
Walden University
ScholarWorks

Walden Dissertations and Doctoral Studies Walden Dissertations and Doctoral Studies
Collection

2017

Collaboration Strategies to Reduce Technical Debt
Jeffrey Allen Miko
Walden University

Follow this and additional works at: https://scholarworks.waldenu.edu/dissertations

Part of the Databases and Information Systems Commons, and the Other Communication
Commons

This Dissertation is brought to you for free and open access by the Walden Dissertations and Doctoral Studies Collection at ScholarWorks. It has been
accepted for inclusion in Walden Dissertations and Doctoral Studies by an authorized administrator of ScholarWorks. For more information, please
contact ScholarWorks@waldenu.edu.

http://www.waldenu.edu/?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.waldenu.edu/?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissanddoc?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissanddoc?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/339?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/339?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F4236&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ScholarWorks@waldenu.edu

Walden University

College of Management and Technology

This is to certify that the doctoral study by

Jeffrey Allen Miko

has been found to be complete and satisfactory in all respects,
and that any and all revisions required by
the review committee have been made.

Review Committee
Dr. Jon McKeeby, Committee Chairperson, Information Technology Faculty

Dr. Steven Case, Committee Member, Information Technology Faculty
Dr. Gail Miles, University Reviewer, Information Technology Faculty

Chief Academic Officer
Eric Riedel, Ph.D.

Walden University
2017

Abstract

Collaboration Strategies to Reduce Technical Debt

by

Jeffrey Allen Miko

MS, University of Illinois-Springfield, 2013

BS, Thomas Edison State University, 2012

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

October 2017

Abstract

Inadequate software development collaboration processes can allow technical debt to

accumulate increasing future maintenance costs and the chance of system failures. The

purpose of this qualitative case study was to explore collaboration strategies software

development leaders use to reduce the amount of technical debt created by software

developers. The study population was software development leaders experienced with

collaboration and technical debt at a large health care provider in the state of California.

The data collection process included interviews with 8 software development leaders and

reviewing 19 organizational documents relating to software development methods. The

extended technology acceptance model was used as the conceptual framework to better

understand the social and cognitive influences on the perceived usefulness of

collaboration in reducing technical debt. An inductive analysis of the data was used for

coding, triangulation, and identifying themes related to the use of collaboration strategies

to reduce technical debt. Prominent themes included using collaboration at all stages of

development, using continuous verification processes, promoting a participatory culture,

and using tools to support distributed teams. The study findings showed an environment

that promotes collaboration, a culture that encourages participation, and accessibility to

collaborative tools that may reduce technical debt in software projects. The results of this

study may contribute to positive social change by demonstrating how individuals with

diverse backgrounds and different perspectives can work together to improve critical

software that people depend on every day.

Collaboration Strategies to Reduce Technical Debt

by

Jeffrey Allen Miko

MS, University of Illinois-Springfield, 2013

BS, Thomas Edison State University, 2012

Doctoral Study Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Information Technology

Walden University

October 2017

Dedication

I dedicate this work to my parents, Mr. and Mrs. Joseph and Sandra Miko, who

have supported me in every endeavor in my life.

Acknowledgments

I would like to thank my family for their support and encouragement in my

pursuit of education starting many years ago. I would like to thank my committee chair,

Dr. Jon McKeeby, who provided tremendous support, guidance, and encouragement

throughout my doctoral journey. I would like to thank you for your patience and support.

Thank you to my second committee member, Dr. Steven Case, for his valuable feedback,

helping me better understand the research process, and sharing his wealth of knowledge. I

would like to thank Dr. Gail Miles for her feedback helping me make my study more

complete. I would like to thank the DIT student community for their support and

encouragement.

i

Table of Contents

List of Tables ... iv

List of Figures ..v

Section 1: Foundation of the Study ..1

Background of the Problem ...1

Problem Statement ...2

Purpose Statement ..2

Nature of the Study ..3

Research Question ...4

Demographic Questions .. 5

Interview Questions .. 5

Conceptual Framework ..7

Definition of Terms..8

Assumptions, Limitations, and Delimitations ..9

Assumptions .. 9

Limitations .. 10

Delimitations ... 10

Significance of the Study ...11

Contribution to Information Technology Practice .. 11

Implications for Social Change ... 12

A Review of the Professional and Academic Literature ..12

Technology Acceptance Model .. 13

ii

Technical Debt .. 26

Collaboration in Software Development .. 33

Collaboration Strategies .. 38

Transition and Summary ..45

Section 2: The Project ..47

Purpose Statement ..47

Role of the Researcher ...47

Participants ...50

Research Method and Design ..54

Method .. 55

Research Design.. 58

Population and Sampling ...61

Ethical Research...65

Data Collection ..68

Instruments .. 68

Data Collection Technique ... 76

Data Organization Techniques .. 83

Data Analysis Technique ...85

Reliability and Validity ..88

Dependability .. 89

Credibility ... 90

Transferability ... 91

iii

Confirmability ... 92

Transition and Summary ..93

Section 3: Application to Professional Practice and Implications for Change94

Overview of Study ...94

Presentation of the Findings...94

Theme 1: Extensive Collaboration Is Critical ... 95

Theme 2: Continuous Verification of Best Practices .. 101

Theme 3: Participatory Culture Improves Clarity and Collectiveness 107

Theme 4: Collaborative Tools Support Distributed Teams 110

Applications to Professional Practice ..114

Implications for Social Change ..117

Recommendations for Action ..118

Recommendations for Further Study ...119

Reflections ...121

Summary and Study Conclusions ..121

References ..123

Appendix A: Human Subject Research Certificate of Completion152

Appendix B: Interview Protocol ..153

Appendix C: Permission to Use Figures ..156

Appendix D: Interview Question Matrix ...158

iv

List of Tables

Table 1. Themes for Extensive Collaboration is Critical ...97

Table 2. Themes for Continuous Verification of Best Practices103

Table 3. Themes for Participatory Culture Improves Clarity and Collectiveness108

Table 4. Themes for Collaborative Tools Support Distributed Teams112

v

List of Figures

Figure 1. Technology acceptance model ...14

Figure 2. Extension of the technology acceptance model ..16

1

Section 1: Foundation of the Study

Background of the Problem

Collaboration is an important facet of software development considering three of

the four daily activities performed by software developers involve collaborative tasks that

can affect the success of software teams (Dullemond, Van Gameren, & Van Solingen,

2014). Software development often relies on different teams working in different

geographic locations, so project success often depends on effective collaboration among

team projects (Sundaramoorthy & Bharathi, 2016). Software development organizations

that strive to improve collaboration throughout the software life cycle are more successful

than those that do not improve collaboration (Lesser & Ban, 2016).

Technical debt is the increase in costs associated with maintaining or enhancing a

system resulting from convenient shortcuts taken during the development of the system

that did not align with industry best practices (Ampatzoglou, Ampatzoglou,

Chatzigeorgiou, & Avgeriou, 2015). Poor collaboration strategies make it easier for

technical debt to accumulate without detection, and this lack of awareness makes it easier

for individuals to make additional decisions incurring more debt (Tom, Aurum, &

Vidgen, 2013). Software development best practices requiring collaboration such as

requirements gathering, design reviews, code reviews, and mentoring may increase

technical debt due to ineffective collaboration activities. My study focused on the

technical debt that originates from software development teams due to ineffective

collaboration strategies. I explored the characteristics of collaboration and examined

strategies that can be used to minimize technical debt.

2

Problem Statement

Technical debt refers to future maintenance costs accumulated by software

development teams taking shortcuts in the development processes leading to 50%

decreases in long-term customer satisfaction (Ramasubbu & Kemerer, 2014). Technical

debt in enterprise software systems increases the chance of system failures by up to 62%

(Ramasubbu & Kemerer, 2015) with software systems containing $3.61 of technical debt

principal per line of code (Li, Liang, Avgeriou, Guelfi, & Ampatzoglou, 2014). The

general IT problem was that poor software development collaboration processes create

technical debt in software systems requiring additional maintenance costs to provide

software updates. The specific IT problem was that some software development leaders

lack collaboration strategies to reduce the amount of technical debt created by software

developers.

Purpose Statement

The purpose of this qualitative case study was to explore collaboration strategies

software development leaders use to reduce the amount of technical debt created by

software developers. The population for this study included senior software development

leaders from a large health care provider in the state of California. The population was

experienced with the phenomenon of technical debt and were involved in software

development collaboration. These senior software development leaders participated in

semistructured interviews to identify how the collaboration of software development

teams affects technical debt. The implications for positive social change include the

potential to increase the reliability of communal software systems and reduce the

3

economic burden of software on society by improving the collaboration among software

development professionals.

Nature of the Study

The qualitative methodology was the research method selected for this study. A

qualitative method focuses on the participants’ perspectives, meanings, and subjective

views allowing the researcher to view the phenomenon from the viewpoint of the

participants (Yilmaz, 2013). A qualitative method allows the researcher to be a key

instrument of the data collection process, to analyze data inductively and recursively, to

develop a complex picture of the issue being studied, and to reflect on his or her role in

the study (Yilmaz, 2013). My research involved collecting and analyzing data from

interviews and software development artifacts pertaining to standards, processes,

methodologies, and collaboration to develop a comprehensive understanding of the

phenomenon I studied. In a quantitative study, the researcher uses a deductive approach

using a theory that relates to the topic under study, develops one or more hypotheses

based on this theory, and tests the hypotheses with data using statistical procedures

(Barczak, 2015). A quantitative approach focuses on proving or disproving hypotheses

through investigation of relationships between independent and dependent variables

(Barczak, 2015). A quantitative method was not appropriate for this study because there

was no testing of a theory or hypotheses, there were no independent or dependent

variables, and there was no collection of numeric data for statistical testing. Because a

mixed-methods research method incorporates quantitative data collection and statistical

analysis (Hayes, Bonner, & Douglas, 2013), it was not appropriate for this study.

4

A single exploratory case study design was the most appropriate design for this

study. A case study is conducted to develop a detailed interpretation of a specific case or

multiple cases by studying an event, program, or activity (Wynn & Williams, 2012). A

qualitative case study design improves a researcher’s understanding of a phenomenon

through a comprehensive examination to investigate a multifaceted phenomenon in a

real-world setting asking how or what questions (Cronin, 2014; Wynn & Williams,

2012). Ethnographic studies focus on describing cultures and social behaviors (Walker,

2012) to gain a better understanding of participants’ social behaviors within their culture

(Cruz & Higginbottom, 2013). My study did not focus on the cultural or social behaviors

of participants. A narrative research design is used to explore the life of an individual

(Walker, 2012). My study focused on collaboration between multiple individuals, and

studying a single individual would not have yielded the appropriate data to answer my

research question. A phenomenological research design is used to study the human

experience from the perspective of the participants living through the phenomenon

(Hanson, Balmer, & Giardino, 2011). My study did not focus on the lived experiences of

participants, so a phenomenological research design was not appropriate. The purpose of

this study was to explore collaboration strategies software development teams need to

minimize technical debt.

Research Question

The overarching research question for this study was the following: What

collaboration strategies do software development leaders use to minimize technical debt

created by their software developers?

5

Demographic Questions

1. What is your current position and role?

2. How long have you been in your current position?

3. How many years of experience do you have in software development?

4. What degrees and industry certifications do you possess?

Interview Questions

1. How would you describe collaboration and its purpose in software

development? What have been the benefits of collaboration to your software

development team and your organization? These questions will inform me as

to the job relevance and the perceived usefulness of collaboration.

2. What are the methods and tools your team uses to facilitate collaboration?

How would you describe the usefulness of those methods and tools? How

easy have those methods and tools been to use? These questions will inform

me as to the perceived usefulness and perceived ease of use of the

collaboration method and tools used by the software development team.

3. What collaboration strategies has your team used to ensure programming logic

meets requirements, software designs are accurate, and programming code is

free of defects? How would you describe the usefulness of those strategies to

the overall success of your current projects? How easy were those strategies to

implement? These questions will inform me as to the job relevance, output

quality, and perceived usefulness of collaboration strategies. The questions

will also inform me as to the perceived ease of use of these strategies.

6

4. What collaboration strategies has your team used to ensure team members

follow your software development processes, policies, and best practices?

How would you describe the usefulness of those strategies in preventing

future bug fixing, code refactoring, and design changes? How easy were those

strategies to implement? These questions will inform me of the voluntariness

and compliance with social influences, which indicate the team members’

intention to use collaboration.

5. How would you describe technical debt and its effects on software

development projects? What have been the largest sources of technical debt in

your organization? How has your team managed technical debt? These

questions will inform me as to the behavioral use and perceived usefulness of

collaboration strategies.

6. How would you describe the collaboration strategies your team has used to

identify, prevent, and reduce technical debt? How would you describe the

usefulness of those strategies in managing your technical debt? Which

strategies were the most useful in minimizing technical debt? Which strategies

were the easiest to implement? These questions will inform me as to the

perceived usefulness, intentions to use, and usage behaviors of collaboration

strategies.

7. Explain why you might have made changes to your team’s collaboration

strategies in the past and how these changes affected your team’s ability to

minimize or reduce technical debt in projects? These questions will inform me

7

as to the perceived usefulness, intentions to use, and usage behaviors of

collaboration strategies.

Conceptual Framework

Venkatesh and Davis’s (2000) extension of the technology acceptance model

(TAM2) formed the basis for the conceptual framework for this study. Davis (1986) first

introduced the concept of the technology acceptance model (TAM) as part of a doctoral

dissertation, and refined the theory a few years later (Davis, Bagozzi, & Warshaw, 1989).

The main tenet of the TAM is that a user’s or group’s acceptance of technology is

dependent on the perceived usefulness and perceived ease of use of the technology

(Conrad, 2013). The TAM2 expands on the original TAM by adding social influence

processes and cognitive instrumental processes as determinants of the perceived

usefulness and perceived ease of use technology (Venkatesh & Davis, 2000).

The intent of this study was to explore collaboration strategies that software

development leaders employ to minimize technical debt. These strategies include the use

of tools, technologies, and technical processes. The TAM2 provided a theoretical basis to

study the adoption and effectiveness of various collaboration strategies at reducing

technical debt through investigation of the social and cognitive processes that determine

the perceived usefulness and ease of use of these collaboration strategies. The TAM2

provided a lens to examine the subjective norms, voluntariness, and image (see

Venkatesh & Davis, 2000) of software development teams to improve the understanding

of social influences on collaboration strategies. The TAM2 also provided a method to

understand the effects of job relevance, output quality, and result demonstrability (see

8

Venkatesh & Davis, 2000) of software developers on the cognitive decision-making

processes regarding the choice of collaboration strategies.

Definition of Terms

Agile software development: Agile software development uses incremental,

iterative work cadences to assist teams in responding to unpredictability in projects where

solutions evolve through collaboration between self-organizing, cross-functional teams

(Cubric, 2013). Agile methodologies are an alternative to a waterfall, or traditional

sequential development.

Code review: A code review is a collaboration between the authors of

programming code and those reviewing the code to identify defects, improve the

maintainability of the code, and share knowledge among team members (McIntosh,

Kamei, Adams, & Hassan, 2015). Code reviews facilitate identification of violations of

software development best practices to improve software quality (Foganholi, Garcia,

Eler, Correia, & Junior, 2015).

Code smell: A code smell, or coding violation, indicates source code that does not

follow the principles of object-oriented programming or design (Foganholi et al., 2015).

A class having more than one purpose is an example of violating object-oriented best

practices.

Defect density: Defect density is a measurement of code quality using the ratio of

defects per lines of source code (di Bella et al., 2013). Defect density provides a

normalized and comparable method to measure code quality among varying code sizes

(di Bella et al., 2013).

9

Unstructured code: Unstructured code refers to large sections of code where

programming logic and functionality are contained in the same section and separated or

modularized, which leads to readability, redundancy, and maintenance problems (Hall,

Min, Bowes, & Yi, 2014). Unstructured code is difficult to understand and may contain

duplicate or redundant code (Hall et al., 2014).

Assumptions, Limitations, and Delimitations

Assumptions

Assumptions are the beliefs and opinions a researcher considers true and imposes

on the study (Kirkwood & Price, 2013). Assumptions are a basic part of a research

problem and shape the study undertaken by a researcher (Kirkwood & Price, 2013).

Kirkwood and Price (2013) contended that researchers’ beliefs influence their research

and underexamined assumptions lead to questionable findings. I assumed the participants

of the study understood my interview questions. I assumed the participants of the study

gave honest responses to my interview questions knowing their responses would be

private and confidential. I assumed the participants did not discuss any part of the

interview process with other participants until all interviews were completed. I assumed

the inclusion criteria of the sample were appropriate ensuring the participants were

knowledgeable and experienced with software development, technical debt, and

collaboration. I assumed the participants would give responses that were representative of

my study population. I assumed the application of a qualitative approach for this case

study would provide accurate data and constructs for exploration.

10

Limitations

Every study has limitations due to restrictions on the research question and the

study’s research methods (Denscombe, 2013). Denscombe (2013) defined limitations as

restrictions on the interpretations and conclusions of a study due to the chosen research

areas and methods. There may have been unknown circumstances or factors at the

location where my participants work that could have biased their responses. The number

of participants available may have been inadequate to reach saturation. The data

collection consisted of interview questions and procedural documentation, which may

have limited the findings. The study was limited to software development leaders

employed by a large health care provider in the state of California, which may have

limited the representability of the study. I limited interview participants to those who are

actively involved in software development and excluded IT professionals outside of

software development.

Delimitations

Delimitations are statements about items the researcher believes are outside the

boundaries of the research problem (Denscombe, 2013). Denscombe (2013) contended

that delimitations are the boundaries of research, and items outside these boundaries are

not relevant to the research problem. A delimitation of this study was the inclusion of

participants who actively worked in software development; I excluded other project

stakeholders. A second delimitation was the interview questions, which were limited to

software development strategies to minimize technical debt. The third delimitation was a

single organization in the California. A fourth delimitation was health care providers. A

11

fifth delimitation was the relatively small sample size. A larger sample size would have

been costlier and more time-consuming.

Significance of the Study

Contribution to Information Technology Practice

The significance of this study was to increase awareness of how collaboration

among software development teams can affect the amount of technical debt accumulated

by those teams. Collaboration in various forms is important to the success of IT projects,

but this study provided insight into which methods, types, and characteristics of

collaboration are important from a software development standpoint. I investigated

whether the collaboration instrument or frequency of collaboration affected the

accumulation of technical debt. I examined how the participants in the collaboration may

drive the choice of instrument and frequency. I also explored the preferred collaboration

strategies of software development leaders and the acceptance of these collaboration

techniques by software developers.

This study was significant for IT executives, IT project managers, software

development leaders, and software developers. The study provided IT executives with

knowledge regarding the most effective means of collaboration among software

development teams so leaders can guarantee their organizations have the knowledge,

tools, and infrastructure to support these collaboration methods. This study benefited IT

practitioners by identifying collaboration strategies that software development leaders

can implement to minimize the technical debt accrued by their software development

teams. The study benefited IT organizations by establishing collaboration best practices

12

that will help minimize technical debt and save organizations time and money. The study

provided IT project managers with a better understanding of the collaboration strategies

they should implement in their IT projects.

Implications for Social Change

This study effected social change by demonstrating how collaboration among

individuals can be used to solve collective problems. Collaboration brings people of

diverse backgrounds, different perspectives, and varying skill sets together to achieve a

common goal. Collaboration, sharing problems, and working together extend far beyond

the workplace into personal lives. The findings from this study may effect positive social

change both inside and outside of the workplace.

A Review of the Professional and Academic Literature

The purpose of this qualitative case study was to explore collaboration strategies

software development leaders use to reduce the amount of technical debt created by

software developers. The focus of the literature review was the research question: What

collaboration strategies do software development leaders use to minimize technical debt

created by their software developers? I explored the TAM, technical debt, collaboration

in software development, and collaboration strategies that software development teams

use.

This literature review comprises 90 articles, journals, and conference proceedings.

The primary research libraries and databases included the ACM Digital Library,

EBSCOhost Computers and Applied Sciences Complete, IEEE Xplore Digital Library,

ScienceDirect, ProQuest Computing, and ProQuest Dissertations and Theses Global. I

13

also used the Google Scholar search engine. I identified the peer review status of articles

using Ulrich’s Global Serials Directory. I reviewed 91 articles, of which 81 (89%) were

peer reviewed and 77 (85%) were published within 5 years of my anticipated graduation

date.

The literature focused on four key areas: (a) the TAM2, (b) technical debt in

software development, (c) collaboration in software development, and (d) collaboration

strategies. This review of the TAM focused on the perceived usefulness, perceived ease

of use, cognitive influences, and social effects relating to collaboration and software

development. The research into technical debt involved the history, causes, types,

consequences, identification, and management of technical debt. The research into

collaboration included benefits, strategies, technologies, effects on software quality, and

overall use in software development.

Technology Acceptance Model

Davis (1986) introduced the TAM to explain users’ attitude toward and

behavioral intention to use a system (Figure 1). Davis hypothesized that a user’s attitude

toward and behavioral intention to use a system are major determinants influencing the

user’s actual use of the system. In this study, I explored the attitudes and intention of

software developers to use collaboration techniques to reduce technical debt.

14

Figure 1. Technology acceptance model. Reprinted from “User Acceptance of Computer
Technology: A Comparison of Two Theoretical Models,” by F. D. Davis, R. P. Bagozzi,
and P. R. Warshaw, 1989, Management Science, 35(8), p. 985. Copyright 1989 by
INFORMS. Reprinted with permission (Appendix C).

Davis (1986) developed the TAM as a variation of Fishbein and Ajzen’s theory of

reasoned action (TRA), a theory that was adapted for modeling user acceptance of

information systems. Davis posited that the attitudes toward and behavioral intention to

use a system are driven by the perceived usefulness and perceived ease of use of the

system. Davis defined perceived usefulness as a user’s subjective view that using a

specific system will improve his or her performance within an organization. Perceived

usefulness directly affects a user’s attitude toward and behavioral intention to use a

system. Davis defined perceived ease of use as the degree to which a person believes the

use of a system will be free of effort. Perceived ease of use directly affects a user’s

attitude toward using a system. I investigated software developers’ attitudes regarding the

perceived usefulness of collaboration strategies to reduce technical debt and the ease of

use to implement these collaboration strategies.

Qiu, Wang, and Yang (2015) posited that these two perceptions affect users’

attitudes, positively or negatively, toward using a specific technology. Yucel and

15

Gulbahar (2013) juxtaposed perceived usefulness and perceived ease of use, explaining

that they are predictors of users’ acceptance of a technology. Abdullah and Ward (2016)

maintained that users’ attitudes toward a system influence their behavioral intention to

use the system and ultimately determine the actual use of a system. Yucel and Gulbahar

contended that perceived usefulness is the most important factor in determining

behavioral intention to use a system. I explored whether the perceived usefulness and

ease of use of collaboration strategies determined their actual use by software developers.

Davis et al. (1989) posited that the objective of TAM is to explain the factors of

technological acceptance that are capable of theoretically justifying user behavior

throughout a comprehensive range of technologies by discovering the influence of

external factors on beliefs, attitudes, and intentions. Wallace and Sheetz (2014) asserted

that the purpose of TAM is to explain why individuals choose to accept or reject a

specific technology to complete a given task. I examined why software developers

choose specific collaboration technology to reduce technical debt. Yucel and Gulbahar

(2013) contended that TAM is applicable to a wide range of user populations to

understand how users try new technologies, and that TAM could predict user acceptance

of tools by determining the effect of modifications to those tools on user acceptance. I

explored how modifications to these collaboration strategies may influence their use.

Social and cognitive influences. Venkatesh and Davis (2000) extended the

original TAM by adding additional theoretical constructs spanning social influence

processes and cognitive instrumental processes (Figure 2) to gain a better understanding

of the determinants of perceived usefulness and usage intention. The main objective of

16

the extended model, or TAM2, was to determine the antecedents of these external

influences that affect perceived usefulness (Yucel & Gulbahar, 2013). Venkatesh and

Davis contended that the social influence processes in TAM2 include subjective norm,

voluntariness, and imagination, whereas the cognitive instrumental processes include job

relevance, output quality, and result demonstrability.

Figure 2. Extension of the technology acceptance model. Reprinted from “A Theoretical
Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,” by V.
Venkatesh and F. D. Davis, 2000, Management Science, 46(2), p. 188. Copyright 2000
by INFORMS. Reprinted with permission (Appendix C).

Riemenschneider, Hardgrave, and Davis (2002) defined subjective norm as the

degree to which people think that others who are important to them believe they should

perform a behavior and found it to be a significant determinant of perceived usefulness

and intention for use. Martinez, Cachero, and Melia (2013) applied subjective norm to

software development by defining it as the degree to which developers think that others

who are important to them believe they should perform a specific behavior. Martinez et

al. found that developers are more likely to use a method when they believe others who

17

are important to them consider that they should use it. I explored whether subjective

norms influence software developers’ attitudes toward using specific collaboration

strategies.

Park, Rhoads, Hou, and Lee (2014) defined voluntariness as the extent to which a

person believes the acceptance of technology is not mandatory. Riemenschneider et al.

(2002) found that voluntariness significantly moderates the direct effect of subjective

norm on intention to use. Martinez et al. (2013) found that adopting new development

methods requires sizable mental efforts, and developers perceiving adoption as voluntary

are less likely to adopt such methods. Venkatesh, Morris, Davis, and Davis (2003)

defined image as the degree to which a person believes innovation use will enhance his or

her image or status in a social system. The assumption is that people in an organization

who use the innovation have more prestige and higher status than those who do not use

the innovation.

Lala (2014) defined job relevance as an individual’s belief that a technology is

applicable to his or her work. Individuals are more willing to accept new technology if

they perceived it as relevant to their job, and they are less likely to accept it when seen as

irrelevant to their job. Venkatesh and Davis (2000) theorized that output quality depends

on job relevance and is used to measure the degree to which a technology performs a task

that is relevant to a person’s job. Riemenschneider et al. (2002) examined the ability of

software developers to communicate the advantages of using an application development

methodology as a method to test result demonstrability. I investigated how software

developers view collaboration strategies as relevant to their job and improve the quality

18

of their software. This is significant because Li, Avgeriou, and Liang (2015) found poor

software quality to be one of the most common classifications of technical debt.

Analysis of related theories. The basic supposition of the TRA and TAM is that

an individual’s intention to perform a behavior is influenced by the evaluation of his or

her beliefs and subjective norms (Priyanka & Kumar, 2013). TRA explores a wider range

of behavioral beliefs whereas TAM narrows the focus of an individual’s beliefs to

perceived usefulness and perceived ease of use of technology. I focused on these two

core beliefs, which made TAM more suitable for my study. TRA is limited to subjective

norms, whereas TAM2 explores a wider range of social influences such as subjective

norms, image, job relevance, and output quality, leading me to surmise that these social

influences affect the belief of perceived usefulness. I explored the wider range of social

influences present in TAM2.

The theory of planned behavior (TPB) is an extension of TRA that adds the

construct of behavioral control beliefs, which are a person’s perceptions of his or her

ability to perform a behavior (Yucel & Gulbahar, 2013). This construct is similar to

TAM’s perceived ease of use, which is a person’s belief that the use of a system will be

free of effort. TPB does not extend the social influences of TRA, limiting it to subjective

norms. My research required examination of a wider range of social influences such as

job relevance and output quality, which are not present in TPB.

Khayati and Zouaoui (2013) posited that TAM’s concept of perceived usefulness

was based in part on the self-efficacy theory supposition that the expected results of a

behavior influence the intention to use the behavior. Jun, Lee, and Jeon (2014) concluded

19

that self-efficacy has a direct effect on perceived usefulness but not perceived ease of use.

TAM and TAM2 were more suitable for my study, which addressed both perceived

usefulness and perceived ease of use.

Diffusion of innovation (DOI) theory is used to understand individuals’ attitudes

toward and willingness to adopt technology based on its communication within an

organization through time (Conrad, 2013). DOI is like TAM in that both models are used

to understand user acceptance and adoption of technology. DOI differs in that it addresses

the rate of adoption over time. I explored collaboration strategies currently used by

software development leaders and not the amount of time to adopt these strategies.

Limitations of TAM. Although TAM remains a popular model for analyzing

information system acceptance, some researchers believe that TAM has questionable

heuristic value, limited explanatory power, a sense of triviality, and no practical value

(Priyanka & Kumar, 2013). Fletcher, Sarkani, and Mazzuchi (2014) posited that

researchers have extended TAM to encompass nearly 30 additional factors to explain

additional sources of variance. Priyanka and Kumar argued that the data collection

approach for TAM is weak owing to its reliance on subjective, self-reported surveys

rather than actual system use. Fletcher et al. contended that users might perceive

usefulness in a system but reject the system owing to poor reliability or lack of user

support mechanisms. Users reject systems that provide a significant amount of usefulness

by manifesting negative attitudes regarding poor reliability and support mechanisms.

Svendsen, Johnsen, Almas-Sorensen, and Vitterso (2013) found that certain personality

traits such as extraversion and emotional stability could affect a person’s perceived

20

usefulness and behavioral intent to use technology. These additional determinants lessen

the accuracy and predictability of behavioral intent. Fletcher et al. argued that the timing

and frequency of TAM data collection focus on the active decision-making process at a

single point in time and not user adoption after the initial decision. The focus on a single

point in time is an important aspect in that a person may initially accept a technology but

reject the technology after a short period.

Usage of TAM in research. Researchers have applied TAM to a wide variety of

industries and contexts. Rodrigues, Oliveira, and Costa (2016) employed TAM to assess

the influence of determinants on the adoption of applications in the e-banking industry.

Rana, Dwivedi, and Williams (2013) used constructs from TAM2 to explore the adoption

of e-government services. Biederer, Arguel, Liu, and Lau (2014) studied user acceptance

of mobile applications in the health care industry. The use of TAM in a broad and diverse

collection of industries and organizations supports the use of TAM in software

development organizations. Cheung and Vogel (2013) used TAM to explain factors that

influence the acceptance of Google applications in a collaborative e-learning

environment. Lee and Lehto (2013) used TAM to identify determinants affecting

behavioral intention to use YouTube for procedural learning. Polancic, Jost, and Hericko

(2015) explored TAM’s effects on team-based e-collaboration at a Fortune 1000

company. The use of TAM in research involving collaboration, learning, and teams

supported the use of TAM research in software development collaboration, which was

the purpose of my study.

21

Research using TAM has expanded into software methodologies, agile processes,

software quality, and other areas of software development practices beyond physical

systems (Martinez et al., 2013; Overhage & Schlauderer, 2012; Wallace & Sheetz, 2014).

Several studies have found TAM beneficial for studying software developers’ intention to

use software development methodologies (Martinez et al., 2013; Riemenschneider et al.,

2002). Similar studies have explored TAM to identify factors influencing software

developers’ use of various software development practices (Overhage & Schlauderer,

2012; Vijayasarathy & Turk, 2012). Researchers have even used TAM to evaluate

software measures (Nel, Nel, & Cronje, 2016) and software process improvement

(Wallace & Sheetz, 2014).

Usage of TAM in collaboration. Several researchers have applied the TAM and

its extension (TAM2) to study collaboration technologies. Di Russo and Douglas (2013)

posited that perceived usefulness and perceived ease of use of document sharing

technology is the best predictor for the adoption of the technology for collaboration

purposes. Their study examined the satisfaction and adoption levels of SkyDrive,

Facebook Docs, and Google Docs as collaboration tools. Google Docs was the most

widely adopted document sharing technology and had the highest levels of perceived

usefulness and perceived ease of use (di Russo & Douglas, 2013). Software developers

may use document sharing as a strategy for collaborating on project requirements,

product specifications, source code, procedures, processes, methodologies and project

information. Godin and Goette (2013) applied constructs of the TAM2 to identify factors

that contribute to the use of an on-demand collaboration, online meeting, web

22

conferencing and video conferencing application by Cisco Systems. Godin and Goette

established that the performance expectancy and effort expectancy of the collaboration

technology significant effects on the intention to use the collaboration tool. Their study

measured perceived usefulness for communication, job relevance, and ease of use. Godin

and Goette also theorized that social influences and subjective norm have significant

effects on the intention to use collaboration tools. Godin and Goette expanded the usage

of TAM constructs beyond asynchronous document sharing to synchronous video

conferencing where social influences may be present. Video conferencing is an important

aspect of software development organizations allowing simultaneous collaboration of

team members regardless of geographic location or time constraints.

Huang, Hood, and Yoo (2013) employed constructs of the TAM to investigate

collaborative learning tools used by university students. They specifically examined

blogs, wikis, social networking communities, online video sharing, online games, and an

immersive virtual environment. Huang et al. posited that the usefulness of the

collaboration technology in learning a task and completing a task more efficiently has a

positive effect on the intention to use collaboration technology. Huang et al. expanded the

applicability of the TAM to Internet-based collaboration technologies used by software

developers to collaborate with one another, share knowledge, and learn from each other.

Cheung and Vogel (2013) applied constructs of the TAM to investigate the use of the

Google applications suite of tools as a means of collaboration in project-based

environments. The Google tools included email, chat, document sharing, video

conferencing, and other collaboration tools.

23

Cheung and Vogel (2013) hypothesized that the perceived usefulness and ease of

use of collaboration tools positively influence the attitudes towards and intent to use

project-based collaboration tools. Project-based collaboration using a range of technology

and tools is an important characteristic of software development projects (Cheung &

Vogel, 2013). Polancic et al. (2015) applied the TAM2 to investigate the individual and

collaborative work productivity using cloud-based modeling tools in software

development. They found that job relevance, perceived usefulness, output quality, and

image were deciding factors determining which modeling tools software developers

choose. Their study is significant in that it established a relationship between

collaboration tools and software development.

Usage of TAM in software development. Researchers studying software

development processes, methods, and practices have used the TAM and TAM2 to gain

critical knowledge. Riemenschneider et al. (2002) applied TAM2 to gain a better

understanding of the determinants of software developers’ intention to use an application

development methodology. Riemenschneider et al. established that perceived usefulness,

subjective norm, and voluntariness were substantial determinants in software developers’

intention to use an application development methodology. The significance of this study

is applying TAM2 to the acceptance of software development methodologies and not just

technology.

Martinez et al. (2013) also extended the use of the TAM to explore whether

software development methodologies chosen by software developers were dependent on

the type of application developed. Martinez et al. hypothesized that software developers

24

choose the software development methodology they perceived as most useful and easiest

to use regardless of the type of application they are developing. Qiu, Wang and Yang

(2015) contend that the perceived usefulness and perceived ease of use of a secure

software development methodology plays a significant role in the spreading and digestion

of innovation among team members. A significant aspect of these studies is expanding

the use of TAM to include software development methodologies, which plays a

significant role in the accumulation of technical debt and can be a determining factor in

the type of collaboration a software development project uses.

Vijayasarathy and Turk (2012) applied TAM and TAM2 to gain a better

understanding of factors that influence software developers’ adoption of agile processes

and methods. Vijayasarathy and Turk theorized that perceived usefulness and subjective

norm play a significant role in influencing software developers’ adoption of agile

processes and methods. This study extends the use of the TAM beyond software

development methodologies to include software development processes as well.

Overhage and Schlauderer (2012) applied TAM constructs to investigate the long-term

acceptance of agile methodologies by software developers. Overhage and Schlauderer

found the perceived usefulness of the agile scrum process by software developers and the

relevance to their job were driving factors in the long-term acceptance of agile

methodologies by software developers. These two studies highlight the importance of

TAM to predict the initial adoption and long-term acceptance of agile processes and

methods, which go beyond IT teams and can encompass entire organizations.

25

Wallace and Sheetz (2014) extended TAM to study the perceived usefulness of

software measures in project management and software process improvement. Wallace

and Sheetz posited that software developers are more likely to adopt software measures

perceived as useful and easy to use in their software development practices. Nel et al.

(2016) applied TAM to gain a better understanding of the use of quality appraisal

techniques and process measures to improve software development practices. Nel et al.

contend usefulness, ease of use, result demonstrability, subjective norm and career

consequences are factors that influence the usage of quality appraisal techniques to

improve software development practices. The importance of these studies is applying the

TAM to software and quality measures in software development.

Researchers are applying the constructs of TAM to study technical debt in

software development organizations. Holvitie, Leppanen and Hyrynsalmi (2014)

explored the perceived usefulness of technical debt knowledge on agile software

development processes and practices. The study found the perceived usefulness of certain

collaboration strategies has a positive effect on a project’s technical debt. Eliasson,

Martini, Kaufmann, and Odeh (2015) investigated the perceived usefulness of metrics

chosen to identify and measure architectural technical debt on the ability to communicate

and share technical debt knowledge with others. Eliasson et al. found the perceived

usefulness of technical debt metrics influences the success of technical debt collaboration

with others. Li, Liang, and Avgeriou (2015) explored the perceived usefulness and

perceived ease of use of software development approaches to identify technical debt.

26

They found that both perceived usefulness and ease of use influence software developers’

intention to use a specific approach to identify technical debt.

Usage of TAM in technical debt. Several studies on technical debt have

explored some of the constructs of the TAM. Li, Liang, and Avgeriou (2015) explored

the perceived usefulness and perceived ease of use of approaches for identifying

architectural technical debt. Eliasson et al. (2015) found the perceived usefulness of the

metrics chosen to identify and measure technical debt may affect the ability to understand

and communicate the debt to others. The TAM constructs perceived usefulness and

perceived ease of use have implications for practice by aiding in the determination of

which identification, measurement, and management approaches an organization should

implement.

Technical Debt

Fagan (1976) was the first researcher to propose that program design and coding

errors eventually require corrections at some point in time. Fagan theorized that these

corrections are costlier when performed later in the software development process. Errors

that go undetected during the software development process or those software developers

ignore will incur a future and costlier responsibility to correct. Ward Cunningham (1992)

first published the concept of technical debt in a report at OOPSLA’92 where he

proposed the concept of technical debt as shipping software with immature architecture

and “not quite right” code incurring future development costs. Cunningham compared

technical debt to financial debt where a tradeoff to save time or money upfront eventually

requires repayment of the debt with interest. Yli-Huumo, Maglyas, and Smolander (2016)

27

contend that technical debt often arises from the conflict between software engineering

best practices and business decisions. Poor software engineering practices may incur

undetected debt while business decisions may incur technical debt that developers ignore.

Ampatzoglou et al. (2015) defined technical debt as the increase in costs

associated with maintaining or enhancing a system resulting from convenient shortcuts

taken during the development of the system that ignores industry best practices. Holvitie

and Leppanen (2015) suggested a software project might incur technical debt by not

following best practices in regards to process, testing, architecture, implementation, and

documentation. Tom et al. (2013) posited that technical debt is the consequence of poor

software development practices and accumulates when software engineers do not follow

industry best practices. A software development project accumulates technical debt when

the team does not follow a software methodology or does not adhere to the principles of

object-oriented design and programming.

In contrast, Congyingzi and Yan (2016) more broadly defined technical debt as

decisions made today to reach short-term goals at the expense of creating future work. Li,

Avgeriou, and Liang (2015) suggested that technical debt may occur outside of software

development and is the abandonment of recognized best practices in the areas of

organizational management, project management or engineering that negatively affect

time, resources or cost. Technical debt may originate from any person or area in an

organization but culminates with software development organizations repaying the debt.

Tom et al. (2013) found code decay, deteriorating architecture, insufficient

documentation, inadequate testing, and missing requirements as contributing factors to

28

technical debt. The decision of agile software development teams to focus on being more

responsive to customer needs and delivering software as quickly as possible often

outweighs the use of best practices thus creating technical debt (Martini, Bosch, &

Chaudron, 2015). Factors affecting the accumulation of technical debt may exist outside

of the software development environment.

The most recent definition of technical debt advanced by Foganholi et al. (2015)

states that technical debt refers to the long-term costs resulting from the postponement of

code optimizations, defect corrections, documentation or any other best practice during

software development to meet time or financial constraints. Foganholi et al. further

contend that postponing any technical activity during software development for any

reason results in the accumulation of technical debt. A decision to postpone a technical

activity and incur technical debt may originate from any stakeholder on a project or in the

organization. A decision suggests an intentional act such as deciding to forego best

practices or deciding to use an imperfect design to meet a deadline.

Technical debt in software development. Curtis, Sappidi, and Szynkarski

(2012) found that technical debt has adverse effects on software quality by decreasing the

reusability, flexibility, understandability, effectiveness, functionality or the extendibility

of the software. Femmer, Fernandez, Wagner, and Eder (2016) found ambiguities and

incomplete software requirements may create time delays, cost overruns and negatively

affect software quality in software development projects leading to technical debt.

Ramasubbu and Kemerer (2015) found technical debt might cause unpredictable ripple

effects and propagate errors within an enterprise software system due to the myriad of

29

interconnections and interdependencies between various modules making it difficult to

assess the impact of technical debt on system reliability and estimate the time and effort

required to make software changes. Ramasubbu, Kemerer, and Woodard (2015) of

enterprise systems at 48 Fortune 500 companies found that technical debt increases the

chance of system failures by up to 62% and causes a three-fold increase in the error

backlog. Curtis et al. (2012) estimated that every line of code in a software application

has $3.61 of technical debt. Based on these researchers, technical debt is present in many

organizations resulting in severe consequences to software quality thus increasing the

volatility of systems and costs associated with maintaining those systems.

Ramasubbu and Kemerer (2014) purported that incurring technical debt does

improve customer satisfaction in the short-term by speeding up delivery times and

quickly adding new functionality. In contrast, Ramasubbu, Kemerer, and Woodard

(2015) found technical debt decreases long-term customer satisfaction by 50% and

software teams delivering software later by avoiding technical debt had 13 times fewer

unresolved errors and seven times lower costs for bug fixing allowing them to deliver

higher quality software with lower maintenance costs. Avgeriou, Kruchten, Nord,

Ozkaya, and Seaman (2016) contend technical debt affects the longevity of information

systems and their ability to evolve with changing conditions. Technical debt may have

some short-term advantages, but it has significant long-term disadvantages in the areas of

cost, quality, information system life expectancy and customer satisfaction.

Li, Avgeriou, and Liang (2015) postulated that technical debt could originate

from the requirements, design, code, test, build, documentation, implementation or

30

maintenance phases of software development projects and it may originate from any

stakeholder on a project. Many of the software development phases outlined by Li,

Avgeriou, and Liang often involve team member collaboration and knowledge sharing. In

contrast, Avgeriou et al. (2016) contend technical debt pervasively affects all aspects of

software development including the management of the software development

organization and team member collaboration. This study implies collaboration strategies

that software managers implement may affect technical debt. Curtis et al. (2012) found

undocumented methods was the top coding violation contributing to technical debt.

Documenting code is one method team members use to collaborate and share knowledge

in many of these software development phases.

Tom et al. (2013) categorized various types of technical debt including code debt,

design debt, and architectural debt. Motherudin and Moksen (2015) posited that failure to

follow software development best practices leads to increased technical debt. Zazworka

et al. (2014) identified code debt, design debt, and architectural debt resulting from

failure to follow object-oriented best practices. This is important as software development

best practices that may increase technical debt if not followed correctly often include

collaboration among team members and the use of collaboration tools by team members.

Alves et al. (2016) define code debt as source code problems related to bad

coding practices that negatively affecting code legibility making maintenance more

difficult. Krishna and Basu (2015) found inadequate coding standards, compromising

software development processes, lack of code reviews and unit tests may result in the

accumulation of code debt. Curtis et al. (2012) found poorly optimized algorithms,

31

unstructured code, duplicated code, inadequate comments, overly complex code, and

other coding violations as contributing factors to code debt.

Tom et al. (2013) define design debt as software design with an inadequate focus

on maintainability and adaptability, or a piecemeal design lacking sufficient refactoring.

They contend architectural debt results from poor upfront solutions or solutions that

become inadequate over time. MacCormack and Sturtevant (2016) found that deficient

software architecture creates additional software maintenance efforts in the future

incurring extra maintenance costs. Martini et al. (2015) found a lack of software

developer knowledge due to inexperience, lack of domain knowledge, ignorance and

carelessness could accumulate architectural technical debt. Lack of collaboration and

knowledge sharing among software developers might lead to the accumulation of

technical debt. Tang and Lau (2014) described a relationship that exists between design

and architectural decisions where changes in one might affect the other. This indicates

that design debt may contribute to architectural debt.

Tom et al. (2013) found that poor communication and collaboration processes

make it easier for technical debt to accumulate without detection and this lack of

awareness makes it easier for individuals to make additional decisions incurring more

debt. Li, Avgeriou, and Liang (2015) found communication an important factor in

making architectural debt visible to other stakeholders fostering discussions on managing

the debt. Li, Avgeriou, and Liang further found certain communication approaches such

as dashboards and lists of the debt allowed all stakeholders to have knowledge of the debt

in a project. Codabux and Williams (2013) found communication and collaboration

32

among software teams promote a culture of knowledge sharing between the teams that

may help reduce architectural debt. These researchers support that poor collaboration

among software development teams may exacerbate factors influencing the accumulation

of technical debt whereas healthier collaboration may reduce these effects.

Technical debt management. Guo, Spinola, and Seaman (2014) posited that

technical debt management is a repetitive process of identifying a list of items containing

technical debt, measuring the amount of technical debt, deciding which items to repay

and determining when to repay them. In contrast, Li, Avgeriou, and Liang (2015) argue

that the purpose of measuring technical debt is to quantify both the cost and benefit of

repaying the debt. They further contend that management of technical debt should

include prioritization and prevention activities. Avgeriou et al. (2016) postulate that

economic investment theories are good techniques for prioritizing technical debt. A

review of 100 research studies by Alves et al. (2016) found the cost-benefit analysis,

portfolio approach, and options as the three most common strategies for managing

technical debt. The purpose of identifying and measuring technical debt is to facilitate the

decision-making process to prioritize repayment of the debt and future prevention

strategies. The cost-benefit analysis is the most common strategy for managing technical

debt repaying the items with the highest payoff first (Avgeriou et al., 2016).

The identification of technical debt is the first and most important process in

managing technical debt (Avgeriou et al., 2016). Li, Avgeriou, and Liang (2015) found

the most common artifact in identifying technical debt is source code and most common

approach is code analysis. A review of 100 studies by Alves et al. (2016) found the most

33

frequent technical debt identification techniques were code smells, automatic static

analysis issues, modularity violations and structural issues. Zazworka et al. (2014)

theorized that these four approaches have very little overlap thus characterizing different

problems with source code. Li, Avgeriou, and Liang (2015) found the most common

classifications of technical debt were coding violations, duplicate code, code smells,

complex code, structural issues, and low-quality code.

Curtis et al. (2012) advanced a technique for measuring technical debt by

analyzing the number of should-fix violations, the hours required to fix them and the

labor cost. In contrast, Izurieta and Bieman (2013) measured technical debt by studying

the aging of design patterns and the extent to which designs decay, rot, and accumulate

grime. Guo et al. (2014) contend that estimating the cost of overhauling software to

realize the ideal level of software quality was one approach to quantifying technical debt.

Measuring technical debt is dependent on the identification process and is a prerequisite

for the decision-making process of prioritizing, repaying, and preventing debt.

Collaboration in Software Development

Holvitie et al. (2014) found the perceived usefulness of agile software

development practices have a positive effect on reducing and preventing technical debt.

They also found the perceived usefulness of collaborative processes such pair

programming, peer reviews, and retrospectives as positive or very positive. Tom et al.

(2013) contend that poor collaboration decreases the visibility of technical debt making it

easier to accumulate and easier for developers to take shortcuts increasing the technical

debt. Guo et al. (2014) posited that collaboration in code reviews is a method developers

34

use to identify violations of best practices incurring technical debt. These researchers

have identified that most of the processes regarding technical debt identification and

management may benefit from knowledge sharing, communication, and collaboration.

Magdaleno, de Oliveira Barros, Werner, de Araujo, and Batista (2015) contend

collaboration reduces the time required to solve problems, improves problem-solving,

generates creative alternatives, enhances decision-making, fosters learning, encourages

innovation, and improves job satisfaction. Inayat and Salim (2015) found software

engineers use collaboration to facilitate defect discussions, coding issues, code reviews,

refactoring, software quality improvements, software maintenance, software design,

requirements analysis, and planning activities. Software development is a complex

process requiring cooperation, communication, and collaboration with software

engineers, architects, designers, database administrators, and other project stakeholders.

Ferzund, Yasrab, and Razzaq (2014) contend that software engineers spend 70% of their

time working or collaborating with others. Ferzund et al. argued that software developers

could spend more than 70% of their time collaborating with others in large projects.

Giuffrida and Dittrich (2015) contend collaboration is a basic component of software

development where teams use version control, bug tracking, email, web pages, instant

chat, code reviews, and documentation to coordinate activities and distribute knowledge.

Software developers devote a lot of time to collaboration using a wide range of tools and

technology to facilitate their collaboration efforts.

Magdaleno et al. (2015) define collaboration as people with complementary skills

coming together to solve complex problems which none of them could do individually.

35

Inayat and Salim (2015) juxtaposed collaboration is the exchanging information among

team members and sharing awareness knowledge of others. There are two important

concepts in the definition provided by Inayat and Salim. The first is the lack of a

predefined purpose for collaboration. Unlike Magdaleno et al. who contend the purpose

of collaboration is to solve complex problems, Inayat and Salim contend collaboration

may have many purposes. The second important concept is that collaboration involves

the sharing of awareness knowledge. Molina, Gallardo, Redondo, and Bravo (2015)

define awareness as understanding who is working with you, what they are doing and

how your own actions interact with theirs. Molina et al. contend awareness is useful for

coordinating actions with others, discussing tasks, anticipating the actions of others and

finding others to help. Magdaleno et al. contend collaboration consists of communication,

coordination, group memory, and awareness. The collaboration consists of exchanging

information, organizing work, operating in collective environments, and being cognizant

of team member activities. I define collaboration in terms of software development as

software engineers sharing ideas, concepts, knowledge, and awareness to improve

software quality.

Benefits of collaboration. Ferzund et al. (2014) found that better collaboration

and communication increases the interaction among software developers and

significantly improves software quality. Ferzund et al. found communication and

collaboration enhance software development processes. In contrast, Caglayan and Bener

(2016) found that developer code changes with many direct collaborators introduce a

higher number of defects in the code. This may indicate that developers with many

36

collaborators might be making changes to areas of the code others are also changing

increasing the chance of conflicting changes. Caglayan and Bener indicate the benefits

from the number of collaborators may peak at some point, after which more collaborators

might become a burden to the software developers.

Mangalaraj, Nerur, Mahapatra, and Price (2014) found collaborating pairs have

higher job satisfaction and deliver better quality software designs than many individual

developers. Ramasubbu, Kemerer, and Hong (2012) found the perceived usefulness of

collaborative programming strategies on maintenance tasks was higher than that of

independent programming strategies. Di Bella et al. (2015) observed collaborating pairs

have lower defect rates and introduce fewer new defects than individuals performing

similar tasks. Di Bella et al. contend the amount of collaboration among pairs

significantly influences defects rates by enhancing developers’ knowledge over the code.

Mangalaraj et al. posited that pairs often require more time to complete tasks than

individuals assigned similar tasks. Although software developers collaborating in pairs

require more initial time to complete tasks, they might save time in the end by improving

software quality and introducing fewer defects.

Milovanovic, Minovic, Stavljanin, Savkovic, and Starcevic (2012) contend

software developers use collaboration extensively in the analysis, design, debugging, and

support phases of software development to increase task performance. Milovanovic et al.

(2012) found that collaboration and knowledge sharing improves development processes

and increases the problem-solving ability of software development organizations.

Licorish and MacDonell (2014) posited that software developers’ level of knowledge

37

sharing is positively correlating to their task performance. Ozer and Vogel (2015) posited

that software development organizations perform better when adopting formal, rather

than informal, processes for sharing knowledge. Software development organizations that

establish formal collaboration and knowledge sharing practices will improve

development processes and performance in all phases of software development.

Xiang, Lu, and Gupta (2013) hypothesized that knowledge sharing is positively

correlated with software development team performance and increasing the shared mental

model of teams leads to better team performance. Tang (2015) contends timely, accurate

information exchange improves the performance of software development teams by

cultivating a shared understanding of each other’s areas of knowledge. Ferzund et al.

(2014) found greater team member interaction from collaboration activities improves

software development performance. Software developers who better understand their

teammates’ activities and capabilities are better able to exchange help will other

developers increasing the performance of the team.

Ramasubbu et al. (2012) purported that teams employing collaborative

programming strategies were more productive than teams using independent

programming strategies. Ramasubbu et al. found the perceived ease of use of

collaborative programming was 28% higher than that of independent programming.

Licorish and MacDonell (2014) posited that collaboration and knowledge sharing among

software developers benefits weaker team members. Mangalaraj et al. (2014) found

software development organizations could improve the performance of weaker software

developers by pairing them with other developers to collaborate and share knowledge on

38

tasks. Ozer and Vogel (2015) found software developer performance increased when they

received knowledge from other software developers in the organization. Software

development organizations utilize collaboration and knowledge sharing to improve the

knowledge, skills, and performance of inexperienced team members.

Ferzund et al. (2014) contend the availability of better forms of collaboration

improves the bug fixing processes, which enhance software quality. Ferzund et al. found

web-based communication and collaboration processes leads to higher rates of bug

fixing. Di Bella et al. (2015) found developers using pair programming during defect

correction activities helps reduce the introduction of new defects because of the defect

correction process. Ramasubbu et al. (2012) found software development organizations

could reduce maintenance efforts by up to 70% by assigning tasks that are more complex

to collaborative programming teams. There are many forms of collaboration software

organization may incorporate into their defect correction practices. Certain forms of

collaboration are better suited for completing complex tasks.

Collaboration Strategies

Guo, Spinola, and Seaman (2014) posited that a code review is one method

developers use to identify violations of best practices incurring technical debt. McIntosh,

Kamei, et al. (2015) define a code review as the collaboration between the authors of

programming code and those reviewing the code. Foganholi et al. (2015) contend code

reviews facilitate identification of violations of software development best practices.

Software developers use code reviews to collaborate with one another to identify

violations of best practices to prevent the accumulation of technical debt.

39

Fagan (1976) introduced the concept of design and code inspections based on

formal meetings with heavyweight processes. Linhares, Borges, and Antunes (2012)

purported software review meetings follow formal procedures involving groups of

experts with designated roles. Linhares et al. postulated the purpose of these meetings is

to discover discrepancies in software specifications, standards, and best practices to

improve software quality. In contrast, McIntosh, Kamei et al. (2015) found the modern

code review process uses a variety of web 2.0 technologies focusing on collaborative

problem solving to improve software quality. The modern code review is a lightweight

design and code inspection process with the same purpose as the formal meetings to

improve software quality but in a shorter amount of time. McIntosh, Kamei et al. contend

the modern code review process is more collaborative in nature focusing on code

coverage, developer participation, and developer expertise.

Baysal, Kononenko, Holmes, and Godfrey (2015) found the most influential

factor in the code review process is the level of participation by software developers. The

more active developers are in the code review process the shorter the review time and the

more likely others will accept their contributions. McIntosh, Kamei et al. (2015) found

that lack of participation in code reviews has a negative impact on software quality and

insufficient collaboration during code reviews correlates to higher defect rates in the

code. Linhares et al. (2012) contend Agile and open source software development

approaches emphasize collaboration and participation in software review meetings as a

means of improving software development performance. Carver, Caglayan, Habayeb,

Penzenstadler, and Yamashita (2015) found the number of collaborators during a code

40

review positively correlates to software quality. McIntosh, Kamei, Adams, and Hassan

(2014) found the lower the number of reviewers and the lower proportion of changes that

have been reviewed the more likelihood of an increase in postrelease defects. The number

of participants, the amount of participation, and level of collaboration during code review

processes have a direct impact on software quality and the performance of software

development teams.

Linhares et al. (2012) contend software review meetings may involve developers,

designers, and testers participating in quality assurance activities at various times during

the development life cycle to verify the software has met the customer’s requirements.

McIntosh, Kamei et al. (2015) found that participation in code reviews has a larger

impact on software quality than developer expertise. Caglayan and Bener (2016) contend

developers with higher experience levels do not necessarily have lower defect rates.

Caglayan and Bener found new developers tend to have their code reviewed more

extensively producing higher quality software with lower defect rates than code from

developers with greater experience with fewer code reviews. The number of code reviews

and the participation rates by developers has a larger impact on software quality and

future maintenance costs than the experience levels of the developers creating the code.

Carver et al. (2015) found more than 50% of code review comments focus on

improving future maintainability and reducing future maintenance costs rather than

identifying functional problems. McIntosh, Kamei et al. (2015) theorized that up to 75%

of the issues resolved during code reviews point to significant issues that may result in

defects later. Resolving these non-functional issues improves future maintainability of the

41

code. In contrast, Baysal et al. (2015) postulate that software development teams use code

reviews to evaluate and improve the quality of code changes before committing the

changes to the project repository. Code reviews are versatile processes to evaluate,

identify, and improve code changes to enhance software quality, improve maintainability,

and reduce maintenance costs.

Bacchelli and Bird (2013) theorized code reviews help teams share knowledge,

improve awareness, create alternative solutions, foster transparency, and promotes shared

code ownership among team members. McIntosh, Kamei et al. (2015) contend an

important motivation for modern code reviews is the sharing of knowledge among

software team members. Tang and Lau (2014) posited software architects use code

reviews to share knowledge relating to design decisions and reasoning enabling reviewers

to identify design issues and reflect on the acceptability of design solutions. Software

solutions often lack sufficient documentation, communication, and design reasoning.

Code and design reviews can facilitate creative solutions for solving design and software

issues.

Pair programming. Jayalakshmi, Kavitha, and Niroza (2016) define pair

programming as a software development technique where two programmers work

together at the same computer to complete a single task. Di Bella et al. (2015) found that

software developers working in pairs decrease the introduction of new defects and even

low levels of pair programming during defect correction could significantly lower the

overall defect density. Gupta, Bhattacharya, and Singha (2013) contend pair

programming is a best practice of agile software development with extensive

42

collaboration between software developers who often switch roles to review one

another’s work. This type of pair programming is a formal process requiring one

developer to write code while the other checks for errors, thinks of alternative solutions,

and shares knowledge.

In contrast, Coman, Robillard, Sillitti, and Succi (2014) contend that pairs of

software developers work informally to complete a task as needed. Coman et al. found

that software developers spend 40% of their time employing informal pair programming

as a means of overcoming unexpected technical difficulties completing a task. Coman et

al. contend most software developer interactions are backup behaviors where team

members come together to help each other as needed to complete tasks. These backup

behaviors may include sharing knowledge, brainstorming, mentoring, and helping team

members complete a task. Informal pair programming essentially refers to ad-hoc backup

behaviors where developers collaborate to complete a specific task, including formal pair

programming. Informal pair programming is a voluntary activity.

Jayalakshmi et al. (2016) posited that pair programming promotes quality

programming skills, responsibility, mentoring, teamwork, and increased enjoyment

among developers of varying experience levels. Gupta, Bhattacharya, and Singha (2013)

contend software developers collaborate almost every minute during pair programming

sessions covering each other’s weaknesses. Breed, Mentz, and van der Westhuizen

(2014) found improvements in the areas of planning, information management,

monitoring and evaluation for individuals implementing pair programming. Plonka,

Sharp, van der Linden, and Dittrich (2015) found programming pairs use strategies such

43

as indirect hints, pointing out problems, gradually adding information, giving clear

instructions, providing explanations, and verbalization to exchange knowledge. These

strategies are forms of collaboration software developers adapt to their needs and adjust

their engagement level depending on the type and amount of knowledge they exchange

on a given task.

Jayalakshmi et al. (2016) found developers using pair programming produce

fewer defects, higher quality code and increase their knowledge of the system.

Mangalaraj et al. (2014) contend developers working in pairs create higher quality

designs and experience higher task satisfaction than many developers working

independently. Di Bella et al. (2015) juxtaposed that while even low levels of pair

programming may significantly lower the defect density of code, the benefits of pair

programming on defect density peaks when developers spend over 30% of their time in

pair programming. Paired development activities may offset lower skill levels of less

competent team members, build teamwork, and improve software quality, but may incur

higher development costs and reach a point where the costs outweigh the benefits.

Web 2.0 tools and technologies. Evans, Gao, Martin, and Simmonds (2015)

posited that organizations are relying more on web-based tools, and technologies to

communicate and collaborate. Tools such as email, chat, blogs, and wikis allow teams to

create, organize, share, and critique knowledge with one another. Eservel (2014) found

that software development organizations frequently use mailing lists, bug tracking, source

control, and wikis for communication, collaboration, and knowledge creation among

team members. Ferzund et al. (2014) found that software development organizations

44

using web-based tools for collaboration show significant improvements in development

processes and software quality. The amount, variety, and effectiveness of collaboration

tools available to software development teams affect interactions, relationships, and

processes of software development teams leading to better software quality.

Giuffrida and Dittrich (2013) define a wiki as a website allowing users to share

and management knowledge, coordinate activities, and improve awareness among teams

by facilitating communication and collaboration. Menolli, Cunha, Reinehr, and Malucelli

(2015) found that 54% of software development companies use wikis to create, store, and

share knowledge and that wikis are the most widely used tool for this purpose.

Milovanovic et al. (2012) found software developers consider the perceived usefulness of

a wiki as improving software development processes, collaboration efficiency, and

knowledge reusability. Wikis facilitate vital communication, interaction, and

collaboration activities for software development organizations enabling them to improve

their processes, efficiency, and software quality. Menolli et al. found software

development companies perceive wikis as a usefulness and easy to use tool to share

knowledge among software developers.

Esichaikul, Win, Bechter, and Rehman (2013) theorized that wiki collaboration

improves communication, awareness, motivation, and differentiation of work. Cubric

(2013) contends the use of wikis increases the knowledge of software developers and

more importantly improves the quality of cognitive processes. Lavhengwa, van der Walt,

and Lavhengwa (2014) found that wikis and other forms of e-collaboration improve

knowledge development, foster innovation, and increases interaction with others.

45

Kasemvilas and Olfman (2013) developed a set of wiki extensions providing better

support for synchronous and asynchronous communication among users, simplifying

knowledge creation and improving the awareness of team member activities. Kasemvilas

and Olfman found the extensions significantly increase the perceived usefulness and

perceived ease of use of the wikis to improve awareness and collaboration of a team.

Foganholi et al. (2015) found sharing of technical debt information was a critical aspect

of successfully managing the reduction of technical debt.

Transition and Summary

This section contained an introduction to the problem of technical debt and

collaboration in software development teams. The purpose of this study was to explore

collaboration strategies software development leaders use to reduce technical debt. A

qualitative case study approach was the most appropriate to answer the overarching

research question to determine the collaboration strategies software development leaders

use to minimize technical debt. The TAM2 provided the conceptual framework for

viewing the perceived usefulness, perceived ease of use, and social influences of

collaboration for reducing technical debt. The literature focused on the areas of technical

debt in software development, software development processes, collaboration in software

development and the TAM2.

Section 2 provides furthers details and justifications on the research methodology

selected for this study. This section expands on the role of the researcher, sets the

participant criteria, compares the research methodologies, and explores the population

46

sampling, ethical research, data collection, analysis, reliability, and validity. Section 3

will contain the results of the study based on an analysis of the data collected.

47

Section 2: The Project

This section provides additional details on the research method, design, and

processes involved in this study. I defines the role of the researcher, criteria for

participant selection, population sampling, and ethical research. I also explain the data

collection, organization, and analysis processes and describe the issues of reliability and

validity in the context of the study.

Purpose Statement

The purpose of this qualitative case study was to explore collaboration strategies

software development leaders use to reduce the amount of technical debt created by

software developers. The population for this study included senior software development

leaders from a large health care provider in the state of California. The population was

experienced with the phenomenon of technical debt and were involved in software

development collaboration. These senior software development leaders participated in

semistructured interviews to identify how collaboration of software development teams

affects technical debt. The implications for positive social change include the potential to

increase the reliability of communal software systems and reduce the economic burden of

software on society by improving the collaboration among software development

professionals.

Role of the Researcher

A qualitative researcher serves as the primary instrument of data collection and

analysis in qualitative research (Lincoln & Guba, 1985; Sanjari, Bahramnezhad, Fomani,

Shoghi, & Cheraghi, 2014). My role in this qualitative study was to collect, organize,

48

interpret, and analyze data in an unbiased manner. The role of the researcher includes

investigating varying points of view and perspectives during the data collection process

(Kavoura & Bitsani, 2014). A researcher develops good interview questions, listens to the

participants’ responses, does not have any preconceived notions or biases, understands

the study issues, and is flexible during the interview process (Roulston & Shelton, 2015).

Transparent and methodical research helps preserve the integrity of a study, avoid

personal biases, and avert distortions (Cronin, 2014). I have 18 years of professional

experience in the field of software development working as a software engineer and

software development leader. My personal experience with the study topic was my

rationale for conducting this study. I did not have any personal or professional

relationships with the participants.

I reviewed the Belmont Report (U.S. Department of Health & Human Services,

1979) regarding the ethical principles and guidelines for protecting participants in

research studies. The Belmont Report identified respect for persons, beneficence,

nonmaleficence, and justice as the key principles essential to ethical research (Hammer,

2016). A summary of the principles outlined in the Belmont Report helps participants

avoid coercion and improper influences and the participants understand any risks

involved in the study (Largent, Grady, Miller, & Wertheimer, 2013). I completed the

Protecting Human Research Participants training offered by the National Institutes of

Health (NIH) Office of Extramural Research (Certification Number: 1653141, Appendix

A). I followed the principles set forth in the Belmont Report.

49

The possibility of bias exists in all research (Roulston & Shelton, 2015). The

manipulation or distortion of data in qualitative research threatens the credibility of a

study and may be unintentional or hidden from the researcher (Roulston & Shelton,

2015). Qualitative research requires objectivity to understand and interpret data (Reybold,

Lammert, & Stribling, 2013). I approached this study as an independent observer

gathering data and not inserting my personal beliefs into the study. I avoided bias by

being aware of my own values, predispositions, and subjectivity in this study.

Researchers avoid bias by asking open-ended, nonleading questions to avoid

influencing interview participants (Onwuegbuzie & Byers, 2014). I asked open-ended,

nonleading questions during the interview process. I did not express my experiences or

perceptions of the study topic to avoid influencing the participants and to avoid bias in

the data collected. Recording the researcher’s thoughts before and after interviews allows

the researcher to identify and reflect on any potential biases that may have influenced a

participant’s response and skewed the data (Hoare & Hoe, 2013). I used a journaling

approach to record my thoughts before and after each interview to prevent bias in my

data.

The purpose of my interviews was to explore the participants’ knowledge,

experience, and perspectives on my research topic. An interview protocol provides a

procedural guide for conducting interviews that includes preinterview scripts,

postinterview scripts, interview questions, and interview reminders (Jacob & Furgerson,

2012). Researchers can mitigate potential ethical challenges between researchers and

participants in qualitative studies by following research protocols (Sanjari et al., 2014).

50

An interview protocol helps protect participants in a study by ensuring participants’

personal details are kept private (Qu & Dumay, 2011). I used an interview protocol (see

Appendix B) that consisted of having participants sign a statement of informed consent,

explaining confidentiality to participants, building rapport with participants, providing

reminders to myself during the interviews, and explaining expectations after the

interviews. Interview protocols help researchers develop broad, open-ended interview

questions and help develop prompts to respond to any surprises to keep the interview on

track and allow for any unexpected data (Jacob & Furgerson, 2012).

Participants

Defining participant criteria and selecting the most appropriate participants are

fundamental aspects of a qualitative research study (DeFeo, 2013). The population and

phenomenon of a research question are main factors in developing the inclusion criteria

for participants in a study (Stern, Jordan, & McArthur, 2014). I clearly defined eligibility

criteria aligned with my research questions and the phenomenon of my study. I only

selected participants from a population that met my criteria to ensure the participants

selected were appropriate for my study.

This usefulness of participants to a study depends on their understanding of the

research phenomenon (Reybold et al., 2013). The objective of this study was to explore

collaboration strategies used by software development leaders to reduce technical debt. I

excluded participants without software development experience, not actively using

collaboration, and lacking knowledge of technical debt. These participants will constrain

any potential conclusion of the study. Potential harm to participants may result from

51

deselecting participants from a study (DeFeo, 2013). I avoided participant deselection

harm by ensuring that I only selected participants with knowledge of my research

phenomenon.

Determining the eligibility criteria of qualitative studies is a subjective activity

requiring researchers to interpret and choose which participants are necessary for the

study (Reybold et al., 2013). The participants’ job title within their organization indicated

they were a leader or held a senior level position on a software development team within

the organization. The participants had at least 10 years of software development

experience. The participants had experience with the phenomenon of technical debt and

actively participating in collaboration within their software development team. The

participants were actively using one or more of the following collaboration activities:

design reviews, code reviews, project reviews, project retrospectives, pair programming,

mentoring, team meetings, wikis or knowledge sharing. The participants had experience

with using collaboration strategies to reduce technical debt. The participants were

members of one of the two software development teams within the single line of

business.

Strategies for gaining access to participants may involve sending potential

participants a brief introduction, potential study benefits, study confidentiality, and

convenience of the interview process (Hoyland, Hollund, & Olsen, 2015). Peticca-Harris,

deGama, and Elias (2016) developed a dynamic, nonlinear process for gaining access to

participants that includes four parts: study design and planning, identifying informants,

contacting informants, and interacting with informants during data collection. My

52

strategy for gaining access to participants included planning, identifying participants,

contacting participants, and interacting with participants. An important step in gaining

access is to obtain approval from key stakeholders during the study design and planning

stage (Peticca-Harris et al., 2016). I ensured I had approval from my committee members

and permission from the Walden University Institutional Review Board (IRB) prior to

conducting my study. Walden University’s IRB approval number for this study is 03-24-

17-0489027.

Gatekeepers are individuals who can facilitate access to participants by endorsing

a researcher’s work (Crowhurst, 2013). Gatekeepers recognize the value of a study,

provide suggestions on gaining access, and have influence within an organization

(Hoyland et al., 2015). I established trust and rapport with one primary gatekeeper and

two secondary gatekeepers at the organization that participated in my study. All three

gatekeepers had access to the participants. Gatekeepers can facilitate contact with

participants by using the trust and rapport they have with participants while emphasizing

the benefits of the study (Peticca-Harris et al., 2016). I enlisted the help of gatekeepers to

identify potential study participants within the organization who met my participant

criteria. I emailed information about the study to all participants identified by the

gatekeepers prior to involving them in the study.

Interacting with participants requires obtaining informed consent, arranging

meeting times and locations, interviewing participants, setting boundaries, avoiding

surprises, and maintaining flexibility to accommodate participants (Peticca-Harris et al.,

2016). Ethical considerations, trust, disclosure, and impression management are

53

important factors for gaining access to participants (Greene, 2014). Informed consent of

participants is a vital component to upholding the ethical standards and quality of a

research study (Sanjari et al., 2014). I sent participants a consent form via email

informing them of the study background, procedures, voluntary nature of the study,

benefits, risks, and privacy of the study. Participants acknowledged their willingness to

participate in the study by replying to my email with the words “I consent.” I scheduled

1-hour interviews with participants at a time and place convenient to them.

Maintaining ethical researcher-participant relationships requires acknowledging

bias, maintaining rigor, establishing rapport, respecting autonomy, avoiding exploitation,

and maintaining confidentiality (Hewitt, 2007). An examination of the personal qualities,

values, and beliefs of researchers and the acknowledgment that the context of the

researcher and participants may influence the findings may help avoid potential bias from

researcher-participant relationships (Hewitt, 2007). Building rapport with participants

encourages information sharing and requires researchers to ensure confidentiality,

establish trust, and demonstrate respect for participants (McDermid, Peters, Jackson, &

Daly, 2014). Autonomy is a key principle of the Belmont Report, which requires treating

participants with respect and protecting them with diminished autonomy (Judkins-Cohn,

Kielwasser-Withrow, Owen, & Ward, 2014). Autonomy is a critical component of

researcher-participant relationships requiring the disclosure of information, voluntary

participation, and informed consent of participants (Judkins-Cohn et al., 2014). Avoiding

confusion, exploitation, and potential harm to participants requires a clearly defined

interview process and unambiguous questions (Hewitt, 2007). Promoting confidentiality

54

by protecting the privacy of participants improves the researcher-participant relationship

and facilitates the sharing of information (McDermid et al., 2014).

I reflected on the interview location and environment to ensure it promoted

participant relationships and avoided bias. I welcomed participants and explained the

objectives of my study. I reviewed the confidentiality of the study and steps I was taking

to maintain the participants’ privacy. I ensured participants were given informed consent

and ensured participation was voluntary. I invited them to ask questions about the study

or my background prior to starting the interview process to avoid any confusion or

exploitation.

Research Method and Design

Qualitative case study design allows the researcher to explore participants’

perspectives, meanings, and subjective views regarding the research phenomenon

(Yilmaz, 2013). This design enables researchers to gain extensive knowledge of the

phenomenon and understand the real-world issues associated with the phenomenon

(Wynn & Williams, 2012). A qualitative case study allowed me to explore collaboration

strategies software development teams use to minimize the amount of technical debt

these teams create. A qualitative case study improves a researcher’s understanding of the

phenomenon and allows him or her to develop a detailed interpretation (Wynn &

Williams, 2012). I explored technical debt and collaboration to improve my

understanding of these areas allowing me to provide insights for software development

leaders.

55

Method

The three methods of research are qualitative, quantitative, and mixed methods

(Venkatesh, Brown, & Bala, 2013). I selected a qualitative method for this study because

I was trying to capture participants’ perceptions, views, and meanings of collaboration

and technical debt in a real-world setting. Qualitative research is an emergent, inductive,

and interpretive approach to studying phenomena through the experiences and meanings

of others in a natural setting (Yilmaz, 2013). A qualitative researcher explores the

phenomenon as viewed and experienced by participants without any preconceived or

predetermined beliefs imposed by the researcher (Kemparaj & Chavan, 2013). The

perceptions of the participants are one of the most important aspects of a qualitative study

(Ritchie, Lewis, Nicholls, & Ormston, 2013). Qualitative researchers study the

perceptions, experiences, opinions, beliefs, and values of the participants in their natural

setting to generate knowledge and understand their meaning (Ritchie et al., 2013).

Qualitative researchers use inductive reasoning to examine the context, interpretation,

and meaning of participants’ experiences (Yilmaz, 2013).

Qualitative research is often associated with interpretivism, ontology, and

epistemology (Aliyu, Bello, Kasim, & Martin, 2014). Researchers with an interpretivist

paradigm believe that multiple realities exist and they seek to explore, analyze, and

understand these multiple realities (Yilmaz, 2013). The goal of interpretivism is to

understand the subjective meanings of participants (Wynn & Williams, 2012). An

ontological view allows researchers to understand the life experiences of participants and

any shared realities that may exist regarding the phenomenon under study (Aliyu et al.,

56

2014). A subjectivist epistemology approach permits multiple explanations for a

phenomenon by establishing research-participant relationships to understand the

phenomenon (Yilmaz, 2013). I selected a qualitative research method to understand the

subjective views and participants and the multiple interpretations on collaboration

strategies they use to minimize technical debt.

Qualitative researchers often study a small number of participants who can

generate a large amount of information and provide a thorough understanding of the

phenomenon under study (Yilmaz, 2013). Qualitative research often employs participant

observation, in-depth interviews, document analysis, and focus groups as the main

methods of data collection (Kemparaj & Chavan, 2013). The results from qualitative

research are difficult to generalize due to the highly subjective nature of the study and

dependence on the context of the study (Yilmaz, 2013). The researchers are the main

instrument of data collection in qualitative research and must distance themselves from

the phenomenon under study to prevent any biases from influencing the data

(Onwuegbuzie & Byers, 2014). I selected a qualitative research method to study a small

population of software development leaders collecting data from in-depth interviews and

document analysis.

I explored the possibility of using a quantitative or mixed-methods approach for

my research study. I did not choose quantitative methods for my study. Quantitative

research focuses on testing theories, determining relationships between variables and

measuring numbers to study phenomenon (Yilmaz, 2013). The focus of my study was not

testing hypotheses or determining causation so a quantitative study was not appropriate.

57

Quantitative researchers use statistical analysis to prove or disprove hypotheses to

generalize the results to a large population (Barczak, 2015; Hoare & Hoe, 2013). I was

not seeking to analyze statistical data or generalize my research so a quantitative study

was not suitable. Quantitative researchers collect data through measurements and use the

reliability and validity of measures to address validation issues (Venkatesh et al., 2013). I

was not collecting data from measurements or validating measures so a quantitative study

was not appropriate.

A mixed-methods research approach combines quantitative and qualitative

methods in the same research study by including collection, analysis, and interpretation

of both numerical and narrative data (Hayes et al., 2013). Mixed-method researchers

design, build and test theories in addition to completing inductive and deductive analysis

within the same study (Venkatesh et al., 2013). My research focused solely on

participants’ experiences and not generating theories, testing hypotheses, or studying

relationships between variables so a mixed-methods approach was not appropriate. A

mixed-methods research approach must describe the integration of findings from multiple

methodological components (Fetters, Curry, & Creswell, 2013). A mixed-methods

researcher must describe how they managed any inconsistencies or discrepancies between

these methods (Fetters et al., 2013). My research did not involve the quantitative

principles of hypotheses testing, variable relationships or measurements. I was not

integrating multiple research methods so a mixed-methods approach was not appropriate

for my study.

58

Research Design

The major design types for qualitative research are phenomenology, grounded

theory, ethnography, case study, and narrative analysis (Yilmaz, 2013). A case study will

develop a detailed interpretation of a specific case or multiple cases by studying an event,

program or activity (Wynn & Williams, 2012). I chose a case study design to acquire a

thorough understanding of how software development leaders use collaboration activities

to minimize technical debt reducing costs within their organization. A case study design

improves a researcher’s understanding of a phenomenon by performing a comprehensive

examination to investigate and explore a multifaceted phenomenon in a real-world setting

asking how or what type questions (Cronin, 2014; Wynn & Williams, 2012). I chose a

case study design to conduct a thorough inquiry into the complex activity of using

collaboration strategies to minimize technical debt.

Case studies may focus on individuals, groups, activities, relationships,

interactions, specific phenomenon or anything else the researcher considers necessary

(Wynn & Williams, 2012). I chose a case study design to focus on software development

leaders and the relationship between collaboration strategies and technical debt. The

fundamental predisposition of a case study is to understand the context of one or more

decisions, the implementation of those decisions and the results of those decisions

(Cronin, 2014). I chose a case study design to explore decisions made by software

development leaders to use specific collaboration strategies, the implementation of these

strategies and the influence of these strategies on technical debt.

59

A case study is a detailed inquiry into a specific and complex phenomenon within

a real-world context (Yin, 2013). The key tenet of a case study is to explore an event or

phenomenon in depth and in its natural setting (Wynn & Williams, 2012). A case study

researcher attempts to understand the distinctiveness of an individual case in a setting

(Abma & Stake, 2014). I chose a case study design to explore a specific case of software

development leaders using collaboration strategies to minimize technical debt in a real-

world organization within the natural setting of a software development team.

A phenomenological research design studies the human experience from the

perspective of the participants living through the phenomenon (Hanson et al., 2011).

Roberts (2013) notes the purpose of a phenomenological study is to describe the lived

experiences of participants. A phenomenological researcher needs to understand how the

social, cultural, and political contexts in their everyday lives influence participants’

realities (Tuohy, Cooney, Dowling, Murphy, & Sixsmith, 2013). Interpretation by

participants of their experiences are critical to answering my research question, but the

social, cultural, and political aspects of their world are not. While some aspect of a

phenomenological design was appropriate for this study, I did not consider it the most

appropriate design for my study.

Ethnographical research focuses on the links between cultures and peoples

(Astalin, 2013). An ethnographical research design seeks to describe cultural behavior

through participant observation where the researcher is actively involved and is essential

for understanding the culture under study (Cruz & Higginbottom, 2013). An

ethnographical researcher explores participants’ behaviors rather than their perceptions or

60

views (Walker, 2012). I did not choose an ethnographical study because it focuses on

observing cultures and behaviors within a group of people. I did not believe these are

major factors influencing collaboration’s role in technical debt. An ethnographical study

also relies heavily on observations that I believe would not have provided enough

information for a thorough analysis of the data.

A narrative researcher explores the life experiences of participants who recount

their experience with the phenomenon to the researcher (Wolgemuth, 2014). Caine,

Estefan, and Clandinin (2013) noted that a narrative design collects data about how

participants view themselves and their experience with an event. Participants tell their

story as they remember it. A narrative research design would not be appropriate because

it explores the life of an individual (Walker, 2012) and this study focused on

collaboration between multiple individuals. Studying individuals would not have yielded

the appropriate data to answer my research questions. My research focused on

collaboration between participants requiring my understanding their perceptions and not

their stories.

The concept of data saturation involves adding new participants continually into a

study until a researcher finds no new data and there is sufficient data to replicate the

research study (Marshall, Cardon, Poddar, & Fontenot, 2013). A study reaches data

saturation when additional data collection no longer contributes new data to the study

(Lincoln & Guba, 1985). I collected data until no new information is being generated

indicating I had achieved data saturation. I achieved data saturation by using census

sampling to collect data from everyone in the study population.

61

Interviewing participants with significant knowledge and experience with the

phenomenon under study assists a study achieving data saturation (Malterud, Siersma, &

Guassora, 2015). I interviewed participants who have significant knowledge and

experience using collaboration strategies to minimize technical debt in software

development to assist in reaching data saturation. Face-to-face interviews facilitate a

study reaching data saturation by asking multiple participants the same probing questions

to ensure richness and depth of the data collected (Fusch & Ness, 2015). I asked all

participants the same probing questions ensuring the depth and richness of data I

collected to help reach data saturation.

Data triangulation of multiple data sources and the depth of data collected from

multiple data sources is a means to achieve data saturation (Fusch & Ness, 2015). I

collected responses to my interview questions from everyone in my study population. I

collected observations from participants during the interviews. I collected data from

documents and other artifacts relating to software development standards, methodologies,

best practices, collaboration and processes from the organization. I tracked the data I

collected from these multiple sources to facilitate triangulation to determine when I

achieved data saturation. I collected data until no new information was being generated

indicating I had achieved data saturation.

Population and Sampling

The population of my study consisted of senior software development leaders

from two software development teams within a single line of business at a large

healthcare provider in the state of California. The population characteristics in a

62

qualitative study relate to participants’ subjective experience with the phenomenon of

interest in the study (Stern et al., 2014). The population of my study all had experience

using collaboration strategies in software development to minimize technical debt, which

was the phenomenon of my study. The first step in the data collection process is to define

the study population by using inclusion and exclusion criteria (Robinson, 2014). The

study population included software developers with 10 years of experience, who held a

senior leadership position within the organization and actively participate in one or more

collaboration activities. The more criteria used to define the population, the more specific

these criteria are and the number of domains increases the homogeneity of the study

population (Robinson, 2014).

The site and setting of an interview are important factors that might influence the

content of an interview and affect data collection (Doody & Noonan, 2013; Vahasantanen

& Saarinen, 2013). The interview setting should be in a place that is free from

interruptions to avoid distracting participants, which might affect data collection (Doody

& Noonan, 2013). I conducted interviews in a conference room located at the

organization that I reserved for my exclusive use. I closed the conference room door and

hung a sign requesting not to be disturbed to avoid distractions from individuals not

participating in the interviews. I closed all blinds on the windows to avoid any outside

distractions. I ensured the room does not have any unusual smells. I covered pictures,

signs, and other decorations that might be distracting. The interview setting should

minimize background noises that may distract participants or interfere with audio

recordings that may affect data collection (Dikko, 2016). I ensured there were no

63

background noises within the conference room or anywhere nearby that might have

distracted my participants or interfered with my interviews. The place and time of the

interview must be convenient to participants and allow adequate time to conduct the

interview (Dikko, 2016). I used a conference room at the workplace of my participants to

minimize any loss of time due to traveling to and from the interview location.

The three ways to select participants from the study population are census,

probability sampling and nonprobability sampling (Lucas, 2014). I used a census

sampling strategy to interview all individuals in my study population. A census involves

selecting everyone in the study population. (Kish & Verma, 1986; Lucas, 2014). The

primary objective of a census is to collect complete and detailed data regarding the study

phenomenon from the population (Kish & Verma, 1986). A census is more suitable for

smaller finite populations where time and cost are less of a concern (Jordan, 2013). The

population for my study was small and finite so a census sampling strategy was the best

option to provide a complete, detailed understanding of the phenomenon.

My study population consisted of 13 senior software development leaders from

two software development teams from a single line of business within the organization

who met all the eligibility criteria. I invited the entire study population to participate in

my study. An important aspect of sampling is to ensure the knowledge gained is

representative of the study population to draw reliable conclusions (Etikan, Musa, &

Alkassim, 2016). A researcher must scrutinize the characteristics of a sample to

determine how well the sample represents the study population (Sedgwick, 2013). My

sample was the entire study population so it completely represented the study population

64

allowing me to draw reliable conclusions. A census sample involves the entire population

so it perfectly generalizes to that population (Kish & Verma, 1986; Lucas, 2014). My

sample was the entire study population allowing me to generalize my findings to the

population.

A census is subject to response errors and the key measure of quality in a census

is the level of response achieved. (Bell et al., 2015). A census may be prone to

duplication or omission of participants (Kish & Verma, 1986). I kept a log of all

participant interviews to ensure I interviewed everyone in the study population. I used the

log to track follow-up interviews during the member checking process to ensure that I

member checked interview data with all participants. Everyone participates with a census

strategy so there is a little loss of confidentiality when compared with other sampling

strategies where participants are a subset of the population (Kish, 1979). I protected the

confidentiality and privacy of the entire study population by replacing any identifying

information in interview data with codes to conceal participants’ identity.

The concept data saturation involves adding new participants continually into the

study until no new data appears and there is sufficient data to replicate the research study

(Fusch & Ness, 2015; Marshall et al., 2013). Malterud et al. (2015) contend the sample

size necessary for data saturation is dependent on how well the sample represents the

population, the structure of the interviews, the quality of the interviews and the

participants’ knowledge and experience with the phenomenon under study. Interviews

facilitate a study reaching data saturation by asking multiple participants the same

65

probing questions to ensure richness and depth of the data collected (Fusch & Ness,

2015).

Data saturation is a standard and elusive component of qualitative research with

few concrete guidelines and different meanings to various researchers (Marshall et al.,

2013). Data triangulation of multiple data sources is a means to achieve data saturation,

enhance the reliability of this study and ensure the validity of this study (Fusch & Ness,

2015). I collected data from documents and other artifacts relating to software

development standards, methodologies, best practices, collaboration and processes in the

organization in addition to the observations and responses from my interviews. I tracked

the data I collected from these multiple sources to facilitate triangulation to determine

when I achieved data saturation. I collected data until redundancy of the data had

occurred with no new information being generated indicating I had achieved data

saturation.

Ethical Research

Ethical issues may occur in any part of a research study at any time (Qu &

Dumay, 2011). Ethical challenges may arise from researcher-participant relationships,

research design, data collection, data analysis, interpretations or anywhere else in a

research study. Qualitative researchers have a responsibility to uphold ethical standards

and principles while conducting a study (Haahr, Norlyk, & Hall, 2014). I ensured all my

processes and procedures were ethical. Sanjari et al. (2014) noted there are potential

ethical challenges between researchers and participants in qualitative studies and

suggested researchers follow a protocol while conducting their studies. Qu and Dumay

66

(2011) contend that following an interview protocol helps protect participants in a study.

I followed a protocol placing great emphasis on protecting participants in this study by

ensuring they came to no harm, were willing volunteers, could withdraw at any time,

understood the intent of the research and I protected their privacy and confidentiality.

Institutional review boards (IRBs) evaluate the risks, benefits, subject selection

methods, informed consent process, and methods for protecting privacy and

confidentiality in research studies (Cook, Hoas, & Joyner, 2013). I obtained approval

from the Walden University Institutional Review Board (IRB) prior to collecting any data

or conducting any interviews. IRBs require consent forms in all research involving

human subjects and the text in consent forms should match the reading level of

participants (Ferreria, Buttell, & Ferreria, 2015). All participants in my study

acknowledged their willingness to participate in my study by confirming their consent in

accordance with the IRB guidelines. The consent form provided information on the intent

of the study, benefits, risks, confidentiality, and right to withdraw. Researchers should

notify their IRB in the event the study’s research design changes or the researcher

encounters unexpected results (Hanson et al., 2011). I completed the online course on

protecting human research participants with the National Institutes of Health and received

a certificate of completion (see Appendix A).

Informed consent is an ethical requirement of qualitative research outlining the

researcher’s responsibility to inform participants of varying aspects of the study (Sanjari

et al., 2014). The participants for this study were voluntary and able to withdraw from the

study at any time. I immediately destroyed any data collected from participants who

67

withdraw from the study. I used census sampling to interview everyone in my study

population so replacing participants who withdrew was not applicable since I was already

interviewing everyone. All participants in a qualitative case study should sign an

informed consent form confirming their willingness to participate (Qu & Dumay, 2011).

An informed consent form notifies participants about the nature of the study, procedures,

participation is voluntary, risks, benefits, and confidentiality of the study (Judkins-Cohn

et al., 2014). I required all participants to acknowledge their willingness to participate in

the study by replying to my email with the words “I consent” prior to their participation

in the study. Participants receiving compensation for their participation may lead to

inaccurate data (Robinson, 2014). I did not compensate participants to solicit their

participation.

The confidentiality of participants is required to uphold the ethical standards of a

study and may be beneficial to a study (Beskow, Check, & Ammarell, 2014). A

researcher maintains confidentiality in a study by concealing the identity of participants

and using codes instead of names to link participants to their interview data (Ferreria et

al., 2015). The intentional or unintentional disclosure of confidential information may

cause harm to participants (Ferreria et al., 2015; Mealer & Jones, 2014). A researcher

should keep confidential data in either paper or electronic form in a secure storage device

and destroy the data after the researcher no longer needs the data (Mealer & Jones, 2014).

All electronic data collected is stored on an encrypted, secure storage media. All hard

copy documents are stored in a securely locked safe. I will retain all data for at least five

years to protect the participants’ confidentiality. After five years, I will permanently

68

delete all electronic media and shred any hard copy documents. I coded all data to protect

the identities of all participants and organizations so they remain anonymous. I conducted

interviews in a private and confidential manner. I have not released any identifying

information such as names, e-mails, address or phone numbers. All potential participants

received an invitation to participate in the study and an informed consent form detailing

these privacy and confidentiality steps.

Data Collection

Instruments

The main methods of data collection in qualitative research include participant

observation, interviews, and document analysis (Yilmaz, 2013). The researcher is the

primary instrument of data collection in qualitative research studies (Lincoln & Guba,

1985). A researcher should be an informant-centered instrument in qualitative research

viewing participants as the experts allowing them to share the information they deem

most important (Peredaryenko & Krauss, 2013). The researchers’ role includes

investigating varying points of view and perspectives during the data collection process

(Kavoura & Bitsani, 2014).

I developed informative interview questions, listened to participant responses

without interruptions, was flexible during the interview process, and utilized follow-up

questions to ensure I fully understood all participants’ points of views and perspectives. I

sought the guidance of participants when selecting documents to collect and analyze. I

viewed participants as the authorities on my research phenomenon and encouraged

information sharing whenever possible.

69

A human instrument in qualitative research is susceptible to subjectivity,

predispositions, and biases (Peredaryenko & Krauss, 2013). A researcher may inject bias

during data collection due to flaws in research instruments, improper sample selection,

collecting insufficient data, influencing participants, subjective interpretation, and

analysis of data or otherwise allowing personal beliefs to influence the research study

(Onwuegbuzie & Byers, 2014; Roulston & Shelton, 2015). Strategies for managing bias

involve researchers being aware of their own values, predispositions, biases, and

subjectivity in the research process (Roulston & Shelton, 2015). Maintaining a journal of

self-reflection and self-examination throughout a study reflecting on the degree to which

their biases and subjectivity might have influenced the various components of the study

may help avoid bias (Onwuegbuzie & Byers, 2014).

I maintained a reflective journal throughout the research process consciously

writing about any personal values, beliefs, biases or subjectivity that might have

influenced my study. I examined, reflected, and interviewed myself throughout the data

collection process looking for inadequacies, undue influence, subjective interpretations,

and other forms of bias. I wrote about how I counteracted my biases and how my

counteractions might have led to bias.

Interviews. Research interviews are one of the most important methods for

collecting data in qualitative research (Qu & Dumay, 2011). The purpose of

semistructured interviews was to ascertain subjective responses from participants

regarding a specific phenomenon and usually follows a detailed interview protocol

(McIntosh & Morse, 2015). Asking open-ended questions in an organized manner will

70

help generate detailed descriptions and probe for deeper insight to improve the validity of

a study (Hanson et al., 2011). The semistructured interview involves predetermined open-

ended questions, allows the researcher to seek clarification and allows the researcher to

explore new topics that emerge (Doody & Noonan, 2013). A researcher organizes

semistructured interviews around the main topic but is flexible to allow participants to

change direction or inject new themes (O’Keeffe, Buytaert, Mijic, Brozovic, & Sinha,

2016).

I conducted semistructured interviews consisting of a set of predetermined, open-

ended questions (see Appendix B). I asked follow-up questions as necessary during the

interviews to get clarification on participants’ responses. I maintained flexibility in the

interviews allowing participants to change direction and inject new topics.

The research questions serve as a basis for designing interview questions and

researchers should develop interview questions based on what information will help

answer the research questions (Anfara, Brown, & Mangione, 2002). Researchers must

develop as much expertise as possible in relation to the research topic areas so they can

develop informed questions (Qu & Dumay, 2011). Correlating interview questions with

research questions by cross-referencing each interview question to the study’s research

questions is crucial for validating interview questions (Anfara et al., 2002). Using a

matrix to map interview questions to research questions will help align interview

questions to research questions to identify any gaps in the interview questions (Castillo-

Montoya, 2016).

71

I conducted a literature review to increase my knowledge and expertise in the

areas of collaboration, technical debt, and the TAM. My research question and

conceptual framework formed a basis for developing my interview questions. I created a

matrix (see Appendix D) to map interview questions to my research topic areas ensuring

there were no gaps and my interview questions align to my research questions.

An interview protocol is a set of rules and guidelines a researcher uses while

conducting interviews in a qualitative study (Dikko, 2016; Jacob & Furgerson, 2012). An

interview protocol is an instrument aligned to a study’s purpose facilitating inquiry-based

conversations (Castillo-Montoya, 2016). An interview protocol may contain preinterview

scripts, postinterview scripts, interview questions and interview reminders (Jacob &

Furgerson, 2012). Researchers can mitigate potential ethical challenges between

researchers and participants in qualitative studies by following research protocols (Sanjari

et al., 2014). An interview protocol helps protect participants in a study by ensuring

participants’ personal details are kept private (Qu & Dumay, 2011).

I used an interview protocol (see Appendix B) that will consist of preinterview

activities, interview reminders, interview questions, and postinterview activities. My

preinterview activities consisted of an introduction, verification of informed consent,

reminding participants about recording audio, and confidentiality. The main portion of

interview started with turning on the audio recording device, stating the participant’s

identifying code, stating the date and time, asking my interview questions, asking the

participant to share any other relevant information, and stopping the audio recording. My

72

postinterview protocol explained the concept of member checking, scheduling a follow-

up interview, thanking participants, and providing my contact information to participants.

Member checking. Member checking is the most important technique for

assessing the validity and enhancing rigor in qualitative research (Lincoln & Guba,

1985). Member checking is an important method for establishing the dependability and

reliability of a study by allowing participants to confirm the researchers’ interpretation of

the data collected from participants (Onwuegbuzie & Byers, 2014). Member checking is

the process where researchers ask participants to confirm the researchers’ interpretations

of a participant’s experiences, meanings, and viewpoints (Koelsch, 2013). Member

checking is a continual process of analyzing and interpreting emerging themes from the

data, presenting the interpretations to participants, asking participants to confirm the

interpretations, and asking participants follow-up questions for additional clarification

(Birt, Scott, Cavers, Campbell, & Walter, 2016). A researcher continues member

checking until the participants confirm all interpretations, the participants provide no new

information, and additional clarification is no longer required (Harvey, 2015).

I used member checking to increase the validity, reliability, and dependability of

my study by confirming my interpretations of emerging themes from the data I collected

from participants. After my interview with participants, I scheduled follow-up interviews

with participants for member checking. I emailed participants my interpretations of their

data a few days prior to the follow-up interview. During the follow-up interview, I asked

participants to confirm whether my descriptions, interpretations, and understandings from

their interview accurately reflects their experiences, meanings, and viewpoints. I asked

73

participants follow-up questions as necessary to seek clarification of the data. I continued

scheduling follow-up interviews and member checking until participants confirmed all

my interpretations.

Document analysis. Document analysis involves the selection of written or

recorded materials that confirm events or provide explanations and descriptions (Lincoln

& Guba, 1985). Document analysis is an essential instrument of qualitative research that

provides the researcher a better understanding of the research phenomenon (Islam, 2014).

Case study researchers use information found in documents to corroborate information

from and add context to other data sources (Boblin, Ireland, Kirkpatrick, & Robertson,

2013). Additional sources of data allow researchers to check for consistency and

triangulation of data to improve the reliability of research (Patton, 1999). Key informants

can assist researchers in locating documents important to the research study (Boblin et

al., 2013). Document analysis can suffer from low retrievability, selection bias, and

access restrictions (De Massis & Kotlar, 2014). Researchers must ensure the quality and

trustworthiness of artifacts and documents they use in research (Islam, 2014).

I used document analysis to collect data on collaboration and technical debt. I

analyzed procedural documentation related to software development standards,

methodologies, best practices, collaboration, and processes. I was the primary instrument

for collecting and reviewing all documentation. The goal of my document collection was

to measure the perceptions of my participants to the organization’s strategies regarding

collaboration and technical debt management. The documentation provided an additional

source of data to corroborate and check the consistency of other data sources.

74

Researchers must select a wide range of sources for documents to ensure a

comprehensive understanding of the data (Dunne, Pettigrew, & Robinson, 2016). The

process of selecting and analyzing documents requires a researcher to assess the quality

and trustworthiness of the documents (Dunne et al., 2016). The quality and

trustworthiness of a document depend on the authenticity, credibility, reliability, and

accuracy of the document (Donaldson, 2016). Determining the authenticity of a

document requires the researcher to understand the source of the document and judge the

content on this basis (Dunne et al., 2016). A researcher determines the credibility of a

document by questioning the perspective of the author and the reason for creating the

document (Dunne et al., 2016). The accuracy to which a document reflects the contents

or events determines the reliability of a document (Donaldson, 2016).

I selected a wide range of documents with the help of key informants from

varying sources to obtain a more thorough understanding of the data. I loaded these

documents into the Qiqqa research management software so that I may identify themes

and add annotations to each document. I used the Qiqqa software to explore and

brainstorm the documents looking for common themes. I used the Qiqqa document

insight features to identify common keywords and themes within the documents. I used

the Qiqqa brainstorming features to create mind maps, identify links between documents

and arrange documents to help identify important themes in the documents. I judged the

quality and trustworthiness of the documents by determining the authenticity, credibility,

and accuracy of the documents. I investigated the source of all documents, determine the

reason for the creation of the documents and determine if the documents accurately

75

reflect the contents. I determined if the actual contents of the documents match the

authors’ purpose and the reason for creating the documents.

Triangulation. Denzin (1978) argued that a single method of data analysis is not

adequate to describe a research phenomenon and the use of multiple methods to collect

data improves the validity and reliability of a study. Methodological triangulation entails

the use of multiple methods of data collection and analysis regarding the same

phenomenon to develop a thorough understanding of the phenomenon contributing to

greater accuracy, reliability, and validity (Denzin, 1978; Hussein, 2015). Methodological

triangulation benefits studies by providing richer data, correlating the data, increasing

validity and enhancing understandings of the research phenomena (Fusch & Ness, 2015).

Within-method triangulation is a type of methodological triangulation involving

crosschecking complementary data collection methods within a qualitative study

increasing the consistency and credibility of a study (Denzin, 1978; Hussein, 2015).

Methodological triangulation involves comparing data collected from varying methods to

enrich the data, confirm or refute findings and further explain findings (Patton, 1999).

I used the within-method type of methodological triangulation to analyze the

qualitative data I collected through semistructured interviews, interviews observations

and document analysis. I crosschecked data collected from semistructured interviews

with my interview observation data and document analysis. I looked for consistencies

within the data that may provide confirmations of my interpretations. I looked for data in

one method that may enrich the data or further explain the data collected from another

76

method. I looked for inconsistencies in the data and attempt to develop reasonable

explanations for the differences.

Data Collection Technique

Interviews and document analysis are the main methods of data collection in my

study. My data collection technique involved gaining access to participants, obtaining

informed consent from participants, selecting an interview location, scheduling

interviews, following an interview protocol, and conducting member-checking activities.

I ensured I had IRB approval before beginning any recruitment or data collection

activities.

An important step in gaining access is to obtain approval from key stakeholders

during the study design and planning stage (Peticca-Harris et al., 2016). Gatekeepers are

individuals who can facilitate gaining access to participants by endorsing a researcher’s

work (Crowhurst, 2013). Gatekeepers can facilitate contact with participants by using the

trust and rapport they have with participants while emphasizing the benefits of the study

(Peticca-Harris et al., 2016). I enlisted the help of three upper management gatekeepers to

help identify potential study participants within the organization that meet my participant

criteria. I emailed the gatekeepers my criteria for participating in my study to help them

identify individuals. I had the gatekeepers send me the contact information of all

individuals that met my participation criteria who might be willing to participate in my

study. I emailed detailed information about my study to all potential participants

identified by the gatekeepers. I ensured those willing to participate met all my eligibility

criteria.

77

Informed consent is an ethical requirement of qualitative research outlining the

researcher’s responsibility to inform participants of varying aspects of the study (Sanjari

et al., 2014). An informed consent form notifies participants about the nature of the study,

procedures, participation is voluntary, risks, benefits, and confidentiality of the study

(Judkins-Cohn et al., 2014). All participants in a qualitative case study should sign an

informed consent form confirming their willingness to participate (Qu & Dumay, 2011). I

emailed participants a consent form informing them of the study background, procedures,

voluntary nature of the study, benefits, risks, and privacy of the study. I require all

participants to acknowledge their willingness to participate in the study by replying to my

email with the words “I consent” prior to their participation in the study. The participants

for this study will be voluntary and able to withdraw from the study at any time. I

immediately destroy any data collected from participants who withdrew from the study. I

used census sampling to interview everyone in my study population so replacing

participants who withdraw is not applicable since I was interviewing everyone.

Researchers should let participants know the time, place, and duration of

interviews when scheduling interviews so participants allocate enough time to avoid

disruptions (Peticca-Harris et al., 2016). The place and time of the interview must be

convenient to participants and allow adequate time to conduct the interview (Dikko,

2016). When conducting multiple interviews on the same day, a researcher should allow

30 to 60 minutes between interviews to decompress and debrief (Rimando et al., 2015). I

scheduled face-to-face interviews with each participant lasting about one hour at a place

convenient to them. I emailed the participants the agreed upon time, place, and duration

78

of the interview. I conducted three interviews per day on average making sure there was

at least 30 to 60 minutes between interviews.

The site and setting of an interview are important factors that might influence the

content of an interview and affect data collection (Doody & Noonan, 2013; Vahasantanen

& Saarinen, 2013). The interview setting should be in a place that is free from

interruptions to avoid distracting participants, which might affect data collection (Doody

& Noonan, 2013). The interview setting should minimize background noises that may

distract participants or interfere with audio recordings that may affect data collection

(Dikko, 2016). I conducted interviews in a conference room at the organization that I

reserved for my exclusive use to ensure privacy and minimize travel time for participants.

I closed the conference room door during my interviews and put a notice on the door

requesting no disturbances to avoid distractions from individuals not participating in the

interviews. I closed all blinds on the windows to avoid any outside distractions. I ensured

the room does not have any unusual odors or smells. I covered any pictures, signs and

other decorations that might be distracting. I ensured there were no background noises

within the conference room or anywhere nearby that might have distracted my

participants or interfered with my interviews.

Taking notes during an interview can be distracting, interfere with the interview

and detract from a researcher’s ability to actively listen to participants and ask probing

questions (Onwuegbuzie & Byers, 2014). An audio recording of an interview allows a

researcher to relisten to all or parts of an interview to increase their familiarity with the

interview allowing better interpretation of the data (Gale, Heath, Cameron, Rashid, &

79

Redwood, 2013). A researcher should use good quality audio recording equipment and be

familiar with its operation (Doody & Noonan, 2013). Using multiple devices when

recording audio from interviews provides redundancy in case one device fails

(Onwuegbuzie & Byers, 2014). Transcribing audio allows the research to immerse

themselves in the data and become familiar with the entire interview (Gale et al., 2013).

A disadvantage of audio recordings is the inability to capture impressions, environmental

contexts, behaviors, and other nonverbal cues (Sutton & Austin, 2015). I used two, fully

charged audio devices to record the interviews for accuracy with the permission of the

participants. I took notes during the interviews of my observations of participants’ body

posture, facial expressions, and hand gestures that may justify further exploration of areas

using probing questions. After the interviews, I listened to the audio multiple times to

increase my familiarity with the interviews. I transcribed the audio recordings into a

Microsoft Word document using the speech recognition software in Windows 10. I

removed any personally identifiable information from the transcription and used codes to

identify participants.

Reflection helps researchers examine and evaluate research methods, frameworks,

and assumptions providing more insight into the study facilitating a deeper level of

questioning (Peredaryenko & Krauss, 2013). A reflective journal represents a

researcher’s first-hand experience with the data and helps researchers understand first

perceptions of data (Lamb, 2013b). Recording the researchers’ thoughts before and after

interviews allows the researchers to identify and reflect on any potential bias that may

have influenced a participant’s response and skewed the data (Hoare & Hoe, 2013). A

80

reflective journal allows a researcher to expand ideas, develop new understandings, and

draw conclusions from the research by reflecting on the research process and data

(Peredaryenko & Krauss, 2013). A reflective journal is an additional source of data

providing additional evidence on emerging themes (Lamb, 2013a). Some researchers

argue that journal writing lacks objectivity and may overemphasize the researcher’s

values and beliefs instead of participants (Lamb, 2013b).

I used a journaling approach to record my methods, experiences, observations,

thoughts, and judgments throughout the research study. I used a journaling approach to

record my thoughts before and after each interview to prevent bias in my data. I used a

Microsoft Word document to maintain my reflective journal. I logged my initial thoughts

normally in the document. I used the review tracking and commenting features to reflect

on my thoughts. This enabled me to keep my initial thoughts and my thoughts as they

evolved. I periodically reflected on my journal notes and initial perceptions to expand my

understanding of the research. I questioned myself in regards to the methods I used and

assumptions I made during the research process.

An interview protocol is a set of rules and guidelines a researcher uses while

conducting interviews in a qualitative study (Dikko, 2016). An interview protocol may

contain preinterview scripts, postinterview scripts, interview questions, and interview

reminders (Jacob & Furgerson, 2012). An interview protocol is an instrument aligned to a

study’s purpose facilitating inquiry-based conversations (Castillo-Montoya, 2016). I used

an interview protocol (see Appendix B) to facilitate my interview processes. I introduced

myself to the participant and thanked them for participating. I verified receipt of the

81

consent form, answered any questions or concerns they had. I reminded participants that I

would be recording the interview and that the interview would remain strictly

confidential. I turned on the recording device and announced the date, time, and

identifying code of the participant. I asked each question in my interview protocol (see

Appendix B) starting with the first question and continuing through to the last question. I

allowed the participant to respond to each question and asked additional probing

questions as necessary. After I had asked all my questions, I asked the participant if they

wanted to share any more information about the topics. I asked the participant if they

were aware of any documentation that might be relevant to the topics discussed. I

explained the concept of member checking and scheduled a follow-up interview to

review my interpretations with them. I discontinued the audio record by turning off the

device and thanked the participant for partaking in the study. I confirmed the participant

had my contact information for any follow-up questions and concerns.

Member checking is the process where researchers ask participants to confirm the

researchers’ interpretations of a participant’s experiences, meanings, and viewpoints

(Koelsch, 2013). Member checking is a continual process of analyzing and interpreting

emerging themes from the data, presenting the interpretations to participants, asking

participants to confirm the interpretations and asking participants follow-up questions for

additional clarification (Birt et al., 2016). A researcher continues member checking until

the participants confirm all interpretations, the participants provide no new information,

and additional clarification is no longer required (Harvey, 2015).

82

After the conclusion of my interview with the participant, I scheduled a follow-up

interview with the participant for member checking. Prior to the follow-up interviews, I

analyzed the data collected from the participant to develop my interpretations of the data

they provided and any emerging themes. I developed rich descriptions of the data

encompassing my interpretations and understandings of their interview data. I emailed

the participant my interpretations of their data a few days prior to the follow-up

interview. During the follow-up interview, I asked the participant to confirm whether my

descriptions, interpretations, and understandings of their interview accurately reflects

their experiences, meanings, and viewpoints. I also asked the participant follow-up

questions as necessary to seek clarification of my understanding of their views. I asked

the participant if they had any new data to share with me. If I receive new information

from the participant, I scheduled an additional follow-up interview and repeated the

member checking process. I kept repeating this member checking process if I kept

receiving new information from participants.

Case study researchers use information found in documents to corroborate

information from and add context to other data sources (Boblin et al., 2013). Researchers

must select a wide range of sources for documents to ensure a comprehensive

understanding of the data (Dunne et al., 2016). Key informants can assist researchers in

locating documents important to the research study (Boblin et al., 2013). Document

analysis can suffer from low retrievability, selection bias, and access restrictions (De

Massis & Kotlar, 2014).

83

I selected a wide range of documents with the help of key informants from

varying sources to obtain a more thorough understanding of the data. I enlisted the help

of three upper management gatekeepers to help identify and gain access to documents

related to my study. I asked key informants for any documentation related to software

development standards, methodologies, best practices, collaboration, technical debt or

other software development processes. After each interview, I asked the participants to

identify any documentation related to the interview questions. I requested assistance from

my three gatekeepers to facilitate access to documents identified by participants. I

emailed the key informants who identified the documents to determine the source and

purpose of all documents. I asked these key informants if the actual contents of the

documents match the authors’ purpose and the reason for creating the documents.

Data Organization Techniques

Organizing data in qualitative research is an essential process to understanding

and analyzing the data collected adding to the trustworthiness of the study (Elo et al.,

2014). A researcher chooses codes, concepts, and categories to facilitate the labeling,

sorting, and comparison of the data collected (Vaismoradi, Jones, Turunen, & Snelgrove,

2016). Categorization strategies often involve analyzing similarities in data and grouping

data by likeness (Plamondon, Bottorff, & Cole, 2015). I assigned each participant a code

ranging from one to eight to maintain their confidentiality and track their data. I used

high-level folders in my encrypted cloud storage to organize participant information,

interview data, audio recordings, member checking data, organization artifacts and my

84

research journals. I used multiple folders within the high-level folders to enhance the

categorization of the data and artifacts.

A reflective journal allows a researcher to expand ideas, develop new

understandings and draw conclusions from the research by reflecting on the research

process and data (Lamb, 2013b). Vicary, Young and Hicks (2016) argue that reflexivity,

reflection and journaling improve the quality and validity of qualitative data. A research

journal is an important aspect of documenting the research improving the validity of the

study and providing a means for other researchers to judge the transferability of the

research (Lamb, 2013a). I used a journaling approach to record my methods, experiences,

observations, thoughts, and judgments throughout the research study. I periodically

reflected on my journal notes and initial perceptions to expand my understanding of the

research. I questioned myself in regards to the methods I used and assumptions I made

during the research process.

Qualitative researchers often use a categorization matrix to identify, track, and

group data corresponding to the concepts and categories relating to the data to improve

the validity of the study (Elo et al., 2014). I used an Excel spreadsheet to associate

information, forms, journal notes, and research data with participant codes. I used the

spreadsheet to assign concepts and categories to the data allowing me to sort and group

the data to improve my understanding of the data.

All electronic data collected will be stored on an encrypted, secure storage media

and stored along with any hard copy documents in a securely locked safe to protect the

participants’ confidentiality. I will retain all data for a period of at least five years from

85

the publication date of this study. After five years, I will permanently delete all electronic

media and shred any hard copy documents.

Data Analysis Technique

The purpose of my data analysis was to repeatedly search the data I collected until

I had a meaningful answer to my research question on collaboration strategies software

development leaders use to minimize technical debt. Data analysis is an iterative process

to systematically search and assemble data in a meaningful manner allowing ideas to

develop (Noble & Smith, 2014). The data analysis process reduces the amount of data

collected by grouping the data into categories and seeking to understand the meaning of

the data (Bengtsson, 2016). The data analysis must be a transparent, meticulous, and

methodical process constructing an accurate description of phenomena from participants’

views (Noble & Smith, 2014). I sought to understand the views expressed by the

participants and interpret their meaning in a reliable manner. Qualitative data analysis is

an inductive process focusing on the meaning of the data and allowing concepts to

emerge from the data (Noble & Smith, 2014). An inductive approach to data analysis

consists of coding data by creating categories, interpreting the data, and checking the

trustworthiness and representativeness of the data (Elo et al., 2014).

I used the within-method type of methodological triangulation to analyze the

qualitative data I collected through semistructured interviews and artifacts pertaining to

software development standards, methodologies, best practices, collaboration, and

processes. Methodological triangulation entails the use of multiple methods of data

collection and analysis regarding the same phenomenon to develop a thorough

86

understanding of the phenomenon contributing to greater accuracy, reliability, and

validity (Denzin, 1978; Hussein, 2015). Methodological triangulation benefits studies by

providing richer data, correlating the data, increasing validity, and enhancing

understandings of the research phenomena (Fusch & Ness, 2015). Denzin (1978) argued

that a single method of data analysis is not adequate to describe a research phenomenon.

The purpose of this type of within-method triangulation is to use complementary data

collection and analysis methods to increase the accuracy and credibility of a study

(Hussein, 2015).

The first step in my coding process was immersing myself in the data by repeated

readings of the data so I was familiar with the depth and breadth of the data. I took notes

throughout the coding process to track my ideas and reflect on my analysis of the data. I

used multiple coding methods to generate a list of initial codes that best represent the data

and are consistent with my research question. I documented in my journal the importance

of each code I created and reflected upon any ideas I had regarding the code. I performed

multiple cycles of coding using multiple coding methods to look for explanations,

patterns, relationships, and underlying meanings of the data. I categorized and grouped

codes during this process to develop themes and organize them into various domains of

knowledge. I repeated this process as necessary to ensure I had meaningful explanations

of the phenomena consistent with my research question.

Computer-assisted qualitative data analysis software (CAQDAS) assists

researchers with multiple types of data analysis allowing underlying relationships to

emerge and provide better results than manual analysis (Moylan, Derr, & Lindhorst,

87

2015). The NVivo 10 software can perform constant comparison analysis, keywords in

context, word count, classical content analysis, domain analysis, taxonomic analysis and

componential analysis (Castleberry, 2014). I used the NVivo 10 and Qiqqa software to

analyze the various sources of data I collected from interviews, notes, audio transcripts

and documents by using the multiple coding methods available in the software to code,

categorize and group my data. I used the memo and notes functionality in the software as

a research journal to track my ideas, assumptions, and reflections.

Qualitative data requires a systematic coding process to catalog data into themes

allowing researchers to interpret subjective data in a valid and reliable manner (Bernauer,

Lichtman, Jacobs, & Robinson, 2013). Researchers can use the advanced tools in NVivo

to visualize data through the use models, graphs, reports, maps, and cluster analyses to

monitor emerging themes (Edwards-Jones, 2014). I used NVivo and Qiqqa to generate

word trees, word clouds, mind maps, cluster analyses, cluster maps, and graphs to

provide a visual representation of my data allowing me to interpret context, relationships,

frequencies and find emerging themes. I sorted, arranged, assembled, and analyzed the

data repeatedly until major themes and trends emerge that are consistent with my

research question. I searched for familiar patterns and recurring themes that might

indicate a correlation between software development, collaboration, strategies, technical

debt, and characteristics of the TAM.

My data analysis included data from my literature review that I found relevant to

my research question, conceptual framework or data I collected from interviews and

documents. I also searched for newly published studies that may be relevant to my

88

research question, conceptual framework or data I collected. I included any new studies I

found in my data analysis.

Reliability and Validity

A qualitative research study should be trustworthy, credible, dependable, original,

and robust (Yilmaz, 2013). The criteria for assessing the trustworthiness of qualitative

research are credibility, transferability, dependability, and confirmability, which are

equivalent to the quantitative principles of internal validity, external validity, reliability,

and objectivity (Lincoln & Guba, 1985).

A qualitative study is reliable if other researchers could produce similar results

using the same methods, techniques, and phenomena (Zohrabi, 2013). Reliability of

research data is a prerequisite for the validity of the research data (Stevens, Lyles, &

Berke, 2014). It can be difficult to replicate a qualitative study due to the subjective

nature of the researcher and participants. Zohrabi (2013) contends researchers should

focus on dependability and consistency of the data rather than reproducibility of the

results. Researchers should ensure the findings and results are consistent and dependable

based on the data collection processes. The prevailing strategy is to ensure reliability by

providing transparent and detailed descriptions of all methods, procedures, techniques,

and phenomena so other researchers could hypothetically produce the same results

(Stevens et al., 2014).

The validity of a qualitative study requires that the researcher and study

participants view the study findings provide a credible, trustworthy, and authentic

understanding of the phenomena (Yilmaz, 2013). The validity of the data collection

89

processes, analysis of the data and interpretation of the data help establish the

trustworthiness and credibility of the study (Elo et al., 2014). Researchers must establish

the credibility of their work, the dependability of the findings, the confirmability of the

data and analysis, and the transferability of their research to demonstrate the

trustworthiness of their research. (Hanson et al., 2011).

Dependability

A study establishes dependability by defining and explaining the research

strategies, processes, and methods (Yilmaz, 2013). A study achieves dependability if it is

repeatable with the same or comparable participants in an equivalent context (Lincoln &

Guba, 1985). Establishing arduous sampling, data collection, data analysis, member

checking, and other procedures increase the dependability of the study (Hanson et al.,

2011). This study defines the eligibility of participants as software development leaders

who have knowledge and experience using collaboration to minimize technical debt in

software development. I used census sampling to ensure I collected data from all

participants who were willing to participate from the study population.

Member checking is an important method for establishing dependability by

allowing the participants to verify the accuracy of the researchers’ account of their

experiences (Lincoln & Guba, 1985; Onwuegbuzie & Byers, 2014). Researchers use

member checking to establish the dependability of a study by discussing tentative themes

and interpretations with participants (Hanson et al., 2011). I used member checking to

increase the reliability of the study by confirming my interpretation of the data collected

90

with participants. I asked participants if my interpretations, descriptions, and themes

accurately reflect their viewpoint.

Maintaining an audit trail of records, notes, and documents on all aspects of the

research procedure enhance the dependability of a study (Cho & Lee, 2014). Explaining

the research process, using triangulation, and describing the audit trail increases the

dependability and reliability of the research (Zohrabi, 2013). Maintain records of the

procedures, data collection process, data analysis steps, and development of

interpretations allows other researchers to audit a study increasing the dependability of

the study (Hanson et al., 2011). I clearly explained all the processes and phases of my

research elaborating on every aspect of my study. I described in detail the purpose of the

study, the design of the study, and the participants. I used triangulation by collecting and

analyzing data from multiple sources to enhance the reliability of the results. I provided

an audit trail by detailing the collection of data, analysis of the data, the development of

my themes and interpretation of the results. The audit trail will facilitate others in

replicating my research thus contributing to its dependability.

Credibility

A qualitative study is credible if the participants in the study found the results

truthful (Yilmaz, 2013). A researcher establishes credibility, or internal validity, by using

data triangulation, gathering rich descriptions, reaching data saturation and using an

interview protocol (Hanson et al., 2011). The data collection procedures, data sources,

triangulation, rich descriptions, and member checking affect the credibility of qualitative

studies (Lincoln & Guba, 1985; Yilmaz, 2013). Member checking is the most important

91

technique for establishing credibility by allowing the participants to verify the accuracy

and credibility of the researchers’ account of their experiences (Lincoln & Guba, 1985).

Researchers must collect data until redundancy of the data has occurred with no new

information or themes being generated indicating saturation of the data (Walker, 2012).

Data triangulation is a means to achieve data saturation, enhance the reliability of this

study and ensure the validity of a study (Fusch & Ness, 2015; Lincoln & Guba, 1985). I

used a data saturation grid to track emerging themes and data collected from interviews to

determine when I had reached data saturation. I used member checking to ask participants

if my rich descriptions and interpretations accurately reflect their experiences, meanings,

and viewpoints.

Transferability

A determining factor in the transferability of a research study is the scope to

which the findings are reproducible outside of the immediate research study or are

generalizable to other contexts or settings (Lincoln & Guba 1985). The transferability, or

external validity, of a study requires careful, detailed descriptions of the background,

participants, sampling, population, and results of the research so others who read the

research can determine if the results of the study will likely transfer to different situations

with different participants (Hanson et al., 2011). A researcher can enhance the

transferability of a study by providing thick descriptions of the study context and

procedures allowing the readers to make decisions regarding transferability (Lincoln &

Guba 1985). I have provided detailed descriptions of the background of my study, the

92

participant eligibility, the sampling methodology, and the population size of my study so

other researchers may determine the transferability of my study to their setting.

Confirmability

The confirmability, or construct validity, of a study lies in the ability of others to

review researchers’ design, plan, and reasoning to ensure it makes sense (Hanson et al.,

2011). The confirmability of a study depends on the ability of others to corroborate that

the research took place using the methods and techniques the researcher describes

(Lincoln & Guba 1985). A study experiences confirmability by using data to substantiate

its findings, the interpretations are logical, and the results are clearly explained (Yilmaz,

2013). I recorded all procedures, data collection, analysis, and development of my

interpretations enabling other researchers who did not conduct this study to review my

plan and reasoning.

Methodological triangulation entails the use of multiple methods of data

collection and analysis to develop a thorough understanding of the research phenomenon

contributing to greater accuracy, reliability, and validity (Denzin, 1978; Hussein, 2015).

Methodological triangulation benefits studies by providing richer data, correlating the

data, increasing validity, and enhancing understandings of the research phenomena

(Fusch & Ness, 2015). The within-method type of methodological triangulation uses

complementary data collection and analysis methods to increase the accuracy and

credibility of a study (Hussein, 2015). I used participant responses from interviews,

interview observations, and organization documents as multiple methods of data

collection. I used these multiple methods to enrich the data I collected by providing more

93

insight, a more comprehensive representation of the data and limiting inadequacies found

in any one method. I used these multiple data collection methods to verify and validate

my interpretations. I recognized any inconsistencies in the data and explained any

unexpected findings using multiple methods.

Researchers use member checking to increase the reliability of a study by

confirming their interpretations of the data collected with participants (Onwuegbuzie &

Byers, 2014). Member checking is the process where researchers ask participants to

confirm the researchers’ interpretations of a participant’s experiences, meanings, and

viewpoints (Hanson et al., 2011). I requested all participants to confirm my

interpretations of their interview responses to increase the reliability of my research.

Transition and Summary

In this section, I presented the details of my planned research study. The section

included a description of the role of the researcher, participants, research design,

sampling, data collection, and data analysis techniques. This section also included the

procedures I employed to ensure the reliability and validity of my study. The next section

includes my research findings, implications for social change, implications for practice,

and recommendations for future research.

94

Section 3: Application to Professional Practice and Implications for Change

This study’s focus was exploring the collaboration strategies that software

development leaders use to reduce technical debt. In this section, I focus on the use of

these findings in professional fields to bring about change. This section includes a study

overview, presentation of findings, application to professional practice, implications for

social change, recommendations for action, further study suggestions, personal

reflections, and a conclusion.

Overview of Study

The purpose of this qualitative case study was to explore collaboration strategies

software development leaders use to reduce the amount of technical debt created by

software developers. The data came from interviews with software development leaders

and organizational documentation from a large health care provider in California. The

findings showed methods and tools that the software development leaders used to

encourage collaboration, participation, and best practices to improve software quality and

reduce technical debt.

Presentation of the Findings

This section contains a discussion of the four themes that emerged during the

study. The purpose of the study was to answer the overarching research question: What

collaboration strategies do software development leaders use to minimize technical debt

created by their software developers? The answer to this question may be used to help

solve the specific IT problem that some software development leaders lack collaboration

strategies to reduce the amount of technical debt created by software developers. During

95

this study, I used semistructured interviews to collect data on the perceived usefulness

and ease of use of collaboration strategies used by software development leaders.

Additionally, I reviewed organizational documents related to software development

standards, best practices, collaboration, and technical debt. Following the data collection

and analysis, four main themes emerged: (a) extensive collaboration, (b) continuous

verification, (c) participatory culture, and (d) tool support. These themes illustrate

software development activities related to collaboration strategies.

Theme 1: Extensive Collaboration Is Critical

The first theme to emerge from data collection was that extensive collaboration

within the development team is a critical component of the overall strategy of reducing

technical debt. Participants reported that significant amounts of collaboration and peer

reviews (see Table 1) at all stages of the development life cycle reduced the technical

debt on their projects. Participant 8 asserted that development teams collaborate often on

projects and was more concerned with too much collaboration rather than not enough

collaboration. Participant 2 reported that collaboration on projects is the main reason why

their projects do not accumulate technical debt. Participant 5 pointed out that the

development teams follow agile methodologies that require frequent collaboration among

team members. Participant 4 acknowledged that peer reviews are a large part of their

overall collaboration strategy to reduce technical debt by clarifying misunderstandings

and identifying design discrepancies, coding violations, and mistakes in projects.

Participant 7 contended that developers’ ability to successfully collaborate positively

influences their job performance.

96

I found a similar emphasis on collaboration in the organizational documents I

collected. My review of the organizational documents confirmed the extensiveness and

importance of collaboration (see Table 1) within the organization to reduce technical

debt. There were eight organizational documents referencing collaboration or

collaborative activities such as status meetings, peer review meetings, and knowledge

sharing. According to the Agile Methodology Best Practices document, all agile projects

require frequent status, planning, review, and retrospective meetings throughout the life

of the project. This aligned with interview data in which seven participants reported three

or more types of status or peer review meetings conducted on projects. Participants 1, 3,

4, and 5 reported participating in status meetings, design reviews, code reviews, and

project retrospective meetings. Participants 2, 4, 5, and 6 pointed out that the organization

follows agile methodologies that are collaborative in nature.

There were five organizational documents containing checklists designed

specifically for use during design reviews, code reviews, and quality assurance reviews to

facilitate collaboration between developers and reviewers. Participants 2, 3, and 5

described using these checklist documents during peer review meetings to assess the

quality of developers’ work. The organizational document Clarifying Roles and

Responsibilities With RACI facilitates the creation of a responsibility assignment matrix.

This matrix identifies team members who are required to participate in collaboration

activities during various tasks in a project. According to the document, a chart facilitates

assigning team members the role of responsible, accountable, consulted, or informed for

each activity in the project. Participant 8 reported that every project requires the creation

97

of a RACI chart to identify collaboration responsibilities of team members. Participants

have found collaboration to be useful in reducing technical debt.

Table 1

Themes for Extensive Collaboration is Critical

Major/minor theme Participant count Document count

Extensive collaboration is critical 8 13

 Status meetings 6 5

 Design reviews 5 2

 Code reviews 7 3

 Retrospective meetings 8 2

 Collaboration from methodology 4 8

The scholarly literature provided insight into the usefulness of collaboration in

managing technical debt and aligned with the data from my interviews and organizational

documents. Software developers collaborate extensively with team members to reduce

technical debt. Ferzund et al. (2014) argued that software developers could spend more

than 70% of their time collaborating with others leading to improved software

development performance. Additionally, Shrivastava and Rathod (2017) found

widespread collaboration on agile software development teams during requirement

elicitation, coding, and testing. Shrivastava and Rathod found collaboration important for

identifying and reducing technical debt. The findings of these two studies supported

Participants 2, 4, and 5 who reported using agile methods with significant amounts of

98

collaboration during requirements, coding, and testing phases to minimize technical debt.

These studies also aligned with the organizational documents I collected confirming the

extensive use of collaboration. Caglayan and Bener (2016) indicated that the benefits

from the number of collaborators might peak at some point, after which more

collaborators might become a burden to the software developers. This supports

Participant 8’s concern of reaching a point where the team might be engaging in too

much collaboration.

Software development teams could effectively reduce technical debt by

establishing formal planning and review processes. Ozer and Vogel (2015) posited that

software development organizations perform better when adopting formal rather than

informal processes for sharing knowledge. Heikkila, Paasivaara, Lasssenius, Damian, and

Engblom (2017) asserted that explicit planning strategies inherent to agile development

might help prevent technical debt from accumulating. These studies aligned with the

organizational documents I collected outlining agile best practices and formal checklists

for peer review processes. Participants 1, 3, and 5 described agile planning processes and

formal peer review meetings as means to reduce technical debt. Tom et al. (2013)

contended that strong collaboration increases the visibility of technical debt making it

easier for software development teams to identify and reduce technical debt. Behutiye,

Rodríguez, Oivo, and Tosun (2017) found enhancing the visibility of technical debt

through collaboration as one of the most significant strategies for managing technical

debt. These studies supported Participants 1, 4, and 5 who indicated collaboration reduces

99

technical debt by improving the understanding, awareness, and visibility of team

members.

I found participants believe collaboration is important to others, provides respect,

improves standing, and is a mandatory requirement of their agile software development

methodology. These findings are consistent with the conceptual framework TAM2

relating to social influences having a positive effect on perceived usefulness. Participant

4 indicated collaboration is a normal part of their software development practices and

reported collaboration is important to the organization’s leadership. Similarly,

Participants 1 and 2 claimed collaboration was a mandatory part of their job. This aligned

with Chan and Thong (2009) who concluded that social pressure and subjective norms

are associated with teamwork and collaboration in software development. Likewise,

Martinez et al. (2013) found that developers perceiving a development method as

mandatory are more likely to adopt such methods. Participants 3 and 5 reported

collaboration has a social component that gives respect to the people doing the

collaboration and provides importance to others on the team. This aligned with

Venkatesh and Davis (2000) who found in TAM2 that the importance of a person’s social

group, prestige, and standing in the organization significantly increases perceived

usefulness. Subjective norms and image had a positive influence on participants’

perceived usefulness of collaboration and their intention to use collaboration.

I found that participants believe collaboration during software development is a

relevant and necessary part of their job. Participants 1, 2, and 5 reported collaboration is

an essential part of their day-to-day activities. Additionally, Participant 3 indicated that

100

collaboration is key requirement of daily work. This aligned with Venkatesh and Davis

(2000) who described the TAM2 construct job relevance as the perceived importance of a

task to a person’s job. Overhage and Schlauderer (2012) found developers perceive close,

frequent collaboration to be a normal process in agile software development and relevant

to their preferred work environment. These studies supported the participants’ views that

collaboration is a relevant part of their job in reducing technical debt.

I found participants believe collaboration supports their goal of producing quality

software without technical debt. Participants 2 and 5 reported collaboration activities are

the most useful job task in preventing technical debt. Additionally, Participants 7 and 8

indicated collaboration ensures the team follows best practices improving software

quality and reducing technical debt. This aligned with Venkatesh and Davis (2000) who

described the TAM2 construct output quality as the degree to which a task corresponds to

a person’s goals and how well the task performs. Additionally, Wallace and Sheetz

(2014) used TAM2 to show software developers are more likely to perform development

activities that increase the quality of the software they create. These studies supported the

participants’ views that collaboration supports their goal of producing quality software.

I found participants believe the results of their collaboration efforts are easily

discernable and communicated within their team. Participants 2, 3, and 5 described using

checklist documents during peer review meetings to identify and discuss the results of

development work with others. Additionally, Participants 2, 3, 7, and 8 reported

partaking in project retrospective meetings to discuss final project results with other team

members. This aligned with Venkatesh and Davis (2000) who described the TAM2

101

construct result demonstrability as the degree to which use and positive results are easily

discernable. Moreover, Riemenschneider et al. (2002) measured TAM2’s result

demonstrability by the ability of developers to easily ascertain results and communicate

results to others. Similarly, Chan and Thong (2009) found the planning, development

cycles, and frequent feedback in agile methodologies result in higher result

demonstrability. These studies supported the participants’ views that the results of

collaboration efforts are easily discernable and effectively communicated with others.

Software development leaders should consider a development methodology that

maximizes collaboration among their software development team members to reduce

technical debt. Software development leaders should emphasize the social influences of

collaboration by making it mandatory, promoting teamwork, and recognizing developers

who perform well. The methodology should establish formal planning and review

processes that include status meetings, design reviews, code reviews, and project

retrospective meetings. These processes should clearly establish the objectives and

importance of collaboration and align collaboration with the team’s goals. Software

development leaders should develop methods to verify the effectiveness of the

collaboration activities.

Theme 2: Continuous Verification of Best Practices

Another theme that emerged from this study was that continuous verification of

software development best practices is an important part of the collaboration strategies

designed to reduce technical debt. Participants reported collaboration is the primary

method they use to verify developers are following the organization’s best practices (see

102

Table 2) to reduce technical debt. Participants 4 and 6 indicated the primary method of

ensuring developers follow the organization’s best practices is with collaboration.

Participants 1, 2, 7, and 8 reported using peer reviews throughout the entire development

process to reduce technical debt by verifying developers are following best practices.

Participants 2, 3, 4, 5, and 8 indicated the use of checklists during peer review processes

to verify developers are following the organization’s development standards and best

practices.

I found similar acknowledgments of continuous verification through peer reviews

in the organizational documents. My review of the organizational documents confirmed

the importance of verification processes (see Table 2) during collaboration to reduce

technical debt. The Code Review Checklist document outlines a formal process for peer

reviews consisting of a developer self-assessment, a reviewer secondary assessment, a

team review meeting, and a final approval process. There were four similar documents

providing guidelines for design reviews, test reviews, and performance reviews. These

documents support Participants 1, 2, 4, and 5 who reported the verification processes

provide structure to the development process. Additionally, Participants 2 and 8 reported

peer reviews require a formal sign-off indicating approval of the review. These four

checklist documents define the roles and responsibilities of team members in the peer

review process, identify key metrics to assess, and require team members to assign a pass

or fail to each metric. The organizational document, Code Review Checklist, requires

team members to assess 142 different criteria spanning 17 major topics. These documents

support Participants 2, 3, 4, 5, and 8 who reported the use of checklists during peer

103

review processes to verify developers are following development best practices.

Researchers have also found combining collaboration and verification processes useful in

reducing technical debt.

Table 2

Themes for Continuous Verification of Best Practices

Major/minor theme Participant count Document count

Continuous verification of best practices 8 13

 Verifying best practices important 8 8

 Verify designs using frameworks 5 2

 Verify code using checklists 5 5

 Verify completeness with sign offs 4 6

 Verification provides structure 4 3

The usefulness of collaboration for verification and validation of best practices

was an important theme in scholarly literature for managing technical debt that aligned

with the data from my interviews and organizational documents. Inayat and Salim (2015)

found software engineers use collaboration to facilitate discussions regarding best

practices to improve software quality. Fairley and Willshire (2017) found that robust

verification and validation processes could reduce technical debt by identifying violations

of best practices during the development cycle. These studies support Participants 3, 4,

and 5 who indicated the use of collaboration activities throughout the entire development

process to verify developers are following best practices. These studies also align with

104

the organizational documents I collected confirming the importance of verification and

validation processes during collaboration. Li, Liang, and Avgeriou (2015) asserted that

violations of best practices cause architectural technical debt by compromising quality,

maintainability, and evolvability. Tang and Lau (2014) found developers use design

reviews to identify and correct potential design issues and use checklists to facilitate

collaboration between architects, designers, and reviewers. These studies support the

design guidelines and naming standards document that provide a checklist of 25 design

best practices that require designers and reviewers verify before actual coding might

begin. Additionally, Participant 5 claims that because all subsequent activities depend on

design reviews, they are the most effective type of collaboration for preventing technical

debt. Researchers have provided verification and validation strategies to reduce technical

debt.

Software development teams could effectively reduce technical debt by

establishing continuous verification processes using predefined checklists and designated

roles for team members. Fitzgerald and Stol (2017) asserted continuous planning,

verification, testing and other activities significantly improves the quality and resilience

of software by detecting and fixing issues as soon as possible. Additionally, Fairley and

Willshire (2017) found robust verification and validation processes reduce technical debt

by identifying violations of best practices during the development cycle. These studies

align with the participants who described continuous collaboration activities involving

planning, verification, and testing as part of their overall strategy of reducing technical

debt. Fitzgerald and Stol found peer reviews using predefined checklists were more

105

effective in achieving quality than reviews performed without a checklist. Additionally,

Lopez-Martín, Nassif, and Abran (2017) found design review and code review checklists

provide a framework to software development projects focusing on finding defects at

earlier stages in the development cycle. These studies support the organizational

documents I collected outlining formal checklists for peer review processes. Participants

2, 3, 4, 5, and 8 reported checklists were an important part of their peer review processes

to verify best practices.

The conceptual framework provided insight into the participants’ perceived

usefulness of verification processes. I found participants believe verification and

validation processes are important to the team and a mandatory part of the development

process. Participants 2 and 8 reported checklists are a mandatory part of the development

process requiring a formal sign off. Additionally, the checklist documents I reviewed also

require a formal approval indicating they are mandatory. This aligns with Venkatesh and

Davis (2000) who described TAM2 construct subjective norm has a positive effect on

perceived usefulness. Moreover, Riemenschneider et al. (2002) found that developers

perceiving a development process as mandatory are more likely to adopt such methods.

Participant 3 reported the entire team reviews checklists so it is important they are fully

completed. Furthermore, Participant 4 reported an expectation that everyone must go

through the best practices checklists. This aligns with Venkatesh and Davis who found in

TAM2 that the importance to a person’s social group significantly increases perceived

usefulness. Additionally, Nel et al. (2016) found software developers were more likely to

use verification processes if they perceive the processes as important to others. Subjective

106

norm had a positive influence on participants’ perceived usefulness of collaboration and

their intention to use collaboration.

I found that participants believe verification processes are relevant to their job,

improves software quality, and provides tangible results. These findings are consistent

with Venkatesh and Davis (2000) who theorized in TAM2 that job relevance, output

quality, and result demonstrability influence perceived usefulness and intention to use.

Participant 4 indicated verification processes and checklists were an important part of

their software development methodology and that they expect everyone to be part of the

process. This aligns with Overhage and Schlauderer (2012) who found developers were

more likely to use a development process if they found it compatible with their job.

Participant 2 reported using checklists during peer reviews improves the quality of the

software they deliver. This corresponds to Wallace and Sheetz (2014) who examined

output quality in TAM2 and found software developers are more likely to perform a

software verification processes that increase the quality of the software they create. The

organizational document, Code Review Checklist, requires developers and reviewers to

assess 142 different criteria and share the results with the entire team. This aligns to

Riemenschneider et al. (2002) who measured result demonstrability of TAM2 by the

ability of developers to easily ascertain results, explain results to others, and easily

communicate results to others. These studies support the participants’ views that

verification processes and checklists are pertinent development activities, improve

software quality, and provide tangible results.

107

Software development leaders should establish continuous verification processes

as a mandatory part of their software development processes. The verification processes

should use predefined checklists that align software quality measures with development

best practices. Software development leaders should clearly define the roles,

responsibilities, and expectations of developers and reviewers during verification

processes. The verification processes should be transparent and the results shared with

the entire development team. Continuous verification processes are an important part of

the overall collaboration strategies for reducing technical debt in an organization.

Theme 3: Participatory Culture Improves Clarity and Collectiveness

The third theme that emerged from this study was establishing a participatory

culture reduces technical debt by improving clarity, awareness, and collectiveness in

software development. Participants reported a collaborative culture that promotes

participation, understanding, awareness, and collectiveness (see Table 3) helping to

reduce technical debt. Participants 3 and 5 reported onsite, offsite and offshore team

members are all included in peer reviews and are equally involved in the collaboration.

Additionally, Participants 3, 4, and 5 indicated getting everyone’s point of view improves

understanding, identifies potential issues, and lowers project risk. In addition, during my

tour of the organization’s site, I observed that the team referred to large conference rooms

as collaboration rooms, which aligned with the participatory nature of the team.

Participants 2 and 5 reported a social component to collaboration that improves the team

performance by enhancing relationships and awareness of teammates. Additionally,

Participants 1 and 5 reported face-to-face collaboration is preferred because it fosters

108

participation, knowledge sharing, and understanding among the team. Moreover,

Participants 1 and 2 indicated their culture of collaboration improves problem-solving,

defect detection, and software quality, which ultimately reduce technical debt. The

organizational documents I collected failed to consider the role of participatory culture in

collaboration. Researchers have also found the relationship between participatory culture

and collaboration in software development teams was useful in reducing technical debt.

Table 3

Themes for Participatory Culture Improves Clarity and Collectiveness

Major/minor theme Participant count

Participatory culture improves clarity and collectiveness 6

 Participation encouraged and promoted 4

 Direct communication is important 5

 Environment supports collectiveness 3

 Culture improves clarity 5

The impact of software development culture on collaboration and software quality

was an important theme in the scholarly literature. Storey, Zagalsky, Filho, Singer,

German (2017) contend a participatory culture is one that lowers barriers to participation,

supports community building, facilitates mentoring, and values subjective norm.

Additionally, Santos, Goldman, and de Souza (2015) found the adaptive capacity of the

organizational environment affects the effectiveness of inter team knowledge sharing.

These studies support participants’ reports of a culture that promotes participation,

109

awareness, sharing, and collectiveness. Storey et al. found most developers find face-to-

face communication the best method to discuss ideas, provide explanations, and avoid

misunderstandings. Moreover, Femmer et al. (2016) found fewer ambiguities during

software development positively affects software quality reducing technical debt. These

studies align with Participants 1 and 5 who reported face-to-face collaboration allowed

them to clarify their understandings and avoid uncertainties in the development process.

Carver et al. (2015) found the number of collaborators during a peer review positively

correlates to software quality. Similarly, McIntosh, Kamei et al. (2015) found the higher

levels of participation in peer reviews results in lower defect rates. These studies confirm

reports from Participants 3 and 5 that high levels of participation in collaboration

activities provide multiple points of view. A study by Rola, Kuchta, Kopczyk (2016)

found open working environments and shared office spaces significantly improve

collaboration. This supports Participants 1 and 2 who reported teams occupied large,

open rooms to facilitate collaboration. The conceptual framework provided insight into

the impact of a participatory culture on job performance.

I found that participants believe a participatory culture improves their job

performance and reduces technical debt. Participants 3 and 5 reported high levels of

participation in collaboration activities improves the quality of their work. This aligns

with Cheung and Vogel (2013) who found user participation in collaboration is an

indicator of TAM2’s perceived usefulness of collaboration in enhancing one’s job

performance. Participants 3, 4, and 5 indicated collaboration improves understanding,

awareness, and perceptions. This corresponds with Thakurta and Roy (2012) who posited

110

project uncertainty is the antecedent of result demonstrability defined by TAM2. They

found clarity, awareness, and visibility on development projects positively influences the

perceived usefulness of the activities. Participants 2 and 5 reported that collaboration

contains a social component that improved team cohesion. This matches Overhage and

Schlauderer (2012) who found developer perceptions of team cohesiveness derived from

close collaboration with other developers influences TAM2’s output quality. Participants

1 and 2 reported their single, shared office environment encourages collaboration and

knowledge sharing within the team. This corresponds to Thakurta and Roy who found a

project environment encouraging participation influences TAM2’s perceived usefulness

and ease of use of development activities.

Software development leaders should establish a software development culture

that lowers barriers to participation, supports team building, facilitates mentoring, and

fosters collaboration. Leaders should promote an adaptive, open working environment

that promotes direct communication, awareness, and collectiveness. Encouraging a

participatory culture will improve software quality and reduce technical debt by avoiding

uncertainty in development projects, obtaining multiple points of view, and increasing

team cohesion. A participatory culture and open environment are an important part of the

overall collaboration strategies for reducing technical debt in an organization.

Theme 4: Collaborative Tools Support Distributed Teams

The final theme that emerged from this study was that collaborative tools are

necessary to support awareness, knowledge sharing, and participation in distributed

software development teams. Participants reported WebEx, Skype, and SharePoint (see

111

Table 4) promoted participation, awareness, and knowledge sharing with distributed team

members helping to reduce the risk of technical debt. WebEx is a tool primarily used for

online meetings and video conferencing. Skype is a tool primarily used for instant

messaging, but also supports online meetings, screen sharing, and video conferencing.

SharePoint is a collaborative platform for sharing files and information. Participants 4, 5,

and 7 reported using WebEx to extend participation in meetings, peer reviews, and

training sessions to distributed team members. Additionally, Participants 1 and 2 reported

that the interactive nature of online meetings makes it easier to ask questions and verify

team members’ understandings. Participants 3 and 8 reported instant messaging was the

fastest and most efficient method of exchanging knowledge, asking questions, and

clarifying interpretations. Additionally, Participant 1 reported using instant messaging to

facilitate group discussions within the team. Participants 1 and 5 indicated that

SharePoint is a knowledge-sharing repository to store project specific documents and

documents related to software development best practices. All participants indicated the

use of email for collaborating with remote team members was an important method for

collaboration. However, Participants 1, 2, 4, and 5 indicated that they use email only

when a person was not available using instant messaging or online meetings.

My review of the organizational documents confirmed the importance of tools

(see Table 4) for collaborating with distributed team members. The Agile Software

Development Methods document indicated the use of video conferencing and instant

messaging tools for use with geographically dispersed teams. This corroborates the seven

participants who reported the use of WebEx or Skype for video conferencing and instant

112

messaging. The organizational document, Tableau Drive Manual, recommends

collaborative capacity building using virtual meetings. This aligns with Participants 4, 5,

and 7 who reported using virtual online meetings to extend participation to distributed

team members. The Agile Kanban Methods document specified the use of Jira as a tool to

share planning, tracking, and status information of team members. This supports

Participants 2 and 5 who reported using Jira to share awareness of team member

activities. There were three organizational documents containing links to other

documents located in SharePoint. This validates Participants 1 and 5 who indicated they

use SharePoint as a document and knowledge-sharing repository. Researchers have also

found collaborative tools useful in reducing technical debt in distributed development

environments.

Table 4

Themes for Collaborative Tools Support Distributed Teams

Major/minor theme Participant count document Count

Collaborative tools support distributed teams 8 6

 Online meetings (WebEx) 7 2

 Instant messaging (Skype) 7 1

 Email (Outlook) 8 0

 Document sharing (SharePoint, Jira, Box) 5 4

The benefits of collaborative tools in distributed development teams was an

important theme in the scholarly literature. Khan and Khan (2017) found that using

113

WebEx and Skype could improve team cohesion in geographically dispersed teams. This

aligns with Participants 4, 5, and 7 who reported using WebEx to include offshore team

members in meetings. Additionally, Khan and Khan found distributed development teams

could improve knowledge sharing, awareness, and understandings by using online

meetings and instant messaging. This supports Participants 1 and 2 who reported online

meetings make it easier to share knowledge and verify understandings. Giuffrida and

Dittrich (2013) found instant messaging improves awareness, facilitates knowledge

sharing, and mostly consists of asking questions. This aligns with Participants 3 and 8

who reported instant messaging was the most efficient method of exchanging knowledge

and asking questions. Furthermore, Giuffrida and Dittrich found instant messaging leads

to spontaneous, informal collaboration that is faster than email. This supports Participants

1, 2, 4, and 5 who indicated they use email only when a person was not available using

instant messaging. The conceptual framework provided insight into the perceived

usefulness and ease of use of collaborative tools in software development.

I found that participants’ perceived usefulness and ease of use of the collaborative

tools determine their intention to use the tools. Participants 1 and 2 reported WebEx

made it very easy to ask questions and verify understandings from any device. Participant

3 reported instant messaging was the easiest method of collaboration. This aligns with

Cheung and Vogel (2013) who found TAM2’s perceived ease of use significantly

influences the use of collaborative tools. Additionally, Park et al. (2014) found the

perceived ease of use of a teleconferencing system significantly influences the perceived

usefulness of the system. Participants 4 and 6 reported WebEx was very useful for

114

sharing knowledge, clarifying understandings, and using in team-based activities. This is

supported by Maruping and Magni (2015) who found the TAM2 construct perceived

usefulness could be measured by IT professionals’ belief that collaboration technology

would improve knowledge sharing, teamwork, and accessibility. Moreover, Godin et al.

(2017) found the perceived usefulness of WebEx to accomplish future work significantly

influences virtual team members’ intention to use WebEx. Participants 4, 5, and 7

reported collaborative tools were useful in fostering participation among offshore team

members. This aligns with Cheung and Vogel who found the TAM2 construct subjective

norm significantly influences the use of collaborative tools especially when team

members believe participation is important.

Applications to Professional Practice

This study identified collaboration strategies software development leaders could

apply to their development organizations to reduce the technical debt accumulated by

their developers. Software development leaders should consider a development

methodology that maximizes collaboration within their software development team to

reduce technical debt. Agile, Lean, Scrum and Kanban are examples of software

development methodologies the promote collaboration. The methodology should

establish formal planning and review processes that include status meetings, design

reviews, code reviews, and project retrospective meetings. Additionally, these processes

should establish objectives, identify quality metrics, highlight the importance of

collaboration, and align collaboration with the team’s goals. Software development

leaders need to ensure developers understand the usefulness and relevance of

115

collaboration for reducing technical debt and improving quality. Software development

leaders should emphasize the social influences of collaboration by making it mandatory,

promoting teamwork, and recognizing developers who perform well. Software

development leaders should develop methods to verify the effectiveness of the

collaboration activities.

Software development leaders should establish continuous verification methods as

a mandatory part of their software development processes. The verification processes

should use predefined checklists that align software quality measures with development

best practices. Sharing of all verification results with the team is important so the

developers can see the tangible results of their efforts. Software development leaders

should define the roles, responsibilities, and expectations of developers and reviewers

during verification processes. Verification processes will only be successful if developers

understand their obligations. The verification processes should be transparent and the

results shared with the entire development team. Continuous verification processes are an

important part of the overall collaboration strategies for reducing technical debt in an

organization. Developers will be more willing to participate in verification processes if

they understand the importance, view the processes as mandatory, and see quantifiable

results.

Software development leaders should establish a software development culture

that lowers barriers to participation, supports teamwork, facilitates mentoring, and fosters

collaboration. Collaboration is dependent upon participation and cannot exist without it.

Teamwork and mentoring allow developers to solve complex problems and learn from

116

each other. Leaders should promote an adaptive, open working environment that

promotes direct communication, awareness, and collectiveness. Direct communication is

fast, efficient, and reduces potential misunderstandings between development staff.

Improved awareness allows developers to identify areas where they might be able to

provide knowledge or help to others. Encouraging a participatory culture will improve

software quality and reduce technical debt by avoiding uncertainty in development

projects, obtaining multiple points of view, and increasing team cohesion. A participatory

culture and open environment are an important part of the overall collaboration strategies

for reducing technical debt in an organization.

Software development leaders should ensure developers have a variety of

collaboration tools available for their use. In addition to the normal email and document

sharing software, leaders should provide video conferencing and instant messaging

software. Video conferencing software such as WebEx will allow geographically

dispersed team members to participate in peer review and meetings. Instant messaging

software such as Skype will allow developers to partake in spontaneous, informal

collaboration that is more efficient than email. These collaborative tools will improve

knowledge sharing, awareness, teamwork, and accessibility. Software development

leaders should seek recommendations from developers on which tools they perceive the

most useful in their daily activities and the easiest to use. The availability of collaborative

tools is an important part of the overall collaboration strategies for reducing technical

debt.

117

Implications for Social Change

This study explored how collaboration among diverse individuals can benefit a

common goal of reducing technical debt by improving software quality. The benefits of

collaboration and software quality are not limited to the single organization in my study.

Collaboration extends far beyond software development and reaches every area of

society. Collaboration brings people of diverse backgrounds, different perspectives, and

varying skill sets together to achieve a common goal. This includes sharing knowledge

and working together to solve a common problem. A society only exists if people work

together. During collaboration activities, people improve their communication skills by

improving their ability to express themselves and interpret the communications of others.

Additionally, collaboration teaches people how to build relationships, establish trust, and

respect the ideas and opinions of others. The knowledge learned from this study can

provide positive social change both inside and outside of the workplace. A society cannot

exist without collaboration and society will benefit from improving peoples’ ability to

work together and fostering respect for one another.

The benefits of improved software quality also extend beyond the organization in

this study. Society has become increasingly dependent on computer software for most

daily tasks. Computer software controls transportation, energy, food and medical care,

which are vital components of any society. Poor software quality can disrupt society,

cause hardships, and even lead to death. A study by Wong, Li, Laplante, and Siok (2017)

found several instances of poor software quality that had severe adverse effects on

society. In 1992, technical debt in the London Ambulance Service’s new computer

118

dispatch system disrupted medical care that may have led to the deaths of 20 people

(Wong et al., 2017). Technical debt in an energy management system of an Ohio power

company caused a blackout in 2003 that affected over 50 million people and cost society

$13 billion (Wong et al., 2017). The knowledge learned from this study can help improve

the quality of software society depends on every day by preventing hardships and making

peoples’ lives better. As society’s dependence on computer software grows, this

knowledge will become more important.

Recommendations for Action

I explored the collaboration strategies used by an organization to reduce technical

debt created by software developers. The study findings showed an environment that

promotes collaboration, a culture that encourages participation, and accessibility to

collaborative tools successfully reduced technical debt in the case organization. Software

development leaders should adopt Agile based methodologies that emphasize

collaboration throughout the development life cycle. Additionally, leaders should

continuously verify adherence to best practices by requiring formal peer review processes

at all phases of development projects. It is essential for software development leaders to

define roles, responsibilities, and expectations of developers during peer reviews.

Collaboration is more likely to occur if it is a mandatory part of the daily development

activities.

Software development leaders should explore techniques to stimulate

participation and teamwork in collaboration activities. One technique could be to require

all developers participate in design and code reviews to improve clarity, awareness, and

119

visibility in projects. Another technique could be to assign pairs of developers to conduct

code reviews to improve teamwork. Moreover, pairing a senior and junior developer

during code reviews would allow the senior developer to mentor the junior developer.

Software development leaders should situate developers in large, open workspaces to

foster face-to-face collaboration. The availability of additional private meeting rooms for

team activities will minimize disruptions in the open workspaces.

The CIOs of organizations with multiple software development teams should

ensure the software development leaders are sharing collaboration strategies and results

with each other. Furthermore, CIOs should work with software development leaders to

ensure developers have a variety of collaboration tools available for their use. These tools

should include video conferencing and instant messaging software to improve

participation of dispersed team members.

In general, this study might be beneficial to key community stakeholders,

software development leaders, and the software development community. I will

disseminate a high-level summary of the results of this study to the community

stakeholders and research participants via email. Wherever possible, I intend to share the

research results using effective and appropriate platforms such as my place of

employment, lectures, conferences, trade journals, and training seminars.

Recommendations for Further Study

Several limitations of this study warrant further research. The research methods of

this study imposed limitations on the results due to the chosen design, participants,

organization, data collection, and other aspects of the study. The first limitation of this

120

study was the subjective nature of qualitative studies that might inject bias into the study.

Additionally, this study was limited to a single health care organization in the state of

California. I recommend additional qualitative research studies that include other

organizations, industries, and locations to see if the findings from new studies correspond

to my findings. The study findings were restricted to software development leaders due to

the narrow participant criteria of the study population. I recommend additional qualitative

studies explore the perceptions of software developers, database administrators, quality

assurance personnel, and others involved in software development projects. Another

limitation was that the data collection was limited to interview questions and

organizational documents. I recommend additional qualitative studies with expanded data

collection to include focus groups and observations from peer reviews and other

meetings. Lastly, this study was limited to a single case organization restricting the

generalizability of the results outside of the case organization. I recommend a

quantitative study to determine if the results of this study are generalizability outside of

the single case organization.

The study findings also identified areas that merit additional research. The study

findings highlighted the significance of collaboration in peer review meetings but did not

explore the actual procedures or observe actual meetings. Additionally, the use of

checklists in these meetings was also significant but the study did not explore the

contents of the checklists. I recommend further research explore the impact of peer

review techniques on collaboration and technical debt. One unexpected comment from a

participant was the notion that a development team could have too much collaboration. I

121

recommend further research explore the amount of collaboration on development teams

to identify if and when it incurs negative consequences.

Reflections

The doctoral study process was a journey filled with obstacles, but also

enlightenment. Each time I encountered an obstacle it was difficult, but I persevered and

expanded my knowledge in the process. During this doctoral study, I learned how to

conduct academic research, how to analyze research, and how research affects others.

During my journey, I found that I really enjoy learning, conducting research, and

discussing research with others.

Having been involved in software development for over two decades, I

understand the role of collaboration in projects and the benefits of minimizing technical

debt. I took painstaking efforts to remain objective during the study and prevent any

personal bias or preconceived notions from affecting the results. I acknowledged

potential biases throughout the research study when possible. Due to the semistructured

nature of the interview questions, it is possible that I unintentionally biased the research

through interactions with participants. I did my best to ensure the reliability and

credibility of this study. I believe I learned a lot from the participants in regards to the

social aspects of collaboration in software development.

Summary and Study Conclusions

Software development teams require a significant amount of collaboration to

produce high-quality software with minimal technical debt. Collaboration requires an

environment that encourages developer interactions, a culture that promotes developer

122

participation, and a set of tools that facilitate teamwork. Continuous verification

processes are the primary methods of collaboration to ensure developers follow best

practices and manage technical debt.

Cognitive and social processes effect the usefulness of collaboration. Software

development leaders should integrate collaborative activities into daily activities, develop

metrics to measure technical debt, and publicize the results. Additionally, leaders should

emphasize the importance of collaboration by making it mandatory, promoting

teamwork, and recognizing developers who perform well.

123

References

Abdullah, F., & Ward, R. (2016). Developing a general extended technology acceptance

model for e-learning (GETAMEL) by analysing commonly used external factors.

Computers in Human Behavior, 56, 238–256. doi:10.1016/j.chb.2015.11.036

Abma, T. A., & Stake, R. E. (2014). Science of the particular: An advocacy of

naturalistic case study in health research. Qualitative Health Research, 24(8),

1150–1161. doi:10.1177/1049732314543196

Aliyu, A. A., Bello, M. U., Kasim, R., & Martin, D. (2014). Positivist and non-positivist

paradigm in social science research: Conflicting paradigms or perfect partners?

Journal of Management and Sustainability, 4(3), 79. doi:10.5539/jms.v4n3p79

Alves, N. S. R., Mendes, T. S., de Mendonca, M. G., Spínola, R. O., Shull, F., & Seaman,

C. (2016). Identification and management of technical debt: A systematic

mapping study. Information and Software Technology, 70, 100–121.

doi:10.1016/j.infsof.2015.10.008

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., & Avgeriou, P. (2015). The

financial aspect of managing technical debt: A systematic literature review.

Information and Software Technology, 64, 52–73.

doi:10.1016/j.infsof.2015.04.001

Anfara, V. A., Brown, K. M., & Mangione, T. L. (2002). Qualitative analysis on stage:

Making the research process more public. Educational Researcher, 31(7), 28–38.

doi:10.3102/0013189X031007028

Anney, V. N. (2014). Ensuring the quality of the findings of qualitative research:

124

Looking at trustworthiness criteria. Journal of Emerging Trends in Educational

Research and Policy Studies, 5(2), 272–281. Retrieved from

http://jeteraps.scholarlinkresearch.com.

Astalin, P. K. (2013). Qualitative research designs: A conceptual framework.

International Journal of Social Science & Interdisciplinary Research, 2(1).

Retrieved from http://www.i-scholar.in/index.php/ijssir.

Avgeriou, P., Kruchten, P., Nord, R. L., Ozkaya, I., & Seaman, C. (2016). Reducing

friction in software development. IEEE Software, 33(1), 66–73.

doi:10.1109/MS.2016.13

Bacchelli, A., & Bird, C. (2013). Expectations, outcomes, and challenges of modern code

review. In Software Engineering (ICSE), 2013 35th International Conference on

(pp. 712–721). IEEE. doi:10.1109/ICSE.2013.6606617

Barczak, G. (2015). Publishing qualitative versus quantitative research. Journal of

Product Innovation Management, 32(5), 658. doi:10.1111/jpim.12277

Baysal, O., Kononenko, O., Holmes, R., & Godfrey, M. W. (2015). Investigating

technical and non-technical factors influencing modern code review. Empirical

Software Engineering, 1–28. doi:10.1007/s10664-015-9366-8

Behutiye, W. N., Rodríguez, P., Oivo, M., & Tosun, A. (2017). Analyzing the concept of

technical debt in the context of agile software development: A systematic

literature review. Information and Software Technology, 82, 139–158.

doi:10.1016/j.infsof.2016.10.004

Bell, M., Charles-Edwards, E., Kupiszewska, D., Kupiszewski, M., Stillwell, J., & Zhu,

125

Y. (2015). Internal migration data around the world: Assessing contemporary

practice. Population, Space and Place, 21(1), 1–17. doi:10.1002/psp.1848

Bengtsson, M. (2016). How to plan and perform a qualitative study using content

analysis. NursingPlus Open, 2, 8–14. doi:10.1016/j.npls.2016.01.001

Bernauer, J. A., Lichtman, M., Jacobs, C., & Robinson, S. (2013). Blending the old and

the new: Qualitative data analysis as critical thinking and using Nvivo with a

generic approach. Qualitative Report, 18(31), 1–10. Retrieved from

http://nsuworks.nova.edu/tqr/.

Beskow, L. M., Check, D. K., & Ammarell, N. (2014). Research participants’

understanding of and reactions to certificates of confidentiality. AJOB Empirical

Bioethics, 5(1), 12–22. doi:10.1080/21507716.2013.813596.

Biederer, M., Arguel, A., Liu, J., & Lau, A. (2014). From web-based to mobile:

Experiences of developing a personally controlled health management system.

Health Informatics Society of Australia, 8(1). Retrieved from

https://www.hisa.org.au/.

Birt, L., Scott, S., Cavers, D., Campbell, C., & Walter, F. (2016). Member checking: A

tool to enhance trustworthiness or merely a nod to validation? Qualitative Health

Research, 26(13), 1802–1811. doi:10.1177/1049732316654870

Boblin, S. L., Ireland, S., Kirkpatrick, H., & Robertson, K. (2013). Using Stake’s

qualitative case study approach to explore implementation of evidence-based

practice. Qualitative Health Research, 23(9), 1267–1275.

doi:10.1177/1049732313502128

126

Breed, B., Mentz, E., & van der Westhuizen, G. (2014). A metacognitive approach to pair

programming: Influence on metacognitive awareness. Electronic Journal of

Research in Educational Psychology, 12(1), 33–60. doi:10.14204/ejrep.32.13104

Caglayan, B., & Bener, A. B. (2016). Effect of developer collaboration activity on

software quality in two large scale projects. Journal of Systems and Software.

doi:10.1016/j.jss.2016.03.055

Caine, V., Estefan, A., & Clandinin, D. J. (2013). A return to methodological

commitment: Reflections on narrative inquiry. Scandinavian Journal of

Educational Research, 57(6), 574–586. doi:10.1080/00313831.2013.798833

Carver, J. C., Caglayan, B., Habayeb, M., Penzenstadler, B., & Yamashita, A. (2015).

Collaborations and code reviews. IEEE Software, 32(5), 27–29.

doi:10.1109/MS.2015.113

Castillo-Montoya, M. (2016). Preparing for interview research: The interview protocol

refinement framework. Qualitative Report, 21(5), 811–831. Retrieved from

http://nsuworks.nova.edu/tqr/.

Castleberry, A. (2014). NVivo 10 [software program]. Version 10. QSR International;

2012. American Journal of Pharmaceutical Education, 78(1).

doi:10.5688/ajpe78125

Chan, F. K. Y., & Thong, J. Y. L. (2009). Acceptance of agile methodologies: A critical

review and conceptual framework. Decision Support Systems, 46(4), 803–814.

doi:10.1016/j.dss.2008.11.009

Cheung, R., & Vogel, D. (2013). Predicting user acceptance of collaborative

127

technologies: An extension of the technology acceptance model for e-learning.

Computers & Education, 63(0), 160–175. doi:10.1016/j.compedu.2012.12.003

Cho, J. Y., & Lee, E.-H. (2014). Reducing confusion about grounded theory and

qualitative content analysis: Similarities and differences. Qualitative Report,

19(32), 1–20. Retrieved from http://nsuworks.nova.edu/tqr/.

Codabux, Z., & Williams, B. (2013). Managing technical debt: An industrial case study.

In Managing Technical Debt (MTD), 2013 4th International Workshop on (pp. 8–

15). IEEE. doi:10.1109/MTD.2013.6608672

Coman, I. D., Robillard, P. N., Sillitti, A., & Succi, G. (2014). Cooperation, collaboration

and pair-programming: Field studies on backup behavior. Journal of Systems and

Software, 91, 124–134. doi:10.1016/j.jss.2013.12.037

Congyingzi, Z., & Yan, W. (2016). A flowchart for rapid technical debt management

decision making. Journal of Software, 11(2), 212–219.

doi:10.17706/jsw.11.2.212-219

Conrad, E. D. (2013). Willingness to use strategic IT innovations at the individual level:

An empirical study synthesizing DOI and TAM theories. Academy of Information

& Management Sciences Journal, 16(1), 99–110. Retrieved from

http://www.alliedacademies.org/.

Cook, A. F., Hoas, H., & Joyner, J. C. (2013). The Protectors and the Protected: What

Regulators and Researchers Can Learn from IRB Members and Subjects.

Narrative Inquiry in Bioethics, 3(1), 51–65. doi:10.1353/nib.2013.0014

Cronin, C. (2014). Using case study research as a rigorous form of inquiry. Nurse

128

Researcher, 21(5), 19–27. doi:10.7748/nr.21.5.19.e1240

Crowhurst, I. (2013). The fallacy of the instrumental gate? Contextualising the process of

gaining access through gatekeepers. International Journal of Social Research

Methodology, 16(6), 463–475. doi:10.1080/13645579.2013.823282

Cruz, E.V., & Higginbottom, G. (2013). The use of focused ethnography in nursing

research. Nurse Researcher, 20(4), 36–43 8p.

doi:10.7748/nr2013.03.20.4.36.e305

Cubric, M. (2013). An agile method for teaching agile in business schools. The

International Journal of Management Education, 11(3), 119–131.

doi:10.1016/j.ijme.2013.10.001

Cunningham, W. (1992). The WyCash portfolio management system. In ACM SIGPLAN

OOPS Messenger (Vol. 4, pp. 29–30). doi:10.1145/157709.157715

Curtis, B., Sappidi, J., & Szynkarski, A. (2012). Estimating the principal of an

application’s technical debt. IEEE Software, 29(6), 34–42.

doi:10.1109/MS.2012.156

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer

technology: A comparison of two theoretical models. Management Science, 35(8),

982–1003. doi:10.1287/mnsc.35.8.982

Davis Jr, F. D. (1986). A technology acceptance model for empirically testing new end-

user information systems: Theory and results (Doctoral dissertation).

Massachusetts Institute of Technology. Retrieved from

http://hdl.handle.net/1721.1/15192.

129

De Massis, A., & Kotlar, J. (2014). The case study method in family business research:

Guidelines for qualitative scholarship. Journal of Family Business Strategy, 5(1),

15–29. doi:10.1016/j.jfbs.2014.01.007

DeFeo, D.J. (2013). Toward a model of purposeful participant inclusion: Examining

deselection as a participant risk. Qualitative Research Journal, 13(3), 253–264.

doi:10.1108/qrj-01-2013-0007

Denscombe, M. (2013). The role of research proposals in business and management

education. International Journal of Management Education, 11(3), 142-149.

doi:10.1016/j.ijme.2013.03.001

Denzin, N. K. (1978). Sociological methods. New York, NY: McGraw-Hill.

di Bella, E., Fronza, I., Phaphoom, N., Sillitti, A., Succi, G., & Vlasenko, J. (2013). Pair

programming and software defects-A large, industrial case study. IEEE

Transactions on Software Engineering, 39(7), 930–953. doi:10.1109/TSE.2012.68

di Russo, D., & Douglas, M. (2013). The validity of the technology acceptance model in

collaboration system software. Business and Management Review, 3, 1–5.

Retrieved from http://www.bmr.businessjournalz.org/.

Dikko, M. (2016). Establishing construct validity and reliability: Pilot testing of a

qualitative interview for research in Takaful (Islamic Insurance). Qualitative

Report, 21(3), 521–528. Retrieved from http://nsuworks.nova.edu/tqr/.

Donaldson, D. R. (2016). The digitized archival document trustworthiness scale.

International Journal of Digital Curation, 11(1), 252–270.

doi:10.2218/ijdc.v11i1.387

130

Doody, O., & Noonan, M. (2013). Preparing and conducting interviews to collect data.

Nurse Researcher, 20(5), 28–32 5p. doi:10.7748/nr2013.05.20.5.28.e327

Dullemond, K., Van Gameren, B., & Van Solingen, R. (2014). Collaboration spaces for

virtual software teams. Software, IEEE, 31(6), 47–53. doi:10.1109/MS.2014.105

Dunne, B., Pettigrew, J., & Robinson, K. (2016). Using historical documentary methods

to explore the history of occupational therapy. British Journal of Occupational

Therapy, 79(6), 376–384. doi:10.1177/0308022615608639

Edwards-Jones, A. (2014). Qualitative data analysis with NVIVO. Journal of Education

for Teaching, 40(2), 193–195. doi:10.1080/02607476.2013.866724

Eliasson, U., Martini, A., Kaufmann, R., & Odeh, S. (2015). Identifying and visualizing

architectural debt and its efficiency interest in the automotive domain: A case

study. In Managing Technical Debt (MTD), 2015 IEEE 7th International

Workshop on (pp. 33–40). IEEE. doi:10.1109/MTD.2015.7332622

Elo, S., Kaariainen, M., Kanste, O., Polkki, T., Utriainen, K., & Kyngas, H. (2014).

Qualitative Content Analysis. SAGE Open, 4(1). doi:10.1177/2158244014522633

Eservel, U. Y. (2014). IT-Enabled knowledge creation for open innovation. Journal of

the Association for Information Systems, 15(11), 805–834. Retrieved from

http://aisel.aisnet.org/jais/.

Esichaikul, V., Win, M. A., Bechter, C., & Rehman, M. (2013). Development and

evaluation of wiki collaboration space for e-learning. Journal of Enterprise

Information Management, 26(5), 536–552. doi:10.1108/jeim-07-2013-0045

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling

131

and purposive sampling. American Journal of Theoretical and Applied Statistics,

5(1), 1–4. doi:10.11648/j.ajtas.20160501.11

Evans, R. D., Gao, J. X., Martin, N., & Simmonds, C. (2015). Integrating social

knowledge and collaboration tools into dispersed product development.

International Journal of Advanced Corporate Learning, 8(2), 20–27.

doi:10.3991/ijac.v8i2.4548

Fagan, M. (1976). Design and Code Inspections to Reduce Errors in Program

Development. IBM Systems Journal, 15(3). doi:10.1147/sj.153.0182

Fairley, R. E., & Willshire, M. J. (2017). Better now than later: Managing technical debt

in systems development. Computer, 50(5), 80–87. doi:10.1109/MC.2017.124

Femmer, H., Fernandez, D. M., Wagner, S., & Eder, S. (2016). Rapid quality assurance

with requirements smells. Journal of Systems and Software.

doi:10.1016/j.jss.2016.02.047

Ferreria, R., Buttell, F., & Ferreria, S. (2015). Ethical considerations for conducting

disaster research with vulnerable populations. Journal of Social Work Values and

Ethics, 12(1), 379–384. Retrieved from http://jswve.org/.

Ferzund, J., Yasrab, R., & Razzaq, S. (2014). Web 2.0 and collaborative software

development. International Journal of Software Engineering and Its Applications,

8(7), 107–120. doi:10.14257/ijseia.2014.8.7,09

Fetters, M. D., Curry, L. A., & Creswell, J. W. (2013). Achieving integration in mixed

methods designs - Principles and practices. Health Services Research, 48(6pt2),

2134–2156. doi:10.1111/1475-6773.12117

132

Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and

agenda. Journal of Systems and Software, 123, 176–189.

doi:10.1016/j.jss.2015.06.063

Fletcher, J., Sarkani, S., & Mazzuchi, T. A. (2014). A technology adoption model for

broadband Internet adoption in India. Journal of Global Information Technology

Management, 150–168. doi:10.1080/1097198x.2014.951294

Foganholi, L. B., Garcia, E. R., Eler, D. M., Correia, R. C. M., & Junior, C. O. (2015).

Supporting technical debt cataloging with TD-Tracker tool. Advances in Software

Engineering, 2015, 1–12. doi:10.1155/2015/898514

Fusch, P. I., & Ness, L. R. (2015). Are we there yet? Data saturation in qualitative

research. Qualitative Report, 20(9), 1408–1416. Retrieved from

http://nsuworks.nova.edu/tqr/.

Gale, N. K., Heath, G., Cameron, E., Rashid, S., & Redwood, S. (2013). Using the

framework method for the analysis of qualitative data in multi-disciplinary health

research. BMC Medical Research Methodology, 13(1), 117. doi:10.1186/1471-

2288-13-117

Giuffrida, R., & Dittrich, Y. (2013). Empirical studies on the use of social software in

global software development–A systematic mapping study. Information and

Software Technology, 55(7), 1143–1164. doi:10.1016/j.infsof.2013.01.004

Giuffrida, R., & Dittrich, Y. (2015). A conceptual framework to study the role of

communication through social software for coordination in globally-distributed

software teams. Information and Software Technology, 63, 11–30.

133

doi:10.1016/j.infsof.2015.02.013

Godin, J., & Goette, T. (2013). A pilot study of virtual teamwork training.

Communications of the IIMA, 13(2), 29. Retrieved from

http://scholarworks.lib.csusb.edu/ciima/.

Godin, J., Leader, L., Gibson, N., Marshall, B., Poddar, A., & Cardon, P. W. (2017).

Virtual teamwork training: Factors influencing the acceptance of collaboration

technology. International Journal of Information and Communication

Technology, 10(1), 5–23. doi:10.1504/IJICT.2017.10001305

Greene, M. J. (2014). On the inside looking in: Methodological insights and challenges in

conducting qualitative insider research. Qualitative Report, 19(29), 1–13.

Retrieved from http://nsuworks.nova.edu/tqr/.

Guo, Y., Spinola, R. O., & Seaman, C. (2014). Exploring the costs of technical debt

management - A case study. Empirical Software Engineering, 21(1), 159–182.

doi:10.1007/s10664-014-9351-7

Gupta, S., Bhattacharya, V., & Singha, M. (2013). Pair programming “Potential benefits

and threats”. International Journal of Advanced Computer Research, 3(1), 108–

113. Retrieved from http://accentsjournals.org/journals.php?journalsId=103.

Haahr, A., Norlyk, A., & Hall, E. O. (2014). Ethical challenges embedded in qualitative

research interviews with close relatives. Nursing Ethics, 21(1), 6–15.

doi:10.1177/0969733013486370

Hall, T., Min, Z., Bowes, D., & Yi, S. (2014). Some code smells have a significant but

small effect on faults. ACM Transactions on Software Engineering &

134

Methodology, 23(4), 33:1–33:39. doi:10.1145/2629648

Hammer, M. J. (2016). Informed consent in the changing landscape of research.

Oncology Nursing Forum, 43(5), 558. doi:10.1188/16.onf.558-560

Hanson, J. L., Balmer, D. F., & Giardino, A. P. (2011). Qualitative research methods for

medical educators. Academic Pediatrics, 11(5), 375–386.

doi:10.1016/j.acap.2011.05.001

Harvey, L. (2015). Beyond member-checking: A dialogic approach to the research

interview. International Journal of Research & Method in Education, 38(1), 23–

38. doi:10.1080/1743727X.2014.914487

Hayes, B., Bonner, A., & Douglas, C. (2013). An introduction to mixed methods research

for nephrology nurses. Renal Society of Australasia Journal, 9(1), 8–14.

Retrieved from https://www.renalsociety.org/.

Heikkila, V. T., Paasivaara, M., Lasssenius, C., Damian, D., & Engblom, C. (2017).

Managing the requirements flow from strategy to release in large-scale agile

development: A case study at Ericsson. Empirical Software Engineering, 1–45.

doi:10.1007/s10664-016-9491-z

Hewitt, J. (2007). Ethical components of researcher-researched relationships in

qualitative interviewing. Qualitative Health Research, 17(8), 1149–1159.

doi:10.1177/1049732307308305

Hoare, Z., & Hoe, J. (2013). Understanding quantitative research: Part 2. Nursing

Standard, 27(18), 48–55. doi:10.7748/ns2013.01.27.18.48.c9488

Holvitie, J., Leppanen, V., & Hyrynsalmi, S. (2014). Technical debt and the affect of

135

agile software development practices on it - An industry practitioner survey. In

Managing Technical Debt (MTD), 2014 Sixth International Workshop on (pp. 35–

42). IEEE. doi:10.1109/MTD.2014.8

Holvitie, J., & Leppanen, V. (2015). Examining technical debt accumulation in software

implementations. International Journal of Software Engineering and Its

Applications, 9(6), 109–124. doi:ijseia.2015.9.6.12

Hoyland, S., Hollund, J. G., & Olsen, O. E. (2015). Gaining access to a research site and

participants in medical and nursing research: A synthesis of accounts. Medical

Education, 49(2), 224–232. doi:10.1111/medu.12622

Huang, W.-H. D., Hood, D. W., & Yoo, S. J. (2013). Gender divide and acceptance of

collaborative Web 2.0 applications for learning in higher education. Internet and

Higher Education, 16, 57–65. doi:10.1016/j.iheduc.2012.02.001

Hussein, A. (2015). The use of triangulation in social sciences research: Can qualitative

and quantitative methods be combined? Journal of Comparative Social Work,

4(1). Retrieved from http://journal.uia.no/index.php/JCSW.

Inayat, I., & Salim, S. S. (2015). A framework to study requirements-driven collaboration

among agile teams: Findings from two case studies. Computers in Human

Behavior, 51, Part B, 1367–1379. doi:10.1016/j.chb.2014.10.040

Islam, M. M. (2014). Dealing with Qualitative Methods in Bangladesh: The Potentials

and Pitfalls of Research Design and Fieldwork. Oriental Anthropologists, 14(1),

13-26. Retrieved from http://www.printspublications.com/.

Izurieta, C., & Bieman, J. (2013). A multiple case study of design pattern decay, grime,

136

and rot in evolving software systems. Software Quality Journal, 21(2), 289–323.

doi:10.1007/s11219-012-9175-x

Jacob, S. A., & Furgerson, S. P. (2012). Writing interview protocols and conducting

interviews: Tips for students new to the field of qualitative research. Qualitative

Report, 17(42), 1–10. Retrieved from http://nsuworks.nova.edu/tqr/.

Jayalakshmi, V. J., Kavitha, R. K., & Niroza, S. (2016). A study on pair programming

effectiveness in a computer laboratory course. International Journal of Science,

Technology & Management, 5(1). Retrieved from http://www.ijstm.com/.

Jordan, H. S. (2013). Maximizing sampling efficiency. Applied Mathematics, 4(11),

1547. doi:10.4236/am.2013.411209

Judkins-Cohn, T. M., Kielwasser-Withrow, K., Owen, M., & Ward, J. (2014). Ethical

principles of informed consent: Exploring nurses’ dual role of care provider and

researcher. Journal of Continuing Education in Nursing, 45(1), 35–42.

doi:10.3928/00220124-20131223-03

Jun, C.-J., Lee, J.-H., & Jeon, I.-S. (2014). Research about factor affecting the continuous

use of cloud storage service: user factor, system factor, psychological switching

cost factor. Journal of Society for E-Business Studies, 19(1).

doi:10.7838/jsebs.2014.19.1.015

Kasemvilas, S., & Olfman, L. (2013). Improvement of MediaWiki to support mandatory

collaboration. Interactive Technology and Smart Education, 10(3), 230–246.

doi:10.1108/itse-05-2013-0009

Kavoura, A., & Bitsani, E. (2014). Methodological considerations for qualitative

137

communication research. Procedia - Social and Behavioral Sciences, 147, 544–

549. doi:10.1016/j.sbspro.2014.07.156

Kemparaj, U., & Chavan, S. (2013). Qualitative research: A brief description. Indian

Journal of Medical Sciences, 67(3-4), 89–98. doi:10.4103/0019-5359.121127

Khan, R. A., & Khan, S. U. (2017). Empirical exploration of communication and

coordination practices in offshore software development outsourcing.

Proceedings of the Pakistan Academy of Sciences: A. Physical and

Computational Sciences, 54(1), 41.

Khayati, S., & Zouaou, S. K. (2013). Perceived usefulness and use of information

technology: The moderating influences of the dependence of a subcontractor

towards his contractor. Journal of Knowledge Management, Economics and

Information Technology, 3(6). Retrieved from http://www.scientificpapers.org/.

Kirkwood, A., & Price, L. (2013).Examining some assumptions and limitations of

research on the effects of emerging technologies for teaching and learning in

higher education. British Journal of Educational Technology, 44, 536-543.

doi:10.1111/bjet.12049

Kish, L. (1979). Samples and censuses. International Statistical Review, 99–109.

Retrieved from http://www.isi-web.org/.

Kish, L., & Verma, V. (1986). Complete censuses and samples. Journal of Official

Statistics, 2(4), 381–395. Retrieved from http://www.degruyter.com/view/j/jos.

Koelsch, L. E. (2013). Reconceptualizing the member check interview. International

Journal of Qualitative Methods, 12(1), 168–179.

138

doi:10.1177/160940691301200105

Krishna, V., & Basu, A. (2015). A systematic method to evaluate the software

engineering practices for minimizing technical debt. International Journal of

Computer Applications, 131(4), 21–25. doi:10.5120/ijca2015907295

Lala, G. (2014). The emergence and development of the technology acceptance model

(TAM). Marketing From Information to Decision, (7), 149–160. Retrieved from

http://econ.ubbcluj.ro/mid/.

Lamb, D. (2013a). Promoting the case for using a research journal to document and

reflect on the research experience. The Electronic Journal of Business Research

Methods, 11(2), 84–91. Retrieved from http://www.ejbrm.com/.

Lamb, D. (2013b). Research in the first person: Reflection on the research experience

using a research journal. Market & Social Research, 21(2). Retrieved from

https://www.amsrs.com.au/.

Largent, E., Grady, C., Miller, F. G., & Wertheimer, A. (2013). Misconceptions about

coercion and undue influence: reflections on the views of IRB members.

Bioethics, 27(9), 500–507. doi: 10.1111/j.1467-8519.2012.01972.x

Lavhengwa, T. J., van der Walt, J. S., & Lavhengwa, E. M. (2014). Factors influencing e-

collaboration for knowledge development and innovation. South African Journal

of Information Management, 16(1), 1–8. doi:10.4102/sajim.v16i1.588

Lee, D. Y., & Lehto, M. R. (2013). User acceptance of YouTube for procedural learning:

An extension of the Technology Acceptance Model. Computers & Education, 61,

193–208. doi:10.1016/j.compedu.2012.10.001

139

Lesser, E., & Ban, L. (2016). How leading companies practice software development and

delivery to achieve a competitive edge. Strategy & Leadership, 44(1), 41–47.

doi:10.1108/SL-11-2015-0083

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt

and its management. Journal of Systems and Software, 101, 193–220.

doi:10.1016/j.jss.2014.12.027

Li, Z., Liang, P., & Avgeriou, P. (2015). Architectural technical debt identification based

on architecture decisions and change scenarios. In Software Architecture

(WICSA), 2015 12th Working IEEE/IFIP Conference on (pp. 65–74). IEEE.

doi:10.1109/WICSA.2015.19

Li, Z., Liang, P., Avgeriou, P., Guelfi, N., & Ampatzoglou, A. (2014). An empirical

investigation of modularity metrics for indicating architectural technical debt. In

Proceedings of the 10th International ACM Sigsoft Conference on Quality of

Software Architectures (pp. 119–128). Marcq-en-Bareul, France: ACM.

doi:10.1145/2602576.2602581

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Newbury, CA: Sage

Publications.

Licorish, S. A., & MacDonell, S. G. (2014). Understanding the attitudes, knowledge

sharing behaviors and task performance of core developers: A longitudinal study.

Information and Software Technology, 56(12), 1578–1596.

doi:10.1016/j.infsof.2014.02.004

Linhares, G. B. R., Borges, M. R. S., & Antunes, P. (2012). Collaboration and conflict in

140

software review meetings. International Journal of Information Technology &

Decision Making, 11(6), 1065–1085. doi:10.1142/s0219622012400159

Lopez-Martín, C., Nassif, A. B., & Abran, A. (2017). A training process for improving

the quality of software projects developed by a practitioner. Journal of Systems

and Software, 131, 98–111. doi:10.1016/j.jss.2017.05.050

Lucas, S. R. (2014). Beyond the existence proof: Ontological conditions, epistemological

implications, and in-depth interview research. Quality & Quantity, 48(1), 387–

408. doi:10.1037/a0038087

MacCormack, A., & Sturtevant, D. J. (2016). Technical debt and system architecture:

The impact of coupling on defect-related activity. Journal of Systems and

Software. doi:10.1016/j.jss.2016.06.007

Magdaleno, A. M., de Oliveira Barros, M., Werner, C. M. L., de Araujo, R. M., &

Batista, C. F. A. (2015). Collaboration optimization in software process

composition. Journal of Systems and Software, 103, 452–466.

doi:10.1016/j.jss.2014.11.036

Malterud, K., Siersma, V. D., & Guassora, A. D. (2015). Sample size in qualitative

interview studies: Guided by information power. Qualitative Health Research, 1–

8. doi:10.1177/1049732315617444

Mangalaraj, G., Nerur, S., Mahapatra, R., & Price, K. H. (2014). Distributed cognition in

software design: An experimental investigation of the role of design patterns and

collaboration. MIS Quarterly, 38(1), 249–A5. Retrieved from

http://www.misq.org/.

141

Marshall, B., Cardon, P., Poddar, A., & Fontenot, R. (2013). Does sample size matter in

qualitative research?: A review of qualitative interviews in IS research. Journal of

Computer Information Systems, 54(1), 11–22.

doi:10.1080/08874417.2013.11645667

Martinez, Y., Cachero, C., & Melia, S. (2013). MDD vs. traditional software

development: A practitioner’s subjective perspective. Information and Software

Technology, 55(2), 189–200. doi:10.1016/j.infsof.2012.07.004

Martini, A., Bosch, J., & Chaudron, M. (2015). Investigating architectural technical debt

accumulation and refactoring over time: A multiple-case study. Information and

Software Technology, 67, 237–253. doi:10.1016/j.infsof.2015.07.005

McDermid, F., Peters, K., Jackson, D., & Daly, J. (2014). Conducting qualitative research

in the context of pre-existing peer and collegial relationships. Nurse Researcher,

21(5), 28. doi:10.7748/nr.21.5.28.e1232

McIntosh, M. J., & Morse, J. M. (2015). Situating and constructing diversity in semi-

structured interviews. Global Qualitative Nursing Research, 2, 1–12.

doi:10.1177/2333393615597674

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014). The impact of code review

coverage and code review participation on software quality: A case study of the

QT, VTK, and ITK projects. In Proceedings of the 11th Working Conference on

Mining Software Repositories (pp. 192–201). Hyderabad, India: ACM.

doi:10.1145/2597073.2597076

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2015). An empirical study of the

142

impact of modern code review practices on software quality. Empirical Software

Engineering, 1–44. doi:10.1007/s10664-015-9381-9

Mealer, M., & Jones RN, J. (2014). Methodological and ethical issues related to

qualitative telephone interviews on sensitive topics. Nurse Researcher, 21(4), 32.

doi:10.7748/nr2014.03.21.4.32.e1229

Menolli, A., Cunha, M. A., Reinehr, S., & Malucelli, A. (2015). “Old” theories, “New”

technologies: Understanding knowledge sharing and learning in Brazilian

software development companies. Information and Software Technology, 58,

289–303. doi:10.1016/j.infsof.2014.07.008

Milovanovic, M., Minovic, M., Stavljanin, V., Savkovic, M., & Starcevic, D. (2012).

Wiki as a corporate learning tool: Case study for software development company.

Behaviour & Information Technology, 31(8), 767–777. Retrieved from

http://www.tandfonline.com/loi/tbit20.

Molina, A. I., Gallardo, J., Redondo, M. A., & Bravo, C. (2015). Assessing the awareness

mechanisms of a collaborative programming support system. Dyna, 82(193), 212–

222. doi:10.15446/dyna.v82n193.53497

Morrison, P., Smith, B. H., & Williams, L. (2017). Surveying security practice adherence

in software development. In Proceedings of the Hot Topics in Science of Security:

Symposium and Bootcamp (pp. 85–94). Hanover, MD, USA: ACM.

doi:10.1145/3055305.3055312

Motherudin, F., & Md. Moksen, N. E. (2015). A proposed model for code quality

maturity model. Journal of Software, 10(3), 374–383. doi:10.17706/jsw.10.3.374-

143

383

Moylan, C. A., Derr, A. S., & Lindhorst, T. (2015). Increasingly mobile: How new

technologies can enhance qualitative research. Qualitative Social Work, 14(1),

36–47. doi:10.1177/1473325013516988

Nel, G., Nel, L., & Cronje, J. (2016). Attributes contributing to students’ use of quality

software development practices. African Journal of Information and

Communication, 38. doi:10.23962/10539/20329

Noble, H., & Smith, J. (2014). Qualitative data analysis: a practical example. Evidence

Based Nursing, 17(1), 2–3. doi:10.1136/eb-2013-101603

Onwuegbuzie, A. J., & Byers, V. T. (2014). An exemplar for combining the collection,

analysis, and interpretations of verbal and nonverbal data in qualitative research.

International Journal of Education, 6(1), p183–p246. doi:10.5296/ije.v6i1.4399

Overhage, S., & Schlauderer, S. (2012). Investigating the long-term acceptance of agile

methodologies: An empirical study of developer perceptions in scrum projects. In

System Science (HICSS), 2012 45th Hawaii International Conference on (pp.

5452–5461). IEEE. doi:10.1109/HICSS.2012.387

Ozer, M., & Vogel, D. (2015). Contextualized relationship between knowledge sharing

and performance in software development. Journal of Management Information

Systems, 32(2), 134–161. doi:10.1080/07421222.2015.1063287

Park, N., Rhoads, M., Hou, J., & Lee, K. M. (2014). Understanding the acceptance of

teleconferencing systems among employees: An extension of the technology

acceptance model. Computers in Human Behavior, 39, 118–127.

144

doi:10.1016/j.chb.2014.05.048

Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. Health

Services Research, 34(5), 1189–1208. Retrieved from http://www.hsr.org/.

Peredaryenko, M. S., & Krauss, S. E. (2013). Calibrating the human instrument:

Understanding the interviewing experience of novice qualitative researchers.

Qualitative Report, 18(43), 1–17. Retrieved from http://nsuworks.nova.edu/tqr/.

Peticca-Harris, A., deGama, N., & Elias, S. R. S. T. A. (2016). A dynamic process model

for finding informants and gaining access in qualitative research. Organizational

Research Methods, 19(3), 376–401. doi:10.1177/1094428116629218

Plamondon, K. M., Bottorff, J. L., & Cole, D. C. (2015). Analyzing data generated

through deliberative dialogue: Bringing knowledge translation into qualitative

analysis. Qualitative Health Research, 25(11), 1529–1539.

doi:10.1177/1049732315581603

Plonka, L., Sharp, H., van der Linden, J., & Dittrich, Y. (2015). Knowledge transfer in

pair programming: An in-depth analysis. International Journal of Human-

Computer Studies, 73, 66–78. doi:10.1016/j.ijhcs.2014.09.001

Polancic, G., Jost, G., & Hericko, M. (2015). An experimental investigation comparing

individual and collaborative work productivity when using desktop and cloud

modeling tools. Empirical Software Engineering, 20(1), 142–175.

doi:10.1007/s10664-013-9280-x

Priyanka, S., & Kumar, A. (2013). Understanding the evolution of technology acceptance

model. International Journal of Advance Research in Computer Science and

145

Management Studies, 1(6), 144–148. Retrieved from http://www.ijarcsms.com/.

Qiu, S., Wang, P., & Yang, P. (2015). The impact of personal psychology and behavior

factors on the innovation assimilation of secure system development. American

Journal of Industrial and Business Management, 5(04), 181.

doi:10.4236/ajibm.2015.54020

Qu, S. Q., & Dumay, J. (2011). The qualitative research interview. Qualitative Research

in Accounting & Management, 8(3), 238–264. doi:10.1108/11766091111162070

Ramasubbu, N., & Kemerer, C. F. (2014). Managing technical debt in enterprise software

packages. IEEE Transactions on Software Engineering, 40(8), 758–772.

doi:10.1109/TSE.2014.2327027

Ramasubbu, N., & Kemerer, C. F. (2015). Technical debt and the reliability of enterprise

software systems: A competing risks analysis. Management Science, 62(5), 1487–

1510. doi:10.1287/mnsc.2015.2196

Ramasubbu, N., Kemerer, C. F., & Hong, J. (2012). Structural complexity and

programmer team strategy: An experimental test. IEEE Transactions on Software

Engineering, 38(5), 1054–1068. doi:10.1109/TSE.2011.88

Ramasubbu, N., Kemerer, C. F., & Woodard, C. J. (2015). Managing technical debt:

Insights from recent empirical evidence. IEEE Software, 32(2), 22–25.

doi:10.1109/MS.2015.45

Rana, N. P., Dwivedi, Y. K., & Williams, M. D. (2013). E-government adoption

research: An analysis of the employee’s perspective. International Journal of

Business Information Systems, 14(4), 414–428. doi:10.1504/ijbis.2013.057497

146

Reybold, L. E., Lammert, J. D., & Stribling, S. M. (2013). Participant selection as a

conscious research method: Thinking forward and the deliberation of “Emergent”

findings. Qualitative Research, 13(6), 699–716. doi:10.1177/1468794112465634

Riemenschneider, C. K., Hardgrave, B. C., & Davis, F. D. (2002). Explaining software

developer acceptance of methodologies: A comparison of five theoretical models.

IEEE Transactions on Software Engineering, 28(12), 1135–1145.

doi:10.1109/TSE.2002.1158287

Rimando, M., Brace, A., Namageyo-Funa, A., Parr, T. L., Sealy, D.-A., Davis, T. L., …

Christiana, R. W. (2015). Data collection challenges and recommendations for

early career researchers. Qualitative Report, 20(12), 2025. Retrieved from

http://nsuworks.nova.edu/tqr/.

Ritchie, J., Lewis, J., Nicholls, C. M., & Ormston, R. (2013). Qualitative research

practice: A guide for social science students and researchers (2nd ed.). Sage.

Roberts, T. (2013). Understanding the research methodology of interpretative

phenomenological analysis. British Journal of Midwifery, 21(3), 215–218 4p.

doi:10.12968/bjom.2013.21.3.215

Robinson, O. C. (2014). Sampling in Interview-Based Qualitative Research: A

Theoretical and Practical Guide. Qualitative Research in Psychology, 11(1), 25–

41. doi:10.1080/14780887.2013.801543

Rodrigues, L. F., Oliveira, A., & Costa, C. J. (2016). Does ease-of-use contributes to the

perception of enjoyment? A case of gamification in e-banking. Computers in

Human Behavior, 61, 114–126. doi:10.1016/j.chb.2016.03.015

147

Rola, P., Kuchta, D., & Kopczyk, D. (2016). Conceptual model of working space for

Agile (Scrum) project team. Journal of Systems and Software, 118, 49–63.

doi:10.1016/j.jss.2016.04.071

Roulston, K., & Shelton, S. A. (2015). Reconceptualizing bias in teaching qualitative

research methods. Qualitative Inquiry, 21(4), 332–342.

doi:10.1177/1077800414563803

Sanjari, M., Bahramnezhad, F., Fomani, F. K., Shoghi, M., & Ali Cheraghi, M. (2014).

Ethical challenges of researchers in qualitative studies: The necessity to develop a

specific guideline. Journal of Medical Ethics & History of Medicine, 7(14), 1–6.

Retrieved from http://jmehm.tums.ac.ir/.

Santos, V., Goldman, A., & De Souza, C. R. (2015). Fostering effective inter-team

knowledge sharing in agile software development. Empirical Software

Engineering, 20(4), 1006–1051. doi:10.1007/s10664-014-9307-y

Sedgwick, P. (2013). Convenience sampling. BMJ, 347. doi:10.1136/bmj.f6304

Shrivastava, S. V., & Rathod, U. (2017). A risk management framework for distributed

agile projects. Information and Software Technology, 85, 1–15.

doi:10.1016/j.infsof.2016.12.005

Stern, C., Jordan, Z., & McArthur, A. (2014). Developing the review question and

inclusion criteria. American Journal of Nursing, 114(4), 53–56.

doi:10.1097/01.NAJ.0000445689.67800.86

Stevens, M. R., Lyles, W., & Berke, P. R. (2014). Measuring and reporting intercoder

reliability in plan quality evaluation research. Journal of Planning Education and

148

Research, 34(1), 77–93. doi:10.1177/0739456X13513614

Storey, M. A., Zagalsky, A., Filho, F. F., Singer, L., & German, D. M. (2017). How

social and communication channels shape and challenge a participatory culture in

software development. IEEE Transactions on Software Engineering, 43(2), 185–

204. doi:10.1109/TSE.2016.2584053

Sundaramoorthy, V., & Bharathi, B. (2016). Need for social media approach in software

development. Indian Journal of Science and Technology, 9(21).

doi:10.17485/ijst/2016/v9i21/95271

Sutton, J., & Austin, Z. (2015). Qualitative research: Data collection, analysis, and

management. Canadian Journal of Hospital Pharmacy, 68(3).

doi:10.4212/cjhp.v68i3.1456

Svendsen, G. B., Johnsen, J.-A. K., Almas-Sorensen, L., & Vitterso, J. (2013).

Personality and technology acceptance: The influence of personality factors on

the core constructs of the technology acceptance model. Behaviour & Information

Technology, 32(4), 323–334. doi:10.1080/0144929X.2011.553740

Tang, A., & Lau, M. F. (2014). Software architecture review by association. Journal of

Systems and Software, 88, 87–101. doi:10.1016/j.jss.2013.09.044

Tang, F. (2015). When communication quality is trustworthy? Transactive memory

systems and the mediating role of trust in software development teams. R&D

Management, 45(1), 41–59. doi:10.1111/radm.12051

Thakurta, R., & Roy, R. (2012). Determinants of user involvement in software projects.

In System Science (HICSS), 2012 45th Hawaii International Conference on (pp.

149

4894–4903). IEEE. doi:10.1109/HICSS.2012.203

Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration of technical debt. Journal of

Systems and Software, 86(6), 1498–1516. doi:10.1016/j.jss.2012.12.052

Tuohy, D., Cooney, A., Dowling, M., Murphy, K., & Sixsmith, J. (2013). An overview of

interpretive phenomenology as a research methodology. Nurse Researcher, 20(6),

17. doi:10.7748/nr2013.07.20.6.17.e315

U.S. Department of Health & Human Services. (1979). The Belmont Report. Retrieved

from http://www.hhs.gov/ohrp/humansubjects/guidance/belmont.html

Vahasantanen, K., & Saarinen, J. (2013). The power dance in the research interview:

Manifesting power and powerlessness. Qualitative Research, 13(5), 493–510.

doi:10.1177/1468794112451036

Vaismoradi, M., Jones, J., Turunen, H., & Snelgrove, S. (2016). Theme development in

qualitative content analysis and thematic analysis. Journal of Nursing Education

and Practice, 6(5), 100-110. doi:10.5430/jnep.v6n5p100

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology

acceptance model: Four longitudinal field studies. Management Science, 46(2),

186. doi:10.1287/mnsc.46.2.186.11926

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative

divide: Guidelines for conducting mixed methods research in information

systems. MIS Quarterly, 37(1), 21–54. Retrieved from http://www.misq.org/.

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of

information technology: Toward a unified view. MIS Quarterly 27(3), 425–478.

150

Retrieved from http://www.misq.org/.

Vicary, S., Young, A., & Hicks, S. (2016). A reflective journal as learning process and

contribution to quality and validity in interpretative phenomenological analysis.

Qualitative Social Work. doi:10.1177/1473325016635244

Vijayasarathy, L., & Turk, D. (2012). Drivers of agile software development use:

Dialectic interplay between benefits and hindrances. Information and Software

Technology, 54(2), 137–148. doi:10.1016/j.infsof.2011.08.003

Walker, J. L. (2012). The use of saturation in qualitative research. Canadian Journal of

Cardiovascular Nursing, 22(2), 37–46. Retrieved from http://www.cccn.ca/.

Wallace, L. G., & Sheetz, S. D. (2014). The adoption of software measures: A technology

acceptance model (TAM) perspective. Information & Management, 51(2), 249–

259. doi:10.1016/j.im.2013.12.003

Wolgemuth, J. R. (2014). Analyzing for critical resistance in narrative research.

Qualitative Research, 14(5), 586–602. doi:10.1177/1468794113501685

Wong, W. E., Li, X., Laplante, P. A., & Siok, M. (2017). Be more familiar with our

enemies and pave the way forward: A review of the roles bugs played in software

failures. Journal of Systems and Software. doi:10.1016/j.jss.2017.06.069

Wynn, D., & Williams, C. K. (2012). Principles for conducting critical realist case study

research in information systems. MIS Quarterly, 36(3), 787–810. Retrieved from

http://www.misq.org/.

Xiang, C., Lu, Y., & Gupta, S. (2013). Knowledge sharing in information system

development teams: examining the impact of shared mental model from a social

151

capital theory perspective. Behaviour & Information Technology, 32(10), 1024–

1040. doi:10.1080/0144929x.2012.745901

Yilmaz, K. (2013). Comparison of quantitative and qualitative research traditions:

Epistemological, theoretical, and methodological differences. European Journal

of Education, 48(2), 311–325. doi:10.1111/ejed.12014

Yin, R. K. (2013). Validity and generalization in future case study evaluations.

Evaluation, 19(3), 321–332. doi:10.1177/1356389013497081

Yli-Huumo, J., Maglyas, A., & Smolander, K. (2016). How do software development

teams manage technical debt?–An empirical study. Journal of Systems and

Software. doi:10.1016/j.jss.2016.05.018

Yucel, U. A., & Gulbahar, Y. (2013). Technology acceptance model: A review of the

prior predictors. Journal of Faculty of Educational Sciences, 46(1), 89–109.

doi:10.1501/egifak_0000001275

Zazworka, N., Vetro, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., & Shull, F. (2014).

Comparing four approaches for technical debt identification. Software Quality

Journal, 22(3), 403–426. doi:10.1007/s11219-013-9200-8

Zohrabi, M. (2013). Mixed method research: Instruments, validity, reliability and

reporting findings. Theory and Practice in Language Studies, 3(2), 254–262.

doi:10.4304/tpls.3.2.254-262

152

Appendix A: Human Subject Research Certificate of Completion

153

Appendix B: Interview Protocol

Interview: Exploring Collaboration Strategies to Reduce Technical Debt

A. Introduce myself to the participant and thank them for participating.

B. Verified receipt of consent form, answer any questions and/or concerns of participant.

C. Remind participants I will be recording the interview and the interview will remain

strictly confidential.

D. Turn on the recording device and announce the participant’s identifying code, the

date and time of the interview.

E. Start interview with the first question and continue through to the last question. Allow

the participant to respond to each question and ask additional probing questions as

necessary.

1. What is your current position and role?

2. How long have you been in your current position?

3. How many years of experience do you have in software development?

4. What degrees and industry certifications do you possess?

5. How would you describe collaboration and its purpose in software development?

What are the benefits of collaboration to your software development team and

your organization?

6. What are the methods and tools your team uses to facilitate collaboration? How

would you describe the usefulness of those method and tools? How easy are those

methods and tools to use?

154

7. What collaboration strategies does your team use to ensure programming logic

meets requirements, software designs are accurate and programming code is free

of defects? How would you describe the usefulness of those strategies to the

overall success of projects? How easy are those strategies to implement?

8. What collaboration strategies does your team use to ensure team members follow

your software development processes, policies and best practices? How would

you describe the usefulness of those strategies in preventing future bug fixing,

code refactoring and design changes? How easy are those strategies to

implement?

9. How would you describe technical debt and its effects on software development

projects? What are the largest sources of technical debt in your organization?

How does your team manage technical debt?

10. How would you describe the collaboration strategies your team uses to identify,

prevent and reduce technical debt? How would you describe the usefulness of

those strategies in managing your technical debt? Which strategies are the most

useful in minimizing technical debt? Which strategies are the easiest to

implement?

11. What changes to your team’s collaboration strategies do you feel would improve

your team’s ability to minimize or reduce technical debt in projects?

F. Ask the participant if they want to share any more information about the topics.

G. Ask the participant if they are aware of any documentation that might be relevant to

the topics discussed.

155

H. Explain the concept of member checking and schedule a follow-up interview to

review my interpretations with them.

I. Discontinue the audio record by turning off the device.

J. Thank the participant for partaking in the study. Confirm the participant has my

contact information for any follow up questions and concerns.

156

Appendix C: Permission to Use Figures

157

158

Appendix D: Interview Question Matrix

	Walden University
	ScholarWorks
	2017

	Collaboration Strategies to Reduce Technical Debt
	Jeffrey Allen Miko

	Microsoft Word - 538102_pdfconv_599485_C9918CC2-998C-11E7-9B7F-531459571AF4.doc

