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Abstract 

In a context where technology is increasingly being incorporated into health care 

practice, many U.S. health care providers and organizations are finding it challenging to 

connect disparate electronic documentation systems to retrieve patient information when 

coordinating care across providers and heath care entities.  Local and regional health 

information exchange (HIE) systems were created to facilitate collecting information into 

one integrated patient record to address information transfer between heath care 

providers.  Yet, adoption and use of HIEs have been low.  The purpose of this study was 

to review the predictive factors accounting for physicians’ use of a HIE in the U.S. state 

of Hawaii.  Key factors from the technology acceptance model were evaluated to 

determine the behavioral intention resulting in actual use of the Hawaii health 

information exchange (HHIE).  Physician characteristics (medical specialty, age, and 

gender) and location characteristics were also assessed.  The total population of the study 

contained 1034 Hawaii physicians who have signed up to use the HHIE.  Linear and 

logistic regression models were structured to evaluate the predictive nature of (a) use to 

determine if a physician has ever logged into the HIE and (b) usage to evaluate the extent 

to which a physician is logging into the HIE.  Findings from the study reveal a predictive 

relationship between the characteristic of medical specialty and HHIE use when 

comparing primary care and emergency department physicians to physician specialists.  

Using study results, health care leaders can improve physician outreach and review 

barriers when using the HIE systems to coordinate care.  Policy implications include the 

possible formulation of future requirements surrounding HIE physician participation.   
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Chapter 1: Introduction to the Study 

From the turn of the 20th century, health care providers have increasingly 

incorporated technology into their medical practices.  Paper charts are being phased out 

of existence and replaced with electronic health record (EHR) systems making data 

sharing easier (Randall, 2014).  Access to a patient record that was once housed on a unit 

or on a shelf in a medical records department is now available on computers in the United 

States and other parts of the world (Randall, 2014).  Creators of health information 

exchanges (HIEs) sought to generate one collective electronic record for a patient visiting 

multiple health care providers using disparate EHR systems (Vest & Jasperson, 2012).  

One record means that no matter where the patient receives care, all pertinent medical 

information, results, and progress notes are available in a combined chart accessible to all 

providers (Vest, 2010).   

The power of having this information readily available may assist health care 

providers reduce redundant testing, increase communication between caregivers, and 

ultimately improve care coordination.  For these reasons, lawmakers required HIE 

participation as one of the meaningful use measures within the American Recovery and 

Reinvestment Act (ARRA) 2009.  However, even though HIEs are collecting information 

and making it readily available for providers, there seems to be a gap as to how many 

physicians are using HIEs to access data outside their practice or hospital EHR systems. 

The Hawaii Health Information Exchange (HHIE) is the only participating HIE 

within the state of Hawaii designated by the Office of the National Coordinator (ONC; 

HealthIT.gov, 2014).  Understanding the factors associated with physician usage of the 
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HHIE may help local healthcare leaders in U.S. counties and states target onboarding 

strategies and evaluate current barriers to the usefulness and ease of using the combined 

record.  As a state, Hawaii is composed of separate eight islands and remains 

geographically challenged in coordinating care, and these challenges are projected to 

worsen because of Hawaii’s increasing physician shortage (Withy, 2015).  Every 

opportunity needs to be evaluated to help Hawaii health care providers bridge gaps in 

health care.  A potential solution could be to incorporate technology into data sharing 

practices, but it will only be successful if everyone understands its full benefit and use. 

In this chapter, I explain the background of the study, including the scope of the 

problem I addressed, gaps in the current literature, and the need for this study.  The study 

design, research questions, hypotheses, and variables are then introduced. I then briefly 

discuss and highlight the relevance of the model which provided the theoretical 

foundation for the study.  Important terms are also defined and the study assumptions, 

delimitations, and limitations outlined.  Lastly, the significance of the study is explained.  

The chapter concludes with a summary of key points. 

Background 

When coordinating care, many providers struggle to obtain information and 

communicate between hospitals, primary care providers, and specialists (Daniel & 

Mensah, 2015).  Primary care providers rely on hospital discharge summaries, diagnostic 

findings, consultations, and procedures to understand a patient’s condition and to 

properly assemble a plan of care (Kripalani et al., 2007).  Inadequate communication can 
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lead to a decrease in care quality and efficiency, and a rise in preventable readmissions 

(Jones, Friedberg, & Schneider, 2011).   

Physician shortages coupled with the geographic composition of the State of 

Hawaii make care coordination challenging when transferring information between 

islands (Hawaii Island Beacon Community, 2013).  According to the University of 

Hawaii’s annual report for the state legislature, by 2020 Hawaii will face a physician 

shortage estimated to be between 800 to 1500 providers (Withy, 2015).  There is an 

ongoing 20% physician shortage of full-time equivalents between all Hawaii counties 

(Withy, 2015).  As a state, Hawaii must seek innovative measures to remedy gaps in 

communicating critical patient information (Hawaii Island Beacon Community, 2013).   

There are both opportunities and challenges in coordinating patient centric care 

throughout the multiple facets of the health care continuum amid the trending adoption of 

health information technology (HIT; ONC, 2014).  As part of the ARRA, federal 

lawmakers appropriated over $34 billion dollars as part of the Health Information 

Technology for Economic and Clinical Health Act (HITECH) to fund financial incentives 

to promote the use of EHRs (Randall, 2014).  The incentive program is based upon the 

objective of attaining meaningful use certification by adopting technology and 

demonstrating a set of core measures (Charles, Gabriel, & Searcy, 2015).  HIE systems 

were developed to assist with the flow of information from multiple vendor EHRs and to 

share patient-level information throughout the continuum of care (Vest, Kern, Silver, & 

Kaushal, 2015).   
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In 2009, ONC designated and funded the HHIE as part of ARRA to assist health 

care providers in sharing patient information quickly and accurately (HealthIT.gov, 

2014).  As of 2016, the HHIE Health eNet contained over 20 million community patient 

records, which represented 84% of the state’s population (Hawaii Health Information 

Exchange [HHIE], 2016).  Fulfilling the vision and goals of the HHIE holds promise for 

increasing care coordination and reducing the impact of physician shortages in Hawaii.  

While much of Hawaii’s population is contained within the HHIE, there is a gap in the 

literature in understanding the factors associated with provider utilization of HIE in the 

state of Hawaii.  

Problem Statement 

In this study, I researched the lack of information concerning the factors 

predicting physician HHIE usage.  Specifically, I evaluated whether physician medical 

specialty, age, gender, or location predicts HHIE usefulness or ease of use.  Previous 

researchers studying the use of HIEs have assessed some of these factors in disparate 

forms and within clustered locations throughout the United States (Vest et al., 2015; 

Yeager, Walker, Cole, Mora, & Diana, 2014).  For Hawaii, the HHIE represents the total 

embodiment of the state HIE activity to reveal a complete collection of behavior.  The 

study is important because care coordination has become an area of targeted 

improvement as noted by federal government programs (Rudin & Bates, 2014).  I chose 

to study Hawaii due to its unique geographic challenges of coordinating care between 

islands, and the fact that specialty care is often sought on the island of Oahu, which 

houses the majority of the state’s population (Alicata et al., 2016).  In addition, Hawaii’s 
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health care provider shortage forecasted in the coming years will make care coordination 

increasingly difficult and important, according to Withy, Mapelli, Perez, Finberg, and 

Green (2017).  Hawaii must realize the opportunity of an electronic coordinated exchange 

of information and try to make the best use of advancing technologies in care 

coordination.  If specific predictive factors of participation or nonparticipation in HIEs 

can be better understood, targeted strategies to onboard providers could be designed by 

HIEs which may result in improved care management.        

Purpose of the Study 

The purpose of this study was to analyze the factors associated with provider 

perceived usefulness and ease of use of the HIE in the state of Hawaii.  In conducting the 

study, I focused on the aspects of HIE use related to (a) provider characteristics and (b) 

area characteristics.  Specific to provider characteristics, I assessed age, gender, and 

medical specialty.  To evaluate area characteristics, I reviewed the use of the HHIE 

between locations in Hawaii.  These variables further align with the technology 

acceptance model from the field of information systems which is based upon the 

constructs of perceived usefulness and perceived ease of use (Holden & Karsh, 2010).  

An evaluation of these factors may help local leaders define provider specific challenges 

to using HIEs between metropolitan, rural, and safety-net areas as well as evaluate 

different user intentions between providers.  The state of Hawaii is comprised of eight 

islands divided by the Pacific Ocean.  It provided a prime study site for examining the 

use of an HIE because health care is often sought on different islands because of the 

shortage of primary care and specialty care providers (Withy et al., 2017). 
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Research Questions and Hypotheses 

RQ1: What is the predictive relationship, if any, between any HHIE use (as 

measured by login vs. no login) and (a) physician medical specialty (primary care, 

emergency medicine, or specialist), (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables?  

H01: There is no predictive relationship between any HHIE use (as measured by 

login vs. no login) and (a) physician medical specialty (primary care, emergency 

medicine, or specialist), (b) physician age, (c) physician gender, and (d) location when 

controlling for the other variables. 

HA1: There is a predictive relationship between any HHIE use (as measured by 

login vs. no login) and (a) physician medical specialty (primary care, emergency 

medicine, or specialist), (b) physician age, (c) physician gender, and (d) location when 

controlling for the other variables.  

RQ2: What is the predictive relationship, if any, between the extent of HHIE use 

(as measured by number of times logged in) and (a) physician medical specialty (primary 

care, emergency medicine, or specialist) (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables?  

H02: There is no predictive relationship between the extent of HHIE use (as 

measured by number of times logged in) and (a) physician medical specialty (primary 

care, emergency medicine, or specialist) (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables. 
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HA2: There is a predictive relationship between the extent of HHIE use (as 

measured by number of times logged in) and (a) physician medical specialty (primary 

care, emergency medicine, or specialist) (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables.  

Theoretical Foundation 

The technology acceptance model (TAM) was first introduced in 1985 by Fred 

Davis to evaluate the association between perceived usefulness (PU) and perceived ease 

of use (PEOU) of information systems in relation to the behavioral intention (BI) to use 

information systems (Legris, Ingham, & Collerette, 2003).  PU is defined as the degree to 

which the system would improve job functions, and PEOU as the degree to which a 

system is free of effort (Davis, Bagozzi, & Warshaw, 1989).  A primary focus of those 

who use the TAM is evaluating both external factors and internal beliefs as to why an 

information system may be deemed acceptable or unacceptable to perform a function 

(Davis et al., 1989).   

The TAM has been widely used as a theoretical foundation for evaluating a user’s 

interaction with technology systems within the health care field.  Holden and Karsh 

(2010) asserted that end user experience and environment weigh heavily on whether a 

user will work with an information system or merely work around it.  Health care leaders 

have emphasized HIT adoption.  However, adoption is often defined as the purchase and 

implementation of a system and does not clearly indicate how a system is being used in 

day-to-day workflows (Holden & Karsh, 2010).  Previous studies have used the TAM 

framework to evaluate the divide between adoption and practice.  Furthermore, the TAM 
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is suggested to be the standard to which health information systems should be evaluated 

for predicted intention of use (Bagozzi, 2007), and studies have shown the TAM model to 

have positively identified up to 40% of the behavioral intention to use an information 

systems (Holden & Karsh, 2010). 

Continuing the use of TAM for the evaluation of information systems, I examined 

factors related to PU and PEOU that may influence predictive behaviors in health care 

providers’ use of the HHIE.  I evaluated PU by assessing factors related to HHIE use 

between the variables of physician medical specialty and location.  In evaluating PU, I 

sought to correlate whether providers are using the HHIE to review information on their 

patients and possibly improve the care coordination process.   

HIEs are seen as a potential solution for electronic information sharing and 

physician collaboration (Rudin & Bates, 2014).  Information sharing was also thought to 

lead to improved population health factors (Jones et al., 2011).  For example, if a county 

(location) has low readmission rates with correlating high HHIE usage, it could suggest 

that using the HHIE has a potential impact on patient readmissions.  I also calculated the 

predictive values between HHIE use and medical specialty to determine if a particular 

medical specialty has higher usage rates and, therefore, may have a higher behavioral 

intention to use the systems in comparison to other groups.  In prior research using the 

TAM, authors found a statistically significant relationship between HHIE use and 

physician specialty when comparing general practitioners and specialists (Gagnon et al., 

2013).   
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To evaluate PEOU, I determined whether the independent variables of age and 

gender are predictive factors of HHIE use.  Previous researchers have used the TAM to 

predict whether age and computer self-efficacy (Chung, Park, Wang, Fulk, & 

McLaughlin, 2010) are factors of behavioral intention.  The TAM has also been used to 

evaluate gender differences in terms of implications for social influence.  Researchers in 

one longitudinal study found that women place a higher importance on PEOU in 

comparison to PU as a contributing factor for their use of technology (Venkatesh & 

Davis, 2000).  The authors further reported that men did not associate PEOU within any 

period of time (initial training, or long-term use) as behavioral intention (Venkatesh & 

Davis, 2000).  Conversely, in studies specific to HIE use between male and female users, 

researchers found no apparent differences between genders (Furukawa et al., 2014).  In 

conducting my investigation, I was interested in whether gender is predictive 

characteristic of HIE use among Hawaii providers.   

Researchers have used the TAM in numerous studies over the past 3 decades to 

evaluate information technology and system use.  Although the TAM has only two 

constructs, it has also been revered as an effective predictor of behavioral intention and 

actual system use (Legris et al., 2003).  For these reasons, I believed the TAM to be an 

applicable theoretical framework to evaluate provider use of HIE systems for this study.   

Nature of the Study 

The study was descriptive and quantitative in approach in that I statistically 

explored predictor variables of HHIE use among physicians.  Descriptive studies help to 

explain what exists without changing the environment, according to Trochim and 
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Donnelly (2012).  This can be often be accomplished by reviewing data collected on a 

group or cohort (Trochim & Donnelly, 2012).  In descriptive research, participants are 

not randomly assigned to treatments; also, cause and effect interventions are not assessed 

(Thompson, Diamond, McWilliam, Snyder, & Snyder, 2005).  A descriptive approach 

was the most appropriate one to use for the variables of interest in this study because I 

sought to review an archival data set on system use for Hawaii physicians.  Further, the 

data was not collected in an experimental or intervention setting.  To date, there are still 

very few studies, according to my review of the literature, on physician patterns of HIE 

use.  Ongoing exploration may be helpful in guiding future researchers. 

To statistically calculate predictive use, I used (a) logistic regression analysis and 

(b) multiple linear regression analysis.  Logistic regression is used to predict the 

likelihood that an observation falls between two categories (Laerd Statistics, 2015a).  For 

my study, I first used logistic regression to evaluate HHIE use in terms of whether the 

physician has logged into to the HHIE system.  The HHIE has been onboarding new 

physicians to the community health record since 2014 (HHIE, 2016).  However, signing 

up does not mean that physicians have logged in.  For the logistic regression, the 

dependent variable was grouped, as follows:  

(1) login count equals zero.  

(2) login count equals 1 or more.   

Next, I used multiple linear regression to evaluate usage in terms of how many 

times or the extent to which a provider has logged into the HHIE among physicians with 

one or more logins.  This is an important factor in the analysis because it further aligns 
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with the TAM theory to explore the extent of system use.  If physicians find the system 

useful, they will likely use it more therefore have a higher login count which may affect 

local health care factors monitored by population health. The dependent variable was 

continuous which makes it appropriate for a linear regression calculation.  Multiple linear 

regression aims to review relationships between two or more variables to determine 

statistical significance (Field, 2013).  Multiple linear regression also explains the 

variation the independent variable may pose on the dependent variable and predictive 

values of the dependent variables as imposed by the independent variable (Laerd, 2015b)       

The independent variables were defined as medical specialty, physician age, 

gender, and location.  I further used medical specialty, age, gender, and location as 

control variables when computing the dependent variable of HHIE use and extent of 

usage as described above. The utilization of control variables lends further power into the 

study by reducing the external influences for the independent variable through spurious 

relation (Frankfort-Nachmias & Nachmias, 2008).   

Medical specialty. The independent variable of physician medical specialty was 

grouped by primary care, emergency medicine, and specialists.  In previous research by 

Furukawa et al. (2014) primary care physicians and specialists were compared for HIE 

use between groups.  Yaraghi (2015) also pointed out that emergency departments are 

distinct users of HIEs and describes the benefits of HIE use in emergency department 

settings.  Using these research designs helped to shape the groups included in my 

proposal.  The American Academy of Family Physicians (2017) defines primary care as 



12 

 

family medicine, internal medicine, and pediatricians.  I followed this definition to group 

primary care physicians.     

Age and gender. The independent variable of provider age followed previous 

research by Egea and Gonzalez (2011) on physician use of EHR systems under the 

constructs of the TAM.  Age will be grouped as follows: under 35 years of age, 35-44 

years of age, 45-54 years of age, 55-64 years of age, 65 years of age and over.  These 

groups are important in maintaining the consistent nature of reporting in terms of the 

TAM theory.  The independent variable of gender was entered from HHIE enrollment 

forms and coded as “0” for male and “1” for female.   

Location.  For the last research question I reviewed differences of physician use 

based upon location.  The state of Hawaii is made of four counties grouped between 

islands.  The practicing location may help correlate future population health indicators 

such as readmission rates to perceived usefulness HHIE.  Gaining a basic understanding 

of the locations using the HHIE and the possible differences between the Hawaii counties 

(Oahu, Hawaii, Maui, and Kauai) can add to the current role the HHIE is providing in 

care coordination as well as future implications of use.    

Physician age, medical specialty, gender, and location are captured in the HHIE 

based upon the onboarding information provided by the physician.  If the data was not 

available from the HHIE, I used publically available online records from the Centers for 

Medicare and Medicaid Services (CMS) or other public websites.  To interpret results as 

significant, a p-value of <0.05 was used as a statistical measure with a confidence interval 

of 95% where appropriate.  Regression analyses are be reported in terms of statistical 



13 

 

significance, predictive value(s), and odds ratio(s), linear regression will be reported in 

terms of f-values and reported variance R².  Assumptions for each test are also included 

in the reported findings.  

Definitions 

Electronic health record: An electronic health record is a digital version of a 

paper chart containing a patient’s medical history (HealthIT.gov, 2016). 

Hawaii counties: The University of Hawaii annual report identifies the state of 

Hawaii within four counties when defining physician shortages.  The counties are (a) Big 

Island (Hawaii), (b) Kauai, (c) Maui, and (d) Oahu (Withy, 2017). 

Hawaii Health Information Exchange (HHIE): The Hawaii Health Information 

Exchange is the state designated entity from the Office of National Coordinator, which 

was designed to provide a secure statewide exchange of health information.  The HHIE 

connects a large number of Hawaii health care providers to gain critical patient 

information across different EHR systems (HHIE, 2016)  

Health information exchange: A health information exchange (HIE) enables the 

electronic sharing of information between providers, hospitals, and health care entities.  

HIEs place emphasis on care coordination and the obtainment of critical patient 

information through the continuum of care (HealthIT.gov, 2014). 

Medical specialty: A specialty in medicine is a particular field of medical practice 

dedicated to limited scope of care.  Medical specialty may be further limited to problem 

origin, organ system, or diagnosis.  (Association of American Medical Colleges, 2015).   
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Primary care: A primary care physician is a medical specialist in family 

medicine, internal medicine, or pediatrics who provides continuing comprehensive care 

or the patient.  A primary care physician oversees the ongoing health care and wellness 

for the patient and manages care between medical specialists if needed. (American 

Academy of Family Physicians, 2017). 

Hospital readmission: A situation when a discharged patient returns to a hospital 

and is admitted within a specified amount of time.  For Medicare programs, the time 

period is defined as 30 days and is not dependent upon the reason for readmission (Kaiser 

Family Foundation, 2017). 

Assumptions 

I assumed the information provided to me by the HHIE is a true number (count) 

of logins per active provider.  Within this assumption, I also assumed the participating 

providers listed by the HHIE reflect an accurate representation of those who have signed 

up to access the community health record.  Lastly, I assumed this encompassed the total 

population of physician users of the HIE within the state of Hawaii.     

Scope and Delimitations 

The scope of the study includes the total population that meets research 

specifications (Frankfort-Nachimas & Nachimas, 2008).  For the purposes of my study, I 

will be including login counts for users enrolled with the HHIE designated as a Doctor of 

Medicine (MD) or a Doctor of Osteopathic Medicine (DO).  The HHIE allows access to a 

host of health care professionals, support staff, and licensed clinicians.  These users have 

been excluded for the study, although it is understood in previous research that physician 
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office staff also retrieve information from the HIE to help support the physician and 

medical practice ( Vest & Jasperson, 2012; Vest, Zaho, Jasperson, Gamm, & Ohsfeldt, 

2011).  

 Limiting the scope of the study to licensed MD and DO users offers a true 

comparison of physician activity.  Ayanso, Herath, & O’Brien (2015) cited the physician 

carries much of the deciding vote when making EHR decisions therefore they are 

established as the key stakeholder in terms of power and influence.  Further, physicians 

complete similar educational programs to become licensed, much of their formal medical 

training is focused on medicine and not computers (Rudin, Volk, Simon, & Bates, 2011).  

Limiting the scope of the study to one group of stakeholders further improves internal 

and external validity as results from the study can be generalized to similar physician 

populations in comparable settings.  However, findings from this study will not be 

generalizable to other non-physician HIE users.  

In terms of theory, I used the TAM model to evaluate information technology 

system use.  Since its inception in 1989 the TAM model has been continuously studied 

and expanded upon.  Venkatesh and Davis (2000) proposed a TAM2 model which 

incorporates social influence and cognitive instrumental processes to evaluate user 

acceptance.  Building upon the TAM2 model, the Unified Theory of Acceptance and Use 

of Technology (UTAUT) was also derived by evaluating the constructs of performance 

expectancy, effort expectancy, social influence, and facilitating conditions toward 

information system usage (Venkatesh, Morris, Davis, & Davis, 2003).  These theories 

were not chosen as a method of evaluation because the expanded constructs were not 
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available variables of evaluation within the archival data set utilized for the study.  

Further studies on HHIE users may incorporate these aspects if additional information on 

user characteristics can be obtained.   

Limitations 

As noted in the previous section, one limitation of the study was the inclusion of 

only physician users.  This study cannot be generalized to other non-physician HHIE 

users in terms of age, gender, medical specialty, or location.  The study is also not a 

representation of the complete use of an HIE in the state of Hawaii as many support staff, 

office staff, and various members of the health care system may also have access to the 

system to assist physician practices and care coordination.  However, this study could be 

generalized to physician use in similar settings.  I have no affiliation to the HHIE or to 

the participating physicians within the HHIE that would result in bias to the study.        

Significance of the Study 

The 1999 Institute of Medicine (IOM) report ‘To Err is Human: Building a Safer 

Healthcare System’ cited at least 44,000 patients die each year because of preventable 

medical errors largely due to faulty processes (Kohn, Corrigan, & Donaldson, 2000).  

The report asserted patient safety would be improved if there were automated systems to 

alert caregivers of potential conflicts and was the catalyst in the creation and adoption of 

electronic recording systems in health care environments.  Almost a decade later, the 

federal government has mandated both implementing an electronic record and reaching 

meaningful use measures, today EHR adoption levels reach its highest percentages in 
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history (Randall, 2014).  How we continue to use automated systems like EHRs should 

remain a constant focus in building a safer health care system.     

In terms of significance to policy, results of this study revealed whether 

meaningful use mandates are being upheld to fulfill gaps in electronic documentation 

sharing across multiple systems.  Within the findings from this study, there is potential 

for further insight to be drawn on how HIEs are utilized in business practice.  Current 

mandates could be revised to increase mandatory HIE participation or add requirements 

to prove providers are logging in to HIEs to retrieve data.  

Advancing theories on HIE and information system utilization have also resulted 

from this study.  Researchers used the TAM as the theoretical foundation and in 

numerous perspectives surrounding information technology systems.  To the best of my 

knowledge, no studies have been conducted using the TAM to evaluate physician HIE 

use in the state of Hawaii.  A limited number of studies were previously conducted using 

the TAM to evaluate physician HIE utilization, but I did not located any studies 

inclusively using the predictor variables of medical specialty, age, gender, and location. 

These findings will add to the body of knowledge on the TAM theory.             

In regard to social significance and positive social change, results of this study 

also evaluated the use of an HIE in coordinating patient care across the continuum of 

medical providers and facilities in Hawaii.  Insights from the study can build upon the 

potential contribution HIEs are making toward communicating patient specific 

information among caregivers in community hospitals as well as opportunities to increase 

provider participation.  An analysis of medical specialty, age, gender, and location may 
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help target providers in need of greater assistance to ensure the ongoing success of the 

HIEs and other federally funded initiatives promoting care coordination.  The overall use 

of the HHIE in the state of Hawaii may assist in filling communication gaps often found 

when patients travel between islands and health care facilities for care.     

Summary and Transition 

The HIE could assist as a major component of care coordination and the sharing 

of critical information across information systems.  A common community health record 

should be the goal for many rural or geographically challenged areas such as Hawaii, yet 

it seems as though its full potential remains unfulfilled.  In this chapter I have introduced 

the research study on factors of physician use of HIE systems.  I have also presented the 

research problem on physician use of HIE systems which leaves for much exploration of 

the unknown.  In evaluation of the predictor variables of age, gender, medical specialty, 

and location, this study has the potential to create positive social changes, and policy 

changes for future iterations of federal mandates.   

 In Chapter 2, I present an in-depth literature review of the concepts surrounding 

HIE utilization and the variables contained within the study.  I also provide an overview 

of the TAM model used in practice to evaluate provider characteristics.  Further, I 

provide a background on HIEs to lend foundation to how HIEs were created and 

implemented in the United States as a part of federally funded programs.   
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Chapter 2: Literature Review 

Introduction 

Access to the right data at the right time can help health care providers in 

achieving a positive patient outcome, especially when a patient is transitioning between 

health care providers and systems (Morton et al., 2015).  Care coordination remains vital 

to ensure consistent treatment and timely follow-up care and avoid unnecessary testing 

(Daniel & Mensah, 2015).  Researchers have shown that clinicians continue to rely on 

paper processes rather than electronic methods to manage care coordination (Hsiao, King, 

Hing, & Simon, 2015; Morton et al., 2015).   

Using a HIE to electronically share patient data is a relatively new concept in 

health care.  Recent mandates in U.S. federal programs such as those specified in ARRA 

and the attainment of meaningful use have resulted in greater use of HIEs in the United 

States.  HIEs have the ability to collectively document medical treatments, progress 

notes, results, referrals, and continuum of care documentation (Dullabh, Moiduddin, Nye, 

& Virost, 2011).  Researchers have identified that participation in meaningful use 

programs is the most prominent factor for use (Yeager et al., 2011).  Yet, hospitals have 

fallen short with provider adoption of HIEs as a method for sharing information and 

coordinating care (Vest et al., 2015; Rudin et al., 2011).  Although federal programs can 

incentivize hospitals to implement and participate in HIEs, if providers fail to see the 

value and usefulness of the technology, the full benefits of participating may not be 

realized (Rudin et al., 2011). 
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Research on hospital adoption factors for HIEs has been limited to a few 

geographical areas in the United States.  Hospitals have been the main source of 

information surrounding HIE use because of the identified need for information during an 

emergency room visit or new admission (Vest, 2010).  The authors of these studies found 

similar themes associating increased HIE use for hospitals with nonprofit status, 

willingness to share data, and noncompetitive market factors (Adler-Milsten & Jha, 2014; 

Vest, 2010).  In the few studies regarding HIE and clinical user patterns, HIE use has 

been found to be positively correlated with ease of learning the system, grouping of 

information, and overall system functionality (Gadd et al., 2011; Politi, Codish, Sagy, & 

Fink, 2015).  Higher rates of HIE use was also noted for patients with complex visits and 

frequent primary care visits (Vest et al., 2011) and providers practicing within a hospital 

setting (Vest & Jasperson, 2012).   

Most HIE users accessed the application on the day they saw the patient in 

comparison to any other situation (Rudin et al., 2011; Vest & Jasperson, 2012).  Barriers 

to using HIEs include questionable value, sustainability, and cost of implementation 

(Yeager et al., 2014).  Authors of studies that were conducted on implemented exchanges 

found that HIE use in emergency departments was associated with a reduction in 

laboratory and radiology testing (Rudin, Motala, Goldzweig, & Shekelle, 2014; Yaraghi, 

2015) and a reduction in readmissions (Vest et al., 2014).  

The problem I addressed in this study is the use of an HIE to improve health care 

coordination in the state of Hawaii.  To study this problem, I evaluated common 

physician factors associated with HIE usage levels.  The state of Hawaii is made up of 
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eight islands separated by the Pacific Ocean.  The island of Oahu houses approximately 

72% of the state’s total population, and many residents fly to the island to seek specialty 

or critical care (Alicata et al., 2016).  Communicating relevant medical information is 

difficult when providers and hospitals must share information between islands and on 

different documentation systems (Alicata et al., 2016).  In addition, the state estimates 

physician shortages up to 1,500 full-time equivalents by 2020 (Withy et al., 2017).  

Hawaii, like many other states, must continue to look for ways to use technology to share 

and access patient information across multiple sites of care (Alicata et al., 2016).  HIEs 

appear to fulfill this need if providers use the system.     

Overall, the literature encompassing what is known about HIE adoption, 

implementation, usage, and the potential contributions of HIE to enhance patient care 

contains many gaps on how HIE are being incorporated into use. The purpose of this 

study was to assess predictive factors of (a) perceived usefulness by assessing the 

predictive relationship between HHIE use and medical specialty and location, and (b) 

perceived ease of use by assessing the predictive relationship between HHIE use and 

provider age and gender.  I focused on HIE adoption in Hawaii; however, findings may 

be applicable to other U.S. communities.  This chapter includes the following topics: (a) a 

review of the literature search strategies; (b) an overview of the TAM, the theoretical 

foundation of this study; (c) literature about adoption of HIEs; (d) literature related to 

study variables including provider characteristics and outcomes related to HIE use; and 

(d) gaps in prior research, pointing to a need for the current study and literature related to 

the variables used in the current study. 
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Literature Search Strategy 

In searching for studies and publications for the literature review, I used several 

databases: CINAHL, MEDLINE (Ovid), PubMed, ProQuest, EBSCOhost, Sage, Science 

Direct, and Google Scholar.  I also searched additional websites related to health policy 

and federal mandates including HealthIT.gov, Centers of Medicare and Medicaid 

Services, Centers of Disease Control and Prevention, and the Agency for Healthcare 

Research and Quality.  Key terms used when searching these resources were Health 

information exchange, technology acceptance model, meaningful use, and Hawaii Health 

Information Exchange.   

Many of the publications selected for the literature review were published within 

the past 6 years; however, some earlier articles were included due to the relevance of the 

research and the limited number of studies published on the subject surrounding factors 

of HIE usage in the United States.  Research conducted outside the United States was 

reviewed for relevance to health care policies and environmental factors.  Ultimately, 

only two studies conducted in Israel on HIE usage were included in the literature review.  

I was unable to locate any studies specific to provider age and medical specialty relating 

to HIE use, yet authors of several studies reported on age, gender, location, and specialty 

as a portion of their findings or as covariates in their analysis.  In addition, I did not 

locate any studies that included information for the state of Hawaii.   

Theoretical Foundation 

The theoretical foundation for this study was the TAM (Davis, 1989).  The TAM 

is originally derived from the theory of reasoned action (TRA), which postulates that a 
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person’s actions are often influenced by his or her behavioral intention (BI) to produce a 

specific outcome (Fishbein & Ajzen, 1975).  BI is determined by both a person’s attitude 

(A) and subjective norms (SN; Fishbein & Ajzen, 1975).  Attitude is further defined as a 

person’s negative or positive opinion and subjective norms as individual’s external social 

pressures to perform the behavior (Fishbein & Ajzen, 1975).  

Building upon the definition of BI suggested by TRA, Davis (1989) developed the 

TAM to evaluate user intentions surrounding the (a) use, and (b) adoption of computer 

based systems.  The TAM contains two variables to evaluate whether a person’s 

intentions will result in computer system use: (a) PU of a system to assist in performing a 

job or function and (b) PEOU, which is based upon the effort needed to use the system 

(Davis, 1989).  Davis (1989) conducted two initial studies on his model by testing four 

computer application programs.  Results of one study indicated an inference between 

self-reported current technology usage and self-reported future usage with the model’s 

variables of PU and PEOU.  In review of the two variables, a stronger correlation was 

found for computer application usefulness compared to computer application ease of use.  

Through this study, Davis also introduced new measurement scales for subjective self-

reporting of PU and PEOU.  The six-item scale statistically confirmed reliability of .98 

for PU and .94 for PEOU.  The study established a systematic approach to evaluate 

computer systems from an end-user perspective by reviewing two major factors involved 

in information technology (IT) adoption and implementation (Davis 1989).  

TAM has been used as the foundation for prior studies also assessing age as a 

factor for participation in computer online communities (Chung, Park, Wang, Fulk, & 
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McLaughlin, 2010).  The authors hypothesized that age would be negatively associated 

with internet self-efficacy and that young adults would likely have a higher self-efficacy 

in comparison to older counterparts.  Self-efficacy was defined as the belief and 

confidence that a person could perform a task. The study’s authors also hypothesized age 

would be a factor of online internet use with direct associations toward PU, PEOU, and 

BI.  Despite previous literature supporting these hypotheses, the authors found no age-

related correlations for PU, PEOU, and BI (Chung et al., 2010).  However a negative 

relationship between self-efficacy and age (p < .05) of online internet users was found 

(Chung et al., 2010).   

In a study by Gagnon et al. (2013), the authors found the TAM to explained 44% 

of the variance in physician’s intention to use an electronic health record (EHR).  Using 

the TAM, the study confirmed provider age (p = .0032), medical specialty (specialist or 

general practitioner; p < .001), and prior EHR experience (p = .008) as significant 

predictors of EHR use.  The study also evaluated whether gender was a predictor of EHR 

use, yet found no significant relationship.  Additional EHR features such as applicability 

to medical discipline and substantial impact on a business were found to facilitate BI 

(Gagnon et al., 2013).  Authors of a separate study also found that physician specialty 

(surgeons vs. pathologists) was a moderating factor in use of clinical information 

systems.  Authors found surgeons placed an increased importance on PEOU in order for 

the system to be considered useful (PU).  In comparison, pathologists associated PU with 

the features of the computer technology application (Melas, Zampetakis, Dimopoulou, & 

Moustakis, 2011). 
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Authors of an additional study conducted on physician adoption of EHRs applied 

the TAM model to identify the main determinants of behavioral intention (Chen & Hsiao, 

2012).  Structured physician surveys based upon the TAM constructs to measure factors 

associated with PU, PEOU, and BI were distributed to assess certain activities associated 

to physician’s use of an EHR or clinical information system. Activities that were 

statistically associated with use of EHRs included staff competencies (p < .001) and 

management support (p < .001; Chen & Hsiao, 2012).  Authors also found physicians’ 

perception of system usefulness (p < .05) and ease of use (p < .001) had a significant 

impact on the acceptance of an EHR by health care professionals.    

A review of historical studies identified the TAM as a proven model by which to 

evaluate IT projects (Legirs, Inham, & Collerette, 2011).  Authors of a judicial meta-

analysis of the literature from 1980 to 2001 specific to using TAM to evaluate IT 

implementation projects concluded that studies have consistently used the TAM as an 

indication of successful implementation of information systems (Legris et al., 2001).  A 

second review of TAM and health care by Holden and Karsh (2010) indicated the TAM 

was a consistent model for most health related studies, especially with regard to the 

construct of PU.  However researchers proposed that the model could be altered to 

include additional variables for analysis and better alignment with PEOU.  This finding 

was consistent with previous studies citing that professional training received by 

physicians differs from users of technology in other fields (Yarbrough & Smith, 2007).  

Researchers have suggested the TAM include external variables and barriers to 
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technology acceptance due to the uniqueness of the health care work environment and 

motivating factors influencing the physician population (Yarbrough & Smith, 2007).       

Similar to the studies cited above, I will use the TAM as the theoretical basis for 

the current study, as the literature supports the TAM as a viable approach to evaluate 

physician use of the HIE and to assess factors relating to BI, PU, and PEOU.  Several 

studies have also assessed the TAM across age groups, gender, and physician variables, 

as this study will address.  Adopting the TAM to statistically evaluate HIE usage among 

providers in the state of Hawaii expands upon the current literature, as no studies have 

taken place in Hawaii.  

Literature Review Related to Key Concepts  

Use of HIEs has evolved in the U.S. over the past few decades, and studies related 

to HIEs have ranged from review of usage to a deeper understanding of physician habits 

and system design.  A variety of health care laws and regulations have impacted use of 

HIEs, while adoption and implementation vary across settings.  This next section will 

explore literature related to the history and use of HIEs in the U.S. and Hawaii 

specifically. 

Evolution of Health Information Exchange  

Initially formed by the Hartford Foundation, the concept of HIE dates back to 

1990 when seven communities aligned to create a centralized data sharing center.  

Similar efforts followed in the mid-1990s when community health information networks 

(CHINs) were created to share critical patient data across communities (Dullabh et al., 
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2011).  Both initiatives faced significant challenges including high cost, lack of 

interoperability, and lack of political backing (Dullabh, et al., 2011).   

The 1999 Institute of Medicine report "To Err is Human" garnered support and 

interest towards using information technology (Kohn, Corrigan, & Donaldson, 2000).  In 

2004 the U.S. department of Health and Human Services established the Office of 

National Coordinator (ONC) funding $166 million towards technology to improve health 

care quality and safety (HealthIT.gov, 2014).  The ONC was the custodian of establishing 

state designated entities for community exchanges.  In 2014 the ONC released its 

publication “Connecting Health and Care for the Nation: A 10-Year Vision to Achieve an 

Interoperable Health IT Infrastructure” (HealthIT.gov, 2014).  The vision included an “IT 

ecosystem” to make data available “to the right people at the right time” with a goal date 

of year 2024 for health IT to achieve secure data sharing across all forums without 

limitations upon vendors, organization, or practice (HealthIT.gov, 2014).  To date, the 

ONC remains the principal body for the HIE governance across U.S. locations and health 

care systems.  

HIE and HITECH 

The American Recovery and Reinvestment Act (ARRA), passed on February 17, 

2009, and subsequent Health Information Technology for Economic and Clinical Health 

(HITECH) were enacted to change the way healthcare was delivered, funded, and 

maintained across America.  More importantly, the HITECH act supported the adoption 

of Health Information Technology (HIT), and secured IT permanence within health care 

practice (U.S. Department of Health & Human Services, n.d.).  HITECH also provided an 
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unprecedented amount of funding for HIT.  Under direction and distribution of the ONC, 

$548 million was allocated for the development of state HIE programs (Dullabh et al., 

2011).  In January 2011, an additional $16 million was available through the ONC’s 

program to encourage ongoing HIE state advancements (healthIT.gov, 2014).  To govern 

the award process, the ONC formed the State Health Information Exchange Cooperative 

Agreement whereby State Designated Entities (SDE) received HIE award funding.  This 

funding was a one-time investment intended to address gaps in current funding to enable 

the technology needed for large-scale data sharing.  Within a year, 50 SDEs and six 

territories received initial awards for establishing an HIE framework (Dullabh et al., 

2011).  

Meaningful Use Stages One and Two  

The CMS incentive program for widespread EHR adoption is divided into stages 

(a) meaningful use one (b) meaningful use two and (c) meaningful use three (CMS, 

2015).  The program is centered on the concept of "meaningful use" that encompasses 

five pillars of health outcome priorities outlined by the Centers for Disease Control and 

Prevention (Centers for Disease Control and Prevention, 2016).  The CDC cited the five 

pillars as the following: 

 
1. Improving quality, safety, efficiency, and reducing health disparities 

2. Engage patients and families in their health 

3. Improve care coordination 

4. Improve population and public health 

5. Ensure adequate privacy and security protection for personal health 
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 Meaningful use stage one criteria became effective on September 26, 2010.  For 

eligible hospitals, the final rule established a mandatory 14 core set of objectives; 

hospitals were also required to select five other objectives from a list of ten possible 

options (Centers of Medicare and Medicaid Services [CMS], 2014).  Stage one objectives 

focused upon an organization’s ability to capture and share data with the patient, while 

stage two meaningful use objectives built upon stage one constructs and focused upon 

advancing clinical processes (healthIT.gov, 2015).  Meaningful use stage two final ruling 

was published on August 23, 2012 and required implementation of 16 core objectives and 

three of six additional objectives (Centers of Disease Control, 2016).  In stage two, many 

of the stage one objectives were combined and a few additional measures became 

mandatory.  Specific to HIE, a new core objective required hospitals to electronically 

transmit a summary of care records for more than 10% for all patients discharged to 

another care setting of care using Certified EHR Technology (CHERT) of a nationwide 

health information network (NwHIN) exchange participant consistent with ONC 

standards (CMS, 2015).  Additionally, the measure required hospitals to exchange 

information using a different CEHRT vendor for at least one of the exchanges within the 

reporting period (CMS, 2015).  There were no exclusions to the measure, leaving many 

hospitals to either become certified to electronically send and receive summary 

information or become reliant upon an HIE to fulfill the requirements.  Because of the 

complicated matrix of becoming certified, most hospitals relied on HIEs to fulfill data 

exchange requirements (Esmaeizadeh & Sambasvian, 2016). 
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The final ruling for meaningful use stage three was published on October 6, 2015.  

Participation in stage three is optional in 2017 and will become mandatory for all eligible 

hospitals and providers participating in Medicare or Medicaid programs in 2018.  Stage 

three will further the HIE measures introduced in stage two within three aspects to 

include (a) more that 50% of continuity of care documents and referrals be done in an 

HIE, (b) 40% of new visit encounters have their information retrieved from the HIE, and 

(c) using the HIE to reconcile medications for more than 80% of new patient encounters 

(CMS, 2016).     

Characteristics of HIE Adopters  

An essential component of whether or not HIE is adopted and used appropriately 

has to do with end user characteristics.  A framework proposed by Tornatzky and 

Fleischer (1990) identified three major situations in which organizations implement and 

adopt functionality as: 1) technological, 2) organizational, and 3) environmental (TOE).  

This framework has been used as the basis for other studies on HIEs.  Vest (2010) studied 

the adoption and implementation of HIE across U.S. hospitals using the Health 

Information and Management Systems Society 2008-2009 database and the 2007 

American Hospital Association (AHA) Annual Survey.  The study represented 4,830 

hospitals and has been helpful in understanding the use of HIE related to various 

HITECH adoption measures.  Authors assessed differences between HIE adopters and 

non-adopters and evaluated hospital level characteristics related to HIE adoption. The 

authors found that only 18% of hospitals had implemented and HIE.  Hospitals more 

likely to adopt HIE included non-profit hospitals or public hospitals, hospitals with high 
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emergency department volumes, as well as those with implemented physician portals 

(Vest, 2010).  Further, hospitals with lower market competition coupled with a 

willingness to share data had an increased odds of implementation of 85%.  Additional 

factors related to adoption of HIE included hospitals within a referral network and those 

having a certified EHR (Vest, 2010).   

Adler-Milstein and Jha (2014) conducted a macro review of hospital participation 

HIE across U.S. hospitals using data from the 2012 AHA IT Supplement.  The authors 

found similar factors to those noted by Vest (2010), including adoption and 

implementation of HIE being associated with non-profit status, maintaining a larger 

market share, and lower market completion.  The study also illustrated the variation and 

inconsistency in HIE adoption across states (Adler-Milstein & Jha, 2014).  Grouping 

these findings together with the TOE framework proposed by Tornatzky and Fleischer, 

technological context would include EHR adoption, technological readiness, and the 

adoption of physician portals (Vest, 2010).  Organizational context includes non-profit 

status and an association to a referral network, whereas environmental factors point 

towards decreased data sharing if the hospital is in a competitive market area and 

restricting participation in data sharing systems (Vest, 2010).   

HIE Usage in Different Settings  

Vest et al., (2011) researched HIE usage in emergency departments among a 

safety-net Integrated Care Collaboration (ICC) in Austin Texas (I-Care), comprised of a 

26-member network whose goal was to support the medically indigent (Vest et al., 2011). 

The study was conducted using data from January 1, 2006 to June 30, 2009 including a 



32 

 

patient population from ages 18 to 64, the resulting data set contained 271,304 encounters 

from 10 facilities.  Four hypotheses were tested in the study: 1) HIE usage would be 

higher for patients who were new or infrequent to the facility; 2) usage would be higher 

for patients with chronic conditions; 3) patients who were seen or hospitalized in the past 

year would have higher usage rates; 4) usage would be lower for patients who had time 

constraints or were seen for injuries or accidents (Vest et al., 2011).  User logs revealed 

how many screens were accessed in the record during the visit and were defined as usage 

categories of no usage, basic usage, and novel usage.  Patient complexity was based on 

the Charleston Comorbidity Index (CCI).  The authors hypothesized that higher CCI 

scores (e.g. greater comorbidity) would be related to positive associations; however this 

hypothesis was not upheld.  Instead higher usage patterns were associated with frequent 

primary care visits (odds ratio [OR]: 1.76; 95% confidence interval [CI]: 1.60 to 1.94) 

and charity care encounters (OR: 1.51; 95% CI: 1.33 to 1.72), while lower usage patterns 

were associated with busy days (OR: 0.84; 95% CI: 0.78 to 0.90) and unfamiliar patients 

(OR: 0.32; 95% CI: 0.29 to 0.35; Vest et al., 2011).   

A second study by Vest and Jasperson (2012) also utilized the I-Care data from 

January 1, 2006 to June 30, 2009 to assess usage patterns of the I-Care HIE system.  They 

evaluated the system viewer activity for 105,705 unique user sessions containing over 

1,661 different user patters.  In this study, usage patterns were classified according to the 

length, breadth, and information category.  Findings indicated that 61.8% of all sessions 

had minimal use of I-Care, in which the patient name was searched and a history of visits 

were displayed.  In 11.2% of user activity, the patient search and visit history was 
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reviewed multiple times during the session, and 11.6% of the sessions only clinical 

information was reviewed.  Clinical and demographic information were reviewed in 

11.3% of sessions whereas demographic information only was reviewed in 4.2% of 

sessions (Vest and Jasperson, 2012).  

Vest and Jasperson (2012) also reviewed roles interacting with the I-Care HIE and 

found users in the administrative job category accessed the system the most.  The median 

number of HIE logins per user was calculated at two with the highest location of access 

in hospital settings at 37.6%, ambulatory care settings next at 20.7%, children’s 

emergency departments at 21.2%, and emergency departments at 20.0%. There was 

nominal usage from public or mental health organizations (0.6%; Vest & Jasperson, 

2012). Relative to the patient visit date and HIE usage, 50% of user sessions matched the 

day of patient visit, while 11% of the sessions did not correspond to any patient encounter 

(Vest & Jasperson, 2012).  This study helped to understand the degree to which users 

were interacting with an HIE system. Associated discussion points from Vest and 

Jasperson (2012) surface the importance of HIE design to guide the ease of finding a 

patient and the prioritization of patient data.  The authors suggested a user interface 

design similar to the search engine Yahoo! may create a simpler interactive process to 

promote HIE usage.  They also suggested that information views based upon user role to 

may be useful in reducing the number of screens needed to find information. Also 

emphasized in the study was the importance of creating a correct master patient index as 

many users performed multiple searches to locate a particular patient (Vest & Jasperson, 

2012).     
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Establishing HIE in Hawaii 

Currently all 50 states have some form of HIE services available (healthIT.gov, 

2014).  The Agency for Healthcare Research and Quality (AHRQ; 2014) estimated that 

there are approximately 280 active HIEs and over half of U.S. hospitals are participating 

in a regional, State, or private HIE.  Private HIEs have seen significant growth.  From 

2010 to 2011, the number of private HIEs rose from 52 to 161 and live public HIEs rose 

from 37 to 67 (Agency for Healthcare Research and Quality [AHRQ], 2014).     

In September 2009 as part of ARRA legislation, the HHIE was designated as the 

SDE for the state of Hawaii (Chin & Sakuda, 2011).  The HHIE was established in 2006 

as a 501(c)(3) non-profit organization with a mission to positively transform health care 

in the state of Hawaii by enabling the exchange of critical information between providers, 

patients, and associated entities (HHIE, n.d.).  Hawaii received $5.6 million in award 

monies for the initial HIE start-up (Healthit.gov, 2014).  Over the past few years the 

HHIE has since grown to contain over 20 million clinical records and 1.2 million unique 

patients totaling over 84% of the state’s population (HHIE, 2016).  HHIE also has over 

600 trained providers and spans to all eight islands comprising the state of Hawaii. To 

maintain ongoing fiscal operations the HHIE has transitioned to a subscription model for 

ongoing access (HHIE, 2016). Although the HHIE reports a large number of participants 

in the exchange, I could not locate any studies published on the usage of the HHIE. 

Therefore, the current study will add to the body of knowledge about this specific U.S. 

HIE.  
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Literature Review Related to Study Variables  

As noted above, I will assess whether medical specialty or location are predictive 

factors of PU and whether provider age, specialty, and gender are predictive factors of 

PEOU. The next section of this chapter explores earlier studies related to HIE use and 

readmission rates, then reviews the literature related to HIE use for the provider 

characteristics assessed in this study.  Gaps in prior research are identified and the need 

for the current study is explained. 

HIE Use and Location  

Reviewing location impacts of HIE use may help to illuminate the output effects 

an HIE has on local health care, hospital operations, and population health factors.  I 

started with a systematic review of HIE literature to evaluate the use and effect of HIEs 

on clinical care including health outcomes, efficiency, utilization, costs, satisfaction, HIE 

usage, sustainability, and attitudes or barriers.  Despite over 100 implemented HIE 

systems across the U.S., findings from the study indicated a low number of evaluations 

performed yielding a lack of understanding about the potential contributions to health 

care resulting from HIE usage.  Only seven to ten studies were found to evaluate quality, 

costs, usage, efficiency and sustainability.  Authors found some evidence that HIE usage 

was associated with reduced emergency department costs (Rudin et al., 2014). Authors of 

another study indicated a 52% reduction in laboratory tests and a 36% reduction in 

radiology exams associated with HIE use among emergency department visits (Yaraghi, 

2015).  For those who have implemented HIEs, the ongoing challenge will be to create a 

business case with a continuous focus on derived value (Rudin et al., 2014).  Additional 
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studies will help to support inferences on how HIEs affect outcomes of care (Rudin et al., 

2014).    

One way to assess the value of an HIE between hospital locations is to assess the 

impact on inpatient admissions and readmissions.  According to CMS (2017), health care 

expenditures reached $3.2 trillion in 2015, or $9,990 per person.  Hospital care and 

physician care collectively attributed to over 50% of the market spending displaying 

increases to years prior.  The decision to admit a patient to an inpatient facility has been 

under increased analysis as hospital admissions continue to rise (Gorski et al., 2016).  

Hospital admissions increased from 34.7 million in 2003 to 36.1 million in 2009 

(Morganti et al., 2013) with associated increased cost and lengths of stay (Gorski et al., 

2016).  Use of HIE technology to make decisions among some providers may help drive 

the behavioral intentions of others.  Patterns of HIE use for admission to the hospital and 

intensive care unit (ICU) in a large Israeli hospital from 2010 to 2012 were reviewed to 

assess HIE patterns of use and the association with clinical decision making in Soroka 

University Medical Center (Politi et al., 2015).  SUMC treats over 50% of Israel’s 

population; the HIE system was implemented in 2005 and contains data from secondary 

contributory sources such as ambulance records.  Results indicated that HIE use was 

correlated with a 31% increase in the odds of admitting a patient to the ICU.  Patterns of 

HIE usage were also predictive of the clinical decision to admit a patient to the hospital 

(Politi et al., 2015).   

CMS defines hospital readmission as an unplanned return to a hospital within 30 

days of initial discharge for any condition (CMS, 2016).  Readmissions are a costly 
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detriment for patients and hospitals.  Currently 17.5% of all admissions result in a 

readmission (American Hospital Association, 2015), and readmissions account for over 

$7 billion in costs (Fingar & Washington, 2015).  Using HIE technology to span the 

continuum of care may provide positive assistance to reduce readmissions.  A study by 

Jones et al. (2011) reviewed the relationship between participation in HIE and the use of 

HIT with hospital readmission rates.  Use of HIT was defined as performing medication 

ordering, laboratory ordering, and clinical documentation in an EHR, as reported on the 

2007 AHA database.  Hospital readmission data for acute myocardial infarction, heart 

failure, and pneumonia were extracted from the 2009 CMS Hospital Compare website.  

The authors found no substantial relationship between HIE participation and readmission 

rates.  However associations between the use of electronic documentation and reduced 

readmission for heart failure (p = .02) and pneumonia (p = .003) calculated notable 

impacts (Jones et al., 2011).  This study did not indicate the extent to which HIE was 

used within an organization (Jones et al., 2011), which may be an area for future 

research.   

Further studies have assessed the relationship between HIE use and a reduction in 

hospital admissions and related cost savings.  Vest, Kern, Champion, Silver, and Kaushal, 

(2014) reviewed HIE use in the emergency department within New York state for years 

2009-2010.  The study found a 30% lower probability of inpatient admission if an HIE 

was accessed during the emergency department visit (Vest et al., 2014).  Using the same 

dataset Vest et al. (2015) assessed HIE use on 30-day readmissions.  Findings indicate a 

57% reduction in probable 30-day same-cause readmission associated with HIE use  
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(Vest et al., 2015).  Similarly, HIE emergency department access for seven hospitals in 

Israel was evaluated, results showed a reduction in single day and seven-day admissions 

(Ben-Assuli, Shabtai, & Leshno, 2013).  Frisse et al. (2012) studied the financial impact 

of HIEs in Memphis Tennessee, calculating up to 212 fewer readmissions and over 

$800K reduction in medical expenses if the benefits of fewer admissions and a reduction 

of imaging tests were fully realized (Frisse et al., 2012).    

Common limitations of all studies cited regarding HIE and readmission rates 

include the low percentage of HIE use in comparison to patient visits.  Studies reviewing 

impacts to health care must continue to examine the impact of HIEs on post-discharge 

care and readmission rates.  A qualitative study of health care stakeholders participating 

in an HIE within the state of Louisiana was conducted to assess barriers to HIE adoption 

(Yeager et al., 2014).  Themes emerging from semi-structured interviews identified 

several barriers to participation in an HIE, these included questionable value, low 

implementation efforts, usability, market conditions, and cost.  The authors concluded 

that the most prominent reason for participating in HIE efforts was to meet ARRA 

meaningful use requirements, yet this measure was not enough to drive users towards 

high levels of HIE use.  Secondary themes from the study consistent to other studies 

maintain HIE barriers of sustainability, workflow hindrances, and financial costs.  This 

study was the first to question market value as a barrier to implementation (Yeager et al., 

2014).   

Yeager et al. (2014) discussed many important points of the study and differences 

compared to previous empirical studies on reductions in cost, readmission rates, and 
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stakeholder perceptions.  There could have been inconsistent information on user patters 

gleaned from user logs in comparison to the actual user perception resulting from system 

use.  Further research from several vantage points may corroborate HIE user patters for 

improved stakeholder onboarding.  The authors of a similar qualitative study suggested 

that policy implications and monetary incentives may not be enough to encourage HIE 

use, and that HIE developers should consider helping users establish clinical workflows 

and develop metrics to monitor both HIE use and its contribution to care coordination 

(Rudin et al., 2011).  Motivators and moderators of use are relatable concepts to the TAM 

model of PU and PEOU and may parallel reasons for use of HIE in Hawaii.  Furthermore, 

data regarding the value of HIE use on readmission rates may help make the case for the 

value of these systems, thus increasing use among stakeholders.      

HIE Usage and Provider Characteristics  

Age and gender.  There have been several studies citing age as a barrier to EHR 

adoption, although findings have not been consistent.  Researchers have shown that older 

physicians had lower adoption rates of an EHR (13.6%) compared to younger 

counterparts (23.1%; Bae & Encinosa, 2016).  Hamid and Cline (2013) also cite age as a 

factor for EHR adoption (p < .05).  Physicians aged 45 or younger were twice as likely to 

adopt an EHR system than physicians 55 and older (Decker, Jamoom, & Sisk, 2012).  

However in contrast, other studies indicated no predictive relationship between EHR 

adoption and age (Hudson, Neff, Padilla, Zhang, & Mercer, 2012).  Furukawa and 

colleagues (2014) examined responses to the 2009 National Ambulatory Medical Care 

Survey and the 2009-2013 Electronic Health Records Survey, they found that only 14% 
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of providers were participating in an exchange of information.  However, age was not 

associated with EHR adoption or patient engagement.  The results of the study did not 

directly report on age as a predictor of HIE use (Furukawa et al, 2014), which will be 

addressed in the current study.  Similar to the findings regarding age, this study also 

found no association between gender and EHR use.  

Researchers conducted a cross sectional survey of 345 health care professionals 

assessing user perspectives of a regional HIE based on TAM theory constructs of 

usability, trust, and socio-demographic factors (Gadd et al., 2011).  This study 

specifically assessed ease of learning the system and trust in the information, which may 

be associated with provider age.  Findings indicated an encouraging level of HIE 

usability with positive relationships to the ease of learning the system and overall 

functionality.  However, the study found no associated relationship with trust in the data 

sources and usage.  There was also no significant difference between the age and gender 

of users and non-users in comparison to other studies performed on demographic factors 

(Gadd et al., 2011). 

Physician specialty.  Data regarding the association of physician specialty and 

HIE adoption and use are also are limited.  Rudin et al. (2011) conducted 20 interviews of 

staff and clinicians (including 11 physicians) from the Massachusetts eHealth 

Collaborative on the factors surrounding HIE usage.  Clinicians interviewed felt that 

differences between particular medical specialties also determined the value of HIEs.  

The interviews found hospitalists treating acute hospital patients accessed the HIE 

routinely, whereas specialty providers like pediatricians and psychologists did not think 
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the information in the HIE applied to their treatment of the patient (Rudin et al., 2011).  A 

second study, however, found no association between physician specialty and EHR 

adoption or patient engagement (Furukawa et al., 2014).   

Summary and Conclusions 

Despite widespread HIE adoption largely incentivized by meaningful use 

programs (Yeager et al., 2014), literature focusing upon HIE implementation, adoption, 

benefits, and use has been limited (Adler-Milstein & Jha, 2014; Yeager et al., 2014).  The 

research included in the review of literature has covered many aspects surrounding HIE 

engagement, diffusion, factors of known usage, usage patterns, motivators, and barriers to 

using HIE systems.  A complete understanding of the literature on HIEs has assisted in 

identifying the gaps in our knowledge of HIE use and allow for new constructs to be 

studied.  Specific to my study, the variables of age, medical specialty, gender, and 

location were evaluated for the state of Hawaii.  As a state, Hawaii was cited as 

encompassing widespread adoption of HIE efforts (Chin & Sakuda, 2011).  Hawaii's HIE 

contains over 80% of the state's population (HHIE, 2016), an evaluation of provider 

usage in a state with high patient participation will be productive in reviewing 

commonalities between users.  In previous literature, age was not a statistically 

significant predictor of HIE usage (Gadd et al., 2011) and medical specialty was found to 

have both positive associations (Rudin et al., 2011) and no association (Furukawa et al., 

2014) to HIE use.  While researchers have assessed the impact of HIE on readmission 

rates, findings suggested both a positive (Vest et al., 2014) and no impact (Jones et al., 

2011).  Using the TAM model to assess the variables of age, gender, medical specialty 
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and location as factors for physician use will advance our understanding of how HIEs are 

viewed in terms of ease of use and usefulness.   

In Chapter 3 I describe the methodology used in this study to include a 

comprehensive explanation of the research questions and variables.  I will then define the 

statistical methods used to evaluate predictive relationships and levels of significance.  

Included in Chapter 3 is also discussion on threats to the study validity and any ethical 

considerations incorporated into the research plan.   
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Chapter 3: Research Method 

The purpose of this study was to conduct a quantitative non-experimental analysis 

on physician users of the HHIE.  The study sought to understand if there is a predictive 

relationship between HHIE use and PU or PEOU of the HHIE as proxied by the variables 

of (a) medical specialty, (b) age, (c) gender, or (d) location of use between Hawaii 

counties.  In evaluating the relationship between physician use between these variables, I 

sought to gain a better understanding of HHIE PU and PEOU.  The research in my study 

may help promote future growth and adoption of HIEs a means of coordinating care.  

Findings may also provide helpful advice for policy makers on the use of HIEs in future 

revisions of information technology incentive programs.  In this chapter, I will describe 

how the study was designed and how it was aligned with prior research conducted using 

the TAM theory.  I will also discuss the population included in the research, the 

limitations of the data, and the data analysis plan.   

Research Design and Rationale 

I evaluated the factors associated with HHIE use drawing from TAM constructs 

and from archival data.  Specifically I reviewed (a) whether a provider has used the HHIE 

and (b) the extent to which a provider has used the HHIE.  Observing whether a 

physician has ever logged into the HHIE aligned with the dependent variable of HHIE 

use (as measured by use vs. no use) and the independent variables of medical specialty, 

age, gender, and location.  Covariates included provider medical specialty, age, gender, 

and location.  In the second analysis I reviewed the dependent variable of use in terms of 

the extent that a physician has used the HHIE (as measured by number of logins) and the 
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independent variables of medical specialty, age, gender, and location while controlling 

for other variables in the analysis.   

Quantitative research is a method of inquiry that can be applied across many 

disciplines including those in the social sciences (Lester, Inman, & Bishop, 2014).  The 

fundamental purpose of quantitative research is to investigate societal phenomena by 

applying statistical techniques to evaluate connections between observations and 

relationships (Lester et al., 2014).  A quantitative research design was chosen for this 

study because variables of interest could be statistically assigned and evaluated for 

predictive patterns.  To evaluate HHIE physician activity, I used archival data collected 

from the HHIE which I narrowed to the population of physician users. 

During the design of the research, alternate evaluation methods were considered 

but were not used due to the scope and data of interest.  For example, experimental 

research involves administering an intervention or grouping subjects for comparison 

outcomes (Frankfort-Nachmias & Nachias, 2008).  I analyzed physicians’ activity in their 

natural environment and did not include an intervention or control group; therefore, the 

research did not qualify for experimental research.  Further, I sought to generate a broad 

understanding of physician characteristics and area characteristics for HHIE use.  The 

variables chosen could be applied to the total population of users.  Additionally, direct 

provider participation was not required at the time of the data collection.  By using 

archival data, this study did not alter a physician’s normal activity or workflow.  Due to 

the recent implementation of the HHIE, a time-series study was not chosen.  Future 
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researchers may wish to use a time-series design in order to evaluate ongoing 

participation.  

The study design and rationale assembled used constructs from former research.  

Previous researchers have included hospital characteristics of HIE adoption to include 

commonalities such as profit or nonprofit status, emergency department volumes, and 

market share (Adler-Milstien & Jah, 2014; Vest, 2010).  Use of these macro themes allow 

a large number of organizations to be compared, similar to the variables included in this 

study.  Regarding the independent variable of medical specialty, prior qualitative 

researchers studying HIEs found differences in perceived HIE value between specialties 

(Rudin et al., 2011; Vest et al., 2011); therefore, I  considered this variable an important 

factor of continued investigation.  I defined medical specialty between groupings of 

primary care, specialists, and emergency medicine.  I also chose to include emergency 

medicine as a medical grouping because previous researchers used exclusive data sets 

from emergency departments to study HIE activity (Vest, 2010; Vest & Jasperson, 2012).  

Several studies on the use of a HIEs in emergency department settings have resulted in a 

reduction of diagnostic testing and costs (Rudin et al., 2014; Yaraghi, 2015).  

Identification of the emergency department physician user group may provide additional 

understanding of emergency department physician activity.   

Methodology 

An overview of the methodology used to assemble the study will be explained in 

this section.  Information in the section includes the total population, sampling and 

sampling procedures, and the archival data set used in the study.     
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Population 

The AHRQ (2014) estimates that there are as many as 280 HIEs across the United 

States. One single HIE in Indiana has over 14,000 participating physicians (AHRQ, 

2014), and the AHRQ (2014) expects 50% of the nation’s physicians to join an HIE.  For 

Hawaii, the HHIE website lists 600 providers as having been trained from July 2015 to 

August 2016 (HHIE, 2016).  Because the HHIE is the only exchange in the state of 

Hawaii (HHIE, 2016), the data set used in this study included the total population of 

HHIE users.  To maintain the study design, I limited the population to physicians with 

certifications of MD or DO.  As indicated previously, I limited the population of 

providers who are credentialed physicians in order to improve the validity by ensuring 

similar education, training, and comparison characteristics.        

Sampling and Sampling Procedures 

The data set received encompassed the total population of physician users. This 

was due to the HHIE being the only information exchange identified by the ONC for the 

state of Hawaii.  However, if additional HIEs are created in the state of Hawaii, future 

researchers should use a purposeful sample narrowed to a cohort of physician users.  A 

purposeful sample is one in which the total population of a given interest is able to be 

represented (Palinkas et al., 2015).  This sampling technique is common in 

implementation research where the researcher aims to review barriers and facilitators of 

an implementation process or outcome (Palinkas et al., 2015).  By design, purposeful 

samples are intended to illuminate (a) similar and (b) different characteristics of the 
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group.  In using this sampling technique, researchers can measure the diffusion or 

comparison and dispersion or contrasts of the sample (Palinkas et al., 2015). 

Due to the inclusion of the entire population of users, a power analysis to 

determine the sample was not a requirement.  The HHIE website estimates over 600 

physician users which I initially forecasted my population size upon.  If the data available 

reflected differently once received, I would have used an alpha level (or p-value) of 0.05 

as a parameter of statistical significance with a confidence interval of 95%.  The alpha 

level indicates the probability (p) for chance of error, and the confidence interval 

specifies the estimated assurance that reanalyzing the data would have the same result 

(Field, 2013).  Further, an effect size indicates the strength between the selected variables 

(Field, 2013).  Based on this size, the power of a study indicates the percentage of effect 

achievement (Field, 2013).  I used a small effect size of .10 and a power of .8 or 80%.  

With these parameters, I used the application G* Power to compute a sample size for 

multiple logistic regression with four predictors at 176 to reach a power of .95 and a 

sample size for multiple linear regression at 107 for the basis of my methods design.     

Archival Data 

Under arrangement, the HHIE agreed to provide an archival data set containing a 

listing of logins from all date ranges available since the inception of the community 

health record in 2014.  The HHIE had also have agreed to provide data specific to the 

physician’s age, gender medical specialty, and location as obtained from HHIE sign-up 

forms.  To retrieve the data, I received a written consent letter from the HHIE executive 
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director.  The consent letter in was approved by the Institutional Review Board (IRB) to 

fulfill data exchange requirements (see Appendix A). 

In the event medical specialty, age, gender, or location data was not available 

from the HHIE, I used using information from the CMS.gov or online websites.  CMS 

began the Physician Compare initiative to meet requirements of the 2010 Affordable Care 

Act, the website delivers information on quality scores, metrics, program eligibility, and 

general provider information.  Age, gender, or medical specialty information was also 

retrieved from publically available websites such as Healthgrades.com, Doximity.com, or 

doctor.webmd.com.     

Operationalization of Variables 

Dependent variables. To assess HHIE use, the logistic regression dependent 

variable was coded as a “1” if a provider has logged into the system with a count of 1 or 

greater and a “0” if a provider has no record of logins to the system.  Next, the extent of 

HHIE use was studied using multiple linear regression, and the dependent variable was 

the sum of all logins for each physician for physicians with one or more logins.  

Physicians with no login counts on record were entered as a “0”, and all others were 

entered as a number starting from the number 1.  

Independent variables. Medical specialty was determined by the physician 

stated enrollment information in the HHIE.  For the purpose of this study, medical 

specialty was defined and coded as groupings of (1) primary care physicians, (2) 

emergency medicine physicians, and (3) specialists.  Previous research on the variable of 

medical specialty use on HIEs was not clearly defined in the literature.  Findings 
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suggested both an influence towards HIE use by medical specialty (Patel, Abramson, 

Edwards, Malhotra, & Kaushal, 2011) while others did not find any statistical 

significance (Furukawa et al., 2014).  I could not locate a study that evaluated 

information technology use in primary care, emergency physicians, and specialist groups 

in Hawaii.  In the study, I suggested the inclusion of emergency medicine as a specialty 

based on previous research on the unique workflows of emergency physicians and the 

benefits of HIE use (Rudin et al., 2014; Yaraghi, 2015).  However, in future analysis, if 

there are not enough participants to reach statistical power for emergency medicine, the 

providers could be grouped together with specialists.  Broad groupings may also be 

necessary to maintain physician anonymity dependent upon the archival data available.   

Location is another important consideration for HHIE use. Withy et al. (2017) 

reports on the unique challenges and physician shortages between the four Hawaii 

counties.  To gain a better understanding on how the HHIE is used in different areas of 

the state, I included location as an independent variable.  Under the constructs of the 

TAM theory, medical specialty and location also align with PU as it relates to user 

activity.       

Gender and age were also evaluated under the TAM framework for PEOU 

lending toward predictor values for HHIE usage.  Following previous research by Egea 

and Gonzales (2011) who used the TAM associate and provider age and EHR use, age 

were  grouped by under (a) 35 years of age, (b) 35-44 years of age, (c) 45-54 years of 

age, (d) 55 to 64 years of age, and (e) 65 years of age and older.  Reporting age in groups 
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may also be necessary to maintain provider anonymity for a study.  Gender was coded 

“0” for male and “1” for female. 

Covariates.  Covariates or predictor variables can be used in regression analysis 

to assist in the evaluation of the data and any additional influences on the outcome (Field, 

2013).  I used medical specialty, age, gender, and location as covariates when analyzing 

each of these independent variables.   

Data Analysis Plan 

To perform calculations, I used SPSS Statistics version 21 for Windows student 

edition which is installed on my personal device.  SPSS performs a variety of calculations 

and is useful program to manipulate data and analyze information (Gerber & Finn, 2013).  

Data was manually uploaded in to SPSS and reviewed for any significant outliers or 

discrepancies in the source file.     

The research questions and hypotheses were, as follows: 

RQ1: What is the predictive relationship, if any, between any HHIE use (as 

measured by login vs. no login) and (a) physician medical specialty (primary care, 

emergency medicine, or specialist), (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables?  

H01: There is no predictive relationship between any HHIE use (as measured by 

login vs. no login) and (a) physician medical specialty (primary care, emergency 

medicine, or specialist), (b) physician age, (c) physician gender, and (d) location when 

controlling for the other variables.  
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HA1: There is a predictive relationship between any HHIE use (as measured by 

login vs. no login) and (a) physician medical specialty (primary care, emergency 

medicine, or specialist), (b) physician age, (c) physician gender, and (d) location when 

controlling for the other variables. 

RQ2: What is the predictive relationship, if any, between the extent of HHIE use 

(as measured by number of times logged in) and (a) physician medical specialty (primary 

care, emergency medicine, or specialist) (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables?  

H02: There is no predictive relationship between the extent of HHIE use (as 

measured by number of times logged in) and (a) physician medical specialty (primary 

care, emergency medicine, or specialist) (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables. 

HA2: There is a predictive relationship between the extent of HHIE use (as 

measured by number of times logged in) and (a) physician medical specialty (primary 

care, emergency medicine, or specialist) (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables. 

RQ1 logistic regression. The first analysis I ran was a logistic regression.  

Researchers use logistic regression because it allows for a categorical outcome variable 

and continuous or categorical predictor variables (Field, 2013).  This is appropriate to 

determine HHIE use since usefulness is coded as a binary variable.  Logistic regression 

models were previously used to evaluate hospital characteristics between HIE adopters 

and non-adopters (Vest, 2010; Vest et al., 2015) and decision to admit a patient based on 
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HIE use (Politi et al., 2015).  Further logistic regression studies reviewed impacts to 

clinical care and the reduction of imaging studies (Frisse et al., 2012)    

I constructed a model to evaluate each predictor variable of interest while 

controlling for the other variables. The model assessed the predictive relationship 

between any HHIE use and each independent variable (physician specialty, age, gender, 

and location) while controlling for the other variables in the regression.  Further, I tested 

for the presence of multicollinearity and significant outliers (Field, 2013).  All covariates 

were entered using forced entry as additional predictor variables.  Results were reported 

in odds ratios and interpreted by indicating a significance or p-value < .05 with a 

confidence interval of 95%. 

RQ2 multiple linear regression. Linear regression models were used in previous 

research under the TAM theory to evaluate physician adoption of EHR clinical practice 

guidelines (Hsiao & Chen, 2016).  I used multiple linear regression to evaluate the extent 

of HHIE use by evaluating login counts, starting with the number one.  Multiple linear 

regression allows for a continuous predictor variable and several outcome variables in the 

calculation (Field, 2013).  The main objective of this analysis was to see if there is a 

predictive relationship in the amount of use (sum of login counts) between independent 

variables.   

For the RQ2 multiple linear regression linear model I assessed was the predictive 

relationship between the extent of HHIE use and physician specialty, age, gender, and 

location while controlling for the other variables.  I also used forced entry for the 

covariates variables.  Assumptions for multiple linear regression were tested including 
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reviewing the Durbin-Watson statistic to ensure the independence of observations and the 

assurance of linear relationships between outcome and predictor variables and 

homoscedasticity of residuals (Field, 2013).  Additional assumptions were tested to 

ensure no multicollinearity and significant outliers are present (Field, 2013).  Results 

from the multiple linear regression model were reported for statistical significance to 

include a p-value < .05 and a confidence interval of 95%.  Tests also included an F ratio 

to report the fit of the model and R² indicating the degree of variance.  Table 1 illustrates 

how variables were coded for the two research questions. 

Table 1 

Coding of Variables for RQ 1 and RQ 2 

Variable Type of variable  Coding  

Independent variable    

HHIE use Binary 0 = no use; 1 = any use 

HHIE extent of use Continuous   Sum of all login counts in data set by 
provider 

Dependent variables   
Medical specialty  Nominal  1= primary care; 2= specialist; 3= 

emergency medicine  
Age Nominal 1= <35 years of age; 2= 35-44 years 

of age; 3= 45-54 years of age; 4= 55 
to 64 years of age; 5= >65 years of 
age  

Gender  Nominal  0= male; 1= female  
Location  Nominal  1=Oahu; 2= Hawaii; 3= Maui; 4= 

Kauai 

 
Treats to Validity 

External Validity 

External validity confirms that research findings can be further applied or 

generalized to similar populations outside of the research sample (Frankfort-Nachmias & 



54 

 

Nachmias, 2008).  The first threat to external validity is representativeness of the 

population under evaluation (Frankfort-Nachmias & Nachmias, 2015).  

Representativeness in my study included all physicians designated as an MD or DO who 

have signed up to participate in the HHIE community record, this encompassed the entire 

population of physician HHIE users in the state of Hawaii.  As mentioned previously, 

physicians were selected as the population due the similar backgrounds of schooling in 

medical school.  The consistencies credentials will further add to external validity of the 

study.         

The next threat to external validity is the presence of reactive arrangements, this 

occurs in an experimental setting where participants may change their behavior due to 

unusual surroundings (Frankfort-Nachmias & Nachmias, 2015).  No reactive 

arrangements were present in the study; all participants accessed the HHIE in their 

natural environment using usual normal business practices in which a computer or device 

is utilized.  Access to the HHIE could have occurred in their personal or professional 

office settings or using any other setting typically used to access electronic health records 

or online applications.  Further I used secondary data to calculate HHIE activity.  To my 

knowledge there were no other studies were conducted during the dates contained in the 

secondary data set therefore no experimental behavior or altered behavior is contained in 

the study.             

Internal Validity 

Internal validity ensures the independent variable was a factor associated to the 

measurement or influence on the dependent variable (Frankfort-Nachmias & Nachmias, 
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2008).  In my study I predicted HHIE usage based upon the independent variable of age, 

gender, medical specialty, and location.  To address internal validity, I computed my 

analysis by controlling for each of these variables during the calculation of each 

independent variable.  This allows for each factor to be represented independently 

without influence from the other variables under study.  Controlling for these variables 

also minimizes the potential for an alternate explanation of predictive behavior 

(Frankfort-Nachmias & Nachmias, 2008)  

 Another threat to internal validity is the passage of time or history that has 

occurred since the time the data was collected (Frankfort-Nachmias & Nachmias, 2008).  

Being mindful of time or a history of event is important because the data may no longer 

apply to the study in present day or rules, laws, or regulations (Frankfort-Nachmias & 

Nachmias, 2015).  Further, these previous societal influences may have altered previous 

behavior to the extent that the data is no longer applicable (Frankfort-Nachmias & 

Nachmias, 2008); this factor is more affluent in longitudinal studies.  For my study, the 

data under evaluation was within the past three years and after meaningful use stage 1 

and stage 2 began rewarding and penalizing providers for not meeting federal program 

expectations therefore time and history were excluded as a threat to the study.    

Construct Validity 

Construct validity determines if the study justifiably aligns with the stated theory 

and whether inferences can be drawn to the theory for additional studies (Bagozzi, Yi, & 

Phillips, 1991).  I based my research questions upon the constructs of the TAM theory 

which has been widely used to test user intention and technology system adoption.  I 
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could not locate any studies in which the TAM was used as a theory to evaluate physician 

use of HIE systems specific to the independent variables of age, gender, medical 

specialty, or location.  However, previous research on these variables have been studied 

using the TAM theory under the broad scope of information technology, electronic health 

records, internet, and telemedicine (Holden & Karsh, 2010; Legris et al., 2003; Melas et 

al., 2011).  To ensure construct validity, my study followed similar research designs 

when identifying factors for PU and PEOU.              

Ethical Procedures 

 Written consent was received by the Executive Director of the HHIE to provide 

the archival data set used in this study.  The HHIE agreed to provide a listing of providers 

signed up with the HHIE, community health record login counts for users, and medical 

specialty, age, gender, and location as recorded from HHIE sign-up forms.  All data was 

stored on my personal computer which contains an encrypted drive with bit-locker 

protection.  My computer is password protected and requires biometric (fingerprint) 

authentication.   

 My study did not report any provider specific information identification in the 

data analysis plan.  The variables of interest are able to be broadly grouped to maintain 

complete provider anonymity.  All data will be kept from the date I complete the doctoral 

program as approved by Walden University governance plus the required five years.  At 

which time, all material will be deleted from my personal computer to ensure the files are 

not a threat to future access of the device.       
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Summary 

As discussed in this chapter, the constructs of the TAM for PU and PEOU were 

statistically evaluated using the dependent variable of HHIE use and the independent 

variables of medical specialty, age, gender, and location.  To calculate the predictive 

relationships of these variables, I first conducted a binary logistic regression to calculate 

HHIE use as dichotomous variable of whether a physician has ever logged in to the 

HHIE.  Next I conducted a multiple linear regression to assess the extent of HHIE use on 

a continuous scale by calculating differences between the total sums of logins between 

providers.   

A number of considerations were evaluated in deciding upon the research 

methods.  First, the data used in the study was provided to me directly by the HHIE as 

archival data from a date range between 2014 and 2016.  No interventions had taken 

place to HHIE users, nor were HHIE users aware that login information would be further 

evaluated for use during the time the counts were collected.  This makes the study and the 

data appropriate for descriptive research.  Internal, external, and construct validity was 

also assessed.  Threats were minimized by (a) including a HHIE user group limited to 

physicians (MD or DO), (b) including covariates in the regression analysis, and (c) 

following similar constructs from prior TAM research studies.  The study also ensured 

that no personally identifiable physician information was reported.  To accomplish this, I 

used broad groupings of medical specialty and age groups.  

In chapter 4, I will review the HHIE archival data set in greater detail.  I will also 

provide results from the binary logistic regression and multiple linear regression models 
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for each independent variable and any accompanying graphical representations of the 

data.  After the data has been completely reviewed, I further report any additional 

descriptive statistics retrieved from the data to better understand the predictive indicators 

of HHIE use.              
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Chapter 4: Results 

Introduction 

The purpose of this study was to evaluate physician factors associated with using 

a HIE in the state of Hawaii.  I sought to investigate the predictive relationship between 

provider characteristics, area characteristics, and HHIE use.  To accomplish this, I drew 

from the constructs of the TAM to perform a quantitative assessment of PU and PEOU 

for physician users of the HHIE.  I included the physician activity of (a) logging into the 

HHIE and (b) the number or times a physician has logged into the HHIE.  Only 

physicians with the credentials of MD or DO were included in the analysis to limit end-

user variability.   

I constructed two research questions to analyze physician use of the HHIE:  

RQ1: What is the predictive relationship, if any, between any HHIE use (as 

measured by login vs. no login) and physician medical specialty (primary care, 

emergency medicine, or specialist), physician age, physician gender, and location when 

controlling for the other variables? and  

RQ2. What is the predictive relationship, if any, between the extent of HHIE use 

(as measured by number of times logged in) and physician medical specialty (primary 

care, emergency medicine, or specialist), physician age, physician gender, and location 

when controlling for the other variables?   

Past researchers aligned the TAM construct of PU with the variables of medical specialty 

and location and the construct of PEOU with age and gender.  I tested whether age, 

gender, medical specialty, and location were predictive indicators of HHIE use and HHIE 
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usage.  The null hypothesis was that there is no predictive relationship between HHIE use 

and HHIE usage and the factors of age, gender, medical specialty, and location.  This 

chapter includes (a) an explanation of the secondary the data received, dates the data was 

collected, and the total population size included in the study; (b) descriptive statistics for 

data set analyzed in the study; and (c) output findings from the binary logistic regression 

and the multiple linear regression analyses I conducted. 

Data Collection 

The data for this study was collected by the HHIE.  I obtained files containing 

user login data from the dates of January 1, 2016, to June 30, 2017 using secure file 

transfer.  In total, the file contained 127,839 counts of successful logins for all HHIE 

users.  A separate HHIE participating provider file was also obtained from the HHIE to 

identify physician users.  In total, the participating provider file listed 1,388 members.  

The file was closely reviewed for any duplicate entries or potential data entry errors, and 

all users without a credentialing of DO or MD were removed.  Examples of removed data 

included users listed as doctors of pharmacy (PharmD), advanced practice nurse 

practitioners (APRN), and physician assistants (PA).  Any missing gender or age 

information was obtained from the CMS Physician Compare website, Heathgrades.com, 

or other publically available websites.  The resulting data set contained the total 

population for the study at 1034 HHIE physician users.   

Population Characteristics 

The study design used a purposeful sample.  Supporting the purposeful sampling 

method, the study included the total population of users with the characteristics of MD or 
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DO who had signed up to use the HHIE in the state of Hawaii.  The total population (N = 

1034) of HHIE physicians was used to compute RQ1 when evaluating if a physician who 

had signed up to use the HHIE had ever logged in.  The population was further defined 

upon evaluation of RQ2 when predicting HHIE usage.  For this analysis, I excluded all 

users with a login count of “0.”  The login count “0” identified a provider who had signed 

up for the HHIE, but never logged in.  Upon exclusion of these physicians, the total 

population of HHIE providers containing a login count of “1” or more was narrowed to 

273 physicians.  This was the total population for RQ2, which was posed to evaluate the 

extent of HHIE usage.    

Population characteristics for RQ1. In reviewing the total population (N =1034) 

for RQ1, I found that the data showed a largely male dominated group with males 

comprising 70.3% of HHIE physicians and women representing 29.7%.  Within the data 

set, physicians aged 35-44 (25.9%) were the largest group, followed by ages 55-64 

(25.2%), ages 45-54 (22.5%), age 65 and over (19.2%), and, lastly, age 35 and under 

(7.1%).  The majority of HHIE physicians were designated as medical specialists (49.4%) 

and primary care physicians (37.6%).  Emergency medicine physicians made up the 

smallest group of physicians (13%).  In terms of location, the county of Oahu also had the 

highest number of physicians signed up for the HHIE with 83.9% of the population; Maui 

was the next largest county at 9.2%, followed by Hawaii (6%) and Kauai (.9%).  When 

comparing these numbers to the percentage of population per county who had signed up 

for the HHIE, based upon the data, findings indicated that 43% of Oahu county 
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physicians had signed up for the HHIE, compared to 35% of Maui County physicians, 

20% of Hawaii County physicians, and 8% of Kauai physicians.   

Population characteristics for RQ2. The total population for RQ2 (n = 273 

users) followed similar themes.  There were more males in the population (70.3%) than 

females (29.7%).  Age groups 35 to 44 and 55 to 64 constituted the same percentage of 

users (24.9%), followed by ages 45 to 54 (22.7%), age 65 and over (20.5%), and age 35 

and younger (7.0%).  Specialists also held the highest population (43.2%) closely 

followed by primary care (41.4%) and emergency medicine (15.4%).  The highest 

number of users were located in the county of Oahu (82.4%), followed by Maui (9.9%), 

Hawaii county (7.3%), and Kauai (.4%).   

Table 2 

HHIE Population Characteristics for RQ1 and RQ2 

Independent variables RQ1 (N = 1034) RQ2 (n = 273) 

Age N % n % 

     Under 35 73 7.10% 19 7.0% 

     35-44 268 25.90% 68 24.9% 

     45-54 233 22.50% 62 22.7% 

     55-64 261 25.20% 68 24.9% 

     65 and over 199 19.20% 56 20.5% 

Medical specialty      

     Primary care 389 37.60% 113 41.4% 

     Specialist 511 49.40% 118 43.2% 

     Emergency medicine 134 13% 42 15.4% 

Location      

     Oahu county  868 83.90% 225 82.4% 

     Hawaii county 62 6% 20 7.30% 

     Maui county 95 9.20% 27 9.90% 

     Kauai county  9 0.90% 1 0.4% 

Gender      

     Male  727 70.3% 192 70.3% 
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     Female  307 29.7% 81 29.4% 

 

Population characteristics of Hawaii physicians.  In the latest report from 

Withy (2017) on the composite demographic makeup of all Hawaii physicians, the report 

stated that there are over 8,900 physicians licensed to practice in the state, 3,693 of whom 

are practicing in nonmilitary settings.  Only 2,903 physicians were involved in directly 

caring for Hawaii residents (Withy, 2017).  Included in this group were physicians 

licensed to practice telehealth services in the state.  The 2016 Workforce Report for the 

Legislature also listed the average age of a physician in Hawaii as 55 and 31% of the 

Hawaii physician workforce as being age 55 to 65, 15% between the age of 66 and 75, 

and 3% 75 and over (Withy, 2017).  Male physicians made up the majority of the 

profession in Hawaii at 69%, with female physicians constituting 31% of the profession 

(Withy, 2017).  In reviewing differences between medical specialties reporting to practice 

in Hawaii, specialists made up the largest number of physicians at 55% of the population, 

with primary care comprising 37% of the population, and emergency medicine 

constituting 7% of the physician group (Withy, 2017).     

In a macro view of the United States, themes remain consistent with the state of 

Hawaii.  Although the number of female physicians are on the rise, the workforce 

remains predominately male holding 64.7% of the total population (Young et al., 2017).  

The age of the national physician workforce has also risen to 51 which is four years 

younger than the average Hawaii physician, yet percentages between ages holds steady 

with the majority of the population reported between ages 40 to 49 (23.9%) and 50 to 59 

(22.5%) years of age (Young et al., 2017).        
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Both data sets are of interest when comparing the total population of practicing 

physicians across the US and in the state of Hawaii with the total population of HHIE 

physician users used within the research for this study.  The study data further indicates 

that 35.6% of practicing Hawaii physicians had signed up for the HHIE community 

health record.  Of those participating Hawaii providers, gender appears to be fairly 

consistent between Hawaii and national percentages of male and female groups.  The age 

of physicians who have signed up to use the HHIE appears to be fairly equal between 

physicians aged 35 to 44 and ages 55 to 64.  The percentages between groups of 

physician medical specialties also appear fairly consistent when comparing Hawaii state 

averages with those participating with the HHIE.  Review of this information is important 

when comparing results from this study and applying findings to similar populations 

across the country.  Since the representative population in (a) the study, (b) the state, and 

(c) the national average are very similar, external validity of the study was strengthened.    

Results 

In this section I will review the research questions contained in the study.  I will 

evaluate the model created to calculate findings and also report all findings from the 

analysis.  The descriptive statistics explains the fundamental features found in the study 

and serves as the foundation for the data (Trochim, 2006). The descriptive statistics for 

the independent variables and dependent variable can be found below.      

Table 3  

Descriptive Statistics: Dependent Variable for RQ 1 (N = 1034) 

 

Minimum Maximum Mean (SE) SD 
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RQ 1 login  0.00 1.00 .026 (.014) .441 

 

Table 4  

Descriptive Statistics: Dependent Variable for RQ 2 (n = 273) 

 

Minimum Maximum Mean (SE) SD 

RQ 2 login count  1.00 1806 44.13 (9.51) 157.160 

 

Table 4 
 

Descriptive Statistics: Independent Variables for RQ1 (N =1034)  

 

Minimum Maximum Mean (SE) SD 

Female  0.00 1.00 0.30 (.014) .457 

Under age 35 0.00 1.00 0.07 (.008) .256 

Age 35-44 0.00 1.00 0.26 (.014) .438 

Age 45-54 0.00 1.00 0.23 (.013) .418 

Age 55-64 0.00 1.00 0.25 (.014) .435 

Age 65 and over  0.00 1.00 0.19 (.012) .394 

Primary care  0.00 1.00 0.38 (.015) .485 

Specialists  0.00 1.00 0.49 (.016) .500 

Emergency 
medicine  

0.00 1.00 0.13 (.010) .336 

Oahu county  0.00 1.00 0.84 (.011) .367 

Hawaii county  0.00 1.00 0.06 (.007) .238 

Maui county  0.00 1.00 0.09 (.009) .289 

Kauai county  0.00 1.00 0.01 (.003) .093 

 

Table 5 

Descriptive Statistics: Independent Variables for RQ2 (n =273) 

Minimum Maximum Mean  (SE) SD 

Female  0.00 1.00 0.30 (.280) .458 

Under age 35 0.00 1.00 0.07 (.015) .255 

Age 35-44 0.00 1.00 0.24 (.026) .433 

Age 45-54 0.00 1.00 0.23 (.025) .420 

Age 55-64 0.00 1.00 0.25 (.026) .433 

Age 65 and over  0.00 1.00 0.21 (.024) .405 

Primary care  0.00 1.00 0.41 (.030) .493 
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Specialists  0.00 1.00 0.43 (.030) .496 

Emergency 
medicine  

0.00 1.00 0.15 (.022) .361 

Oahu county  0.00 1.00 0.82 (.023) .381 

Hawaii  county  0.00 1.00 0.07 (.016) .261 

Maui county  0.00 1.00 0.10 (.018) .299 

Kauai county  0.00 1.00 0.00 (.004) .061 

 

Research Question 1 

In the first research question, I measured the use of the HHIE by using the total 

physician population included in the study (N = 1034).  The first research question reads: 

What is the predictive relationship, if any, between any HHIE use (as measured by login 

vs. no login) and (a) physician medical specialty (primary care, emergency medicine, or 

specialist), (b) physician age, (c) physician gender, and (d) location when controlling for 

the other variables?  The null hypothesis stated that there is no predictive relationship 

between any HHIE use (as measured by login vs. no login) and (a) physician medical 

specialty (primary care, emergency medicine, or specialist), (b) physician age, (c) 

physician gender, and (d) location when controlling for the other variables.  The 

alternative hypothesis stated there is a predictive relationship between any HHIE use (as 

measured by login vs. no login) and (a) physician medical specialty (primary care, 

emergency medicine, or specialist), (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables. 

Logistic regression.  To approach research question one, I conducted a logistic 

regression analysis.  The outcome of interest was whether a physician who has signed up 

to access the HHIE had ever logged into the system.  All predictor variables were 

inputted into the regression model using forced entry.  Assumptions met for the binary 
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logistic regression include a dichotomous dependent variable, one or more independent 

variables, and an independence of observations.  Correlations were checked with linear 

regression and resulted in a mean Variance Inflation Factor (VIF) of 1.336 which is close 

to a mean of 1.0; therefore, no evidence of multicollinearity was found (Field, 2013).  

There was one studentized residual with a value of 2.776 standard deviations, which was 

kept in the analysis.  Hosmer-Lemeshow goodness-of-fit was not statistically significant 

p = .986 confirming the model is correctly specified.  All independent variables included 

in the study were dichotomous; therefore, linearity was not tested as part of the 

assumptions.  The model sensitivity was found to predict no HHIE use coded as “0” 

100% of the time, and use coded as “1” 0% of the time.  The fit indicates 73.6% positive 

classification for the model. 

Of the predictor variables, medical specialty was found to be statistically 

significant (p < .05) when comparing HHIE use between specialty physicians to primary 

care and emergency room physicians while controlling for all other factors.  The findings 

indicate that emergency department physicians were 57% more likely to login to the 

HHIE [Exp(B)= [1.57], 95% CI (1.026, 2.430), p = .038] compared to specialists.  No 

other physician factors were found to be significant.  However, a predictive relationship 

was found between medical specialty and HHIE use (login vs. no login) therefore the null 

hypothesis was rejected and the alternate hypothesis was accepted.  These findings are 

reported in Table 3.   
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Table 6  

Logistic Regression Predicting any HHIE Use based on Gender, Age, Medical Specialty 

and Location (N =1034) 

     95% CI for odds ratio 

  B p- value Exp(B) Lower Upper  

Gender -0.001 0.993 0.999 0.726 1.374 

Age < 35 -0.147 0.649 0.863 0.458 1.627 

Age 35-44 -0.152 0.494 0.859 0.555 1.328 

Age 45- 54 -0.064 0.774 0.938 0.606 1.451 

Age 55-64 -0.1 0.641 0.905 0.595 1.376 

Primary care  0.287 0.072 1.332 0.974 1.821 

Emergency 
medicine  

0.457 0.038 1.579 1.026 2.430 
 

Hawaii county  0.243 0.403 1.275 0.722 2.252 

Maui county  0.133 0.59 1.142 0.705 1.85 

Kauai county  -1.134 0.288 0.322 0.04 2.607 

Constant -1.131 0 0.323     

Note: Gender is for males compared to females, age is compared to age group 65 and 
over, medical specialty is compared to medical specialists, and Hawaii counties are 
compared to the county of Oahu.  
 

Research Question 2 

In the second research question, I evaluated the extent of HHIE use based upon 

the number of times a physician logged into the HHIE.  The second research question 

reads: What is the predictive relationship, if any, between the extent of HHIE use (as 

measured by number of times logged in) and (a) physician medical specialty (primary 

care, emergency medicine, or specialist) (b) physician age, (c) physician gender, and (d) 

location when controlling for the other variables?  The null hypothesis stated that there is 

no predictive relationship between the extent of HHIE use (as measured by number of 

times logged in) and (a) physician medical specialty (primary care, emergency medicine, 

or specialist) (b) physician age, (c) physician gender, and (d) location when controlling 
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for the other variables.  The alternative hypothesis asserted that there is a predictive 

relationship between the extent of HHIE use (as measured by number of times logged in) 

and (a) physician medical specialty (primary care, emergency medicine, or specialist) (b) 

physician age, (c) physician gender, and (d) location when controlling for the other 

variables. 

Linear regression. To approach research question two a linear regression model 

was constructed to review the extent of HHIE usage from predictor variables of age, 

gender, medical specialty, and location.  All users with a login count of “0” were 

excluded from the analysis, the resulting file contained a total of n = 273 physicians as 

described as in the RQ2 population for the study.  Assumptions met for this study include 

a continuous dependent variable, multicollinearity, and an independence of residuals as 

assessed by a Durbin-Watson statistic of 2.048.  In review of the scatter plot, the 

dependent variable was not normally distributed and contained significant outliers as 

indicated in Figure 2 below.   
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Figure 2: Linear Regression Model Before Log Transformation 
 
The model failed the assumption of homoscedasticity, normality, and the assumption of 

linearity as assessed by visual inspection (Figure 2).   

Transformed linear regression.  As a result of these findings, I transformed the 

dependent variable to address the failed assumption of normality of the dependent 

variable.  The transformation was processed by applying a log (log10) transformation 

within SPSS, this can be done to correct moderately skewed data (Field, 2013).  I reran 

the model using the transformed data to improve normality as seen in the Normal Q-Q 

Plot show in Figure 3. 

 
 

Figure 3: Linear Regression Model After Log Transformation 
 

The updated model utilizing the transformed data (login count) maintained the 

assumption of a continuous dependent variable, and an independence of residuals as 

assessed by a Durbin-Watson statistic of 1.847.  Correlations calculated a mean VIF of 
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1.336 which is close to a mean of 1.0 therefore no evidence of multicollinearity was 

found (Field, 2013).  There were two studentized residuals with a value of 5.555 and 

5.507 standard deviations, which was kept in the analysis.  In review of the scatter plot, 

the dependent variable was improved, but remained not normally distributed therefore the 

assumptions of normality and linearity were not met.  Specifically, the Kolmogorov-

Smirnov2 Test of Normality remained at p < .001.  The model summary calculated and R2 

= 0.63 and an adjusted R2 = 0.27 indicating the model accounts for 27% of HHIE usage 

based on the predictor variables.  The model significance was found to be F(10,262) = 

1.757, p = .069.   

Results from the transformed dependent variable found the regression coefficient 

associated with medical specialty statistically significant.  The model confirmed for every 

unit increase of login count, the number of logins for primary care physicians increased 

by 0.673, and emergency physician login counts increased by 0.684.   Specifically, the 

model displays when compared to medical specialist while controlling for age, gender, 

and location, primary care physicians had a predictive relationship of HHIE usage [B = 

0.673, 95% C.I. (.223, 1.123) p = 0.004].  Results also indicate when specialist are 

compared to emergency medicine physicians, statistically significant predictive 

relationship of usage was found [B = 0.684, 95% C.I. (.074, 1.295) p = 0.028].  No other 

variables were found to be statistically significant.  These results are displayed in Table 4.  

Overall assumptions for linear regression model were violated therefore the results were 

inconclusive.   
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Table 7  

Linear Regression: Individual predictors for the Extent of HHIE Use (n = 273) 

Model 

Unstandardized 
coefficients 

Standardized 
coefficients  

t p-value B SE B 

(Constant) 1.656 .259 
 

6.398 .000 

Gender -.229 .233 -.062 -.981 .328 

Age <35 -.241 .463 -.036 -.521 .603 

Age 35-44 .565 .321 .144 1.760 .080 

Age 45-54 .349 .319 .086 1.095 .274 

Age 55-64 .073 .306 .019 .239 .811 

Primary care .673 .229 .195 2.942 .004 

Emergency medicine  .684 .310 .145 2.206 .028 

Hawaii county  -.477 .404 -.073 -1.181 .239 

Maui county  -.086 .353 -.015 -.243 .808 

Kauai county  1.011 1.701 .036 .594 .553 

Note: Gender is for males compared to females, age is compared to age group 65 and 
over, medical specialty is compared to medical specialists, and Hawaii counties are 
compared to the county of Oahu. 
 

Revised transformed linear regression.  An additional model was created to 

address the linear regression model assumptions.  The model eliminated the high and low 

dependent variable outliers at 5% of the high and low data points and maintained the 

transformed dependent variable and all predictor variables.  Removal of the outliers 

reduced the population by 77 HHIE physicians (n = 206).   
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Table 8 

Revised RQ2 Population (n = 206) 

Independent variables RQ1 (N = 1034) RQ2 (n = 273) 
RQ2 revised  

(n = 206) 

Age N % n % n % 

     Under 35 73 7.1% 19 7.0% 13 6.3% 

     35-44 268 25.9% 68 24.9% 46 22.3% 

     45-54 233 22.5% 62 22.7% 50 24.3% 

     55-64 261 25.2% 68 24.9% 55 26.7% 

     65 and over 199 19.2% 56 20.5% 42 20.4% 

Medical specialty        

     Primary care 389 37.6% 113 41.4% 90 43.7% 

     Specialist 511 49.4% 118 43.2% 82 39.8% 

     Emergency medicine 134 13% 42 15.4% 34 16.5% 

Location        

     Oahu county  868 83.90% 225 82.4% 172 83.5% 

     Hawaii county 62 6% 20 7.30% 13 6.3% 

     Maui county 95 9.2% 27 9.9% 20 9.7% 

     Kauai county 9 0.90% 1 0.4% 1 0.5% 

Gender        

     Male  727 70.3% 192 70.3% 146 70.9% 

     Female  307 29.7% 81 29.4% 60 29.1% 

 
The assumptions from the study upheld a continuous independent variable and an 

independence of residuals as assessed by a Durbin-Watson statistic of 1.872.  Similar to 

the previous linear regression models the distribution of residuals remained skewed and 

the model failed the assumption of linearity and normality as assessed by visual 

inspection.  VIF values were calculated above the threshold of 10 for Hawaii counties 

suggesting collinearity within the data. The model summary calculated R2 = 0.061 and 

adjusted R2 = 0.013 indicating the model accounts for 1.3% of HHIE usage based on the 

predictor variables.  The model significance was F(10, 195) = 1.275, p = .247. 
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Findings from the updated model indicate the regression coefficient associated 

with medical specialty predicts in comparison to specialists, primary care physicians have 

slightly higher HHIE usage.  Specifically for every one unit increase in login count, an 

increase of .196 logins for primary care physicians [B =.196, 95% C.I. (.0.29, .364) p = 

.022] were found.  Results further indicate higher predictive usage when specialist are 

compared to emergency medicine physicians.  For every one unit of increase of login 

counts an additional .234 logins by emergency medicine physicians could be predicted [B 

= 0.234, 95% C.I. (0.006, 0.462) p = .044].  No other variables were found to be 

statistically significant, these results are displayed in Table 5.  The model violated the 

assumption of linearity, collinearity, and normality and was found inconclusive.    

Table 9 

Linear Regression: Individual predictors for the Extent of HHIE Use with the Removal of 

Outliers (n = 206) 

Model 

Unstandardized 
coefficients 

Standardized 
coefficients  

t p-value B SE B 

(Constant) .990 .097  10.232 .000 

Gender -.069 .087 -.058 -.794 .428 

Age <35 -.030 .179 -.014 -.169 .866 

Age 35-44 .061 .124 .047 .496 .620 

Age 45-54 .032 .117 .025 .270 .788 

Age 55-64 -.086 .112 -.070 -.768 .443 

Primary care .196 .085 .179 2.311 .022 

Emergency medicine  .234 .116 .160 2.024 .044 

Hawaii county  -.242 .160 -.108 -1.519 .131 

Maui county  .000 .133 .000 -.001 .999 

Kauai county  .384 .551 .049 .696 .487 
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Note: Gender is for males compared to females, age is compared to age group 65 and 
over, medical specialty is compared to specialists, and Hawaii counties are compared to 
the county of Oahu. 

  
Additional analysis logistic regression.  Since the normality assumption with 

linear regression was violated, a final model based on logistic regression was constructed 

to test whether there was a non-linear relationship between the factors and the extent of 

HHIE use.  The linear regression dependent variable (n = 206, login count > 0) was 

recoded to identify HHIE users above and below the median login count of 7.  The new 

dependent variable was coded as login count < 7 = “0” and login count 7 > = “1”.  The 

logistic regression model maintained all prior predictor variables of age, gender, medical 

specialty, and location.  Assumptions met for the binary logistic regression include a 

dichotomous dependent variable, one or more independent variables and an independence 

of observations.  Correlations calculated a mean VIF of 1.349 which is close to a mean of 

1.0 therefore no evidence of multicollinearity was found (Field, 2013).  There were no 

studentized the residuals above 2 standard deviations.  All independent variables included 

in the study were dichotomous therefore linearity was not tested as part of the 

assumptions.  The Hosmer-Lemeshow goodness-of-fit was not statistically significant p = 

.144 confirming the model is correctly specified.  The -2 log Likelihood = 263.149 and 

the Nagelkerke R2= .083 indicating the model predicted 8.3% of the median physician 

usage of the HHIE.  The model sensitivity is 88.0%, specificity is 22.2%, and the fit 

indicates 62.1% positive classification resulting from the logistic model.    

Of the predictor variables, medical specialty was found statistically significant (p 

< .05) when comparing HHIE use between specialty physicians to primary care and 



76 

 

emergency room physicians while controlling for age, gender, and location.  The findings 

indicate that primary care physicians had a 2.011 higher odds, or twice as likely to use the 

HHIE [Exp(B) = [2.011], 95% CI (1.055, 3.803), p = .034] compared to specialists.  No 

other predictor variables calculated significance.  The model proved significance for the 

physician factor of HHIE usage between medical specialties.  Due to this finding, the null 

hypothesis was rejected and the alternate hypothesis was accepted stating there is a 

predictive relationship between medical specialty and HHIE usage (number of logins).  

These findings are reported in Table 6. 

Table 10  

Logistic Regression Recoded at Above the Median Number of Logins: Individual 

predictors for the Extent of HHIE Use with the Removal of Outliers (n = 206) 

  
   95% CI for odds 

ratio 

  B p-value Exp(B) Lower Upper  

Gender -.046 .892 .955 .489 1.864 

Age < 35 .313 .661 1.367 .338 5.534 

Age 35-44 .446 .358 1.562 .604 4.043 

Age 45- 54 .211 .641 1.236 .508 3.003 

Age 55-64 -.416 .329 .660 .286 1.520 

Primary care  .698 .034 2.011 1.055 3.830 

Emergency 
medicine  

.761 .104 2.140 .855 5.354 

Hawaii county  -.678 .265 .508 .154 1.673 

Maui county  -.267 .598 .765 .283 2.068 

Kauai county  20.249 1.000 622422081.009 0.000  

Constant .044 .905 1.045   

Note: Gender is for males compared to females; age is compared to age group 65 and 
over, medical specialty is compared to specialists, and Hawaii counties are compared to 
the county of Oahu. 
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Summary 

In this quantitative study I constructed two research questions to analyze 

physician use, the first examined whether a provider who has signed up to view the HHIE 

community health record had ever logged into the system as determined by login or no 

login.  Secondly, for those who had logged in, how many times have they accessed the 

HHIE as determined by login count.  The variables extracted from HHIE login data were 

physician age, gender, medical specialty, and practice location.   

To address the first research question I created a logistic regression model to 

evaluate differences between physician factors and HHIE use.  The logistic regression 

model passed assumptions, yet the model fit only explained 1.3% of the variation of 

HHIE use.  Due to this low percentage findings could not be generalized well.  In review 

of the statistical findings, the regression model indicated a significant relationship (p = 

.038) between HHIE use and emergency medicine physicians when compared to medical 

specialists and controlling for all other variables.  Specifically, emergency medicine 

physicians had 1.6 higher odds of using the HHIE, no other physician factors were found 

to be significant.   The significant finding for medical specialty caused me to reject the 

null hypothesis and accept the alternate hypothesis for HHIE use (login vs. no login).     

The second research question reviewed HHIE usage by evaluating login counts as 

the continuous dependent variable.  A multiple linear regression model was initially 

constructed with all login counts of 1 and greater (n = 273).  The model was found to be a 

poor fit and did not maintain the assumptions of linearity and normality.  To correct these 

assumptions a second linear regression model was constructed, the model used a 
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transformed (log10) dependent variable and retained all independent variables.  The 

model continued to find significance for medical specialty groups of emergency medicine 

physicians and for primary care providers.  However, the model was a poor fit and failed 

the assumptions of linearity, normality, and contained outliers.  The model was rejected 

and proved inconclusive.  

A third multiple regression model was ran using the transformed dependent 

variable and all previous predictor variables.  The model eliminated login counts at 5% of 

the high and low continuum, the resulting model contained n = 206.  Consistent with the 

previous model, the updated calculations also predicted an increase of .234 logins for 

every one unit increase for emergency medicine physicians and an increase of .196 logins 

for primary care physicians.  However, tests for multicollinearity, linearity, and normality 

failed assumptions and the model was found bias and inconclusive.  

A final logistic regression model was created to evaluate previous findings and 

confirm results.  Using the multiple linear regression data with removed outliers (n = 

206), the dependent variable was recoded to record data above and below the median 

number of logins.  Logins less than seven were coded as “0” and logins seven and greater 

were coded as “1”.  All previous independent variables were used in the model.  

Assumptions for the model were maintained to include a dichotomous dependent 

variable, an independence of observations, and multicollinearity.  The model predicted 

8.3% of the median physician usage of the HHIE.  Results from the regression indicate 

for every unit increase, primary care physicians had 2.011 higher odds of using the HHIE 

compared to specialists when controlling for all other variables.  No other predictor 
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variables calculated significance.  The significant finding for medical specialty caused the 

rejection of the null hypothesis and acceptance of the alternate hypothesis.  This finding 

confirmed a predictive relationship for the extent of HHIE usage based on medical 

specialty.    

Chapter 5 provides a working interpretation of key findings collected from the 

regression models.  I will relate these findings to existing literature and to the TAM 

framework used as the theoretical model for the study.  A discussion of the study 

limitations will be fully reviewed, and I will also explore recommendations for future 

research and social change.       
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Chapter 5: Discussion, Conclusions, and Recommendations 

Introduction 

In this study, I researched physician use of the HHIE by evaluating the total 

population of Hawaii physicians signed up for the HHIE community health record.  To 

accomplish this, I first used a logistic regression model to evaluate whether medical 

specialty, age, gender, and location were significant predictors of any use.  I then used 

multiple linear regression to assess the same predictor variables to determine extent of 

use, as calculated from the continuous number of logins.  To address violations in the 

linear regression model assumptions, an additional logistic regression model was created 

using the transformed dependent variable to evaluate use above and below the median 

number of logins.  The independent variables aligned with the previous research 

conducted on the TAM regarding PU, as represented in this study by medical specialty 

and location, and PEOU, as represented in this study by age and gender. 

The total population for the study consisted of 1034 HHIE physician users, or 

36% of Hawaii physicians directly involved in delivering patient care.  The 

subpopulation of physician users who had signed up for the HHIE and had logged into 

the HHIE at least one time consisted of 273 users or 26% of the physician population 

included in the study.  Medical specialty was found to be a statistically significant 

predictor when reviewing use and usage among primary care and emergency medicine 

physicians compared to specialists.  Due to this finding, the alternate hypothesis was 

retained for the research questions in the study.  The independent variables of age, 

gender, or location were not statistically significant predictors of use or the extent of use.   



81 

 

However, in reviewing the data, I found subtle outcomes that could be used in future 

studies on HIEs.  In this chapter, I will review key discoveries and discussion points from 

the research study.    

Interpretation of Findings 

The broad findings from this study confirm findings from earlier research that 

HIEs continue to have limited utilization by the physician population (Rudin et al, 2011; 

Vest et al., 2015).  The study results indicate that only 36% of Hawaii physicians have 

signed up to use the HHIE community health record, and of those who have signed up, 

only 26% have logged into the system.  The independent variables included in the study 

of age, gender, and location were not significant predictors of HHIE use.  Medical 

specialty was found to be statistically significant.  Therefore, this variable can be used as 

a predictor of HHIE use and usage.  As a result of this finding, the alternate hypothesis 

was accepted and RQ1 (use) and RQ2 (extent of use).      

Technology Acceptance Model 

Davis (1989) introduced the TAM to evaluate end-user acceptance of new 

technologies.  Davis targeted end-user acceptance of health communication technologies, 

a focus which aligned with my evaluation of HIEs.  The main constructs of the TAM 

include PU and PEOU to measure BI of actual use.  Previous researchers conducted 

many studies to focus on health information system implementation and adoption, while 

very few studies clearly outline how physicians are actually using the technology in 

practice (Holden & Karsh, 2010). PU relates to the degree that a system is thought to 

improve job performance while PEOU is defined as the extent to which a user believes 
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that a system is free of effort (Davis, Bagozzi, & Warshaw, 1992).  For this study, PU 

and PEOU were operationalized as use (whether or not a user logged in) and extent of use 

(number of times logging in).  I assessed whether physician specialty, location, age, or 

gender were predictive of HHIE use or extent of use.  

Medical specialty as a predictor.  In researching medical specialty, I compared 

specialists to primary care and emergency medicine physicians to evaluate use of the 

HHIE between groups.  Previous researchers using the TAM model to assess differences 

between medical specialties found statistically significant differences between primary 

care and specialists using EHR systems (Gagnon et al., 2013), and a moderating factor 

for surgeons and pathologists using clinical technology systems (Melas et al., 2011).   

For my study, the regression model compared primary care and emergency 

medicine physicians to physician specialists in terms of use.  When compared to 

specialists, emergency medicine physicians were found to have a statistically significant 

relationship for using the HHIE.  The data suggests they were 57% more likely or had 

significantly higher odds to login in at least once.  In reviewing the multiple regression 

model to evaluate usage (login counts), for every unit increase in login counts emergency 

medicine physicians predicted an additional 0.684 logins and primary care predicted an 

increase of  0.673 logins compared to specialists.   

The multiple linear regression model was run again removing participants with 

logins above and below 5% of study outliers.  The model continued to calculate 

significance for emergency medicine and primary care physicians.  A final logistic 

regression model was used to evaluate logins above and below the median login count of 
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seven.  Primary care physicians were found to have significantly higher odds of using the 

HHIE above the median login when compared to specialists.  As a collective result of 

these findings, the analysis included in the research indicates that emergency medicine 

physicians have a higher likelihood of logging into the HHIE, and primary care 

physicians have a higher likelihood of frequenting the system compared to specialists.  

This finding is congruent with previously conducted research on electronic medical 

record use and medical specialties (Gagnon et al., 2013).  These findings can also be 

further aligned with previous research conducted directly on emergency departments’ use 

of HIEs (Vest 2010; Vest et al., 2011; Yaraghi, 2015).     

Location as a predictor.  Differences in physician location was studied by 

evaluating HHIE use between the counties of Hawaii.  The state of Hawaii’s unique 

composition is geographically challenging when trying to truly understand use in terms of 

location as each island is divided by miles of Pacific Ocean.  For this study, I compared 

HHIE use between the four Hawaii counties to evaluate any predictive physician 

behaviors.  One limited study using the TAM model on a small group of Hawaii 

pediatricians to evaluate BI through a mailed questionnaire found the theoretical aspects 

surrounding PEOU were not supported within the population of physician users (Chismar 

& Wiley-Patton, 2003).  However, the study did not discern study demographics beyond 

age and gender.  Withy (2017) found that physician shortages affect each county based 

on supply, demand, and population.  Understanding the distinctive challenges for each 

county is an important aspect in researching predictive relationships to use technology 
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which is addressed in this study.  I could not locate any other studies in which the TAM 

was applied to the state of Hawaii or technology use between state counties.  

For the study HHIE use was compared against the county of Oahu, this was based 

on Oahu having the highest number of HHIE users.  Compared with physicians in Oahu 

county, Hawaii county physicians were 27% more likely to login, Maui physicians were 

15% more likely to login, and Kauai physicians were 68% less likely to login.  Although 

not statistically significant, results from the multiple linear regression predicted a slightly 

higher number of logins for Kauai county and for Maui County.  Collectively the results 

also show in comparison to Oahu slight tendencies for higher HHIE participation on the 

islands of Hawaii and Maui and higher login counts for the counties of Maui and Kauai.  

Of interest, Withy (2017) cites that specialty care is often sought on the island of Oahu, 

yet HHIE use and usage proved lower within this county compared to the neighbor 

islands.  Further studies on primary care physicians within  Oahu, Hawaii, Maui, or Kauai 

counties may be warranted to understand their care coordination needs and if the HHIE is 

fulfilling gaps in communication.   

Age as a predictor.  In previous studies age was widely used as an independent 

variable within the TAM theory.  In terms of behavioral intention to use information 

systems, age was found to predict computer self-efficacy among adults (Chung et al., 

2010).  Another study specific to physicians, age quantified by 50 years of age and older 

was also proven to have statistical significance (p = 0.032) with limited computer use 

(Gagnon et al., 2013).  The association of older physicians to lower EHR system adoption 

was also confirmed in a number of prior studies (Bae & Encinosa, 2016; Decjer et al., 
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2012; Hamid & Cline; 2013).  Conversely, in other studies age was found to hold no 

predictive relationship with EHR adoption (Hudson et al., 2012) or HIE use (Gadd et al., 

2011) similar to the outcomes in this study.  The logistic regression, although not 

statistically significant, pointed towards a decrease use and extent of use with an increase 

in age.  Results indicate when compared to the age group of 65 and over, a 4% decline in 

likeliness to login.  Similarly, HHIE usage (number of logins) reported similar for 

physicians age 35 to 64, then trended downward for physicians aged 65 and over.  Taken 

together, these results indicate that HHIE use decreased with age. 

Gender as a predictor. Gender has also been extensively studied within the 

framework of the TAM to extend knowledge on differences between male and female 

users.  In this study, gender was found to have no predictive relationship with use or 

amount of use of the HHIE.  This is consistent with previous research findings on HIE 

use (Furukawa et al., 2014; Gadd et al., 2011).  According to the Association of 

American Medical Colleges (2016) the number of women enrolled in medical school 

increased by 6.2% in 2016 which is a start to leveling the gender distribution in the 

profession.  As female medical school enrollees continue to rise, gender may continue as 

a variable of interest to predict behavior related to using health information technology.  

Although findings from this study were not statistically significant, it is important to note 

that there was almost no difference between HHIE physicians who have signed up for the 

HHIE with behavior to login.  Perhaps future studies may reveal differences in gender as 

females appear to have a marginally higher system usage (number of logins) than their 

male counterparts for the data collected.      
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Limitations of the Study 

The total population of physicians included in this study had similar 

characteristics to the overall population of physicians practicing in the state of Hawaii as 

well as the demographic composition to national averages in the United States.  However, 

the use of the HHIE by office staff or clinical support personnel on behalf of the 

physician is not indicated within the physician’s login activity.  The total file of HHIE 

user activity contained 127,839 logins between the months of January 1, 2016 to June 30, 

2017.  This study only contained 9% of those logins, indicating that the majority of the 

logins were by non-physician participants in the HHIE.  Inclusion of the non-physician 

population in future studies could assist in determining the complete range of first hand 

and second hand information physicians are retrieving from the HHIE.   

A second limitation of the study is the limited data available for analysis.  The 

HHIE is relatively new to the state and data collection processes are improving as the 

system matures.  The study was limited to the information available through the HHIE 

and public resources.  In the future, improved reported analytics from the HHIE may help 

understand which screens are frequented and in what order.  In a prior study Vest and 

Jasperson (2012) reviewed session information from and user patterns within an HIE 

application, and they were able to report on whether clinical information was accessed or 

viewing was limited to demographic or visit data.  Information on the screens viewed and 

information sought within the HHIE may help identify the needs of the physician when 

using an HIE to coordinate care.   
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Recommendations 

Overall there remain very few studies on HIEs, particularly how they are being 

used in practice and the impact of health care exchanges to health care delivery.  This 

study was a first in two respects: it was the first study on HIEs to be conducted in the 

state of Hawaii and it was the first to evaluate specific HIE physician characteristics 

based upon archival data from login activity under the constructs of the TAM.  My initial 

recommendation is to continue to review the variables in this study over longer periods of 

time as HIEs mature and becomes fully understood in practice.  Longitudinal studies lend 

valuable insight into how systems mature and develop (Frankfort-Nachmias & Nachmias, 

2008).  Time studies could be of interest as gender gaps between the percentage of male 

and female physicians level.  In the future generational gaps will also be normalized 

when physicians 65 and over start to retire, and physicians 35 and younger continue to 

enter the workforce.  For Hawaii, HIE use between counties will also dynamically change 

longitudinally while new areas on the islands develop causing the population to shift 

geographically.   

Although this study was quantitative approach, further studies expanding upon the 

variables of medical specialty, age, and gender may also prove supportive to understand 

factors of HIE use among physicians.  Previous research sought qualitative methods of 

interviewing end users (Gadd et al., 2011; Politi et al., 2015; Unertl, Johnson, & Lorenzi, 

2011; Yeager et al., 2014) as a means to understand HIE use.  A mixed method approach 

may match quantitative analysis findings with qualitative outcomes to fully understand 

barriers of use beyond login activity.  Previously Frisse et al. (2012) conducted a mixed-
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methods study to review HIE usage within emergency departments.  The study included 

login data as well as semi-structured interviews and direct observation.  Another 

quantitative method could be the development of a questionnaire as done by previous 

HIE researchers (Adler-Milstein, Bates, & Jha, 2011).   

Meaningful use programs and federal mandates continue as an important factor in 

understanding how HIEs are influencing health care communication.  CMS (2017) 

released final rules on MU stage three objectives; contained in these measures is the 

ongoing requirement to participate in a health exchange to communicate patient centric 

information.  Although providers are able to choose a transmission method to send and 

retrieve information, HIEs remain as a suitable option for satisfying this measure.  Future 

studies should continue to take federal incentive program participation into account when 

reviewing provider activity within HIEs.  If providers are not involved in an incentive 

program, it may decrease their willingness to participate in an exchange leaving gaps in 

the continuity of care for the patient.   

The focus of this study was to exclusively review physician factors of HHIE use 

therefore only physicians with an MD or DO were included in the analysis.  The 

inclusion of a limited population was a strength of the study because findings could be 

applied to similar physician populations.  Future studies may be able to use the same data 

set to evaluate all user activity between medical specialties, role, and HHIE use between 

Hawaii counties.  If users are able to be mapped back to a health care provider or 

practice, a better depiction of how a physician is using the HHIE in its entirety may be 

realized.  Additional mid-level credentialed providers such as physician assistants, nurse 
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practitioners, and pharmacists have also signed up to view the HHIE community health 

record.  A separate analysis of this population using the same variables could be a 

potential area of concentration to evaluate HHIE utilization.           

Implications  

Although age, gender, or location did not prove to be statistically significant 

predictors of HHIE use, results from the study continue to add to the body of knowledge 

on the role of HIEs in health care.  Foremost, the study revealed the continued trend of 

HIE underutilization, even in a state where care coordination is geographically 

challenging.  Health care providers in underserved areas like Hawaii must continue to use 

technology as a way to coordinate care and close gaps in health care coverage.  Similar to 

nationwide physician shortages, Hawaii’s shortage is forecasted as 800 to 1500 full-time 

providers by year 2020 (Withy et al., 2017).  Progressive tracking of how well Hawaii 

physicians are using technology and addressing current barriers will be imperative to 

consistently providing for the growing health care needs of the community.  From the 

results of the study, it is discovered that very few providers have signed up for the HHIE 

in the counties of Hawaii, Maui, and particularly Kauai.  The limited amount of 

physicians who have signed up may be an opportunity for onboarding efforts within these 

counties.  Another implication of the study is to seek additional variables outside of age, 

gender, and medical specialty for evaluation as barriers to HIE use since these factors 

were not statistically significant.  Previous studies have used practice size and attestation 

for federal programs as incentives to participate in health exchanges (Furukawa et al., 

2012).  As government mandates evolve year after year, so will the focus of many 
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providers.  Incentives and barriers to using technology like HIEs will need to be 

constantly evaluated for continued participation.   

Future implications for positive social change as a result of the study centered on 

the state of Hawaii shows differences in the use of the HHIE based on medical specialty.  

The study indicated emergency medicine physicians were more likely to login to the 

HHIE compared to specialists and primary care physicians.  This is a positive implication 

for emergency and critical care for the islands because critical care is often sought on the 

island of Oahu where majority of the state’s health care resources are located (Withy et 

al., 2017).  Greater information sharing using the HHIE for emergency medicine 

providers could indicate an increased opportunity to retrieve critical information while 

the patient is in transit from another island, or while consulting a neighbor island provider 

prior to a patient transfer.  An additional area of future research could evaluate Hawaii 

emergency room visit outcomes due to the information sharing using an HIE in 

comparison to those visits where an HIE was not accessed.      

The TAM was used as the theoretical basis of this study measuring PU and PEOU 

to predict the intention to use an HIE.  I could not locate any other studies that used the 

TAM in the research design employed within this study.  Future studies can draw from 

this research design and the variables used to test further iterations of the TAM such as 

the TAM2 model or the Unified Theory of Acceptance and Use of Technology 

(UTAUT).   

In terms of policy, the low use of HIEs appears troubling in achieving the 

outcomes of interoperability that federal incentive programs hoped to accomplish.  One 
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of the major aims of meaningful use attainment was to first adopt an EHR to capture 

structured data, then to exchange the data during care transitions to allow providers to 

reconcile a subset of critical information (Cohen & Adler-Milstein, 2015).  An additional 

finding noted from this study is the consistency between the percentage of providers that 

have signed up for the HHIE and those that have demonstrated Meaningful Use.  The 

Office of the National Coordinator (2016) states that 34% of Hawaii office-based 

physicians have demonstrated meaningful use, which is consistent with the finding from 

this study that 36% of Hawaii practicing physicians have signed up for the HHIE.  Yet, in 

terms of actual use, only 26% of those who have signed up have ever logged in.  A policy 

implication for future consideration is the potential requirement of active participation 

evidenced by use.   

Conclusions 

In this study, I evaluated factors for using the HHIE for Hawaii physicians.  Using 

archival data, I analyzed the predictive relationship between HHIE utilization and the 

variables of medical specialty, age, gender, and location.  The first logistic regression 

model measured whether a provider who has signed up to the use the HHIE ever logged 

in. The study concluded a statistically significant relationship between the predictor 

variable of medical specialty and use.  It was found that emergency medicine physicians 

were more likely to login to the HHIE compared to specialists therefore the null 

hypothesis was rejected and the alternate hypothesis was accepted.   

Next, the study also concluded a predictive relationship between the variables of 

medical specialty and HHIE usage.  Emergency medicine physicians and primary care 
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physicians calculated a predictive increase in login counts when compared to specialists.  

Emergency medicine physicians were also found to be statistically significant in the 

revised logistic regression model evaluating login counts above the median.  This is 

important aspect when evaluating implications of the study as emergency medicine 

physicians are using the system more than their physician counterparts.  Having historical 

patient information readily available at any time is vital in a state where most of the 

critical care resources are located on the island of Oahu.  A final logistic regression was 

created to address failed assumptions from the multiple linear regression models to assess 

HHIE usage.  The model determined a significant relationship between primary care 

physicians and HHIE usage.   

The aim of the study was to evaluate predictive relationships to better 

comprehend physician patterns of using health exchanges for care coordination.  If 

predictive patterns were present in the study, barriers of use within the focus of age, 

gender, or location could also be addressed and outreach programs could be assembled to 

onboard physicians to health exchanges.  Ultimately medical specialty was the only 

variable with a predictive relationship for HHIE use and usage leaving future research to 

expand on the role of physician specialty and HIE use and seek additional physician 

factors.  Overall this study adds to the body of knowledge known on HIE use within the 

state of Hawaii, findings could be applied to similar physician populations nationally for 

future studies on health exchanges and health care coordination.            
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