
Standard Deviation 0.51 0.34 0.47 0.37

table continued

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

Coder 1 Coder 2 Coder 3

MMAI Category Mean Mean Mean
Group
Mean

Standard
Deviation

Grades 9-12 

A 3.17 3.00 3.83 3.33 0.44
B 3.00 3.00 3.00 3.00 0.00
C 2.33 2.50 2.83 2.55 0.25
D 2.83 3.00 3.00 2.94 0.10
E 3.50 2.50 3.67 3.22 0.63
F 2.33 2.67 2.67 2.56 0.20
G 2.83 2.83 3.00 2.89 0.10
H 2.83 2.67 2.83 2.78 0.09

Median 2.83 2.75 3.00 2.92
Mean 2.81 2.74 3.00 2.85 0.14
Standard Deviation 0.40 0.21 0.32 0.24
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had similar requirements relating to time frames and critical thinking 

processes. Examples are shown in Appendixes K-L, R, and U.

The data from the data collection worksheets were analyzed and 

computed as percentages of the total number of problems (see Table 8). The 

1989 curriculum showed nearly all (86%) of its problems emphasized skill 

and drill exercises. There were no projects or investigations, and only 14% 

of the problems were considered to be word problems. The 1995 curriculum 

showed nearly two thirds (64%) of its problems emphasized skill and drill 

exercises. Projects, investigations, and word problems comprised the 

remaining one third (36%) of its contents. These percentages were 

interpreted as showing that the 1989 curriculum was largely traditional, and 

the 1995 curriculum more adequately reflected recommendations from the 

Standards. Figures 3-4 graphically depict this information. Figure 4 

combines the data for the word problem and projects and investigations 

categories as representative of types of problems recommended by NCTM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



126

Table 8

Frequency Counts and Percentages of Types of Problems for P.A.S.S. 
Curricula

Word Skill and Drill Projects and
Year Problems Problems Investigations

1989 609 3866 -

1995 430 1124 195
As a percent of total problems

1989 14% 86%

1995 25% 64% 11%

The 1989 and 1995 curricula were examined for major content areas. 

Three major conceptual sections were found in both curricula: spiral review 

exercises, core content, and practice exercises. Core content was defined for 

this study as relating to new ideas and problems exclusive to each of the 

20 units in the two courses. In addition, the 1989 curriculum included a 

glossary for each of its 10 units in the course. The number of pages in each 

category were then counted and entered on the data collection worksheets.
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Percentages of total pages were then computed in each category for 

each curriculum (see Table 9). There were 842 pages in the 1989 curriculum 

and 544 pages in the 1995 curriculum. The pages devoted to core content 

represented over one half (59%) of the 1989 curriculum and nearly four fifths 

(78%) of the 1995 curriculum. There was very little spiral review in 

either curricula with only 1% of the total pages devoted to this type of 

exercise in the 1989 curriculum and 9% in the 1995 curriculum. More pages 

were devoted to practice exercises in the 1989 curriculum (38%) than in the 

1995 curriculum (12%). Upon closer examination, these exercises were 

found to be mostly skill and drill exercises that have been discussed and 

shown in Figures 3-4. The 1989 curriculum devoted 1% of its pages to a 

glossary; the 1995 curriculum did not include a glossary in any of its units. A 

graphical depiction of these percentages is shown in Figure 5.

The 1989 and 1995 curricula, excluding spiral review and practice 

exercises, existed as on-line documents from the computer content analysis 

using Nud*Ist. A computer programmer was employed to compile a sorted
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Table 9

Number of Pages and Percentages of Maior Sections in P.A.S.S. Curricula

Year
Spiral

Review
Core
Content

Practice
Exercises Glossary

1989 11 500 321 10

1995 51 427 66 0

As a percent of total pages

1989 1% 59% 38% 1%

1995 9% 78% 12% 0%

Spiral Core ftactice Glossary
Review Exercises

Figure 5: Comparisons of major sections of P.A.S.S. curricula
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word list with frequency counts from these documents. No words were 

eliminated from the list. The 1989 word list contained 57,416 words; the 

1995 word list contained 64,691 words. This similarity made an interesting 

observation because there were 842 pages in the 1989 curriculum and 544 

pages in the 1995 curriculum. This seemed to support the previous findings 

relative to the preponderance of skill-and-drill exercises in the 1989 

curriculum, which were numeral in nature rather than verbal.

The word lists were then sorted manually by the female assistant into 

selected categories that seemed relevant to traditional curriculum as well as 

curriculum recommended by NCTM Standards. The researcher and assistant 

discussed the types of words to be included for each category. The assistant 

then compiled the word lists with each relevant word treated as mutually 

exclusive, i.e., assigned to only one category. The selected categories were 

"traditional," "application," "reflective," and "technology." Table 10 shows 

the breakdowns for these categories.
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Table 10

Curricula

Year Traditional Applications Reflection Technology

1989 16,001 4,326 281 0

1995 13,821 7,273 901 137

Words by category as a % of total

1989 78% 21% 1% 0%

1995 62% 33% 4% 1%

The interpretations made from this data supported many of the earlier 

interpretations. Traditional words represented 78% of the categorized words 

in the 1989 curriculum and 62% of the 1995 curriculum. These percentages 

can be compared to the findings relating to skill-and-drill problems in the 

1989 curriculum (86%) in Table 8 as compared to the traditional findings 

(78%) in Table 10. The 1995 curriculum showed similar percentages for 

skill-and-drill problems in Table 8 (64%) as compared to the traditional
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findings (62%) in Table 10. This manual observation therefore supports the 

computer data.

Similar relationships existed for the other categories. Table 10 shows 

22% of the categorized words in the 1989 curriculum represent the 

application category (21%) and the reflection category (1%). This compares 

to the 1995 curriculum where 37% of the categorized words represent the 

application category (33%) and the reflection category (4%). These 

percentages can be compared to the findings in Table 8 where the 1989 

curriculum showed word problems, and projects and investigations (14%) 

as compared to the application and reflection categories (22%) in Table 10. 

Similarly, the 1995 curriculum showed word problems, and projects and 

investigations (36%) as compared to the application and reflection categories 

(37%) in Table 10. This manual observation again supports the computer 

data. The findings for Table 10 were interpreted for this study as further 

validating the 1995 curriculum's movement toward NCTM Standards 

recommendations in relationship to the 1989 curriculum.

The low percentages reflected in the technology category stood out to 

this researcher as understated for the 1995 curriculum. Many problems in the
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units were designed as computer spreadsheets and graphing calculator 

exercises (see Appendixes R and U). Student directions encouraged and 

emphasized the use of technology in the 1995 curriculum (see Appendix Q). 

The word count did not reflect this because the words relating to technology 

were not used excessively. The researcher examined the 1989 curriculum 

page by page to see if this observed discrepancy also applied; there were not 

any references on any of the pages referring to technology or requiring the use 

of technology.

The advantage of qualitative research is the flexibility to examine new

questions that emerge during the study. Many unforeseen categories

emerged from the sorted word list. Two of the most provocative dealt with a

new societal goal in the Standards, the need to provide equal opportunity.

Creating a just society in which women and various ethnic groups 
enjoy equal opportunities and equitable treatment is no longer an issue. 
Mathematics has become a critical filter for employment and full 
participation in our society. We cannot afford to have the majority of 
our population mathematically illiterate. Equity has become an 
economic necessity. (NCTM, 1989, p. 4)

The categories "Latino culture," "non-Latino culture," and "gender" 

emerged as the word lists were examined. The category "Latino culture" was 

isolated due to the nature of the curriculum. The agreement with
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P.A.S.S. for the 1995 curriculum was to provide materials aimed mainly at 

Latino students because they comprise the majority (99%) of the migrant 

population served by P.A.S.S. The ethnicity categories were further divided 

into subcategories "non-family names" and "family names." Words assigned 

to the "Latino" category were stereotypically representative of that culture. 

These words were chosen because they were immediately recognizable as 

terms of the Latino culture. Many of the "non-family name" words pertaining 

to Latino culture centered around food, i.e., burrito, jalapeno, nachos, chiles, 

and fajitas; "family name" words included first names and surnames, i.e., 

Juan, Pedro, Gonzales, and Rodriguez. Names of countries, cities, and states 

not located in Latin countries were compiled in the "non-family name" 

categories, i.e, Britain, Chicago, Alaska, California, the bulk of these 

occurring in the "non-Latino" category; "family name" words included first 

names and surnames, i.e., Patricia, Bob, Johnson, and Koch. Words that 

were ambiguous or could apply to either category were not counted. Table 

11 shows the breakdowns for these categories.

The findings show the 1995 curriculum was more successful than the 

1989 curriculum in directing its message to Latino students. Percentages
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were computed based on total words in each category. Latino terms and 

words were used in only 8% of the total ethnic words in the 1989 curriculum, 

as compared to 44% in the 1995 curriculum. Latino names were used in 28% 

of the total ethnic names used in the 1989 curriculum, as compared to an 

impressive 70% in the 1995 curriculum.

Gender equity did not fare as well. The 1989 and 1995 curricula were 

somewhat equally biased toward males as shown by the percentages in 

Table 11. Words denoting males accounted for 57% of the 1989 curriculum 

(43% females), and 60% of the 1995 curriculum (40% females) when 

compared to total words denoting gender. Names and surnames were not 

counted in the gender word count, however, which may have skewed the 

findings. Social equity has been addressed strongly since the 1960s and 

1970s, however, and so it is not surprising the 1989 curriculum did show 

sensitivity to this issue.

The researcher finalized the analysis for this research question by 

examining introductory pages in each unit in the hopes of gleaning implied 

objectives and goals that may not have appeared in the previous data analysis. 

The 1989 curriculum began each unit with the first page consisting of three
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Table 11

in P.A.S.S. Curricula

Latino Non-Latino
Words Words Gender

Year Non-family Family Non-family Family Male Female

1989 9 76 104 197 288 213

1995 81 226 103 96 253 171

Percentages based on total words in ethnic and gender categories

Latino Non-Latino Gender
Words Words

Year Non-family Family Non-family Family Male Female

1989

1995

8% 28% 92%

44% 70% 56%

72% 57% 43%

30% 60% 40%

paragraph sections titled "rationale," "primary idea," and "instructional goals" 

(see Appendix O). These sections varied for each unit in content. The
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second page was titled "general directions and requirements" and was 

identical for each unit (see Appendix P). The 1995 curriculum began each 

unit with the first two pages consisting of two paragraph sections titled 

"introduction" and "guidelines and directions." There were slight variations in 

each unit for these two pages, with key words substituted within the 

paragraph to fit the unit. Several unit examples are shown in Appendix Q.

The examination of these introductory pages in the 1989 course did not 

add to the researcher's analysis in any significant way. Instructional goals 

seemed to emphasize the mastery of skills, and previous analysis of data in 

this study had shown the preponderance of skill and drill problems in the 

1989 curriculum. The examination of the introductory pages of the 1995 

course did add insight to this analysis. The first paragraph in each unit 

emphasized the unit requirement for students to engage in cooperative 

learning, use technology, express themselves creatively through writing, art, 

and the use of other communicative skills. This emphasis is interpreted by 

the researcher as alerting the student to new ways of thinking in mathematics, 

which are recommended in the NCTM Standards.
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Research Question 2

Can a researcher-designed evaluative instrument measure the extent to 

which curricular materials meet the NCTM Standards?

Content validity and interrater reliability are essential elements of 

instrument design. Interrater reliability in coding is an essential component 

of content analysis. The findings for this research question are therefore 

presented for each of these processes.

The evaluative instrument Mathematics Materials Analysis Instrument 

fMMAD and supplementary attachments (see Appendixes A-E) designed for 

this study were validated for content by a panel of three expert educators who 

are familiar with and experienced in the vision of the NCTM Standards. The 

instrument was designed in the fall of 1995 and given to the content 

validation panel in January 1996. It was edited and panel validation was 

received in March 1996.

Interrater reliability for the instrument was established by 

nonparametric testing of data collected in a pilot study. This study is 

reviewed briefly. A team of five secondary mathematics teachers presently 

teaching all levels of secondary mathematics from general mathematics to
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calculus participated in the pilot study. Two of the teachers each have over 

25 years of teaching experience, the third team member has approximately 5 

years teaching experience, and the fourth and fifth team members are in their 

2nd and 3rd years of teaching. The teachers with the greatest experience 

generally subscribe to a traditional philosophy of mathematics teaching based 

upon their experience and training. The teachers with the least experience 

have been exposed to contemporary training in the Standards and updated 

teaching techniques in their college programs.

Two texts were offered to the team members for analysis: Informal 

Geometry (Cummins, Kenney, & Kanold, 1988), and Integrated Mathematics. 

(Rubenstein, Craine, & Butts, 1995). The traditional teachers chose Informal 

Geometry, and the newly trained teachers chose Integrated Mathematics.

One of the newly trained teachers agreed to analyze both texts to complete 

teams of three for each book. This provided more data for the pilot study 

because two different texts were analyzed by two different teams. Ordinal 

values were assigned to each subcategory of the evaluative instrument 

MMAI. The mean of ordinal values for each coder was then computed for 

each category.
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The null hypothesis used for the pilot study was:

H(0 ): There is no statistically significant difference between coders in 

relationship to sample textbooks in the pilot study, pi = = jj.3 .

H(R): There is a statistically significant difference between coders in 

relationship to sample textbooks in the pilot study. Hi ^  p.2 * M-3 •

The nonparametric Kruskal- Wallis H-test was chosen to test the 

collected data (see Table 12). No significant difference was found in coding 

and the null hypothesis was retained for each sample text. This was 

interpreted as establishing interrater reliability between the coders using 

MMAI on the sample textbooks.

An interesting observation resulting from this pilot study was a 

subsequent decision made by the two traditional teachers. They had chosen 

their text sample because they were interested in obtaining it as a replacement 

text in their geometry courses. Their bias had been shown by comments prior 

to the study to the extent that the text was advertised as a transition text 

between traditional teaching and teaching strategies recommended by the
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Standards. After participating in the study, they decided the text did not 

provide enough transitional materials and was in fact "very traditional." 

Therefore, they decided not to pursue the text as a replacement text in their 

courses. This decision provided an unmeasureable validation of the 

evaluative instrument MMAI.

The last step in the instrumentation process was to establish interrater 

reliability in coding for the actual study. These findings have been presented 

in Hypothesis 2. They confirmed the reliability between the two human 

coders and Nud*Ist computer coding using the 1989 and 1995 curricula in 

this study.

Other Findings

Content analysis is "valid to the extent its inferences are upheld in the 

face of independently obtained evidence" (Krippendorff, 1980, p. 155). The 

materials were examined manually by the researcher for uniqueness that could 

be overlooked in the major data collection strategies. The 1989 curriculum 

maintained a traditional curriculum although it did offer unique puzzles and 

formats as motivational incentives to enhance skill-and-drill exercises (see 

Appendix T). The 1995 curriculum provided an easily recognizable
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integrated and interdisciplinary curriculum in its unique variety of 

assignments, investigations and projects (see Appendix U). These examples 

further supported the researcher's interpretations that the 1995 curriculum 

more adequately represented Standards ideals than did the 1989 curriculum.
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Kruskal-Wallis H-test to Establish Interrater Reliability Between Coders in 
Pilot Study Using the Mathematics Materials Analysis Instrument (MMAD

Text: Integrated Math

MMAI
Category

Coder 1 Rank Coder 2 Rank Coder 3 Rank

A 3.50 13.5 3.50 13.5 3.50 13.5
B 3.17 6.5 3.83 20.5 4.00 24.0
C 2.67 2.0 3.17 6.5 3.50 13.5
D 2.83 3.0 3.83 20.5 3.33 9.5
E 3.17 6.5 3.50 13.5 3.67 17.0
F 3.50 13.5 3.17 6.5 3.83 20.5
G 3.83 20.5 3.83 20.5 3.83 20.5
H 2.50 1.0 3.00 4.0 3.33 9.5

Ni = 8 N2 = 8 N3 = 8
Rsum=66.5 Rsum=  105.5 Rsum= 1 2 8

H =  4.841 a =  .05

table continued
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MMAI Category Coder 1 Rank Coder 2 Rank Coder 3 Rank

A 1.33 6.0 1.67 14.5 1.83 20.0
B 2.00 23.0 1.83 20.0 2.17 24.0
C 1.17 2.5 1.83 20.0 1.50 9.5
D 1.67 14.5 1.33 6.0 1.67 14.5
E 1.33 6.0 1.17 2.5 1.17 2.5
F 1.50 9.5 1.17 2.5 1.67 14.5
G 1.67 14.5 1.83 20.0 1.67 14.5
H 1.83 20.0 1.50 9.5 1.50 9.5

N i =  8 * ii 00 n 3 = 8
Rsum=96 Rsum ~  95 Rsum = 1 0 9

H =  0.305 P ll ©
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CHAPTER 5

Summary, Conclusions, Significance, 

and Recommendations

Up in the mountains, he knew, the ants changed with the season. Bees 

hovered and darted in a dynamical buzz. Clouds skidded across the 

sky. He could not work the old way any more.

-J. Gleick(1987, p. 317)

Developing world-class standards is the cornerstone of our efforts to 

improve our schools.. . .  The global economy is not standing still 

while we fiddle educationally.

- Delaine Eastin
State Superintendent of Public Instruction 
(California Department of Education, 1996)

The first quote was used in Chapter 1 to acknowledge the complex and 

chaotic discoveries in mathematics which are helping us visualize our world 

in a new way. The second quote represents the immediacy and timeliness of 

the concerns presented in this study.
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Summary

The need for change in the mathematics curricula in our public schools 

has been well documented. Testing surveys show low overall performance at 

every age throughout the K-12 levels. The Curriculum and Evaluation 

Standards for School Mathematics, issued by the National Council of 

Teachers of Mathematics (NCTM) in 1989 are designed to move 

mathematics curriculum forward to meet the needs of students for the future. 

The analysis of new curricular materials is essential in order to produce 

materials that meet recommended standards.

Migrant students represent one segment of the student population with 

deficiencies in mathematics training at the K-12 level. Educating the migrant 

student population is one of the greatest challenges that the California 

educational system and the United States educational systems face today. 

Students from this population frequently relocate to other schools and to other 

states. The Portable Assisted Study Sequence (P.A.S.S.) Program serves 165 

schools in California and was created to help assuage some of the difficulties 

that these students encounter. The P.A.S.S. Program must not only provide
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materials that will be appropriate for the migrant student, but must also 

comply with the NCTM Standards (1989).

The researcher conducted this study to analyze the content of a lst- 

year mathematics course written for P.A.S.S. to meet the NCTM Standards 

and compare it to the course it replaced. The 1995 curricular materials 

entitled Integrated Math A and Integrated Math B replaced the 1989 

curricular materials entitled General Math A and General Math B. An 

evaluative instrument, Mathematics Materials Analysis Instrument (MMAD. 

was designed to measure the extent to which reform ideas in the Standards 

are represented in the curricular materials.

The review of literature established that profound societal influences 

determine our educational needs. Our technological society today demands 

sophisticated, literate workers who are able to interpret complex biological, 

sociological, and technological issues. Integrated curricular design is 

proposed to meet the challenge of holistic learning. The Standards emphasize 

technology and the need for curriculum to be available equitably to all 

students if "they are to be productive citizens in the twenty-first century"

(p. 9).
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Content analysis was used to analyze the 1989 and 1995 P.A.S.S. 

curricula with respect to the Standards. The researcher utilized third- 

generation qualitative data analysis software, Nud*Ist, (Richards & Richards, 

1995) to assist in the analysis. An evaluative instrument entitled 

Mathematics Materials Analysis Instrument fMMAD was designed for the 

study. This involved validation from a panel of experts familiar with the 

Standards, and a pilot study to establish interrater reliability using MMAI 

with other curricular materials.

Data were obtained from various sources other than MMAI. Data 

collection worksheets were used to gather selected categorical information. 

The P.A.S.S. curricula were individually examined for uniqueness that might 

remain hidden from MMAI coding and data collection worksheets. The 

hypotheses and research questions were answered based upon data obtained 

in the collection and interpretation of these varied sources.

Conclusions from Hypothesized Findings

This study stated two hypotheses. The findings for each are based on 

nonparametric tests for ordinal data.
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Substantive Hypothesis 1: The 1995 P.A.S.S. curricular materials are 

more likely than the 1989 P.A.S.S. curricular materials to reflect reform ideas 

expressed in the Standards.

Chi-square analysis was used to determine if there were any significant 

differences between the frequencies of ordinal value coding using 

Mathematics Materials Analysis Instrument (MMAD on the 1989 and 1995 

curricula. The analyses found significant differences at .05 level of 

significance for grades 5-8 and 9-12. The researcher concluded there were 

statistically significant differences in the 1989 and 1995 curricula, and that 

further analysis would delineate these differences.

Substantive Hypothesis 2: There is no difference between coding 

performed by human coders and coding performed with a computer in 

relationship to the 1989 and 1995 P.A.S.S. curricula.

Kraskal-Wallis H-test was used to determine if there were any 

significant differences in the coding assigned by two human coders and
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Nud*Ist computer coding using Mathematics Materials Analysis Instrument 

(MMAD on the 1989 and 1995 curricula. The tests found no significant 

differences at .05 level of significance for grades 5-8 and 9-12. The 

researcher concluded that data obtained from using MMAI for the study 

exhibited coding reliability and could therefore be used in data analysis.

Conclusions from Findings of Research Questions

This study asked the following research questions:

1. To what extent do the 1995 P.A.S.S. curricular materials improve 

upon the 1989 P.A.S.S. curricular materials with respect to the Standards of 

mathematics education delineated by the National Council of Teachers of 

Mathematics?

2. Can a researcher-designed evaluative instrument measure the extent 

to which curricular materials meet the NCTM Standards?

The first research question was answered with a combination of 

descriptive statistics and qualitative analyses. An examination of unit titles
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and tables of contents for the 1989 and 1995 curricula showed distinct topical 

differences in content. The researcher concluded this analysis showed the 

1995 P.A.S.S. curriculum was more aligned to the Standards than the 1989 

P.A.S.S. curriculum.

Descriptive statistics from the coded values obtained on Mathematics 

Materials Analysis Instrument (MMAD further illuminated the emerging data. 

Measures of central tendency, frequency distributions, and scatterplots 

substantiated that the 1989 curriculum contained low levels of content 

relating to the Standards and the 1995 curriculum contained moderate levels 

relating to the Standards. These levels were defined by a general coding 

rubric used in conjunction with MMAI as supplementary worksheets (see 

Appendix C).

Content analysis strategies such as "word-frequency counts,. . .  

classification of words into content categories, content category counts, and 

retrievals based on content categories and co-occurrences” (Weber, 1990, 

p. 41) clarified the analyses. Categories pertaining to Standards ideals were 

represented in the 1995 curriculum in higher percentages than in the 1989 

curriculum. The researcher concluded the 1995 curriculum was measurably
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superior to the 1989 curriculum to the extent that Standards ideals were 

reflected in the curricula.

Other findings and conclusions that emerged as the data were analyzed 

involved societal equity issues. The 1995 curriculum exhibited many more 

references to terms and names easily recognizable as Latino in nature. This 

finding was important to the P.A.S.S. program because the curriculum is 

targeted primarily at Latino students. Gender equity was not a major problem 

in either curriculum, although males were targeted more often than females, 

approximately 60:40 in each curriculum. Perhaps in the future this will be 

more balanced.

The use of technology is integral to mathematics reform ideals. The 

previously mentioned content analysis strategies did not highlight this issue to 

the extent that was truly representative of the 1995 curriculum. Word counts 

showed a minimal number of words assigned to the technology category. The 

researcher’s manual examination of student directions and specific problems 

showed numerous opportunities in the 1995 curriculum for the use of 

computers, graphing calculators, and scientific calculators. The 1989 

curriculum did not provide these opportunities.
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The answer to the first research question is that the 1995 P.A.S.S. 

curricular materials improve upon the 1989 P.A.S.S. curricular materials with 

respect to the Standards of  mathematics education delineated by the National 

Council of Teachers of Mathematics to a measurable extent. Mathematics 

Materials Analysis Instrument (MMAD quantified the content as moderate in 

the 1995 curriculum as compared to low in the 1989 curriculum. These levels 

were defined by a general coding rubric used in conjunction with MMAI as 

supplementary worksheets (see Appendix C). The qualitative analyses 

verified this conclusion.

The second research question, "Can a researcher-designed evaluative 

instrument measure the extent to which curricular materials meet the NCTM 

Standards?", was answered in terms of processes integral to instrumentation 

design. These processes are the validation of content and interrater 

reliability in using the instrument.

The evaluative instrument Mathematics Materials Analysis Instrument 

(MMAD and supplementary attachments (see Appendixes A-E) designed for 

this study were validated for content over a three-month period by a panel of 

three expert educators familiar with and experienced in the vision of the
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NCTM Standards. A pilot study was then conducted with sample textbooks 

different from the study curricula to determine if differences in coding the 

same textbooks using the validated MMAI were statistically significantly 

different.

This question generated a new hypothesis for the pilot study: There is 

no statistically significant difference between coders in relationship to sample 

textbooks in the pilot study. The nonparametric Kruskal-Wallis H-test was 

used to determine if there were any significant differences in the coding 

assigned by the participants in the pilot study using the validated MMAI on 

the sample textbooks. The tests found no significant differences at .05 level 

of significance between coders. This was true for two independent trials.

The researcher concluded that coding could be performed accurately and 

reliably by independent coders with the validated MMAI.

The last step in the instrumentation process had been anticipated in 

hypothesis 2. These findings have been presented earlier. They confirmed 

the reliability between the two human coders and Nud*Ist computer coding 

using the validated instrument on the 1989 and 1995 P.A.S.S. curricula. 

Mathematics Materials Analysis Instrument (MMAI) quantified the content as
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moderate in the 1995 curriculum as compared to low in the 1989 curriculum. 

These levels were defined by a general coding rubric used in conjunction with 

MMAI as supplementary worksheets (see Appendix C). The researcher 

concluded the instrument was effective and reliable, and can be used to 

measure the extent to which curricular materials meet the NCTM Standards.

Significant Findings 

This study found the 1995 Portable Assisted Study Sequence 

(P.A.S.S.) curriculum to be measurably superior to the 1989 curriculum with 

respect to meeting NCTM Standards ideals and recommendations. An 

evaluative instrument, Mathematics Materials Analysis Instrument (MMAO. 

was designed for the study and was proven to be effective and reliable for 

purposes of this study.

Impact on Society 

This study has value at three levels: local, state, and national. The 

P.A.S.S. materials are used locally, throughout the state, and manually carried 

by students to many other states as part of the P.A.S.S. program. The
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P.A.S.S. Program offers four sequential 1-year mathematics courses to 

secondary migrant students. The 1989 general mathematics course is the first 

course in the sequence. The 1995 integrated mathematics course is intended 

to provide content and experiences in alignment with NCTM Standards to 

direct and guide teachers and students. This updated curriculum can be 

developed further as sequential courses are written. This can result in a new 

curriculum for migrant students designed around the concepts and transitions 

inherent in the NCTM Standards. Analysis of this important first course in 

the sequence can be valuable for future course developers as they make 

decisions to continue developing the courses to meet NCTM Standards.

Mathematics teachers throughout the state and nation can benefit from 

this study. The flexibility and adaptability of curriculum to meet NCTM 

Standards require mathematics teachers to provide and evaluate 

supplementary material to determine its applicability to the Standards. The 

analysis of content in relationship to the Standards is complex and time- 

consuming. This study can help all secondary mathematics educators who 

interpret and select the supplementary materials they produce or provide in 

their own mathematics classroom. The evaluative instrument, Mathematics
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Materials Analysis Instrument (MMAD. can provide guidance and direction 

during the process of curriculum development as well as for curriculum 

selection.

The process of content analysis of mathematics curricular materials in 

respect to their relationship to the NCTM Standards, and the evaluative 

instrument MMAI, which was developed and used in this study can have 

value to further researchers. Research into content analysis was conducted to 

determine the best way to analyze the P.A.S.S. curricula. The NCTM 

Standards are replete with subjective goals. This study examined previous 

content analysis studies that have dealt with subjective text, as well as 

objective text. Processes for instrumentation were investigated. The 

culminating research produced an evaluative instrument, Mathematics 

Materials Analysis Instrument (MMAD. meeting NCTM Standards that can 

be used in curricular materials development.

This study can help the education profession at all levels identify 

problems that are encountered by the classroom teacher in the process of 

implementing NCTM Standards. The Standards reflect "a vision of 

appropriate mathematical goals for all students" (NCTM, 1995, p. 1). It
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assumes that all students are capable of learning mathematics, and that 

previous curriculum has "underestimated the mathematical capability of most 

students and perpetuated costly myths about students' ability and effort"

(p. 1). The Standards were enacted to address this vision, and "many schools 

and teachers have responded enthusiastically. . .  by changing both the 

mathematical content of their courses and the way in which the content is 

taught" (p. 3). This study can serve to simplify and demonstrate some of the 

problems faced in the distribution of the Standards' ideals to the mathematics 

curriculum.

The need for change in the mathematics curricula in our public schools 

has been well documented (Kirwan, 1990; National Commission on 

Excellence in Education, 1983; National Research Council, 1989; Overby, 

1993). Testing surveys show low overall performance at every age 

throughout the K-12 levels. The Curriculum and Evaluation Standards for 

School Mathematics, issued by the National Council of Teachers of 

Mathematics (NCTM) in 1989 are designed to move mathematics curriculum 

forward to meet the needs of students for the future. The analysis of new
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curricular materials is essential in order to produce materials that meet 

recommended standards.

The 1989 Standards are not the last word. A February 1996, press 

release from the California Department of Education heralds the formation of 

the Commission for the Establishment of Academic Content and Performance 

Standards. The goal of this commission is to "develop rigorous state

standards in all major subject areas and for all grade levels The first

proposed standards will be for reading, writing, and mathematics in order to 

facilitate the development of statewide tests in those subjects" (p. 1). It is 

clear that standards are a major component of education and that this study 

can be extremely useful across all disciplines.

The potential for significant social change in mathematics education is 

enormous given the appropriate mathematics curricula, equitable 

opportunities for all students, and motivation for all concerned parties. This 

study represents a pioneering effort to quantify the changes that can hopefully 

help our society meet these goals. This process can be replicated in other 

disciplines, which increases the potential for social change. Significant 

curricular reform will have significant social impact.
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Although a good content analysis will answer some question, it is also 

expected to pose new ones.. . .  The beginning and end of a content 

analysis mark but an arbitrary segment in time.

(Krippendorff, 1980, p. 169)

This study represents a pioneering effort to quantify changes in our 

mathematics curriculum through the design and introduction of the evaluative 

instrument Mathematics Materials Analysis Instrument fMMAD. Future 

research can improve the validity and reliability of this instrument through 

rigorous statistical treatments such as factor analysis, and more complex 

studies to improve interrater reliability and content validation. Interrater 

reliability studies using participants from dissimilar environments holding 

varied philosophical viewpoints could improve the reliability of MMAI. The 

instrument can be further streamlined, for example, by consolidation of 

categories. The study can be replicated with other curricular materials and in 

other disciplines to further strengthen its effectiveness and usefulness to 

education. The research design for this study can be used to analyze other 

educational issues. Finally, the power of third-generation content analysis
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software such as Nud*Ist has not been fully utilized in this study. Third- 

generation programs offer opportunities for qualitative theory building. 

Future researchers can unleash this power and build immensely on this 

pioneering study.
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Appendix A 174

Mathematics Materials Analysis Instrument (MMAI)

Adapted from A Guide for Reviewing School Mathematics Programs (1991)
National Council of Teachers of Mathematics (NCTM)

CURRICULUM
5-8

Problem solving, a central goal of the 5*8 curriculum, should focus on the analysis of situations and the posing o f problems, on work with non-routine 
problems and problems with more than a single solution, and on the development of a variety of problem-solving strategies. Students’ 
communications about mathematics must emphasize informal descriptions, the representation of ideas in various forms, and the use of the precise 
language and notation of mathematics. The transition from arithmetic to algebra should be accompanied by activities designed to promote the 
exploration of ideas in concrete settings and subsequent abstraction, generalization, and symbolization of those ideas.

CODING VALUES

TO WHAT EXTENT IS THIS REPRESENTED IN YOUR MATHEMATICS MATERIALS?
1-No = Not represented
2-Lo = Low level of representation
3-Mod = Moderate level of representation
4-Hi = High level of representation

Title:_______________________________________________________  Supplementary M aterials (e .g ., student activity

Publisher:_____________________________________________  workbook, projects, etc.)

Date of Publication:____________________________________  1. Title:________________________________

No. o f Pages:__________________________________________  2. Title:_________________________________

No. o f Chapters:_______________________________________ 3. Title:________________________________
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A. Problem Solving (Critical-Thinking Skills)
Learning to solve problems is the principal reason for studying mathematics. Problem solving is the process o f  applying previously acquired 

knowledge to new and unfamiliar situations. Solving word problems is one form ofproblem solving, but materials also should provide non-routine 
problems. Problem-solving strategies should Include opportunities to pose questions, analyze situations, translate results, illustrate results, draw 
diagrams, and use trial and error. There should be alternative solutions to problems; problems should have more than a single solution.

To what extent does this happen in your materials? None Lo Mod Hi
1. Activities that promote original thinking are routinely encountered in the material. 1 2 3 4
2. The problem-solving process includes checks for reasonableness and completeness. 1 2 3 4
3. Topics are often applied to real-world situations. 1 2 3 4
4. Problems that are non- routine or require multi-step solutions are posed on a regular basis. 1 2 3 4
5. Situations are presented that require students to determine the problem; collect data; use missing data, formulas, and 1 2 3 4

procedures; and determine an acceptable solution.
6. Students use computer simulations to model and analyze complex situations. 1 2 3 4
7. Mathematical information routinely appears in various forms (e.g., tables, graphs, formulas, and functions). 1 2 3 4
8. Group problem solving is encouraged, with activities that promote students to share responsibility for the product of the 1 2 3 4
activity and to discuss the results.
9. Activities are structured so that several strategies or techniques are available for use in the solution process 1 2 3 4
10. Activities are sequenced to guide student development from concrete instance to formal examinations. 1 2 3 4
11. Interdisciplinary projects and/or exercises are encouraged. 1 2 3 4
12. Activities encourage students to generalize results to other situations and subject-matter areas. 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of  + + ___+ ___
those calculations.

Sum of Coded Values
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B. Communication
The 5-8 program should provide opportunities for students to develop and use the language and notation o f  mathematics. Vocabulary that is 

unique to mathematics and terms that have a common, as well as a mathematical, connotation should be used throughout the materials. Opportunities 
to express mathematical ideas by writing, speaking, making models, drawing diagrams, and preparing graphs should be provided.

To what extent does this happen in your materials?_____________________________________________________________None Lo Mod Hi
1. Mathematical situations are represented or described in a variety of ways (e.g., verba), concrete, pictorial, graphical, 
algebraic).

1 2 3 4

2. The understanding of mathematics is developed through open-ended activities and exercises which promote reflection, 
organization, and communication of ideas.

1 2 3 4

3. Activities and exercises are designed in such a manner that students are required to take positions on mathematical 
processes and defend their solutions through sound argument.

1 2 3 4

4. The need for formal mathematical symbolism is demonstrated. 1 2 3 4
S. The ability to read and analyze mathematics is emphasized. 1 2 3 4
6. The ability to write mathematics problems from real-world situations is emphasized. 1 2 3 4
7. Activities encourage students to demonstrate proper mathematical vocabulary and notation. 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of + + ___+ ___
those calculations.

 Sum of Coded Values
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C. Computation
The 5-8 program should offer opportunities to compute with whole numbers, decimals, and fractions. Calculators or computers should be 

usedfor long, tedious computations. Additional mathematics topics should be providedfor all levels o f  ability in addition to exercises promoting 
mastery o f  computational algorithms. Exercises should promote rapid approximate calculations using mental arithmetic and a variety o f  
computational estimation techniques. When computation is needed, an estimate should be used to check reasonableness, examine a conjecture, or 
make a decision. Simple techniques fo r  estimating measurements such as length, area, volume, and mass (weights) should be demonstrated. 
Appropriate levels o f  precision should be required.

To what extent does this happen in your materials?____________________________________________________________ None Lo Mod Hi
1. Students are required to use pencil and paper to add, subtract, multiply, and divide decimals and fractions with common 

denominators.
1 2 3 4

2. A calculator is used to add, subtract, multiply, and divide more cumbersome fractions and decimals. 1 2 3 4
3. Computational algorithms are developed with an emphasis on having students understand the underlying principles 

(the whys).
1 2 3 4

4. Estimation is encouraged to check for reasonableness of computations (i.e., guess-and-check, mental arithmetic). 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of  + + ___+
those calculations.

 Sum of Coded Values
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D. Measurement
Mathematics should be presented as having power, usefulness, and creative aspects so it is not viewed by students as a static, bounded set o f  

rules and procedures to be memorized but quickly forgotten. When measurement is explored through rich, investigative, purposeful activity, it affords 
such opportunity. Fundamental concepts o f  measurement should be demonstrated through concrete experiences.

To what extent'does this happen in your materials?____________________________________________________________ None Lo Mod Hi
1. Basic units of measurement in the metric system and the relationships among those units of measurement-both within 
the dimension (e.g., length or volume)—are included.

1 2 3 4

2. Basic units of measurement in the English system and the relationships among those units within a dimension (e.g., feet 
in a yard or pints in a quart) are included.

1 2 3 4

3. Activities and exercises encourage students to select appropriate instruments to measure a dimension accurately. 1 2 3 4
4. Activities and projects encourage students to make and interpret scale drawings. 1 2 3 4
5. Activities and projects encourage students to develop and use procedures as well as formulas to determine area and 
volume.

1 2 3 4

6. Students are required to estimate measurements in both the metric system and the English system. 1 2 3 4
7. Student-developed systems of measurement are encouraged. 1 2 3 4
8. Concepts of perimeter, area, and volume are developed intuitively through the use of activities designed for counting 
units, covering surfaces, and filling containers.

1 2 3 4

9. Real-world activities encourage the use of measurements to generate student-collected data. 1 2 3 4

Compute the Sum o f Coded Values by calculating sums for each column, and then finding the sum of  + + ___+ ___
those calculations.

 Sum of Coded Values
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E. Number and Number Systems
A critical part o f  the middle school mathematics curriculum is a student's ability to generate, read, use,, and appreciate multiple 

representations fo r  the same quantity. A student's understanding o f  numerical relationships as expressed in ratios and proportions, equations, tables, 
graphs, and diagrams is o f  crucial importance in mathematics. Additionally, students need to understand the underlying structure o f  arithmetic. 
Emphasis must be placed on the reasons why various kinds o f  numbers 0-actions, decimals, and integers) occur; on what is common among various 
arithmetic processes (how the basic operations are similar and different across sets o f  numbers—whole numbers versus fractions versus decimals, 
etc.); and on how one system relates to another (integers—an extension o f whole numbers).

To what extent does this happen in your materials?____________________________________________________________ None Lo Mod Hi
1. The sets of numbers are developed starting with the counting numbers and ending with the irrational numbers. 1 2 3 4
2. Numbers are understood to have several representations (fractions, decimals, etc.), and processes are available to convert 
from one to another.

1 2 3 4

3. Numbers are written as numerals, in words, and in expanded notation. 1 2 3 4
4. The relationship between a number (or set of numbers) and its graph(s) is emphasized. 1 2 3 4
5. The use of ratio and proportion is extended to cases that are different from the problems normally found in traditional 
materials (i.e., real-world applications, interdisciplinary topics, etc.).

1 2 3 4

6. The most appropriate form of a number is used in computation (i.e., scientific notation, decimal, fraction, percent, etc.) 1 2 3 4
7. Numbers with terminating, repeating, or non-repeating decimal forms are presented and used properly. 1 2 3 4
8. Number theory concepts such as prime numbers, GCF, LCM, and divisibility are introduced and developed. 1 2 3 4
9. Mathematics is viewed as a systematic development of a body of knowledge from a few accepted propositions by applying 
logical and procedural rules.

I 2 3 4

10. The concepts of relation and function are introduced and explored. 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of ___+ ___
those calculations.

Sum of Coded Values
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F. Geometry
Students should have knowledge o f  concepts such as parallelism, perpendicularity, congruence, similarity, and symmetry. They should know 

properties ofsimple plane and solid geometric figures and should be able to visualize and verbalize how objects move in the world around them using 
terms such as slides, flips, and turns. Geometric concepts should be explored in settings that involve problem solving and measurement.

To what extent does this happen in your materials?_____________________________________________________________None Lo Mod Hi
1. The identification and description of geometric figures in 1,2. and 3 dimensions are emphasized. 1 2 3 4
2. Opportunities to visualize, represent, and manipulate one-, two-, and three-dimensional figures are provided. 1 2 3 4
3. The relationships between geometric properties and other mathematical concepts are explored (i.e., similarity to ratio, 
congruence to equivalence, etc.).

1 2 3 4

4. Geometric relationships and their consequences are developed through non-classroom experiences and activities (i.e., 
research activities which explore community engineering projects, etc.).

1 2 3 4

S. Appreciation of geometry and its relationship to the physical world is developed. 1 2 3 4
6. Constructing, drawing, and measuring are used to further understanding of geometric properties. 1 2 3 4
7. Technology is used to explore geometric properties. 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of  + + ___+ ___
those calculations.

Sum of Coded Values
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G. Probability and Statistics
Understanding probability and the related area o f statistics is essential to being an informed citizen and is important in the study o f  many 

other disciplines. Students in grades 5-8 have a keen interest in trends in music, movies, and fashion and in the notions offairness and the chances o f 
winning games. These Interests can be excellent student motivators for the study ofprobability and statistics.

To what extent does this happen in your materials?____________________________________________________________ None Lo Mod Hi
1. Activities and projects encourage the systematic collection and organization of data. 1 2 3 4
2. Collections of data are represented and described by developing and using charts, graphs, and tables. 1 2 3 4
3. Exercises and activities are provided to demonstrate and analyze the likelihood of bias in a collection of data. 1 2 3 4
4. Predictions are made by interpolation or extrapolation from events or a given collection of data. 1 2 3 4
5. Basic statistical notions (e.g., measures of central tendency, variability, correlation, and error) are developed. 1 2 3 4
6. The concept of probability is developed and applied both in a laboratory (classroom) and in the real world. 1 2 3 4
7. Simulations and experiments are devised and conducted to determine empirical probabilities. 1 2 3 4
8. The role of probability is emphasized in situations of chance, insurance, weather, and other activities. 1 2 3 4
9. When students calculate from real data, the level of accuracy and the precision needed are emphasized. 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of + + ___ +
those calculations.

Sum of Coded Values
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H. Algebra
One o f  the most important roles o f  the middle grade mathematics curriculum is to provide a transition from arithmetic to algebra. It is 

crucial that students in grades 5-8 explore algebraic concepts in an informal way in order to build a foundation for the subsequent formal stuffy o f  
algebra.

To what extent does this happen in your materials? None Lo Mod Hi
1. A variety of mathematical representations (e.g., physical models, data, tables, graphs, matrices, etc.) are demonstrated 
and required in informal explorations with algebraic ideas (e.g., variable, expression, equation).

1 2 3 4

2. Concrete experiences with situations that allow students to investigate patterns in number sequences, make predictions, 
and formulate verbal rules to describe patterns are emphasized.

1 2 3 4

3. Students’ use of algebraic concepts in applications is emphasized with a concurrent de-emphasis on routine algebraic 
manipulations.

1 2 3 4

Compute the Sum o f Coded Values by calculating sums for each column, and then finding the sum of + + -+
those calculations.

 Sum of Coded Values
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Mathematics Materials Analysis Instrument (MMA1)

Adapted from A Guide for Reviewing School Mathematics Pm oram * (1991)
National Council of Teachers of Mathematics (NCTM)

CURRICULUM
9-12

Problem solving should occur throughout all courses and should address the development of mathematical models of realistic situations. Many 
different activities, such as gathering data, exploring patterns, making and testing conjectures, and justifying conclusions through logical arguments, 
are necessary to develop students’ mathematical reasoning and ability to communicate about mathematics. The availability of calculator and computer 
technology should reduce the emphasis on by-hand procedures for arithmetic computation and symbolic algebraic manipulation in the 9-12 
curriculum. This should give additional opportunity to address topics such as probability and statistics, discrete mathematics, and spatial 
visualization.

CODING VALUES

TO WHAT EXTENT IS THIS REPRESENTED IN YOUR MATHEMATICS MATERIALS?
1-No = Not represented
2-Lo = Low level of representation
3-Mod -  Moderate level of representation
4-Hi = High level of representation

Title:_________________________________________________  Supplementary Materials (e.g., student activity

Publisher:_____________________________________________  workbook, projects, etc.)

Date of Publication:____________________________________  1. Title:_________________________________

No. o f Pages:__________________________________________ 2. Title:_________________________________

No. of Chapters:_______________________________________ 3. Title:_________________________________
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CURRICULUM: 9-12

A. Problem solving (Critical-Thinking Skills)
Learning to solve problems is the principal reason for studying mathematics. Problem solving is the process o f  applying previously acquired 

knowledge to new and unfamiliar situations. Solving word problems in texts is one form ofproblem solving, but materials should also contain non­
routine problems. Problem solving involves posing questions, drawing diagrams, analyzing situations, using guess and check, and illustrating and 
interpreting results. Materials should provide opportunities for alternative solutions to problems, and problems with more than a single solution. 
Problems and applications should be used to stimulate the study o f  mathematical concepts

To what extent does this happen in your materials?___________________________________________________________  None Lo Mod Hi
1. Problems are designed to introduce, develop, and review mathematical topics. 1 2 3 4
2. Concrete models are used to demonstrate realistic situations. 1 2 3 4
3. Activities and exercises encourage the use of a variety of problem-solving strategies to solve a broad range of 
problems.

1 2 3 4

4. Non-routine problems encourage the application of previous knowledge to unfamiliar situations. 1 2 3 4
5. The complexity of problem-solving is demonstrated through problems requiring more than one solution. 1 2 3 4
6. Exercises and activities are designed in such a manner as to encourage students to analyze incorrect solutions to 
identify errors in the problem-solving process.

1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of  + + ___+ ___
those calculations.
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B. Communication
The 9-12 program should give students opportunities to develop, learn, and use the language and notation o f  mathematics. Vocabulary that 

is unique to mathematics and terms that have a common, as well as a mathematical, connotation should be developed and used throughout the 
curriculum. Mathematical ideas should be expressed by writing, speaking, making models, drawing diagrams, and preparing graphs. Opportunities 
should be provided for discussing mathematical topics.

To what extent does this happen in your materials?___________________________________________________________  None Lo Mod Hi
1. Activities, projects, and exercises encourage students to work in small groups. 1 2 3 4
2. Mathematical concepts are demonstrated with a variety of communication strategies (i.e., speaking, writing, drawing 
diagrams, graphing, and demonstrating with concrete models).

1 2 3 4

3. Symbolism and mathematical notation are demonstrated throughout the materials. 1 2 3 4
4. Exercises and activities encourage students to use appropriate symbols and mathematical notation. 1 2 3 4
S. Exercises and activities encourage students to use appropriate mathematical vocabulary. 1 2 3 4
6. Writing deductive arguments in paragraph form is encouraged. 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of  + + __ + ___
those calculations.

 Sum of Coded Values
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C. Computation and Estimation
The 9-12 program gives students a variety o f  opportunities to gain facility in computing with whole numbers, decimals, andfractions and in 

using the four basic operations. It also provides opportunities for students to develop and use estimation skills and concepts on a continuing basis 
throughout the materials.

To what extent does this happen in your materials?___________________________________________________________  None Lo Mod Hi
1. Choosing appropriate computational methods (mental arithmetic, paper-and-pencil algorithms, or calculating device) is 
emphasized in the materials.

1 2 3 4

2. Selecting the appropriate computation to be performed is stressed as well as performing the computations. 1 2 3 4
3. Activities and exercises encourage students to use estimation to judge reasonableness of results. 1 2 3 4
4. Activities and exercises encourage students to use estimation frequently as part of the problem-solving process. 1 2 3 4
5. Situations are presented for which the precision of results must be determined. 1 2 3 4
6. Activities and exercises encourage students to question the reasonableness of a solution to a problem as an important 
part of the problem-solving process.

1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum of + + ___ + ___
those calculations.

 Sum of Coded Values

Comments:

13



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

187

D. Reasoning
Provision is made at all levels for introducing and using simple valid arguments. The 9-12 program gives students opportunities to team the 

basic tenets o f  logical argument and to validate arguments. Connections among various representations o f  mathematical ideas are used to develop 
arguments.

To what extent does this happen in your materials?___________________________________________________________  None Lo Mod Hi
1. Activities and exercises provide opportunities for listening and discussion. 1 2 3 4
2. Activities and exercises provide opportunities for exploration and questioning. 1 2 3 4
3. Activities and exercises provide opportunities for summarization and evaluation. 1 2 3 4
4. Activities and exercises provide opportunities to explore patterns. 1 2 3 4
5. Activities and exercises provide opportunities to make and test conjectures. 1 2 3 4
6. Activities and exercises are designed to teach students to follow and judge logical arguments. 1 2 3 4

Compute the Sum o f Coded Values by calculating sums for each column, and then finding the sum of ___+___+ ___+ ___
those calculations.

 Sum of Coded Values
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E. Integration
The 9-12 program should provide integrated mathematics topics across the curriculum.

To what extent does this happen in your materials?___________________________________________________________  None Lo Mod Hi
1. Function, as introduced in algebra, serves as a unifying concept across all mathematics courses (e.g., geometric 
transformations, trigonometric functions, and sequences).

1 2 3 4

2. The concepts of limit, maximum, and minimum are developed informally throughout the algebra strand. 1 2 3 4
3. The study of geometric properties is not restricted to formal geometry courses. 1 2 3 4
4. Discrete mathematics topics are included in the materials (i.e., finite graphs, matrices, sequences, series, combinations, 
permutations, and discrete probability).

1 2 3 4

5. Opportunities are provided in the materials to encourage students to collect, organize, and display data. 1 2 3 4
6. Activities and exercises promote the formulation of original problems which integrate mathematical content. 1 2 3 4

Compute the Sum o f Coded Values by calculating sums for each column, and then finding the sum of  + + ___+ ___
those calculations.
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F. Interdisciplinary Emphasis
The 9-12 program should provide real-world applications in realistic situations. A variety o f  mathematical topics should be extended to 

other curricular areas.
To what extent does this happen in your materials?___________________________________________________________ None Lo Mod Hi
1. Problems are chosen to integrate strands of mathematics with applications from other curricular areas. 1 2 3 4
2. Data from real-world situations are used to illustrate the propct lies of trigonometric functions. 1 2 3 4
3. Applications of probability in related fields such as business and sports are integrated into the materials. 1 2 3 4
4. Charts, tables, and graphs are used to draw inferences from real-world situations. 1 2 3 4
5. Students are required to apply statistical techniques to other subject areas. 1 2 3 4
6. The approach to computation reflects the ways in which computation is, and may be, used outside the school setting. 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum o f __+ ___ + ___ +__
those calculations.
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G. Technology
The 9-12 program should use calculators and computers as tools fo r graphing, problem solving, performing tedious calculations, generating 

data, and developing concepts. Materials should allow students to appropriately choose calculators or computers to perform calculations that 
warrant their use.

To what extent does this happen in your materials?___________________________________________________________  None Lo Mod Hi
1. The systematic use of calculators and/or computers to explore algebraic concepts reduces the need for paper-and-pencil 
graphing.

1 2 3 4

2. The use of the scientific calculator is encouraged to reduce the need for tables and pencil-and-paper interpolation skills. 1 2 3 4
3. Students are encouraged in the materials to use calculators and computers as tools in statistical investigations. 1 2 3 4
4. Students are encouraged in the materials to use calculators in daily work and on examinations. I 2 3 4
3. Students are encouraged in the materials to use computers in daily work and on examinations. 1 2 3 4
6. Students are encouraged to use calculators to develop estimation skills and to check for reasonableness of results. 1 2 3 4

Compute the Sum o f Coded Values by calculating sums for each column, and then finding the sum of __+___ + ___+___
those calculations.

Sum of Coded Values
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H. Other Curriculum Emphasis
There should be a change in the content emphasis in the secondary school curriculum. The strong emphasis traditionally placed on 

computational algorithms in the curriculum fo r  non-college-bound students should give way to the inclusion o f a broad range o f studies, including 
problem solving, estimation, geometric concepts, applications, and mathematical reasoning. The program fo r college-bound students should 
integrate the same concepts and reduce the emphasis on algebraic manipulation skills. Lack o f mastery ofpaper-and-pencil computation should not 
prohibit students from stutfying additional mathematics topics.

To what extent does this happen in your materials?___________________________________________________________  None Lo Mod Hi
1. Opportunities are provided to study additional mathematics topics that do not require competence with paper-and- 
pencil computations.

1 2 3 4

2. The materials emphasize algebraic concepts such as linearity, function, equivalence, and solution. 1 2 3 4
3. Investigations and comparisons of various geometries are used to enhance the study of geometric concepts. 1 2 3 4
4. Materials encourage the use of three-dimensional figures to develop spatial skills. 1 2 3 4
S. Opportunities are provided for students to analyze the validity of statistical conclusions. 1 2 3 4
6. Opportunities are provided to analyze the uses and abuses of data interpretation. 1 2 3 4

Compute the Sum of Coded Values by calculating sums for each column, and then finding the sum o f __+___ + ___ + ___
those calculations.
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Instructions for using Mathematics Materials Analysis Instrument (MMAI)

Materials on hand:
1) Scope and Summary of National Council of Teachers of Mathematics (NCTM)

Standards - 6 pages
2) General Coding Rubric for Mathematics Materials Analysis Instrument (MMAI)
3) Mathematics Materials Analysis Instrument (MMAI)

- Grades 5-8 (pp. 1-9)
- Grades 9-12 (pp. 10-18)

4) Worksheet (pp. 1-4) with Example-Grades 9-12 (pp. 5-8)

1) Preview the above materials to understand the topics and areas involved in the NCTM 
Standards and the MMAI. The evaluator can refer to the reference materials listed below for 
further clarification.

2) Review the mathematics curricular materials and supplementary materials that are being 
evaluated to obtain a vision of the contents, and to provide insight into the scope and direction 
of the content and objectives.

3) Complete the MMAI. The General Coding Rubric should be used to help focus on general 
considerations that are part of the vision of the NCTM Standards A  coding value from
1 to 4 is circled on the instrument for each subcategory. The materials listed at the top of this 
page, the mathematics curricular materials, supplementary materials, and the reference 
materials listed below may be referred to as often as necessary during the completion of the 
instrument.

4) The worksheet is completed after the instrument is completed. The Sum o f coded values for 
each category is transferred to the appropriate section on the worksheet. The worksheet pro­
vides details for calculating and interpreting the results.

Recommended reference materials:

Mathematical Sciences Education Board. (1989). Everybody counts. Sacramento, CA Author.

National Council of Teachers of Mathematics. (199S). Assessment standards for school 
mathematics. Reston, V A  Author.

National Council of Teachers of Mathematics. (1995). Connecting mathematics across the 
curriculum. Reston, VA: Author.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards 
for school mathematics. Reston, VA Author.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Appendix C

General Coding Rubric for Mathematics Materials Analysis Instrument fMMAD

To what extent is this represented in your curriculum?
1-No Not represented
2-Lo Low level of representation
3-Mod Moderate level of representation
4-Hi High level of representation

The following considerations are important in determining which code is most 
applicable.

1 - No •  Traditional - non-integrated. Mathematics is presented in a linear fashion, i.e.,
Algebra, Geometry, Trigonometry, and so on.

•  Rote learning, memorization, deductive reasoning is emphasized.
•  Problems are close-ended; computational skills are emphasized.
• Calculators may be optional.
•  Teacher is the expert and students are encouraged to work alone.
•  The "decreased attention” topics are emphasized. (See 'Scope and Summary of 

NCTM Standards - Summary o f Changes in Content and Emphases).

2 - Lo •  Traditional - non-integrated. Mathematics is presented in a linear fashion, i.e.,
Algebra, Geometry, Trigonometry, and so on.

•  Rote learning and memorization are emphasized but there is some flexibility.
•  Problems are more complex and alternate solutions occasionally exist
•  Teacher is the expert but students are encouraged at times to work together.
•  Computers and calculators are encouraged for computational exercises.

3- Mod •  Integrated mathematics curriculum (broad range of topics within mathematics).
•  Students work periodically in cooperative groups.
•  Projects, portfolios, manipulatives, and models are used to a limited degree.
•  Computers and calculators are used for exploration as well as computational 

exercises.
•  Students use several methods to communicate their ideas.
•  The teacher and students share the 'expert* role, but the teacher is the 

ultimate authority.

4- High •  Integrated mathematics curriculum (broad range of topics within mathematics).
•  Interdisciplinary curriculum.
•  Teacher is facilitator, provides resources, and introductory information.
•  Students are team members, explorers, discoverers, and predictors.
•  Computers, calculators (including graphing calculators), and multimedia are 

used extensively.
•  Concrete models and manipulatives are available or are constructed by students to 

explore and refine ideas.
•  Real-world applications are emphasized; students are encouraged to explore in their 

own community.
•  Projects and investigations replace rote exercises.
•  Students learn to compute through rote exercises but quickly advance to more 

complex ideas and problems.
•  Problems emphasize open-ended responses.
•  Students use a variety of communication methods.
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Appendix D

Scone and Summary of National Council of Teachers of Mathematics fNCTMl Standards

The Curriculum and Evaluation Standards for School Mathematics issued by the National

Council of Teachers of Mathematics in 1989 (NCTM Standards or Standards) are designed to move

mathematics curriculum forward to meet the needs of students for the future. These needs center around

environmental, biological, sociological, and technological issues. Many educators believe integrated

curriculum design is the only way to meet these challenges of holistic learning.

The Standards reflect the reforms needed in mathematics. It defines curriculum as the "intended

curriculum" or the "plan for a curriculum".

A curriculum is an operational plan for instruction that details what mathematics students need 
to know, how students are to achieve the identified curricular goals, what teachers are to do to 
help students develop their mathematical knowledge, and the context in which learn­
ing and teaching occur. (National Council of Teachers of Mathematics, 1989, p. 1)

A standard is a "statement about what is valued" (NCTM, 1989, p. 2) and ensures quality, 

indicates goals, and promotes change. The Standards assert that the educational system must meet new 

social goals. These are defined as providing for society mathematically literate workers, lifelong learning, 

opportunity for all, and an informed electorate. Students must learn to value mathematics, become 

confident in their mathematical abilities, become mathematical problem solvers, learn to communicate 

mathematically, and learn to reason mathematically, (p. S)

The Standards emphasize the need to "do” rather than "know" (NCTM, 1989, p. 7). 

Interdisciplinary curriculum must be included to supplement and replace portions of traditional 

engineering and physical science applications. Technology must be included and updated to reflect the 

nature of m athematics. The curriculum must be available to all students if "they are to be productive 

citizens in the twenty-first century" (p. 9). Students must participate in activities which model genuine

1
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problems, and be encouraged to experiment, discuss, and discover ideas and concepts. The thinking 

processes of problem solving, communication, reasoning, and connections are emphasized at all levels.

Content standards are separated into elementary, middle, and high school grades with specific 

topics and sub-topics which should be addressed. Content in the elementary grades consists of estimation: 

number sense and numeration; whole number operations and computation; geometry and spatial sense; 

measurement; statistics and probability; fractions and decimals; and patterns and relationships. Content 

in the middle school grades consists o f number and number relationships; number systems and number 

theory; computation and estimation; patterns and functions; algebra; statistics; probability, geometry, and 

measurement Content in the high school grades consists of mathematical connections; algebra; 

functions; geometry from a synthetic perspective; geometry from an algebraic perspective; trigonometry, 

statistics; probability, discrete mathematics; conceptual underpinnings of calculus; and mathematical 

structure.

Instructional strategies are important to successful adaptation of the Standards proposed by 

NCTM. Students must have access to manipulatives, calculators, computers, and other appropriate tools 

and techniques. Interactive, cooperative groupwork is essential, and students must work independently 

and collaboratively. Assessment must be varied, practical, fair, and meet new standards of quality. 

Students should be given time to master material and opportunities to improve the quality of their work. 

Projects and investigations should be large-scale, and reflect social issues that help connect mathematics 

to society. Students should learn to communicate their learning and ideas in mathematics through 

written, oral, and electronic reports.

Teachers must adapt their styles in the classroom to the new instructional strategies. Teachers 

must become "facilitators of learning rather than imparters of information" (NCTM 1989, p. 41.) They 

must be conscious of their prejudices and overcome them in the classroom. They must provide equal 

learning opportunities for all students, and adapt curriculum to multicultural needs in the classroom. 

Teachers must become practicing mathematicians to provide role models for their students and thereby

2
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encourage an interest in mathematics. Teachers must encourage discussion and freedom for students to

make errors, while exercising caution to fit their own teaching style. They must "produce a classroom

climate that encourages students to take risks and venture incomplete thoughts, knowing that others will

try to understand and will value the individual's thinking" (NCTM, 1989, p. S3).

Providing curriculum that is aligned to the Standards require an understanding that

the Standards offer a vision of, and a direction for, a mathematics curriculum but does not 
constitute a curriculum in itself. If a mathematics program is to be consistent with the Standards, 
its goals, objectives, mathematical content, and topic emphases should be compatible with the 
Standards' vision and intent Likewise, the instructional approaches, materials, and activities 
specified in the curriculum should reflea the Standards' recommendations and be articulated 
across grade levels. In addition, the assessment methods and instruments should measure the 
student outcomes specified in the Standards. (NCTM, 1989, p.241)

The M athem atics Curricula Analysis Instrument is compiled for grades 5-8 and 9-12. The 
curriculum standards for each grade level are summarized below and the summaries of changes in content 
and emphasis for these grade levels are attached.

Grades 5-8: 13 C urriq ilnm  Standards Grades 9-12: 14 Curriculum Standards

1) Problemsolving
2) Communication
3) Reasoning
4) Mathematical connections
5) Number and number relationships
6) Number systems and number theory
7) Computation and estimation
8) Patterns and functions
9) Algebra
10) Statistics
11) Probability
12) Geometry
13) Measurement

1) Problemsolving
2) Communication
3) Reasoning
4) Mathematical connections
5) Algebra
6) Functions
7) Geometry from a synthetic perspective
8) Geometry from an Algebraic perspective
9) Trigonometry
10) Statistics
11) Probability
12) Discrete mathematics
13) Conceptual underpinnings of Calculus
14) Mathematical structure

3
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Summary of Changes in Content and Emphasis - Grades 5-8

Increased Attention____________________

Problem Solving:
•Pursuing open-ended problems and extended 

problem-solving projects.
•Investigating and formulating questions from 

problem situations.
•Representing situations verbally, numerically, 

graphically, geometrically, or symbolically.

Communication:
•Discussing, writing, reading, and listening to 

mathematics ideas.

Reasoning:
•Reasoning in spatial contexts.
•Reasoning with proportions.
•Reasoning from graphs.
•Reasoning inductively and deductively.

Connections:
•Connecting mathematics to other subjects 

and to the world outside the classroom.
•Connecting topics within mathematics.
•Applying mathematics.

Number/Operations/Computation:
•Developing number sense.
•Developing operation sense.
•Creating algorithms and procedures.
•Using estimation both in solving problems and 

in checking the reasonableness of results.
•Exploring relationships among representations 

o f and operations on, whole numbers, fractions, 
decimals, integers, and rational numbers.

•Developing an understanding of ratio, proportion, 
and percent

Patterns and Functions:
•Identifying and using functional relationships.
•Developing and using tables, graphs, and rules 

to describe situations.
•Interpreting among different mathematical 

representations.

Decreased Attention

Problem Solving:
•Practicing routine, one-step problems.
•Practicing problems categorized by types (e.g., coin 

problems, age problems).

Communication:
•Doing fill-in-the-blank worksheets.
•Answering questions that require only yes, no, or 

a number as responses.

Reasoning:
•Relying on outside authority (teacher or an answer 

key).

Connections:
•Learning isolated topics. 
•Developing skills out o f context

Number/Operations/Computation:
•Memorizing rules and algorithms.
•Practicing tedious paper-and-pencil computations. 
•Finding exact forms of answers.
•Memorizing procedures, such as cross­

multiplication, without understanding.
•Practicing rounding numbers out of context

Patterns and Functions:
•Topics seldom in the current curriculum.
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Summary of Changes in Content and Emphasis - Grades 5-8 - p. 2 

Increased Attention:___________________  Decreased Attention:__________

Algebra:
•Developing an understanding of variables, 

expressions, and equations.
•Using a variety of methods to solve linear 
equations and informally investigate inequalities 
and nonlinear equations.

Statistics:
•Using statistical methods to describe, analyze, 
evaluate, and make decisions.

Probability:
•Creating experimental and theoretical 
models of situations involving probabilities.

Geometry:
•Developing an understanding of geometric 
objects and relationships.

•Using geometry in solving problems.

Measurement:
•Estimating and using measurement to 

solve problems.

Instructional Practices:
•Actively involving students individually and 

in groups in exploring, conjecturing, analyzing,
•Using appropriate technology for computation 
and exploration.

•Using concrete materials.
•Being a facilitator of learning.
•Assessing learning as an integral part of 

instruction.

Algebra:
•Manipulating symbols.
•Memorizing procedures and drilling on equation 
solving.

Statistics:
•Memorizing formulas.

Probability:
•Memorizing formulas.

Geometry:
•Memorizing geometric vocabulary. 
•Memorizing facts and relationships.

Measurement:
•Memorizing and manipulating formulas. 
•Converting within and between measurement 

systems.

Instructional Practices:
•Teaching computations out of context 
•Drilling on paper-and-pencil algorithms. 
•Teaching topics in isolation.
•Stressing memorization.
•Being the dispenser of knowledge.
•Testing for the sole purpose of assigning grades.

5
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Summary of Changes in Content and Emphases - Grades 9-12 

Increased Attention:_______________________  Decreased Attention:_____

199

Algebra:
•The use of real-world problems to motivate 

and apply theory.
•The use of computer utilities to develop 
conceptual understanding.

•Computer-based methods such as 
successive approximations and graphing

•The structure of number systems.
•Matrices and their applications.

Geometry:
•Integration across topics at all grade levels.
•Coordinate and transformation approaches.
•The development of short sequences of theorems.
•Deductive arguments expressed orally and in 

sentence or paragraph form.
•Computer-based explorations of 2-D and 3-D 

figures.
•Three-dimensional geometry.
•Real-world applications and modeling.

Trigonometry:
•The use of appropriate scientific calculators.
•Realistic applications and modeling.
•Connections among the right triangle ratios, 

trigonometric functions, and circular functions.
•The use of graphing utilities for solving 

equations and inequalities.

Functions:
•Integration across topics at all grade levels.
•The connections among a problem situation, 

its model as a function in symbolic form, and 
the graph of that function.

•Function equations expressed in standardized 
form as checks on the reasonableness of graphs 
produced by graphing utilities.

•Functions that are constructed as models of 
real-world problems.

Algebra:
•Word problems by type, such as coin, digit, and 

work.
•The simplification of radical expressions.
•The use o f factoring to solve equations and to 

simplify rational expressions.
•Operations with rational expressions.
•Paper-and-pencil graphing of equations by point 

plotting.
•Logarithm calculations using tables and 

interpolation.
•The solution of systems of equations using 

determinants.
•Conic sections.

Geometry:
•Euclidean geometry as a complete axiomatic
system.
•Proofs of incidence and betweenness theorems.
•Geometry from a synthetic viewpoint
•Two-column proofs.
•Inscribed and circumscribed polygons.
•Theorems for circles involving segment ratios.
•Analytic geometry as a separate course.

Trigonometry:
•The verification of complex identities.
•Numerical applications of sum, difference, double­
angle, and half-angle identities.

•Calculations using tables and interpolation.
•Paper-and-pencil solutions of trigonometric 
equations.

Functions:
•Paper-and-pencil evaluation.
•The graphing of functions by hand using tables of 

values.
•Formulas given as models of real-world problems.
•The expression of function equations in 

standardized form in order to graph them.
•Treatment as a separate course.

Statistics 
Probability 
Discrete Mathematics

6
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Appendix E

W O R K SH E E T  for C oding M M AI
Title:
Publisher:__
Date of Pub.:

Enter the Total Sums of Coded Values from each subcategory on the MMAI to the appropriate 
curriculum section Grades 5*8 or 9*12.

No. of Sum of
Items Curriculum: fi-ft Coded

Values

12 A. Problem Solving (Critical-Thinking Skills) ___
7 B. Communication ___
4 C. Computation ___
9 D. Measurement ___

10 E. Number and Number Systems________________________________
7 F. Geometry ___
9 G. Probability and Statistics ___
_3 H. Algebra ___
61

Total:

No. of Sum of
Item s Curriculum: 9-12 Coded

Values

6 A. Problem Solving (Critical-Thinking Skills)
6 B. Communication
6 C. Computation and Estimation
6 D. Reasoning
6 E. Integration
6 F. Interdisciplinary Emphasis
6 G. Technology
6 H. Other Curriculum Emphasis
48

Total:
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CALCULATIONS and INTERPRETATIONS 201

This instrument can be used by one evaluator or by a team of two or more evaluators. The 
calculations in subheading I apply to both cases. The calculations in subheading H are to be used 
for two or more evaluators and should be made in addition to those made in subheading I.

I: One Evaluator:
Finding thf> mpan (x ) for all categories:
T = Total Sum of Coded Values
A = No. of Applicable Items:

[ Grades 5-8: (A = 61) or Grades 9-12: (A = 48) ]
Enter the sums from the worksheet:
T = _______ A = _________

T
x = — = _________(to at least 3 decimal places)

A

Interpretation: The mean indicates the degree of movement toward the Standards, Compare it 
to the Coding Values: 1= None; 2= Low; 3 = Moderate; 4 = High.
Conclusions:______________________ _____________

Finding the mean for each subcategorv: Further statistical tests can be done on each sub­
category. The easiest comparisons can be made by simply finding the median and mean of each 
subcategory and comparing them to the Coding Values: 1 =  None; 2 = Low, 3 = Moderate;
4 =  High. This is a  quick check to find weaknesses and strengths within the categories.
(For Grades 9*12, use the formula shown below. For Grades 5-8, refer to page 1 o f the worksheet 
and change the 6 in the formula to match the number of items in each subrategory.)

CodedFdim* :
6

Conclusions:

Formula Mean
A =_________
B =___ ____
C =_________
D =_________
E =___ ____
F = _____
G =_________
H

Interpretation:
Categories with means above 3.0 can be seen to be moving toward the Standards and can be 
compared to the Coding Values: 3  - Moderate and 4  - H igh. Categories below 3.0 can be 
compared to the Coding Values: 1 - None, 2  - Low  and 3  - Moderate. The materials will need to 
be supplemented in these categories with activities and exercises reflecting higher movement 
toward the Standards. Coding Values for each item  can be examined in these categories to help 
in determining the type of supplementary activities that will be needed.

2
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II: Two or More Evaluators:

Finding the mean ( X ) and Standard Deviation (SD or d )  for all categories: 
n = number of evaluators

i = 1 ,2 ,3 , . . .  n

Tj = Total Sum of Coded Values for Evaluator i

Aj = No. o f Applicable Item s for Evaluator i:
[ Grades 5-8: (Ai =  61) or Grades 9-12: (Ai =  48) ]

i  Xi Ai
1
2
3
4

n

Total
As

Ts = 2  Ti As = Ai

Ts =   As -

— Ts
X  (group m ean): —  -  (to at least 3 decimal places)

As

xj -  x  (mean) from calculations in Part I for each evaluator

a*

n-1

a =

Interpretation:
The mean indicates the degree of movement toward the Standards. Compare it to the Coding 
Values: 1=  None; 2 =  Low; 3 = Moderate; 4 = High.
C o n c l u s i o n s : ___________________________ _______ ___________________________

3
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n. Continued
203

The standard deviation ( SD or o ) measures the distribution of data in relationship to the mean. 
A small SD indicates the total sum  o f coded values are close together which means the evaluators 
are in close agreement in their opinions o f the materials. A large SD indicates that the total sum  
o f  coded values are spread out which indicates the evaluators are not in close agreement in their 
opinions of the materials.

The mean and SD also indicate the percentage o f values in a normal distribution:

X  ±  1.0 SD =  approximately 68% of the total coded values

X  ±  2.0 SD =  approximately 95% of the total coded values

X  ±  2.5 SD =  approximately 99% of the total coded values

X  ±  3.0 SD =  approximately 99 + % of the total coded values 
C o n c l u s i o n s : _________________________________ _____________

4
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EXAMPLE - Grades 9-12 

WORKSHEET
Title: INTEGRATED MATH 
Publisher: XYZ PUBLICATIONS 
Date of Pub.: 1995

Enter the Total Sum s o f Coded Values from each subcategory on the MMAI to the appropriate 
curriculum section Grades 5-8 or 9-12.

No. of Sum of
Items P.uwipulum: 5-8 Coded

Values

12 A. Problem Solving (Critical-Thinking Skills) ____
7 B. Communication ____
4 C. Computation ____
9 D. Measurement ____

10 E. Number and Number System s ____
7 F. Geometry________________________________________________________
9 G. Probability and Statistics ____

_3 H. Algebra_____________________________________________________ ____
61

Total:

Sum of
Coded
Values

21
16
15
11
18
11
22
15

141

5

No. of
Items Curriculum: 9-12

6 A. Problem Solving (Critical-Thinking Skills)
6 B. Communication
6 C. Computation and Estimation
6 D. Reasoning
6 E. Integration
6 F. Interdisciplinary Emphasis
6 G. Technology
6 H. Other Curriculum Emphasis

48
Total:
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EXAMPLE- Grades 9-12 205
CALCULATIONS and INTERPRETATIONS 

This instrument can be used by one evaluator or by a team of two or more evaluators. The 
calculations in subheading I apply to both cases. The calculations in subheading II are to be used 
for two or more evaluators and should be made in addition to those made in subheading L

I: One Evaluator:

Finding the mean X for all categories:
T =  Total Sum of Coded Values

A =  No. of Applicable Items:
[ Grades 5-8: (A = 61) or Grades 9-12: (A = 48) ]

Enter the sums from the worksheet:
T =  141 A = 48

x  =  —  =  2.938 (to at least 3 decimal places)
A

Interpretation: The mean indicates the degree of movement toward the Standards. Compare it 
to the Coding Values: 1=  None; 2=» Low; 3 = Moderate; 4 = High.

Conclusions: This material is movine toward the Standards as indicated by the mean o f2.938 compared 
to 2.0 - Low and 3.0 - Moderate.

Finding the mean for each subcategorv: Further statistical tests can be done on each 
subcategory. The easiest comparisons can be made by simply finding the mean of each 
subcategory and comparing it to the Coding Values: 1 -  None; 2 ** Low; 3 =• Moderate; 
4 = High. This is a quick check to find weaknesses and strengths within the categories.

Sum Coded Vdms Conclusions:

Formula Mean
A 21/6 = 3.50
B m . 2.67
C 15/6 = 2.50
D m = 2.83
E m => 3.00
F m = 2.83
G 22/6 = 3.67
H 15/6 = 2.50

Categories A. B.E.F. and G are movine
toward the Rt«mtorfc and can be 
compared to the coding values 3 - 
Moderate and i - Hitfr. Categories B.C. 
D. F. and H can be compared to the
Coding Values: 2 - Low and 3 - 
Moderate; The materials will need to be 
supplemented with activities and 
exercises reflecting higher movement
toward the Standards in these categories. 
Further examination o f the items in each 
category will indicate the specific areas 
to be targeted.

Interpretation:
Categories with means above 3.0 can be seen  to be moving toward the Standards and can be 
compared to the Coding Values: 3 - M oderate and 4  - H igh. Categories below 3.0 can be 
compared to the Coding Values: 1 - None, 2  - Low, and 3  - Moderate. The materials will need to 
be supplemented in these categories with activities and exercises reflecting higher movement 
toward the Standards. Coding Values for each item can be examined in these categories to help 
in determining the type of supplementary activities that will be needed.

6
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EXAMPLE - Grades 9-12 206
II: Two or More Evaluators:

Finding the mean ( X ) and Standard Deviation (SD or <t) o f all categories: 
n = number of evaluators 
i =  1 ,2 ,3 ,. . .  n
Ti =  Total Sum of Coded Values for Evaluator i 
Ai =  No. of Applicable Items for Evaluator L*

[ Grades 5-8: (Aj =  61) or Grades 9-12: (Ai = 48) ]

(For purposes o f  this example, assume three additional worksheets fo r Calculation I  (Grades 9-12) have 
been completedfor three additional evaluators. The totals fo r  T; are enteredfrom the four worksheets).

i Ti Ai
i 141 48
2 166 48
3 126 48
4 175 48

Total 192
Tg Ag

Tg = Ti Ag = ^  Ai
■ i

Tg -  60S As = 192

— ISX  (m ean): —  =  3.167 (to at least 3 decimal places)
As

*i =  x (mean) from calculations in part I for each evaluator

For purposes o f this example, assume the calculated means x; are as follows:
Xi = 3.065 x2 = 3.458 x3 = 2.930 x< = 3.723

n-1

a  = 0.39

Interpretation:
The mean indicates the degree of movement toward the Standards. Compare it to the Coding 
Values: 1=  None; 2 =  Low; 3 =  Moderate; 4 =  High.
Conclusions: This material is movine toward the Standards as indicated by the mean o f 3.167 as 
compared to 3.0 - Moderate and 4.0 - High.

7
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EXAMPLE - Grades 9-12 
II: Two or More Evaluators (Continued):

207

The standard deviation ( SD or a ) measures the distribution of data in relationship to the mean. 
A small SD indicates the total sum  o f coded values are close together which means the evaluators 
are in close agreement in their opinions o f the materials. A large SD indicates that the total sum  
o f coded values are spread out which indicates the evaluators are not in close agreement in their 
opinions of the materials.

The mean and SD also indicate the percentage o f values in a normal distribution:

X  ±  1.0 SD = approximately 68% of the total coded values 

X  ±  2.0 SD = approximately 95% of the total coded values 

X  ± 2.5 SD = approximately 99% of the total coded values 

X  ±  3.0 SD = approximately 99 + % of the total coded values

Conclusions: The mean 3.167 ±  0.39 -  3.557 or 2.778. This means 68% o f  the total coded values are 
between 2.778 and 3.557. These values can be compared to the Coding Value: 3 - Moderate. Further­
more. the mean 3.167 ± 2.0SD  = 3.167 ±  2.0 x  0.39 = 3.947 or 2.387. This means 95% o f the total 
coded values are between 2.387 and 3.947. The materials therefore seem to be movine toward the 
Standards.

8
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Letter to Validation Panel Dated January 7,1996
(Identical letters to all three members of the panel)

January 7,1996

Dr. Jane D. Gawronski 
Escondido Union High School District 
District Service Center 
302 North Midway Drive 
Escondido, CA 92027-2741

Dear Dr. Gawronski:

Thank you for agreeing to look at the instrument and supplementary attachments for my dissertation with 
Walden University (iaculty advisor Dr. Marilyn K. Simon). I am enclosing the following documentation:

Instructions -1  page

Scope and Summary of NCTM Standards - 6 pages (numbered 1-6)

Coding Rubric for Mathematics Curricula Analysis Instrument - 1 page 

Mathematics Curricula Analysis Instrument - 

Grades 5-8: 9 pages (numbered 1-9)

Grades 9-12: 8 pages (numbered 10-17)

Worksheet - 1 page

The material to be evaluated in my dissertation is the 1995 ten unit course "Integrated Math A" and 
"Integrated Math B”, and the 1989 ten unit course "General Mathematics A” and "General Mathematics 
B". This material is written for secondary level migrant students who are below grade level. Therefore, 
the instrument includes Grades 5-8 and Grades 9-12. The appropriate categories will be used in the 
content analysis of the curricula.

As a member of my panel, I need your comments and suggestions regarding the appropriateness of this 
package to evaluate curriculum with regards to NCTM Standards. This package is intended to stand 
alone for evaluation; sources are recommended but are not needed unless the evaluator is unfamiliar with 
the NCTM Standards.

I look forward to your response.

Sincerely,

Karen Conger 

Enclosures: 26
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Letters to Validation Panel Dated March 31.1996

March 31, 1996

Dr. Jane D. Gawronski 
Escondido Union High School District 
District Service Center 
302 North Midway Drive 
Escondido, CA 92027-2741

Dear Dr. Gawronski:

The final instrument and supplementary attachments for my dissertation with Walden University (faculty 
advisor Dr. Marilyn K. Simon) are enclosed. Your comments and the comments of the other panel 
members have resulted in the following changes:

The instrument has been changed by redistributing subcategories to give a more balanced treatment This 
has occurred primarily with the 9-12th section because the original draft had so many items in the final 
category. Wording has been changed to reflect its intended use with curriculum materials as they relate to 
student activities, exercises, and projects. The instrument is not intended as a measuring tool for 
curriculum which requires evaluation by observation and other means.

The panel is asked to approve content rather than statistical treatment The statistical treatment has been 
approved by Dr. Simon.

Again, thank you so much for your time and expertise.

Sincerely,

Karen Conger
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(Same letter to Dr. Roy Bohlin)
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March 31, 1996

Dr. Carol Fry Bohlin 
San Joaquin Valley Math Project 
School of Education and Human Devpt 
California State University, Fresno 
Fresno, CA 93740-002

Dear Dr. Bohlin:

The final instrument and supplementary attachments for my dissertation with Walden University (faculty 
advisor Dr. Marilyn K. Simon) are enclosed. Your comments have resulted in the following changes:

The instrument has been changed by redistributing subcategories to give a more balanced treatment This 
has occurred primarily with the 9-12th section because the original draft had so many items in the final 
category. Wording has been changed to reflect its intended use with curriculum materials as they relate to 
student activities, exercises, and projects. The instrument is not intended as a measuring tool for 
curriculum which requires evaluation by observation and other means.

The panel is asked to approve content rather than statistical treatment The statistical treatment has been 
approved by Dr. Simon.

Again, thank you so much for your time and expertise. I really cannot adequately express my 
appreciation for this. Your comments and suggestions have definitely improved the final product

Sincerely,

Karen Conger
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Data Collection Worksheet
1989 Curriculum

Unit# # o f # of lines # o f #o f # of projects/
pages excl. spaces word prob. skill & drill invest/etc.

1
Review

Core
Pr. Ex.

Glossary
Total

2
Review

Core
Pr. Ex.

Glossary
Total

3
Review

Core
Pr. Ex.

Glossary
Total

4
Review

Core
Pr. Ex.

Glossary
Total

5
Review

Core
Pr. Ex.

Glossary
Total
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Unit# # o f # of lines # of #  of # of projects/
pages excl. spaces word prob. skill & drill invest/etc.

6
Review

Core
Pr. Ex.

Glossary
Total

7
Review

Core
Pr. Ex.

Glossary
Total

8
Review

Core
Pr. Ex.

Glossary
Total

9
Review

Core
Pr. Ex.

Glossary
Total

10
Review

Core
Pr. Ex.

Glossary
Total
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Unit# #o f # of lines # of #of #  of projects/
oaaes fexcl. spaces) word prob. skill & drill invest/etc.
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Unit# # of #  of lines # o f # of # of projects/
pages (excl. spaces) word prob. skill & drill invest/etc.

6-Spiral Review
S1
S2
S3
S4

Total

7-Spiral Review
S1
S2
S3
S4
S5

Total

8-Spiral Review
S1
S2
S3
S4
S5
S6

Total

9-Spiral Review
S1
S2
S3
S4
S5

Total

10-All
Total
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NUD*IST Node Listing Report for Mathematical Materials Analysis Instrument (MMAI)

1) /Grades 5-8
1 I) /Grades 5-8/Problem Solving (CritThinking)
1 1 1) /Grades 5-8/Problem Solving (Crit.Thinking)/Original thinking
1 1 2) /Grades 5-8/Problem Solving (Crit.Thinking)/Chk reasonable-complete
I 1 3) /Grades 5-8/Problem Solving (Crit.Thinking)/Topics apply to real world
I 1 4) /Grades 5-8/Problem Solving (Crit.Thinking)/Probs.non-routine;multi-step
1 1 5) /Grades 5-8/Problem Solving (Crit.Thinking)/Determine prob;colIect data;

etc.
116)  /Grades 5-8/Problem Solving (Crit.Thinking)/Computer simulations
I 1 7) /Grades 5-8/Problem Solving (Crit.Thinking)/Info in various forms

(tables,graphs, formulas, & functions)
1 1 8) /Grades 5-8/Problem Solving (Crit.Thinking)/Group problem solving 
1 1 9) /Grades 5-8/Problem Solving (Crit.Thinking)/Several strategies-

techniquesd
1 1 10) /Grades 5-8/Problem Solving (Crit.Thinking)/Concrete to formal
1111)  /Grades 5-8/Problem Solving (Crit.Thinking)/Interdisciplinary projects-

exercises
1 1 12) /Grades 5-8/Problem Solving (Crit.Thinking)/Generalize results to other 

situations & subject-matter areas 
I 2) /Grades 5-8/Communication
1 2 1) /Grades 5-8/Communication/Variety - verbal,concrete,gr.,pictorial,etc.
1 2 2) /Grades 5-8/Communication/Open ended; reflection,org.,& communication
1 2 3) /Grades 5-8/Communication/Take positions & defend
12 4) /Grades 5-8/Communication/Formal symbolism demonstrated
1 2 5) /Grades 5-8/Communication/Read, analyze math emphasized
12 6) /Grades 5-8/Communication/Write math from real-world
12 7) /Grades 5-8/Communication/Demonstrate vocab & notation
1 3) /Grades 5-8/Computation
13 1) /Grades 5-8/Computation/Pencil, paper fractions common denom
13 2) /Grades 5-8/Computation/Calculator for more cumbersome fractions &

decimals
13 3) /Grades 5-8/Computation/Develop algorithms - whys
13 4) /Grades 5-8/Computation/Guess-ck, mental arith used for reasonableness
1 4) /Grades 5-8/Measurement
14 1) /Grades 5-8/Measurement/Metric system - length,vol,etc
1 4 2) /Grades 5-8/Measurement/English system & relationships
1 4 3) /Grades 5-8/Measurement/Appropriate instruments
1 4 4) /Grades 5-8/Measurement/Make & interpret scale drawings
I 4 5) /Grades 5-8/Measurement/Area,volume formulas,procedures
1 4 6) /Grades 5-8/Measurement/Estimate metric & English
____________________________________________________________ listing continued
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NUD*IST Node Listing Report for Mathematical Materials Analysis Instrument (MMAI)

14 7) /Grades 5-8/Measurement/Student developed-systems
14 8) /Grades 5-8/Measurement/Perimeter,area,vol intuitive
14 9) /Grades 5-8/Measurement/Real-world data collected
1 5) /Grades 5-8/Number and Number Systems
15 1) /Grades 5-8/Number and Number Systems/Sets: counting irrational
15 2) /Grades 5-8/Number and Number Systems/Numbers - several representations

(fr.,dec.,etc.) & processes to convert 
I 5 3) /Grades 5-8/Number and Number Systems/Nos.written num.,word,exp.not.
15 4) /Grades 5-8/Number and Number Systems/No.& graph relationships
1 5 5) /Grades 5-8/Number and Number Systems/Ratio & proportion -nontraditional

uses
15 6) /Grades 5-8/Number and Number Systems/Appropriate forms o f nos.used

(sc.not.,dec.,ff.,etc.)
1 5 7) /Grades 5-8/Number and Number Systems/Term.,non-term,repeating
1 5 8) /Grades 5-8/Number and Number Systems/GCF,LCM, divisibility
15 9) /Grades 5-8/Number and Number Systems/Math as body o f knowledge -

logical & rules
15 10) /Grades 5-8/Number and Number Systems/Relation & function 
I 6) /Grades 5-8/Geometry
1 6 1) /Grades 5-8/Geometry/Identify, describe 1-2-3 dimensions
16 2) /Grades 5-8/Geometry/Visualize, represent, manipulate 1-2-3 dim.
1 6 3) /Grades 5-8/Geometry/Geom prop: sim:ratio; congrequiv.,etc.
16 4) /Grades 5-8/Geometry/Geom.reltnshps-non-classroom projects
I 6 5) /Grades 5-8/Geometry/Geom & physical world
16 6) /Grades 5-8/Geometry/Constr.,draw,measure geom properties
1 6 7) /Grades 5-8/Geometry/T echnology-geom properties
1 7) /Grades 5-8/Probability & Statistics
17 1) /Grades 5-8/Probability & Statistics/Collection & org. of data
1 7 2) /Grades 5-8/Probability & Statistics/Data described charts,gr,tables
17 3) /Grades 5-8/Probability & Statistics/Bias in collection of data
17 4) /Grades 5-8/Probability & Statistics/1
1 7 5) /Grades 5-8/Probability & Statistics/Basis stat notions (measures o f central

tend., variab.,correlation, error)
17 6) /Grades 5-8/Probability & Statistics/Probability in lab & real world
1 7 7) /Grades 5-8/Probability & Statistics/Simulations-expmts - empirical

probabilities
1 7 8) /Grades 5-8/Probability & Statistics/Prob. in chance,ins.,weather,etc.
1 7 9) /Grades 5-8/Probability & Statistics/Level o f accuracy, precision needed

emphasized
_________________________________________________________  listing continued
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NUD*IST Node Listing Report for Mathematical Materials Analysis Instrument (MMAI)

(18) /Grades 5-8/Algebra
(1 8 1) /Grades 5-8/Algebra/Models,data,tables,gr,matrices-used with

variables,expressions,equations 
(18  2) /Grades 5-8/Algebra/Concrete to invest.pattems in no.seq.,make predictions,

formulate verbal rules 
(18  3) /Grades 5-8/Algebra/De-emphasis on routine alg.manipulations
(2) /Grades 9-12
(2 1) /Grades 9 -12/Problem Solving (Crit. thinking)
(2 11) /Grades 9 -12/Problem Solving (Crit.thinking)/Introduce,devl,review math

topics
(2 1 2) /Grades 9-12/Problem Solving (Crit.thinking)/Concrete models - realistic

situations
(2 1 3) /Grades 9-12/Problem Solving (Crit.thinking)/Variety strategies; broad range

o f problems
(2 1 4) /Grades 9-12/Problem Solving (Crit.thinking)/Application knowledge to

unfamiliar situations
(2 1 5) /Grades 9-12/Problem Solving (Crit.thinking)/More than one solution
(2 1 6) /Grades 9 -12/Problem Solving (Crit.thinking)/Analyze incorrect solutions to

identify errors in problem-solving process 
(2 2) /Grades 9-12/Communication
(2 2 1 ) /Grades 9-12/Communication/Small groups
(2 2 2) /Grades 9-12/Communication/Variety - speaking,writing,etc.
(2 2 3) /Grades 9-12/Communication/Sym.,notation demonstrated
(2 2 4) /Grades 9-12/Communication/Students use sym.,notation
(2 2 5) /Grades 9-12/Communication/Students use math vocab
(2 2 6) /Grades 9-12/Communication/Write deduct argum in paragraph form
(2 3) /Grades 9-12/Computation & Estimation
(2 3 1) /Grades 9-12/Computation & Estimation/Choice: mental,calc,pencil
(2 3 2) /Grades 9-12/Computation & Estimation/Appropriate computation stressed
(2 3 3) /Grades 9-12/Computation & Estimation/Estimation - judge reasonableness
(2 3 4) /Grades 9-12/Computation & Estimation/Estimation frequently as part of

problem-solving process 
(2 3 5) /Grades 9-12/Computation & Estimation/Precision of results determined
(2 3 6) /Grades 9-12/Computation & Estimation/Reasonableness as important part of

process

(2 4) /Grades 9-12/Reasoning
(2 4 1) /Grades 9-12/Reasoning/Listen & discuss
(2 4 2) /Grades 9-12/Reasoning/Explore & question
(2 4 3) /Grades 9-12/Reasoning/Summarize & evaluate
 listing continued
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NUD*IST Node Listing Report for Mathematical Materials Analysis Instrument (MMAI)
(2 4 4) /Grades 9-12/Reasoning/Explore patterns
(2 4 5) /Grades 9-12/Reasoning/Make & test conjectures
(2 4 6) /Grades 9-12/Reasoning/Follow & judge logical arguments
(2 5) /Grades 9-12/Integration
(2 5 1) /Grades 9-12/Integration/Function, unifying across all math courses
(2 5 2) /Grades 9-12/Integration/Limit, max,min throughout Algebra strand

(2 5 3) /Grades 9-12/Integration/Geom properties not restricted to formal geometry
courses

(2 5 4) /Grades 9-12/Integration/Discrete math - matrices, finite graphs, seq.,series,
comb., perm.,& discrete prob.)

(2 5 5) /Grades 9-12/Integration/Collect, organize, & display data
(2 5 6) /Grades 9-12/Integration/Original problems integrate math content
(2 6) /Grades 9-12/Interdisciplinary Emphasis
(2 6 1) /Grades 9-12/Interdisciplinary Emphasis/Integrate with other curricular areas
(2 6 2) /Grades 9-12/Interdisciplinary Emphasis/Data real-world - trig functions
(2 6 3) /Grades 9-12/Interdisciplinary Emphasis/Probability in sport, business, etc.
(2 6 4) /Grades 9-12/Interdisciplinary Emphasis/Charts,tables,graphs -inferences from

real-wold
(2 6 5) /Grades 9-12/Interdisciplinary Emphasis/Apply stat techniques other subject

areas
(2 6 6) /Grades 9-12/Interdisciplinary Emphasis/Computation outside school setting
(2 7) /Grades 9-12/Technology
(2 7 1) /Grades 9-12/Technology/Calc&comp.for graphings
(2 7 2) /Grades 9-12/Technology/Sc.calc instead o f interp & tables
(2 7 3) /Grades 9-12/Technology/Calc & comp in stat invest.
(2 7 4) /Grades 9-12/Technology/Calculators daily work & exams
(2 7 5) /Grades 9-12/Technology/Computers daily work & exams
(2 7 6) /Grades 9-12/Technology/Calc for estim & reasonableness
(2 8) /Grades 9-12/Other Curriculum Emphasis
(2 8 1) /Grades 9-12/Other Curriculum Emphasis/Math topics not requiring

competence with paper-and-pencil skills 
(2 8 2) /Grades 9-12/Other Curriculum Emphasis/Alg concepts:

linearity, fhctn,equiv., solution 
(2 8 3) /Grades 9- 12/Other Curriculum Emphasis/Various geometries
(2 8 4) /Grades 9-12/Other Curriculum Emphasis/3-d figures develop spatial skills
(2 8 5) /Grades 9-12/Other Curriculum Emphasis/Validity o f stat conclusions
(2 8 6) /Grades 9-12/Other Curriculum Emphasis/Uses & abuses o f data

interpretation
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Educational Consultants 
2619 San Pablo 

Bakersfield, California 93306 
805 872-0374

http://www.kera.coin/miranda/

To whoa I t  may concern:
I  have known Karen Conger for  severa l years and found h e r  professional 
work to  be c rea tive  and challang lng . She has passed th is  c re a tiv ity  
to  the published work she has been doing fo r the m igrant Pass program.

I  fin d  the migrant educational m ate ria l th a t Mrs. Karen Conger has published 
very u se fu l in  the m igrant pass program. I t  i s  a  concise m atrix of 
mathematical m ateria l th a t  challenges the student in  a  program th a t 
r e l ie s  on the students m otivation and in e r t ia  in  accomplishing an assigned 
ta sk . Mrs. Conger has brought together mathematical m a te ria l in  a way 
th a t  the student i s  ab le  to  accomplish th e ir  ob jec tive  and gain c re d it  
toward th e ir  f in a l  goal. This m ate ria l, as a l l  Pass program m ateria l, 
i s  e s se n tia l  in  the accomplishment o f th is  schools m ission.

Rudy Miranda, Ed.D 
D irector of Guidance 
Shafter High School

Scholarships •Grants •FsUousbips • College Loans

College Selections • College Visitations • CoBtge Forms • Tutoring
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Appendix K

Examples of Word Problems from 1989 and 1995 
P.A.S.S. Curricula

1989 P.A.S.S. Curriculum 
(selected problems)

1. Pedro has a fruit stand. He sells each flat of boysenberries for 11 dollars. 
How much will he make if he sells 45 flats?

2. Patty earned 8,625 dollars for working 125 days. If she earned the same 
amount each day, how much did she earn each day?

3. At $ .33 per pound, how many pounds of apples can you buy for $1.65?

4. What is the volume of a can of soup if the radius of its base is 3 inches and 
its height is 6 inches?

5. Dr. Fixmeup prescribed 25 ml of protein supplement to be taken five times 
per day. How much protein supplement must the patient buy for 20 days?

Other: There were several problems requiring students to read charts and 
answer questions, e.g., temperature charts, bushels of com harvested, but 
most word problems were of the caliber shown above.

1995 P.A.S S Curriculum
(selected problems. Also see Appendix U)

1. A section of land is defined as one mile square and 640 acres. An acre- 
foot of water is the amount of water required to cover an acre of land one foot 
deep. If cotton requires three acre-feet to grow to maturity during the season, 
how many acre-feet of water are required to water a section of cotton?
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2. Cotton lint sells for $0.80 per pound and cotton seeds sell for $0.10. The 
farmer retains 40% of the seeds for replanting the following years crop. How 
much total revenue will the cotton lint and cotton seeds produce for the 
farmer:

a) per acre? b) per section?

3. The foreman at an oil company has a well drilled to a depth of 10,000 ft. 
with cylindrical tubing going all the way to the bottom of the hole. If the 
tubing has an inside diameter of 2.5 in., what is the volume, in gallons to the 
nearest thousandth, of the tubing:
a) per ft.? b) to the bottom of the well?

4. An oil well produces 185 bbls. of oil per day (BOPD). How many gallons 
of oil does the well produce per day?

5. A high powered drag racing vehicle has an elapsed time of 4.5 seconds in 
a 1/4 mile run. What is the average speed in miles per hour o f the vehicle?

6. A baseball pitcher throws a ball that register 95 mph at home plate. If the 
ball travels at a constant rate of speed from the pitcher’s mound to home plate 
(a distance of 60 feet), find the time (to the nearest hundredth second) 
required for the ball to travel from the pitcher’s mound to home plate.

7. The distance from the Earth to the Moon is approximately 240,000 miles 
and light travels at approximately 186,000 miles per second. Find the time 
required for light to travel from the Earth to the Moon (to the nearest 
hundredth second)?
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Appendix L

Examples of Projects and Investigations 
from 1989 and 1995 P.A.S.S. Curricula

1989: None

199S: (in addition to those found in Appendixes R and U) 

From: Unit IV - Patterns. Functions, and Mathematical Connections

■
 R e s e a r c h  P r o j e c t : F in d  p ic tu r e s  o f  

g r e a t  a r t  a n d  a rc h ite c tu r e  t h a t  a r e  

k n o w n  fo r  th e ir  e x c e lle n c e . M a k e  

m e a su r e m e n ts  a n d  d e ter m in e  w h e th e r  

th e  g o ld e n  r e c ta n g le  or o th er  

F ib o n a cc i r a t io  i s  p resen t. D is p la y  

sk e tc h e s  o f  y o u r  f in d in g s  in  th e  

cla ssroom .

D e s ig n  P r o j e c t :  C r e a te  a  d r a w in g  th a t  u s e s  th e  g o ld e n  r e c ta n g le  r a t io  or  

o th er  F ib o n a c c i r a tio . Y o u  m a y  d e s ig n  a  b u ild in g  or crea te  a n  a r t is t ic  

d ra w in g  t h a t  d e m o n s tr a te s  th e  ratio .

C la s s  P r o je c t*  E x a m in e  b ra n ch es from  d iffe r e n t  p la n ts  an d  d e te r m in e  i f  

th e y  d is p la y  p h y llo ta c t ic  r a tio s . M ake a  c h a r t a n d  l is t  th e  ty p e  o f  p la n t  

an d  i t s  r a tio . D is p la y  th e  p la n ts  w ith  p h y llo ta c t ic  r a tio s  in  a  s e p a r a te  

colu m n.
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T e s s e l l a t i o n  P r o j e c t ;  U s e  th e  o c ta g o n -sq u a r e  g r id  

p a p e r  o n  t h e  n e x t  p a g e  to  d e s ig n  a  te s s e lla t io n . B e

th e  b e s t  t e s s e l la t io n s .  D is p la y  th e  w in n e r s  in  th e  

c la ssroom !

c r e a t iv e  a n d  co lo r fu l! H a v e  a  c la s s  c o n te s t  a n d  v o te  for

223

P r o j e c t :  M . C . E sc h e r  w a s  a  fa m o u s  D u tc h  a r t is t  w h o  l iv e d  from  1 8 9 8  to  

1 9 7 2 . H e  i s  fa m o u s  for h is  t e s s e l la t io n  d r a w in g s  a n d  M o o r ish  m o sa ics .

c o n tr ib u tio n s . S e p a r a te  y o u r  r e se a r c h  in to  grou p  rep o r ts  to  m a k e  

p r e s e n ta t io n s  to  th e  c la ss .

C o o p e r a t iv e  L e a r n in g  P r o b l e m  6 : D r a w  a  d e s ig n  u s in g  sy m m etry . T h is  

m e a n s  y o u  w i l l  d r a w  a  p o r tio n  o f  th e  d e s ig n , a n d  th e n  r e f le c t  i t  in to  m irror  

im a g e s . T h e  p r o c e ss  i s  s h o w n  w it h  a  s im p le  l in e  d r a w in g . T h e  d e s ig n  i s  

d r a w n  in  F ig u r e  1.

d e s ig n  i s  r o ta te d  or

t i l te d  a n d  t h e n  f lip p e d  h o r iz o n ta lly . T h er e  a r e  m a n y  v a r ia t io n s . Y o u  c a n  

f lip  th e  d e s ig n  v e r t ic a l ly  ft o r  d ia g o n a l ly  /  or \  a lso . U s e  y o u r  im a g in a t io n  

o n ce  y o u  h a v e  d r a w n  you r  o r ig in a l  d e s ig n . It m a y  h e lp  i f  y o u  th in k  o f  

sp e c if ic  u s e s  for y o u r  d e s ig n  su c h  a s  a  k ite , a  te e -sh ir t , a  q u ilt , or a  p oster .

C on d u ct r e se a r c h  to  fin d  o u t  fa c ts  a b o u t  h is  l i f e  a n d  h is  a r t is t ic

In  F ig u r e  2 , th e  

d e s ig n  i s  f lip p e d  

h o r iz o n ta lly  =>. I n

F ig u r e  3 , t h e  o r ig in a l  F icuze 1 Fieuc© 2 Figure 3
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Tables of Contents -1989 P.A.S.S. Curriculum
(Subheadings are typed directly from tables of contents, and errors have not been corrected. Headings 
have been added for clarity.)

Unit I - Numeration Systems and Place Value
Rationale 1
Primary idea 1
instructional Goals 1
General Directions 2
An Introduction to Numeration Systems 3
Recognizing whole Numbers 4

Activity 1 5
Place value and Whole Numbers 6

Understanding Place Value 6
Activity 2 7

Looking at Larger Numbers 8
Activity 3 9

More on Larger Numbers 11
Activity 4 12

Word Number 13
Activity 5 15

Face Value, Place Value, and Total Value 17
Activity 6 19

Expanded Notation 20
Activity 7 22

Word Numbers Review 23
Activity 8 24

Expanded Notation Review 26
Activity 9 28

The Roman Numeral system 29
Activity 10 32

Roman Numeral Review 35
Activity 11 36

Application 37
Activity 12 38

Glossary 41
Progress Report 42
Sample Problem Answers 43
Bibliography 46
Unit II - Addition and Subtraction
Rationale 1
Primary idea 1
instructional Goals 1
General Directions 2
An Introduction to Addition 3
Basic Addition Facts 4

Activity 1 6
Basic Addition Facts - Greater sums 9

Activity 2 11
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Basic Facts Applications 13

Activity 3 14
Addition Without Regrouping 15

Activity 4 18
Two Digit Addition Regrouping 20

Activity 5 22
Two Digit Addition With Regrouping Review 24

Activity 6 25
Two Digit Addition With Regrouping Application 27

Activity 7 29
Two Digit Addition - Regrouping in the Tens Place 31

Activity 8 33
Three Digit Addition With Zeros 35

Activity 9 37
Three Digit Addition with Regrouping 38

Activity 10 40
Three Digit Addition Application 41

Activity 11 43
Multiple Addends with Regrouping 45

Activity 12 47
Four Digit Addition with Regrouping 48

Activity 13 49
Four Addends Application 50

Activity 14 51
An introduction to subtraction 52
Basic subtraction Facts 53

Activity 15 55
Basic Facts Application 58

Activity 16 59
Subtraction Without Regrouping 60

Activity 17 64
Subtraction of Two digits With Regrouping 66

Activity 18 69
Two Digit Subtraction Application 71

Activity 19 73
Three Digit subtraction With Regrouping 75

Activity 20 84
Three Digit subtraction Application 86

Activity 21 88
Four Digit Subtraction With Regrouping 90

Activity 22 93
More on Four Digit subtraction 94

Activity 23 97
six Digit Subtraction With Regrouping 98

Activity 24 104
Multiple Digit subtraction Application 105

Activity 25 107
Glossary 109
Sample Problem Answers 110
Progress Report 118
Bibliography 120
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Unit HI - Multiplication 226
Rationale 1
Primary idea 1
Instructional Objectives 1
General Directions 2
An Introduction to Multiplication 3
Basic Multiplication Facts 5

Activity 1 9
Basic Pacts Application 14

Activity 2 15
Two Digit Multiplication without Regrouping 17

Activity 3 20
Two Digit Multiplication with Regrouping 21

Activity 4 23
Three Digit Multiplication With Zero 24

Activity 5 28
Two Digits Times Two Digit Multiplication 29

Activity 6 34
Two Digit Times Two Digit Application 36

Activity 7 38
Three Digit Multiplication 40

Activity 8 49
More on Three Digit Multiplication 51

Activity 9 57
Three Digit Multiplication Application 59

Activity 10 61
sample Problem Answers 63
Glossary 79
Progress Report 80
Bibliography 81
Unit IV - Division
Purpose 1
Primary idea 1
Instructional Goals 1
student Directions 2
introduction to Division 3

Activity I 8
6 Basic Steps of Division 10

Activity II 12
Basic Facts Review 14

Activity III 14
simple Division Application 17

Activity IV 19
One Digit Divisor And Two Digit Dividend With Remainders 21

Activity v 24
Activity VI 25

one Digit Divisor And Three or Four Digit Dividend with zero 26
Activity VII 28

More on one Digit with Remainders 29
Activity VIII 34
Activity IX 35

One Digit Divisor Application 36
Activity X 37
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Two Digit Divisor And Two Digit Dividend Without Remainder 39

Activity XI 40
Two Digit Divisor And Two Digit Dividend With Remainder 42

Activity XII 43
Two Digit Divisor And Two Digit Dividend with zero 45

Activity XIII 46
Two Digit Divisor And Three Digit Dividend Without Remainder 47

Activity XIV 49
Two Digit Divisor And Three Digit Dividend with Remainder 50

Activity XV 55
Two Digit Divisor And Multiple Digit Dividend without Remainder 56 

Activity XVI 58
Two Digit Divisor Application 59

Activity XVII 60
Three Digit Divisor And Multiple Digit Dividend Without Remainder 62 

Activity XVIII 65
Three Digit Divisor And Multiple Digit Dividend with Remainder 66 

Activity XIX 69
Three Digit Divisor And Dividend With Zero 70

Activity XX 72
Multiple Dividends 73

Activity XXI 76
Three Digit Divisor Application 78

Activity XXII 80
sample Problem Answers 81
Glossary 92
Progress Report 93
Bibliography 94
Unit V - Application
Rationale 1
Primary Idea 1
Instructional Goals 1
General Directions 2
Review of Addition 3

Activity 1 3
Review of Subtraction 5

Activity 2 5
Review of Multiplication 6

Activity 3 6
Activity 4 8
Activity 5 10
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Appendix O 238
Rationale, Primary Idea, and Instructional Goals for 2989 P.A.S.S. Curriculum 

1989-U nit I
RATIONALE: In mathematics, symbols have special meaning, and are

found in addition, subtraction, multiplication, and division 
sentences. Through activities in this unit, you will learn 

UnitI - General Math A about symbols and their value. This understanding makes it
possible to work math computations.

PRIMARY IDEA: Using your understanding of numbers and their value, you
will be able to find answers to math problems in your daily 
life.

INSTRUCTIONAL GOALS: When you complete this unit, you will show these skills 
on a written test:

Place Value and Whole Numbers

1. Recognize whole numbers.

2. Identify place value of digits.

3. Write, in words and numbers, the total 
value of a whole number.

4. Write the total for an expanded notation.

5. Round whole numbers to the nearest hundred.

Roman Numerals

1. Identify Roman Numerals.

2. Write Roman-Numerals using the principal of 
addition.

3. Write Roman Numerals using the principal 
o f subtraction.

4. Identify Roman Numerals in real-life situations.

Application

I. Use place value in real-life situations. 

- 1-
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1989-Unit II
RATIONALE:

PRIMARY IDEA:

INSTRUCTIONAL GOALS:

239
Whether you are adding up your hours on a job, or 
purchasing something at a store, your understanding 
of addition and subtraction will be helpful to you. 
When you have a checking account or pay taxes, it 
is so: important that you be able to calculate 
numbers. This unit offers you an opportunity to 
become skillful at addition and subtraction .

When you learn the basic math facts and can add and 
subtract, you'l 1 find you have improved your 
computation skills.

When you complete this unit, you will show these 
skills on a written test:

Identify the sum(s) of:

1. The basic addition facts

2. Two addends with no regrouping

3. Two addends with regrouping

4. Multiple addends with regrouping.

Find the difference (s) between:

1. The basic subtraction facts

2. Two numbers with no regrouping

3. Two numbers with regrouping

- 1-
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1989-Unit III 240
RATIONALE: When you buy food, clothing, a car, or some day, a

home, you will have to com pute the cost. Often, this 
means that you must be able to multiply, as well as 
add and subtract.

PRIMARY IDEA:
B y multiplying, you can be a confident buyer, you  
will know exactly how much something should Cost 
with tax, or how  much you should earn in a week or 
month. With this skill, you will not be dependent on  
someone else or a salesperson for answers.

INSTRUCTIONAL OBJECTIVES: Upon completing this unit, you will show  these skills
on a written test.

1. The basic multiplication facts

2. Multiplication exercises w ithout regrouping

3. Multiplication exercises, with regrouping

4. Daily life situations using multiplication.
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1989 Unit-IV
RATIONALE:

PRIMARY ID E A  

INSTRUCTIONAL GOALS:

241
Division is one o f  the basic skills, along with 
addition, subtraction, and multiplication, that are 
necessary in an adult's daily life. With these skills, 
you can be confident in earning, saving and spending 
money.

Understanding how  to divide will help you become a 
confident and independent adult in this society.

Upon completing this unit, you will show the 
following skills on a written test.

Identify the quotients for

1. Single Digit Divisors and Dividends with and 
without remainders.

2. Multiple Digit Divisors and Dividends with and 
without remainders.

3. Real life division situations.

- I -
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1989-Unit V  242
RATIONALE: In order to use the skills o f  addition, subtraction,
multiplication, and division, you must be able to apply these skills in problem solving 
situations.

PRIMARY ID E A  With the ability to so lve real life mathematical
problems, you can be successful on a job or owning a business, or at making the wise
purchase with your money.

INSTRUCTIONAL OBJECTIVES: U pon completion o f  these lessons, you will show the 
following on a written test:

1. Solve word problems using addition, 
subtraction, multiplication, and division.

2. Solve two-step problems.

3. Find averages.

4. Use charts, tables, and graphs to solve word
problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1989-Unit VI 243
GENERAL MATH B UNIT VI

Purpose

The study of mathematics helps students develop thinking skills, order thoughts, develop logical 
thought processes and make valid inferences. An understanding o f fractions will assist the student 
in such varied activities as cooking, telling timer sewing, shopping and mechanics. An independent 
adult will have a working knowledge o f fractions.

Upon completion o f  this unit, the student will be able to:

1. Identify proper, improper, and mixed number fractions.

2. Write equivalent fractions.

3. Reduce fractions to lowest terms.

4. Rename improper and mixed number fractions.

5. Identify the greatest common factor and the least common factor.

6. Add, subtract, multiply, and divide fractions.

7. Solve real-life problems involving fractions.

Objectives 

IV
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GENERAL MATH B UNIT VII

Purpose
The study o f  mathematics helps students develop thinking, logic and inference skills. As the age o f  
technology unfolds, the importance o f  mathematical skills grows stronger. An understanding o f  
decimals will increase your ability to find measurements, handle money successfully and compete 
for a variety o f  jobs or careers.

Upon completion o f  this unit, the student will be able to:

1. Change regular fractions to decimal fractions.

2. Change decimal factions to regular factions.

3. Name the place value for any digit in a decimal number.

4. Add, subtract, multiply, and divide decimals.

5. Use decimals to solve problems in real life situations.

Instructional 
Objectives 

IV
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GENERAL M ATH B U N IT V III

Purpose
The Study o f  mathematics helps students develop thinking, logic and inference skills. As 
the age o f  technology unfolds, the importance the understanding o f  mathematics grow s  
stronger.

The comprehension o f  percents is essential to  successful living. The banking system in 
the U .S. is dependent on percentages. Local, state, and federal taxes are based on  
percentages, as are finance charges, sales comm issions, interest on saving accounts and 
even your grades in schools.

Upon com pletion o f  this unit, the student will be able to:

1. Change a decimal to a percent and a percent to  a decimal.

2. Change a fraction to a percent and a percent to  a fraction.

3. Find the percent o f  a number.

4. Find the percent a number is o f  a total number.

5. Find a total number when the percent o f  it is known.

6. Use percent to  solve real-life problems.

Instructional 
Objectives 

m
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RATIONALE: Farmers, mechanics, carpenters, housewives, tailors,

engineers, and people in other occupations use 
measurements as a  tool in solving problems.

PRIMARY IDEA: Your ability to solve problems o f  area, perimeter,
and volum e are useful in situations on the job and at 
home.

INSTRUCTIONAL GOALS: At end end o f  this unit you will show  on a written
test your ability to:

1. Identify and classify plane figures

2. M easure angles

3. U se weights and measures

4. Find perimeter and area o f  plane figures

5. Solve practical problems involving perimeter, 
area, and volume.

- 1-
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1989-Unit X
RATIONALE:

247
The metric system  is used world-wide by 92% o f  the 
population. In the United States, the system  is being 
used more frequently by businesses and in industry. 
You may find a need to understand the metric 
system in the workplace.

PRIMARY IDEA: It is important that you be able to  solve problems 
using the metric system.

INSTRUCTIONAL GORLS: On a written test, you will show yourability to:

1. U se metric measures to find length, area, 
perimeter, volume, and weight.

2. Convert metric units to other metric units.

3. Read a Celsius thermometer.

4. Solve real-life problems using metric units.

- I -
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General Directions and Requirements for 1989 P .A .S.S . Curriculum 

1989-Ail Units

GENERAL DIRECTIONS AND REQUIREM ENTS  

Working on the unit:

* Read each example carefully and complete the sample problem before 
starting on the assigned activities.

* Remember, you must complete the entire unit to  receive credit.

* If you have any questions while working the unit, talk with your contact 
person or teacher.

* After you finish an activity, check it o f f  on the Progress Report, on page 
42.

When you're finished:

Return the completed unit to your contact person. H e or she will give you 
directions for taking the unit test.

- 2 -
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Appendix Q 

Introduction. Guidelines and Directions for

249

1995 P.A.S.S. Curriculum 

Unit I - Number and Number Relationships
Introduction

Welcome to U n it I - Number and Number Relationships. This is the first book in the 
five book series for Integrated Math A. It has been designed to help you explore 
mathematics with your friends and learn important concepts and ideas. It is based on 
the latest research which is aimed at the needs o f all students. You w ill still have to do 
worksheets and sharpen your skills, but you w ill also be able to be creative and express 
yourself through writing, art, and other ideas which you think upt You w ill use 
calculators for much of the work, and you w ill have opportunities to use the computer if  
it is available. The success o f this program depends on you! You must be w illing to 
work with your friends and be serious about your work. Wasting time while you are 
having fun w ill prevent you from successfully completing this book. Having fun while 
you are learning w ill help you speed through this book. You will be successful when you  
complete the U nit Test at 70% mastery level. That means you must complete 35 out of 
50 questions correctly.

Guidelines and Directions 
To understand the arrangement of this book, go through the steps below:
• Refer now to the Table of Contents to help you get comfortable with the book. The 

Table o f Contents tells you the page numbers so you can easily turn to them  as you 
continue with these directions.

• The Review Exercises are arithmetic problems that you have encountered in earlier 
grades. Look at them  now. They should be familiar. You need to be certain you 
have these concepts and skills nailed down! If you do not, you w ill need to work 
with other worksheets and problems before you can continue with this book. When 
you can complete these worksheets at mastery level, you may continue with the 
Sections.

• Look at the Table o f Contents again and notice Sections One through Five. They are 
the main lessons in U nit L You must listen carefully during all instruction, work 
through the examples, and ask lots of questions to be sure
you understand the material. You need to take notes during the discussion and 
explanations. You should write down definitions and be certain you understand 
them. Do not be afraid to ask questions! Use the dictionary if  you do not 
understand the meaning of words. The students who are the most successful are the 
ones who ask for help when they do not understand!

• Look a t Section One now. Notice it is divided into headings such as Discussion, 
Definition, Example, Problems, and Cooperative Learning Problems. The Problems 
and Cooperative Learning Problems are your classwork and homework. They must 
be completed! The problems may seem strange to you if  you have only been in 
traditional math classrooms. These problems sometimes ask you to think about 
things other than math. They are designed to help you see how the concepts of math 
fit into the real world. Have fun with them and work intelligently through them.
Be a leader in your group and insist that the others work hard. Math is hard work
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but it  is also fun to do. You feel really good about yourself when you succeed in 
math!

• Use your Table o f Contents and turn now to Section Six . This section gives 
additional practice exercises for the main sections. Successful completion o f this 
section w ill help you understand the material for the Unit Test.

• The Completion Checklist is to help you check your progress. As you move through 
the classwork and homework, check off the box for each problem in each section. 
When you have completed the worksheets in the Review Exercises - Basic Concepts, 
and the problems in  Sections One through Six you w ill be asked to sign the 
Completion Checklist. Your teacher w ill also sign the Checklist to affirm that you 
have mastered the material in the book. You are now ready to take the U nit Test.

•  The U nit Test is multiple choice. You are required to perform at mastery level in 
order to continue to U nit Two. This means you must answer 35 out of 50 questions 
correctly.

•  The last page in the book i6 the Bibliography. It is a list of books that have been 
used for reference material in the preparation of U nit I.

You are now ready to begin your work in this book. Have lots of fun and be sure to
refer back to these pages when you start feeling lost. You can be successful in math!
Your teacher w ill help you, but most importantly, you will help yourself and your friends
as you work together. They w ill help you too.
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Unit VII - Algebra
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Introduction

Welcome to U nit VH - Algebra. This is the second book in the five book series for 
Integrated Math B. You should be more comfortable with group learning now and the 
variety o f exercises and problems that are in the Units. Your success depends on your 
determination to learn the material in each Unit before proceeding to the next Unit. All 
Units require that you complete the U nit Test at 70% mastery level. That means you  
must complete 35 out of 50 questions correctly.

Guidelines and Directions 
To remind you o f the arrangement o f this book, go through the step6 below:
• Refer now to the Table of Contents to help you get comfortable with the book. The 

Table o f  Contents tells you the page numbers so you can easily turn to them as you  
continue with these directions.

• The Spiral Exercises are problems you encountered in Unit VI. You need to do 
these carefully and be certain you understand them. This will help you retain what 
you have learned.

• Look a t the Table o f Contents again and notice Sections One through Four. They are 
the main lessons in Unit VII. You must listen carefully during all instruction, work 
through the examples, and ask lots of questions to be sure you understand the 
material. You need to take notes during the discussion and explanations. You 
should write down definitions and be certain you understand them. Do not be afraid 
to ask questions! Use the dictionary i f  you do not understand the meaning of words. 
The students who are the most successful are the ones who ask for help when they  
do not understand!
Look at Section One now. Notice i t  is divided into headings such as Discussion, 
Definition, Example, Problems, Cooperative Learning Problems, and E3 C om puter or  
G raphing C alculator E xercises. (M any o f  the S  Computer or G raphing  
C alcu lator E xercises can  b e  d o n e  b y  hand i f  com puters or graphing  
ca lcu la to rs  are  n ot ava ilab le . O thers w ill be d ifficu lt and should  be om itted.) 
The Exercises, Problems, and Cooperative Learning Problems are your classwork and 
homework. They must be completed! The problems may seem 6trange to you i f  you  
have only been in  traditional math classrooms. These problems sometimes ask you to 
think about things other than math. They are designed to help you 6ee how the 
concepts o f math fit into the real world. Have fun with them and work intelligently  
through them. Be a leader in  your group and insist that the others work hard.
Math is  hard work but it is also fun to do. You feel really good about yourself when  
you succeed in  math!

• Use your Table o f Contents and turn now to Section Five. This section gives 
additional practice exercises for the main 6ection6. Successful completion of this 
section will help you understand the material for the Unit Test.

• The Completion Checklist is to help you check your progress. As you move through 
the classwork and homework, check off the box for each problem in each section.

When you have completed the worksheets in the Spiral Review - Unit VI, and the 
problems in Sections One through Five you will be asked to sign the Completion 

Checklist. Your teacher w ill also sign the Checklist to affirm that you have 
mastered the material in the book. You are now ready to take the U nit Test.
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• The Unit Test is multiple choice. You are required to perform at mastery level 

before you continue to U nit VUL This means you must answer 35 out o f 50 
questions correctly.

• The last page in the book is the Bibliography. It is a list of books that have been
used for reference material in  the preparation of Unit VIL
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Introduction

Welcome to Unit X - Mathematics as Communication. This is the final book in the five 
book 6erie6 for Integrated Math B. You should be more comfortable with group learning 
now and the variety of exercises and problems that are in the Units. Your success 
depends on your determination to learn the material in each U nit before proceeding to 
the next Unit. All Units require that you complete the Unit Test a t 70% mastery level. 
That means you must complete 35 out o f 50 questions correctly.

Guidelines and Directions 
This unit is different from the other units. It consists of exercises and investigations 
designed to activate your creating writing and artistic talents. You will still do 
mathematics but you will also write and draw. Some of the exercises will allow you to 
be quite creative; others will require you use a dictionary and glossary to find precise 
definitions. Mathematics cannot be communicated without these skills. Your class 
should discuss each exercise and investigation, and make presentations of their findings. 
Oral, verbal, artistic, and written skills are essential communication tools!

The Completion Checklist is to help you check your progress. As you move through the 
exercises and investigations, check off the box for each problem in each section. When 
you have completed this work, you w ill be asked to sign the Completion Checklist Your 
teacher will also sign the Checklist to affirm that you have mastered the material in the 
book. You are now ready to take the U n it T e st

The Unit Test is multiple choice. You are required to perform at mastery level to pass 
the te s t  This means you must answer 35 out of 50 questions correctly.
The last page in the book is the Bibliography. It i6 a  list of books that have been used 
for reference material in the preparation o f U nit X.

Congratulations on your progress! You are almost finished with the entire course 
Integrated Math A and Integrated Math B. You will soon be a first-class graduate of 
this course!
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Examples of Problems Using Technology for 
1995 P.A.S.S. Curriculum

From Unit HI - Computation and Estimation

Calculator Problem 3: Use your calculator to find the solutions to the 
following problems. Then use estimation to check the accuracy of your 
answers. Show the numbers you use for estimation.
a) 175,000,015.341 x 175.3896734 d) 175.357 - 17.11

b) 813,024.79643 x 1,012.176 e) 8795 - 111.35

c) 1784.36795 * 254.874 f) 142.77777 + 7539.000403

Discussion: Information stored on computers is measured in bytes,
kilobytes, megabytes, and 
measurement, kilo 
computer memory, it is not 
due to the use of the 
instead of base ten. The 
numbers which result from

□
gigabytes. In metric 
represents one thousand but in 
exactly one thousand. This is 
binary system for computers 
binary system is expressed in 
evaluating base 2 to every

power.
>6, 06

Therefore, some numbers in the binary system are 2°, 21, 22, 23, 24,
2 2 , 2 ', 2 , 2 , 210 The number 210 = 1024 bytes and represents one
kilobyte. Similarly, one megabyte represents approximately one million 
bytes and one gigabyte represents approximately one billion bytes.

Cooperative Learning Problem 6: A high density floppy disk holds 
1.44 megabytes. One megabyte equals 1,048,576 bytes or 1024 kilobytes.

a) How many bytes and kilobytes are on the floppy disk?

b) Tammy uses the computer to write a 6 page report which 
contains 51.5 kilobytes and stores it on a floppy disk Use 
proportion to find how many pages can still be stored on the

floppy disk Read carefully! ©
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Cooperative Learning Problem 4: Determine the value of the number of

Table 1:
#  of Pizzas $ Given Total $ Given

Small 10 $8.00
18 10.00
12 20.00

Large 9 21.00
16 25.00
15 30.00

Total $ Given

Table 2:
# of Pizzas Price each Total Sales

Small 40 $7.50 $
Large 40 20.37

Total Sales $

9

Table 3:
# of Bills

Denomination or Coins $ Value
$1 184 $
$5 15

$10 12
Quarters 160
Dimes 40
Pennies 120

Total $ Value $

Table 4: Check Work I
Total $ Given - Total Sales = $ Value of change

Total $ Given $
Less Total Sales

$ Value of Change $
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Project: Contact local business owners and find out the ways they use 

estimation. Ask them how they determine how much change they need. 

Each group can contact a different type of business. Examples are real 

estate, insurance, farming and ranching, and many others. Use your 

library to research information about the business you have selected. Your 

group should decide together what information will be needed. Write a 

report and use diagrams such as spreadsheets and tables to illustrate your 

information. Assign responsibilities within the group so everyone is 

participating. You will need interviewers, researchers, writers, artists, and 

speakers. Your report will be presented to the class when you are finished.
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Problem 2 (Computer Spreadsheet): You are an aide in Mrs. Martinez's 
math class. She asks you to enter the grades from the last test on the 
computer and to prepare a bar chart using the spreadsheet software. If 
you do not have access to a computer, do this by hand. Label the students 
as numbers 1 - 17. The grades are as follows:

75, 84, 96, 37, 65, 44, 92, 89, 75, 35, 45, 98, 87, 79, 55, 92, 84 

What conclusions can you draw from the graph?

Cooperative Learning Problem 8 (Computer): Juan is a zoologist at 
the Los Angeles Zoo. He finds the following data in an Almanac and is 
curious whether there is any relationship between the number of species in 
a zoo and the number of acres in the zoo. You 
are a college student working as an intern for 
him and he tells you to make a scatterplot on 
the computer from the data in the table to see 
if  there is a relationship. Make the scatterplot 
and see if there is a relationship. What 
interpretation can you make from the plot?

Acres Species
i 198 i 200!

58! 500!
265i 670!
23! 206!

215! 400!
f 67! 761!

165! 563!
70! 329!

! 76! 310!
125! 413!
50! 596!

! 35! 339!
113! 500!
133! 395!

I 70! 445!
290! 281!
200! 350!
163! 509!

* Acres
i............. ....'110!...

Species 
............. 500*

li'dl
C 1 . . .Z ....U l l . . .

475 
560 i

125!
31?

i eol
i 39!

324 i 
" 450f 

292'! 
483!

83| 665:
40) 700

100i 800
140! 270
30! 400
64! 166
92! 300
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Cooperative Learning Problem 2: The speeds of animals have been 
clocked and their maximum speeds in miles per hour are shown in the 
table.

Animal MPH Animal | MPH i Animal IMPH
i Cheetah 70 ! Greyhound j 40! Human 28!
iWildebeest 60 i Rabbit (domestic) i 35! Elephant 25;
ILion 50 iMuie deer I 35iMamba snake
IGazelle 50 iJackal ! 35!Wild turkey 15!
"Elk 45 ;Reindeer 32; Squirrel 12!
'Quarter horse iGiraffe 32iPig (domestic) 11!
ICoyote 43 jWhite-tailed deer j 30iChicken 9!
jGrayfox^______ 42 jWart hog 1 30; Giant tortoise 0.17!
iHyena 40 Grizzly bear I

a) Calculate the mean, median, and mode.
Mean:______  Median:   Mode:

b) Which measure or measures of dispersion are useful for this problem?

c) Which measure or measures are relatively meaningless for this 
problem?

Cooperative Learning Problem 3: The test scores for Miss Leon's math 
test are:
{75, 86, 35, 97, 86, 73, 67, 98, 84, 83, 66, 55, 92, 89, 75, 36, 49, 98, 100, 

91}
a) Find the mean, median, mode, and range for the data.
M ean:  Median: ______  Mode:_____

b) Which is the most meaningful measure of dispersion for Miss Leon to 
use in analyzing the test scores?

c) What conclusion can Miss Leon reach based upon her analysis?
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Cooperative Learning Problem 4 (Computer Spreadsheet): Use a 
computer spreadsheet to graph the data in the last problem. Experiment 
with the following types of graphs: column graph, scatterplot, pie-chart, 
and histogram.

Which is the most useful data representation? (This can be completed by 
hand but it is easier on a computer).

From Unit VII - Algebra

IS! Computer or Graphing Calculator Exercise: Investigate the changes 
that occur in the graphs of the following linear equations y = ax + b 
when "a" and "b" are changed.

a) y = x Note: a = 1, b = 0

b) y = x + 1 a = ___  b = __
What happened to the graph when it is compared to 
y = x ?

c) y = x + 2 a = ____  b = ____

What happened to the graph when it is compared to 
y = x ?

d ) y  = x + 5 a = ____ b = ___
What happened to the graph when it is compared to 
y = x ?

e ) y  = x -  l  a = ____ b = ___
What happened to the graph when it is compared to 
y = x ?
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f) y = x - 10 a = ___  b = -----
What happened to the graph when it is compared to
y = x ?

g) Predict what the graph of y  = x - 3 will look like.

h) y = 2x a = -----  b = -----
What happened to the graph when it is compared to 
y = x ?

i) y = 2x + 1 a = ---- b =
What happened to the graph when it is compared to 
y = x ?

j) y = 2x - 5 a = ------ b = -----
What happened to the graph when it is compared to 
y = x ?

k) y = 3x a-= ------ b = -----
What happened to the graph when it is compared to 
y = x ?

1) y = 3x + 2 a = ___  b =
What happened to the graph when it is compared to 
y = x ?

m) y = 3x - 8 a =   b =
What happened to the graph when it is compared to 
y = x ?
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n) Predict what the graph of y = 5x + 3 will look like?

o) y = -2x a = —  b = —
What happened to the graph when it is compared to 
y = x ?

p ) y  = -4x a = —  b = —
What happened to the graph when it is compared to 
y = x ?

q) y = -lOx a = —  b = —
What happened to the graph when it is compared to 
y = x ?

r) y = -—x a = —  b = —
2

4

What happened to the graph when it is compared to 
y = x ?

s) y = -—x a = ___ b = ___

What happened to the graph when it is compared to 
y = x ?

t) Predict what the graph of y = x will look like?
4

u) Predict what the graph of y = - x  will look like?
4

Write your conclusions from this 

exercise.
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□Computer or Graphing Calculator Exercise 1:
Graph the following equations and sketch the graphs below.

a) y = -x2 + 5x
b) y = x3

c) y = Ixl (This means every value of y is positive even
when x is positive or negative).

n
Discussion: Examine the graph y = -x + 5x for the values of x > 0 .
A real-world example for this graph is the path of a ball when it is 
thrown. We will label the horizontal axis t for time in seconds, and the 
vertical axis will be labeled h for height in feet. The equation is now 
h = -t2 + 5t. At t = 0 we throw the ball. Tracing this curve on the 
graphing calculator or computer shows the ball rises until it reaches the 
m axim um  height of 6 .2  feet and then falls back to the ground at t = 5 or 
in 5 seconds. Is this problem realistic? A young child might not be able to 
throw a basketball any higher than this.

h = - t 2 * 5t

□Computer or Graphing Calculator 
Exercise 2:
Use the same equation h = -t2 + 5t and find out 
what changes need to be made to make the 
equation realistic for someone your age who is 
throwing a ball in the air. Vary the coefficients 
of t2 and t. What equation will you need to 
enter into the computer or graphing calculator? 
What equation(s) did you find that would work?
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Use the trace command to find the maximum height. You will trace the 
curve to find the y-coordinate at the top of the curve. Remember that the 
y-coordinate on your calculator or computer is the ^  ^  
same as the h-coordinate in your equation. The 
x-coordinate is the same as the t-coordinate in 
your equation. When will the ball hit the 
ground?

Maximum height:____________

Time when ball hits the ground:

Cooperative Learning Problem 1: Complete the table using the 
equation h = - 12 + 5t with the values shown for t. Then answer the 
following questions:

a) What does the table tell you about the maximum height and 
when does it occur?
b) What does the table tell you about the times the ball is at 
ground level?
c) What is wrong with the graph? Can you think of a scenario that 
would make this table true?

t h = - t Z+ St
0
1
2
3
4
5
6
7
8
9
10
11
12
13
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Discussion: Absolute value functions make interesting nonlinear graphs 
also. The equation y = Ixl graphed as a V-shape in Computer or 
Graphing Calculator Exercise 1. We can move the graph around by 
changing values in the equation.

y=M

For example, y = I x + 1 I is the graph below:

The equation y = Ixl + 1 gives a different graph:
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ElComputer or Graphing Calculator Exercise 3:
Experiment with the computer or graphing calculator and write the 
equation for each graph:

\ \ / f \
2 \ /

/ \  - 4 /
3

(a) (b) (c) (d) (e)
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Assignment o f Ordinal Values to P.A.S.S. Curricula bv Coder 3 (Nud*Isfl
Using the Mathematics Materials Analysis Instrument fMMAD

Ordinal
Node X___________ Y____________  Value
1995 curriculum, grades 5-8

111 62.0 59.0 60.5 4
1 12 20.0 11.0 15.5 2
1 13 54.0 51.0 52.5 4
1 14 63.0 56.0 59.5 4
1 15 31.0 15.0 23.0 3
1 16 19.0 1.5 10.3 2
1 17 68.0 47.0 57.5 4
1 18 49.0 46.0 47.5 4
1 19 44.0 38.0 41.0 4
1 1 10 74.0 58.0 66.0 4
1 1 11 44.0 39.0 41.5 4
1 1 12 46.0 38.0 42.0 4

121 73.0 73.0 73.0 4
122 39.0 36.0 37.5 4
123 15.0 6.6 10.8 2
1 2 4 26.0 16.0 21.0 3
1 25 50.0 23.0 36.5 4
1 2 6 31.0 17.0 24.0 3
1 27 25.0 18.0 21.5 3
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved 

text to all documents. M = X + Y / 2. aThe weighted average for node 1 1 is 

19.7% and for node 1 2,11.5%. Ordinal value scale at end of table.

table continues
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Ordinal

Node X Y Mb Value
1995 curriculum, grades 5-8

131 5.2 0.3 2.8 2
132 27.0 7.7 17.4 4
133 52.0 17.0 34.5 4
134 35.0 11.0 23.0 4

141 17.0 2.4 9.7 2
142 38.0 20.0 29.0 3
143 21.0 6.4 13.7 2
144 22.0 6.0 14.0 2
145 51.0 11.0 31.0 4
146 26.0 4.2 15.1 3
147 7.1 0.3 3.7 2
148 44.0 5.3 24.7 3
149 22.0 2.8 12.4 2

151 48.0 7.7 27.9 3
152 46.0 13.0 29.5 3
153 40.0 6.9 23.5 3
154 25.0 9.5 17.3 3
155 48.0 23.0 35.5 3
156 37.0 6.0 21.5 3
157 68.0 8.2 38.1 4
158 100.0 6.6 53.3 4
159 63.0 5.3 34.2 3
1 5 10 80.0 10.0 45.0 4
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved 

text to all documents. M = X + Y / 2. hThe weighted average and for node 1 

3 is 6.6%; for node 1 4,14.8% and for node 1 5,16.4%. Ordinal value scale 

at end of table.
table continues
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Ordinal

Node X____________ Y___________ M*___________ Value
1995 curriculum, grades 5-8

161 63.0 23.0 43.0 4
162 55.0 20.0 37.5 4
163 69.0 19.0 44.0 4
164 12.0 1.8 6.9 2
165 42.0 17.0 29.5 4
166 44.0 12.0 28.0 4
167 33.0 2.7 17.9 3

171 28.0 3.8 15.9 3
172 25.0 5.1 15.1 3
173 8.7 0.5 4.6 2
174 8.7 0.5 4.6 2
175 50.0 2.0 26.0 3
176 49.0 4.1 26.6 3
177 67.0 3.7 35.4 4
178 67.0 3.7 35.4 4
179 6.5 0.3 3.4 2

181 58.0 19.0 38.5 4
182 56.0 12.0 34.0 4
183 66.0 31.0 48.5 4
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved 

text to all documents. M = X + Y / 2. °The weighted average and for node 1 

6 is 11.5%; for node 1 7, 14.8% and for node 1 8,4.9%. Ordinal value scale 

at end of table.

table continues
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Ordinal

Node X____________ Y___________ M*___________ Value
1995 curriculum, grades 9-12

2 1 1 71.0 71.0 71.0 4
2 1 2 42.0 24.0 33.0 4
2 1 3 58.0 53.0 55.5 4
2 1 4 60.0 51.0 55.5 4
2 1 5 48.0 36.0 42.0 4
2 1 6 19.0 9.3 14.2 3

22 1 46.0 43.0 44.5 4
2 2 2 72.0 69.0 70.0 4
2 2 3 28.0 16.0 22.0 3
2 2 4 27.0 14.0 20.5 3
2 2 5 24.0 17.0 20.5 3
2 2 6 1

23 1 14.0 5.0 9.5 2
2 3 2 42.0 4.5 ' 23.3 3
2 3 3 35.0 3.7 19.4 3
2 3 4 35.0 3.7 19.4 3
2 3 5 28.0 9.5 18.8 3
2 3 6 19.0 10.0 14.5 3

24 1 49.0 48.0 48.5 4
2 4 2 32.0 28.0 30.0 4
2 4 3 23.0 19.0 21.0 3
2 4 4 38.0 10.0 24.0 3
2 4 5 1
2 4 6 44.0 1.2 22.6 3
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved 

text to all documents. M = X + Y / 2. dThe weighted average for nodes 2 1,

2 2 , 23  and 2 4 is 12.5%. Ordinal value scale at end of table.

table continues
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Ordinal

Node X____________ Y___________M*___________ Value
1995 curriculum, grades 9-12

25 1 100.0 6.7 53.4 4
2 5 2 27.0 2.1 14.6 3
2 5 3 52.0 24.0 38.0 4
2 5 4 54.0 20.0 37.0 4
2 5 5 36.0 7.2 21.6 3
2 5 6 56.0 35.0 45.5 4

26  1 
2 6 2  
2 6 3

29.0 23.1 26.1 4
1
1

2 6 4 36.0 13.0 24.5 3
2 6 5 38.0 3.5 20.8 3
2 6 6 41.0 37.0 39.0 4

27  1 62.0 9.5 35.8 4
2 7 2 58.0 3.5 30.8 4
2 7 3 15.0 1.4 8.2 2
2 7 4 21.0 8.8 14.9 3
2 7 5 36.0 14.0 25.0 3
2 7 6 13.0 2.6 7.8 2

2 8 1 50.0 41.0 45.5 4
2 8 2 71.0 31.0 51.0 4
2 8 3 86.0 16.0 51.0 4
2 8 4
2 8 5
2 8 6

24.0 4.7 14.4 3
1
1

Note. X = % of retrieved text to retrieved documents. Y = % of retrieved 

text to all documents. M = X + Y / 2. eThe weighted average for nodes 2 5,

2 6 , 21  and 2 8 is 12.5%. Ordinal value scale at end of table.
table continues
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Ordinal

Node X____________ Y___________ M[___________Value
1989 curriculum, grades 5-8

111 29.0 23.0 26.0 3
1 12 5.0 0.5 2.8 2
1 13 49.0 49.0 49.0 4
1 14 24.0 10.0 17.0 2
1 15 1
1 1 6 1
1 17 16.0 10.0 13.0 2
1 18 1
1 19 7.0 0.9 4.0 2
1 1 10 18.0 4.0 11.0 2
1 1 11 25.0 7.0 16.0 2
1 1 12 77.0 37.0 57.0 4

1 21 33.0 21.0 27.0 4
1 2 2 1
123 1
1 2 4 7.0 2.0 4.5 2
1 2 5 4.0 0.3 2.1 2
1 2 6 1
12 7 4.0 1.0 2.5 2
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved 

text to all documents. M = X + Y / 2. fThe weighted average for node 1 1 is 

19.7% and for node 1 2,11.5%. Ordinal value scale at end of table.

table continues
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Ordinal
Value

1989 curriculum, grades 5-8

1 3 1 100.0
1 3 2
1 33
I 3 4 13.0

7.0

2.0

53.5

7.5

4
1
1
3

14 1 70.0 12.0 41.0 4
1 4 2 50.0 17.0 33.5 4
143 16.0 3.0 9.5 2
1 4 4 17.0 1.0 9.0 2
145 49.0 8.0 28.5 3
1 4 6 15.0 1.0 8.0 2
1 4 7 2.0 0.3 1.1 2
148 36.0 10.0 23.0 3
1 4 9 I

1 5 1 62.0 8.0 35.0 3
1 5 2 43.0 14.0 28.5 3
153 15.0 2.0 8.5 2
1 54 3.0 0.5 1.8 2
155 68.0 11.0 39.5 4
1 5 6 76.0 14.0 45.0 4
1 5 7 100.0 6.0 53.0 4
1 5 8 12.0 0.9 6.5 2
1 5 9 1
15 10 1
Note. X = % of retrieved text to retrieved documents. Y = % of

retrievedtext to all documents. M = X + Y / 2. 8The weighted average for 

node 1 3 is 6.6%, for node 1 4, 14.8% and for node 1 5, 16.4%. Ordinal 

value scale at end.of table.

table continues
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Ordinal

Node X Y M* Value
1989 curriculum, grades 5-8

161 30.0 6.0 18.0 3
1 6 2 42.0 9.0 25.5 4
1 6 3 1
1 6 4 1
1 6 5 14.0 2.0 8.0 2
1 6 6 44.0 7.0 25.5 4
1 6 7 1

1 7 1 1
1 7 2 1
1 7 3 1
1 7 4 1
1 7 5 1
1 7 6 1
1 7 7 1
1 7 8 1
1 7 9 1

1 81 68.0 9.0 38.5 4
1 8 2 8.0 0.3 4.1 2
1 8 3 33.0 16.0 24.5 4
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved

text to all documents. M = X + Y / 2. hThe weighted average for node 1 6 is 

11.5%; for node 1 7,14.8% and for node 1 8,4.9%. Ordinal value scale at 

end of table.

table continues
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Ordinal

Node X Y M‘ Value
1989 curriculum, grades 9-12

2 1 1 38.0 29.0 33.5 4
2 1 2 10.0 3.0 6.5 2
2 1 3 16.0 6.0 11.0 2
2 1 4 48.0 25.0 36.5 4
2 1 5 1
2 1 6 1

22 1 1
2 2 2 33.0 21.0 27.0 4
2 2 3 6.0 2.0 4.0 2
2 2 4 4.0 1.0 2.5 2
2 2 5 2.0 0.1 1.1 1
2 2 6 1

23 1 1
2 3 2 1
2 3 3 13.0 2.0 7.5 2
2 3 4 20.0 1.5 10.8 2
23 5 1
2 3 6 5.0 0.5 2.8 2

2 4 1 52.0 52.0 52.0 4
2 4 2 46.0 46.0 46.0 4
2 4 3 1
2 4 4 2.0 0.5 1.3 2
2 4 5 1
2 4 6 1
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved 

text to all documents M = X + Y / 2. ‘The weighted average for nodes 2 1,2 

2, and 2 3 is 12.5%. Ordinal value scale at end of table.

table continues
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Ordinal

Node X Y MJ Value
1989 curriculum, grades 9-12

25 1 1
25 2 1
25 3 I
25 4 1
25 5 I
25 6 58.0 16.0 37.0 4

26 1 48.0 14.0 31.0 4
26 2 1
26 3 1
26 4 9.0 2.0 5.5 2
26 5 1
26 6 47.0 39.0 43.0 4

27 1 1
27 2 I
27 3 1
27 4 1
27 5 1
27 6 1

28 1 26.0 16.0 21.0 3
28 2 12.0 2.0 7.0 2
28 3 1
28 4 55.0 2.0 28.5 4
28 5 1
28 6 1
Note. X = % of retrieved text to retrieved documents. Y = % of retrieved 

text to all documents. M = X + Y / 2. JThe weighted average for nodes 2 5,

2 6,2 7 and 2 8 is 12.5%.

table continues
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Ordinal
Value
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1 1 0 £ M s 1 1
1 < M s 20 2

20 < M s 40 3
M >40 4

12 0 ^ M £ 1 1
1<M £ 12 2

12 < M £ 25 3
M >25 4

13 0 s M £ 1 1
1 <M  *7 2

7 <M  s 14 3
M > 14 4

14 0 £ M £ 1 1
1 <M  s 15 2
15 < M £ 30 3

M > 30 4

15 0  ̂M s 1 1
1 <M  s 17 2
17 < M £ 35 3

M > 35 4

16 0 s M $  1 1
1 <M  £ 12 2
12 < M s 25 3

M > 25 4

table continues
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Node
M

Range
Ordinal
Value
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1 7  O jsM s I 1
1 <M  £ 15 2
15 <M  £ 30 3

M >30 4

18 0 ^ M <; 1 1
1 <M  s 5 2

5 < M  £ 10 2
M > 10 4

2, All 0 £ M s 1 1
1 <M  s 13 2
13 <M  £ 26 3

M >26 4
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Appendix T 
Unique Activities -1989 P.A.S.S. Curriculum
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ACTIVITY 6

Write the letter in the crossword puzzle that matches the 
quotient for that letter. ^

A

3 p r

"T"
6 ( sT

T
3 f T

Djjpr
M

l E

T
3 nn

example:
IS

3 /4 5
3
IS

9
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ACTIVITY 16
279

To get the name of a city, color in the sections that have 
matching quotients below. Bold the paper before a mirror. Read 
the name in the reflection.

51 87
1

95 I 55
83

S8 63 76 57 90 J =

g S L 1
78 67

1.
54/T7S3T

2 .
25/T7Tfr

3 .

37/1', JffiF

4.
34/1', 938'

5 .

56/TT7TT

6 .
61/T 7H T

7 .

56/Trsnr
8 .
36/TTT5T

9.

44/1,432
10.

77/T ^ T T

11.
46/TTSTT

1 2 .
5 7 / 3 , 7 o l

13.
5 3 /m 5 r

14.
76/5,^12

15.

84/6,441
16.

8 5 /7 7 W
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ACTIVITY 19

W hale C h a rt

280

Slue Vhale 
( le s s e e s  a a la a l which, ever Li'

le e f th :  95 fee s  
w eighs: 150 eoee

leogeh: 30 fere
w eighs: 10 to ss

leogeh : 65 feee  
w eighs: 60 sm s

Use the chart to answer these questions. Show your work.

1. How much lonqer is the Blue Whale than the Narwhal?

2. How many Bottle**Nosed Whales would it take to equal the weight of one Right Whale?

3. One ton * 2000 pounds. Row much does a Blue Whale weigh in pounds?
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ACTIVITY 20
281

B ird Chart

RiCbaac ( lia r  j F astest f ila r largaac | n a lla s t
Goose __ Faragrlae. te lea s

26,000 fa s t j 110 w*h ' 300 psuads 1 2 laehaa
Eroot esc H » |s h m < F astest raoaar Oldest | G reatest traveler

Albatross

S f /

L - ^ I s o a n Tara J  .

■ ' A ■-*•“ f"

12 faae SO apt 69 yaars 11,000 a lia s

Use this chart to answer thass questions. Show your work.

1. Tha old*at parson lived to ba about 130 yaars. How such 
oldar Is this than tha "old" ravan?

2. So m  jat airlinars eruisa at 35,000 feat. How auch higher 
is this than tha highest flying bird?

3. The fastest a parson can run is about 25 alias par hour. How aany tiaas faster can tha ostrich run?
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ACTIVITY 21
282

A n im a l C h a rt

Suffalo Rhino

Use this graph to answer these questions. Show your work.

1. Which animal is tha lightest? _ _ _ _ _ _ _ _ _ _ _ _

2. Which animal is tha heaviest? .

3. What is tha diffaranca in weight between the heaviest and 
tha lightast animals?

4. Hew much would the camel have to gain to weigh as much as 
the buffalo?
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ACTIVITY Z

Write a fraction for each shaded part of the robot.

(D

n W m

n s B iL^99mm

9 © ® ©
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leimn nzz
Put thass fra c tio n s  in to  tha "s h rin k in g  aach in s ." Raduca to  
lo v s s t ta rs s .

©* ©* ©■S’ ® A ®&
®i ©■& ©a ®§ ®&
®* ©* ©■& ®& ®#
©£ ©̂ ©♦ ® A ® ji

© ______ .  © . . . © .. ® ®

© .  © _______.  ® .. ® . ®

© .  © , ®_ ... ® ©

©______ .  ©. . . © . © ®
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ACTIVITY V

Are

1.

the measurements equivalent? 

450 cm, 4.5 m

Write yes 

2.

or no.

7.2 m. 7200 cm

3. 200 m. 2 cm 4. 54 mm, 0.54 cm

5. 925 mm. 92.5 cm 6. 4.1 cm, 41 mm

7. 36.2 cm. 3620 am 8. 1.94 am. 194 cm

9. 56 cm. 0.56 m — 10. 14 m. 140 cm

11. 6.8 mm. 86 cm 12. 9.2 a. 209 cm

'  It is 56 
centimeters I o n a

Iona!m i l l i m e t e r s

13. Who is correct?
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A Csntlaatar Putzla

c cfeslk D

0)

m

ACTIVITY XIV

Using your a a tr ic  r o ls r ,  
fin d  tha its a  th a t f i t s  
e a c h  a a s s a ra a a n t and  
p la c a  i t s  naaa in  th a  
a p p ro p ria te  bos o f tha  
crossaord p asx le .

1 . 15
3 . 10
5 . 16

Across

7. 
9 .

11.
14 ca

7 ca
8 ca

Doan

2 .
4.
6 .

4 ca
9 ca
5 ca

8. 11 ca
10. 6 ca
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Appendix U
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Unique Activities -1995 P.A.S.S. Curriculum

From: Unit I - Number and Number Relationships 
Section Three - Real Numbers

Cooperative Learning Connections (Science): The distance traveled by 
light in one year is called a light-year. One light-year is 
5,880,000,000,000 miles.

a) How do you read this number?
b) Write this number in scientific notation.
c) Conduct research at the library to find the distance in light-years 

from the sun for each planet of the solar system. Record your information 
in scientific notation and display the information in a table in order from 
largest to smallest.

Include other interesting facts and numbers such as the age of each 
planet, the diameter of each planet, the rotational period and period of 
revolution of each planet, and the highest and lowest temperatures of each 
planet. Notice the lowest temperatures are negative integers. Estimate 
the temperatures for the earth and compare them to the facts you discover.

Display the information in a table and use scientific notation for 
large numbers.

Project: Draw a diagram or build a model illustrating the diameter of the 
planets and the distance in light-years from the sun. Resources in the 
library or science textbooks can help you with this project. The diagram 
below can help you think about placement and size but it is not meant to 
be accurate. You will provide the accuracy.

/yc y\ \
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From: Unit III - Computation and Estimation 
Section Three - Proportion

288

Cooperative Learning Problem 5: In the United States, Cinco de Mayo 
is the day reserved to celebrate Mexican independence from Spanish rule. 
Mariachis stroll freely during the festivities to serenade the crowds. Your 
group is in  charge of the food and have decided you want to serve chili. 
Your recipe is designed for 6 people.

Chili recine
3 ib. ground beef dash red pepper
2 large chopped onions 1 Tbs. flour
2 chopped garlic buttons 1/4 c. ch ili powder
1 tsp. salt 3 cup6 boiling water
1/2 tsp. pepper 1 can tomato paste

a) What are the conversion ratios?
b) Estimate and then calculate the exact 
ingredients needed in the recipe to serve 350 
people. Were your estimates close?

From: Unit I J  - Computation and Estimation 
Section Four: ProblemSolving

Project: Quinceanera parties are given by Latino 
families for fifteen year olds and can be very 
expensive. It is very helpful to make a budget to 
plan large parties such as these. Your group 
project is to make a budget for this type of party or 
some other gathering of your choice. Estimate 
costs for food, entertainment such as musicians, 
hall rental, clothing, and all other costs associated 
with your party. Use a spreadsheet to itemize 
your costs.

n
c: ■<!:
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From: Unit IV - Patterns. Functions, and Mathematical Connections

Section Two - Fibonacci Patterns

Discussion: In the above problem, the cartoon has extremely exaggerated 

features which are not visually pleasing. Measurements from the cartoon 

would definitely not give a golden rectangle ratio! The golden rectangle is 

known for its visually pleasing ratio. Warning! Many beautiful people 

may not have faces that fit the golden rectangle ratio. We will all agree, 
however, that this cartoon is not visually pleasing. ©

Example 1: Measure the face from the bottom of the chin to 

the bottom of the nose. Write this measurement as the 
dimensions of another rectangle using the width of the face 

measured in step 1. Write these measurements as a ratio and 

reduce it to simplest form. For example, the measurements
3 1might give you the dimensions of a rectangle that is — x 1—.
4 2

,, , 1 3 3 3 2 2 1Then the ratio —-s-l— => — * —
4 2  4 2  4 3 4 2

This is the ratio of two Fibonacci numbers. The problem can also be done
with the largest number in the numerator. The Fibonacci ratio is then 2:1
which is also acceptable. In this case, the proportions of the face between
the chin and the nose gives a Fibonacci ratio. You will now find other

rectangles on the face that will give Fibonacci ratios.

Cooperative Learning Problem 5:

a) Measure the face from the bottom of the nose to the middle of the 

eyes. Write this measurement as the dimensions of another rectangle 

using the width of the face measured in Problem 4. Write the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



290

measurements as a ratio and determine whether it fits the Fibonacci ratio 

or the golden rectangle ratio.
b) Find other rectangles by measuring the features of the face and 

determine whether the ratios fit the Fibonacci ratios or the golden 

rectangle.

c) Share your findings with the other groups. Discuss the ideas 

behind the golden rectangle.

What is visually pleasing?

Does "visually pleasing" differ between cultures?

Were models used in the class who are considered beautiful but whose 

dimensions did not fit these ratios?
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Is there a new ratio that your class can create from your measurements to 

define the beauty of your class members?

The Fibonacci ratio was named after Leonardo Fibonacci. Make up a name 

for your class ratio.
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From: Unit IV - Patterns. Functions, and Mathematical Connections

Section Four: More on Functions

Discussion: The same function can represent many different types of 
problems. The same graph can have different meanings in business, in 
engineering, in medicine, in education, and in other professional areas.

Cooperative Learning Problem 1: Examine the following graphs and
create three problem situations for each graph. You may use the 
professional areas listed above or you may make up your own.

bl

Cooperative Learning Problem 2: Create a graph and write two 
problem situations for the graph. Present your graph to the class. Discuss 
other problem situations that could be used for your graph.

Cooperative Learning Problem 3: This graph will change when the 
number in front of the x variable is changed. Make a table and graph for 
each function. A computer spreadsheet may be used to make the tables.

a) y = 2x b) y = 3x c) y = — x

Cooperative Learning Problem 4: Create a problem situation that 
would cause the graph to change as shown in Cooperative Learning 
Problem 3.
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From: Unit IV - Patterns. Functions, and Mathematical Connections

Section Five: Mathematical Connections

Problem  4: Frederico is a graduate student in biology and is studying

the growth rate of cancer cells in mice. He measures the width of the new 

growth at regular intervals of time and records the data in a table.

a) Fill in the table.

b) Using t for the time in seconds, and s for the 

size of the cell, write an equation which 

expresses the pattern in the table.

c) Use the equation to find the size of the cell 

in one minute. (Careful - one minute, not one second. Change the one 

minute to seconds.)

d) Use the equation to find the size of the cell in one hour. (Careful - one 

hour, not one minute. How many seconds are in one hour?)

e) Does this problem seem reasonable? Use a ruler to determine 

how large the tumor would be for your answer in part d.

What are the conclusions that might be drawn by Frederico?

Time in Size of
seconds cell

1 ,02 mm
2 .04 mm
3 .06 mm
4 .08 mm
5 ?
6 ?
7 ?
8 ?
9 ?

10 ?
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From: Unit V - Measurement 

Section One: Measurable Properties of Physical Objects

Cooperative Learning Problem 14:

Practice drawing a picture of the
rectangular prism with dimensions \
5" x 8,r x 3" . '  h

............. .. .. .!

K
8

Mentally unfold it and draw a picture 

of the resulting two-dimensional figure.

Label the measurements on each edge.

Definition: Surface area is the total area of the faces of a solid. To find 

the surface area of a solid, the areas of each face are added together.

Problem  15:
a) How many faces are on a cube?
b) How many faces are on a rectangular prism?
c) Find the surface area of a 4" x 4" x 4" cube.
d) Find the surface area of a 5" x 8" x 3" rectangular prism.
e) Write a formula for surface area of a rectangular prism. Use 

the variables S, I, w, h. Hint: Use the drawing you made in 

Cooperative Learning Problem 14 and label the edges with 

the variables to help you write the formula.
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Cooperative Learning Problem  16: The solid below has the following 
dimensions:

a b
Square cube 1" 3"
Small rectangular length 5" 6"
Large rectangular length 10" 10"

Find the volumes of the solids a and b.

From: Unit V - Measurement 
Section One: Measurable Properties of Physical Objects

Project:
Victor has a very disorganized closet.
He sees an advertisement from your 

group to build closet organizers. These 

are groups of shelves and cubby holes to 

hold shoes, sweaters, shirts, pants, suits, 
and other items. Victor wants separate 

compartments for 10 pairs of shoes, and
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a space large enough to hang 5 suits, 10 shirts, and 12 pairs of pants. He 

wants separate compartments for 10 pairs of shoes, and a space large 

enough to hang 5 suits, 10 shirts, and 12 pairs of pants. He wants 

separate spaces to store 10 sweaters and 15 ties, and space for 

miscellaneous items. His closet is a rectangular prism with the following 

dimensions: 1 = 10' w = 3' and 

h = 12' .

a) Name your company.
b) Design a closet organizer for Victor. Make a sketch of your design 

with measurements included on the sketch.
c) You will need to paint it when you are finished. How many square feet 

will need to be painted?

From: Unit VI - Statistics and Probability 
Section Two: Data Analysis

Project (Endangered Species): Conduct research in the library and/or 

on the Internet concerning endangered species. Collect data, make tables, 
matrices, and graphs to represent your data. Write a report and present it 
to the class (or to your contact person) using your graphs for displays.

3
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Cooperative Learning Problem 3: The test scores for Miss Leon's math 
test are:

{75, 86, 35, 97, 86, 73, 67, 98, 84, 83, 66, 55, 92, 89, 75, 36, 49, 98, 100, 

91)
a) Find the mean, median, mode, and range for the data.

Mean:______  Median:_______  Mode:_____

b) Which is the most meaningful measure of dispersion for Miss Leon to 
use in analyzing the test scores?

c) What conclusion can Miss Leon reach based upon her analysis?

Cooperative Learning Problem 4 (Computer Spreadsheet): Use a 
computer spreadsheet to graph the data in the last problem. Experiment 
with the following types of graphs: column graph, scatterplot, pie-chart, 
and histogram.
Which is the most useful data representation? (This can be completed by 
hand but it is easier on a computer).

Cooperative Learning Problem 7: Make up stories for each of the 
following graphs. Share them with the other groups. Who has the best 
story? Who has the funniest story? Who has the most unbelievable story?

a) i b)

-
1.

1 2 3 4 5 6 7
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8) Pablo and Luis enjoy playing marbles, and each of them has 24 
marbles. They have decided to trade each other one marble in a random

selection by reaching into the other’s 
bag and selecting a marble without 
looking. Pablo has 5 green, 4 clear, 8 
blue, 3 red swirls, 3 yellow swirls, and 
1 agate. Luis has 4 blue, 2 white, 5 
orange swirls, 3 green, 5 clear, 3 yellow 
swirls, and 2 agates,
a) Create one large matrix to display 

the information about Pablo's and Luis’ collections of marbles.
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b) Find the probability of Pablo selecting each of the following from Luis’ 
collection:

i) P(red swirl)
ii) P(not choosing an agate)
iii) P(blue)
iv) P(orange swirl or green)

c) Find the probability of Luis selecting each of the following from Pablo’s 
collection:

i) P(clear)
ii) P(agate)
iii) P(white, green, or blue)
iv) P(not choosing yellow swirl or white

d) Find the probability of Pablo choosing a type of marble he already 
owns.

e) Find the probability of Luis choosing a type of marble he already owns.

f) What could the boys do to make sure that they each get a new type of 
marble? Find the probability of each boy getting one of the “new” marbles.

From: Unit VII - Algebra 
Section One: Abstraction and Symbolism

Brainstorm: You are explorers in a new world 
and you cannot communicate with the citizens.
You are hungry and want to buy a Dagwood 
sandwich. Describe this new world and brainstorm 
the various ways you can solve this problem.
Share your findings with the other groups.
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Problem  1: Answer the following questions:

a) List at least three symbols for patriotism in a country of your choice.
b) List at least five abstract ideas and three symbols for each.

Cooperative Learning Problem 2: Your group has been chosen to take 
inventory of the school supplies in the Principal's supply closet in her office 
because you are considered to be quick-witted problem solvers. You must 
finish as quickly as possible because Dr. Soto needs her office. You look in 
the supply closet and see there are the following items that need to be 
counted: boxes of pencils, pens, paper clips, staples, and binder clips; scotch 
tape, staplers, memo pads, post-it notes, typing paper, and stationery. In 
each box there are 20 pencils, 10 pens, 100 paper clips, 5000 staples, 12 
binder clips, 1 scotch tape, and 1 stapler. The memo pads and post-it notes 
are in packs of 10 each, and the typing paper and school stationery are 
each in reams of 500.

Devise an inventory method to simplify your task so that you are in 
the supply closet for as little time as possible.

Cooperative Learning Problem 3: Take a piece of 8—"x 11" paper and
2

cut it in half. How many pieces are there? Cut each piece in half again. 
Now how many pieces are there? Continue doing this and writing down 
the number of pieces. How long can you do this? How many pieces are
there?

Cut #1 - Number of pieces:__
Cut #2 - Number of pieces:__
Cut #3 - Number of pieces:__
Cut #4 - Number of pieces:__
Cut #5 - Number of pieces:__
Cut #6 - Number of pieces:__
Cut #7 - Number of pieces:__
Cut #8 - Number of pieces:__
Cut #9 - Number of pieces:__
Cut #10- Number of pieces:__
Cut #11- Number of pieces:__
Cut #12- Number of pieces:__
Cut #13- Number of pieces:__

and so on.
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Discussion: You should have discovered that you could not continue 
cutting the paper because the pieces were too small to cut. However, you 
can mentally visualize being able to continue cutting this paper forever 
and there would be an infinite number of pieces.

Infinity ( the symbol is oo ) is an abstract idea. The sum of the number of 
pieces can be written as

1 + 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 + 2048 + 4096 + ...

This is an infinite arithmetic series whose sum is infinity. Prove this by 
adding the terms shown above of the series, and then continuing to add 
one term at a time to see that the sum is continuously increasing.

Project (Symbols): There are many symbols used in mathematics. Use 
textbooks, library resources, and other resources to find math symbols. 
When the class has found a large variety of symbols, use colored markers 
to make posters for the classroom by arranging the symbols in categories 
or in collages.
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From: Unit VIII - Geometry 
Section Three: Congruence and Similarity
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Brainstorm: Look in a dictionary or math text for the definitions of 
congruence and similarity. Examine the following figures. Which concept 
applies? Write the words congruence or similarity on the blank lines.

c) d)

v j \ j \. j \ j , x, j

nwwrwrwn

e) f)
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Cooperative Learning Problem  1: The figures below are congruent 
according to definitions of congruency. Discover the relationships that 
make these figures congruent by using your protractor, ruler, and compass. 
You may also trace the figures onto another piece of paper and cut them 
out.

b) c)

From: Unit IX - Problem Solving 
Section Three: Non-Routine Problem Solving

Project: Create your own fractal figure by drawing a polygon that has 5 
or more equal sides. Connect the diagonals. Then find similar polygons 
inside and connect the diagonals on those polygons. This is the iterative 
process.

Create other examples of fractal geometry.

*

Research Project: Conduct research and make a report to the class about 
two of the pioneers of Chaos theory, Benoit Mandlebrot and Edward 
Lorenz. Find examples of the beautiful fractals they discovered using the 
computer and present them to the class. (They can be found under the 
Mandlebrot set and the butterfly effect.) Find examples in nature which 
demonstrate Chaos theory.
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From: Unit X - Mathematics as Communication
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Exercise 3 • What Am I Saying (Part I)?: Writing instructions clearly is 
an important communications skill. The reader must be able to follow the 
instructions and reproduce the design. The reader cannot ask the writer 
for further clarification because the writer is not present. In this exercise, 
you will strengthen your writing and reading skills. Read the following 
steps before you begin this exercise.

Step 1: Create a simple design using the properties of reflection, 
rotation, and symmetry.

Step 2: Write instructions for creating your design. Do not use 
diagrams.

Step 3: Use your instructions to duplicate your design. Do the 
instructions work? If not, edit your instructions and make them 
more precise.

Step 4: Give your instructions to a classmate as an exercise. Can 
the classmate duplicate your design? If not, go through each step 
with your classmate and see where the difficulty lies. Rewrite those 
steps.

Step 5: Give the edited instructions to another classmate and 
repeat Step 4.

Step 6: This exercise is complete when your instructions can be used 
correctly.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Investigation 2 - The Mystery o f the Can:

305

a) This spray can needs a new label. Decide what 
the can contains and then design a label which is 
appropriate for those contents.

b) Amy and Joshua are college interns at the local 
can manufacturing plant. Manuel, the plant 
engineer, is their boss. He tells them to work 
together to design a can and label. What do Amy 
and Joshua need to ask Manuel in order to complete this task successfully?
c) Manuel tells Amy and Joshua that they should produce a soft drink can 
which holds 400 milliliters. The can should be at least 1 inch in height. 
The can should stack easily and therefore balance is important. The label 
must cover the cylindrical portion of the can, and should be colorful, but 
Amy and Joshua should be aware that printing costs increase as the 
number of colors increase.

How should Amy and Joshua solve this 
problem?

d) Amy and Joshua decide a computer spreadsheet is perfect for this 
problem. They know they need the formulas for volume of a cylinder, and 
the surface area of a cylinder (excluding the bases). What are these 
formulas?
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They fill in the data they know on a spreadsheet. 
Why did they stop at h=20?__________________

306

Volume r height h SA
400 1
400 2
400 3
400 4
400 5
400 6
400 7
400 8
400 9
400 10
400 11
400 12
400 13
400 14
400 15
400 16
400 17
400 18
400 19
400 20

Use the formulas below to fill in the spreadsheet for Amy and Joshua. 
The computer can do this easily for you. Otherwise, you can do the 
calculations with a calculator.

r = V400/ 3.14/i SA = 2(3.14)rh
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e) Write your reason(s) for your recommendations in complete sentences.

Size of can - radius:________  height:______
Size of label - radius:________  height:---------

Design label - Number of colors:___

Draw your design label here:
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Exercise 5 - Car Mathematics: Most careers require 

an understanding of mathematics. The design, 

manufacturing, and selling of automobiles is an example 
of an industry whichdepends on mathematics. Write a 

2-3 page essay which discusses the uses of mathematics 

in the automotive industry.

Exercise 6 - Building a House:
Another industry which requires an understanding of mathematics is the 

construction industry. Write a 3-4 page essay which discusses the 

mathematics involved in building a house. Attach diagrams which 

demonstrate your understanding of the geometry involved in building a 

house.

Exercise 9 - Poetic Justice:

You have now completed the ten-unit course Integrated Math A and 

Integrated Math B. Write a poem or limerick comparing your feelings 

about mathematics when you started the program and your feelings now 

that you are completing the program.
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