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Abstract 

U.S. Food and Drug Administration (FDA) recalls of medical devices are at historically 

high levels despite efforts by manufacturers to meet stringent agency requirements to 

ensure quality and patient safety. A factor in the release of potentially dangerous devices 

might be the interpretations of nonnormal test data by statistically unsophisticated 

engineers. The purpose of this study was to test the hypothesis that testing by lot provides 

a better indicator of true process behavior than process capability indices (PCIs) 

calculated from the mixed lots that often occur in a typical production situation. The 

foundations of this research were in the prior work of Bertalanffy, Kane, Shewhart, and 

Taylor. The research questions examined whether lot traceability allows the 

decomposition of the combination distribution to allow more accurate calculations of 

PCIs used to monitor medical device production. The study was semiexperimental, using 

simulated data. While the simulated data were random, the study was a quasiexperimental 

design because of the control of the simulated data through parameter selection. The 

results of this study indicate that decomposition does not increase the accuracy of the 

PCI. The conclusion is that a systems approach using the PCI, additional statistical tools, 

and expert knowledge could yield more accurate results than could decomposition alone. 

More accurate results could ensure the production of safer medical devices by correctly 

identifying noncapable processes (i.e., processes that may not produce required results), 

while also preventing needless waste of resources and delays in potentially life-savings 

technology, reaching patients in cases where processes evaluate as noncapable when they 

are actually capable. 
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Chapter 1: Introduction to the Study 

Manufacturing firms in the highly regulated medical device industry rely on 

process capability indices (PCIs) to ensure that the processes used to manufacture 

products are capable and under control. However, analysis of nonnormal data with a PCI 

can result in false indicators. From a management viewpoint, misreading the degree of 

control of processes can result in large fines and possibly even felony convictions. 

From a social change perspective, this study was important for three specific 

reasons. First, correcting a capable process when PCIs give a false reading wastes 

resources. This waste of resources needlessly increases the cost of the devices. Second, 

along with wasting resources, time spent improving an already capable process could 

delay the introduction of potentially life-saving devices to the health community. Third, if 

PCIs overestimate the capability of a process, patient wellbeing is at risk. These 

conditions represent factors that contribute to the health care system inefficiencies. 

This chapter contains the following: (a) the history of PCIs, the Food and Drug 

Administration (FDA) regulatory environment, and the important role PCIs fill in the 

medical device manufacturing environment; (b) a formal problem statement along with a 

description of the method suggested to answer the research questions generated by the 

problem statement; and (c) an examination of the significance of this study with regard to 

its potential contribution to theory, practice, and positive social change. 

Background of the Study 

This section contains (a) a very short description of medical device manufacturing 

and testing, (b) an account of the function of PCIs including the history of their 
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development, (c) a summary of the issues with applying them to everyday problems 

involving the analysis of nonnormal data, and (d) an explanation of how the lack of 

training in advanced statistical techniques exacerbates the problems with using PCIs. The 

section concludes with a description of the development of a tool that could remedy this 

situation under some conditions, providing a potentially valuable addition to engineering 

methods. 

Medical Device Manufacturing 

Medical devices, like many other products, are composed of various components, 

which themselves may be made up of other components. Figure 1 is an illustration of a 

simplified block diagram of a generic device. 

 

 Figure 1. Simplified block diagram of a manufactured product. 

Performance characteristics of the components used in the manufacture of a 

medical device, as well as the finished device itself, must be capable of meeting their 
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design requirements. To ensure that this is the case, testing that yields quantifiable results 

is the preferred method. There are two approaches to demonstrate that components or 

devices meet design requirements (International Organization for Standardization [ISO], 

2016). 

The first, and preferred method, is to validate the manufacturing process. This is a 

procedure that ensures that the process is capable of consistently producing output that 

meets specifications. In cases where process validation is not possible, regulatory bodies 

require verification of the output, usually through an inspection of the output, which 

might include sampling for more intense inspection that can include destructive testing 

(ISO, 2016). 

The goal is to ensure process output that is capable of consistently meeting the 

specifications. A common tool used to monitor process output is the PCI. The primary 

motivation for this dissertation was to examine the use of PCIs in the measurement of key 

quantifiable test results. 

Process Capability Indices 

Description. PCIs are statistical tools used to determine if a process can produce 

output that consistently meets specifications (Kotz & Johnson, 1993). Intrinsically, the 

benefit of keeping a process under control is a simple idea to grasp, but there may be 

different reasons beyond the obvious for requiring this condition. First, if an output fails 

to meet its desired specifications, it could require rework to become usable, or, in other 

cases, scrapped. Both of these situations can have a severe effect on both the cost and 

capacity of an operation. The goal of process design is to build a process that can produce 
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output correctly, not just the first time, but almost every time. The use of PCIs can be a 

valuable tool in determining if this goal is achievable. 

A second reason for the use of a PCI is the need to meet customer requirements. 

The third reason is, in some cases, manufacturers must demonstrate that processes are 

capable of producing their desired output by regulatory agencies (Peña-Rodríguez, 2013). 

The FDA has the authority to shut down a noncomplying operation and impose 

substantial fines upon, or even to bring criminal charges against, the management of such 

activities (Maximum Penalty Amounts, 2014). Another option available to the FDA is to 

impose a product recall in the case of products that present a danger to public safety 

(FDA, 2017). Such recalls may not only be expensive in terms of the product removed 

from user’s inventories, but may also have an effect on a company’s reputation and stock 

price. In the worst case, a nonconforming product might result in the injury or death of 

patients. 

Development. The earliest reference to PCIs in Kotz and Johnson’s (2002) 

exhaustive bibliography of references on the topic is the third edition of Juran’s Quality 

Handbook published in 1974. This reference would date the use or discussion of this tool 

to the period prior to the great wave of interest in Japanese management and statistical 

methods that characterize the period beginning in the early nineteen eighties. Juran’s 

reference (as cited in Kane, 1986) is to the most basic of the PCIs, Cp, now defined as: 

σ6

LSLUSL
C p

−= , (1) 
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where USL and LSL refer to the Upper and Lower Specification Limits respectively, and 

σ is the standard deviation of the process. Other authors use UTL and LTL, where the T 

refers to tolerance rather than specification (Shewhart, 1931/2015). A normally 

distributed process output with a known standard deviation forms the underlying 

assumption (Kane, 1986). 

Upon the publication of the fourth edition of Juran’s Handbook in 1988, Gryna 

(1988) expanded the section on PCIs to include the work of Kane (1986), who explicitly 

added Cpk, defined as: 







 −−=

σ
µ

σ
µ

3
,

3

USLLSL
MinCpk . (2) 

In Equation 2, μ refers to the mean of the process. The equation requires the calculation 

of both terms within the braces, and then the selection of the smaller of the two values as 

the value of Cpk. For clarification, since Kane’s work, the μ and σ used in the expressions 

for Cpk are short-term values. 

Equation 2, in terms of CPU and CPL, where Cpk is the minimum of the two, 

becomes, 

σ
µ

3

LSL
CPL

−= , (3) 

σ
µ

3

−= USL
CPU , (4) 

{ }CPUCPLMinCpk ,= . (5) 
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The Problems with PCI Use 

Many objections to the concept of PCIs began to surface shortly after the 

publication of Kane’s work. The literature review section of this dissertation contains a 

detailed discussion of these objections, but one of the major objections is the underlying 

assumption of normality in the output of a process (Gunter, 1989a). If the output were not 

normal, would the users of the PCI be astute enough to recognize that the index was 

unusable? Would they recognize the need for further steps before the use of the capability 

result? 

Hogg (1985) documented that in training programs for SQC, American engineers 

lacked the statistical knowledge required to implement these techniques, and 

recommended methods to remedy this situation. Ten years later, Kettenring (1995) noted 

that this problem still existed. Eighteen years after Kettenring published some statistical 

training recommendations, Romeu (2013) verified that the problem defied solution, 

noting that engineering curricula are already very full, demanding, and growing.  

There is little room for the addition of statistical coursework to curricula in spite 

of the need for engineers to learn statistics to take advantage of the latest Six Sigma and 

lean methods. Romeu recommended that engineers independently learn more advanced 

statistical methods. Sleeper (2007) pointed out that even in statistics-intense training, 

such as Six Sigma, engineers do not learn ways of addressing more complex issues. 

These complex problems include the analysis of nonnormal data. 

Available statistical tools could contribute to this problem. For example, Minitab 

is the most commonly used tool in Six Sigma statistical analysis (Brook, 2006). Until the 
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advent of Minitab 16 (2010), and its Assistant feature, Minitab output would show 

capabilities without indications of possible problems. This calculation occurred 

regardless of the underlying distribution, or lack of distribution. The user interpreted the 

results without help. With Minitab 16’s Assistant, the software offers automated feedback 

on the validity of the results. 

If an engineer is fortunate enough to take a statistics course, it may only cover 

basic statistics, with the distributions taught commonly being limited to the normal, t, F, 

binomial, and chi-squared. When faced with nonnormal data, an engineer, exposed only 

to these basic distributions, may not be aware of the techniques for fitting data to more 

appropriate distributions. Undergraduate courses generally do not cover other methods 

for addressing nonnormality, for example, transformations (Field, 2012). 

Given the demands on an engineer’s available time for learning, it may not be 

possible to teach the techniques needed to address the calculation and interpretation of 

PCIs for all but the simplest, normally distributed data (Romeu, 2013). But, it may be 

possible to develop tools to highlight and quantify areas of high risk. These tools could 

supplement the Process Failure Mode Effects Analysis (PFMEA) commonly created 

during the development of medical products. The goal for this study was to provide one 

such tool, addressing a need revealed by a review of the literature. 

Problem Statement 

Release of unsafe medical devices into the market threatens patient lives and 

wellbeing (FDA, 2013; Nagreha & Parmar, 2011). A statistical quality approach offers a 

partial solution to this problem (Food and Drug Administration [FDA], 2011; Global 
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Harmonization Task Force [GHTF], 2004; ISO, 2016). The most frequently used tool to 

measure the output quality of a medical device manufacturing process is the PCI (Peña-

Rodríguez, 2013). PCIs, as originally proposed by Kane (1986) require normal data. 

However, measured data from many processes do not exhibit normality (Sleeper, 2007). 

The FDA can impose penalties of over $10 million for violations of the Food and Drug 

Act (FDA, 2011a). 

No articles written about PCIs specifically focus on their use in the field of 

medical manufacturing. A thorough search of the available literature resulted in no 

articles that specifically addressed the use of PCIs in medical device manufacturing. 

Medical manufacturing, because of the FDA requirement for lot traceability, offers a 

unique structure to overcome problems of nonnormality. 

Purpose of the Study 

The purpose of this empirical quantitative study was to develop a framework that 

evaluates the ability of a PCI to accurately measure medical device test data under a 

scenario where output data combines the effects of mixed production lots of components. 

The study was comparative in nature, involving an examination of the performance of the 

most commonly used PCI, Cpk, using simulated process data by calculating precise 

capabilities and then comparing these values with the results generated from nonnormal 

data adjusted indices. Data in this study consisted of combinations of data from different 

distributions to represent the situation where a lot of raw material used in a process 

consists of material from several supplier lots. The simulated data represent test values 

from some production test and are the independent variables. Using simulated data 
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negates the influence of, or need to control for, any independent variables, because only 

the final value of a test resulted from the simulation. The value of the calculated PCI was 

the dependent variable of interest in this study. Successful completion of this study gives 

evidence of the applicability of PCIs to results that may come from the combination of 

distributions. The findings could lead to further research that will provide tools that are 

more accurate for practice in the future. 

Research Questions and Hypotheses 

The quantitative research question of this research was how accurately does the 

calculated value of Cpk, under the assumption of normality, reflect the actual probabilities 

of nonconformance from simulated distributions representing the mixture of components 

from different upstream production batches in a subsequent process? This question 

reflects the real-world situation in which a production line uses components from several 

different lots. A PCI, as used in industry, is primarily a point value (Porter & Oakland, 

1991). A quality manual or protocol may state that the Cpk value must be greater than 

1.33, 1.50, or some other value. This question leads to three formal research questions. 

The first series of tests involve the comparison of calculated values of the PCIs 

based on samples taken from each distribution set to a required value.  

Research Question 1:  Do the PCIs calculated from samples of the combined 

distributions meet the industry standard? 

H01:  PCIC ≥ 1.33, 

Ha1:  PCIC < 1.33. 
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Peña-Rodríguez (2013) suggested the value 1.33. PCIC will be the Cpk calculated 

using sample sizes at levels of 10, 30, 59, and a value determined from each of the 12 

distributions using the method described by Mathews (2010). The data in all research 

questions represents the test results from a test conducted after the assembly of the tested 

component from parts from different lots. The test addressed both raw and normally 

transformed data. 

The second series of tests involve a comparison of the calculated positions on the 

x-axis of 4 standard deviations, equivalent to a Cpk of 1.33 to the value calculated from 

the parameters of the 12 combined distributions and their transformed values.  

Research Question 2:  Do the values calculated from samples taken from a 

combined distribution exceed the actual values required to meet the industry standard? 

H02:  xpci ≥ xpdf, 

Ha2:  xpci < xpdf. 

xpci is the x-axis value calculated from the required value of the PCI, and xpdf is the 

value calculated directly from the combined probability density functions. The results of 

this test should mirror those of Research Question 1, but shows the percentage difference 

between the actual and calculated values. The tests addressed both raw and transformed 

data. Previous tests have used the combined distributions. The third series of tests 

involved testing the components of the combined distributions individually and 

comparing the PCI calculated from these distributions with the standard Cpk of 1.33.  

Research Question 3:  Do the data values from the lateral distributions, isolated 

from the underlying normal distributions, meet the industry standard? 
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H03:  PCgamma ≥ 1.33, 

Ha3:  PCgamma < 1.33, 

H03:  PClognormal ≥ 1.33, 

Ha3:  PClognormal < 1.33, 

H03:  PCWeibull ≥ 1.33, 

Ha3:  PCWeibull < 1.33. 

In these hypotheses, PCgamma is the Cpk calculated from the gamma distributions, 

PClognormal is the Cpk calculated from the lognormal distributions, and PCWeibull is the Cpk 

calculated from the Weibull distributions. These tests evaluate the suggestion that lots 

constructed using different lots of components require individual tests. This individual 

testing might compensate for the effect of a fattened tail on the value of the standard 

deviation used to calculate the capability index. Testing addressed both raw and 

transformed data. 

The operationalization of the above RQ into a null and alternative hypothesis 

required the calculation of the PCIs from sample sizes of 10, 30, 59, and a sample size 

needed to achieve an a priori specified power 1 - beta. The value of 10 represents a low 

convenience value. A sample size of 30 represents the situation where statistics students 

correctly learn that this is the number at which a t distribution approximates a normal 

distribution and use it as a default sample size. The sample size of 59 achieves a 95% 

level of confidence and a 95% reliability level (Lipson & Sheth, 1973). The calculated 

sample size based on power was indeterminate until the generation of simulated results as 

described in the next chapter. 
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Tests on the variance/standard deviation and the chi-square distributions 

determined the outcome of the hypothesis testing. This testing examined if a Type II error 

was occurring in the calculation of the PCI by using the definitional equation for Cpk to 

calculate the values for the sample PCIs. The probabilities as defined by the generating 

cumulative distribution functions yielded the actual values of the indices. From the 

definitional equation for Cpk, it was readily apparent that the value of the index is directly 

proportional to the distance between the mean of the samples and the specification limit, 

and inversely proportional to the standard deviation of the sample. This establishes cause 

and effect of the data on the value of the PCI. 

Theoretical Foundation 

The theoretical mathematical underpinnings of this dissertation begin with the 

work of the famous astronomer Newcomb (1886), who hypothesized that data from 

combinations of several distributions can compose the observations of natural 

phenomena. In actuality, the data was from just one distribution. Newcomb was 

examining the effect of errors that occurred during the observation of astronomical 

phenomena. Thus, the data from an astronomical observation of a celestial body from 

three different observatories, or using three different instruments, might appear to come 

from three different normal distributions. In reality, they came from just one. Of 

particular concern was the identification and elimination of outliers because of their 

contribution to this effect. 

A review of the literature suggested that this concept remained dormant until 

Tukey (1960) reintroduced it. Rather than examining normal distributions with different 
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means and standard deviations, Tukey looked at a combination of two normal 

distributions with the same mean and different standard deviations. The sample data 

drawn from the two distributions has a probability of ε that it comes from one 

distribution, and of (1 – ε) that it comes from the other. 

Tukey’s (1960) concept of the contaminated or mixed normal distribution often 

serves as the introductory idea in the literature addressing the topic of modern or robust 

statistics. For example, Wilcox (2012, p.2) expressed it as, 

( ) (1 ) ( )
x

H x x
K

ε ε  = − Φ + Φ 
 

, (6)

where K is a constant greater than zero. As Wilcox indicated, it is possible to determine 

the parameters of the distribution in Equation 6. 

Using the foundation of a contaminated or mixed distribution, the next step 

examined the effect of mixing three distributions that are not necessarily normal and then 

consider the impact that such a combination may have on the calculation of Cpk. The 

expectation was that a mixture of data from different distributions may give misleading 

results, even if data taken individually from each distribution provided satisfactory index 

values. Overstatement of index values may produce a risk to patient safety; if 

understated, a waste of resources could result from fixing a process that is performing 

adequately. Such a waste of resources needlessly contributes to the increase in the cost of 

medical devices. A delay wastes time correcting an already capable process. This could 

result in a postponement in the introduction of possibly life-saving devices to medical 

practitioners. 
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The management framework for this study combined principles of scientific 

management, statistics applied to quality control, and systems theory; it rested on the 

work of three scholars. The first, Taylor (1911/1998), applied the principles of scientific 

management to work by measuring output and setting standards. The second, Shewhart 

(1931/2015), applied statistical techniques to the problem of production quality. The last, 

von Bertalanffy (1969), first formulated the systems approach.  

To protect the public from the potentially hazardous effects of poorly 

manufactured medical devices, the FDA (2009) combined the measurement approach 

pioneered by Taylor with the statistical analysis quality techniques first advanced by 

Shewhart to develop a system to evaluate the output of a production activity for the 

manufacture of medical devices. The FDA system relies on an extension to Shewhart’s 

earlier work by Kane (1986) and requires the calculation of a PCI, generally Cpk, to 

evaluate the output of a process. In cases of nonnormality of data, the accuracy of this 

index can deteriorate leading to either an overestimation or an underestimation of the 

quality of the process output (Gunter, 1989a, 1989b, 1989c, 1989d). Neither situation is 

desirable. 

Nature of the Study 

This study involved the use of simulated data generated from specific 

distributions using the R (2016) statistics application. This entailed combining the data 

from different distributions, calculating Cpk for each combination of distributions, and 

comparing these to the real results. It was possible to calculate accurate values of the 
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probabilities of nonconformance because of the known distributions used to generate the 

data. 

The use of real-world data was impractical for this study. Such real-world data 

could take two forms: (a) data specifically generated for this study, and (b) existing data 

available from my work as an engineer in the medical device field. In either case, because 

of the focus on nonnormal data, the actual character of the PCIs that would describe the 

process is indeterminate because the nature of the underlying distribution(s) is unknown. 

In the case of extant data, I inquired and was told permission to use it would be 

impossible to obtain because of the possibility of any future litigation with the data as 

evidence. Using simulated data was a strength, not a shortcoming, because it allowed 

more precise control over the data generated for analysis. 

The literature reveals a mix of both real-world and simulated data used in the 

study of PCI behavior. Pearn and Chen (1997) used real data from the manufacture of 

electrolytic capacitors. Pearn, Wu, and Wang (2005) did the same with an application 

toward audio speaker production. Niavarani, Noorossana, and Abbasi (2012), Ye, Ma, 

and Wang (2011), and several others used simulated data. In a practitioner-oriented book 

emphasizing curve fitting, Bothe (2001) focused on the use of real-world data. Simulation 

appears to be the preferred method in articles that study the performance of different 

indices under varying conditions. Strongly mathematically oriented research often 

focuses on results derived solely from the mathematics rather than testing the derived 

expressions on any real-world data (University of Bristol, School of Mathematics, 

Institute of Pure Mathematics, 2017). 
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Another advantage of using simulated data is the control of independent variables. 

In this study, the result, Cpk, was the dependent variable. A simulation generated data, 

representing test results, to calculate the value of this PCI, and the dispersion of these 

values reflects this effect of the independent variables. For example, consider a wire 

assembly that has a solder joint on one end, and a crimped connection on the other. After 

making a batch of cables, a sample is pull tested to ensure that it meets a minimum 

specification. Independent variables, in this case, might include measurement error, 

differing operator techniques, various settings on crimp machines, and a range of raw 

materials, among others. The net result of the effects of all of these independent variables 

is the difference in the values of the pull testing that exists between the different samples. 

Simulation of this cable testing would give one result, the ultimate value of the pull test. 

Definitions 

Terms used in this dissertation are: 

Acceptable quality level (AQL): “A specified quality level for each lot such that 

the sampling plan will accept a stated percentage (say 95 percent) of submitted lots 

having this quality level” (Juran & Gryna, 1974, p. 25.5). 

Industry standard: “An established standard, norm, or requirement in a particular 

area of business” (Industry standard, n.d.). For Cpk the de facto standard is 1.33 (Peña-

Rodríguez, 2013). 

Installation qualification (IQ): “Establishing documented evidence that process 

equipment and ancillary systems are capable of consistently operating within established 

limits and tolerances” (FDA, 1996, p. 4-2). 
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Operational qualification (OQ): The validation step in which “process parameters 

should be challenged to assure that they will result in a product that meets all defined 

requirements under all anticipated conditions of manufacturing, i.e., worst case testing” 

(GHTF, 2004, p. 10). 

Process capability index (PCI): A statistical index developed to “establish the 

relationships between the actual process performance and the manufacturing 

specifications” (Pearn & Kotz, 2006, p. 7). 

Process performance qualification: “Establishing documented evidence that the 

process is effective and reproducible” (FDA, 1996, p. 4-2). PQ, for Performance 

Qualification, is the common term for this qualification. 

Product performance qualification (PPQ): “Establishing documented evidence 

through appropriate testing that the finished product produced by a specified process(es) 

meets all release requirements for functionality and safety” (FDA, 1996, p. 4-2).  

Quality: “Fitness for use” (Montgomery, 2013, p. 6). 

Tolerance (or specification) limits: “Set by engineering design function to define 

the minimum and maximum values allowable for the product to work properly” (Pearn & 

Kotz, 2006, p. 4). Lower limits are often abbreviated LSL or LTL, and upper limits as 

USL or UTL. 

Validation: “Confirmation by examination and provision of objective evidence of 

consistent fulfillment of a particular requirement for a specific intended use can be 

consistently fulfilled” (FDA, 1996, p. 4-2). 

Target (T): The value of the perfect output from a process as set by engineering. 
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 Assumptions 

An assumption in this study was that process output is often nonnormal in nature. 

My experience and the voluminous literature addressing analytical techniques for 

nonnormal data were the basis for this assumption. Articles regarding the calculation of 

PCIs, when the data may be nonnormal, are just a small subset of the literature 

surrounding nonnormality. 

While the data from a process may be nonnormal, one assumes that the 

practitioner has examined the process to remove all controllable sources of variation 

within it. An engineer should not look at the output from a process using a PCI, find that 

it is not normal and move on. Nonnormal, or uncontrollable output, is a serious source of 

concern. Examining a process using a PCI is an iterative process, and only after executing 

all reasonable efforts to bring a process to normality should practitioners accept 

nonnormal output (Sleeper, 2007). 

The assumption that normality is the desired output from a process was a basis for 

this study. In some cases, for example, reliability studies where the Weibull distribution 

is the expected output, this may not be true. In these cases, other methods for measuring 

process capability are appropriate (Dodson, 2006; Tobias & Trindade, 2012). 

Another assumption was that Cpk is often used to measure process capability 

output in spite of nonnormality. Cpk is the one most frequently used PCIs because it has 

become the de facto standard to measure process capability (Peña-Rodríguez, 2013). 

A last assumption was that the specification limits set by the engineer are 

appropriate. For example, engineering drawings often contain a block titled Tolerances 
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Unless Otherwise Specified (French & Vierck, 1972). If designers are relying on these 

block tolerances, they may not reflect the dimensions required to be consistent with the 

design requirements. Similarly, other process outputs may not have correct tolerances. In 

the literature reviewed for this study, Mathews (2010) was alone in pointing out the need 

for accurate specification limits as described above. 

Scope and Delimitations 

The scope of this study was the evaluation of the PCI Cpk when applied to data 

that is nonnormal because it was composed of data from two nonnormal distributions 

combined with data generated from a central normal distribution. The data composing the 

distribution should be identifiable by the source distribution representing the ability to do 

this data decomposition by lot identifier in a practical application of the method. 

Distributions used for simulated data generation are the normal, Weibull, lognormal, and 

gamma. The normal component is always the central distribution and the nonnormal 

distribution data provides the lateral distributions intended to fatten the tails of the 

combined distribution. The scope reflects the use of these distributions in simulation 

studies found in the literature. Transformation methods used are the Box-Cox, square 

root, inverse, inverse square root, and asinh (Rivera, Hubele, & Lawrence, 1995). 

The scope of this study was only testing that generates quantitative data of the 

measurement of some component characteristic, for example, length or breaking force. It 

does not apply to a process that relies on qualitative judgments of product quality. The 

proposed method would not be applicable to measuring the aesthetics of surface finish 
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unless there is also quantitative definition. “Scratches after finishing can be no more than 

0.001 inches deep,” is such a definition. 

Additionally, the study scope only includes processes where components are 

identifiable and separated by lot or job number. Components mixed without identification 

before a downstream process would make the tool developed and evaluated in this study 

inapplicable. 

The scope of this study does not include PCIs based on any other techniques than 

comparing the number of standard deviations from the closest specification limit. For 

example, it does not include methods based on yield (Grau, 2011, 2012). Because this 

study is mathematical in nature, it should be generalizable to any process that produces 

measurable output similar to that of the output of the simulation. 

Limitations 

This study was a quantitative statistical exercise and did not involve the use of a 

questionnaire, a survey instrument of any kind, or existing data. No coding of results was 

necessary; thus, there was no dependence on the training or judgment of coders. The 

numeric values of the results, rather than the opinion of the experimenter, classified them 

as conforming or nonconforming. The classification as conforming or nonconforming 

depends on the output of the definitional equation for Cpk. Definitional equations are 

inherently externally and internally valid. Definitional equations will give incorrect 

results when applied improperly, but the results will be consistent with the mathematical 

method used in the formulation of the equation. 
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As shown by their formulas, there are an infinite number of frequency 

distributions. For example, the standard normal distribution has a mean of zero and a 

standard deviation of one. An experimenter could not list all of the normal distributions 

with a standard deviation greater than zero and less than or equal to one. It would be 

impossible to do so because there are an infinite number of values between these two 

limits; mathematically, it is an uncountable set. Selecting particular parametric 

distributions, with specific parameter values, limited the output from this study to 

combinations of distributions that are close enough for the results to be applicable. 

A possible limitation of the study arose from the decision to distribute the lateral 

distributions symmetrically around the mean of the underlying normal distribution. This 

may have been responsible for the low number of failures with the application of the 

Anderson Darling test to the combination distributions. This finding is a possible topic 

for further research and discussed further in Chapter 5. 

The R random number generator in the R (2016) statistics program generated the 

values used in this study. From the total data generated, I drew samples using the R 

sample function. This tool eliminated any bias in sample selection. 

Significance of the Study 

This section contains a discussion of the significance of this study with respect to 

theory, practice, and social change. From a theory viewpoint, the results of this study may 

extend the application of PCIs specifically to the medical manufacturing field. For 

practitioners, this study provides another tool that engineers in regulated industries can 

apply in addressing nonnormal data. Finally, from a social change prospective, the 
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application of the findings of this study could possibly reduce the cost of medical 

devices, reduce time to market for some devices, and help prevent dangerous devices 

from reaching the market. 

Significance to Theory 

Looking at the early development of PCIs, it is impossible to find any significant 

theoretical breakthroughs from their development and use. Rather, they are a repackaging 

of existing statistical tools that give a more easily understood result. They are tools used 

to judge if a process can be depended on to produce consistent output that conforms to 

the desired specifications. These specifications themselves are engineering constructs of 

some characteristic of the part or assembly indicating the bounds within which it is 

suitable for use (Kane, 1986).  

In the case of a finished device, for example, a pacemaker, an engineer possibly 

can use PCIs to evaluate if that device will furnish signals at the correct time and with the 

proper amplitude and frequency. In the case of a locating pin, they may indicate if the 

parts produced by a process will consistently fit into a mating hole. An evaluation of the 

risk that arises from the requirement that the output of a process must meet a particular 

value of Cpk. was a primary goal for this study. The focus was on the medical device 

field. Peña-Rodríguez’s (2013) value guidelines are the standard of comparison. 

After an initial flurry of activity over the first few decades following their 

introduction, the study of PCIs appears to have slowed. There is a dearth of recent 

literature. If the results of this study indicate excessive risk, it is possible that it could 
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spur the development or adaptation of more suitable measures of the reliability of process 

output. 

Significance to Practice 

When manufacturing medical products, it is essential that the completed product 

will do no harm to a patient. To accomplish this goal, a production line for a new product 

undergoes several validation steps. Validation is also required for product line relocations 

(FDA, 1996). 

The first of these is the Installation Qualification (IQ), which establishes the 

ability of the equipment used in production to safely function within the operating 

parameters of the process. The second step is the Operational Qualification (OQ), which 

establishes the ability of the process to produce acceptable product under all anticipated 

operational conditions. The Performance Qualification (PQ) is the third step. This 

validation step verifies the ability of the process to produce acceptable product under 

normal operating conditions. It is during this validation activity that the engineer uses a 

PCI to evaluate production output (FDA, 1996). 

A more accurate method of evaluating the output of a process will allow 

manufacturing, process, and quality engineers to avoid two different mistakes. From the 

mathematics, if a PCI gives a value that is lower than the real value, fixing a process that 

is already producing acceptable product may waste time. If a PCI gives a value higher 

than the real value, the result may be a compromise of patient safety. 
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Significance to Social Change 

There are many reasons why the cost of medical care is increasing. One may be 

the incorporation of high technology into devices that can routinely perform procedures 

that would have been unimaginable only a few decades ago. As these devices become 

increasingly complex, more potential failure modes may be possible. Production lines 

that may exceed the devices themselves in their level of complexity manufacture these 

products. 

The output from the production lines must meet the requirements of the next user 

in the supply chain (Montgomery, 2013). This condition is true whether the output is just 

a component for the next process step or is the finished device ready for patient use. PCIs 

are the tool the medical industry relies on to ensure this readiness for the next step (Peña-

Rodríguez, 2013). 

The application of PCIs to data unsuitable for analysis by this family of tools can 

have several outcomes depending on the application framework. It is possible that an 

accurate quantification of the process capability will result in spite of the unsuitable data. 

However, two other outcomes are more likely, either the PCI will indicate that the 

method is more capable or less capable than it is. The examination of these assertions was 

a goal of this study. 

In the first case, the result might be a line shutdown when unusable parts move to 

the next process step. An alternative would be that inadvertently using nonconforming 

parts might cause field failures, possibly in an operating room. The results from this 

scenario could range from an inconvenienced medical team to a dead patient. In the 
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second case, the PCI would indicate that the parts from the process are not meeting 

specification. In this case, there may be a waste of engineering and manufacturing 

resources fixing a problem that does not exist. In addition, there could be a delay in 

potentially life-saving devices reaching practitioners while an already capable process is 

refined. 

In either case, there is a cost to society. This cost is either in the quality of, or in 

the addition of more costs to, already expensive goods and services. This study has the 

potential to contribute to a remedy for both of these situations, and that could be a 

contribution to positive social change.  

Summary 

This chapter contains an explanation of the early development of PCIs, and their 

rise in importance as American industry implemented and expanded SQC methodologies. 

Firms implemented SQC to compete with foreign goods thought by the public as having 

better quality than their domestic equivalents. The chapter also includes an explanation of 

the widespread requirement for the use of these indices in medical device manufacturing 

by both domestic and international regulatory agencies. 

Also described are some of the shortcomings of PCIs, for example, their reliance 

on normality and in-control processes, as well as the lack of sufficient statistical training 

on the part of most engineers to overcome these shortcomings. The chapter concludes 

with a description of the significance of the research question from theoretical, practical, 

and social change perspectives, and proposed a method to answer it. 
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The focus of this study came from working as an engineer in the medical device 

field. The specific idea arose from the difficulties encountered using capability indices to 

validate processes to meet both customer and regulatory agency requirements. The next 

chapter contains a discussion of the literature reviewed in an attempt to find a solution to 

this problem. 
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Chapter 2: Literature Review 

In spite of the best efforts of the FDA, ISO, and GHTF to guide the production of 

medical devices, large numbers of FDA Class I recalls still occur. Class I recalls occur 

when a shortcoming represents a serious threat to the wellbeing or even the life of a 

patient. One hundred and nineteen Class I recalls in the period ranging from 2008 to mid-

2011 were detailed by Nagreha and Parmar (2011). The FDA (2013) reported 307 Class I 

recalls during the years 2003 to 2013. These numbers indicate there is some failure 

occurring that exposes many patients to such serious risk. 

The chapter begins with a review of literature relevant to the development and use 

of PCIs, their limitations, required data adjustments needed before their application, and 

examples of their use in both real-world and simulated data. Next, is a discussion of the 

theoretical foundations of PCIs, as they evolved from the application of statistical 

methodology to monitor the state of a production process in the next section. A person 

examining the origins of PCIs may link them to SQC and the design of experiments. 

The following section includes a review of the literature to determine the ability 

of the most significant indices to provide a consistent level of process control. The focus 

was on those occasions when the input to the process may vary. The intent of the 

regulation of medical devices is to ensure patient treatment with a device that works 

consistently and safely. The question was: can PCIs as currently used contribute to this 

goal? 
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Literature Search Strategy 

The use of PCIs is relatively recent. A definition of Cp appeared in the third 

edition of Juran’s Quality Control Handbook in 1974. It was the publication of Kane’s 

(1986) article that aroused the interest of researchers. Not many books were found for 

this review that specifically deal with process capability as opposed to books that 

discussed process capability as part of a broader quality perspective or as chapters in 

quality handbooks. 

Of the books found, three—Bothe (2001) and Wheeler (2000a, 2000b)—were 

practitioner-oriented. The focus of these books was on practical applications of indices to 

real-world situations. Their subject was existing indices, rather than an extension of basic 

applications of statistical methods to process capability studies through the development 

of new indices. Wheeler’s books contain no reference section, in contrast to Bothe’s 

book, which does. 

Kotz and Johnson (1993), Kotz and Lovelace (1998), and Pearn and Kotz (2006) 

wrote books that might be of more interest to researchers. The authors of these books 

traced the mathematical evolution of many PCIs, from the most general to very 

specialized indices, and detailed their strengths and weaknesses. These books contained 

extensive bibliographies. 

A book that falls between these two categories was Sleeper’s (2007) book. The 

purpose of this book was to acquaint the advanced practitioner with some less well-

known frequency distributions. These distributions might arise in the application of Six 
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Sigma methodology to real-world problems. This application of Six Sigma methodology 

included the use of PCIs in non-normal data situations. 

Kotz et al. (2002), Spiring, Leung, Cheng, and Yeung (2003), and Yum and Kim 

(2011) wrote three exhaustive bibliographies of the literature of PCIs. The authors list of 

Kotz et al. (2002) contains the names of many of the most prominent researchers in the 

field. The bibliographies formed the starting point for this literature review providing for 

the identification of articles relevant to the research topic, input into Google Scholar’s 

Cited by feature to locate more recent articles published since the bibliographies. Also, 

many publishers’ journal repositories also offer a Cited by feature. 

Process capability has not been an active area of doctoral level research. Kotz et 

al. (2002) identified only two doctoral dissertations. Spiring et al. (2003) found six. My 

search efforts included ProQuest Dissertations & Theses Global to find more 

dissertations. Other databases searched for articles were ABI/Inform Complete, 

Academic Search Complete, Business Source Complete, Current Index to Statistics, 

Emerald Management, ERIC, MEDLINE, SAGE, and Science Direct.  

Because this is a relatively new area of research, the search input did not include a 

date range for the search. Search terms included ab(process capability), (ab(process 

capability) AND ab((index OR indices)) AND ab((nonnormal OR non-normal))), 

(ab(process capability) AND ab((index OR indices)) AND ab((nonnormal OR non-

normal))) AND adv(Kotz, Samuel), (ab(process capability) AND ab((index OR indices)) 

AND ab((nonnormal OR non-normal))) AND adv("Johnson, Norman L"), ab(process 

capability) AND ab((index OR indices)) AND ab((contaminated OR nonnormal)) AND 
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ab((contaminated OR non-normal)), and ab(process capability) AND ab((index OR 

indices)) AND ab((nonnormal OR non-normal)) 

Of these, ab(process capability) AND ab((index OR indices)) AND 

ab((nonnormal OR non-normal)), gave the best results for dissertations, returning six. 

The search yielded 13 dissertations from all sources for review. 

The structure of the publication of the articles reviewed appears to follow a 

cluster rather than a tree structure. In other research areas with tree structures, Article A 

appears, and Article B will come next, building on Article A. B will generate C; C will 

inspire D, and so on. In the process capability literature, two articles, in particular, Kane 

(1986) and Pearn, Kotz, and Johnson (1992) appeared to be at the center of the cluster. 

These two articles generated articles developing a particular application extension, but 

this extension will not be very long. Observation of this pattern during this review 

showed that new articles will go back to the center of the cluster and start anew. 

Depending on the area of research, authors may write new articles adding to the group. 

Because of the limited evolutionary nature of this structure, it appears that early articles 

are much more relevant to current thinking than might be the case in other areas of 

research.  

Theoretical Foundation 

PCIs are evaluation tools based on the application of statistical methodology 

forming the principles of SQC. SQC is the application of specialized statistical methods 

to evaluate product quality. Results of the application of SQC guide the adjustment of the 

process to achieve quality standards. Continual monitoring can control that process to 
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ensure that production of quality products will continue in the future. Shewhart’s 

(1931/2015, 1939/1986) research provided the foundation and Deming (1950/1966), 

Juran (1988), and Ott (2000) built on this. The Six Sigma approach, as developed by 

General Electric, includes several of the tools defined by these authors and many new 

ones (Pyzdek, 2003). 

In applications of SQC, two questions immediately arise. First, is the process 

capable (Grant & Leavenworth, 1980)? Answering this question requires two very 

different measures. The designer of the entity defines the first, the specification limit. For 

example, if a locating pin is to slide into a hole in a part, then the tolerances, as expressed 

by the specification limits, on both diameters must allow the parts to mate. The more 

precise the fit required, the tighter the tolerances on both parts (French & Vierck, 1972). 

Consider the production of a locating pin. There will be a USL specifying the 

maximum diameter, and an LSL defining the minimum diameter. This difference between 

the two is the tolerance spread, expressed mathematically as USL - LSL. A process 

produces the pin. This manufacturing process will produce parts with some variation 

around the target diameter. The range of the variation around the desired dimension is the 

natural tolerance of the process. In a capable process, the natural tolerance, expressed as 

the distance between three σ above and three σ below the mean value of the parts 

produced by the process, will fit within the tolerance spread. The mean of the process 

merely serves as a point defining the center of a six-standard deviation interval (Grant & 

Leavenworth, 1980). 
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For example, the target diameter of the pin may be 0.250 inches. The process may 

produce pins with a mean of 0.250 inches and a standard deviation of 0.007 inches. Then 

the natural tolerance of the process would stretch from {[0.250 + 3(0.007)] - [0.250 - 

3(0.007)]} inches = 0.042 inches, or 6σ. 

Capability does not imply control. Capable refers to the process spread while 

control refers to process location. If the target diameter of the pin was 0.3125 ± 0.025 

inches [(0.042 < 0.050 = 2(0.025)], the process would still be capable. The process is not 

in control because it is producing pins with a diameter of 0.250. The specification is 

0.3125. The natural spread of the process is tight enough to fit within the specifications. 

For a process to be in control, the natural spread around the mean must fit within the 

tolerance spread centered approximately on the target dimension. Good process design 

allows the production of acceptable parts within the specification limits. Engineering 

specifies these limits on a process whose outputs are going to fall in a natural spread. 

This spread happens independently of the engineer’s desired outcome (Montgomery, 

2013). This discussion does assume a normal distribution around the process mean. 

The difference between capability and control may be subtle but is important.  

Figure 2 is an illustration of the various cases possible and is typical of those found in 

SQC textbooks to illustrate these concepts, for example, Grant and Leavenworth (1980). 

PCIs are the tools used by practitioners to determine how consistently a process can 

produce quality parts because they can look at both capability and control. 
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Figure 2. Examples of control and capability for different processes. 

Panel a is an illustration of a process that is not capable and not in control. The 

natural spread would not fit within the tolerance limits. The centering of the process 

moved the spread of the process further outside these limits. 

In panel b, the mean of the normal process shown is eight, and the standard 

deviation is 1.5. The USL is 11, and the LSL is five. Consequently, four standard 

deviations lie between the specification limits. This range means that 9.121% of the parts 

will lie to the right of the USL, and another 9.121% will lie to the left of the LSL. 

If the data in panel b represents process output, it would have a Cp of 0.667. 

Because the process mean is at the midpoint between the USL and LSL, CPU and CPL 

are both equal to 0.667, which is the same as the value of Cp. Because CPU and CPL are 
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equal, Cpk is also equal to 0.667. If the mean of this process was 8.5, and everything else 

remained the same, Cp would remain at 0.667 because it is not sensitive to location. 

However, CPU would decrease to 0.556 while CPL would increase to 0.778. Because Cpk 

is the minimum of CPU and CPL, it would drop from 0.667 to 0.556. The proportion of 

parts below the LSL would drop to 5.99% while the percentage of parts above the USL 

would increase to 13.33%. 

Panel c is data from a process that is capable. The natural spread of the process is 

less than the tolerance spread. The location of the process mean moves the output of the 

process outside of the tolerance spread. 

In Panel d, eight is still the process mean, but the standard deviation is 0.500. In 

this case, the Cp and Cpk would be two, and a tiny percentage of parts, less than 0.003%, 

would lie outside the specification limits. With a shift in the mean to 8.5, Cp would 

remain at two, CPU would decrease to 1.667, and CPL would increase to 2.333. This 

increase would result in a Cpk of 1.667. Parts to the left of the LSL would decrease to 

0.0002%, and parts to the right of the USL would increase to 0.043%. This example and 

the previous one, show that PCIs use the same statistical theory as SQC. 

Another theoretical foundation of PCIs is the pioneering work of Fisher in 

applying an experimental approach to the study of crop yields (Fisher, 1935/1971). 

Fisher’s daughter (Box, 1980, 1987) wrote descriptions of Fisher and Gosset’s early work 

in experimental design. The first of these articles is mathematical, the second is 

anecdotal. 
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Fisher’s (1935/1971) work evolved into a methodology known as the design of 

experiments (DOE). Box and others (Box & Draper, 1969; Box, Hunter, & Hunter, 1978) 

contributed to the method. Taguchi (1987) further expanded the methodology by 

factoring the cost of quality into the DOE methodology. New PCIs incorporated 

Taguchi’s concepts of the cost of poor quality (Boyles, 1991). 

DOE has evolved into a complex area of study incorporating a wide variety of 

methods to optimize performance (Lawson, 2014; Montgomery, 2001). In simple terms, 

DOE is a method for structuring experiments, varying parameters, and linking the 

changes in the output of the experiment to the changes in the parameters. The FDA has 

issued a nonbinding recommendation for DOE use in the determination of process 

parameters (FDA, 2011b; Pluta, 2014). 

Literature Review 

Regulation of Medical Device Manufacturing 

Essential to best practices in the manufacture of medical devices is adherence to 

multiple regulations from different agencies. These regulations are cited here as literature 

because they provide the basis of the need for the research conducted in this study. 

Violation of these regulations can result in fines and/or imprisonment of those 

responsible for the nonconformance (FDA, 2014).  

Advances in medical technology have conquered once devastating diseases and 

increased life expectancy in much of the world. However, even in cases where a complex 

device functions properly, the failure of a minor subsystem can have potentially 

disastrous consequences. Even the failure of a system unrelated to the functioning of the 
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device, the sealing of the lid to the tray containing the assembly, can expose patients to 

dangerous contamination (Mays, 2008). 

Because of the importance of patient safety, medical device manufacturing is a 

very highly regulated industry in the United States and abroad. In the United States, the 

primary regulatory agency is the U.S. Department of Health and Human Services, Food 

and Drug Administration (FDA). Other countries have similar agencies, and the 

International Organization for Standardization (ISO, 2016) has issued a standard, ISO 

13485, to set requirements for device manufacturing. The Global Harmonization Task 

Force (GHTF) had as its mission creating uniform device regulation worldwide. The 

International Medical Device Regulators Forum (IMDRF) replaced the GHTF, and issued 

guidance documents to accomplish the original task. The activities of these agencies also 

include the procedures for the approval of new medical devices. Relevant to this study 

are the manufacturing validation procedures that must occur, and the statistical tools used 

during these activities. The intent of these analytical tools is to ensure proper and reliable 

manufacture of devices. 

The FDA provides no specific guidelines on the procedures to follow to ensure a 

process is under control. The FDA offers general guidance in Quality System (QS) 

Regulation/Medical Device Good Manufacturing Practices, 21CFR820.75 (2013). This 

guidance indicates that a process must be under control under specific circumstances, 

Subpart G--Production and Process Controls 

Sec. 820.75 Process validation. 
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(a) Where the results of a process cannot be fully verified by subsequent 

inspection and test, the process shall be validated with a high degree of assurance 

and approved according to established procedures. The validation activities and 

results, including the date and signature of the individual(s) approving the 

validation, and, where appropriate, the major equipment validated, shall be 

documented. 

(b) Each manufacturer shall establish and maintain procedures for monitoring and 

control of process parameters for validated processes to ensure that the specified 

requirements continue to be met. (p. 151-2) 

ISO 13485, Medical devices -- Quality management systems -- Requirements for 

regulatory purposes (2016), offers similar guidance, 

7.5.6 Validation of processes for production and service provision 

The organization shall validate any processes for production and service provision 

where the resulting output cannot be or is not verified by subsequent monitoring 

or measurement and, as a consequence, deficiencies become apparent only after 

the product is in use or the service has been delivered. 

Validation shall demonstrate the ability of these processes to achieve planned 

results consistently. (p. 19) 

In its final report, the recommendations of the GHTF (2003) are similar, 

Each process should have a specification describing both the process parameters 

and the output desired. The manufacturer should consider whether the output 

could be verified by subsequent monitoring or measurement (A). If the answer is 



38 

 

positive, then the consideration should be made as to whether or not verification 

alone is sufficient to eliminate unacceptable risk and is a cost-effective 

solution (B). If yes, the output should be verified, and the process should be 

appropriately controlled (C). 

If the output of the process is not verifiable then the decision should be to validate 

the process (D); alternatively, it may become apparent that the product or process 

should be redesigned to reduce variation and improve the product or process (E). 

In addition, a change in a manufacturing process may result in the need for 

process validation even though the process formerly only required verification 

and control. (p.7) 

PCIs have become the standard to verify process control. Specifically writing 

about FDA regulations, Peña-Rodríguez (2013) indicated that a Cpk of 1.33 evidences an 

in-control process. An examination of available medical device manufacturer quality 

manuals verified this finding. However, several manufacturers suggest that a value of 

1.33 is only a starting point and that a mature process should have an even higher value. 

Process Capability Indices 

The first indices, Cp and Cpk. As described in the Introduction, the first reference 

to capability analysis was in the third edition of Juran’s Quality Handbook published in 

1974 (Kotz et al., 2002). In the fourth edition, Gryna (1988) discussed the capability 

index that defines this index as the tolerance spread divided by 6σ as described earlier. 

More importantly, Juran and Gryna introduced into their handbook the capability 
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concepts developed by Kane (1986). Kane’s article is seminal because it laid the 

foundation for all further developments and extensions of PCIs. 

Kane (1986) pointed out that one of the major problems with Cp is that while it 

measures capability, it gives no indication at all of if a process is in control. Sullivan 

(1984) had reached the same conclusion. A Cp of 1.33 would indicate that the tolerance 

spread is 1.33(6σ) = 8σ wide. For simplicity, set the desired output at 25 units of some 

measure, hundredths of an inch, millimeters, ounces, etc. Assuming a σ of one, an LSL of 

21 and a USL of 29 would result in a Cp of 1.33 because the difference between the limits 

is eight. However, a process with a mean of 50 units and a standard deviation of one 

would also have the same Cp. 

In his development of Cpk, Equation 2, Kane (1986) used the mean, μ, to locate 

the output of the process. He also divided the tolerance spread into two intervals, μ - LSL 

and USL - μ. The two intervals reduced the denominator of the expression by a half. It 

now equaled 3σ instead of the 6σ of the natural tolerance. This division then defined two 

new indices, CPL = (μ - LSL)/3σ, and CPU = (USL - μ)/3σ. Cpk is the minimum of these 

two indices. For Cpk to take on a positive value, the value of σ must be between the 

specification limits. 

Determine the midpoint of the specification range by adding the LSL and the USL 

and dividing by two (Kane, 1986, pp. 45-46), 

.
2

)( LSLUSL
M

+=  (7) 
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Kane used an m to indicate the value in Equation 3. Authors writing since then have 

followed the convention of using M for this value. This use of M is a convention followed 

throughout this dissertation. 

Using these results, Kane defined a factor, k, used to relate Cp to Cpk (p. 46), 

2

LSLUSL

M
k

−
−

=
µ

, 
(8) 

)1( kCC ppk −= . (9) 

Kane stated this without proof. Bothe (2001) does provide a proof of the relationship. 

Kane’s (1986) other contribution is the identification and use of a target value, T, 

in evaluating a process. This T value is the desired value of the outcome of the process. If 

the specification calls for a value of 0.250 inches, T = 0.250 inches. This use is in contrast 

to the previous use of μ, the mean of the process output regardless of how close it is to the 

desired value. An implicit assumption Kane made in his derivation is the centering of T 

between the LSL and the USL, although he does allow for cases where this is not true. 

Other authors, discussed later, examined in more detail situations where this assumption 

did not hold. Using the target value, T, Kane offered an alternative formulation of k (p. 

46), 

{ }TUSLLSLTMin

T
k

−−
−=

,

µ
 (10) 

Through substitution in Equation 5, Kane (p. 48) showed, 

{ }CPUCPLMinC pk ,= , (11) 

where, 
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Kane (1986) offered several cautions in the use of the indices he documented. 

First, there may be pressure to apply the indices too soon before the process is under 

control. His equations are based on a mature, in-control process as indicated by the use of 

μ and σ rather than X  and s. Second, he acknowledged that sampling often yields the 

values of these parameters and that the size of the samples could affect their values and, 

consequently, the values of the indices. Third, he was concerned about the difficulty of 

calculating indices; the later availability of cheap computing power remedied this 

concern. Fourth, he expressed reservations about the normality of the processes, and the 

effects nonnormality would have on the accuracy of the indices. Fifth, he recognized that 

manufacturing methods could change, even over the short term. The specific example he 

used addressed how tool wear might affect a process and cause changes to the values of 

the indices over time. 

Kane (1986) clearly recognized that PCIs had some serious shortcomings. Other 

researchers identified this as well. Gunter (1989a, 1989b, 1989c, 1989d) wrote a four-part 

series criticizing Cpk in Quality Progress. His concerns about the use of the index 

reflected some of those expressed by Kane (1986).  

Kane recognized that the index was only suitable for processes that fit a normal 

distribution. Gunter reinforced this concept and elaborated by noting that relying on the 
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central limit theorem, a frequently applied tool in SQC, does not present an acceptable 

solution. Instead, he suggested that data transformations, if they apply to the data under 

analysis, might offer a solution, as might robust methods. Kane expressed concern about 

the effect of different sample sizes on the calculated values of the indices. Gunter also 

cited sampling as a possible source of inaccuracy, but his reservation focuses on sampling 

error rather than on sample size. Gunter, also, like Kane, recognized the use of this index 

in calculating capabilities for processes that were not yet under control to be a major 

source of error. 

Interestingly, by the time of Gunter’s article, others were beginning to suggest 

alternatives to Cpk to overcome these difficulties. For his criticism of the use of the 

central limit theorem, Gunter referred his readers to another article in which Chan, 

Cheng, and Spiring (1988a) mathematically showed the inapplicability of this theory to 

the calculation of Cpk. However, Gunter did not discuss the alternative the latter article 

suggested, Cpm. 

The incorporation of a target value, Cpm. Kane (1986) did introduce a PCI 

expression incorporating a target value, T. Taguchi (as cited in Boyles, 1991) was the 

first to use the measured deviation from T as a penalty factor in the calculation of an 

index. According to Boyles, Taguchi focused on the cost of poor quality, either as a 

financial impact on the firm or to society in general. Thus, Taguchi’s formulation 

incorporated a cost factor. Adding the cost factor differed from the other authors 

reviewed here who used PCIs as methods to monitor the performance of a process 

without examining any cost considerations. Taguchi introduced his work at the American 
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Statistical Association Annual Meeting in 1985. The first journal article incorporating T 

reported the research of Chan et al. (1988a). Their research was independent of Taguchi’s 

earlier research (Boyles, 1991). 

Chan et al. (1988a) developed a new process indicator that reflected the effect of 

the process mean missing the target value. It also incorporated the natural variation 

around the process mean. The focus was on expanding the ability of Cp to include a 

penalty of the value of the indicator based on the distance of the process mean from the 

target. They did this by defining a new index, Cpm, defined as (p. 164), 

'6
ˆ

σ
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−= , (14) 

where the definition ofσ ′  is (p.164), 
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σ ′  is estimated with Equation 16, 
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Referring to Equation (1), we would estimate Cp as (Kane, 1986, p. 42), 
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where s is the sample standard deviation, 
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Comparing Equations 14 and 16, it is apparent that the difference between the two 

is that the denominator of pĈ  increases with the sample standard deviation resulting in a 

lower value. Conversely, a smaller standard deviation will result in a higher value of pĈ . 

The value of pĈ  depends only on the specification limits, set by engineering, and the 

value of the standard deviation, a process characteristic. It is thus independent of the 

desired output value from the process, that is, T. 

pmĈ , on the other hand, is calculated by using the average distance from T. The 

closer the distribution of the output is to T, the smaller the denominator becomes, and the 

larger pmĈ  becomes. The greater the spread of the output is with respect to T becomes, 

the smaller the resultant value of pmĈ . If the mean of the process is equal to T, or at least 

very close when compared to the tolerance interval, the Cpm is equal to Cp. Chan et al. 

(1988a) showed that (p. 164), 
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They also showed that the bias of pmĈ  as an estimator of Cpm asymptotically 

approaches zero as the sample size increases and does so more rapidly than pĈ  does for 

Cp. They also pointed out that while Cp does not change as the mean of the process 

changes, Cpm does and does so in a manner similar to Cpk. Boyles (1991) indicated that 

this is true only by meeting their assumption that μ = T. 
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Boyles (1991) explored several aspects of PCIs involving a targeted process 

value, T. Consider Cp and the case where M = μ with a normal distribution assumed. In 

this instance, a Cp of one would place the center of the distribution midway between the 

specification limits. Calculate a Z-score for a specification limit by taking the distance 

between μ and the specification limit and dividing the result by the σ. Φ (Z) represents the 

cumulative distribution for this value. Applying this to the calculation of Cpk, Boyles 

expressed the percentage conforming as (p.18), 

% 100
USL LSL

Yield
µ µ

σ σ
 − −    = Φ − Φ    

    
. (20) 

He also showed that this establishes upper and lower bounds on the yield of a process 

with Cpk values calculated for both the upper and lower specification limits. He 

concluded that Cp provides an estimate of the yield the process could achieve, while Cpk 

indicates the actual yield limits of the process for particular values of this PCI. 

Boyles (1991) noted interesting behavior for both Cpk and Cpm using a plot of the 

value of these indices as of function of μ and σ. For any constant σ, Cpk will reach its 

maximum when μ = M, Equation Error! Reference source not found.. At this point, Cpk 

= Cp while at or beyond both specification limits, Cpk = 0. At any constant value of μ, 

∞=
→

pkC
0

lim
σ

 (21) 

Because Cpk can increase without bound in this situation, Boyles suggested that it does 

not serve well as an indicator of the centering of the process or the distance between the 

mean of the process and T. 
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Boyles (1991) considered Cpm to be a better indicator of process centering. He 

analyzed Cpm similarly to the analysis of Cpk. Consider Cpm as a function of μ and σ. For a 

constant value of σ, Cpm will reach its maximum value when μ = T = M. Cpk equals zero at 

or beyond the specification limits. Cpm will approach zero as the distance between μ and T 

increases, 

0lim =
∞→−

pm
T

C
µ

. (22) 

Boyles (1991) indicated that there is an upper bound to Cpm as σ approaches zero 

(p. 20), 

6pm
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C

Tµ
−<
−
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However, this is only true in cases where μ is not equal to T. Cp would be a line parallel 

to the μ – Cpk or μ – Cpm planes. This line intersects the vertex of the angle of the plot of 

Cpk or tangent to the circles formed by the plot of Cpm. Cutting planes construction 

parallel to the μ – σ plane, results in those found in Boyles (1991).  

Refining the target value, Cpmk. Pearn et al. (1992) found inconsistencies in both 

the prior work of both Kane (1986) and Chan et al. (1988a). These discrepancies 

concerned the percentage of non-conformance versus the value of the PCI. They 

considered cases where T lies within the specification limits but is not equal to M. Half 

the distance between the specification limits is (p.217), 
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If d = 6σ, and T = 3[(USL) + LSL)]/4 (p. 218), then if μ = T - d/2 = M (p. 218) and 

μ = T - d/2 = USL (p. 218), it can be shown that the values of Cpm are equal to 2 / 13  = 

0.555 for both values of μ. This is due to the (μ - T)2 term in the denominator of the 

expression for Cpm. While the values of Cpm are equal, the percentages non-conforming 

are 0.27% and 0.50% respectively as shown in Figure 3. 

  

 Figure 3. Process with identical Cpm values, but differing percentages conforming. 

To overcome these problems, while restricting their proposal to the case where T 

= M, Equation 7, they developed a new index, Cpmk. Defining σ ′  as, 2 2( )Tσ σ µ′ = + −  

(p. 217), 
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with an estimator of (p. 221), 
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where (p. 217), 
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As is the case with Cpm, deviations from T induce a penalty in the form of a larger 

value of the index. The authors indicated that Cpmk is the most sensitive of the four 

indices to values that deviate from the target value, T, followed by Cpm, Cpk, and Cp. They 

further identified Cp as the first-generation index, Cpk and Cpm as the second generation, 

and Cpmk as belonging to a third generation. 

A unifying index, Cp(u, v). Writing after Boyles (1991), and Pearn et al. (1992), 

Vännman (1995) developed a unified approach to PCIs. To avoid the problems 

highlighted by Pearn et al. (1992), he assumed that T = M and normality (p. 807), 
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This equation can generate all of the capability indices considered so far, 

;)0,0( pp CC =  ;)0,1( pkp CC =  ;)1,0( pmp CC =  ,)1,1( pmkp CC =  (29) 

by using different values of u and v. 

An advantage of Vännman’s (1995) approach is that the possible adjustment of 

the values of u and v to increase or decrease the sensitivity of the index. This adjustment 

is to the distance between M and T. Vännman pointed out that this is especially important 
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when dealing with a small value of σ. Use of Vännman’s expression of capability indices 

in terms of u and v has become very common in the literature. 

A fourth generation index, Cpsk. A year before Vännman’s (1995) article 

appeared, Benson (1994) completed a doctoral dissertation that proposed a fourth 

generation index. What makes this dissertation noteworthy is that Samuel Kotz, who, 

along with Pearn and Johnson, made major contributions to the development and 

exploration of indices, was Benson’s co-chair. In fact, in the index Benson proposed, 

Cpsk, sk stands for Samuel Kotz. 

Benson’s (1994) index was similar to that of Vännman’s with the addition of 

another parameter, w, (p. 44), 
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Benson did refer to previous work by Vännman discussing the index. Benson showed that 

the inclusion of the w parameter allows for the case M ≠ T. Under assumed normality, the 

addition of the w parameter extracted an additional penalty. This penalty applied to the 

differences between the mean and the target, T.  

Unlike other indices, Benson’s did not assume that the target lies at the midpoint 

of the specification range. Like Vännman’s (1995) index, Cp (u, v), appropriate values of 

u, v, and w will yield the other indices. 

Basic indices conclusions. This section has examined the basic capability indices. 

While their evolution has made them more sensitive to process irregularities, one thing 

remained constant:  An assumption of normality is the basis for these indices. With a 
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failure of that assumption, the results of a capability analysis may be misleading at best 

and dangerous at worst. In the medical field, relying on incorrect results can endanger 

patient lives and expose a manufacturer to serious legal and financial liability. 

After the development of the basic indices, Kotz and Lovelace (1998) found “The 

avalanche” (p. 95) of indices began. The reference is to indices developed to cope with 

the shortcomings of the basic versions. New indices continue to be developed (Lupo, 

2015). The next section will address methods to compensate for the lack of normality in 

the use or development of PCIs including addressing nonnormal data in general. 

Overcoming Nonnormality 

Fortunately, problems with nonnormal data are not restricted to the examination 

of the output from manufacturing processes. Instead, they are attracting considerable 

attention from statisticians and researchers in other fields who have developed methods 

for addressing this problem. The methods developed in other fields can also apply to PCI 

calculations. While the study of process capability is relatively recent, the study of 

nonnormality is not. Pearson (1894, 1901, 1916) opened this subject to review. Prior to 

Pearson’s research, scholars held that all probability distributions were normal but with 

differing amounts of skew (Department of Statistics, University of Minnesota, Morris, 

n.d.). Pearson developed descriptions for several different types of frequency 

distributions, including the normal distribution, according to their skew and kurtosis. 

Statistician, including those studying PCIs, widely use Pearson’s method and its variants. 

Transformations, including percentile methods. One of the most widely used 

methods for addressing nonnormality is that of transforming the data. If the application of 
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a transform achieves normality, then a practitioner can apply a capability index to the 

transformed data and specification limits to assess the capability. Two methods, the 

Johnson, and the Box-Cox transformations, are very widely used. Many statistical 

packages, for example, Minitab (2010), incorporate both of these methods. 

The first method discussed, developed by Johnson (1949), is similar to the 

approach taken by Pearson (1894, 1901, 1916) in that he also used the moments to 

develop his frequency curves. He provided a method to translate curves so that they will 

coincide with Pearson curves, ideally that representing the normal distribution. Although 

the transformation is simple in appearance, (Johnson, 1949, p. 152), it is rather complex, 
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Like Pearson, the skew and kurtosis are calculated. Johnson (1949) then provided 

a lookup table for these values, depending on the type of curve under analysis, allowing 

the determination of the other parameters, and the data transformation. In total, he 

developed three transformations SB, SL, and SU. Slifker and Shapiro (1980) provided a 

more detailed explanation of the procedure and its application. A frequently cited article 

using this method is Pyzdek’s (1992). 

The other common transformation is the Box-Cox (Box & Cox, 1964, p. 214). 
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With different values of λ, the transform takes on different characteristics. For example, a 

value of 0.50 will result in a square root transform, and a value of -0.50 is the reciprocal 

square root transform. Wu, Lin, Yang, and Pearn (2014) reported a recent application of 

the Box-Cox transformation to Cpk calculations. 

The need to address general problems of nonnormality in statistical analysis led to 

the development of these methods. Along with these, other types of simple transforms 

exist. For example, a trigonometric function can be applied to the data and the 

specification limits. It is important to note that making any adjustments, for example to 

the specification limits, require back transformation before use. Kabacoff (2015) 

expressed caution about justifying transformations before applying them. Other methods, 

discussed later, address the problem of nonnormality as it applies to quantifying process 

capability.  

Applications based on Pearson probability distributions. Clements (1989) 

developed a method based on Pearson’s (1894, 1901, 1916) system using the calculations 

for this method done by Gruska, Mirkhani, and Lamberson (1979). Clements’s method 

first required the calculation of the mean, X , the sample standard deviation, s, the 

skewness, Sk, and the kurtosis, Ku, for the data. He used these values to create 

standardized values. Users apply the values by looking them up in the appropriate tables 

published in his article, adapted from the tables found in Gruska et al (1979).  

The values from the tables correspond to the 0.00135 and .99865 percentiles that 

are the values for 3σ in either direction from the mean of a normal distribution. Clements 

designated these as pL′  and pU′  respectively. Taken individually, they corresponded to the 
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values needed to calculate CPU and CPL; when combined, they gave the 6σ value 

required to calculate Cp. 

Next, one looked up the value of the median in another provided table. 

M ′ designates this value after adjusting the sign for either positive or negative values of 

skewness. The values of Lp, Up and M are calculated from these values (Clements, 1989, 

p. 97). 
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These represented the values of the percentiles and the estimated median of the 

distribution. Given upper and lower tolerance (UTL or LTL) or specification limits (USL 

or LSL), represented as Ut and Lt respectively, the PCIs were calculated as (p.97), 
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These equations correspond to Equations 1, 3, 4, and 5. 

Publication of Clements’ (1989) article followed that of Chan et al. (1988a) by a 

year. It, understandably, did not include any of the calculations found in that article for 
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Cpm equivalents. Because it preceded Kotz et al. (1993), it did not contain any references 

to Cpmk. It is an important article that laid the foundation for other research that expanded 

Clements’ methodology. 

Pearn and Kotz (1994) filled this Cpm gap by modifying the indices Cpm and Cpmk 

to incorporate Clements’ method. They used the percentile points generated through the 

application of Clements’ method and the median, M, in place of the mean, µ. The results 

were (Pearn & Kotz, 1994, p. 142), 
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Pearn and Chen (1995) refined the method. Instead of treating using Up – M and M – Lp 

as the value of 3σ, they replaced the two 3σ intervals with (Up – Lp)/2. The resulting 

equations, now including expressions for pĈ  and pkĈ , were (p. 387), 
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Expressed in Vännman’s (1995) notation, these are (p. 387), 
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In this same work, Pearn and Chen (1995) proposed a method for asymmetric 

tolerance intervals. Independently, Vännman (1997) also addressed this topic by building 

on his original (1995) work by using different values of u and v. Pearn, Chen, and Lin 

(1999) refined the research they had done in the asymmetric case by incorporating some 

of the ideas of Vännman (1997). This incorporation of Vännman’s work resulted in a set 

of indices that outperformed all earlier efforts for the asymmetric case. 

Applications based on Burr cumulative distributions. Most of the applications 

of percentile methods have used Pearson probability distribution curves. The evaluation 

of process capability can also use the distribution curves of Burr (Burr, 1942, 1973; Burr 

& Cislak, 1968; Zimmer & Burr, 1963). 

Burr and Cislak (1968) proposed the equation (p. 629) to explain its use, 
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Given a data set, the mean, μ, the standard deviation, σ, the user calculated the skewness 

(referred to by Burr, 1942, as α3) and the kurtosis (referred to by Burr as α4). Using the 

values of α3 and α4, find the values of c and k. Burr’s Table 1 gave the adjusted μ and σ. 

With these values, the final calculation uses Equation 48 (Burr and Cislak, p. 629), 
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to find x from X. 

The first application of Burr’s method to capability indices appears to be 

Castagliola (1996) who used it in evaluating CPL, CPU, Cp, and Cpk for both normal and 

uniform distributions. He noted in his conclusions that to assess its performance for other 

nonnormal distributions would require further research. A succinct explanation of the 

mechanics of Burr’s method to capability indices is in Liu and Chen (2006). They found 

that this method offered superior results to those using the Pearson curves for the 

calculation of capability indices. Their application processed data simulated by the beta, 

gamma, and Weibull distributions. 

Weighted variance methods. Control charts and PCIs share common roots. The 

most common control chart, the RX − , is based on the mean of the mean of the output of 

a process. It also uses the range covered by the samples taken to monitor the process. The 

weighted variance approach is somewhat similar to the utilization of the mean and 

standard deviation in capability indices that, at their simplest, quantify the number of 

standard deviations between the specification limits. 
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Using earlier research (Choobineh & Branting, 1986), Choobineh and Ballard 

(1987) proposed a method for constructing control charts for skewed, that is, nonnormal, 

distributions. Given a sample mean, one counted the number of observations above the 

mean and divides by the number of total observations to derive a value P, the probability 

of the observation falling above the mean. Then, the probability of an observation falling 

below the mean is 1 – P. 

The standard deviation of the entire distribution, σx, is broken into two 

components, σa and σb, located above and below the mean respectively. Choobineh and 

Ballard (1987) further indicated that (p.475),  

222
bax σσσ += , (49) 

22
xa Pσσ ≈ , (50) 

22 )1( xb
P σσ −≈ . (51) 

The upper control limit factor is P2 , and the lower control limit factor )1(2 P− . 

These, taken with a correction factor (p. 475), 3/A n= , generated the upper and lower 

control limits for the mean and the range. 

Abel (1989) was critical of Choobineh and Ballard (1987). Among other 

objections, he indicated that the calculations of the standard deviations were incorrect and 

the use of the factor A, was not accurate. Shewhart control charts use the factors A2, D3, 

and D4 (Montgomery, 2013). These contain anti-biasing corrections for the distribution of 

the standard deviations. Choobineh and Ballard’s (1987) factors do not. For information 

regarding the mathematics behind Abel’s objection, see NIST/SEMATECH (2015). 
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Bai and Choi (1995) and Chang and Bai (2001) refined the weighted variance 

method of Choobineh and Ballard (1987) for control charts. Later, Chang, Choi, and Bai 

(2002) applied weighted variance to the construction of PCIs involving skewed 

distributions. Chang and Bai (2001) split a skewed distribution, f(x), at the mean, μ, and 

derived two probability density functions using the same mean as f(x). They reflected the 

distribution around the mean, incorporating the probability, P, of the value being to the 

left of the mean. These distributions will have different standard deviations because they 

have differing shapes (p. 398), 
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Chang and Bai (2001) derived the standard deviations from these equations. They 

used the semivariance expression from Choobineh and Branting (1986). They calculated 

weighted standard deviations for the upper and lower standard deviations (p. 399), 

W

U Pσ σ= , (54) 

(1 )W

L Pσ σ= − . (55) 

Using these two σ values in the equation for the normal distribution, with mean μ, 

the results gave the two probability distribution functions arising from the rotations. Use 

the values in Equations 54 and 55 to determine the control limits for the control chart. 
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Chang et al. (2002) extended this work to PCIs. Building on the work of Chang 

and Bai (2001), they derived expressions for a Cp and Cpk equivalent indices (p.365), 
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This weighted value is unlike the simple Cp, and variants, considered previously. Those 

calculations give only one value for the index. WSD

pC gives a value for each of the 

distributions generated by rotation around the mean and selects the smaller one. 

Building on earlier research, Wu (1998), and Wu, Swain, Farrington, and 

Messimer (1999) took a different approach to the development of an index based on 

weighted variance. The approach was unlike that later taken by Chang et al. (2002). 

Similar to the other methods, they identified the number of observations below the mean 

as n1, and above the mean as n2. The sample standard deviations below and above the 

mean are (p. 399), 
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For indices involving a target value, T, they used (p. 399), 
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For all of these equations, the Xis would be those corresponding to those counted by n1 

and n2 respectively. 

Using these S values for the standard deviations, the PCIs became (p. 399), 
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The Bootstrap Method 

Another method for the evaluation of nonnormal data, not explored in depth in 

this dissertation, is the bootstrap. Efron and Tibshirani (1993) provided a thorough 
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description of the technique. Franklin and Gary (1991) applied the method to simulated 

data from the normal, the t, and the chi-squared distributions. They calculated 96% 

confidence intervals for Cp, Cpk, and Cpm from the data. Price and Price (1993) used the 

method to examine quality data from a Ford Motor Company engine casting plant. In this 

study, they used the method to construct 95% confidence intervals for pkĈ . 

Pearn et al. (2005) implemented the method to examine asymmetric tolerance 

intervals for nonnormal data. Their efforts produced a new PCI for this application, 

( , )Np u vC′′ . Pearn, Tai, Hsiao, and Ao (2014) applied the method to simulated data to 

develop a confidence interval, and a new, unbiased estimator for CNpk for nonnormal data. 

Tong, Chen, and Tai (2008) used the technique to compare confidence intervals 

from different bootstrap samples from the same distributions. Dharmasena, 

Zeephongsekul, and Castagliola (2010) implemented the method to calculate fixed-width 

confidence intervals for Cpm. They used simulated data from normal and lognormal 

distributions. 

Robust Methods 

Like the weighted variance techniques, the development of a median absolute 

deviation (MAD) approach to process capability began with the application of the method 

to control charts. Abu-Shawiesh (2008) proposed the substitution of the average MAD, 

with an appropriate adjustment factor he provides, for the adjusted standard deviation in 

the construction of an s-like control chart. The calculation of the sample standard 

deviation used the provided factors and the standard c4 bias correction factors. The s-

chart represents a plot of the movement of the standard deviation of samples taken from 
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the process compared to the average standard deviation. In a simulation study, Abu-

Shawiesh showed that the MAD based control chart performed better for heavy-tailed 

distributions than did the s-chart. This advantage applied to contaminated distributions 

because they may have heavier tails than a pure normal distribution does. 

Adekeye and Azbuike (2012) extended the work of Abu-Shawiesh (2008) to 

allow the creation of X  control charts. X  refers to the average of the averages of X. 

Adekeye and Azbuike modified the correction factors developed by Abu-Shawiesh. The 

new charts use the X as the centerline with the control limits derived from the MAD 

using the new correction factors. Adekeye (2012) further refined the correction factors to 

improve the performance of these control charts. 

Adekeye (2013) extended the concepts behind the MAD control charts to include 

PCIs and developed variants of Cp, Cpk, Cpm, and Cpmk. In the new indices, he applied 

appropriate correction factors from Abu-Shawiesh (2008) to the mean MAD and the 

resultant expression substituted for the value of σ in the equation. Adekeye used the 

technique on four data sets, two real-world, one using data simulated with an exponential 

distribution, and another using data simulated with a Weibull distribution. He compared 

these with comparable indices calculated using a percentile method. 

For the first real-world set, the MAD Cp and Cpm were lower than the equivalent 

indices, Cpk was equal, and Cpmk was higher by roughly a third. For the second real-world 

data set, the MAD indices were all lower by 40 to 24 percent. For the simulated data, the 

MAD indices were higher than the percentile indices, in one case by 150 percent. While 
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Adekeye considered the PCI higher values in the latter two cases to be an advantage, his 

work showed that the use of these indices requires caution. 

Mondal, Ray, and Maiti (2014) offered general guidelines for the incorporation of 

robustness in manufacturing that goes beyond the step of calculating a PCI. Besseris 

(2014) proposed a modification of existing indices to further improve the robustness of 

the calculations. Salazar-Alvares and Temblador (2012) provided a general review of 

PCIs and nonnormal processes. 

The Performance of the Different Indices and Methodologies 

Throughout their development, researchers have subjected PCIs to testing and 

scrutiny. These activities led to the development of new indices and methodologies. 

Much of this activity has centered on the performance of the indices when the data is 

nonnormal, including data from industry. 

English and Taylor (1993) explored the performance of Cp and Cpk for nonnormal 

simulated data from the triangular, uniform and truncated exponential distributions. As a 

control, they also generated simulated data using the normal distribution. They ran 20 

different models with sample sizes varying from small to large. They concluded that the 

indices were sensitive to the normality assumption. Cpk is the more sensitive of the two. 

They cautioned those who might use these indices to be very careful when working with 

nonnormal data. 

Rivera et al. (1995) examined the performance of Cpk for transformed data 

generated by simulation from the gamma, lognormal, and Weibull distributions. They 

used logarithmic, square root, inverse, inverse square root, asinh, and power 
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transformations. The authors emphasized that they examined all transformed data for 

normality before any testing. Keselman, Othman, and Wilcox (2013) reinforced the 

importance of this procedure. Rivera et al. (1995) reached the conclusion that a power 

transform performed best, although problems arose with insufficient shortening of the tail 

resulting in overly conservative Cpk values. This observation lends validity to the 

sampling effect concern first voiced by Gunter (1998b). 

Tang and Than (1999) studied several different methods of overcoming 

nonnormality. They applied probability plots, weighted variance, Clements’s method, and 

the Box-Cox and Johnson transformations. They used these methods on data simulated 

from lognormal and Weibull distributions. They concluded that the Box-Cox 

transformation, a power transformation, performed best. This performance differential 

was especially apparent for the heavy-tailed lognormal data. 

Pal (2005) used the Generalized Lambda Distribution (GLD) method to examine 

nonnormal data of the length of bolts produced by a process under study. The GLD 

method is similar to the curve fitting of the Johnson transformation and the percentile 

calculation of Pearson curves. He concluded that this method was computationally 

simpler than the other two approaches. He calculated pkĈ  using his method and it 

showed that the process did not meet the requirement of Cpk ≥ 1.33. Unfortunately, he did 

not compute Cpk using the traditional approach for comparison. 

As previously mentioned, Liu and Chen (2006) applied a method using the Burr 

XII distribution to data simulated using the beta, gamma, and Weibull distributions. They 

compared the results to those reached using Clements’s method. They concluded that, 
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though both methods overestimate CPU, especially for heavily skewed distributions, the 

distortion was less using his modification of the Burr method. They deduced that the Burr 

method would offer more satisfactory results than Clements’ for practitioners. 

Han (2006) used simulated data and evaluated it using the Shapiro-Wilk test for 

normality. His conclusion was that if the data passes the test for normality use the 

standard PCI based on the estimated standard deviation. If the test indicates 

nonnormality, he recommended the use of a percentile-based method. The focus of his 

article is more on the importance of the accuracy of the test for normality, and the 

selection of the correct significance level, than the performance of the capability indices. 

Czarski (2008) compared the results of calculating Cpk using percentiles 

calculated from a nonnormal distribution with the results reached through the application 

of Clements’s method. The object of his research was the thickness of rolled steel plate to 

which he had empirically fit a Weibull distribution. He found that there was very little 

difference between the results of the two methods.  

Czarski (2008) concluded that, in the case of nonnormal data, it is a mistake to 

apply methods based on the normality assumption. Instead, fit a distribution if possible, 

and carry out the calculations based on that distribution. Alternatively, the use of 

Clements’ method may offer close enough results for use as a viable alternative. 

Hosseinifard, Abbasi, Ahmad, and Abdollahian (2009) performed a study with 

two components that compared the results of different methods of dealing with 

nonnormality first on simulated data, and then in a real-world application. They simulated 

the data using the gamma, Weibull, and beta distributions. They evaluated four methods 
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of coping with nonnormality, the root transform, the Box-Cox method, and two percentile 

methods based on Burr and Clements. Their root transform was different from that 

previously discussed in Rivera et al. (1995). In Hosseinifard et al.’s (2009) use, a fraction 

power transformation minimizes the value of the skewness. The concept behind this is 

that an adjusted normal distribution has a skewness of zero. 

Hosseinifard et al. (2009) achieved the best results for the simulated data using 

the root transformation. They then applied the different to the real-world data, which 

dealt with contact area in the semiconductor manufacturing industry, and achieved 

similar results. Their recommendation was that practitioners consider using the root 

method when dealing with nonnormal data, claiming that it not only gave better results, 

but also was easier to use. 

Kenyon and Sale (2010) developed an index, Cpy, based entirely on the yield of a 

process. Their claim was that the index’s base is the hard yield. Hard yield is the amount 

of product produced between the specification limits, compared to the total produced. 

This comparison made the underlying shape of the distribution describing the process 

irrelevant. While they stated that a weakness of traditional capability indices is their 

reliance that the process is under control, others could make the same objection toward 

their approach. Maiti, Saha, and Nanda (2010) took a similar approach, with the 

denominator representing the expected process yield. 

Goswami and Dutta (2013) compared the results for the calculation of Cp and Cpk 

for data from a chemical manufacturing process fitted to gamma and Weibull 

distributions. Methods used were the Box-Cox and Johnson transformations, an “ISO” 
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method apparently based on the percentiles from the two fitted distributions, and 

Clements method. The “ISO” method yielded the lowest indices that may have been due 

to the poor fit of the distributions. The other methods produced index results that were 

similar to each other and considerably higher than those generated by the “ISO” method 

were. 

Kovářík and Sarga (2014) used simulated data from Weibull and lognormal 

distributions to evaluate the performance of nine different methods, broken into what the 

authors described as nontransformation and transformation, to overcome nonnormality. 

The nontransform approaches are a probability graphing method developed by the 

authors, a tolerance interval/graphical approach from Chan et al. (1988b), weighted 

variance, and Wright’s index (1995). The methods classified as transforms include 

Clements and Burr-based percentile methods, and several other transformation techniques 

including Box-Cox and Johnson. The authors studied the index
puĈ . 

Kovářík and Sarga (2014) concluded that, while non-transformational methods 

may offer computational simplicity, they do not perform as well as transform methods 

unless the data are close to normal. Transformation methods, particularly Box-Cox, 

generally did better than non-transformational methods. The authors found that their 

accuracy was sensitive to sample size, with better results coming from larger samples. If 

there was a requirement for small sample sizes, methods using Burr distributions yielded 

more accurate index estimates. 

Safdar and Ahmed (2014) examined the effects of the shape parameter of the 

Weibull distribution on Cp, Cpk, Cpm, and Cpmk. As expected, they found that it did have an 
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impact on the estimation of the indices but found that sample size had little or no effect 

on the values. This lack of influence was in contrast to the findings of several other 

authors, for example, Kovářík and Sarga (2014) who found such an effect. 

Contaminated distributions. Contaminated distributions are combinations of 

distributions. Tukey (1960, p. 454), showed the form of the probability density function 

for a mixed normal distribution as, 

dze
h

dzedzzn h

zz

h
22

2

2

2

,
2

1

2

1
)1()(

−−
+−=

π
γ

π
γγ . 

(67) 

In this equation, γ is the fraction of the total from the wider distribution that has a scale h 

times broader than the other. A thorough review of the literature has shown that little 

research relating this condition to PCIs. Bothe (1999) did consider the selection of 

samples from multiple process streams and developed a method based on a weighted 

average of nonconforming parts across the streams. His work did assume a known 

number of elements from the different streams. Although the contaminated distribution 

represented above indicates known probabilities for each distribution, in a mixture of lots 

from an upstream supplier this might not be the case. 

Summary and Conclusions 

This chapter included a discussion of the development of several approaches to 

the measurement of process capability. PCIs began as a simple indicator developed by 

Kane (1986). Since then, PCIs have grown to encompass a broad range of process 

conditions., and are still considered to be an important part of quality and continuous 
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improvement activities (Jaca, Viles, Mateo, & Santo, 2012; Kenett & Zacks, 2012; 

Mariappan, Gaonkar, Sakhardande, & Dhawalikar, 2012).  

Many of the uses are in very specialized applications. There was no discussion of 

many of these specialized indices due to space and, more importantly, scope 

considerations. Because PCIs rely on the normality of data, this chapter contained 

discussions of several methods for coping with nonnormality, including transformations 

and robust methods, as well as weighted variance and bootstraps techniques. 

The literature study revealed that many researchers used simulated data to 

measure the performance of the various indicators. The use of simulation is a critical 

consideration because the actual nature of ill-behaved data in the real-world is seldom, if 

ever, known with certainty. Using simulated data provides confidence in the capabilities 

of the process and allows the use of that knowledge to evaluate the performance of an 

indicator with certainty. Hence, the use of this approach to generate the data used to 

assess the PCIs on data from particular contaminated distributions as described in the 

next chapter. 

A gap in the literature exists in the application of PCIs to medical manufacturing 

specifically. The FDA lot traceability requirement offers a leverage point to make the 

application of the indices more accurate. This requirement forms the basis for the 

methods employed in this study. The next chapter contains a description of these 

methods. 
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Chapter 3: Research Method 

The purpose of this empirical quantitative study was to develop a framework that 

evaluated the ability of a PCI to accurately measure medical device test data under a 

scenario where output data combines the effects of mixed production lots of components. 

The study was comparative in nature. It included an examination of the performance of 

the most commonly used PCI, Cpk, using simulated process data by calculating precise 

capabilities and then compare these values with the results generated from nonnormal 

data adjusted indices. Data consisted of combinations of data from different distributions 

representing the situation where a lot of raw material used in a process consists of 

material from several supplier lots.  

The simulated data represented test values from some production test and are the 

independent variables. Using simulated data negates the influence of, or need to control 

for, any independent variables, because only the final value of a test is simulated. The 

value of the calculated PCI was the dependent variable of interest in this study. 

Successful completion of this study offers evidence of the applicability of PCIs to results 

that may come from the combination of distributions. 

The research involved an examination of the performance of the most commonly 

used PCI, Cpk, using simulated process data, as well as a description of the population 

data generated through simulation and then analyzed. A subsequent discussion includes 

an examination of sample size determination and a description of confidence intervals 

and hypothesis tests. The chapter ends with a discussion of the validity of the study and 

overcoming the potential threats to the validity. 
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Research Design and Rationale 

This research was semiexperimental because the data used to answer the research 

question were simulated, that is, there was an underlying experiment executed to generate 

the samples. The experimental design itself was quasiexperimental because, even though 

the simulated data generated to test the hypothesis were random, parameter selection 

provided control. This random control qualifies it as a quasiexperimental design. 

Device components or finished devices testing requires preset criteria. The 

simulated data represented test results and were the independent variable in this study. 

These test results might be quantifiable factors, for example, tensile strength, length, 

electrical resistance, or weight. The nature of the test process itself is not important. What 

is important is that it generates quantitative, rather than qualitative, data measurable on a 

scale to ascertain if a datum falls within the specification limits defined by engineering. 

The PCIs, variances, and standard deviations calculated from the data are the dependent 

variables.  

Simulation runs consist of 10,000 data points. This is a commonly used number in 

simulation studies; for example, it is the number used by English and Taylor (1993), Han 

(2006), and Hosseinifard and Abbasi (2009). The appropriateness of this number would 

depend on the medical device manufactured. A discussion in greater detail appears later 

in this chapter. However, 10,000 was large enough to determine if the overall approach 

taken in this study was valid, but might require some adjustment under specific, large 

scale application of the methodology. 
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Several factors informed the decision to use simulated data. The first, and most 

important, was the ability to control the nature of the data. Because of the examination of 

defined distributions during the study, the ability to create test data that would follow 

specific distributions when tested would require a great deal of luck. By using simulated 

data, with the parameters of the generating distributions known, it was possible to 

determine the proportion of the data that should lie above or below a set point, for 

example, a specification limit. 

Another consideration was the time and expense that would be involved in 

generating 10,000 data points for 12 different distributions. Even if the process to make 

the parts to be tested was simple, creating 120,000 parts would require considerable time 

and expense. After the completion of part manufacturing testing requires additional time. 

Methodology 

This section contains a description of the methodology used, including the 

mathematical model construction, data generated for the study, sampling techniques, and 

statistical tests used. I generated the data for this study through computer simulation. The 

data represent manufacturing test results applicable to all goods produced through 

manufacturing processes worldwide where the raw materials, or components, for the 

process, originate in different lots with subsequent mixing in the production process.  

While the FDA requires that the lots used in the creation of a subsequent lot be 

traceable, a mixture of the lots could occur in production (Identification and Traceability, 

2016). See Figure 4 for an illustration. 
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Figure 4. Illustration of how components from different lots come together in a 
manufacturing process. 

This mixing of components can quickly become very complicated. Figure 5 

contains an illustration of this lot mixing activity. Each substep uses three lots for 

illustration purposes. The number of lots could easily be larger depending on the 

complexity of the component manufactured. 
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Figure 5. An example of lot mixing in production for a device with four third level 
components, two second level components, and o top level finished good. 

Sampling and Sampling Procedures 

I used R’s (2016) sample function to choose samples from the simulated data. 

Four different sample sizes are used: 10, 30, 59, and other values dependent on the 

execution of the simulation. A sample size of 10 imitates a convenient number possibly 
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selected by an engineer who is statistically naïve. A sample size of 30 represents the 

situation where statistics students correctly learn that this is the number at which a t 

distribution approximates a normal distribution and use it as a default sample size. 

However, this fact does not make it suitable as a sample size in all situations. Cohen 

(1990) and Mathews (2010) expressed caution concerning its indiscriminate use as a 

sample size. A sample size of 59 is the value that achieves a 95% level of confidence and 

a 95% reliability level. Based on the success run theorem (Lipson & Sheth, 1973), the 

medical device industry often uses this sample size as a convenience.  

The values of the mean and standard deviation generated from these different 

sample sizes depend on calculations from samples. The requirement was values that 

would represent the expected results generated from samples of these different sizes. 

Therefore, sample size calculations are also required to arrive at the values of the mean 

and standard deviation for the calculation of the PCIs. 

To calculate the sample size for the mean, Mathews’s (2010, p. 8) Equation 1.12 

was used under the assumption that the test was being constructed as if it is a two-sided 

hypothesis test. The known mean of the underlying standard deviation, 100, is the test 

standard, and five is the known standard deviation for this distribution. The difference 

between a Cpk of 1.00 and 1.33 is one standard deviation, so the effect size is taken as δ = 

5.00. To achieve 95% confidence, and power, π, of 0.90, the sample size calculation is, 

( ) ( )
2 2

/2 1.96 1.282 5.00
10.51.

5.00

xz z
n

α β σ
δ

 + + 
 = = =     

 (68) 
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This rounded result is 11. Next, a comparison of the calculated sample size for the 

standard deviation with that required for the mean determines if it is smaller or larger 

than that value. Mathews’s (2010, p. 59) is an appropriate approximate method. For a 

95% confidence interval with a confidence interval, δ, of 0.10 of the standard deviation, 

the calculation is, 

2 2

/21 1 1.96
192.08

2 2 0.1

z
n α

δ
   = = =  

  
  (69) 

A rounded result of 200 agrees with the table of exact results in Mathews (2010). 

Because this value of n is greater than that calculated for the mean, it becomes the sample 

size for the calculation of the mean and standard deviation of the applied sample sizes. 

All further reference to values derived from the different sample sizes refer to the mean 

and standard deviation calculated from a sample size of 200. The next section contains an 

elaboration on the determination of sample sizes during the simulation. 

Sample size determination. The sample size intimately relates to the testing 

performed on the PCIs calculated for this study. The comparison of variances is the 

principle behind hypothesis testing of PCIs and careful analysis is critical to accurate 

results (Álvarez, Moya-Férnandez, Blanco-Encomienda, & Muñoz, 2015). Consider 

Equations 1 and 2 (repeated for convenience), 

σ6

LSLUSL
C p

−= , 







 −−=

σ
µ

σ
µ

3
,

3

USLLSL
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The value of σ, the square root of the variance, provides the base for both 

equations. Mathews (2010) pointed out that these PCIs are arithmetic transformations of 

the standard deviations of the output of the process under study. The values of the 

numerator of these fractions, combined with a value for the index, define the maximum σ 

allowable to meet these conditions. The results for the σ would be directly applicable to 

the variance.  

 The comparison of variances forms the basis for the hypothesis test using the chi-

squared distribution. The relationship in Equation (70) forms the basis for the test, 

2
2

1 2

( 1)
n

n sχ
σ−
−= . (70) 

Wackerly, Mendenhall, and Scheaffer (2002) sketched out a proof of this equation, and 

Penn State University (2015) provided more details of the proof. In this equation, n 

represents the sample size and s the sample standard deviation. The chi-squared 

distribution parameter is the degrees of freedom, n – 1. Because the definition of sample 

variance is, 

1

)( 2

2

−

−
=
∑

n

xx

s i

i

, (71) 

Equation 68 simplifies to, 

2

2
1 2 2

( )i

i
n

x x
SS

σ σ−

−
χ = =

∑
. (72) 

For a given sample size and probability, this value of 2
1n−χ  can be used to calculate the 

effect size which would be the difference between the variance needed to meet the PCI 
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requirement and the maximum value from the sample that yielded a χ2 larger than the 

statistic based on the desired significance and the value of the sample mean. 

Before addressing power, the implications of Type I and Type II errors need 

clarification for medical devices. It is important to remember that PCIs are calculated 

using the inverse of the standard deviation. Smaller values of σ result in higher index 

values. In comparing variances, three different hypothesis tests are possible. 

Table 1 

Hypothesis Tests for the Variance 

Test Type Hypotheses 

Two-tailed 2
0

2
0 : σσ =H , 2

0
2

1 : σσ ≠H  

One-tailed, lower 2
0

2
0 : σσ ≤H , 2

0
2

1 : σσ >H  

One-tailed, upper 2
0

2
0 : σσ ≥H , 2

0
2

1 : σσ <H  

In the case of a Type I error for the two-tailed test, resource waste and delays in 

the introduction of a device could occur while time is spent fixing a process that is not 

broken. A Type II error could result in actions that would endanger patient wellbeing by 

allowing a product that does not meet a specification to enter the marketplace. For the 

one-tailed, lower test, the same error ramifications would hold. For the one-tailed, upper 

test, reverse the results. In this case, a Type I error could endanger patient safety, and a 

Type II error could lead to resource waste and unnecessary delays. 

Much hypothesis testing of capability indices in the medical field examines the 

one-tailed, lower case for the capability index that is the index less than a predetermined 
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value. Because the basis of the index calculation is the reciprocal of the standard 

deviation, the corresponding variance test is the one-tailed upper test. The emphasis is on 

maximizing patient safety, so the testing focuses on whether or not the standard deviation 

or variance exceeds that for an acceptable value of the capability index. If the standard 

deviation exceeds the limit, the value of the index will be smaller than the target. To 

achieve a balance between safety and wasted resources, α and β in this study use the same 

value, 0.05. 

Mathew’s (2010, p. 60) equation was used to determine the sample size. The 

value of the sample variance at the critical χ 2 point is derivable from Equation 68, 

2
2

1 2

( 1)
n

n sχ
σ−
−= . (73) 

If σ = σ0 represents the variance of a sample distribution of s2 for H0, and σ1 represents the 

values of σ under H1, then at the point where the chi-squared values are equal, 

2 22 2
, 1 11 , 1 0

1 1
nn

n n

βα χ σχ σ −− − =
− −

. (74) 

Rearranging this expression yields, 

2 2
1 , 1 1

2 2
, 1 0

n

n

α

β

χ σ
χ σ

− −

−

= . (75) 

One solves Equation 73 iteratively to find the value of n, the sample size, for 

which it is true. Iteration is one of the methods suggested by Guenther (1965), Mathews 

(2010), and Zar (2014). It does make sample size calculations impossible until the values 

of σ1 are calculated using simulation or available data. Confidence intervals for the 

variance come directly from Equation 74 (Mathews, 2010, p 58) 
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( 1) ( 1)
1
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α α

σ α
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 
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The contents of this section included specifics addressing effect size, power 

calculations, and sample size through the examination of hypothesis testing for variances. 

These are closely related to hypothesis testing for capability indices but are more direct 

because the values of the direct comparison of the variances. The section contains an 

explanation of the theory for the comparison of PCIs while avoiding the additional 

complexity that inverses and numerators unequal to one would introduce. A later section 

contains an explanation of the application of these methods to the indices. 

Procedures for Simulated Data Generation 

I generated 12 different sets of data with the random number generators in R 

(2016). Each set of data has three components. Fifty percent of the data, 5,000 points, 

come from a normal distribution. Twenty-five percent of the data, 2,500 points, come 

from an alternative distribution with its median located above the mean of the normal 

distribution. The other 25% of the data come from an alternative distribution with its 

median located below the mean of the normal distribution. The alternative distributions 

are the gamma, lognormal, and Weibull.  

I selected the gamma distribution because of its use in several studies on PCIs. 

Ahmad, Abdollhian, and Zeephongsekul (2008) chose the gamma distribution to expand 

the work of previous authors who used it (Liu & Chen, 2006; Tang & Than, 1999). 

Chang and Bai (2001) selected it for their development of weighted variance control 

charts. Derya and Canan (2012) also used it in control chart development.  
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George and Ramachandran (2011) used it to explore the Johnson transform. 

Hosseinifard et al. (2009) also used it to examine transformations. Pal (2005) generated a 

nonnormal data set with the gamma distribution to evaluate PCI development using the 

generalized lambda distribution. Rivera et al. (1995) selected it to generate data for 

evaluation of several transformation methods. 

I selected the Weibull distribution because of its widespread use in reliability 

studies, and the lognormal distribution because it often results when output characterized 

by several different distributions is combined (Ott, Schilling, & Neubauer, 2000). This 

distribution is appropriate because one of the goals for this study was to examine the 

effect on PCIs of a mixture of components from several distributions representing the 

same mixing that might occur in upstream processes. The inclusion of the lognormal 

distribution allows for this possibility. 

Table 2 is an illustration of the generation of the component distributions. Table 3 

is an illustration of the method of combining them. 

Table 2 
Composition of Study Simulated Data 

ID Title Description 

Central Distributions 

A nAtT Normal distribution, µ at target = 100, σ = 5 

B nAtO Normal distribution, µ offset left 1σ, σ = 5 

(continued) 
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ID Title Description 

Lateral Gamma Distributions 

C gammaUpperT Gamma distribution, shape = 100, rate = 1, median 
transposed 1.5 σ to the right of the target. 

D gammaLowerT Gamma distribution, shape =100, rate =1, reversed, 
median transposed 1.5 σ to the left of the target. 

E gammaUpperO Gamma distribution, shape = 100, rate = 1, median 
transposed 2.5σ to the right of the target. 

F gammaLowerO Gamma distribution, shape =100, rate =1, reversed, 
median transposed 2.5 σ to the left of the target. 

Lateral Lognormal Distributions 

G lognormalUpperT Lognormal distribution, generated as indicated in 
note, median transposed 1.5 σ to the right of the 
target. 

H lognormalLowerT Lognormal distribution, generated as indicated in 
note, reversed, median transposed 1.5 σ to the left of 
the target. 

I lognormalUpperO Lognormal distribution, generated as indicated in 
note, median transposed 2.5σ to the right of the 
target. 

J lognormalLowerO Lognormal distribution, generated as indicated in 
note, reversed, median transposed 2.5 σ to the left of 
the target. 

Lateral Weibull Distributions 

K weibUpperT 
Weibull distribution, shape = 10, scale = 10, 
reversed, median transposed 1.5 σ to the right of the 
target. 

L weibLowerT 
Weibull distribution, shape = 10, scale = 10, median 
transposed 1.5 σ to the left of the target. 

  (continued) 
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ID Title Description 

M weibUpperO 
Weibull distribution, shape = 10, scale = 10, 
reversed, median transposed 2.5σ to the right of the 
target. 

N weibLowerO 
Weibull distribution, shape = 10, scale = 10, median 
transposed 2.5 σ to the left of the target. 

Note. All data trimmed at the LSL and USL. Trimming occurs after transposition of the 
lateral distributions. Trimmed data replaced by sampling with replacement from the 
trimmed distribution until the number of data points equals the pre-trimmed number. For 
gamma distribution random number generation, R (2016) uses rate as a simulation 
parameter. Rate defined as 1/Scale. Lognormal values generated by taking µ = 92.5, and 
σ = [log (107.5) – log (77.5)]/6, that is, determining a value based on the premise that 
USL – LSL = 10σ. The Weibull is a left-tailed distribution, therefore, unlike the gamma 
and lognormal, the upper distributions, rather than the lower, have reversed positions. 

Table 3 
Formation of Combined Distributions from Underlying Normal and Lateral 

Distributions. 

Formation of Offset Distributions 

offsetDistributions1 = gammaUpperT + gammaLowerT 

offsetDistributions2 = gammaUpperO + gammaLowerO 

offsetDistributions3 = lognormalUpperT + lognormalLowerT 

offsetDistributions4 = lognormalUpperO + lognormalLowerO 

offsetDistributions5 = weibUpperT + weibLowerT 

offsetDistributions6 = weibUpperO + weibLowerO 

Formation of Combination Distributions 

combinationDistribution1 = nAtT + offsetDistributions1 

combinationDistribution2 = nAtO + offsetDistributions1 

(continued) 
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combinationDistribution3 = nAtT + offsetDistributions2 

combinationDistribution4 = nAtO + offsetDistributions2 

combinationDistribution5 = nAtT + offsetDistributions3 

combinationDistribution6 = nAtO + offsetDistributions3 

combinationDistribution7 = nAtT + offsetDistributions4 

combinationDistribution8 = nAtO + offsetDistributions4 

combinationDistribution9 = nAtT + offsetDistributions5 

combinationDistribution10 = nAtO + offsetDistributions5 

combinationDistribution11 = nAtT + offsetDistributions6 

combinationDistribution12 = nAtO + offsetDistributions6 

The first group of data consists of a normal distribution with its mean centered at 

the target value with specification limits located five standard deviations on either side of 

the mean. Using their medians, alternative distributions are located first at 1.5 standard 

deviations on either side of the mean, followed by locations at 2.5 standard deviations on 

either side of the mean. This relocation of data is a standard method in simulation studies 

(Law, 2007). 

The application of a simple linear transformation reversed the values to the left of 

the target for the gamma and lognormal distributions, and to the right of the target for the 

Weibull distribution, so that the tail of the distribution exhibits skew away from the 

mean. This reversal imitates the real-world situation of distribution tails often pointing in 

the least favorable direction and the scarcity of left tailed probability distributions 

(Sleeper, 2007). The application of a custom R (2016) function truncated the values from 
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the alternate distributions at a value equal to the LSL and USL. Such truncation is 

common in simulation studies (Law, 2007). For example, truncated data results if, upon 

inspection of process output, the quality department rejected all units with a value above 

or below a quality limit (Nadarajah & Kotz, 2006; Plansky, Chou, & Mason, 1998). 

Figure 6 shows the process of generating a combined distribution. 

 

The second sample group is similar to the first, but with the normal and alternate 

distributions locations shifted one standard deviation to the left of the target value. This 

shift results in a less capable process, and the intent was to see how accurately the 

process capability calculations reflects this. Using weighted probability values, accurate 

 

Figure 6. An illustration of combined distribution generation. 
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calculations yielded the equivalent capability indices. These are the standards of 

comparison for the calculated values. 

Along with multimodality, each distribution exhibits fat tails. This characteristic 

may affect the required sample size needed to make accurate projections about the 

features of the distribution (Wilcox, 2012). Each combination distribution is obviously 

multimodal. Application of R (2016) functions transformed each distribution with the 

Box-Cox, square root, inverse, inverse square root, and asinh (Rivera, 1995) transforms. 

The application of normality tests determined if the results of the transformation are 

beneficial. Results from the transformations indicated that normality is unachievable for 

two distributions and evaluation required an alternative method.  

I collected data from each distribution with the R sample function. Sampling 

occurred without replacement. This replicated a situation in which destructive testing 

occurs, for example, conducting a pull test to a joint failure. 

Instrumentation and Operationalization of Constructs 

Data collection in this study does not require instrument use. Computer simulation 

generated all data. The data represents the value of a quality test performed on the output 

of a process. The distributions of this test data, rather than the data themselves are the 

focus of this study. Because the test values come directly from the simulated data, no 

operationalization of constructs was required.  

While variables in this study are unitless, because the indices are unitless, in 

actual applications of the methods used, the user would directly measure the variables. 

For example, some breaking force measures are pounds, ounces, newtons, or dynes. 
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Potential length measures are inches, feet, millimeters, centimeters, or meters. 

Dimensionally, because a division occurs with a unit of measure divided by the same unit 

of measure in the calculation of an index, the indices are unitless. Measurement directly 

yields the units of interest, so no operationalization was required. 

Data Analysis Plan 

This section contains an identification of the software used for analysis, the data, 

the research questions, and the analysis plan. The description of the analysis plan 

includes the statistical tests used to test the hypotheses. It also contains a section on the 

interpretation of test results. 

Software 

The software used for the analysis was R (2016). In addition to base R, the 

analysis required the use of several R packages:  AID (Dag, Asar, & Ilk, 2015), ggplot2 

(Wickham, 2009), gridExtra (Auguie, 2016), MASS (Venables & Ripley, 2002), 

moments (Komsta & Novomestky, 2015), and nortest (Gross & Ligges, 2015). 

Data Cleaning and Screening 

Computer simulation generates the data used in this study. The careful selection 

of the distribution parameters eliminates the need for data cleaning or screening. This 

negates the need for any further data modification prior to analysis. 

Research Questions and Hypotheses 

The quantitative research question of this research was how accurately does the 

calculated value of Cpk, under the assumption of normality, reflect the actual probabilities 

of nonconformance from simulated distributions representing the mixture of components 
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from different upstream production batches in a subsequent process? This question 

reflects the real-world situation in which a production line uses components from several 

different lots. A PCI, as used in industry, is primarily a point value (Porter and Oakland, 

1991). A quality manual or protocol may state that the Cpk value must be greater than 

1.33, 1.50, or some other value. This question leads to three formal research questions. 

The first series of tests involve the comparison of calculated values of the PCIs 

based on samples taken from each distribution set to a required value.  

Research Question 1:  Do the PCIs calculated from samples of the combined 

distributions meet the industry standard? 

H01:  PCIC ≥ 1.33, 

Ha1:  PCIC < 1.33. 

Peña-Rodríguez (2013) suggests the value of 1.33. PCIC uses the calculated Cpk 

from sample sizes at levels of 10, 30, 59, and a value determined from each of the 12 

distributions using the method described by Mathews (2010). The data in all research 

questions represents the test results from a test conducted after the testing of a component 

assembled from parts. I tested the data for normality using the Anderson-Darling method. 

When the test results indicate nonnomality, I transformed and retested it. The second 

series of tests involve a comparison of the calculated positions on the x-axis of 4 standard 

deviations, equivalent to a Cpk of 1.33 to the value calculated from the parameters of the 

12 combined distributions and their transformed values when required.  

Research Question 2:  Do the values calculated from samples taken from a 

combined distribution exceed the actual values required to meet the standard? 
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H02:  xpci ≥ xpdf, 

Ha2:  xpci < xpdf. 

xpci is the x-axis value calculated from the required value of the PCI, and xpdf is the 

value calculated directly from the combined probability density functions. The results of 

this test should mirror those of research question 1, but show the percentage difference 

between the actual and calculated values. The test schema included only raw data because 

of the inability to transform to normality. 

Previous tests have used the combined distributions. The third series of tests 

tested the components of the combined distributions individually and comparing the PCI 

calculated from these distributions with the standard Cpk of 1.33.  

Research Question 3:  Do the data values from the lateral distributions, isolated 

from the underlying normal distributions, meet the industry standards? 

H03:  PCgamma ≥ 1.33, 

Ha3:  PCgamma < 1.33, 

H03:  PClognormal ≥ 1.33, 

Ha3:  PClognormal < 1.33, 

H03:  PCWeibull ≥ 1.33, 

Ha3:  PCWeibull < 1.33. 

In these hypotheses, PCgamma is the Cpk calculated from the gamma distributions, 

PClognormal is the Cpk calculated from the lognormal distributions, and PCWeibull is the Cpk 

calculated from the Weibull distributions. These tests evaluate the suggestion that lots 

constructed using different lots of components require individual tests. This individual 
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testing might compensate for the effect of a fattened tail on the value of the standard 

deviation used to calculate the capability index. Test input consists of both raw and 

transformed data. 

The operationalization of the above RQ into a null and alternative hypothesis 

required the calculation of the PCIs from sample sizes of 10, 30, 59, and a sample size 

needed to achieve an a priori specified power 1-beta. The value of 10 represents a low 

convenience value. The value of 30 is key because it is the value at which a t-distribution 

begins to correspond to a normal distribution. The sample size of 59 achieves a 95% level 

of confidence (Lipson & Sheth, 1973). The calculated sample size based on power was 

indeterminate until the generation of simulated results. The calculated sample size based 

on power was indeterminate until the generation of simulated results. 

Next, data from these samples permitted the calculation of a 95% confidence 

interval for the PCIs. Because simulated data generates the entire populations, it was 

possible to compute the true value of all of the capability indices. Finally, if PCIC 

represents the calculated PCI, and PCIT represents the true index, then the hypothesis 

tests operationalizing the above RQ was: 

H0:  PCIC ≥PCIT or required 

Ha:  PCIC < PCIT or required 

My testing used methods for the variance/standard deviation and the chi-square 

distributions and determined if the calculated PCI is greater than or equal to the true PCI. 

This testing examined if a Type II error was occurring in the calculation of the PCI. The 

definitional equation for Cpk was the basis for calculating the values for the sample PCIs. 
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Next, does the calculation of actual values of the indices agree with the probabilities as 

defined by the generating cumulative distribution function? From the definitional 

equation for Cpk, it is readily apparent that the value of the index is directly proportional 

to the distance between the mean of the samples and the specification limit, and inversely 

proportional to the standard deviation of the sample. This establishes cause and effect of 

the data on the value of the PCI. 

Data Analysis Procedures 

Structure of analysis. Hypothesis testing for variances and standard deviations to 

give theoretical foundation for the tests outlined in this section. Those methods apply to 

the testing of capability indices, but require an adjustment because capability indices rely 

on the inverse of the standard deviation. Thus, if A < B < C is true, then, when inverses 

are considered, the expression becomes, 1/C < 1/B < 1/A. Given the inverse relations of 

the definitional equations, the larger the variances/standard deviations, the smaller the 

capability indices are. 

Figure 7 is a schematic representation of the analysis plan. 
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Figure 7. Schematic representation of the data analysis plan. 
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Confidence intervals. This study requires the calculation of PCIs from samples 

drawn from the simulated output of a process described earlier. The underlying 

assumption is that the process is under control and that whatever test performed on the 

output from that process, for example, measuring fill weight of a container, will produce 

normally distributed results. The assumption of normality is critical to hypothesis testing 

of capability indices. In the case of the simulated data, testing confirmed or denied the 

assumption of normality, but the calculation of the indices proceeded even if the results 

from the raw data indicated nonnormality. This compromise allowed a comparison of the 

conclusions drawn from an unwarranted assumption of normality to those based on 

reality. 

Consider first Equation 1 for Cp (repeated unnumbered for convenience), 

σ6

LSLUSL
C p

−= . 

If given a required value of Cp, and values for USL and LSL, the maximum value of σ that 

will result in this value of Cp can be calculated from this expression as,  

pC

LSLUSL

6

−=σ . (77) 

If σ is larger than this value, the value of Cp is less than required. 

Now, consider Equation 2 (repeated unnumbered for convenience), 
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In this expression, for a given σ, the calculation of the value of Cpk uses the smaller of the 

two values, μ – LSL or USL – μ. The smaller of the two uses the nearest specification 

limit or NSL. The expression for Cpk then becomes,  

σ3

NSL
C pk = . (78) 

As was done for Cp, the maximum value of σ that gives the required value of Cpk is, 

pkC

NSL

3
=σ . (79) 

The comparison of these values of the standard deviations to those calculated for each 

simulated data set, for both raw and transformed data, uses the confidence intervals 

calculated from the sample data. 

Hypothesis testing, general. The research question in this study was, given that 

the value of a process capability, calculated from a set of data composed of the 

combination of values from three different distributions, does that index adequately 

reflect the overall capability of the process? Answering the research question requires 

three different sets of hypothesis tests. 

Hypothesis tests against the requirement. This series of tests calculated the 

values of the PCIs using samples taken from each distribution set and tested them against 

a desired value. The value is 1.33 as suggested by Peña-Rodríguez (2013). If PCIT 

represents the calculated capability index, that is, either Cp or Cpk, the hypothesis test 

was: 

H01:  PCIC ≥ 1.33, 

Ha1:  PCIC < 1.33. 
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These tests included data from all 12 distributions. 

Hypothesis tests against the calculated value. Because the combined 

distributions were constructed using probability distributions with known parameters, a 

capability index of 1.33 determines an exact x-axis value. This series of tests compared 

the x-axis values of the PCIs calculated using samples taken from each distribution set 

against that value. If the value calculated directly from the probability density functions is 

xpdf, and the value for the capability indices is xpci, then the hypothesis test becomes, 

H02:  xpci ≥ xpdf, 

 Ha2:  xpci < xpdf. 

Tests included data from all 12 distributions. 

Hypothesis tests with components from each distribution taken separately. 

Combining the three distributions fattened the tails of the majority normally distributed 

data and increased the value of the standard deviation. This series of tests individually 

addressed data for the gamma, lognormal, and Weibull distribution placed to the left of 

the mean of the normal distribution. It was not necessary to test the normal distribution or 

the other distribution located to the right of the mean of the normal distribution. Because 

of their construction, these distributions would yield a capable process. The testing 

concludes with comparisons of the calculated capability index values to the standard of 

1.33. Representing these capability indices by PCgamma, PClognormal, and PCWeibull, the 

hypothesis tests become, 

H03:  PCgamma ≥ 1.33, 

Ha3:  PCgamma < 1.33, 
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H03:  PClognormal ≥ 1.33, 

Ha3:  PClognormal < 1.33, 

H03:  PCWeibull ≥ 1.33, 

 Ha3:  PCWeibull < 1.33. 

These tests evaluate the suggestion that lots constructed using different lots of 

components require individual tests. This individual testing might compensate for the 

effect of a fattened tail on the value of the standard deviation used to calculate the 

capability index. 

Threats to Validity 

This section contains a discussion of external, internal, construct validity, and 

ethical considerations. In the extensive literature review conducted for this study, the 

mathematical nature of the research was paramount, and no concerns about validity arose 

except those arising from the possible lack of process control or nonnormality of the data. 

This nonnormality condition was the focus of this study. 

External Validity 

All analysis in this study uses definitional equations and simulated data. Because 

of this, the results do not tie to any particular period, product, or process. The FDA 

requirement for lot traceability of components used in the manufacture of 

pharmaceuticals and medical devices led to the choice of the medical device 

manufacturing segment as the setting for this study. This requirement guarantees that the 

information to separate components by production lot is available. The results of this 
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study would be generalizable to any scenario in which information from component lots 

is accessible. There are no anticipated external threats to validity. 

Simulations consisted of 10,000 data points. This is a commonly used number in 

simulation studies; for example, it is the number used by English and Taylor (1993), Han 

(2006), and Hosseinifard and Abbasi (2009). Whether or not this number is appropriate 

would depend on the medical device manufactured. In the case of hypodermic syringes, 

where worldwide daily production would number in the millions of units per day, it 

might be small. In the case of M.R.I. machines, where the total number of machines in 

existence worldwide is only 36,000 (Rinck, 2016), it might be too large. However, it was 

large enough to determine if the overall approach taken in this study is valid, but might 

require some adjustment under specific, large-scale application of the methodology.  

This study was very specific in its limitations, that is, cases where traceable lots 

from upstream processes are mixed. The test results of the testable product made from 

those components are separable by lot. In other cases, the method may not be applicable. 

Internal Validity 

All analysis in this study uses definitional equations and simulated data. There are 

no human or animal subjects involved. Because of the lack of subjects who can react or 

adjust to the research, there are no anticipated internal threats to validity. 

Construct Validity 

Construct validity refers to whether an instrument actually measures what it was 

constructed to measure. Historically, it was a general category for all validity (Warner, 

2008). It is in this sense that the following discussion takes place.  
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One area of this study that might raise questions is trimming the simulated data to 

eliminate any points laying outside of 5 standard deviations and replacing the trimmed 

data with new points drawn from the remaining distribution using the sampling procedure 

in R (2015). Sleeper (2007) cautioned “Truncation is usually the wrong way to solve a 

modeling problem” (p. 50). His point is valid if the raw process is considered. In contrast, 

this study is examining components that have already gone through a sorting process by a 

quality control department and the truncation and replacement that would take place to 

achieve a full lot size reflects reality (Nadarajah & Kotz, 2006; Plansky et al., 1998). 

Truncating a distribution does change the nature of the distribution. Consider the 

standard normal distribution for simplicity’s sake. Figure 8 contains an illustration of a 

comparison of the CDF of a truncated distribution (assuming upper and lower control 

limits of ±1.64, with the upper and lower 5% eliminated). 
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Figure 8. Comparison of a trimmed and non-trimmed CDF of a normal function.  

The trimmed distribution begins later than the non-trimmed distribution because 

of the truncation, crosses at the mean, and then increases more rapidly. In addition, the 

truncated distribution boundaries are ± 1.64, while the nontruncated distribution’s domain 

is ± ∞. 

Another area of construct validity that might arise was the use of Cpk itself as a 

standard for judging the performance of a process. This also could overlap into the realm 



100 

 

of face validity. As several authors cited in this study have pointed out, this is a valid 

question. However, Cpk has become the standard and a goal of this study was to help 

evaluate its suitability for that task. 

The validity of the conclusions of this study might be subject to some scrutiny 

under the new examination of the use of p-values in research by the American Statistical 

Association (Wasserstein & Lazar, 2016). Any judgment as to the suitability of p-values 

in research lies far out of the scope of this study. 

Ethical Procedures 

This study was a purely quantitative comparative research in mathematical 

modeling and simulation. Computer simulation generates all data specifically for this 

study. Values for the initial target value are set as 100 for ease of computation and to aid 

in the understanding and visualization of differences in the values. Setting this value at 

100 makes it easier to think in terms of the target being 100%. This resemblance may 

also aid understanding. The upper and lower specification limits are set as being 

equivalent to five standard deviations because this would correspond to plus or minus 

25% of the target value while also allowing a five-unit transposition of the mean to still 

fall within the specification limits. Parameter values of the lateral distributions are set as 

typical values that would give these distributions their characteristic shapes. 

No human or animal participants are involved. There are no anticipated 

requirements for the use of confidential information; therefore, there are no storage, 

anonymity, or privacy issues. This study used no corporate data or equipment. The 
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Walden Institutional Review Board (IRB) approval number for this study is 11-16-16-

0029746. 

Summary 

This chapter contains a summary of the methodology, including the population 

studied, mathematical model construction, sampling techniques, and statistical tests. 

Model construction combines a normal central distribution, and two noncentral 

distributions. The noncentral distributions were the gamma, the lognormal, and the 

Weibull distributions. The location of the median of the noncentral distributions is one 

and a half standard deviations to the left of the mean of the central distribution. Reversal 

of the left noncentral distribution yields left pointing tails. Combining the distributions 

fattened the tails of the overall distribution.  

The research included two cases of the combined distributions. The first cases 

assumed that the target value of the distribution is the mean of the central distribution. 

The second case offset the central distribution and the two noncentral distributions to the 

left of the mean of the original central distribution by one standard deviation. In both 

instances, the mean of the original, non-offset, central distribution was the target of the 

distribution. 

There is an infinite number of distributions, combinations of distributions, and 

offsets possible. The methods of analysis developed for this study are not unique to those 

selected, and are adaptable to other combinations of distributions. The concern was to 

simulate subcomponents, with different physical characteristics, from different lots 

combined in a downstream production process in the manufacture of medical devices or 
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pharmaceutical products. The research requires the application of a series of hypothesis 

tests, designed to measure the effects of lot mixing on the most commonly used measures 

of the process capability of the final process. 

The next chapter contains a description of the individual and combination 

distributions developed for this study, as well as the results of the hypothesis tests 

performed on a series of samples taken from the distributions. 
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Chapter 4:  Results 

Introduction 

The purpose of this empirical quantitative study was to develop a framework that 

evaluates the ability of a PCI to accurately measure medical device test data under a 

scenario where output data combines the effects of mixed production lots of components 

in the medical device industry. Computer simulation generated twelve different sets of 

data representing mixed production test results where subcomponents came from 

different production lots. Testing of the sampled data used an industry standard PCI, Cpk, 

to determine if the test results reflected the actual process capability by answering several 

research questions. 

Research Question 1:  Do the PCIs calculated from samples of the combined 

distributions meet or exceed the industry standard of 1.33? 

Research Question 2:  Do the values calculated from samples taken from a 

combined distribution exceed the actual values required to meet the industry standard? 

Research Question 3:  Do the data values from the lateral distributions, isolated 

from the underlying normal distributions, meet the industry standard? 

This chapter begins with a description of the equivalent of a pilot study for this 

type of research. Next, it moves to the timing and methods used to generate the data. 

Following this is a description of the data generated, the rationale behind the statistical 

methods used for analysis, the results of the data analysis, including power and effect 

sizes, and the outcomes of the hypothesis tests formulated to answer the research 
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questions. The chapter concludes with summary of the results from the analysis and the 

research questions. 

Data Generation 

Background 

From the conceptual stage of the development of this study, the intent was to use 

computer simulated data. There are three key reasons for this. First, gaining approval for 

the use of actual data would be difficult because the purpose of the study is to examine 

data on the boundaries of those which would yield acceptable results for examining the 

production of a medical device. Given the litigious nature of our society, securing 

permission to use questionable data would be difficult. 

The second reason is the difficulty in producing data specifically for use in this 

study. The research investigates 12 different data sets with 10,000 points in each set. The 

time and expense involved in generating this quantity of information is prohibitive. 

Last, the simulated data allow the exact characterization of each of the frequency 

distributions generated. This precision permits the precise comparison of the results of 

the statistical analyses with known information for each distribution. The result is an 

exact answer to RQ 3. 

Development of the programs used to analyze the data began prior the time that 

the prospectus received approval. Final generation of the computer simulated data did not 

occur until after IRB approval of this study. Through the use of a different random seed, 

the data for this study is different than that used to develop the program.  
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Data Generation Procedure 

The generation of the simulated data followed the procedures listed in Tables 2 

and 3. The rgamma, rnorm, and rweibull random number generators in the base R (2016) 

package generated the random numbers using the parameters listed in Table 2. 

Generating the random numbers using these functions is straightforward.  

Generating the lognormal random numbers requires first creating a series of 

random numbers using rnorm. These random numbers corresponded to the logarithms 

centered at the value of the mean of the distribution with a standard deviation equivalent 

to the value of the log of the upper tolerance limit minus the lower tolerance limit divided 

by 10. The subtraction operation is not division in this case, even though it involves 

logarithms. Nor does the division by 10 represent finding a root. Instead these operations 

divide up the x-axis to find the standard deviation. In the lognormal distribution, it is the 

logarithms of the data values that are normally distributed. The actual data values come 

from raising e to the powers generated with these steps. 

Combinations of data generated from the R (2016) random number generators 

formed 12 different distributions. The details of the combinations are in Table 3. 

Application of the R sample function provided sample sizes of 10, 30, and 59 data values 

with an additional value calculated for each distribution based on the standard deviation 

of the distribution sampled. 

The data represent the results of a quantifiable test applied to a component made 

up of subcomponents from three identifiable lots. This situation occurs in medical device 

manufacturing because of the FDA requirement for lot traceability. While an infinite 
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number of distributions of test results would arise in the real world, the methods 

developed in this research are applicable to any fat tailed distributions and are not limited 

to the data generated for this research. 

Histograms of the data from the 12 combination distributions are in Appendix A. 

In Figure A1, nAtT is the underlying normal distribution used with the lateral 

distributions. Figure A2, nAtO, is the offset normal distribution used with the lateral 

distributions. The R (2016) code to generate the data is in the file 

DCode03_Simulations.r located in Appendix B. 

Study Results 

Descriptive Statistics 

Table 4 provides a summary of the descriptive statistics for the 12 combination 

distributions. Each distribution contains 10,000 data points. The column labeled Sample 

Size is the calculated sample size used in the data analysis along with the values of 10, 

30, and 59. I used the method found in Mathews (2010) for this calculation. Skew and 

kurtosis functions are not part of the base R (2016) package. The moments package 

(Komsta & Novomestky, 2015) furnishes these functions. 

Note that two of the calculated sample sizes are size 10. The analysis results from 

values that duplicate those of the chosen sample size of 10. While elimination of the 

results from the calculated sample size of 10 avoids repetition, keeping them facilitates 

any comparisons of the results of the calculated sizes.  
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Table 4 

Summary Statistics of Combination Distributions 

Distribution Mean Median 
Standard 
Deviation Skew Kurtosis 

Calculated 
Sample 

Size 
comboDist1 100.01 100.05 8.68 -0.02 3.42 16 

comboDist2 97.51 96.52 9.00 0.50 3.36 14 

comboDist3 99.19 99.68 10.80 -0.08 2.77 9 

comboDist4 96.69 95.54 10.87 0.45 2.88 9 

comboDist5 100.06 100.09 6.77 -0.02 2.07 48 

comboDist6 97.56 95.90 7.20 0.40 2.25 34 

comboDist7 97.57 100.05 10.11 -0.52 2.05 10 

comboDist8 95.07 95.09 9.78 -0.01 1.93 11 

comboDist9 99.04 99.44 9.14 -0.07 3.27 13 

comboDist10 96.54 95.70 9.18 0.48 3.45 13 

comboDist11 97.56 98.97 10.69 -0.18 2.63 9 

comboDist12 95.06 94.76 10.39 0.36 2.95 10 

 
Preliminary Steps 

I drew samples of each sample size for analysis using the sample function in R 

(2016) and used the ad.test function from the nortest package to test for normality. The 

ad.test uses the Anderson Darling test (Gross & Ligges, 2015). This test is particularly 

sensitive to the tails of a distribution. Because the distributions created for this study 

purposely have heavy tails, the Anderson Darling test would provide the strictest results. 

Table 5 contains the results of the Anderson Darling test for all of the samples 

from the different distributions. The column labeled AD Statistic has the Anderson 
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Darling statistics for the distributions, and p Value is the associated p value. In the case of 

the Anderson Darling statistic, smaller is better. Values of p less than .05 indicate that the 

test failed to show normality. The p values have 3 decimal places to clearly illustrate the 

failures. 

Table 5 

Anderson Darling Test Results with Failures in Bold Font  

Distribution AD Statistic p Value 
Dist1SampSize10 0.36 .368 

Dist1SampSize30 0.25 .725 

Dist1SampSizeC16 0.31 .527 

Dist1SampSize59 0.16 .946 

   

Dist2SampSize10 0.24 .689 

Dist2SampSize30 0.28 .605 

Dist2SampSizeC14 0.26 .638 

Dist2SampSize59 0.31 .546 

   

Dist3SampSize10 0.26 .624 

Dist3SampSize30 0.42 .306 

Dist3SampSizeC9 0.27 .581 

Dist3SampSize59 0.27 .668 

   

Dist4SampSize10 0.24 .684 

Dist4SampSize30 0.64 .084 

Dist4SampSizeC9 0.22 .756 

Dist4SampSize59 0.32 .529 

  (continued) 
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Distribution AD Statistic p Value 
Dist5SampSize10 0.22 .762 

Dist5SampSize30 0.21 .853 

Dist5SampSizeC48 0.57 .134 

Dist5SampSize59 0.58 .128 

   

Dist6SampSize10 0.12 .985 

Dist6SampSize30 0.39 .365 

Dist6SampSizeC34 0.64 .087 

Dist6SampSize59 0.71 .062 

   

Dist7SampSize10 0.42 .259 

Dist7SampSize30 0.59 .114 

Dist7SampSizeC10 0.42 .259 

Dist7SampSize59 1.86 .000 

   

Dist8SampSize10 0.25 .669 

Dist8SampSize30 0.26 .679 

Dist8SampSizeC11 0.26 .631 

Dist8SampSize59 0.75 .048 

   

Dist9SampSize10 0.19 .868 

Dist9SampSize30 0.25 .719 

Dist9SampSizeC13 0.22 .794 

Dist9SampSize59 0.32 .517 

  (continued) 
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Distribution AD Statistic p Value 
Dist10SampSize10 0.26 .616 

Dist10SampSize30 0.37 .400 

Dist10SampSizeC13 0.40 .306 

Dist10SampSize59 0.22 .833 

   

Dist11SampSize10 0.25 .651 

Dist11SampSize30 0.41 .320 

Dist11SampSizeC9 0.33 .435 

Dist11SampSize59 0.68 .074 

   

Dist12SampSize10 0.30 .524 

Dist12SampSize30 0.21 .856 

Dist12SampSizeC10 0.30 .524 

Dist12SampSize59 0.36 .439 

Only two datasets failed the normality test; both data sets had the largest sample 

size, 59, and the lognormal lateral distribution. I next transformed the data identified as 

nonnormal using the Box-Cox, square root, inverse, inverse square root, and asinh 

transforms. A Box-Cox transformation function is not part of the base R (2016) package 

but is in the AID package (Dag, Asar, & Ilk, 2015). The boxcoxnc function applies a 

sequence of lambda value to the transform and then tests for normality using seven 

different normality tests, including the Anderson Darling test. 

Table 6 contains the transformation results. The p values have 3 decimal places to 

clearly illustrate the failures. None of the transformation methods succeeded. Because 

one of the purposes of this study to examine the results a statistically unsophisticated 
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engineer might generate, the nonnormal data will remain part of the analysis. 

Statistically, this is incorrect practice. The engineer should adjust the process to achieve 

normal output, or output transformable to normality. 

Table 6 

Anderson Darling Normality Test Results of Transformed Nonnormal Data  

 Dist7SampSize59  Dist8SampSize59 

Method AD Statistic p Value 
 

AD Statistic 
p 

Value 
Box-Cox 0.96 .015  0.75 .047 

Square Root 2.03 .000  0.76 .045 

Inverse 2.61 .000  0.89 .021 

Inverse Square Root 2.41 .000  0.83 .030 

Asinh 2.21 .000  0.79 .039 

Statistical Assumptions 

Normality of data was the underlying assumption behind this study. PCI 

calculation depends on this assumption. The analytical tool used to answer RQ1, using 

the chi squared distribution to compare two variances, also depends on normality of data. 

The testing for normality using the Anderson Darling test showed the validity of this 

assumption for all but two of the distributions. Attempts to transform these distributions 

to normality failed, but the analysis continued as if normality was present for reasons 

explained in the previous section. 

RQ2 and RQ3 were deterministic with results based on calculated numbers from 

the distributions rather than through statistical analysis. Answering these questions 

involved no statistical assumptions. The lack of statistical inference restricts the answers 
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to these questions to the generated distributions, so generalization of the conclusions is 

more difficult. Generalizing these answers requires careful qualification of the 

applicability conditions. 

Research Question 1 

Research Question 1 was, do the PCIs calculated from samples of the combined 

distributions meet the industry standard of 1.33. 

H01:  PCIC ≥ 1.33, 

Ha1:  PCIC < 1.33. 

Answering RQ1 was a multiple stage process beginning with comparisons of 

variance. Common tests for equality of variance do not apply because they depend on 

values calculated from individual data points from two samples. These common tests 

include the F-test (Sheskin, 2000), Levene’s (1960) test, etc. Sampling distributions of 

variances follow a chi squared distribution. This forms the basis for answering this 

research question. 

The calculations for Dist1SampSize30 form an example. The mean of the data 

from this distribution is 99.9460 and the pooled standard deviation is 8.6647. The 

required standard deviation for a Cpk of 1.33 is the minimum of (99.9653 – 75) and (125 – 

99.9653), where 75 and 125 are the lower and upper tolerance limits, divided by 4. For 

this distribution, the required standard deviation is 6.2413. The standard deviations of 

8.6637 and 6.24 correspond to variances of 75.0600 and 38.9376 respectively. 



113 

 

The variances provide the basis for calculating the confidence intervals for the 

respective standard deviations and Cpk values. The relationship used to do the calculations 

is found in Zar (2014, p. 127), 

2
2

2

vsχ
σ

= , (80) 

where v is the degrees of freedom, s is the sample standard deviation, and σ is the 

standard deviation under study. The process begins with calculating the chi squared 

values corresponding to the probability density function values. Figure 9 is a plot of chi 

squared values with the value at the 95% confidence value indicated by a solid line. 
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Figure 9. Chi squared values for a distribution with nine degrees of freedom. 

Algebraic manipulation of Equation 80 yields the relation needed to calculate 

confidence intervals for the variance. The relationship for the variances is in Equation 81. 

Figure 10 contains a plot of the variance values with confidence interval indicated. The 

plot is for a standard deviation of 6.2413. This is the standard deviation needed to result 

in a Cpk of 1.33 when the mean is 99.9653 for Dist1SampSize30, that is, the value of the 

mean for Dist1SampSize30. 

2 2
2

2 2
/2, 1 /2,v v

vs vs

α α

σ
χ χ −

< < . (81) 
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Proper understanding of Figure 10 is critical to the understanding of the analysis 

in this study. Unless a variance lies to the right of the 95% boundary, it cannot be 

concluded that it is larger than the variance it is being compared to,  If the test variance 

lies to the left of the dotted line, the null hypothesis that it is less than or equal to the 

comparison variance is accepted. If the formulation of the null hypothesis was the Cpk 

values were less than 1.33, then the lower 5% boundary is applicable. 

Figure 10. Distribution of the variance for Dist1SampSize30. 
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Taking the square root of Equation 81 gives the relationship for the standard 

deviation. Figure 11 contains an illustration of the transformation from variance to 

standard deviation with the 95% confidence value indicated by a dotted line. 

Figure 11. Distribution of the standard deviation. 

The value of Cpk is a transformation of the value of the standard deviation. Further 

manipulation of Equation 81 gives the confidence limits for Cpk. 

2 2

2 2
/2, 1 /2,

3
3 3

v v

Interval Interval Interval

vs vs

α α

σ
χ χ −

< < , 
(82) 
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where Interval is the smaller of the mean minus LTL, and UTL minus the mean. Figure 

12 contains the results of the application of this transformation to the distribution of 

standard deviations. This figure represents the distribution of Cpk values if 

Dist1SampSize30 did have a Cpk value of 1.33. The 5% boundary moves from the left to 

the right of the curve because the calculation of Cpk requires the use of the inverse of the 

standard deviation. 

Figure 12. Distribution of the Cpk values. 

With the relationship between chi squared values and Cpk values established, this 

relationship furnished the tool needed to evaluate if the Cpk values from the distribution 
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differed from the 1.33 value at a statistically significant level. The program used to 

generate the results for these calculations is in the file DCode21_RQ1.r in Appendix B. 

The power of the result is determined by using Equation 83 (Zar, 2014, p. 130), 

2
2 2 0

, 2
1 vP

s
α

σβ χ χ
 

− = ≥ 
 

, (83) 

where v is the degrees of freedom, 2
0σ  is the variance tested against, and s2 is the variance 

being tested.  

The use of the term effect size may be misleading in this study because of the lack 

of any treatment. Assuming that whatever difference in parameters present in the 

simulated test results and those need to achieve a Cpk of 1.33 constitute the treatment, 

then the effect size can be calculated by adapting an equation from Grissom and Kim 

(2012, p. 63), 

R Tpk pk

G

T

C C

σ
−

∆ = . (83) 

In this equation, the Cpk values substitute for the mean values. The subscript, R, is the Cpk 

value compared to the standard of 1.33 based on the standard deviation σT. 

I calculated the one tailed 95% confidence interval for the Cpk s that would result 

from the conditions necessary to achieve a value of 1.33. The last calculation was for the 

p value for the results from the simulated data. Table 7 contains the results. 
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Table 7 

Results for Research Question 1. Nontransformable, Nonnormal Data in Bold Font  

Distribution 

Variance Test 
Statistic  Chi 

Value 

Tested 
Variance Chi 

Value 

Variance 95% 
Confidence 

Limit Equivalent Cpk 
Dist1SampSize10 16.92 17.34 [39.87, ∞] 1.32 

Dist1SampSize30 42.56 55.70 [50.98, ∞] 1.17 

Dist1SampSizeC16 25.00 28.87 [45.03, ∞] 1.24 

Dist1SampSize59 76.78 110.42 [56.06, ∞] 1.11 

     

Dist2SampSize10 16.92 22.82 [42.44, ∞] 1.15 

Dist2SampSize30 42.56 73.90 [54.72, ∞] 1.01 

Dist2SampSizeC14 22.36 33.41 [47.00, ∞] 1.09 

Dist2SampSize59 76.78 146.63 [60.61, ∞] 0.96 

     

Dist3SampSize10 16.92 28.13 [60.50, ∞] 1.03 

Dist3SampSize30 42.56 90.28 [78.02, ∞] 0.92 

Dist3SampSizeC9 15.51 25.28 [59.26, ∞] 1.04 

Dist3SampSize59 76.78 183.08 [87.38, ∞] 0.86 

     

Dist4SampSize10 16.92 35.25 [60.89, ∞] 0.92 

Dist4SampSize30 42.56 114.30 [79.38, ∞] 0.81 

Dist4SampSizeC9 15.51 32.00 [60.05, ∞] 0.93 

Dist4SampSize59 76.78 231.44 [88.91, ∞] 0.77 

    (continued) 
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Distribution 

Variance Test 
Statistic  Chi 

Value 

Tested 
Variance Chi 

Value 

Variance 95% 
Confidence 

Limit Equivalent Cpk 
Dist5SampSize10 16.92 10.32 [23.73, ∞] 1.71 

Dist5SampSize30 42.56 33.94 [30.92, ∞] 1.49 

Dist5SampSizeC48 64.00 54.65 [33.21, ∞] 1.44 

Dist5SampSize59 76.78 68.08 [34.48, ∞] 1.42 

     

Dist6SampSize10 16.92 14.18 [26.63, ∞] 1.46 

Dist6SampSize30 42.56 46.91 [35.14, ∞] 1.27 

Dist6SampSizeC34 47.40 53.60 [35.83, ∞] 1.25 

Dist6SampSize59 76.78 94.49 [39.17, ∞] 1.20 

     

Dist7SampSize10 16.92 28.17 [53.15, ∞] 1.03 

Dist7SampSize30 42.56 90.84 [68.40, ∞] 0.91 

Dist7SampSizeC10 16.92 27.94 [52.84, ∞] 1.04 

Dist7SampSize59 76.78 186.18 [77.15, ∞] 0.86 

     

Dist8SampSize10 16.92 33.17 [49.48, ∞] 0.95 

Dist8SampSize30 42.56 107.95 [64.26, ∞] 0.84 

Dist8SampSizeC11 18.31 37.02 [51.00, ∞] 0.94 

Dist8SampSize59 76.78 220.85 [72.43, ∞] 0.79 

     

Dist9SampSize10 16.92 20.19 [43.01, ∞] 1.22 

Dist9SampSize30 42.56 65.09 [55.53, ∞] 1.08 

Dist9SampSizeC13 21.03 26.88 [46.03, ∞] 1.18 

Dist9SampSize59 76.78 133.93 [62.78, ∞] 1.01 

    (continued) 
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Distribution 

Variance Test 
Statistic  Chi 

Value 

Tested 
Variance Chi 

Value 

Variance 95% 
Confidence 

Limit Equivalent Cpk 
Dist10SampSize10 16.92 25.31 [43.24, ∞] 1.09 

Dist10SampSize30 42.56 82.27 [56.33, ∞] 0.96 

Dist10SampSizeC13 21.03 34.02 [46.57, ∞] 1.05 

Dist10SampSize59 76.78 168.51 [63.44, ∞] 0.90 

     

Dist11SampSize10 16.92 31.70 [59.90, ∞] 0.97 

Dist11SampSize30 42.56 102.18 [76.89, ∞] 0.86 

Dist11SampSizeC9 15.51 28.29 [58.05, ∞] 0.99 

Dist11SampSize59 76.78 209.85 [86.46, ∞] 0.81 

     

Dist12SampSize10 16.92 37.67 [56.27, ∞] 0.89 

Dist12SampSize30 42.56 122.12 [72.64, ∞] 0.79 

Dist12SampSizeC10 16.92 38.12 [56.47, ∞] 0.89 

Dist12SampSize59 76.78 250.05 81.47 0.74 

 
Table 8 

Additional Results for Research Question 1. Nontransformable, Nonnormal Data in Bold 

Font 

 
Distribution Power p Value Effect Size 

Dist1SampSize10 0.46 0.04 -0.06 

Dist1SampSize30 0.81 0.00 -0.06 

Dist1SampSizeC16 0.60 0.02 -0.06 

Dist1SampSize59 0.96 0.00 -0.06 

   (continued) 
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Distribution Power p Value Effect Size 

Dist2SampSize10 0.67 0.01 -0.09 

Dist2SampSize30 0.97 0.00 -0.09 

Dist2SampSizeC14 0.80 0.00 -0.09 

Dist2SampSize59 1.00 0.00 -0.09 

    

Dist3SampSize10 0.80 0.00 -0.10 

Dist3SampSize30 0.99 0.00 -0.09 

Dist3SampSizeC9 0.77 0.00 -0.10 

Dist3SampSize59 1.00 0.00 -0.10 

    

Dist4SampSize10 0.89 0.00 -0.12 

Dist4SampSize30 1.00 0.00 -0.12 

Dist4SampSizeC9 0.87 0.00 -0.12 

Dist4SampSize59 1.00 0.00 -0.12 

    

Dist5SampSize10 0.10 0.33 -0.01 

Dist5SampSize30 0.16 0.24 -0.02 

Dist5SampSizeC48 0.20 0.21 -0.02 

Dist5SampSize59 0.24 0.17 -0.02 

    

Dist6SampSize10 0.29 0.12 -0.05 

Dist6SampSize30 0.61 0.02 -0.05 

Dist6SampSizeC34 0.66 0.01 -0.05 

Dist6SampSize59 0.85 0.00 -0.05 

   (continued) 
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Distribution Power p Value Effect Size 

Dist7SampSize10 0.80 0.00 -0.10 

Dist7SampSize30 0.99 0.00 -0.10 

Dist7SampSizeC10 0.79 0.00 -0.10 

Dist7SampSize59 1.00 0.00 -0.10 

    

Dist8SampSize10 0.87 0.00 -0.13 

Dist8SampSize30 1.00 0.00 -0.13 

Dist8SampSizeC11 0.89 0.00 -0.13 

Dist8SampSize59 1.00 0.00 -0.13 

    

Dist9SampSize10 0.58 0.02 -0.07 

Dist9SampSize30 0.92 0.00 -0.07 

Dist9SampSizeC13 0.67 0.01 -0.07 

Dist9SampSize59 1.00 0.00 -0.08 

    

Dist10SampSize10 0.74 0.00 -0.10 

Dist10SampSize30 0.99 0.00 -0.10 

Dist10SampSizeC13 0.83 0.00 -0.10 

Dist10SampSize59 1.00 0.00 -0.10 

    

Dist11SampSize10 0.85 0.00 -0.11 

Dist11SampSize30 1.00 0.00 -0.11 

Dist11SampSizeC9 0.82 0.00 -0.11 

Dist11SampSize59 1.00 0.00 -0.11 

   (continued) 

    

    

    



124 

 

Distribution Power p Value Effect Size 

Dist12SampSize10 0.91 0.00 -0.13 

Dist12SampSize30 1.00 0.00 -0.14 

Dist12SampSizeC10 0.91 0.00 -0.14 

Dist12SampSize59 1.00 0.00 -0.14 

Based on these results, I cannot reject the alternate hypothesis for the distributions 

listed in Table 8. I cannot reject the null hypothesis for the distributions listed in Table 9. 

Table 9 

Distribution Failing to Meet the Null Hypothesis Condition. 

Dist1SampSize30 Dist4SampSize59 Dist7SampSize30 Dist10SampSize59 

Dist1SampSize59 Dist5SampSize30 Dist7SampSize59 Dist11SampSize30 

(Dist2SampSize30 Dist5SampSizeC48 Dist8SampSize30 Dist11SampSize59 

Dist2SampSize59 Dist5SampSize59 Dist8SampSize59 Dist12SampSize30 

Dist3SampSize30 Dist6SampSize30 Dist9SampSize30 Dist12SampSize59 

Dist3SampSize59 Dist6SampSizeC34 Dist9SampSize59  

Dist4SampSize30 Dist6SampSize59 Dist10SampSize30  

Note. Reject null hypothesis for listed distributions. 

Table 10 

Distributions Meeting the Null Hypothesis Condition. 

Dist1SampSize10 Dist4SampSize10 Dist8SampSize10 Dist11SampSize10 

Dist1SampSizeC16 Dist4SampSizeC9 Dist8SampSizeC11 Dist11SampSizeC9 

Dist2SampSize10 Dist5SampSize10 Dist9SampSize10 Dist12SampSize10 

Dist2SampSizeC14 Dist6SampSize10 Dist9SampSizeC13 Dist12SampSizeC10 

Dist3SampSize10 Dist7SampSize10 Dist10SampSize10  

Dist3SampSizeC9 Dist7SampSizeC10 Dist10SampSizeC13  
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Note. Cannot reject null hypothesis for listed distributions. 

Research Question 2 

Research Question 2 was, do the values calculated from samples taken from a 

combined distribution exceed the actual values required to meet the standard. While 

stated as a hypothesis test, the answer comes from deterministic mathematical 

calculations. The premise of the calculation of Cpk is that the possibility of a process 

yielding a value outside of the tolerance limit is equal to the probability of a point falling 

more than four standard deviations from the mean in a standard normal distribution. 

Answering Research Question 2 determines how many points from the combination 

distributions meet this criteria. 

Determining the answer to this question begins by calculating the limits of the 

distribution. The limits are the points laying beyond the intervals formed by taking the 

mean plus four standard deviations, and the mean minus four standard deviations. The 

number of points laying beyond these boundaries provides the answer to the question. 

Verification of the results consisted of determining the empirical cumulative 

distribution function (ecdf) for each of the 12 combination distributions. Determining if 

any points of the ecdf fall outside of the probabilities of laying more than four standard 

deviations from the mean answers the question. If no values lie outside of the tolerance 

limits, then the process is still producing the desired output even if the Cpk value is below 

1.33. 
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Table 10 contains the results of this analysis. The “0” and “-Inf” entries indicate 

that no values lay outside of the boundaries. Calculations are to four decimal points to 

increase the clarity of the results. 

Table 11 

Results from Research Question 2 

Distribution 

Low 

Points 

High 

Points 

Max 

Low 

Value 

Min 

High 

Value 

Proportion 

Low 

Value 

Proportion 

High 

Value 

comboDist1 0 0 -Inf -Inf 0 0 

comboDist2 0 0 -Inf -Inf 0 0 

comboDist3 0 0 -Inf -Inf 0 0 

comboDist4 0 0 -Inf -Inf 0 0 

comboDist5 0 0 -Inf -Inf 0 0 

comboDist6 0 0 -Inf -Inf 0 0 

comboDist7 0 0 -Inf -Inf 0 0 

comboDist8 0 0 -Inf -Inf 0 0 

comboDist9 0 0 -Inf -Inf 0 0 

comboDist10 0 0 -Inf -Inf 0 0 

comboDist11 0 0 -Inf -Inf 0 0 

comboDist12 0 0 -Inf -Inf 0 0 
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Table 12 

Additional Results from Research Question 2. 

Distribution Min Value Max Value 

comboDist1 75.0205 124.8790 

comboDist2 75.0205 124.8790 

comboDist3 75.0228 124.9458 

comboDist4 75.0228 124.9458 

comboDist5 81.0589 118.9411 

comboDist6 76.7805 118.9411 

comboDist7 75.0253 118.9411 

comboDist8 75.0253 118.9411 

comboDist9 75.0007 124.9886 

comboDist10 75.0007 124.9886 

comboDist11 75.0003 124.9886 

comboDist12 75.0003 124.9886 

The calculations indicate that the process is producing no output beyond the 

tolerance limits. Because the lateral distributions were trimmed, and the tolerance limit is 

at least four standard deviations from the mean of the underlying distributions, this is not 

an unexpected result. While not ideal results because of the lack of normality, 

engineering time spent “fixing” these processes could take second place to higher 

priorities. 

Research Question 3 

Research Question 3 was, do the data values from the lateral distributions, 

isolated from the underlying normal distributions, meet the industry standard. While 

stated as a hypothesis test, the answer comes from deterministic mathematical 
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calculations. Input to answer this question included the mean of each distribution, the 

population standard deviation, the standard deviation required to meet the 1.33 value (for 

comparison), and the Cpk calculated using the population standard deviation. Table 11 

contains the results including those of the underlying normal distributions, nAtT and 

nAtO. 
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Table 13 

Results from Research Question 3 

Distribution mean 

Population 

Standard 

Deviation  

Required 

Standard 

Deviation Cpk 

nAtT 100.11 5.05 6.22 1.64 

nAtO 95.11 5.05 5.03 1.64 

gammaLowerT0 92.13 9.98 4.28 0.83 

gammaUpperT0 107.64 9.98 4.34 0.83 

gammaLowerT 93.18 8.91 4.55 0.93 

gammaUpperT 106.64 8.97 4.59 0.92 

gammaLowerO0 82.13 9.98 1.78 0.83 

gammaUpperO0 112.64 9.98 3.09 0.83 

gammaLowerO 86.15 7.13 2.79 1.16 

gammaUpperO 110.39 8.19 3.65 1.01 

lognormalLowerT0 92.45 3.04 4.36 2.73 

lognormalUpperT0 107.55 3.04 4.36 2.73 

lognormalLowerT 92.45 3.04 4.36 2.73 

lognormalUpperT 107.55 3.04 4.36 2.73 

lognormalLowerO0 82.45 3.04 1.86 2.73 

lognormalUpperO0 107.55 3.04 4.36 2.73 

lognormalLowerO 82.50 2.97 1.88 2.79 

lognormalUpperO 107.55 3.04 4.36 2.73 

weibUpperT0 108.72 10.42 4.07 0.80 

weibLowerT 89.21 7.36 3.55 1.13 

weibUpperT 106.73 8.39 4.57 0.99 

    (continued) 
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Distribution mean 

Population 

Standard 

Deviation  

Required 

Standard 

Deviation Cpk 

weibLowerO0 76.03 10.42 0.26 0.80 

weibUpperO0 108.72 10.42 4.07 0.80 

weibLowerO 83.12 5.20 2.03 1.60 

weibUpperO 106.90 8.39 4.52 0.99 

weibLowerT0 86.03 10.42 2.76 0.80 

As expected, the underlying normal distributions exceeded the Cpk value of 1.33. 

Only the distribution based on the upper offset Weibull distribution, and those based on 

the lognormal distribution also exceeded the desired Cpk value of 1.33. The results from 

this research question and Research Question 2 require joint analysis because of the 

relationships between the data. 

Summary 

The purpose of this study was to develop a framework that evaluates the ability of 

Cpk to accurately measure medical device test data under a scenario where output data 

combines the effects of mixed production lots of components. Simulation with the R 

(2016) programing language generated 12 different fat tailed distributions. These 

distributions represented the test results of some product characteristic related to the 

performance or safety of a medical device. I formulated three different research questions 

to evaluate the performance of Cpk as a measure of process capability under the fat tailed 

distribution scenario. 

The first research question examined the overall performance of Cpk as a tool to 

evaluate these processes. The analysis provided mixed results for this question. In 46% of 
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the cases, the null hypothesis that the Cpk value met or exceed the desired 1.33 value was 

not rejectable. In the other 54%, it was. 

The second research question complimented the first. It provided a count of the 

number of data points, as a number and as a percentage, that laid outside of the 

boundaries needed for a Cpk of 1.33. Using separate methods for the count and the 

percentage calculation provided an additional level of validity for the results. The results 

showed that no points were outside of these boundaries. 

The third research question, also a compliment to Research Question 1, was to 

compare the results of the calculated Cpk for each component distribution with the desired 

value of 1.33. The outcome evidenced mixed results. Both underlying normal 

distributions met the criterion as expected. One distribution, based on the Weibull lateral 

distribution, met the criterion. All of the distributions based on lognormal lateral 

distributions also met the criterion. 

The results were more varied than expected at the outset of this research. Chapter 

5 contains more analysis and further discussion of the results given in this chapter. 
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Chapter 5: Discussion, Conclusions, and Recommendations 

The purpose of this empirical quantitative study was to develop a framework that 

evaluates the ability of a PCI to accurately measure medical device test data in a scenario 

where output data combines the effects of mixed production lots of components. The 

study was comparative in nature, involving an examination of the performance of the 

most commonly used PCI, Cpk, using simulated process data by calculating precise 

capabilities and then comparing these values with the results generated from nonnormal 

data adjusted indices.  

The reasons for conducting the study are the ongoing FDA and ISO requirements 

to prove that processes to manufacture medical devices are under control. Often the tools 

used to determine control are PCIs, primarily Cpk. This index depends on the normality of 

the data under test, and statistically unsophisticated engineers may often use it in the 

absence of normality and unknowingly accept inaccurate results. Kane (1986) warned 

against this misuse in the article in which he first introduced this index. 

The results of this study validated the concerns of Kane (1986) and Gunter 

(1989a, 1989b, 1989c, 1989d) regarding the application of this index to nonnormal data. 

Although the 12 different data sets generated through simulation for this study contained 

no points outside of the upper or lower tolerance limits, the calculated Cpk values 

generally failed to meet the industry standard of a value of 1.33 or greater. However, 

proper interpretation of the values would lead to a good understanding of the output of 

the process and the direction any corrective action should take. The research findings also 

contribute to filling a significant gap in the literature regarding the application of PCIs to 
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the medical device manufacturing field where mistakes can be life threatening if a 

procedure relies on a potentially defective device. 

Interpretation of Findings 

The design of the research questions in this study reflects an attempt to leverage 

the FDA requirement for lot traceability of the subcomponents used in the manufacture of 

a medical device to possibly overcome the limitations that nonnormal test results might 

impose on the ability of the capability index Cpk to monitor a medical device 

manufacturing process. The three research questions complement each other. The 

purpose of the first question was to determine the control status of several different 

processes as indicated by the calculation of Cpk for the processes calculated for different 

sample sizes. The goal of the second question was to evaluate the actual output from the 

processes to determine if defective output resulted. The objective of the last question was 

to evaluate the possibility that decomposing the output of a process by lot could yield a 

more accurate determination of process capability. 

The results of this research both confirm and extend earlier findings. In the article 

introducing Cpk, Kane (1986) cautioned that a prerequisite for its application was 

normality of data. An early criticism of PCIs (Gunter, 1989a, a989b, 1989c, 1989d) held 

that this dependency on normality is a weakness of the technique. The results of this 

study generally show the process as being out of control, judged by the Cpk values 

calculated in the first research question, while the results of the second research question 

show that no defective product results from the processes. Relying on Cpk in this instance 
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could result in time consuming and expensive efforts to “fix” a process that is producing 

good product. 

The probability of this situation occurring is increased by the fact that almost all 

of the distributions examined in this study would be accepted as normally distributed by 

the Anderson Darling test commonly used in normality testing. This result could lead a 

practitioner to believe that there was no problem with the data. Examination of the plots 

in Appendix A, or of the kurtosis results in Table 4, could indicate the soundness of this 

conclusion with the possible exception of combination distributions five, six, seven, and 

eight. These distributions, constructed using lognormal lateral distributions, are 

platykurtic. 

An unexpected and potentially significant result of this research was that, in spite 

of their kurtosis values, combination distributions five and six had the highest Cpk values 

and are the only distributions that yielded a Cpk value higher than 1.33. Three of the four 

distributions with a value greater than 1.33 came from combination distribution 5 

composed of the underlying normal and the offset lognormal distributions centered at the 

target of 100. Combination distribution 5 appears to exhibit some degree of bimodality, a 

characteristic even more pronounced in combination distribution 6. The values of the 

standard deviation distributed around two modes symmetrically distant from the mean 

could contribute to this result. 

The only two combination distributions that were nonnormal by the Anderson 

Darling test, and nontransformable, had lognormal lateral distributions with sample sizes 

of 59. Figure 13 illustrates Cpk values by distribution. Because of the range of values for 
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the calculated sample sizes, this analysis only includes the standard sample sizes of 10, 

30, and 59. Including the calculated samples sizes that ranged from seven to 48 could 

mask any pattern related to sample size. 

Figure 13. Combination distributions sorted by Cpk values. 

What is particularly disturbing is that these values come from the lognormal 

lateral distributions. Ott (2000) noted that lognormal distributions often represent data 
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mixed from several distributions. This is the very problem this study addresses. Although 

the data in the study came from simulation, these results indicate that if mixed data comes 

from upstream processes, it may lead to deceptive results requiring that the steps in the 

study need application throughout the process rather than just where a clear mixing of 

lots occurs. 

A significant finding follows from the theory of sampling and statistical quality 

control (Deming, 1950/1966, 1960/1990; Ott, 2000; Shewhart, 1931/2015, 1939/1986) is 

the critical importance of choosing an appropriate sample size when evaluating a process 

using Cpk. Figure 14 illustrates how the value of Cpk decreases with sample size. The 

panels in this plot have the Cpk values arranged from the smallest sample size, 10, on the 

bottom, to the larges sample size, 59, on the top. The Cpk values all migrate from right to 

left with increasing sample size. 

This effect could be due to the presence of n - 1, the unbiased sample size, in the 

denominator of the equation used to calculate the sample standard deviation. As the value 

of n increases, the sample standard deviation would decrease. To balance this effect, the 

sample size calculation, based on the “… smallest value that is still considered to be 

practically significant …” (Mathews, 2010, p.16), assumes more importance. 
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Figure 14. Cpk variation by sample size. 

This research extends current theory in two different ways. First, other researchers 

have previously examined the behavior of Cpk using distributions other than normal 

distributions. English and Taylor (1993) used the triangular, uniform and truncated 

exponential distributions. Rivera et al. (1995) used the gamma, lognormal, and Weibull 

distributions. Tang and Than (1999) used the lognormal and Weibull distributions. Pal 

(2005) used the generalized lambda distribution, and Liu and Chen (2006) used the beta, 
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gamma, and Weibull distributions. A thorough search of the research could find more 

examples. This study considered the component distributions together rather than 

separately as might be the case with mixing of production lots as might be the case in real 

world production environments. 

Another extension to theory came from research question three, with the different 

distributions considered individually rather than in combination. The focus in this 

research question was to look at the variance of the individual distributions. Other 

researchers introduced penalties or other considerations in their modifications of Cpk for 

missing target values. Kane’s (1986) original work addressed target values. Chan et al. 

(1988a), and Taguchi (as cited in Boyles, 1991) followed this path. Pearn, Kotz, and 

Johnson (1992) with their introduction of Cpm.  

In spite of the focus on the target, there are actually two factors that determine the 

value of Cpk, the interval between the mean and the closest specification limit, and the 

standard deviation of the distribution of the samples. In some cases, the latter might be a 

more appropriate place to focus quality improvement efforts than the former. While the 

values of the Cpks calculated from the overall combination distributions generally failed 

to meet the standards, the results from research question 3 indicated that many of the 

variances were sufficient to meet the 1.33 standard with the component distributions 

considered separately. In light of the results from Research Question 2, showing that no 

defective output resulted from any of the processes, this might also be a significant 

finding. 

 



139 

 

Limitations of the Study 

This study had many limitations. First, the study design incorporated a total of 

four different, but specific, frequency distributions, an underlying normal distribution, a 

gamma distribution, a lognormal distribution, and a Weibull distribution. When 

considering the different parameters that define these distributions, it is obvious that there 

is an infinite number of possible distributions. Any variation in the parameter set used in 

R’s (2016) random number generator would result in different distributions and possible 

different results. A practitioner applying the methods developed in this study would have 

to replicate many of the study steps to generate results. The study did not, nor was it 

intended to, generate a generalizable formula to evaluate process output. 

Second, the overall symmetry of the combination distributions may have affected 

the results of the Anderson Darling normality tests. The creation of fat tailed distributions 

by doing this was by design to increase the likelihood of Anderson Darling failures. In 

actuality, the symmetry created the opposite effect. Nonsymmetrical distributions may 

have better suited this design goal. 

Third, this study takes advantage of the lot traceability present in the manufacture 

of medical devices. While this closes a gap in the literature, it also limits the applicability 

of this study to industries where this condition is present, either formally, as is the case in 

FDA regulated industries, or informally where management has made the decision to 

incorporate such traceability on their own. Attempts to apply the methods used in this 

study to situations where lot traceability is not present would be difficult or perhaps 

impossible. 
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Recommendations 

Recommendations for further study begin with addressing the limitations 

identified in the previous section. Rather than distributing the lateral distributions around 

the target mean of the underlying normal distribution by identical distances on either side, 

asymmetric placement represents an alternative. For example, if the left lateral 

distribution is one standard deviation from the target, the right distribution offset could 

equal two standard deviations. 

With symmetric placement of the lateral distributions, the mean of the 

combination distribution stays centered around the target value. Each point to the left of 

the mean has a balancing value to the right of the mean. Consider the placement of the 

right lateral distribution two standard deviations rightward while the left lateral 

distribution remains offset left by only one standard deviation. Because of the lack of 

balance of values around the target, the mean would also shift to the right. 

Along with the mean shift, the standard deviation would also grow larger due to 

the increase in dispersion around the mean. The interval between the mean and the UTL 

would decrease. It could be valuable to quantify the effect of the shortened interval paired 

with the larger standard deviation upon the value of Cpk. Would Cpk increase or decrease 

monotonically, or does it reach a maximum or minimum and then reverse direction? 

A more extreme extension to this approach is eliminating one of the lateral 

distributions altogether. Again, the mean would shift in the direction of the lateral 

distribution, and the standard deviation would increase. Like the previous case, 

quantification and determining the characteristics of the effect would be interesting. 
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Both lateral distributions in this study had values above and below the tolerance 

limits trimmed. This represented a normal screening process of subcomponents occurring 

before the process combining the components from different lots. The trimming operation 

eliminated the more extreme values and decreased the value of Cpk compared to 

untrimmed components. A further extension to this research would be eliminating the 

trimming and measuring the effect this would have on the Cpk values. This approach 

could also use the asymmetric placement of the lateral values described previously. 

In this research, I used the gamma, lognormal, and Weibull distributions as the 

lateral distributions. Other researchers have studied Cpk behavior using other distributions 

than these, although never in combination like the current study did. A follow-on study 

could substitute the triangular or uniform distributions (English & Taylor, 1993), the 

Generalized Lambda Distribution (Pal, 2005), or the beta distribution (Hosseinifard et al., 

2009) for the lateral distributions used in this study. This could also use asymmetric 

placement, or only one lateral distribution. 

In all of the extensions so far, I assumed the presence of the underlying normal 

distribution. How could the elimination of this distribution affect the results? For 

example, if two lateral distributions based on the gamma were studied, one tailing right 

by transformation, and the other naturally tailing right, would the effect be close enough 

to a normal distribution that a valid value of Cpk would result? 

One distribution that was absent from the literature is the Gumbel distribution 

formulated to address extreme or rare cases (Gumbel, 1958/2004). While capability and 

control are goals for production processes, exceptions do occur. Studying the effect of 
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rare malfunctions in a process could be interesting. While rare, the effects from such an 

event could be very serious. 

This study, by design, focused on one PCI, Cpk, because of its acceptance as the 

industry standard (Peña-Rodríguez, 2013). It is possible that one of the many other 

indices, developed since the introduction of Cpk, but not yet widely accepted, could 

provide more accurate results under this study’s parameters. Further research could 

investigate the performance of these other indices under the original design or under one 

of the alternatives proposed in this section. 

The current study addressed fat tailed processes. A last branch from the current 

study would examine the opposite situation, that is, thin or nonexistent tails. These often 

arise from a lack of granularity in the measurement process and can be difficult to 

interpret properly (Sleeper, 2007). Further research using the comparison of variance 

techniques used in this study might furnish a method to better analyze these situations. 

Implications  

The implications of this study affect three segments of society, the individual 

patient, the manufacturers of medical devices, and the regulatory agencies responsible for 

insuring that only safe products enter the marketplace. The individual patient relies on the 

knowledge and professionalism of medical device manufacturers when undergoing a 

treatment regimen that requires the use of a medical device. Patients enter treatment 

expecting to have to fight a disease or other medical condition and they rely on the 

quality of the devices used by medical professionals to help them in this effort. The 

results of this study could help insure that the patients receive treatment with devices that 
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perform as expected by making the device manufacturers more aware of the potential 

shortcomings or the tools they rely on to insure quality. 

Manufacturers face a constant balancing act between cost, quality, and 

availability. A perfect device for the treatment of a condition with absolute reliability 

might be possible to make. But, if that device costs 5 million dollars to manufacture, and 

takes 100 skilled workers a year to make each one, it probably is not viable as a product 

(note that single use devices, unlike MRI machines or something similar that can help 

many patients over a long period of time, are the topic of this discussion). In a large scale 

production environment, manufacturers have come to rely on statistical methods to insure 

meeting quality and cost objectives. The regulatory agencies impose these requirements. 

Failing to meet these requirements can have serious consequences for both the patients 

and the manufacturers. 

In January of 2017, the Department of Justice announced that Baxter Healthcare 

had agreed to pay more than $18 million to resolve issues that arose from its failure to 

follow Good Manufacturing Practices in one of its plants (U.S. Department of Justice, 

2017). That sum paid to the government represents money that will not be invested in 

research and development, plant expansion, or passed on to medical facilities or 

stockholders. In addition, it is highly likely that the cost of this fine will eventually fall on 

the healthcare consumers, contributing to ever increasing healthcare costs. While this 

case involved pharmaceuticals rather than devices, it nevertheless indicates the possible 

consequences companies face for failing to control their processes. 
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By pointing out the weakness of a commonly used index, this study could help 

healthcare companies, and their engineers, better understand the implications of reading 

too much into the results of the applications of theses indices. It is not enough to apply a 

formula to results without a good understanding of the data to which the index is applied. 

Such understanding requires meaningful training. 

Disseminating knowledge that one index alone cannot provide all of the needed 

answers regarding process capability could be an important outcome of this research. 

Additionally, a requirement that engineers in the medical industry have enough statistical 

training to ask the right questions and to know when to seek expert help when confronted 

with a situation beyond their statistical ability. Regulatory and standards organizations 

impose many requirements on medical manufacturers. Recognizing and requiring 

statistical literacy from those responsible for medical devices could be a worthy addition 

to those requirements. 

Conclusions 

From the beginning, practitioners and theoreticians knew the weaknesses of PCIs 

in dealing with nonnormal data. This study provided another verification of that 

weakness, but also extended that finding to more complicated cases consisting of 

multiple distributions combined into one. Perhaps the most significant finding of this 

study is that a low value of Cpk did not necessarily indicate the production of failing 

product. Had the data generated for this study represented an actual production situation, 

misinterpretation of the low values of Cpk could have prevented the release of a new 

product while the engineers fixed a product that met specifications. 
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Related to this was the performance of the Anderson Darling test statistic to detect 

nonnormality in fat tailed distributions. A conscientious, but statistically unsophisticated, 

engineer might accept the results of this test without question or further examination of 

the data. The conclusion could be that the process is under control when it exhibits an 

undesirable degree of spread. 

I began this study with the hope of simplifying the use of Cpk to evaluate process 

capability by decomposing distributions by lot identity. Based on the conclusions of this 

study, it is apparent that a single capability index is unreliable when used alone to judge 

if a process is capable. Instead, the index must be part of a system that combines both 

statistical tools, for example, other tests for normality, variance comparison methods, and 

so forth, and intimate process knowledge to evaluate the output of a process. Until that 

occurs, overall process capability will still be difficult to evaluate properly. 
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Appendix A:  Histograms of Combination Distributions 

 

 

 

Figure A1. Underlying normal distributions. 
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Figure A2. Combination distributions formed with centered gamma distributions. 
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Figure A3. Combination distributions formed with offset gamma distributions. 
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Figure A4. Combination distributions formed with centered lognormal distributions. 
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Figure A5. Combination distributions formed with offset lognormal distributions. 
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Figure A6. Combination distributions formed with centered Weibull distributions. 
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Figure A7. Combination distributions formed with centered Weibull distributions. 
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Appendix B:  R Code 

The embedded object on this page contains the R code used to create the figures 

used and do the analysis described in this study. 

KwiecienJW_R_Cod

e_02262017.docx  

I will also place the R code on GitHub at https://github.com/JimKw1091/JWK-

Dissert.git. 
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