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Abstract 

Consolidating patient and clinical data to support better-informed clinical decisions 

remains a primary function of electronic health records (EHRs). In the United States, 

nearly 6 million patients receive care from an accountable care organization (ACO). 

Knowledge of clinical decision support (CDS) tool design for use by physicians 

participating in ACOs remains limited. The purpose of this quantitative study was to 

examine whether a significant correlation exists between characteristics of alert content 

and alert timing (the independent variables) and physician perceptions of improved ACO 

quality measure adherence during electronic ordering (the dependent variable). 

Sociotechnical theory supported the theoretical framework for this research. Sixty-nine 

physician executives using either a Cerner Incorporated or Epic Systems EHR in a 

hospital or health system affiliated ACO participated in the online survey. The results of 

the regression analysis were statistically significant, R2 = .108, F(2,66) = 3.99, p = .023, 

indicating that characteristics of alert content and timing affect physician perceptions for 

improving their adherence to ACO quality measures. However, analysis of each 

independent variable showed alert content highly correlated with the dependent variable 

(p = .007) with no significant correlation found between workflow timing and the 

dependent variable (p = .724). Understanding the factors that support physician 

acceptance of alerts is essential to third-party software developers and health care 

organizations designing CDS tools. Providing physicians with improved EHR-integrated 

CDS tools supports the population health goal of ACOs in delivering better patient care.  
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Section 1: Foundation of the Study  

The optimal use of health information technology (HIT) brings the right 

information to the right people at the right time (Krist et al., 2014). Improving the access 

to patient and clinical data supports the delivery of better patient care (Path, 2013). As 

accountable care organizations (ACOs) coordinate care of chronically ill patients, poor 

interoperability of electronic health record (EHR) systems remains a known contributor 

to patient harm (Rudin & Bates, 2013). Therefore, designing clinical decision support 

(CDS) software tools based on an improved understanding of physician needs for patient-

specific information presents an opportunity to improve the quality of care physicians 

deliver (Beeler, Bates, & Hug, 2014).  

Background of the Problem 

Clinical software users and vendors hold differing opinions regarding software 

user needs for electronically accessing patient data (Eastaugh, 2013). In addition, the 

adoption of EHRs by U.S. health systems occurred with minimal design input from 

clinical software users (Ancker, Kern, Abramson, & Kaushal, 2012; Hollin, Griffin, & 

Kachnowski, 2012; Kawamoto et al., 2012). The risk for patient harm surfaces when 

clinical software users lack workflow appropriate tools (Beeler et al., 2014; Meeks, 

Takian, Sittig, Singh, & Barber, 2014). Capturing software user needs for improved and 

workflow-compatible EHR-integrated tools provides the foundation for the research 

study. Including the sociotechnical needs of clinical software users among the variables 

assessed in this study potentially addresses the data access and workflow limitations of 
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EHRs and may offer insight into clinical software user needs for EHR-integrated CDS 

tools. 

Problem Statement 

Access by U.S. health systems to $19 billion in incentive payments requires 

demonstrating meaningful use (MU) of EHR systems through use of CDS software tools 

supporting improved patient outcomes (Chalasani, Jain, Dhumal, Moghimi, & 

Wickramasignho, 2014; Xiao et al., 2012). New health care reform models such as ACOs 

depend on the accurate electronic exchange of patient data (Berwick, 2011). A lack of 

EHR-integrated decision support tools jeopardizes a measurable return on the billions of 

dollars invested in HIT (Dubois et al., 2014; Koppel, 2013).  

 The general business problem is the lack of EHR-integrated CDS tools 

supporting physicians managing complex patients (McMurray et al., 2013). The specific 

business problem is a lack of understanding by third-party software developers about 

physicians’ preferences for integrated alerts supporting adherence to ACO quality 

measures while placing their electronic orders.  

Purpose Statement 

The purpose of this quantitative, correlation study was to examine the nature of 

any association between physician preferences for CDS alerts and perceptions of 

improved adherence to ACO quality measures during electronic ordering. The 

independent variables consisted of sociotechnical attributes related to the type of decision 

support provided and the workflow timing for presenting an alert to physicians. The 
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dependent variable was physicians’ perceptions of improved adherence to ACO quality 

measures.  

The study population consisted of physician executives from U.S. integrated 

delivery health system ACOs using CDS tools in either a Cerner Corporation or Epic 

Systems EHR. Integrated health systems with ACOs typically use advanced HIT tools 

with participation from academic medical centers (Muhlestein, Gardner, Merrill, 

Petersen, & Tu, 2014; Shortell, Wu, Lewis, Colla, & Fisher, 2014). Cerner Incorporated 

and Epic Systems hold the largest market share among integrated health systems with 

ACOs (Chalasani et al., 2014). Data from the Healthcare Information and Management 

Systems Society (HIMSS) includes details on the population of 90 integrated health 

system ACOs using market leading EHRs (HIMSS, 2014). Improving commercial CDS 

software supports the primary social change goal of ACOs in safely managing high-risk 

patient populations through improved use of HIT (Kuperman & McGowan, 2013).  

Nature of the Study 

A quantitative, correlation design best fits the nature of the research problem. 

Development and use of a Likert-scaled survey and analysis of the data have the potential 

to yield fresh insights into the sociotechnical needs of physician software users. Results 

may direct product development efforts toward design of improved CDS alerts needed by 

clinicians coordinating care for patients in integrated health system ACOs. 

Use of quantitative, correlation research methods are commonly applied in health 

care and information technology related investigations. Xiao et al. (2012) examined 

relationships of ambulatory physician use of EHRs and the extent to which MU of an 
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EHR positively affected patient care. Utilizing a 5-point Likert-scaled survey, the authors 

captured two dependent variables of efficiency and quality of health care. Quantitative 

methods applied by Wan, Masri, Ortiz, and Lin, (2014) employed correlation analysis 

examining executive perceptions of the opportunities and challenges inherent in forming 

an ACO. Similarly, Peikari, Zakaria, Yasin, Shah, and Elhissi (2013) applied a 

quantitative correlation approach in their study assessing the usability of CDS alerts 

within a computerized physician order entry (CPOE) application. 

A classic taxonomy of stakeholders defined by Hamilton and Chervany (1981) 

was expanded by Turunen and Talmon (2000), who defined the users of HIT systems as 

physicians, nurses, and others. Turunen and Talmon (2000) further expanded the 

stakeholder definition of developers including users with a health care background and 

others. Use of expanded stakeholder definitions supports selection of physician users 

from a population of U.S. ACOs using market-leading EHRs. An understanding of the 

relative importance of software attributes from a sociotechnical standpoint provides 

software developers with new insights and potentially predictive value regarding unmet 

user needs (Path, 2013; Sittig & Singh, 2010).  

Qualitative approaches are not aligned with the stated research problem. 

Qualitative researchers seek to understand unstructured phenomena by uncovering 

themes through semistructured or open-ended interviews and observations (Bryman, 

2012). Although qualitative case studies expand the lens for examining a given 

phenomenon, the approach generates insufficient data enabling quantitative assessment of 

a stated research hypothesis (Constantinides, 2013; Meeks et al., 2014). Further, 
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qualitative research lacks the rigor of scientific inquiry expected by leading health care 

professionals and technology industry stakeholders for whom the research bears interest. 

Although a mixed-methods approach potentially generates additional data for analysis 

than a survey alone, the approach requires substantially more time and resources than are 

feasible. Information sciences researchers suggested the judicious selection of a mixed-

method approach especially in cases where a single method well applied suffices to 

answer the research question (Venkatesh, Brown, & Bala, 2013). This quantitative, 

correlation study supported an analysis of survey responses sufficient to accept or reject 

the stated research hypothesis. 

Research Question 

The central research question underpinning the research considered whether 

sociotechnical factors addressed in the design of CDS software tools affect physician 

ordering behavior. The independent variables were the alert content attributes and the 

timing of triggering alerts in the physician’s electronic ordering workflow. The dependent 

variable was the physician’s perception of improved adherence to ACO quality measures.  

Hypotheses 

Ho1: A significant relationship does not exist between the content of an alert 

deployed and a physician’s adherence to ACO quality measures. 

Ha1: A significant relationship does exist between the content of a deployed alert 

and a physician’s adherence to ACO quality measures. 
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Ho2 A significant relationship does not exist between the timing of when an alert 

is deployed in a physician’s electronic ordering workflow and a physician’s adherence to 

ACO quality measures. 

Ha2 A significant relationship does exist between the timing of when an alert is 

deployed in a physician’s electronic ordering workflow and a physician’s adherence to 

ACO quality measures. 

Survey Questions 

A Likert-based survey based on a 5-point scale where 5 = “always” and 1 = 

“never” incorporates sociotechnical factors associated with the content design of alerts, 

the timing for placement of alerts in a physician’s computerized ordering workflow, and 

the physician’s perception of an alert supporting adherence to ACO quality measures. 

Previous physician surveys and research associated with physician preferences for CDS 

tools informed the questions for the survey (Anderson et al., 2013; Bell et al., 2014; 

Bowman, 2013; Dubois et al., 2014; Jung et al., 2013; Koopman et al., 2011; McCoy et 

al., 2012; Pham et al., 2012; Sittig, Krall, Dykstra, Russell & Chin, 2006; Smith et al., 

2013; Xiao et al., 2012). However, no previously validated instrument supports the 

combination of variables intended for examination. The entire survey instrument 

(Appendix A) contains the questions necessary for examining the central research 

question through the specific variables selected.  

Theoretical Framework 

Pasmore (1988) attributed to Trist (1951) the creation of sociotechnical theory. 

Pasmore’s contribution to sociotechnical theory extended to considering an 
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organization’s interaction with highly complex and turbulent environments. Pasmore 

suggested sociotechnical designers consider how technology affects the work experience 

while safeguarding human interests with deploying new technology in the workplace. 

The purpose of applying sociotechnical design to complex organizations such as health 

care systems arises from understanding that productivity misses occur as a result of both 

human and technical factors (Sittig & Singh, 2010). A sociotechnical framework assists 

software developers in addressing complex systems through an improved understanding 

of the communication patterns, workflows, and tools required by users across the system 

(Path, 2013; Sittig & Singh, 2010).  

Without access to software tools that incorporate users’ sociotechnical needs, 

ACO providers may miss important patient data resulting in decisions that harm patients 

(Krist et al., 2014). Gaining a better understanding of the sociotechnical preferences of 

ACO software users might inform improvements in developing new decision support 

tools for safely improving patient care at lower costs. Meeks, Takian, Sittig, and Barber 

(2014) published findings specific to applying a sociotechnical framework in deploying 

and using EHRs. Figure 1illustrates where the ACO model aligns with the Phase 3 

objective of enhanced patient safety through EHR enabled health care systems.  
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Figure 1. Meeks et al. (2014) combined Sittig and Singh’s (2010) sociotechnical 
 framework with a three-stage safety model supporting application to evolving 
 HIT use by advanced health systems. 

 

Definition of Terms 

Accountable care organization (ACO): Coordinated care of a designated patient 

population by health care providers and organizations that may share any savings realized 

after fulfilling specific performance measures (CMS, 2014). 

Accountable care organization quality measures: A set of 33 national measures 

defined by the Centers for Medicare and Medicaid Savings (CMS) inclusive of one 

measure aligned with the demonstration of MU (CMS, 2014). 

Clinical decision support software (CDS): The use of automated 

recommendations or alerts based on peer-reviewed evidence that support clinicians in 

making better decisions for their patients (HIMSS, 2010).  
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Clinical workflow: A specific sequence of tasks performed by physicians and 

other health care providers as they coordinate and deliver patient care (HIMSS, 2014).  

Electronic health record (EHR). An electronically managed system containing 

specific patient and clinical data used by clinicians in the routine management of patient 

care (HIMSS, 2014). 

Integrated delivery system ACO: A type of accountable care organization 

characterized by the participation of hospitals and physician practice groups jointly 

managing complex patient populations with a more sophisticated use of HIT and 

analytics (Shortell et al., 2014). 

Health information technology (HIT): A specific application of technology 

supporting clinicians and other health care organizations and providers in delivering more 

efficient and better patient care through computers (HIMSS, 2014). 

Interoperability: The ability for patient and clinical data to be electronically 

accessible and usable across disparate systems by clinicians and other health care 

providers irrespective of where the data originated (HIMSS, 2014).  

Meaningful use (MU): A set of guidelines defined by the Department of Health 

and Human Services (HHS) that supports the allocation of financial incentives and 

penalties to hospitals and eligible health care providers demonstrating their use of HIT to 

improve the quality, efficiency, and safety of patient care (CMS, 2014). 

Software as a service (SaaS): A method of delivering the same software solution 

to many users or subscribers through a cloud-based platform rather than through the 

installation of individual and locally maintained systems (HIMSS, 2014).  
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Assumptions, Limitations, and Delimitations 

Assumptions 

Five key assumptions underscored the research. The first assumption was the 

willingness of physician executive software users to complete the survey. The second 

assumption involved accurately selecting ACOs for inclusion in the research. Muhlestein 

et al. (2014) and Shortell et al. (2014) identified a type of ACO characterized by the 

inclusion of hospitals and provider groups using advanced HIT systems. I assumed that 

the inclusion of hospital-led ACOs using leading EHR systems aligned with the 

integrated delivery system (IDS) ACO type and best supported the goals of the research. 

The third and fourth assumptions pertained to the research participants’ knowledge and 

experience. I assumed executive clinical software users with extensive HIT experience 

understand their obligations to meet CMS ACO quality measures. I assumed that these 

software users may perceive how decision support software affects physician ordering 

behavior and the quality of care the ACO provides. The final assumption pertained to 

survey participant honesty. Leroux, Rizzo, and Sickles (2012) suggested that survey 

responses are biased as responders interpret survey questions in relation to their current 

experience. Supplying the participants with reference material on the ACO quality 

measures might reduce the risk that a research participant lacks sufficient knowledge of 

national ACO quality measures. Testing the questions and responses with a small, pilot 

group might provide insights for reducing the risk for bias associated with self-reporting 

(Bryman, 2012). 



11 
 

 

Limitations 

Limitations arise from the type of instrument selected and the research 

methodology. The selection of a Likert-scaled survey imposes several limitations. 

Specifically, quantitative research conducted with such defined scales limits research 

participants to a set of predetermined questions and responses unlike qualitative 

approaches enabling capture of unrestrained responses. In addition, respondents 

frequently select a neutral response on the scale limiting the usefulness in analyzing 

actual attitudes (Yusoff & Janor, 2014). Another limitation stems from the nonresponse 

bias potentially limiting data analysis (Hohwu et al., 2013; Schaeffer & Dykema, 2011). 

The choice of a correlational study limits the analysis to depicting a potential relationship 

between the variables studied without the means for determining any causation 

(Prematunga, 2012). 

Delimitations 

To test the research hypothesis, I limited participation in the survey to qualified 

physician executive software users such as the directors of medical informatics and chief 

medical officers. These are individuals who influence third-party software procurement 

decisions and frequently self-develop and manage decision support tools requested by 

hospital and ambulatory physician users. In addition, the exclusion of ACOs using non 

Epic or Cerner EHR systems without the participation of a hospital is an important 

delimitation to this research. The results applicable to the ACO type included in the 

survey may not be generalizable to other types of ACOs such as those comprised solely 

of private practice physicians using less sophisticated EHRs. Hospitals sponsored nearly 
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half of all ACOs in 2013 with the majority of hospital-led ACOs using a Cerner 

Corporation or Epic Systems EHR (Barnes, Unruh, Chukmaitov, & van Ginnekan, 2014; 

CMS, 2014). According to leading experts, organizations demonstrating HIT competency 

with an infrastructure enabling population health management stand a better chance at 

providing better care (Chukmaitov, Harless, Bazzoli, Carretta, & Siangphoe, 2014). Other 

software users such as nurses, allied health care professionals, and patients remain 

excluded from the study population since the type of CDS software tool envisioned aligns 

most closely with the ordering activities performed by physicians.  

Significance of the Study 

Contribution to Business Practice  

This research seeks to examine how software users perceive the ability of 

integrated CDS tools to meet their sociotechnical needs while enhancing their ability to 

comply with ACO quality measures. The insights from this research may inform 

improvements in the design of decision support software enabling third-party SaaS 

vendors to improve the usability of EHR integrated CDS tools tailored for physician 

users (Krist et al., 2014; Middleton et al., 2013; Riskin, Koppel, & Riskin, 2014). 

Implications for Social Change 

Latest estimates from CMS suggested that nearly 6 million patients receive care 

from an ACO (CMS, 2014). Providing physicians with improved automated decision 

support tools in their clinical workflow supports the population health goal of ACOs in 

delivering better outcomes and safer patient care more efficiently. 
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A Review of the Professional and Academic Literature 

The literature review includes a brief overview of recent legislative and regulatory 

actions supporting adoption of EHRs and new models for population health management 

in the U.S. Extending from the legal and regulatory framework, key findings from the 

published literature highlight the current state and the expected future use of software 

technology for improving the cost and quality of care provided to patients. Use of 

supporting literature provides examples of the limitations of current software tools as 

experienced by clinical software users. The literature review provides further justification 

in the selection of sociotechnical theory over rival theories. Specifically, incorporating 

the research findings published from the leading medical informatics and health research 

journals underscores the value of considering sociotechnical requirements of clinical 

software users in the development of new CDS software tools. Descriptions of the two 

independent variables and the dependent variable selected for study provide context for 

examining the selected study methodology.   

The approach taken for the review of the academic literature included the use of 

both Walden library databases as well as routinized searches in Google Scholar. 

Keywords utilized for searching the literature included clinical decision support, 

electronic health records, patient records, accountable care organizations, 

interoperability, medical error, and health care information technology. Other search 

parameters included selection of peer-reviewed articles published within the last five 

years. The highly topical nature of this research remains apparent as 93% of the articles 

cited are within 5 years of the expected publication of this study. Non-peer-reviewed 
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articles and books represented fewer than 6% of the total citations included in the 

literature review.  

Legislation and EHR Use 

The U.S. government’s passage of the American Reinvestment and Recovery Act 

(ARRA) in 2009 included $19 billion dollars in incentives in the accompanying Health 

Information Technology for Economic and Clinical Health Act (HITECH) for 

procurement of EHRs by eligible health care providers and hospitals (CMS, 2014; Riskin 

et al., 2014). The ability to receive incentive payments aligns with eligible providers 

(EPs) and health care organizations attesting to the MU of their EHRs in distinct stages 

over specific time periods as defined by the Centers for Medicare and Medicaid Services 

(CMS) (CMS, 2014). Progression through each MU Stage requires adoption and 

demonstration of increasingly advanced software functionality such as the use of 

integrated CDS tools for improving patient outcomes (Xiao et al., 2012).  

Porter (2009) published an editorial before the enactment of the HITECH Act. He 

proposed that health care delivery be restructured placing the patient at the center of care 

to derive maximum value. Arguing that care should be organized and delivered centrally, 

Porter’s (2009) recommendations aligned well with more recent health care reform 

legislation establishing the creation of ACOs with expectations for use of advanced HIT 

systems. Porter suggested that improvements in health care arise only as the practice of 

medicine shifts from a focus on volume to that of value. Porter envisioned a roadmap and 

specific entities governing change with the mandate to establish, review, and manage HIT 

standards. 
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With the passage of the Patient Protection and Affordable Care Act (PPACA) in 

2010, CMS gained authorization establishing shared savings programs including 

recognition of ACOs as a new legal entity or health care provider (CMS, 2014). Health 

care providers and hospitals with a minimum of 5000 Medicare patients became eligible 

to register for CMS shared savings. ACOs effective in 2012 participated in shared 

savings for a minimum of three years (CMS, 2014). Berwick (2011) anticipated ACOs 

delivering improvements in how patient data is shared, supporting reductions in care 

variation, elimination of unnecessary costs, and more robust and timely clinical decision 

making. He outlined three primary goals for the establishment of ACOs referred to as the 

“triple aim”: (a) better care for each patient participating in an ACO, (b) better care for 

groups of patients being managed for the same chronic conditions, such as diabetes or 

heart failure, and (c) reduction in costs associated with care. Envisioned as a major 

reform in U.S health care, providers and organizations establishing an ACO share in any 

savings realized once all required quality measures are met by specified dates. Berwick 

highlighted access to patient information and HIT as vital ingredients for success in the 

ACO model. Recognizing that providers relied on fragmented HIT systems, he postulated 

one outcome of moving to ACOs would be an increased focus on how patient data is 

shared using HIT for more robust and timely clinical decision making. 

The ACO Model 

Payne et al. (2013) reviewed the current state of HIT implementation across 

several large health care systems with the objective of identifying best practices 

contributing to lowered health care costs and improved care quality. More than $30 
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billion in investments directed toward HIT procurements occurred since 2009 specific to 

the adoption of EHRs. MU criteria established by CMS mandates adopting hospitals and 

providers demonstrate active use of the EHR in clinical decision-making through 

reporting of quality measures and validation of evidenced based clinical orders and rules 

(CMS, 2014).  

Establishing the ACO model provided CMS with additional means for directing 

the focus of providers toward the achievement of better population health at lower costs 

(Barnes et al., 2014). Specifically, CMS established ACO quality measures with 

requirements for ACOs to transition from reporting on adherence to these measures to 

assuming increasing financial risk associated with improved patient outcomes. The use of 

HIT provides a key mechanism for providers and organizations to successfully manage 

and share such risk (Barnes et al., 2014). Given the unprecedented national investments 

in HIT, Payne et al. (2013) sought to answer the question of whether recent investments 

in HIT actually improved financial and quality health care outcomes. Such concerns 

stimulated the development of recommendations from professional practice societies for 

actions needed by software vendors and physicians focused on improving EHR use 

through improvements in software testing, design, and implementation (Middleton et al., 

2013). 

The ACO model with its focus on population health necessitates collaboration 

across primary care physician practices (Schultz et al., 2013; Barnes et al., 2014). The 

traditional Medicare ACO requires the inclusion of 5,000 Medicare patients over a three-

year period (CMS, 2014). ACOs formed outside of Medicare by private payers share 
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similar features specific to the assumption of risk and shared reward with the 

management of defined patient populations (Barnes et al., 2014). The attribution of 

patients to most ACOs begins with primary care practices (Barnes et al., 2014). Krist et 

al. (2014) identified the evolving needs of primary care physicians for improved decision 

support tools supporting population health goals. Barnes, Unruh, Chukmaitov, and van 

Ginnekan, (2014) suggested providers faced with lower fee for services reimbursement 

aligned with or formed new ACOs as a defensive posture during a period of substantive 

change.  

In the setting of any ACO, Krist et al. (2014) identified new needs for high 

quality, patient contextualized information accessible to physicians across integrated 

health systems. Barnes et al. (2014) noted the value of integrated HIT systems supporting 

access to better information with greater reliance on decision support tools. Schultz et al. 

(2013) described similar implications of the ACO model on current and future family 

practitioners. With a focus on reducing the cost of care, these authors anticipated ACO’s 

directing providers toward shared risk models requiring proactive patient engagement.  

Greater use of community-based health resources shifts the burden from caring 

for patients in hospitals to managing care across a number of other venues including the 

patient’s home (Schultz et al., 2013). Supporting the transition to accountable care 

requires development of population health management tools with the right practitioners 

in roles capable of utilizing new tools and resources (Krist et al., 2014; Schultz et al., 

2013). Concerning the need to prepare physicians for accountable care, these authors 
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highlighted the growing need for clinicians to have timely access to patient, clinical, and 

cost effectiveness data as patient care is conceived and delivered. 

Leavitt Partners, a leading HIT consultancy firm began assessing the expansion of 

ACOs in 2010 (Muhlestein et al., 2014). They estimated more than 600 ACOs operated 

in the U.S. having expanded beyond the original CMS scope through inclusion of non 

Medicare patient populations. The authors supplemented their ACO database with a 

survey and qualitative research conducted with more than 100 ACO executives. 

Muhlestein et al. (2014) identified the classification of “Full Spectrum Integrated” (FSI) 

as the type of ACO most aligned with early thinking in regard to an ACO model 

achieving health care’s “Triple Aim.” Characterized by their proven adoption of HIT, 

robust financing, interaction with insurers on risked based agreements, and higher 

participation of academic medical centers, the authors anticipated FSI ACOs actively 

engaging with software vendors. Muhlestein et al. identified opportunities and challenges 

specific to the FSI ACO type suggesting a greater need for software tools spanning all 

care venues with advanced measurement tools tracking provider behavior specific to their 

use of costly interventions.  

Achieving MU of EHRs 

Because the procurement of EHRs in isolation does not equate to better patient 

outcomes, CMS established goals at each stage of the MU program aimed at aligning 

EHR use with activities associated with better patient care (CMS, 2014). The 

government’s MU program specifically addresses physician use of CDS in the EHR and 

reportable quality measures as key ingredients supporting a shift from fee-based care to 
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value (CMS, 2014). Each successive stage of the MU program expands the requirements 

that patient centric care aligns with the best medical evidence (Krist et al., 2014).  

Harle, Huerta, Ford, Diana, and Menachemi (2013) examined the differences 

among U.S. hospitals attesting to Stage 1 MU while managing ongoing EHR 

implementation challenges. Cross-referencing survey data from the American Hospital 

Association’s (AHA) 2010 annual EHR survey with a 2011 CMS database, they 

identified 313 of 2475 hospitals sampled received MU payments. 2,162 surveyed 

hospitals intending to obtain MU payments in 2011 failed to accomplish that objective. 

Harle et al. (2013) identified implementation of CPOE as vital in determining a hospital’s 

success in receiving MU payments. The authors’ recommended EHR vendors work in 

tandem with the government addressing factors impeding CPOE adoption. With MU 

Stage 2 criteria requiring physician demonstration of quality improvements, the authors 

concluded that incentives alone fall short in achieving the program’s goals. 

Riskin, Koppel, and Riskin (2014) argued the focus on EHR and software design 

must shift to usability as physicians and health systems align efforts toward achievement 

of improved population health outcomes. Harle et al. (2013) further noted the importance 

for consideration of cultural and technological factors related to EHR use. The authors 

expressed concern for a widening gap between for-profit and academic medical centers 

that successfully implemented EHR systems and the nonprofit and smaller hospitals that 

failed to implement successfully. Leaving smaller or rural hospitals behind undermines 

the overarching goal for improving the quality and safety of care for all patients. 
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Application of Sociotechnical Theory  

Considering the seminal work of Trist and Barnforth (1951) particular to 

sociotechnical theory, Westbrook et al. (2007) recognized the applicability of 

sociotechnical theory to the successful design and implementation of HIT systems. 

Specifically, improvements in care quality and safety anticipated with the implementation 

of new software tools concurrently disrupted software end-users’ complex clinical 

workflows. Carayon et al. (2014) expanded work system definitions to include aspects of 

safety and quality including outcomes. Software tools lacking appropriate sociotechnical 

considerations impedes adoption thus falling short of solving health care’s “wicked” 

problems of improving the safety and efficiency of care (Westbrook et al., 2007). Horsky 

et al. (2012) described the risks of poorly designed software tools contributing to 

inappropriate care stemming from undocumented patient problems, incomplete 

medication reconciliation, adverse events associated with incorrect medication dosages, 

and poor response by providers to alerts. 

Cresswell and Sheikh (2013) extended the HIT implementation framework 

research of Rippen, Pan, Russell, Byrne, and Swift, (2013) targeting analysis of 

organizational challenges with the adoption of new HIT solutions. The authors identified 

several factors supporting or diminishing success during the uptake of new HIT solutions. 

Cresswell and Sheikh characterized success factors along three dimensions including (a) 

technical characteristics, (b) social aspects, and (c) organizational factors. Their 

application of sociotechnical theory included references to several previous studies in 

Canada and the U.S. specific to EHR adoption and the incorporation of CDS software 
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tools. Specifically, the authors substantiated use of a sociotechnical framework based on 

previously published studies by Ludwick and Doucette (2009), Ash et al. (2007), Berg 

(1999), and Harrison, Koppel, and Bar-Lev (2009). The authors further discussed a 

concept that adopting HIT innovations remained complex by virtue of needing to connect 

human needs with technology in a state of constant evolution.  

Meeks et al. (2014) analyzed longitudinal case study data obtained from 

interviews of stakeholders participating in the United Kingdom’s disbanded National 

Health Service (NHS) Program for IT (NPfIT). The authors identified important 

sociotechnical aspects of EHR deployment increasing risks for patient safety. Concluding 

that risks change as organizations moved through the process of EHR implementation, 

the earliest risks equated to getting systems up and running. Later risks equated to the 

sustained use, and reliance of the data entered and maintained within an EHR. The 

authors applied two different models in assessing risk and patient safety. Among the 

models applied, the authors leveraged Sittig and Singh’s (2010) framework also 

referenced by Overby et al. (2013). The incorporation of Sittig and Singh’s framework 

highlighted the value of capturing clinical software user needs for improved, shared, CDS 

tools (Meeks et al., 2014; Murphy, Singh, & Berlin, 2014). 

Similar to challenges identified by Constantinides (2013), rigid adherence to 

hierarchically derived solutions contributed to England’s failed national HIT program. 

Overby et al. (2013) participated in a collaborative effort, the eMERGE network, 

facilitating an understanding of how to best incorporate CDS solutions across different 

EHRs in applications of genomic medicine. The recommendation of Overby et al. 
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included the requirement for organizations to have access to tools to adapt solutions 

locally. In addition, the eMERGE consortium suggested deployment of toolkits 

supporting customization by local users of new CDS tools. Overby et al. (2013) 

recommended new CDS solutions include tools for rapid summarization of patient data, 

automated settings to facilitate data queries by user and patient circumstances, and 

incorporation of more than one diagnosis or condition.  

Research conducted by Smith et al. (2013) focused on software user satisfaction 

and new CDS tools for tracking undocumented test results arising from abnormal values. 

With an effort toward aligning software development with the sociotechnical needs of 

HIT users, Smith et al. developed CDS concepts for assessment within the VA’s EHR 

test environment. Two new tools addressed the test reporting needs of physicians and 

stakeholders managing four types of cancer patients. Recognizing busy physicians might 

miss an initial alert, the new CDS tool generated contextual and specific reminders for 

physicians to review abnormal test results. The new software concept met users’ needs 

for additional reminders without negatively affecting clinical workflow practices. The 

authors noted initial reports of abnormal test results frequently remained unrecognized 

within the context of a busy health care practice. Missed test results increase the risk for 

patient harm when clinical care proceeds as directed by providers unaware of significant, 

new clinical findings (Smith et al., 2013).  

The alerts provided to physicians using the VA’s EHR remained in an inbox 

location until such time as a physician opted to click open and review each alert (Smith et 

al., 2013). Once reviewed, the alert dropped from the physician’s view requiring 
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physicians to remember all alerts previously read. Overcoming issues of alert fatigue and 

dependencies on the physician’s memory, the CDS prototype designers considered three 

sociotechnical requirements including (a) “software usability,” (b) “technical 

compatibility,” and (c) “fit with the clinical workflow and organization.” A novel aspect 

of the new CDS tool included development of a dashboard supporting quick analysis of 

patients for whom abnormal test findings remained undocumented (Smith et al., 2013).  

The application of a sociotechnical framework to software development and 

assessment continues to surface in HIT-related research efforts. Rippen, Pan, Russell, 

Byrne, and Swift (2013) assessed the field of HIT for associated theories underpinning 

aspects of software tool deployment and use. Rippen et al. (2013) characterized HIT 

implementation through the aid of a new framework incorporating components of leading 

theories specific to software user activities and needs. Recognizing that HIT 

implementations remain a complex organizational undertaking, the authors suggested 

their framework provided organizations with an improved roadmap for successful HIT 

implementations. Rippen et al. applied sociotechnical theory as well as other technology 

use related theories such as multi-method, task-technology fit, and technology 

acceptance. In consideration of the suitability of sociotechnical theory to their new 

framework, the authors cited the seminal work by Passmore (1995) and the related 

research conducted by Westbrook et al. (2007). 

Specifically, Westbrook et al. (2007) surveyed medical staff utilizing the Safety 

Attitudes Questionnaire (SAQ), a validated instrument measuring an organization’s 

safety culture. The authors identified prior use of the SAQ by Colla, Bracken, Kenney, 
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and Weeks (2005) associating measures of safety climate with both patient outcome 

measures and the capture of medical errors. The authors’ findings further support the 

application of a sociotechnical framework in the development of CDS tools for the 

reduction of medical error.  

It was Pasmore (1988) who noted “huge investments in new technologies may not 

result in the cost savings expected, particularly if the new technology proves too 

complex, unreliable, inflexible, or costly to operate” (p. 92). Pasmore’s (1988) 

application of sociotechnical theory resonates with health researchers and software 

developers facing the challenges associated with the design and use of HIT by clinical 

software end-users. Pasmore (1988) concluded “to the extent that technology influences 

the design of work, we need to influence the design of technology in order to affect the 

performance of organizations” (p. 152). 

Rival Theories 

Sociotechnical theory guides the research effort. The extant literature supports the 

application of sociotechnical theory in physician assessment of CDS tools presented in 

the medication ordering workflow (Jung et al., 2013; Rippen et al., 2013; Smith et al., 

2013). Other theories such as Complex Adaptive Systems (CAS) theory, Systems theory, 

or software usability related constructs such as the Technology Acceptance and Task 

Technology Fit models remain applicable to this type of research.  

Complex adaptive systems. Leykum, Kumar, and Parchmann (2012) examined 

the relationships among physicians engaged in patient care in an acute hospital setting to 

identify how their interactions affected care. Following a period of observation, a 
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simulation model was derived to assess patterns of decision-making affecting patient 

outcomes. The authors drew from models of complex adaptive systems (CAS) to 

consider the interplay of communication on the behavior of physicians and their 

subsequent patient facing activities. The authors contended that the use of a CAS model 

enabled better recognition of how physicians interpreted information and reacted to 

evolving and frequently incomplete data. Two key findings included the importance of 

incorporating other team members in discussions related to patient care decisions and 

expanding the care team’s access to a larger number of data sources. Their findings 

pointed toward team based CDS tools supporting a system-based approach toward 

improving patient care.  

System of systems. Vockley (2013), a leading HIT consultant, explained the lack 

of interoperability of HIT systems in the context of a Systems of Systems (SoS) theory. 

Describing the current state of EHRs, Vockley identified that recent adopters failed to 

recognize the lack of bi-directional integration with devices limiting the usefulness of the 

EHR in optimizing patient care. Hospitals deployed numerous systems necessitating 

constant vigilance and inspection across each unique device or piece of equipment. Until 

vendors considered systems based design methodology, HIT users must contend with 

workflow interruptions and data gaps resulting in the risk for patient harm.  

In addition, complexity arises from emerging requirements to link patient data 

across many venues of care. As HIT evolves to address SoS needs, Vockley suggested 

system developers address needs for connecting people to systems holistically or in a 

sociotechnical consistent fashion. Vockley based his observations from survey results of 
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American medical informaticists’ greatest concerns with EHRs including the lack of 

interoperability and connectivity of devices and data. 

Work-arounds and systems thinking. Novak, Holden, Anders, Hong, and Karsh 

(2013) conducted a qualitative study assessing nursing interaction with adoption of 

EHRs. The authors identified implications specific to conflicts in automated workflow 

compared to preferred clinical workflow and the workarounds such conflicts necessitated. 

Additional researchers such as Smith and Koppel (2014) similarly focused their research 

on clinical users identifying workarounds as potential flaws in EHR design. Smith and 

Koppel questioned the feasibility of adding back into the EHR some characteristics of 

paper-based communications. For instance, they suggested giving EHR users the ability 

to mark up a captured screen to express confusion, identify errors, or suggest design 

improvements. Novak et al. (2013) also sought to gain an understanding of workarounds 

as a means for informing improved system design. Use of a newly deployed medication 

bar code software system served as the basis for capturing workflow conflicts. In 

addition, Novak et al. captured the adaptations created by the nursing staff users of the 

new system. The authors identified that system developers designed step-wise processes 

based on the expectation of a linear clinical workflow that failed to replicate the way 

nurses performed medication administration tasks.  

Novak et al. (2013) found systems designed solely on specific role requirements, 

without an appreciation of systems or a team-based approach to holistic and patient-

centered care, generated substantial task tension. Intentional workarounds by a single 

group of users, such as nurses, introduced risk to patients even though users deviated 
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from designed protocols over concern for doing the right things. These findings by Novak 

et al. remain compelling in light of the increasing needs for cross-functional care teams 

coordinating patient care in the ACO model.  

User and role specified design. Calman, Hauser, Lurio, Wu, and Pichardo (2012) 

identified the growing importance of EHRs for supporting improvements in the care of 

chronically ill patients. The authors described the experiences of a New York health 

information exchange system shared by the city of New York’s Department of Public 

Health and Mental Hygiene (NYC DOHMH) and the Institute for Family Health. Calman 

et al. (2012) stressed the importance of well-designed alerts prompting both better 

clinical decision- making and improved sharing of patient data across a variety of care 

venues. 

Lanham et al. (2014) conducted a novel, qualitative study exploring ambulatory 

physician perceptions for management of clinical uncertainty while interacting with an 

EHR. The authors categorized physicians by level of EHR engagement suggested to 

reflect each physician’s comfort level with managing patient risk and uncertainty. 

Recognizing that physicians managed their uncertainty differently generated implications 

for how physicians might engage with an EHR. Previous research conducted by Lanham 

et al. focused on EHR engagement by provider groups rather than focusing on individual 

physician behavior. The authors developed two categories of uncertainty reflective of 

physicians “absorbing” uncertainty or “reducing” uncertainty. Reductionists sought more 

data such as querying test results to make better-informed decisions with the goal of 

reducing clinical uncertainty and risk. Absorbers dealt with clinical issues for which no 
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immediate data exists requiring greater risk acceptance. Absorbers relied on greater and 

extended communication with patients and other stakeholders to manage clinical 

uncertainty and risk (Lanham et al., 2014).  

The authors observed three contrasting profiles where some physicians relied 

extensively on EHR data for managing uncertainty, some physicians relied more on team 

and patient communication, and some physicians exhibited a combination of both 

absorption and reduction behaviors. The heaviest EHR users exhibited the reductionist 

profile while the least engaged physicians exhibited characteristics of uncertainty 

absorption. The findings from Lanham et al. add implications for software developers 

designing CDS tools for physicians engaged in complex patient care such as ACOs. 

Whether physicians supporting ACO’s responsible for improvements in care safety, 

costs, and outcomes for defined patient populations view uncertainty as nonreducible 

remains unknown. Their findings suggested EHR use remained low among physicians 

with a style and outlook aligned with nonreducible uncertainty and absorption. For CDS 

software developers, the authors indicated use of improved team communication tools as 

essential for engaging this type of physician.  

Technology acceptance models. In regard to technology acceptance models 

focused on software usability, Horsky et al. (2012) identified a lack of usability as a 

primary barrier to the adoption of automated decision support in the EHR. Of all formats 

of CDS, alerts and reminders represented the most commonly used approach for 

triggering behavioral change in routine clinical practice. The authors emphasized that 

building trust with clinicians represented an emerging area of importance in CDS design 



29 
 

 

consideration. Providing clinical software users assurances that CDS tools arise from the 

best evidence and standard practice supported improved clinician trust and adoption. The 

authors further identified user access to software development tools as a key need. Thus, 

Horsky et al. proposed software developers support toolkits and apps ensuring better 

localization of CDS tools. These authors discovered that over-alerting physicians with 

nonessential data contributed to greater patient harm whereas alerts generated from 

patient-specific data reduced the potential for harm. 

Designed for usability. Similarly, Yen and Bakken (2012) emphasized the 

importance of usability testing occurring throughout a solution’s lifecycle. Repeated 

testing as a solution evolves over time captures the extent to which the system remains fit 

for former as well as anticipated uses. In their assessment of usability testing performed 

against CDS systems, the authors identified a gap in the previously published studies. 

The majority of researchers developing CDS solutions failed to incorporate a framework 

or theory incorporating the use of acceptance testing.  

Other researchers proposed development of additional decision support tools such 

as dashboards for reducing the complexity and improving the efficiency of clinical 

decision-making processes. Koopman et al. (2011) conducted a small usability study 

examining the experience of ambulatory providers interacting with their EHRs while 

searching for specific data on fictitious diabetic patients. Physicians were observed using 

customary methods for querying records. Subsequently, the physicians were provided 

with a unique dashboard as an interface for compiling patient specific data and observed 

throughout their use of the new tool. Use of the dashboard tool enabled the physicians to 
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identify all relevant patient data whereas customary search approaches reduced the 

accuracy in the identification of relevant data by 6%. The dashboard saved physicians 

several minutes representing efficiency gains and possibly safety improvements. 

Physicians admitted that when faced with long searches they defaulted to ordering items 

previously ordered. Duplicative ordering increased costs and subjected patients to 

potential harm. The research by Koopman et al. suggested improving CDS tools supports 

reductions in cost and medical errors. These researchers elicited a recommendation from 

physician software users for the use of rules in the dashboard requiring real-time 

responses by physicians during clinical practice. Likewise, Wanderer, Mishra, and 

Ehrenfeld (2014) anticipated addressing the current limitations of EHRs and creating 

opportunities for reducing costly medical errors arises through the proliferation of new 

and improved software solutions. 

Summary. Across multiple theoretical approaches, researchers identified similar 

concerns specific to EHR clinical workflow and the need for improved decision support 

tools. Designing better software tools requires collaboration on the part of system users 

and developers. The findings from the proposed research may inform software tool 

improvements supporting physicians’ use of EHRs in the setting of an ACO. 

Discussion of the Independent Variables 

The two independent variables selected for inclusion in the research consist of (a) 

the type of CDS tool deployed in the EHR; namely, pop-up alerts, and the timing for 

displaying an alert in a physician’s ordering workflow. Rudin, a researcher with Rand 

Corporation, focused his research in areas of both HIT use and ACOs. Bates, a Professor 
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of Medicine at Harvard and Chief Quality Officer at Brigham and Women’s Hospital in 

Boston is a leading authority on patient safety and use of evidence-based CDS tools for 

prevention of medical errors. A model proposed by Rudin and Bates (2013) proposed 

four elements technology vendors address through the development of new software 

tools: (a) identification of all providers and care givers responsible for a specific patient’s 

care, (b) supporting seamless communication across the entire care team, (c) enabling all 

team members to share and create notes, adding to a patient’s record, messaging others, 

and (d) enabling the constant tracking of a patient’s status using proactive alerts. The 

development of such tools may overcome the hurdles care teams face due to the lack of 

interoperability of the current EHRs deployed. Yet, there is little research on desired CDS 

tools or how to develop them.  

Aggeliddis and Chatzoglou (2012) demonstrated a construct for information 

quality or “content” presented to HIT end-users comprised of three components including 

the precision or “accuracy” of the information provided, the structure or “format”, and 

the “timeliness” of information. These components supported improved HIT end-user 

acceptance. As ACO’s coordinate care of chronically ill patients, the lack of 

interoperability and the siloed nature of EHRs remains a known contributor to patient 

harm. Rudin and Bates (2013) identified a need for software vendors to address the 

limitations of current EHRs through the design of improved CDS tools. The selection of 

the variables as characterized in this proposal may lend new insights into the design of 

enhanced CDS tools upon analysis of the final data. 
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Independent Variable A: Type of CDS Tool 

Utilizing a definition previously articulated by the U.S. government’s department 

for HIT, Karnik (2014) shared, “CDS software is loosely defined as any application that 

analyzes data to help health care providers make clinical decisions. CDS software is 

meant to enhance health outcomes by providing clinicians and patients with 

individualized application of medical knowledge, provided by an intelligently organized 

and filtering data processor.” Types of CDS software applications include a variety of 

clinical workflow compatible tools such as the use of pop-up reminders triggered as 

physicians enter new patient orders and recommendations for specific care based on a 

potential diagnosis or problem (Karnik, 2014). The proposed CDS tool type consists of 

an alert that pops up in the physician’s ordering screen during computerized order entry 

(CPOE).  

Previous research assessing the affect of CDS use within EHRs on physician 

ordering demonstrated mixed results (McCullough, Zimmerman, Rodriguez, Bell, & 

Torrens, 2014). Some researchers found favorable physician responses when CDS tools 

triggered based on contextualized or specific patient data. For instance, the testing of new 

alerts and the use of an integrated dashboard uncovered areas for improving the 

specification for user action within the EHR (Smith et al., 2013). Pop-up prompting 

enabling physicians to address a patient order related to abnormal test results achieved 

high favorability by the evaluators. Smith et al. found that software testers reinforced 

their sociotechnical needs for automated, workflow compatible, and highly patient-

contextualized CDS.  
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Other researchers such as Peikari et al. (2013) assessed the relationship of the 

quality of information provided to physicians during CPOE and physician medical related 

errors. The authors summarized that the intensity of information required by physicians 

for effective decision-making necessitates further consideration in how to deliver high-

quality information that meets the needs of physicians working in an electronic ordering 

environment. Additional researchers such as Spaulding and Raghu (2013) examined 

medication management within CPOE and noted a limited effect on the cost and quality 

of care. The authors suggested a limitation of their study pertained to the short experience 

of CPOE at the time of their research. The authors anticipated improvements arising with 

the optimization of software addressing physician workflow requirements. These findings 

lend additional support as highlighted by other researchers concerned with the 

sociotechnical considerations for the evaluation of CDS tools (Koopman et al., 2011; 

McCullough et al., 2014; Smith et al., 2013).  

A common type of CDS includes the application of clinical logic displayed as an 

alert or decision-making rule. Bell et al. (2014) developed and tested clinical algorithms 

or rules as a form of CDS meant to provide active guidance to physicians prescribing 

medications within EHRs. In the absence of active or automated CDS, providers missed 

critical patient data. Bell et al. reinforced current views that new data evolves faster than 

clinicians can assimilate such information in daily practice. Thus, the risk for missing 

critical information within a patient’s record increases. The authors tested active CDS at 

St. Jude’s Children’s Research Hospital in a single vendor’s EHR system deployed for 
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use across multiple care venues. The authors found the use of active CDS changed 

prescribing behavior of physicians in all but 5% of assessed cases. 

Software applications of a specific CDS type such as a medication pop-up alert 

includes consideration for how physicians perceive the tool. McCoy et al. (2012) 

evaluated CDS alerts in EHRs from the provider’s perspective. Better incorporation of 

user feedback supported improvements in alert design. The authors developed a 

framework for assessing the quality of alerts triggered in an EHR at Vanderbilt 

University Hospital. In their validation study, the authors hoped to address a shortcoming 

from a prior assessment of a CDS tool for managing patients with kidney disease. Prior 

evaluation of another CDS tool identified physicians ignored nearly 80% of the alerts 

fired. However, the prior assessment lacked the context for the patient’s treatment 

preventing an understanding of whether the physician’s actions were appropriate.  

Provider or physician use of CDS such as automated allergy checks and other 

types of medication alerts potentially reduces medical error (McCullough et al., 2014; 

Peikari et al., 2013; Shaikh, Berrong, Nettiksimmons, & Byrd, 2014). Although previous 

studies documented reduction in medical errors through use of CPOE in the EHR, 

mistakes occurred as organizations transitioned from paper to electronic systems (Pham 

et al., 2012). Engagement of nurses and patients in the medicine reconciliation process 

generated fewer errors than when physicians managed the process alone. According to 

Pham et al. (2012) physicians believed HIT use contributed to improved care through 

automated CDS tools; however, improved communication tools are necessary to support 

patients transitioning between care venues. The authors identified uses of CDS 
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supporting end-to-end care processes. Examples included incorporating surgical 

checklists beginning with (a) the patient encounter, (b) through the pre-operative 

preparation with the care team, (c) continuing through the surgical procedure, (d) and 

extending to the patient’s immediate post-operative care period. Other types of CDS such 

as checklists, order sets, and patient care plans remain excluded allowing greater focus on 

assessing a single type of CDS.  

Independent Variable B: Workflow Timing 

The timing of when physicians receive decision support in their workflow merits 

consideration. In a systematic review on the effectiveness of CDS, Kawamoto, Houlihan, 

Balas, and Lobach (2005) found physicians 112 times more likely to change their 

behavior when CDS was delivered automatically in their workflow. With a highly 

statistically significant correlation between a physician’s outcomes and the automatic 

provision of CDS (P < 0.00001), the authors recommended providing physicians with 

computerized workflow-integrated CDS. Thus, the clinical workflow period of ordering 

items for patients within a CPOE application of the EHR supports the selection of 

workflow timing as a variable for inclusion in the study of electronic pop-up alerts.  

Path (2013) identified current interoperability challenges of EHRs that prompted 

stakeholders to focus attention on hardware design. However, the barriers to 

interoperability include matters of care team communication and understanding of 

software users’ clinical routines. Challenges with interoperability occur when success is 

measured narrowly; for instance, by EHR vendors providing only point-to-point data 

transfers. Addressing the challenges of interoperability requires greater focus on 
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simplifying processes and ensuring users are knowledgeable and confident contributors to 

the system (Path, 2013).  

Utilizing expert reviewers, the framework proposed by McCoy et al. (2012) 

focused on two aspects of alerting including (a) consensus that each alert fired for the 

right reasons, and (b) agreement that a physician’s response to a specific alert aligned 

with best-medical practice. Evaluating the response by physicians required greater 

appreciation for each patient care episode especially in urgent care situations. Use of a 

comprehensive framework for assessing alert management highlighted how physician 

intention differs; for example, when physicians dismissed or signaled agreement with an 

alert without changing practice behavior. The authors indicated a need for robust 

treatment algorithms and more post-alert analytics. 

Bowman (2013) categorized several EHR error types including those related to 

the use of CDS. Summarizing known issues with “Alert Fatigue,” the author observed 

clinicians dismissed a majority of alerts for two reasons: (a) disturbances to workflow 

and (b) lack of applicable alerts for the most complex clinical encounters. Specific to 

reducing errors related to the use of CDS software, Bowman (2013) advised disclosing 

known issues, events, and complaints. The author supported recommendations by the 

Institutes of Medicine that developers include automated reporting and feedback 

functionality for users from within the EHR. 

Anderson et al. (2013) described assessment of a CDS tool designed for 

physicians interacting with patients at risk for a second stroke. The authors noted the 

importance of CDS tools derived from evidence and integrated with EHR use 
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incorporating algorithms for automating decision support upon specific patient 

identifiers. The first version of the tool assessed usability testing and an associated failure 

due to poor workflow attributes and poor accessibility by stroke patients. Their findings 

highlighted the ongoing need for workflow consistent, automated, and adaptive CDS 

tools. 

Dixon et al. (2013) conducted a pilot study assessing the utility of cloud-based 

CDS tools. Ambulatory clinicians gained access to the web portal enabling transmission 

of data queries. A SaaS model permitted access from multiple organizations and EHRs. 

Specialized software and coding enabled physician queries to return evidence based alerts 

derived from current patient data. The pilot study focused on the use of cloud-based CDS 

supporting the real-time care of cardiac and diabetic patients. Although limited to three 

ambulatory providers, their research finding provided insights for improving cloud based 

and community supported CDS tools. Dixon et al. identified how the initial placement of 

alerts in the clinical workflow hindered physician acceptance. The authors reinforced the 

importance of understanding clinical workflow when designing and integrating new CDS 

software functionality.  

Methodologies Supporting the Dependent Variable 

I selected perceived improvement in adherence to ACO reportable quality 

measures as the dependent variable. Specifically, CMS established a set of 33 quality 

measures as part of the ACO Shared Savings Program (Appendix B). Physicians and 

hospitals managing the care of Medicare patients realize a shared reward as they deliver 

health care at a lower cost while reporting on and demonstrating improved performance 
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with these measures (Barnes et al., 2014). Among the 33 quality measures, 12 measures 

pertain to the management of at-risk populations including patients with Diabetes, 

Hypertension, Ischemic Vascular Disease, Heart Failure, and Coronary Artery Disease 

(CMS, 2014). An additional measure defines the percentage of primary care physicians 

participating in an ACO achieving an MU incentive payment. CMS included this 

measure in anticipation that physicians meeting MU requirements deliver higher quality 

care (CMS, 2014).  

Many researchers assessing the effectiveness of CDS and specifically the use of 

alerts suggested a focus on alert design holds the promise of supporting improved 

adherence to performance measures. In their survey of 225 primary care physicians, 

Sittig, Krall, Dykstra, Russel and Chin (2006) concluded that physicians responded more 

favorably to CDS for older and sicker patients such as those with comorbid conditions. A 

key limitation to their study as noted by the authors further informed the selection of the 

variables for the proposed study. Sittig et al. (2006) concluded, “Whether clinical 

decision support should be, or can be, used to help clinicians reach specific clinical 

targets that correlate with specific financial incentives is still an unanswered question. In 

addition, we did not specifically ask questions about clinical workflow, user interface 

characteristics, or information content; issues that our previous work indicated were 

important user acceptance factors.”  

McCullough et al. (2014) suggested alerts contextualized with patient data and 

incorporating sociotechnical considerations of physician users holds great promise in 

reducing costs through better quality measure adherence. In their quantitative analysis, 
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the authors anticipated appropriate CDS use supporting the avoidance of one million 

unnecessary antibiotic prescriptions. In their conclusion, the authors recommended 

aligning CDS tools with quality initiatives.  

Agha (2014) conducted quantitative analysis utilizing three sources of publically 

available data including annual hospital survey data, the CMS claims database, and HIT 

industry data specific to U.S. hospital adoption of EHRs with CDS. Agha examined the 

extent to which adoption of EHRs over a time span of seven years affected the cost and 

quality of care. Use of regression analysis failed to demonstrate any significant 

relationship between the use of HIT and reductions in mortality at one year among 

hospitals adopting EHRs. Finding no meaningful relationships between cost and quality 

with adoption of EHRs, the author suggested physician incentives present at the time of 

the analysis possibly influenced the results. As health care reform encourages providers 

to shift their practices from fee-based models to value and outcomes-based models, the 

potential for EHRs to support cost and quality improvements increases (Agha, 2014). 

Notably, Agha identified the window of the research as a potential limitation. Based on 

data collected between 1998 and 2005, the EHRs deployed then possibly lacked the CDS 

tools needed for supporting better care delivery. In addition, the clinical users potentially 

lacked sufficient experience to extract optimal value from the EHRs. Agha suggested 

future research consider the affect of MU requirements and health care reform models on 

the use of HIT and effects on care quality. Recognizing that deployment of EHRs alone 

failed to improve patient outcomes, Agha suggested EHRs might evolve as organizations 
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and providers are held to new standards such as MU criteria necessitating the use of 

EHRs in demonstrating such improvements. 

Chokshi, Schectman, and Agawal (2013) discussed the Department of Veteran 

Affairs’ (VA’s) evolving experience toward patient-centric care. In terms of health care 

reform the growing need for care delivered beyond the walls of hospitals stimulated 

leaders at the VA to consider innovative care delivery platforms. Adoption of new 

platforms required development of team-based training programs, selection of patient-

centered metrics, and recognition of risk as a cultural value. The authors identified team 

communication as a likely challenge inherent in new care models such as ACO’s. As care 

focuses on the needs of population health management across different venues of care, 

the authors anticipated a greater reliance on software tools supporting team based care 

coordination and communication. Similarly, Dubois et al. (2014) while assessing ACO 

readiness survey respondents found several limitations ACOs had not adequately 

managed. The authors identified unfulfilled expectations for improved safety, care 

quality, and cost reductions. Noting many ACO clinical software users mostly relied on 

electronic prescriptions for purposes of managing generic drug substitutions, Dubois et 

al. found little evidence of improved physician prescribing decisions for reducing costly 

medical errors. Specifically, prevention of duplicate orders and dispensing medications at 

the right cost represented key challenges. The authors suggested current HIT systems 

failed to fulfill expectations for improved safety, care quality, and lower cost. Most 

ACO’s demonstrated high use of electronically managed prescriptions and an ability to 

drive generic substitutions. However, higher order software functionality in support of 
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better prescribing decisions and algorithms for reducing costly mistakes remain largely 

unrealized (Dubois et al., 2014).  

Confirming international experience. Several international researchers 

examined reasons existing CDS tools lacked complete adoption by physicians. Price, 

Singer, and Kim (2013) assessed the capabilities of EHRs in Canadian primary care 

practices against a framework that considered the current technology infrastructure. In 

their mixed methods study, the investigators analyzed survey responses by categorizing 

the use of electronic medical records (EMRs) into ten distinct categories. Three 

categories of EMRs identified as (a) CDS, (b) patient support, and (c) practice support, 

consistently ranked the lowest across all clinicians surveyed. Physicians were unlikely to 

use decision support features provided within the EMR for two reasons. Either the 

physician was unaware how to establish alerts and rules or the physician entered data as 

free text making such data ineligible for capture by the software. A key insight gleaned 

from the study included the physician’s perception of poor data quality as an obstacle to 

adopting advanced functionality of EMRs.  

Baysari, Reckmann, Day, and Westbrook (2012) assessed the frequency of CDS 

alerts used within an Australian EHR. The authors anticipated alerts fired due to a 

combination of poor functional design and physician lack of familiarity with approaches 

to prescribing electronically within an EHR. Concerned that poor design and physician 

usability concerns limited EHR adoption; the authors identified areas of improvement for 

software designers and teams responsible for EHR implementation. The authors found 

that EHR user failure to learn software commands resulted in less efficient ordering 



42 
 

 

practices and triggered unnecessary alerts. The authors recommended CDS software 

designers consider failure modes based on an improved understanding of user behavior 

and suboptimal use of high-level software features. The recommendations lend guidance 

for potentially avoiding design errors in the development of new CDS software tools. 

Other international researchers also examined the use of CDS alerts in EHRs. 

Jung et al. (2013) conducted a mixed method international survey of predominately 

European physician users and nonusers of CPOE. Physicians from 11 hospitals 

participated in the survey of which eight hospitals provided physicians with access to 

CPOE. More than 1,000 physicians participated in the survey. In general, the physicians 

were in agreement of the benefit of alerts specific to medication use requiring 

documentation in EHRs. Respondents identified fairly uniform interest in the ability to 

tailor alerts for improved specificity. Many physicians identified alert fatigue as a 

concern. The attitudes of the physicians from hospitals that provided more advanced 

mechanisms for setting alerts were more favorable. Physicians mostly agreed that alerts 

specific to endangering a patient due to a drug allergy or drug-drug interaction should 

take precedence with opportunities to filter out less relevant alerts. Specifically, 

physicians identified a need for an intelligent EHR system surfacing patient specific and 

clinically relevant alerts rather than generic medication warnings. Physicians also 

preferred alerts triggered within their clinical workflow rather than disrupting the pace of 

their routine clinical practice.  

Focusing on patient needs. Asch, Muller, and Volpp (2012) suggested 

computerized approaches to health care for better monitoring of patient behaviors. 
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Recognizing that prior health care models generated little interaction between caregivers 

and patients, the incorporation of HIT focused on patient needs resulted in better 

prescription adherence and measurable improvements in care. Depending on the severity 

of illness, the authors anticipated computerized patient interactions and caregiver follow 

up potentially reduces health care costs through reductions in unnecessary emergency 

room visits and avoided re-hospitalizations. Asch et al. recommended developing 

software applications automating engagement for those patients requiring constant 

monitoring for conditions such as chronic heart failure, cardiovascular disease, and 

diabetes.  

Hackl et al. (2013) reported on a novel development of an adverse drug event 

(ADE) scorecard facilitating retrospective review and discussion across health care 

providers within a department or hospital unit. Based on a historical analysis of actual 

ADE’s in each test department, scorecards incorporated a customized algorithm for the 

identification of potential events. The authors noted that integrated decision support tools 

prompted only the ordering physician without elevating the risk of an event to other 

stakeholders. Using a field-based experiment conducted over one year, Hackl et al. 

identified positive use cases for the scorecards confirmed by post use interviews with no 

correlation found in the actual rates of adverse events post implementation. The authors 

considered that the retrospective use of the tool versus active decision support in the 

workflow of the team might have been a limiting factor. However, the majority of the 

users were favorable toward a team based alerting mechanism creating the possibility for 

further design improvements of active CDS tools. They recommended a collaborative or 
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team based approach in reducing the risk of medical errors similar to the potential CDS 

tool needs of ACO providers. 

Grace et al. (2013) explored the use of CDS systems in the care of patients with 

multiple, chronic conditions. Using a qualitative approach, the authors focused on general 

practitioners in Ireland facing health reform efforts pertaining to population health 

management. The authors considered a key challenge of managing chronic care in 

primary care practice as the volume of patient visits increased the volume of patient data 

managed and shared. Grace et al. relied on the Sensibility Framework, previously 

validated in other CDS assessment research. Their findings identified that EHR systems 

used in a community captured better patient data from each visit but restricted a 

physician’s ability to synthesize data and make informed clinical decisions when dealing 

with complex patients. One of the key limitations noted by the authors was a lack of 

accessible evidence-based practice guidelines in the EHR necessitating external web 

searches by the clinicians to resolve their clinical questions. The limitation of existing 

CDS within ambulatory EHRs raised the question of whether developing specialized 

CDS tools for chronic disease management should include real-time access to evidence- 

based guidelines. 

Overcoming Current EHR Limitations  

Timbie, Damberg, Schneider, and Bell (2012) identified the current challenges 

faced by hospital specialists interacting with existing CDS deployed in EHRs. The 

authors recognized limitations specific to the access of patient data in the EHR clinical 

workflow. Ideally, clinicians connect recorded patient data with clinical insight supported 
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by decision tools driven from current evidence. Developers of CDS tools frequently 

lacked clinical insights arising from their limited clinical domain experience. 

Recognizing the need for improved CDS tools, Timbie et al. (2012) developed a new 

process to capture CDS requirements. The authors identified early involvement with 

clinical specialists as an essential element in developing improved CDS tools. The 

authors suggested that CDS objectives identified by clinical specialty better-informed 

new solutions and encouraged greater participation of specialists in product development 

activities. Timbie et al. suggested software developers consistently embed clinicians in 

new software application design initiatives. 

Cloud based and open source platforms. Slavov et al. (2013) shared their recent 

experience using the Health Level 7 (HL7) version 3 standard to perform data queries 

across disparate EHRs. Recognizing the issue of closed EHRs limiting longitudinal 

access to clinical and patient data, the researchers focused their efforts on querying data 

irrespective of location. The authors selected the field of cancer given the complexity 

involved in assimilating voluminous data in a constantly evolving field. A cloud-based 

environment became the common portal for linking several hundred physicians 

throughout various testing phases. Other researchers such as Atkins & Cullen (2013) 

considered the future affect of web or cloud-based solutions. Incorporating open source 

software, Slavov et al. successfully demonstrated the ability for physicians to run clinical 

queries and assemble data without extracting or sending patient files from a secure 

environment such as an EHR. Recognizing the challenges of obtaining longitudinal 
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patient and clinical data, Slavov et al. developed a novel software routine incorporating 

the use of the new standard and open source software. 

Exploration of cloud-based options for CDS software delivery continued with 

research performed by Goldberg et al. (2014). The researchers developed evidence-based 

CDS tools for deployment at Partners HealthCare System. Partners, affiliated with 

Harvard, participated in research specific to the needs of integrated health systems and 

managed care models. Among the first organizations establishing an ACO in the CMS 

pioneer program, the authors contributed to a consortium of experts focused on 

developing CDS solutions for widespread use in health care systems. The output of their 

effort was the creation of ECRS; an enterprise-based approach to clinical rules 

dissemination built on concepts of service-oriented architecture (SOA). Designed as a 

web-based offering, Goldberg et al. considered the modular nature of their approach and 

the web-based design as key drivers for the scalability and the adoption of CDS tools 

across health care organizations.  

Integration of primary care practices. Audet, Squires, and Doty (2014) 

conducted quantitative, regression analysis assessing HIT use in association with factors 

such as physician practice size, integration with hospital systems, and the use of 

government stimulus funding. The authors noted nearly 75% of physician practices 

adopted HIT. Comparing available primary care survey data prior to HIT stimulus 

funding in 2009 and since 2012, the authors anticipated identifying new insights related 

to the growing use of HIT by primary care physicians. Among the areas of interest 

assessed by the authors included HIT enabled ordering software for physicians and CDS.  
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By 2012, nearly two thirds of physicians utilized electronic order entry. The use 

of CDS also improved as 20% more primary care physicians reported using CDS tools 

such as evidence-based reminders concerning selection of patient tests or medications. A 

noted limitation across primary care physicians concerned the inability to create patient-

specific reports. Only 1/3 of physicians surveyed relied on HIT systems for exchanging 

patient-specific data across care venues and among other care providers (Audet, Squires, 

& Doty, 2014). 

Linder, Schnipper, and Middleton (2012) retrospectively quantified the quality of 

care patients received by auditing a subset of quality measures documented within 

primary care EHRs. The authors noted limited initial use of CDS with a trend 

demonstrating improvements in care quality through more active CDS use. The study 

upheld previous research findings that merely owning an EHR failed to improve care 

quality. Improving patient care remained dependent upon how the clinician interacted 

with the EHR and the extent to which CDS tools integrated with clinical workflow habits. 

The authors touched on the importance of a common EHR platform, physician training, 

and standardized documentation templates supporting improved HIT adoption.  

Adoption of HIT tools remains highest for those physicians practicing within an 

integrated care delivery network or health system. According to Audet et al. (2014), the 

difference among physicians’ HIT usage widened in comparison between small practices 

and large physician groups. Larger physician practices utilized advanced HIT 

functionality nearly four times as often as solo practices. They identified opportunities for 
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improving adoption of CDS tools suggesting the need for advanced software enabling 

patient-specific reporting and sharing of data. 

VA researchers Maciejewski et al. (2013) examined the quality of care diabetic 

U.S. veterans received when managed by sole or multiple health care providers. The 

authors compared the adherence to evidence-based guidelines as veterans sought care 

either within the VA system or externally to the VA system. Their research focus added 

significant context specific to the continuity of care for patients with chronic conditions 

moving from single provider settings to ACO’s. Both under-testing and over-testing 

occurred more frequently outside the VA health care system. The authors’ surmised 

access to a common EHR in the VA health care system resulted in patients receiving care 

aligned with evidence-based guidelines. The use of a common software system 

potentially enhanced care quality through the provision of better visibility to the totality 

of the care patients received. 

Denham et al. (2013) conducted a national survey polling HIT and clinical leaders 

in regard to their concerns for safety with the use of EHR applications such as CPOE. 

The misuse of HIT ranked among the highest concerns by those surveyed. Specifically, 

close to 90% of those surveyed expressed the greatest concern for improperly paired or 

“mismatched” data entered into the EHR system and shared by care team members. Use 

of a simulation tool identified significant medication-related errors, possibly life 

threatening and likely undetected during routine use of the system. In addition, use of the 

same system at different hospitals yielded different simulation results suggesting 

unacceptably high levels of variability.  
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The researchers recommended the routine use of simulation tools post EHR 

deployment and specifically identified a scalable, EHR modified “flight simulator” tool 

as applicable for these assessments. According to the authors, every adverse patient event 

costs a community hospital roughly $4,000. Recognizing that nearly half of all large 

community hospitals installed EHRs with CPOE capability, the authors highlighted the 

need for further focus on post-EHR implementation safety assessments. Denham et al. 

(2013) advised software developers to actively address the known limitations of CDS 

through improvements in CPOE applications and care team collaboration. 

Patient centric care. Liebovitz (2013) outlined several clinical decision-making 

examples for leveraging the EHR system for improved patient care. Noting how EHRs 

simply substituted a patient’s paper chart for an electronic chart, Liebovitz (2013) 

identified the lack of an integrated patient view in the EHR results in the same issues 

encountered when managing patients on paper. In addition, the need for patient 

medications to be reconciled on admission and discharge remained hampered by systems 

that failed to incorporate the patient’s complete medication history. For example, the ICU 

patient that is at risk for an acquired hospital infection is rarely escalated for proactive 

prevention as a result of the EHR system lacking sufficient support for complex decision 

routines. Liebovitz (2013) and Atkins & Cullen (2013) anticipated EHRs evolving to 

support a more patient-centric model of care requiring new tools and dashboards for 

facilitating transparent and shared decision making. 

Elshaug, McWilliams, and Landon (2013) expressed support for the evidence- 

based identification of tests, procedures, and medications expressed as “don’t do” CDS 
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for use by health care providers committed to safely eliminating waste in health care. As 

the development of “don’t do” lists supported by medical societies commences, the 

authors identified challenges in the scaling of such lists in routine clinical practice. 

Without patient contextual information readily available during patient encounters, a 

service initially deemed medically unnecessary becomes relevant and clinical necessary 

when unique patient characteristics become known.  

The authors noted that current payment models rewarded physicians for extending 

services across different patient populations irrespective of the evidence for the use of 

those interventions. Incomplete or missing patient documentation resulted in missed 

opportunities for identifying the relevancy of a prescribed intervention. Eliminating 

payment for list-based items misses the mark given the need to contextualize 

circumstances for each patient. Elshaug et al. (2013) proposed the right solution requires 

the design and development of new, point of care CDS tools. The authors suggested the 

development of CDS tools supporting the reduction in unnecessary medical interventions 

in alignment with the goals of health care reform. 

Similarly, Berwick and Hackbarth (2012) identified several categories of waste 

accounting for as much as 20% of current health care costs. Among the six segments of 

waste defined by the authors, improvements in HIT software potentially addresses waste 

stemming from inappropriately ordered care along with poorly coordinated and executed 

patient care. The segment of inappropriate care included items such as the over utilization 

of antibiotic medications. Overzealous treatment including unnecessary surgeries in 

patients with end-stage conditions accounted for more than $200 million in costs. 



51 
 

 

Berwick and Hackbarth recommended the continuation of medical society identification 

of unnecessary tests. The authors advocated the development of new tools and 

practitioner education aimed at steering current clinical practice away from wasteful 

prescribing behaviors. The authors described how a poorly designed U.S. health care 

system reinforced excess and inappropriate use of medical intervention.  

Berwick and Hackbarth (2012) recognized that new technology alone fails to 

reduce costs when delivered in the absence of broader organizational and system change. 

Recognizing that elimination of all waste advocated disruption to a health care system 

designed on the basis of occupying hospital beds to capacity, the authors suggested 

tackling a fraction of waste and thereby reaping meaningful benefits for patients and 

taxpayers. The authors highlighted unmet opportunities where the application of CDS 

tools combined with a focused effort by clinical practitioners potentially yields the 

greatest opportunity for reducing costs and enhancing patient care.  

The need for interoperability and standards. Marsolo (2012) discussed the 

challenges related to implementation and use of current EHRs. Specifically, the author 

called out the lack of interoperability of EHRs with other clinical applications. The lack 

of integration with hospital activities such as clinical research limited the utility of the 

EHR reinforcing the need for multiple data storage locations. The author cited statistics 

that four of every ten patients in the U.S. have a medical record in Epic. The proprietary 

and closed systems provided by Epic and Cerner dominated the U.S. market. Rather than 

patient data becoming widely accessible through a higher number of applications and 
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programs, the vendors limited incorporation of outside tools further restricting the 

longitudinal view of each patient’s record.  

The author participated in two research initiatives that faced substantive 

limitations as a result of the lack of interoperability across EHR systems. Data collected 

in population research studies could not be imported or extracted from the EHR system. 

Although Epic agreed to develop a data collection form to support the research initiative, 

the other vendors did not collaborate forcing participating hospitals to either abandon the 

research or develop expensive stand-alone solutions. Marsolo (2012) recommended 

greater collaboration between the informatics community and the EHR vendors coupled 

with an Apple-like environment for software developers to share applications in support 

of robust data sharing. 

Researchers such as Rea et al. (2012) and Kuperman (2011) discussed design 

limitations of current EHRs preventing seamless data exchange. These authors identified 

the need for improved software tools, standards, and platforms. Rea et al. (2012) 

described a HIT research project sponsored by the Office of the National Coordinator 

(ONC). ONC’s Strategic Health IT Advanced Research Projects (SHARP) Program 

funded several projects supporting the adoption of HIT. In the specific research project 

described by the authors, both structured and unstructured data from 10,000 patient 

records were transmitted to a specially designed open source platform supporting data 

retrieval from two large U.S. health care systems, the Mayo Clinic and Intermountain 

Healthcare. The researchers planned to access and analyze patient data from multiple 

locations with expectations for improving the management of chronic diseases across 
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large patient populations. While the project demonstrated some success with respect to 

normalizing data, the authors noted several challenges. A lack of standardized 

terminology represented a significant challenge in supporting large-scale population 

health management approaches (Rea et al., 2012).  

In contrast to these approaches, Yasnoff, Sweeney, and Shortliffe (2013) 

countered the solution to interoperability extends beyond addressing the known 

limitations of EHRs. The authors advocated enhancements to health information 

exchange through the adoption of a national patient record bank. The authors contended 

that achieving a scalable approach to managing population health requires the 

collaboration of all stakeholders toward realistic goals.  

Summary. Numerous authors highlighted the need for collaboration across the 

health care industry and government in addressing known EHR limitations. Voicing a 

commonly expressed opinion, Kellermann and Jones (2013) identified a lack of standards 

as a primary contributor to the lack of interoperability of EHR systems. Expressing the 

concern of many in regard to the billions invested in HIT, the authors reinforced the 

importance of a patient centric health care model supported with appropriate payment 

models. Kellermann & Jones called for the active participation of vendors and health care 

providers in redesigning care processes for the optimal use of health care information 

technology.  

Similarly, Kuperman (2011) reviewed the history of interoperability issues in 

patient data exchange with current HIT solutions identifying requirements for 

interoperable data exchange. Describing another ONC sponsored program, Kuperman 
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identified the goals of the Direct Program as identification of challenges in the electronic 

exchange of patient data and potential solutions. Participants of the Direct program and 

the ONC anticipated EHR and software vendors aligning product development efforts 

with the use cases the program identified. The authors concluded a need for greater 

collaboration across industry stakeholders with more focused research and development 

effort. 

Future CDS Research Opportunities 

HIT researchers identified a lack of patient engagement as an emerging need for 

enhancing software tools for shared clinical decision-making. McGinn et al. (2012) 

conducted a qualitative Delphi study exploring the perspectives of actual and future EHR 

users in Canada. The authors anticipated informing future quantitative research related to 

EHR deployments. Their study conducted via the internet provided expert panels with a 

link to a survey requiring completion within 48 hours. After the first survey, sharing of 

respondent answers supported consensus building during subsequent survey rounds. A 

framework identified by McGinn et al. (2012) highlighted consensus along a continuum 

of agreement as (a) strong, (b) moderate, (c) partial, or (d) missing. A significant 

limitation of the research stemmed from the perceptions of future users identifying 

concerns in the absence of experience. Attempts to include a patient panel failed due to 

lack of participation. McGinn et al. (2012) identified an area for future research focused 

on improving the health care provider’s understanding of the patient’s perspective during 

episodes of care delivery. 



55 
 

 

Patient and family focused. Fleurence et al. (2013) discussed the remit of the 

Patient Centered Outcomes Research Institute (PCORI) mandated by legislation to 

address the research interests of patients and caregivers. New research aims to place 

greater significance on outcomes that matter to the majority of patients and their families. 

Many clinical studies excluded elderly patients and those with complex conditions 

despite the higher cost of care associated with caring for these patient populations. An 

additional goal of PCORI includes improving access to evidence-based sources of 

information for use by patients and caregivers.  

Several proposed and unfunded PCORI studies identified the need for CDS 

equipping patients and caregivers for discussions regarding best treatment options with 

their doctors. The organization created a prioritization process by assigning a unique 

“conceptual value” to the information potentially garnered from the proposed research. 

The discussion by the authors raised a novel aspect to future design of CDS tools. Should 

new tools supporting ACO clinical software end-users incorporate features enhancing the 

direct interaction with patients and caregivers? 

Genomics based CDS. Several researchers pointed toward emerging fields such 

as genomics and advances in machine learning or artificial intelligence opening new 

paths for better capture and synthesis of clinical and nonclinical data. Caceres (2013) 

reiterated the emerging value of EHRs supporting patient-centric care and genomic 

medicine. Overcoming the lack of interoperability remains central to realizing these 

benefits and opportunities for patients to easily share and exchange data with providers. 

Caceres envisioned connecting patient and clinical data to other information sources 
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specific to employment history, housing, and education facilitating improvements in 

population health management. Pakhomov et al. (2011) identified opportunities for new 

research leveraging unstructured data. Current EHRs contain patient and clinical data 

entered as unstructured free text and structured text adding complexity to searches or 

queries. Heightened complexity stems from the lack of tools permitting identification and 

grouping of similar terms or concepts. The authors described their efforts in developing a 

computerized framework establishing a common set of standards supporting future 

categorization and mapping of like terms. Setting open source standards permits other 

researchers access resulting in anticipated improvements and expansion of the proposed 

framework.  

Improving CDS through artificial intelligence. Derived from artificial 

intelligence software programming, Pakhomov et al. (2011) exposed the results of their 

mappings to outside human raters experienced with medical coding and informatics. 

Higher agreement of terms occurred by human raters although the machine derived 

matching achieved a moderate level of agreement. Their research points toward the 

potential for future development efforts in automating term mapping for improved data 

queries within the EHR. 

Murdoch and Detsky (2013) described “Big Data” use cases and limitations 

supporting improvements in the cost, quality, and efficiency of care delivered. 

Recognizing the immense sets of data residing within deployed EHRs, the authors 

discussed the nature of unstructured clinical and patient data as a significant challenge in 

applying typical analytical approaches. Potentially, only 20% of data stored in the EHRs 
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stems from nontext based data. A potential avenue toward unlocking unstructured text-

based data hinges on the use of advanced software applications such as artificial 

intelligence, machine learning, and natural language processors. The authors anticipated 

greater use of real-time CDS tools prompting clinicians based on contextual patient data 

combined with other data sources.  

A big data CDS landscape. The landscape for new and improved types of CDS 

remains robust with future applications of genomics and artificial intelligence supporting 

patient and family centric applications. A connected environment capturing data sources 

from personal devices lends further possibilities for patient and family engagement 

(Atkins & Cullen, 2013). The inclusion of a patient’s genetic data and integration of 

laboratory values retrieved from fitness applications and other devices opens up new 

areas for future research. Murdoch and Detsky (2013) described adoption of EHRs as 

only an initial step in the transformation of care. Caceras (2013) also discussed the 

emerging value of EHRs supporting patient-centric care and genomic medicine. 

Overcoming the lack of interoperability remains central to realizing these benefits and 

opportunities for patients to easily share and exchange data with providers. Eventually 

connecting patient and clinical data to other information sources specific to employment 

history, housing, and education may offer important advancements in population health 

management. Future research exploring the application of nonclinical data with patient 

contextual clinical data may enable earlier identification of at risk patient populations and 

inform improvements in software tools for those purposes (Atkins & Cullen, 2013).  
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Pathak, Kho, and Denny (2013) affirmed ideas expressed by Murdoch and Detsky 

(2013) through the identification of genomics as an emerging research use case in HIT 

and population health management. The authors identified that minimal research existed 

exploring ways to extract patient data from EHRs specific to furthering the science of 

genomics. The future use and application of data search standards enables the 

identification of new patient cohorts thereby advancing research in areas of population 

health previously deemed inaccessible (Atkins & Cullen, 2013). The authors suggested 

the use case for integrating patient data captured from digital applications or mobile 

technology enabling advancement in patient-contextualized research. 

Waitman, Aaronson, Nadkarni, Connolly, and Campbell (2014) described an 

early research initiative formed through the collaboration of more than 20 hospitals and 

70 clinics across seven states encompassing more than ten million patients. The Greater 

Plains Collaborative (GPC) selected one common disease and one rare disease as the 

basis for exploration of sharing data and supporting interoperability for the exchange of 

common data elements across all EHRs and HIT systems participating in the GPC.  

The collaborators viewed establishment of a research network as potential proof 

that U.S. investments in HIT supported a favorable return on the billions of dollars spent 

on EHRs. Focused initially on Epic System installed EHR’s the GPC expects to include 

other EHR vendor systems. Waitman et al. (2014) proposed future CMS MU Stage Two 

and Stage Three criteria supporting further development of population management tools. 

These authors in addition to Agha (2014) suggested future research consider the affect of 



59 
 

 

MU requirements and health care reform models on the use of HIT and effects on cost 

and care quality.  

Summary. As suggested by these authors, an advanced requirement for 

demonstration of MU necessitates evolution in EHR design including the need for 

ongoing research in CDS software tool development. The promising applications of 

genomics coupled with the use of artificial intelligence and machine learning keeps HIT 

researchers hopeful in regard to overcoming current EHR limitations. Whether through 

the adoption of new standards or an accelerated move to cloud and open based platforms, 

the opportunity to continue studying and improving the types and timing of workflow 

integrated CDS remains compelling.  

Summary 

McGowan, Cusack, and Bloomrosen (2012) shared four components comprising 

the American Medical Informatics Association (AMIA) conference recommendations for 

reducing the potential for patient harm with HIT use. Their recommendations spanned the 

technical, human, organizational, financial, and regulatory aspects of HIT 

implementation and adoption. The recommendations from these medical informatics 

experts underscored the need for extensive collaboration across stakeholders engaged in 

the development of HIT systems and their deployment. McGowan et al. (2012) also 

emphasized the importance of the U.S. government in overseeing and directing HIT 

adoption from a national health care perspective. Given the acceleration of HIT adoption, 

the authors concluded that the risk for patient harm as a byproduct of EHR adoption 

remains a potential threat. The authors suggested that mitigating the risk of patient harm 
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required conducting additional research studies. Correctly harnessing EHR data and 

consolidating appropriate data sources represents a new frontier in health care for the 

realization of improvements in the cost and quality of care (Murdoch & Detsky, (2013); 

Pathak, Kho, & Denny, (2013). The results from the proposed research study may 

partially address the need for enhanced collaboration of software vendors with physician 

end-users in design of improved CDS tools.  

Transition and Summary 

The literature review revealed opportunities for improvements in CDS tools 

supporting the goals of ACOs. Given recent government investments in HIT and 

legislation supporting the formation of ACOs, interest in enhancing physician use of CDS 

tools remains high. While research exists related to CDS alerts, none of the previously 

published studies included a quantitative analysis of the sociotechnical factors in alert 

design and physician perceptions of better adherence with ACO quality measures. 

The next section includes details regarding the research study design. I share 

details specific to the study population, sampling, and handling of data. Section Two 

concludes with explanations for conducting data analysis and plans for ensuring the 

validity of the survey instrument. The third section includes the results from the research 

analyzed in a manner consistent with quantitative correlation studies. I hope the results of 

the research will add to the existing body of work specific to the use of workflow 

integrated CDS. I will share any additional insights gleaned from the analysis for use by 

third-party software developers seeking to address the sociotechnical needs of physician 

end-users. Section Three concludes with my suggestions as to how the results of the 
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research may be applied to future research endeavors including the business and social 

implications of my research findings.  
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Section 2: The Project 

Quantitative, correlation research supports the extrapolation of findings from a 

sample to a population. To collect data for the planned research, I developed a survey 

instrument and vetted the questions with experts in the field of CDS software use. The 

research participants included in the study bring with them the relevant EHR and CDS 

experience to adequately address the survey questions. Using a correlation study design 

permits examining clinical software user needs for improved CDS tools. Specifically, the 

methodology enables examining a relationship, if any exists, between the design and 

timing of alerts with physician perceptions of improved adherence to reportable ACO 

quality measures.  

Purpose Statement 

The purpose of the this quantitative, correlation study was to examine the extent 

of any relationship between the type and timing of CPOE automated alerts with physician 

perception for better adherence to reportable ACO quality measures. The independent 

variables related to sociotechnical attributes included the type of decision support 

provided and the timing for presenting an alert to physicians in an electronic ordering 

workflow. The dependent variable tied to reportable ACO quality measures supported 

analysis of physician perception toward the achievement of ACO quality measures and 

the cost reduction and performance improvement goals associated with using CDS during 

electronic ordering.  
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The study population included U.S. physician executives from integrated health 

system ACOs using CDS software tools in either a Cerner Corporation or Epic Systems 

EHR. These two EHR vendors hold the largest U.S. ACO market share supporting their 

selection as the basis of the study population (Chalasani et al., 2014). Opportunities for 

enhancing the experience and performance of physicians using CDS tools in an EHR 

supports the primary social change goal of ACOs in supporting better quality care 

through the advanced use of HIT (Kuperman & McGowan, 2013).  

Role of the Researcher 

I am currently employed and have equity in a venture capital funded SaaS firm 

specializing in the design of EHR integrated CDS tools. My work enables close 

collaboration with experts in software tool design as well as the physician end-user 

community across many academic medical centers and community hospitals. Given my 

professional work experience, I remained cognizant of my potential for influencing the 

results of the research and the participants’ perception of bias related to the survey 

questions (Klabunde, Willis, & Casalino, 2013).  

Using statistical, parametric analysis supports objectivity in presenting the results 

obtained from Likert-based surveys (Norman, 2010). However, Klabunde et al. (2013) 

reported surveys administered to physicians frequently yield diminished response rates. 

The authors suggested physicians concerned about survey data reflecting negatively on 

their clinical practices increasingly fail to respond to new survey requests. Therefore, I 

proactively provided research participants with explicit details on my handling of their 

survey data and the blinding of all study participants to minimize the risk of 
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nonparticipation. In accordance with the Belmont Report (HHS.gov), I obtained informed 

consent from all study participants ensuring my proposed research conformed to the 

principles of conducting ethical research. I used a commercially available web-based 

survey platform tool for administration of the survey. Physician executives with financial 

ties to my firm were excluded from participation in the final survey further limiting the 

risk for unduly biasing the study results.  

Participants 

I drew from a purposeful sampling of physician executives working at health 

system directed ACOs using either a Cerner Incorporated or an Epic Systems EHR 

(Padgett, 2014). This approach provided each physician executive drawn from a 

homogenous population with an equal opportunity for participation in the survey (Peikari 

et al., 2013). Physician leaders frequently played an important role in the development of 

advanced CDS tools for use in EHRs (Berkowitz & Pahira, 2014). After obtaining 

institutional review board (IRB) approval (No. 06-09-15-0396865), I coordinated 

communication for inviting participation to the survey with my community partner, the 

Association of American Medical Directors of Information Systems (AMDIS). This 

professional society is a nonprofit organization with more than 2,900 physician members. 

The AMDIS email listserv included the population intended for the research. AMDIS 

leadership provided a letter of cooperation as a community partner for the study 

(Appendix C).  

The study inclusion criteria restricted many AMDIS members from actively 

participating in the research. Slightly fewer than one half of an estimated 645 ACOs 
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obtained sponsorship by an integrated health system (Muhlestein et al., 2014). Of those, 

nearly one third included the use of an Epic or Cerner EHR (Berkowitz & Pahira, 2014, 

HIMSS, 2014).  

After initiating a request for participation through the AMDIS listserv, I initiated 

follow up contact with targeted participants through an email directed from my Walden 

University email account. In a recent analysis of large-scale surveys directed at 

physicians, the majority of surveys conducted via the internet included an email 

solicitation from the researcher (McLeod, Klabunde, Willis, & Stark, 2013). My email 

invitation included details specific to the background and purpose of the study, the 

blinding of participant data, the benefits of participation, and a link to the survey. The 

survey included the consent form approved by Walden University’s IRB.  

Research Method and Design 

The design of this quantitative, correlation study explored the extent of any 

relationship between an alert deployed in an EHR and the timing of deploying an alert 

with a physician’s perceived adherence to reportable ACO quality measures. Both 

independent variables represented sociotechnical traits specific to the type of CDS tool 

known as an alert. Independent variable A represented attributes specific to alert content. 

Independent variable B represented other sociotechnical traits specific to the timing of 

presenting an alert during computerized physician order entry (CPOE). Other researchers 

examined associations of CDS use within CPOE applications for their affect on cost and 

quality (Spaulding & Raghu, 2013). The two independent variables selected provided the 

basis for assessing whether any relationship existed with physicians’ perceptions about 
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their adherence to CMS reportable ACO quality measures. Physician’s anticipating 

access to better workflow integrated CDS tools for enhancing their patient treatment 

decisions may attribute the application of these tools as supportive to fulfilling EHR MU 

requirements in accordance with the objectives of an ACO to improve care quality while 

safely lowering costs (Beeler, Bates, & Hug, 2014; Berkowitz & Pahira, 2014; Dubois et 

al., 2014). A detailed explanation of (a) the research methodology, (b) the research 

design, (c) alternative methods considered, and (d) the justification for the chosen 

methodology and design follows.  

Research Method 

Quantitative approaches underscore applications of evidence-based medicine in 

health sciences research. Moving from evidence-based medicine to evidence-based 

practice extends a positivist view (Hjørland, 2011). A positivist philosophy aligns with 

the evidence-based practice of HIT underpinning the selected research method. Others 

researching the transfer of knowledge in medicine recognized the usefulness of a 

positivist worldview coupled with quantitative based research methodologies (Walsh et 

al., 2012). A quantitative methodology permits a deductive approach through objective 

analysis of the variables and an opportunity to accept or reject a research hypothesis. 

Further, a quantitative method supports the application of inferential statistics permitting 

inferences from the sample to an entire population (Bryman, 2012). The selection of a 

quantitative method extends the utility of the research for an audience comprised of 

medical practitioners accustomed to an evidence based approach to research.  
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With substantive qualitative research previously conducted in regard to the 

software tool needs of physicians, I rejected utilizing that approach (Novak et al., 2013; 

Lanham et al., 2014). Qualitative researchers explore unstructured phenomena by 

discovering themes extracted from interviews or observations (Bryman, 2012). Although 

qualitative case studies deepen the examination for a specific phenomenon, such 

approaches generate insufficient data required for accepting or rejecting a stated research 

hypothesis (Bryman, 2012; Constantinides, 2013; Takian, Sittig, Singh, & Barber, 2014). 

Given the expectations for scientific rigor by leading health care professionals and 

technology industry stakeholders for whom the proposed research bears interest, I 

rejected the use of that approach. The aim of the research remained focused on 

determining whether any correlation existed between CDS alerts presented during a 

physician’s computerized ordering activity and perceptions for better adherence to 

reportable ACO quality measures. A qualitative methodology precluded a deductive 

approach thus limiting the usefulness of the findings as applied to future CDS software 

tool design.  

Combining attributes of qualitative and quantitative studies supports a mixed 

methods approach (Bryman, 2012; Onwuegbuzie, Frels, Leech, & Collins, 2011). The 

application of mixed methods brings utility to usability and acceptance focused research 

when investigators seek to uncover themes necessary for informing additional research 

elements included in usability experiments (Devine et al., 2014). Determining appropriate 

questions for the Likert-based survey derived from prior published studies on the 

application of electronic alerts reduced the need for uncovering new themes. When 
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researchers lack sufficient insights for testing a hypothesis, they include qualitative 

aspects (Bryman, 2012). By vetting the proposed questions with a small group of subject 

matter experts prior to conducting the proposed research, the potential benefits associated 

with a mixed methods study remain marginal in comparison. Rejecting the mixed 

methods approach in favor of a quantitative study aligns best with the goals of the study 

while supporting an expedient approach to generate data sufficient to accept or reject the 

stated hypotheses (Onwuegbuzie, Frels, Leech, & Collins, 2011; Venkatesh, Brown, & 

Bala, 2013). 

Research Design 

Quantitative studies incorporate either an experimental or nonexperimental design 

(Bryman, 2012; Turner, Balmer, & Coverdale, 2013). The use of an experimental design 

requires the researcher to control the environment and potentially manipulate the 

variables studied to determine a cause and effect (Bryman, 2012). While lacking 

randomization of participants, a quasi-experiment includes design aspects similar to a 

controlled study (Bryman, 2012). Along the continuum of social science research designs 

accessible to the researcher, survey design provides an optimal fit.   

 Similar to other researchers studying the relationship of CDS on a specific 

physician related outcome, I selected the correlation design utilizing a Likert-based, self-

administered survey as most suited to the research question (Peikari et al., 2014; Xiao et 

al., 2012). Turner, Balmer, and Coverdale (2013) stressed the necessity of the research 

question informing the choice of study design. Examining the relationship between the 

type and timing of alerts with physicians’ perception of improved adherence to reportable 



69 
 

 

quality measures utilizing an experimental design requires manipulation of variables 

within an EHR that remain outside the scope of the research.  

A descriptive quantitative design provides an approach to generate statistics about 

the participants and the variables. The use of percentages and frequencies alone fails to 

support examination of any correlation including the direction or strength of the 

relationship across the variables studied (Turner et al., 2013). Among the types of 

quantitative designs available, I selected a correlation study in order to examine the 

nature of any relationship among the predictor and dependent variables. The use of a 

Likert-based survey supports an appropriate accumulation of data specific to the variables 

selected for a multiple regression analysis. Further, the application of correlation through 

statistical inferences supports the potential extrapolation of the results to the population 

of physicians from integrated health systems participating in ACOs. The findings from 

the study may be of interest to the software users and vendors engaged in the 

development and applicability of CDS tools for use by ACOs.  

Population and Sampling 

I selected survey participants from a purposively derived sample of physician 

executives participating in a U.S. hospital or health system sponsored ACO using either a 

Cerner Incorporated or Epic Systems EHR. Although purposive sampling is frequently 

attributed to qualitative research methods, the approach aligned best with the need to 

select participants from a highly homogenous population based on a designated set of 

inclusion criteria (Bryan, 2012; Peikari et al., 2013). The sample originated from a 

membership list maintained by my community partner, AMDIS. This professional society 
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provided access to their physician members through their private email listserv. AMDIS 

members including physician executive roles such as chief medical information officers, 

chief medical officers, and medical directors are predominately representative of the 

study population (AMDIS, 2015).  

Muhlestein et al. (2014) identified more than 600 ACOs comprised of both 

physician and hospital sponsored organizations. In partnership with AMDIS, I invited the 

participation of the population of physician executives at health systems fulfilling the 

criteria for inclusion in the study. Data previously licensed and extracted from a 2014 

HIMSS Analytics database identified 100 unique health systems with 1,113 affiliated 

hospitals participating in ACOs (HIMSS, 2014). From this population, I identified 955 

hospitals from 90 integrated health systems utilizing a Cerner Incorporated or Epic 

Systems EHR. With the assistance of AMDIS, the steps I followed in capturing the 

population included 

1. Identify members from health systems participating in an ACO:  

(a) Location of ACO=United States.  

(b) EHR = Cerner or Epic Systems.  

(c) Contact type = Physician Executive such as Chief Medical Officer (CMO), 

Chief Medical Information Officer (CMIO), Chief Information Officer (CIO), 

Ambulatory Care Head, Medical Director of Informatics.  

(d) Credentials =medical doctor (MD) or doctor of osteopathy (DO).  

2. Exclude nonphysician executive AMDIS members. 
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The entire population of 2,900 physician executives from AMDIS established the 

purposive sample needed for potential inclusion in the proposed survey (AMDIS, 2015). 

Contacting the participants through the AMDIS listerv with an introductory email sent 

from my Walden University email potentially influenced an improved response rate for 

the survey (Anseel, Lievens, Schollaert, & Choragwicka, 2010; McLeod et al., 2013). 

The planned, purposive sampling process provided for the equal inclusion of all 

physician executives fulfilling all inclusion and exclusion criteria for participation.  

Sample Size 

Criteria-based and non-probability sampling results in the conscious inclusion of 

data units using an approach other than chance alone (Bryman, 2012). Given the 

homogenous nature of the population and the expertise required to complete the self-

administered survey, utilization of random sampling techniques unduly restricts 

participation essential for addressing the research question. The application of purposive 

sampling in related research on physician use of CPOE and the stated need to survey 

physician executives from ACOs using a specific type of EHR negated the use of other 

sampling approaches (Bryman, 2012; Peikari et al., 2013). 

Based on the criteria established, a search comprising all hospital affiliated ACOs 

in a HIMSS 2014 database returned a population of 1,113 hospitals. Further refining the 

selection based on type of EHR used reduced the population of affiliated hospitals to 955. 

Searching for physician executive titles meeting the remaining requirements yielded a 

population of 144 units. 
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To test the null hypothesis that no significant relationship exists between the type 

and timing of a CDS alert deployed in CPOE and a physician’s perception of improved 

quality measure adherence, I conducted an a priori power analysis using G*Power 3.1 

software. A power analysis requires the researcher to consider and select the alpha level 

for rejecting the null hypothesis (Saffer, 2014). Based on convention, I selected an alpha 

level of p < .05 (Bryman, 2012).    

The determination of sample size requires an assumption of effect size for the test 

statistic. The F test statistic supports a multiple regression analysis for understanding 

whether a relationship exists between the predictor and dependent variables (Green & 

Salkind, 2011; Saffer, 2014). Other researchers quantified only modest effects of CDS 

use on physician ordering behaviors (McCullough et al., 2014; Munn, McArthur, & 

Moola, 2010; Shaikh et al., 2014). A specific limitation of prior research on alerts 

concerned the lack of associating design characteristics with an EHR type (Munn, 

McArthur, & Moola, 2010). The final study design with a focus on alert use in integrated 

health system ACOs using only two types of EHRs provided sufficient focus for 

addressing that gap. Powering the study at 80% with the selection of a medium effect size 

(.15) aligns with guidance provided to novice researchers (Green & Salkind, 2011; 

Saffer, 2014).  

Table 1 contains the data values obtained from the power analyses and the 

G*Power results showing the required sample size for a modest effect size. G*Power 

results indicated the need for 68 completed surveys for a medium effect size (ω = 0.15) 

and a power level of .80. 
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Table 1 
 
Sample Size Calculation for Proposed Study Using G*Power 3.1 Software 
 
F tests - Linear multiple regression: Fixed model, R² deviation from zero. 
 
Effect size (f2) .15 

α err prob .05 

Power (1-β) .80 

Number of predictors 2 

Noncentrality parameter λ 10.20 

Critical F 3.13 

Numerator df 2 

Total sample size 68 

Actual power .80 

Note. Analysis: A priori: Compute required sample size. 
 

Survey response rates by physicians while potentially declining persist in reported 

rates > 50% (Klabunde et al., 2013; Peikari et al., 2013;). With expectations for a 

minimum response rate of 50%, at least 138 physician executives must attempt to 

complete the survey (136 × .50 = 68). Applying the criteria based and purposeful 

sampling approach, I solicited all AMDIS physician executives participating on the 

AMDIS email listserv ensuring all physicians sampled maintained an equivalent chance 

for participation. The CEO of AMDIS released my survey invitation on the listserv on 

June 29, 2015, with a second request on July 13, 2015. During the next 3 weeks, I sent 



74 
 

 

247 additional requests for participation to physician executives who had shared their 

personal contact details with me through prior professional interactions. Ensuring 

adequate rigor to the study design, I utilized SPSS in all post hoc testing of the survey 

data for verification the study achieved the planned statistical power greater than .80. 

Ethical Research 

The Belmont Report issued by the National Commission for the Protection of 

Human Subjects provides researchers with specific guidance ensuring the protection of 

research participants from harm (Mahon, 2014). The underlying concepts from the 

Belmont Report of courtesy, advocacy, and protection for all research participants remain 

at the forefront of IRB processes (Lewis, Gonzalez, & Kaufman, 2012). The potential for 

harm to research participants arises from multiple sources such that researchers must rely 

on established processes to obtain informed consent, maintain the confidentiality of all 

data, and ensure subjects are treated with respect and dignity (Bryman, 2012). The nature 

of an online survey necessitates additional consideration in the procedure for obtaining 

informed consent (Mahon, 2014). 

The use of SurveyMonkey® for the administration of an Internet-based survey 

allows for the inclusion of a statement of acceptance of voluntary participation by each 

participant (Survey Monkey, 2014). The informed consent statement included a brief 

description of the study purpose. All participants acknowledged they received no 

compensation in exchange for their participation. Participation was voluntary. 

Participants understood they could suspend their involvement at will as outlined in the 

informed consent statement (see Appendix C). Further, each participant received details 
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for contacting me with any questions or concerns in regard to the research study. Through 

provision of my Walden contact details, participants may request the published study 

results. Ensuring the capture of informed consent preceded the answering of any survey 

questions aligning with current best practices in the conduct of digital based research 

(Mahon, 2014).  

Data Privacy  

Compliance with Walden University’s IRB process necessitated appropriate 

measures for ensuring the privacy and confidentiality of research participants. AMDIS 

maintains direct control of the member listserv. With the cooperation of AMDIS 

managing the invitation process through their listerv, no deidentification of their database 

containing the sample of physician executives with their associated health system 

affiliations was required. All data obtained from the survey-hosting site remained 

encrypted with IP protocol identification turned off ensuring the anonymity of the results 

obtained and stored (Mahon, 2014). Only general demographic data was collected 

confirming each participant’s professional credentials, participation in an ACO, and type 

of EHR utilized consistent with the research study inclusion requirements. 

Internet-based research necessitates more than a single layer of security protocols 

(Mahon, 2014). The use of SurveyMonkey® conforms to current requirements for data 

encryption (Survey Monkey, 2014). Upon completion of the study, I transferred all data 

to an encrypted external hard drive. The stored drive remains locked in a fire-safe file 

cabinet for the 5-year retention period. I maintain sole access to the data files. During the 

period of storage, the study results will be made available to all participants upon written 
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request. At the conclusion of the 5-year storage period, I will destroy the external hard 

drive. 

As physicians, the participants are not representative of a protected or vulnerable 

class. No inducements were provided anticipating that a shared professional interest in 

improving CDS tools for ACOs merited the active and honest participation of the 

participating physician executives. Conducting research intended to improve the CDS 

tools used by ACOs supports an ethical intention of conducting quality research through 

the provision of generating valuable information (Bryman, 2012). 

Data Collection 

The use of a self-administered survey hosted on the Internet provided the 

mechanism for data capture. In combination with solicitations for survey participation 

disseminated by AMDIS through their email listserv, I sent 247 personalized electronic 

invitations from my Walden email account to the purposeful, criteria-based sample of 

2,900 physician executives (Appendix C). The email invitation provided an opportunity 

to describe the purpose of the survey with the request for each subject’s voluntary 

participation. Including a link to the SurveyMonkey® Internet hosting site provided an 

efficient approach to securing survey responses. Maintaining brevity in the design of the 

survey supported potentially higher response rates with less risk for methodology 

associated bias (Hohwu et al., 2013, Kaplowitz, Lupi, Couper, and Thorp, 2012; 

Podsakoff, MacKenzie, and Podsakoff, 2012). Embedding the informed consent form 

with an electronic review and affirming an acknowledgement process preceding the first 

survey questions ensured compliance to Walden University IRB processes. The CEO of 
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AMDIS reminded members to participate resending the invitation to participate in the 

research to the listserv approximately two weeks after the initial request was issued. 

SurveyMonkey® provides encrypted storage of survey data for subsequent 

retrieval. Based on the a priori power analyses for determining sample size, 68 completed 

surveys supported a statistically valid outcome (Lan & Lian, 2010). Use of a purposive 

sampling approach potentially enhances generalizability of the results (Polit & Beck, 

2010). With a sufficient number of surveys completed upon the close of the survey period 

on July 23, 2015, I migrated all survey data from SurveyMonkey® to my personal 

computer using the secure and routine data download processes provided by 

SurveyMonkey®. All study data stored in my computer is contained within a password 

protected and encrypted disk. Following the completion of all statistical analyses using 

SPSS, I exported the study data to an external disk drive kept in a fireproof, locked file 

cabinet for the mandatory 5-year retention period. Throughout this period, the research 

data will be provided to other researchers upon written request. No identifying 

information regarding participant names, email addresses, and participant affiliated 

hospitals and health systems will be released. At the conclusion of the retention period, 

all data stored electronically and on paper will be destroyed. 

I selected SurveyMonkey® as the hosting service based on their known 

capabilities in providing appropriate safeguards ensuring participant data remains 

protected based on password protected and permission-based protocols (SurveyMonkey, 

2014). SurveyMonkey® protects participant data from unauthorized access through the 

use of firewalls. The use of data encryption protocols coupled with a Secure Socket Layer 
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(SSL) ensures each participant’s data remains protected and secure from external threats. 

By using a suite of design tools provided by SurveyMonkey® all participant e-mail 

addresses and their IP locations remain confidential, as SurveyMonkey® will not store 

that data. To further safeguard the data stored at SurveyMonkey®, I created an account 

with a unique password that was not shared with anyone else. All survey data remains 

confidential and anonymous through use of the specific settings that prevented the 

collection of email and IP addresses. The participant data extracted from 

SurveyMonkey® and compiled for analyses in SPSS does not include the names, email 

addresses or affiliated organizations of the participants (SurveyMonkey, 2014).  

Instruments 

Although no previously validated instrument supported the research study, 

sufficient material from the academic literature on CDS alerts deployed in CPOE 

informed the development of the survey questions (Koopman et al., 2011; McCoy et al., 

2012; McCullough et al, 2014; Peikari et al., 2013; Smith et al., 2013). The survey 

included four sections (Appendix A). The first survey question in section one of the 

instrument required confirmation of the informed consent process. The next three 

questions in section one confirmed the inclusion criteria of the participant. The remaining 

sections of the survey included three self-developed Likert-type scales designed for 

analyzing each study construct. I developed these constructs in alignment with the 

predictor and dependent variables from the synthesis of the peer-reviewed literature 

coupled with feedback obtained from academic and industry experts in the field of EHR- 

integrated CDS tools. Content validation of a survey frequently involves obtaining expert 
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feedback on each survey item and scale (Etchegaray & Fischer, 2010; Rickards, Magee, 

& Artino, 2012). The use of expert feedback provides an opportunity to examine the 

wording of each item for potential bias (Fan & Yan, 2010). Good survey design requires 

isolating construct items within a single scale. Difficulties in data interpretation arise with 

the use of scales containing mixed constructs (Etchegaray & Fischer, 2010). All survey 

items following section one supported a range of answers based on a 5-point Likert-type 

scale requiring a participant response as: Strongly Agee, Agree, Neutral, Disagree, and 

Strongly Disagree. Likert-based scales although ordinal by nature support interval, 

parametric-based analyses through the summation of multiple items (Norman, 2010). 

Grouping a minimum of three items in the generation of scales for composite scoring 

improves instrument validity and reliability by demonstration of consistent scoring across 

related items (Bryman, 2012; Etchegaray & Fischer, 2010). Drawing from the academic 

literature on the design of CDS alerts and sociotechnical considerations of EHR 

workflow informed the development of items underpinning the constructs for the two 

independent variables. A summary of the instrument items included in each scale is 

provided in Table 2.  
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Table 2 
 
Survey Scales by Question and Supporting Literature  
 

Survey questions Construct and composite 
variable Literature sources 

 
E, F, G, J 

 
Alert content, independent 
variable A 
 

 
Koopman et al. (2011), 
McCoy et al. (2012), Smith 
et al. (2013), Bell et al. 
(2014), McCullough et al. 
(2014), Shaikh et al. (2014) 
 

L, M, N Alert workflow timing, 
independent variable B 
 

Kawamoto et al. (2005), 
McCoy et al. (2012), 
Anderson et al. (2013), 
Bowman (2013), Jung et al. 
(2013) 
 

H, I, K, O, P, Q ACO Goals and Quality 
Measure Adherence, 
dependent variable C  

Baysari et al. (2012), Xiao 
et al. (2012), Grace et al. 
(2013), Chukmaitov et al. 
(2014), CMS, (2014), 
Dubois et al. (2014), 
McCullough et al. (2014) 

   
 
 

The first Likert-type scale in the survey instrument contained four items 

pertaining to the content of a CDS alert displayed in the EHR. These four questions are 

identified in the survey as E, F, G, and J (Appendix A). These items supported the 

capture of data specific to the independent variable A alert content. The second Likert-

type scale consisted of three questions providing the basis for capturing data relevant to 

the independent variable B alert timing. The second Likert-type scale contained only 

those items pertaining to the timing for presenting CDS alerts during physician ordering 

sessions within an EHR. The third and final Likert-type scale in the survey instrument 
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comprised of six questions pertains to the construct associated with the dependent 

variable in capturing physician perceptions related to ACO goals of improved outcomes. 

Each Likert-type scale contained only those items that directly supported the central 

research question and hypotheses.  

Data Collection Technique 

As previously discussed, an online survey hosted by SurveyMonkey® supported 

the administration of a self-administered survey for the purpose of collecting data and 

subsequently transferring data to SPSS™ software for analysis (Alessi & Martin, 2010). 

Incorporating survey design recommendations from Etchegaray and Fischer (2010), I 

limited the survey to 17 questions estimating survey completion times less than15 

minutes prior to the capture and validation of pilot study results post IRB approval 

(Appendix A). The use of a brief set of questions potentially supports improved response 

rates while potentially limiting bias related to the methodology (Hohwu et al., 2013; 

Kaplowitz et al., 2012; Podsakoff et al., 2012).  

 The first four survey questions A through D confirmed the completion and 

acceptance of the informed consent integrated with the survey (Appendix A). Key 

inclusion criteria such as practice credentials, participation in an ACO, and use of an Epic 

Systems or Cerner Incorporated EHR comprised the set of questions designed for capture 

of descriptive statistics. For these first two questions, yes responses were coded as a 1 

and all no responses as a 0. Coding of the results in this manner permitted subsequent 

frequency calculations. For EHR type, a response indicating the use of Cerner was coded 

as a 1 and the use of Epic as a 2. Coding EHR type responses supported a subset analysis 
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related to the underlying research question. Further, the application of a frequency 

distribution analysis for a small number of categories permits subsequent display of the 

findings in a bar or pie chart (Green & Salkind, 2011). 

Upon IRB approval, I piloted the survey with five physician executives in order to 

validate the usability of the survey and assess the ability to collect representative data 

supporting quantitative analysis. Piloting the online survey supports the evaluation of 

each item for determination of construct reliability (Bryman, 2012; Rickards et al., 2012). 

Pilots provide researchers with opportunities to improve participant instructions with 

insights regarding the ease of use of the instrument and the participant’s understanding of 

survey items (Bryman, 2012).  

No definitive guidance exists with respect to the determination of an appropriate 

sample size for pilot studies (Johanson & Brooks, 2010; Thabane et al., 2010). Other 

researchers conducting online surveys piloted instruments with a number of physicians 

equating to approximately 3% of their final respondents (Jung et al., 2013; Peikari et al., 

2013). Quantitative survey research examining the relationship of physician use of CPOE 

and rates of prescribing errors conducted by Peikari et al. (2013) included survey pilot 

testing with five physicians over three stages of review. Results from 166 completed 

surveys supported their research findings. Similarly, the assessment of physicians’ 

attitudes toward alerts designed with patient-contextualized data included pre-testing of 

the survey with seven physicians and final survey results obtained from 223 physicians 

(Jung et al., 2013). Based on the approach taken by previous researchers in the field of 

CDS alerts, I piloted the survey with five physician executives representative of the study 
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population. The number of physicians for the pilot equates to 7% of the calculated sample 

size of 68 physician executives and 3.5% of an estimated 144 physicians planned for 

inclusion as mitigation for nonresponse.  

The pilot survey was conducted from June 8 to June 13, 2015. A primary 

objective of the pilot study included analysis of the instrument reliability and validity. 

Table 3 includes Cronbach’s alpha coefficient for each scale. The application of 

Cronbach’s α supports the assessment of the interrelatedness of each subscale item 

(Green & Salkind, 2011). Of note in Table 3, the reliability analysis conducted for the 

ACO quality construct resulted in deleting question O for purposes of obtaining a 

satisfactory alpha coefficient. The value generated by including this question was 

revisited in the analysis for the final survey. Based on the obtainment of a satisfactory 

coefficient alpha for each scale, I proceeded with data collection for the final study. 

Table 3 
Analysis of Cronbach’s Alpha Coefficients in a Pilot Study 
 

 
Construct n 

 
M SD 

 
Cronbach’s alpha 

 
Alert 
content 

4 17.60 3.21 .880 

 
Alert 
workflow 
timing 
  

3 7.00 2.44 .750 

ACO 
Quality and 
Cost Goals  

5 21.80 2.28 .697 
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I sent a personalized invitation from my Walden email account to the Chairman of 

AMDIS for dissemination to the AMDIS listerv (Appendix D). My email contained the 

link to SurveyMonkey®. Survey participants completed the informed consent process 

through mandatory completion of the first question in the survey (Appendix E). At the 

close of the survey on July 24, All data migrated from SurveyMonkey® remains secure 

and confidential (SurveyMonkey, 2014). I entered coded data into SPSS™ software for 

analysis maintaining all data on a password-protected computer. In addition, I migrated 

the data and all study related documentation to an encrypted and password protected 

external disk that will be kept under lock and key for five years.  

Data Organization Techniques 

Access to the survey via the link embedded in the participant’s invitation 

remained active for a period of three weeks. At the end of the second week, a second 

email soliciting participation was sent from my Walden email account (Appendix F). At 

the end of week three, I deactivated the survey link. All data collected in 

SurveyMonkey® was exported to SPSS™ for analysis based on complete coding of all 

categorical variables and the creation of composite scores for the scaled items. No 

personal identifiers in SurveyMonkey® were accessible and all cookies in the online 

platform remained disabled (SurveyMonkey, 2014). Upon completion of the retention 

period, all raw study data and related documents previously stored in a locked, fireproof 

cabinet will be destroyed.  
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Data Analysis Technique 

Upon data extraction from SurveyMonkey®, I used SPSS™ for quantitative 

analysis of the data obtained. Descriptive statistics such as frequencies, counts and 

percentages apply to the demographically focused questions. Data obtained from the 13 

Likert-based questions enables the use of the Pearson correlation, multiple linear 

regression tests. Compiling and analyzing survey responses supported assessment of the 

extent of any relationship between the content of an alert deployed in an EHR and the 

timing of deploying an alert with a physician’s perceived adherence to reportable ACO 

quality measures. I utilized the following survey to address the research question and 

hypotheses as follows: 

13 survey questions adhered to a 5-point Likert-type scale where 5 = Strongly 

Agree, 4 = Agree, 3 = Neutral or No Opinion, 2 = Disagree, and 1 = Strongly Disagree. 

Three distinct scales supported the construction of a composite score associated with each 

study variable. Independent variable A associated with alert content characteristics were 

measured based on responses to four questions. Independent variable B associated with 

alert timing characteristics were measured based on responses to three questions. The 

dependent variable associated with physician perception of meeting ACO goals with 

improved ACO quality measure adherence was measured in the third scale comprised of 

six questions: 

Scale 1: Alert Content Characteristics 

1. Alerts triggered during physician order entry for an ACO patient should account 
for the context provided by patient specific data contained in the patient’s medical 
record. 
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2. Pop-up alerts triggered while placing orders for ACO patients should always 
include pre-populated, evidence-based override reasons. 

3. Alerts specific to the selection of a patient intervention (medication, lab, test, or 
procedure) for an ACO patient should include links to patient education materials 
when available. 

4. Alerts triggered while ordering any intervention for any ACO patient should 
contain links to additional peer-reviewed information when available. 

Scale 2: Alert Timing and Settings: 

5. All alerts should be suppressed until the last order in a session for an ACO patient 
is entered by the physician. 

6. Alerts triggered by current ordering activity for an ACO patient should be 
presented immediately as orders are entered. 

7. Alerts should be non-intrusively displayed (not requiring any user interaction) as 
a passive reminder during all order entry sessions for chronically ill ACO patients 
or those ACO patients at risk for diabetes, heart failure, or cardiovascular disease. 

Scale 3: ACO Quality Measure Compliance 

8. Alerts triggered by a physician during computerized order entry for an ACO 
patient should include substitution recommendations for appropriate, lower-cost 
interventions if available. 

9. Alerts triggered while ordering an intervention for chronically ill ACO patients or 
those ACO patients at risk for diabetes, heart failure, or cardiovascular disease 
should contain links to published guidelines, peer-reviewed literature, or other 
supportive documentation such as a published quality metrics.  

10. Alerts specific to chronically ill ACO patients or those ACO patients at risk for 
diabetes, heart failure, or cardiovascular disease should require a user-
documented override reason when the provider decides to not follow the 
recommendation contained in the alert. 

11. Pop-up alerts triggered while placing orders and contextualized by patient age and 
condition enhance compliance with ACO reportable quality measures. 
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12. Passive or non-intrusive alerts visible during electronic ordering consisting of 
general reminders for at risk ACO patient populations enhance compliance with 
ACO quality measures. 

 
13. Alerts whether non-intrusive or requiring action by the user should be placed in 

the provider’s ordering workflow to improve adherence to ACO quality measures 
 
Testing the discriminant validity of each subscale item required a correlation 

analysis of each item on a scale with the total score obtained for that scale. The 

application of Cronbach’s α supports the assessment of the interrelatedness of each 

subscale item (Green & Salkind, 2011). Bivariate linear regression analysis utilizes the 

Pearson Correlation Coefficient. This analysis was applied to determine how well each of 

the independent variables predicted the dependent variable (Green & Salkind, 2011). 

Both the multiple correlation coefficient R and the squared correlation coefficient R2 

provide sufficient information for determining the strength of any relationship necessary 

for rejecting the null hypothesis (Green & Salkind, 2011). Use of these statistical 

methods aligns with prior research conducted on physician acceptance of alerts with 

frequent use by health sciences researchers (McCullough et al., 2014; Peikari et al., 2013; 

Rickards et al., 2012).  

 Reliability and Validity 

For researchers, the work to improve the reliability and validity of a study’s 

findings continues beyond the single use of a research instrument (Rickards et al., 2012). 

The researcher’s concerns ultimately surround the meaning extracted from the analysis 

supported by the use of a particular instrument. Thus, the researcher considers (a) the 

nature of the evidence used in constructing the instrument, and (b) whether the survey 
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items convey the intended meaning to the research participants, and (c) when scored, 

whether the items contained in the instrument related appropriately to the constructs 

supporting the hypotheses (Rickards et al., 2012). 

Reliability 

Reducing the risk of obtaining unreliable scores necessitates thorough review and 

pilot testing of the survey instrument. Although no prior survey instrument existed, I 

developed the questions supporting each scale through careful review of the published 

literature. Other researchers in the field of CDS developed new instruments adapted from 

their review of the literature coupled with input from physician experts (Peikari et al., 

2013; Xiao et al., 2012). While substantive qualitative research exists with respect to the 

sociotechnical challenges associated with physician electronic ordering workflows, 

sufficient empirical findings remain scarce (Cresswell & Sheikh, 2013; Meeks et al., 

2014; Peikari et al., 2013). I reviewed the content with experienced physician executives 

and leading experts in the field of computerized CDS. The use of cognitive interviewing 

remains a common practice among researchers seeking confirmation that survey items 

convey the meaning intended (Overby et al., 2013; Rickards et al., 2012). Upon IRB 

approval, I conducted the pilot with five physician executives providing confirmation that 

scores obtained upon use of the instrument remain reliable. As applied by other 

researchers, the use of descriptive statistics and Cronbach’s coefficient α provided further 

means for ensuring the internal consistency reliability of each scale within the instrument 

(Peikari et al., 2013; Rickards et al., 2012).  
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Validity 

Validity requires confirmation that the research instrument enables the generation 

of meaningful data supporting the acceptance or rejection of a hypothesis (Etchegaray & 

Fischer, 2010). I focused on obtaining the face validity of the instrument through capture 

of feedback by experts as I developed and refined the questions pertaining to each scale. 

Other means for ensuring content validity involve the establishment of a validity score 

for each construct prior to piloting the instrument with experts. Computing a mean 

validity index for each scale approximating 70% post pilot testing further mitigates the 

validity risk associated with the use of a new instrument (Etchegaray and Fischer, 2010). 

Validity, once obtained, supports the researcher in drawing extrapolations from the 

research to the larger population (Dekkers, Elm, Algra, Romijn, & Vandenbroucke, 

2010). The potential for generalizability of the results to a larger population remains 

predicated on obtaining results from the intended sample of 68 physician executives per 

the previously calculated a priori power sample size. Given the homogenous focus of the 

study, such generalizations would be limited to the population of physician executives 

using a Cerner or Epic systems EHR within a hospital integrated ACO. 

Transition and Summary 

Section 2 contained core elements of the research project including (a) the 

description of my role as the researcher, (b) the contents of the survey instrument, (c) the 

calculation of the sample size, and (d) the efforts I employed to safeguard the rights of 

the research participants as well as the security and confidentiality of the raw data. I 

reviewed the final study design and methodology identifying the means for collecting, 
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organizing, and analyzing the data. Lastly, I reviewed my approach to mitigate risks 

associated with the validity and reliability of using a new survey instrument.  

In Section 3: Application to Profession Practice and Implications, I provide the 

research findings and share how the results relate to the current field of practice. 

Moreover, I consider the application of the study findings to society and any affect for 

change such findings may support. Last, I revisit the limitations associated with my study 

while offering suggestions for additional research that may extend my work and support 

even greater business and societal benefit.  
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Section 3: Application to Professional Practice and Implications for Change 

The results of the study are presented in this section with my interpretation of the 

findings. In seeking to answer the research question outlined in Section 1, I surveyed 

physician executives to obtain their perceptions on the relationship of the content and 

timing of a computerized order entry alert on improving adherence to ACO quality 

measures. The specific business problem was that third-party software developers lack an 

understanding about physicians’ preferences for integrated alerts supporting adherence to 

ACO quality measures while placing their electronic orders. With the completion of this 

research study, I provide suggestions for additional research that could support 

improvements in software design. Clinical software users, firms developing software 

solutions, and ultimately patients may benefit as these research findings add to a body of 

knowledge supporting business and social cases for positive change.  

Overview of Study 

 The purpose of this quantitative, correlation study was to examine the nature of 

any association between physician preferences for CDS alerts and perceptions of 

improved adherence to ACO quality measures during electronic ordering. With billions 

of dollars invested in adopting EHRs, questions surfaced with regard to achieving a 

return on this important national investment pointing to the need for improved software 

tools (Beeler et al., 2014; Rudin & Bates, 2013). As U.S. health care reform shifts 

reimbursement from a fee-for-service model toward reimbursement based on outcomes, 
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ACOs are considered part of the national strategy for achieving health care’s triple aim of 

providing better and safer care at lower costs (Berwick, 2011; Burwell, 2015).  

Improvements in the design of software tools continue to be identified as an 

ongoing need in the successful adoption and use of EHRs as hospitals and health systems 

participating in ACOs rely on advanced HIT for shared decision making (Kuperman & 

McGowan, 2013; Meeks et al., 2014; Shortell et al., 2014). Third-party software 

developers often lack an understanding of the sociotechnical needs of clinical software 

users. Software tools that fall short of the end-user’s expectations may negatively affect 

the quality and cost of care (Sittig & Singh, 2010; Smith et al., 2013; Meeks et al., 2014; 

Novak et al., 2013).  

In alignment with the stated purpose of this study to establish whether any 

significant relationship exists between the content and timing of an integrated alert and 

physician perceptions for improved ACO quality measure adherence, I surveyed 

physician executives participating in a hospital or health system associated ACO while 

using a Cerner Incorporated or Epic Systems EHR system. The empirical evidence 

supported the rejection of the null hypothesis Ho1: A significant relationship does not 

exist between the content of an alert deployed and a physician’s adherence to ACO 

quality measures. However, the empirical evidence supported the acceptance of the null 

hypothesis Ho2: A significant relationship does not exist between the timing of when an 

alert is deployed in a physician’s electronic ordering workflow and a physician’s 

adherence to ACO quality measures. These findings are discussed in detail in the 

following section. 



93 
 

 

Presentation of the Findings 

The overarching research question underpinning this research was: To what extent 

do sociotechnical factors addressed in the design of CDS software tools affect physician 

ordering behavior? A significant correlation was found between independent variable A 

(alert content) and the dependent variable (quality measure adherence). No significant 

correlation was identified between the independent variable B (alert timing) and the 

dependent variable.  

The purpose of the this quantitative, correlation study was to examine the extent 

of any relationship between the type and timing of CPOE automated alerts with physician 

perception for better adherence to reportable ACO quality measures. The independent 

variables related to sociotechnical attributes included the type of decision support 

provided and the timing for presenting an alert to physicians in an electronic ordering 

workflow. The dependent variable tied to reportable ACO quality measures supported 

analysis of physician perception toward the achievement of ACO quality measures and 

the cost reduction and performance improvement goals associated with using CDS during 

electronic ordering.  

Descriptive Statistics 

No previously validated instrument supported the combination of variables 

intended for examination. Therefore, I developed a survey instrument using a 5-point 

Likert-type scale incorporating feedback from industry experts and findings from the 

published academic literature on CDS. The survey included demographic questions 

pertaining to physician credentials (MD or DO) and type of EHR system used (Cerner or 
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Epic). The instrument included 13 5-point Likert-type questions supporting data 

collection for a standard linear multiple regression analysis. Prior to data capture for the 

final study, a brief pilot with five physician executives supported testing for reliability 

and validation of ease of completion. With the assistance of AMDIS as my community 

partner and email invitations sent to physician executives within my professional 

network, 126 physicians attempted to complete the online survey with 55% meeting all 

inclusion criteria. As depicted in Table 4, the required sample size of 68 was achieved 

with valid responses from N = 69. Table 4 includes the descriptive statistics and the 

number of survey participants for the questions pertaining to each composite variable. 

 
Table 4 
 
Descriptive Statistics on Composite Scores 
 

Variable M SD 
Cronbach’s α Number 

of items 
N 

Alert content 16.478 2.330 .631 4 69 

Alert timing 7.608 2.492 .628 3 69 

Quality  23.797 3.265 .627 6 69 

 

Produced using SPSS 22.0, the average score of all respondents on the composite 

variables of alert content, alert timing, and quality was 16.47, 7.60, and 23.79 

respectively. Although descriptive statistics do not affect the regression analysis, the 

provision of this data is useful in the characterization of the data underpinning the 

variables in the research study (Green & Salkind, 2011). In contrast to reliability statistics 

identified previously in Table 3, Cronbach’s alpha as depicted in Table 4 declined to 63% 
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for each composite variable. Many researchers considered the use of previously validated 

instruments with alphas < .70 as questionable (Pallant, 2013). In the case of a new 

research instrument, alphas > .60 are generally accepted (Churchill & Peter, 1984). As 

depicted in Figure 2, approximately two thirds of physicians had access to an Epic 

Systems EHR with one third identifying their hospital or health system provided access 

to a Cerner Incorporated EHR. Potential generalization of the research findings to the 

population of physicians at hospital or health system affiliated ACOs using market 

leading EHR systems was an important objective of the research study.  

Figure 2. EHR type by respondent (N = 69). 

The application of descriptive statistics includes an analysis of Pearson’s 

correlation coefficient. Statistically significant values indicate whether or not the 

coefficient will be represented in the population from which the sample was derived 
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(Bryman, 2012). Table 5 contains the correlation matrix including Pearson’s correlation 

coefficient values, the number of cases pertaining to each correlation, and the 1-tailed 

significance for each correlation. From Table 5, only one correlation was statistically 

significant. The correlation between the predictor variable alert content and the dependent 

variable quality was significant (r = .326, p < .003) indicating rejection of the null 

hypothesis that no significant relationship existed between the content of an alert and 

physician perception of improved ACO quality measure adherence. The correlation of r =  

.037 and p > .05 indicated less than 4% of the variation might be explained by 

characteristics of alert timing on physician perception of improved ACO quality measure 

adherence. Because the 1-tailed significance value was .381, the null hypothesis was 

accepted. No significant relationship was identified between this predictor variable and 

the dependent variable. The results of this analysis supported the underlying 

sociotechnical characteristics of an integrated alert’s content as meaningful to physician 

perceptions of improved ACO quality measure adherence. The sociotechnical attributes 

associated with the timing of presenting the alert in the physician’s ordering workflow 

was not meaningfully correlated with physician perceptions for improving quality 

measure adherence. 
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Table 5 
 
Correlations 
 

  Quality Content Timing 

Pearson’s correlation Quality 1.00 .326 .037 

 Content .326 1.000 −.013 

 Timing .037 −.013 1.000 

Sig. (1-tailed) Quality  .003 .381 

 Content .003  .458 

 Timing .381 .458  

N Quality 69 69 69 

 Content 69 69 69 

 Timing 69 69 69 

 
Parametric Assumptions and Tests for Normality 

Testing for the normality of data prior to conducting multiple regression analysis 

remains a standard practice of field researchers (Pallant, 2013). I confirmed assumptions 

of the linearity, normality, and collinearity of the data. Table 6 provides the Tolerance 

and the Variance Inflation Factors (VIFs) for each independent variable. All of the values 

of Tolerance were > .10 with no VIF values exceeding 10.0. Thus, the independent 

variables met the normality and collinearity assumption test. 
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Table 6 
 
Tests for Tolerance and Collinearity (VIF values)  
 
Composite variable Tolerance values VIF values 

Content 1.00 1.00 

Timing 1.00 1.00 

 
Inspection of the residual statistics table permits identification of outlier data 

negatively affecting the regression model (Pallant, 2013). I used the Mahalanobis value 

and Cook’s distance in the residual statistics table to confirm the assumption that no 

outliers affected the regression model (Appendix G). For Cook’s distance, a value >1.0 is 

considered problematic and likely to influence the regression model. From the table in 

Appendix G, the maximum value calculated for Cook’s distance was (.196) <1.0. A 

maximum Mahalanobis distance of 12.23 at p < .05, N = 50 was previously established as 

a guideline for field research (Stevens, 1984). With a maximum Mahalanobis distance 

calculated of 11.196, N = 69, the analysis confirms no outlier influence on the model. 

Researchers test for the normality of data using P-P plot graphs. The finding of a 

fairly straight diagonal line when evaluating the cumulative probability regressed by the 

expected variability supports the assumption for normally distributed data (Pallant, 2013). 

Figure 3 supports the assumption of normality with the diagonal line viewed from bottom 

left to the upper right in the graph. Assessing linearity with scatterplots, I found all data 

was distributed in a linear fashion as illustrated in the P-P plots for both independent 

variables (Figures 4 and 5).  
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Figure 3. Normal P-P plot of regression standardized residual of dependent 

variable, quality. 
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Figure 4. Normal P-P plot of regression standardized residual of independent 

variable, content. 
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Figure 5. Normal P-P plot of regression standardized residual of independent 

variable, timing. 

Discussion 

The results of the multiple regression analysis were significant, R2 = .108, F(2,66) 

= 3.99, p = .023. The analysis was performed to determine if any relationship existed 

between the sociotechnical characteristics of alerts determined by their content and 

timing within the physicians’ computerized ordering workflow with their perceptions for 

improved adherence to ACO quality measures. The sample correlation coefficient was 

.33 with approximately 11% of the variation in the sample attributed by the strength of 

the linear combination of the alert content and timing characteristics. As identified and 
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shown in Table 7, the relationship between the predictor variable timing and the 

dependent variable was not statistically significant with p = .724. Given the results of 

these correlations, the hypothesis of a relationship between alert timing and quality 

necessitates acceptance of the null hypothesis. With respect to the hypothesis of a 

relationship between alert content and quality, the null is rejected. The results of the 

multiple regression analysis are provided in Table 7. 

Table 7 
 
Characteristics of Alert Content and Timing Supporting Improved ACO Quality Measure 
Adherence  
 
Source B SE β t p 95%LB 95%UB 

Content .458 .163 .327 2.81 .007 .132 .783 

Timing .054 .152 .041 .355 .724 -.250 .358 

Note. R2 = .108, F(2,66) = 3.99, p = .023.  
 

These findings lend further support to certain aspects of sociotechnical theory. 

Specifically, a previously published sociotechnical framework guides software 

developers in addressing complex systems through an improved understanding of the 

communication patterns, workflows, and tools required by users across the system. 

Among the dimensions identified in their framework, Sittig and Singh (2010) included 

technical components such as content and software as well as social dimensions such as 

software users and processes. Organizational processes include an understanding of 

required clinical workflows, internal policies, and procedures (Menon et al., 2014; 

Murphy, Singh, & Berlin, 2014). Many hospital and health system procedures are 
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established with an aim toward achieving specific outcomes such as reporting on 

measures to meet MU criteria and CMS quality measures tied to the performance of 

ACOs.  

In this study, a technical dimension in software design specific to alert content 

was highly correlated with the physician software user’s perception of improved quality 

measure adherence. In the current body of published literature, much has been written 

about physician nonadherence to alerts due to issues of alert fatigue and information 

overload (Bowman, 2013; Menon et al., 2014; Smith et al.). Previous research identified 

that primary care physicians saw more than 60 alerts per day requiring nearly an hour of 

their clinic time to manage (Murphy, Reis, Sittig, & Singh, 2012). In a follow up survey, 

physicians claimed nearly 90% of alerts were unwarranted with 2/3 of the physicians 

reporting they could not manage the volume of alerts they triggered daily (Singh, 

Spitzmueller, Petersen, Sawhney, & Sittig, 2013).  

The results of the correlation for alert content and quality seem to reinforce the 

need for software developers to remain mindful of the context of alerts in the design of 

new software tools. The physicians surveyed for this study found certain attributes of 

alert content when aligned with evidence and specific to a patient’s clinical and medical 

status as beneficial. With no significant correlation found between the timing of when an 

alert was presented during an ordering session and the perception of improved quality 

measure adherence, there is less support for the provision of guidance to third-party 

software developers. Only three questions in the survey supported the construct for 

workflow timing. Further, the alert timing window was limited to the ordering session 
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with an emphasis on presenting alerts automatically in a synchronous fashion with 

ordering. Such a narrowly defined construct for workflow timing likely biased the results 

obtained. For developers, the sociotechnical dimension related to understanding clinical 

workflow is frequently cited as a significant and complex challenge in the design and 

adoption of software tools (Beeler, Bates, & Hug, 2014; Perna, 2012; Sittig & Singh, 

2010; Takian, Sittig, Singh, & Barber, 2014). 

Applications to Professional Practice 

The adoption of EHRs in the U.S. supported by government funding and 

regulations supports a new era of health care reform relying on improvements in the cost 

and quality of care delivered through technology enabled systems (Burwell, 2015). A 

primary benefit of EHRs arises with the ability to consolidate vast amounts of patient and 

clinical data for purposes of supporting better-informed clinical decisions. However, in 

gaining access to voluminous data in an EHR system, software vendors created solutions 

that fatigued physicians increasing the risk for patient harm (Menon et al., 2014; Murphy, 

Singh, & Berlin, 2014). 

My research efforts focused on capturing software user needs for improved and 

workflow compatible EHR integrated CDS tools. The application of sociotechnical 

theory supported definition of variable constructs. The development of new constructs 

aided the process of assessing the extent of any significant relationship between alert 

content and timing specific to provider perceptions of better adherence to ACO quality 

measures. The study findings contribute to the current business application of developing 

improved CDS software tools in four ways. 
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 First, the significant correlate of alert content with improved perceptions for 

quality measure adherence underpins the need for robust clinical algorithms in the design 

of alerts. Alert design focused on content containing patient specific factors and latest 

evidence may be perceived as more beneficial than the vast majority of alerts primary 

care physicians currently manage in their daily practice (Singh et al., 2013). Second, the 

lack of correlation between workflow timing and quality underscores the importance of 

conducting further research in this sociotechnical dimension. Software developers who 

lack access to an EHR environment for testing new CDS tools rely on the published 

literature for insights in regard to addressing potential gaps and unmet client needs. 

Increasingly, software tools developed and tested in collaboration in an EHR test 

environment permit more extensive usability testing (Smith et al., 2013).  

Third, the survey completed by physician executives of technology enabled ACO 

affiliated hospitals and health systems using a leading commercial EHR system supports 

generalizability of the sample findings to the population. The recently published goals of 

CMS to tie nearly 30% of current fee for service payments to alternative models such as 

ACOs by the end of 2016, heightens the need for improved CDS tools in the EHR 

(Burwell, 2015). Fourth, this research underscores the value of collaboration between 

software vendors and clinical software users in applying the sociotechnical framework in 

software development and design efforts. These sociotechnical considerations are well 

established in the peer-reviewed literature and vital to the successful undertaking of any 

new software tool development initiative (Smith et al., 2013). 
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Implications for Social Change 

An estimated 6 million patients receive care from an ACO (CMS, 2014). The 

decision by CMS to shift half of all payments to this type of an alternative payment 

model by 2018 suggests that number will increase over the next few years (Burwell, 

2015). This research was undertaken in an effort to add to the body of evidence related to 

CDS software tool use within commercial EHRs at ACO affiliated hospitals.  

The findings from this research might inform software design improvements. 

Specifically, the focus on the content of alerts provided to physicians during electronic 

order entry might alleviate concerns of alerts contributing to physician fatigue. Physicians 

overburdened with information and managing an excessive volume of inconsequential 

alerts may neglect to respond to an alert that is crucial to the health of the patient (Menon 

et al., 2014; Murphy, Singh, & Berlin, 2014). Providing physicians with alert content that 

is clinically relevant and grounded in the evidence might support better decision-making 

thereby improving patient care.  

 ACOs potentially provide a vehicle for achieving health care’s triple aim 

(Berwick, 2011). Increasingly, health care systems rely on EHRs as a technology 

platform for managing care delivery with more than 90% of hospitals using a certified 

EHR system (Burwell, 2015). Improving the decision support tools for physicians 

managing ACO patients might support the vision of a technology enabled health care 

system that transforms clinical data for active decision making for the benefit of health 

care providers, patients, and their families. Enabling physicians to deliver care more 

efficiently and more safely might be an outcome of improving CDS software tools. The 
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significant relationship identified between alert content and physician perception of 

improved adherence with ACO quality measures, suggests the design of CDS software 

tools might support improvements in the management of high-risk patients enrolled in 

ACOs (Kuperman & McGowan, 2013. The findings from this study when applied to 

improving CDS tools might enable organizations with significant investments in HIT to 

realize clinical and financial benefits through improved ACO performance and CMS 

reimbursement.  

Recommendations for Action 

The study findings in conjunction with the related academic literature provided 

several recommendations for action. When undertaken by the software vendors and 

health care stakeholders engaged in the design and implementation CDS tools, these 

ideas might contribute to the realization of desired improvements in both the business 

application and positive social change areas. Although the survey participants represented 

physician executive software users of two commercial EHR systems, the proposed next 

steps should apply more broadly to physician users of EHRs supporting care delivery for 

complex patient populations. 

The significant correlate of alert content and quality measure adherence aligned 

with previous findings that well designed CDS supports improvements in the quality and 

safety of care when applied in EHRs with advanced capabilities to support CDS 

(Bloomrosen et al., 2011; Horsky et al., 2012). The findings of Peikari et al. (2013) 

reinforced the importance of information quality provided to physicians during CPOE as 

a significant precursor to improving patient safety. I recommend that (a) software 



108 
 

 

developers collaborate extensively with internal physician teams and end-users on all 

CDS development efforts, and (b) focus on translating static evidence and best practice 

guidelines into actionable and understandable point of care recommendations, while (c) 

maximizing the interrogation of relevant patient and clinical data in the process of 

designing CPOE alerts.  

Although no significant relationship was found between alert timing and quality, 

the findings aligned with concerns expressed by other researchers in regard to the 

complexity and consideration of placing interruptive alerts in the ordering workflow 

(Perna, 2012; Smith et al., 2013). The construct I created to measure alert timing 

provided examples of synchronous alert delivery during the period of order entry. I 

recommend CDS developers explore the asynchronous timing of alert delivery that might 

lessen concerns of alert fatigue during order entry while supplying meaningful 

information supporting improvements in patient care (Perna, 2012).  

Collaboration between software developers, software users, and health care 

stakeholders involved in the delivery and management of CDS tools remains a key 

consideration in improving CDS tools. Sociotechnical factors underpin software content, 

usability, and organizational processes (Menon et al., 2014). I made no distinction in my 

research between ambulatory and in-patient physician executive subjects. The ability to 

tailor CDS by treatment venue and specialty provides an opportunity for software 

developers to apply these sociotechnical factors more fully. I recommend the careful 

consideration and application of a sociotechnical framework in CDS software 

development efforts.  
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Recommendations for Further Study 

The research study was powered at .80 with a medium effect size requiring a 

sample of N = 68. The limited demographic data I captured included the identification of 

type of EHR system used. Of 69 valid subjects, 22 used a Cerner Incorporated EHR 

system, and 47 subjects used an Epic Systems EHR. The study was not powered for a 

subset analysis on the effect of EHR type with the regression model. A larger study 

powered for this type of subset analysis might generate additional insights to guide third- 

party software development efforts. While the findings are potentially generalizable to 

the population of physician executives using EHRs with advanced CDS capabilities, there 

might be important differences in the perceptions of end-users with experience gained 

from a single EHR system. 

The research focused on physician executives working in advanced, technology 

enabled health care hospitals and systems participating in ACOs. These organizations 

generally commit to improving the quality and cost of care for patient populations with 

chronic conditions such as diabetes and heart failure (Shortell et al., 2014). The research 

lacked participation by other software users such as nurses, allied health professionals, 

and patients. With the opportunity to manage ACO patients longitudinally from their 

homes, to a hospital, physician office, rehab, or skilled nursing facility, a need persists for 

additional research on the design and applicability of CDS tools by venue of care and by 

stakeholder (Balka, Tolar, Coates, & Whitehouse, 2013).  

Discussions with subject matter experts from industry and academia along with 

insights taken from the published literature on CDS informed the design of the instrument 
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used in the research. The pilot survey results obtained from five physician executives 

included physicians familiar with my professional work. The reliability statistic 

calculated for each scale at the time of the pilot was α >.70; however, the reliability 

statistic fell below this threshold at the conclusion of the full study with an average of α = 

.63. The opportunity remains for further refinement of the instrument. In addition, 

qualitative research might supplement these findings with exploration of end-user 

attitudes toward alert design attributes of (a) workflow timing, (b) organizational 

processes by care venue, and (c) the synchronous versus asynchronous delivery of an 

alert. 

Reflections 

My interest in pursuing this research arose with my professional employment in a 

SaaS firm focused on the development of CDS tools. The concept of actionable CDS 

guides the development work at my firm. It is possible I biased the results of the pilot 

survey with the participation of physician executives inclined toward the use of 

interruptive, clinical algorithm derived alerts.  

I was gratified; however, to have the participation of AMDIS as my community 

partner. I knew from the literature the challenges associated in obtaining responses to an 

online survey. Obtaining the number of responses needed would not have occurred 

without the support of AMDIS and numerous industry and academic professional 

colleagues. Exclusion criteria eliminated 57 physician executives who attempted to 

participate resulting in N = 69 complete responses. A few participants emailed me in 

follow-up to let me know they had taken the survey. They remarked positively on the 
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effort and the importance of the research. Those email responses from busy physician 

executives invigorated my efforts to successfully complete this research effort and 

provide some level of contribution to the field.  

In deciding on the design of the study, I considered the professional interests of 

health care researchers for an evidence-based approach in generating data sufficient to 

accept or reject a stated hypothesis. A mixed-methods study combining qualitative 

exploration of stakeholder attitudes with a quantitative or experimental design was not 

feasible in the context of my DBA studies. However, the opportunity to expand the 

findings from this research with the application of those methods remains a worthy 

pursuit after my graduation from Walden University. 

Summary and Study Conclusions 

The findings from this research supported the alternative hypothesis for the 

relationship of alert content and perceptions of improved quality measure adherence. No 

significant correlation was found between alert timing and perceptions of improved 

quality measure adherence requiring acceptance of the null hypothesis. These results 

underscored the importance of examining sociotechnical theory in the context of CDS 

software design efforts.  

Prior research validated the application of a sociotechnical framework to such 

initiatives (Sittig & Singh, 2010; Smith et al., 2013). With billions of dollars invested in 

the United States in HIT during a significant climate of health care reform, obtaining a 

return on this investment necessitates leveraging the data captured in EHRs for efficient 

and effective clinical decisions. Poor use of technology coupled with poor design of CDS 
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tools contributed to problems of information overload and alert fatigue. Rather than 

empowering physicians, these deficiencies in tools contributed to patient harm (Menon et 

al., 2014; Murphy, Singh, & Berlin, 2014). 

Software vendors, health care providers, the government, and patients are all 

vested stakeholders in the successful adoption of HIT (Denham et al., 2013). Applying 

the insights from this research in conjunction with the existing field of knowledge might 

support improvements in CDS software tools. Those tools, in turn, might contribute to the 

achievement of health care’s triple aim. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



113 
 

 

References 

Aggelidis, V. P., & Chatzoglou, P. D. (2012). Hospital information systems: Measuring 

end user computing satisfaction (EUCS). Journal of Biomedical 

Informatics, 45(3), 566–579. doi:10.1016/j.jbi.2012.02.009 

Agha, L. (2014). The effects of health information technology on the costs and quality of 

medical care. Journal of Health Economics, 34,19–30. 

doi:10.1016/j.jhealeco.2013.12.005 

Alessi, E. J, & Martin, J. I. (2010). Conducting an internet-based survey: Benefits,  

 pitfalls, and lessons learned. Social Work Research, 34(2), 122–128. Retrieved 

from  

 https://www.naswpress.org/publications/journals/swr.html  

Ancker, J. S., Kern, L. M., Abramson, E., & Kaushal, R. (2012). The triangle model for 

evaluating the effect of health information technology on healthcare quality and 

safety. Journal of the American Medical Informatics Association, 19(1), 61–65. 

doi:10.1136/amiajnl-2011-000385 

Anderson, J. A., Godwin, K. M., Saleem, J. J., Russell, S., Robinson, J. J., & Kimmel, B. 

(2013). Accessibility, usability and usefulness of a web-based clinical decision 

support tool to enhance provider-patient communication around Self-management 

TO Prevent (STOP) stroke. Health Informatics Journal, 0(0), 1–14. 

doi:10.1177/1460458213493195 

Anseel, F., Lievens, F., Schollaert, E., & Choragwicka, B. (2010). Response rates in 

organizational science, 1995–2008: A meta-analytic review and guidelines for 



114 
 

 

survey researchers. Journal of Business and Psychology, 25(3), 335–349. 

doi:10.1007/s10869-010-9157-6 

Asch, D. A., Muller, R. W., & Volpp, K. G. (2012). Automated hovering in health care: 

Watching over the 5000 hours. New England Journal of Medicine, 367(1), 1–3. 

doi:10.1056/NEJMp1203869 

Atkins, D., & Cullen, T. (2013). The future of health information technology: 

Implications for research. Medical Care, 51, S1–S3. 

doi:10.1097/MLR.0b013e3182848a52 

Audet, A. M., Squires, D., & Doty, M. M. (2014). Where are we on the diffusion curve? 

Trends and drivers of primary care physicians' use of health information 

technology. Health Services Research, 49(1pt2), 347–360. doi:10.1111/1475-

6773.12139 

Balka, E., Tolar, M., Coates, S., & Whitehouse, S. (2013). Socio-technical issues and 

challenges in implementing safe patient handovers: Insights from ethnographic 

case studies. International Journal of Medical Informatics, 82(12), e345–e357. 

Barnes, Unruh, Chukmaitov, & van Ginnekan (2014). Accountable care organizations in 

the USA: Types, developments and challenges. Health Policy, 118(1), 1–7. 

doi:10.1016/j.healthpol.2014.07.019  

Baysari, M. T., Reckmann, M. H., Li, L., Day, R. O., & Westbrook, J. I. (2012). Failure 

to utilize functions of an electronic prescribing system and the subsequent 

generation of ‘technically preventable’ computerized alerts. Journal of the 

American Medical Informatics Association, 19(6), 1003–1010.  



115 
 

 

 doi:10.1136/amiajnl-2011-000730 

Beeler, P. E., Bates, D. W., & Hug, B. L. (2014). Clinical decision support systems. Swiss 

Medical Weekly, 144. doi:10.4414/smw.2014.14073 

Bell, G. C., Crews, K. R., Wilkinson, M. R., Haidar, C. E., Hicks, J. K., Baker, D. K. 

(2014). Development and use of active clinical decision support for preemptive 

pharmacogenomics. Journal of the American Medical Informatics 

Association, 21(e1), e93–e99. doi:10.1136/amiajnl-2013-001993 

Berkowitz, S. A., & Pahira, J. J. (2014). Accountable Care Organization Readiness and 

Academic Medical Centers. Academic Medicine, 89(9), 1210–1215. 

doi:10.1097/ACM.0000000000000365 

Berwick, D. M. (2011). Launching accountable care organizations—the proposed rule for 

the Medicare Shared Savings Program. New England Journal of Medicine, 364. 

doi:10.1056/NEJMp1103602 

Berwick, D. M., & Hackbarth, A. D. (2012). Eliminating waste in US health 

care. Journal of the American Medical Association, 307, 1513–1516. 

doi:10.1001/jama.2012.362 

Bloomrosen M., Starren J., Lorenzi N. M., Ash J. S., Patel V. L., & Shortliffe, E. H. 

(2011). Anticipating and addressing the unintended consequences of health IT and 

policy: A report from the AMIA 2009 Health Policy Meeting. Journal of the 

American Medical Information Association, 18(1) 82–90. 

doi:10.1136/jamia.2010.007567 

Bowman, S. (2013). Impact of electronic health record systems on information integrity: 



116 
 

 

Quality and safety implications. Perspectives in Health Information 

Management, 10(Fall). Retrieved from http://perspectives.ahima.org/ 

Bryman, A. (2012). Social research methods. New York, NY: Oxford University Press. 

Burwell, S. M. (2015). Setting value-based payment goals: HHS efforts to improve US 

health care. New England Journal of Medicine, 372,(10), 897–899. 

doi:10.1056/NEJMp1500445 

Caceres, S. B. (2013). Electronic health records: Beyond the digitization of medical 

files. Clinics, 68, 1077-1078. doi:10.6061/clinics/2013(08)02 

Calman, N., Hauser, D., Lurio, J., Wu, W. Y., & Pichardo, M. (2012). Strengthening 

public health and primary care collaboration through electronic health 

records. American Journal of Public Health, 102, e13–e18. 

doi:10.2105/AJPH.2012.301000 

Carayon, P., Wetterneck, T. B., Rivera-Rodriguez, A. J., Hundt, A. S., Hoonakker, P., 

Holden, R., & Gurses, A. P. (2014). Human factors systems approach to 

healthcare quality and patient safety. Applied Ergonomics, 45(1), 14–25. 

doi:10.1016/j.apergo.2013.04.023 

Centers for Medicare and Medicaid Services. (2014). 2014 ACOs. Retrieved from 

http://www.cms.gov/site-search/search-results.html?q=ACO 

Chalasani, S., Jain, P., Dhumal, P., Moghimi, H., & Wickramasinghe, N. (2014). Content 

architecture applications in healthcare. Health and Technology, 1–9. 

doi:10.1007/s12553-014-0075-x 

Chokshi, D. A., Schectman, G., & Agarwal, M. (2013, December). Patient-centered 



117 
 

 

innovation: The VA approach. Health Care, 1 (3-4), 72–75. 

doi:10.1016/j.hjdsi.2013.07.002 

Chukmaitov, A., Harless, D. W., Bazzoli, G. J., Carretta, H. J., & Siangphoe, U. (2014). 

Delivery system characteristics and their association with quality and costs of 

care: Implications for accountable care organizations. Health Care Management 

Review. 00 (0), 00-00. doi:10.1097/HMR.0000000000000014 

Churchill Jr, G. A., & Peter, J. P. (1984). Research design effects on the reliability of 

rating scales: A meta-analysis. Journal of Marketing Research, 360–375. 

doi:10.2307/3151463 

Constantinides, P. (2013). The communicative constitution of IT innovation. Information 

and Organization, 23, 215-232. doi:10.1016/j.infoandorg.2013.07.002 

Cresswell, K., & Sheikh, A. (2013). Organizational issues in the implementation and 

adoption of health information technology innovations: An interpretative 

review. International Journal of Medical Informatics, 82(5), e73–e86. 

doi:10.1016/j.ijmedinf.2012.10.007 

Dekkers, O. M., von Elm, E., Algra, A., Romijn, J. A., & Vandenbroucke, J. P. (2010). 

How to assess the external validity of therapeutic trials: A conceptual approach.  

 International Journal of Epidemiology, 39, 89–94. doi:10.1093/ije/dyp174  

Denham, C. R., Classen, D. C., Swenson, S. J., Henderson, M. J., Zeltner, T., & Bates, D. 

W. (2013). Safe use of electronic health records and health information 

technology systems: Trust but verify. Journal of Patient Safety, 9, 177–189. 

doi:10.1097/PTS.0b013e3182a8c2b2 



118 
 

 

Dixon, B. E., Simonaitis, L., Goldberg, H. S., Paterno, M. D., Schaeffer, M., 

Hongsermeier, T., et al. (2013). A pilot study of distributed knowledge 

management and clinical decision support in the cloud. Artificial Intelligence In 

Medicine, 1–9. doi:10.1016/j.artmed.2013.03.004 

Dubois, R. W., Feldman, M., Lustig, A., Kotzbauer, G., Penso, J., Pope, S. D., & 

Westrich, K. D. (2014). Are ACOs ready to be accountable for medication 

Use? Journal of Managed Care Pharmacy, 20(1), 17–21. Retrieved from 

http://amcp.org/jmcp/ 

Eastaugh, Steven R. (2013). Electronic health records lifecycle cost. Journal Health Care 

Finance, 39(4), 36–43. Retrieved from 

http://www.aspenpublishers.com/Product.asp?catalog_name=Aspen&product_id=

SS10786767 

Elshaug, A. G., McWilliams, J. M., & Landon, B. E. (2013). The value of low-value lists 

Journal of the American Medical Association, 309, 775–776. 

doi:10.1001/jama.2013.828. 

Etchegaray, J. M., & Fischer, W. G. (2010). Understanding evidence-based research 

methods: Developing and conducting effective surveys. Health Environments 

Research and Design Journal (HERD), 3(4), 8–13. Retrieved from 

www.herdjournal.com 

 Fan, W., & Yan, Z. (2010). Factors affecting response rates of the web survey: A 

systematic review. Computers in Human Behavior, 26, 132–139. 

doi:10.1016/j.chb.2009.10.015  



119 
 

 

Fleurence, R., Selby, J. V., Odom-Walker, K., Hunt, G., Meltzer, D., Slutsky, J. R., & 

Yancy, C. (2013). How the patient-centered outcomes research institute is 

engaging patients and others in shaping its research agenda. Health Affairs, 32, 

393–400. doi:10.1377/hlthaff.2012.1176 

Goldberg, H. S., Paterno, M. D., Rocha, B. H., Schaeffer, M., Wright, A., Erickson, J. L., 

& Middleton, B. (2014). A highly scalable, interoperable clinical decision support 

service. Journal of the American Medical Informatics Association, 21(e1), e55–

e62. doi:10.1136/amiajnl-2013-001990 

Grace, A., Mahony, C., O’Donoghue, J., Heffernan, T., Molony, D., & Carroll, T. (2013). 

Evaluating the effectiveness of clinical decision support systems: The case of 

multimorbidity care. Journal of Decision Systems, 22(2), 97–108. 

doi:10.1080/12460125.2013.780320 

Green, S. B., & Salkind, N. J. (2011). Using SPSS for Windows and Macintosh: 

Analyzing and understanding data (6th ed.). Upper Saddle River, NJ: Pearson. 

Hamilton, S. and Chervany N. (1981) Evaluating information systems 

 effectiveness – part I: Comparing evaluation approaches, MIS Quarterly, 

 3, 55–69. Retrieved from http://www.misq.org/ 

Hackl, W. O., Ammenwerth, E., Marcilly, R., Chazard, E., Luyckx, M., Leurs, P., & 

Beuscart, R. (2013). Clinical evaluation of the ADE scorecards as a decision 

support tool for adverse drug event analysis and medication safety management. 

British Journal of Clinical Pharmacology, 76, 78–90. doi:10.1111/bcp.12185 

Harle, C. A., Huerta, T. R., Ford, E. W., Diana, M. L., & Menachemi, N. (2013). 



120 
 

 

Overcoming challenges to achieving meaningful use: Insights from hospitals that 

successfully received Centers for Medicare and Medicaid Services payments in 

2011. Journal of the American Medical Informatics Association, 20(2), 233–237. 

doi:10.1136/amiajnl-2012-001142 

HIMSS (2010). HIMSS dictionary of healthcare technology terms, acronyms, and 

organizations (2nd ed.). Chicago, IL: Healthcare Information and Management 

Systems Society. 

Hjørland, B. (2011). Evidence‐based practice: An analysis based on the philosophy of 

science. Journal of the American Society for Information Science and 

Technology, 62, 1301–1310. doi:10.1002/asi.21523 

Hohwu, L., Lyshol, H., Gissler, M., Jonsson, H., Petzold, M., & Obel, C. (2013). Web- 

 based versus traditional paper questionnaires: A mixed-mode survey with a 

Nordic perspective. Journal of Medical Internet Research, 15(8), e173. 

doi:10.2196/jmir.2595 

Hollin, I., Griffin, M., & Kachnowski, S. (2012). How will we know if it’s working? A 

multi-faceted approach to measuring usability of a specialty-specific electronic 

medical record. Health Informatics Journal, 18, 219–232. 

doi:10.1177/1460458212437008 

Horsky, J., Schiff, G. D., Johnston, D., Mercincavage, L., Bell, D., & Middleton, B. 

(2012). Interface design principles for usable decision support: A targeted review 

of best practices for clinical prescribing interventions. Journal of Biomedical 

Informatics, 45, 1202-1216. doi:10.1016/j.jbi.2012.09.002 



121 
 

 

Johanson, G., & Brooks, G. (2010). Initial scale development: Sample size for pilot  

 studies. Educational and Psychological Measurement, 70, 394–400.  

 doi:10.1177/0013164409355692  

Jung, M., Hoerbst, A., Hackl, W. O., Kirrane, F., Borbolla, D., Jaspers, M. W., et al. 

(2013). Attitude of physicians towards automatic alerting in computerized 

physician order entry systems. Methods of Information in Medicine, 52, 99–108. 

doi:10.3414/ME12-02-0007 

Kaplowitz, M., Lupi, F., Couper, M., & Thorp, L. (2012). The effect of invitation design  

 on web survey response rates. Social Science Computer Review, 30, 339–349.  

 doi:10.1177/0894439311419084  

Karnik, K. (2014). FDA regulation of clinical decision support software. Journal of Law 

and the Biosciences, 1–7. doi:10.1093/jlb/lsu004 

Kawamoto, K., Houlihan, C. A., Balas, E. A., & Lobach, D. F. (2005). Improving clinical 

practice using clinical decision support systems: A systematic review of trials to 

identify features critical to success. British Medical Journal, 330, 765. 

doi:10.1136/bmj.38398.500764.8F 

Kawamoto, K., Jacobs, J., Welch, B. M., Huser, V., Paterno, M. D., Del Fiol, G., ... & 

Curtis, A. C. (2012). Clinical information system services and capabilities desired 

for scalable, standards-based, service-oriented decision support: Consensus 

assessment of the Health Level 7 clinical decision support work group. In AMIA 

Annual Symposium Proceedings (Vol. 2012, p. 446). American Medical 

Informatics Association. Retrieved from 



122 
 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540445/pdf/amia_2012_symp_0

446.pdf 

Kellermann, A. L., & Jones, S. S. (2013). What it will take to achieve the as-yet-

unfulfilled promises of health information technology? Health Affairs, 32, 63-68. 

doi:10.1377/hlthaff.2012.0693 

Klabunde, C. N., Willis, G. B., & Casalino, L. P. (2013). Facilitators and barriers to 

survey participation by physicians: A call to action for researchers. Evaluation & 

the Health Professions, 36, 279-295. doi:10.1177/0163278713496426 

Koopman, R. J., Kochendorfer, K. M., Moore, J. L., Mehr, D. R., Wakefield, D. S., 

Yadamsuren, B., ... & Belden, J. L. (2011). A diabetes dashboard and physician 

efficiency and accuracy in accessing data needed for high-quality diabetes 

care. The Annals of Family Medicine, 9, 398-405. doi:10.1370/afm.1286 

Koppel, R. (2013). Demanding utility from health information technology. Annals of 

Internal Medicine, 158, 845–846. doi:10.7326/0003-4819-158-11-201306040-

00012 

Krist, A. H., Beasley, J. W., Crosson, J. C., Kibbe, D. C., Klinkman, M. S., Lehmann, C. 

U., ... & Waldren, S. E. (2014). Electronic health record functionality needed to 

better support primary care. Journal of the American Medical Informatics 

Association, 21(5), 764–771. doi:10.1136/ amiajnl-2013-002229 

Kuperman, G. (2011) Health-information exchange: Why are we doing it, 

 and what are we doing? Journal American Medical Informatics Association, 

18(5), 678–672. doi:10.1136/amiajnl-2010-000021 



123 
 

 

Kuperman, G. J., & McGowan, J. J. (2013). Potential unintended consequences of health 

information exchange. Journal of General Internal Medicine, 28, 1663–1666. 

doi:10.1007/s11606-012-2313-0 

Lan, L., & Lian, Z. (2010). Application of statistical power analysis: How to determine  

 the right sample size in human health, comfort, and productivity research. 

Building and Environment, 45, 1202–1213. doi:10.1016/j.buildenv.2009.11.002  

Lanham, H. J., Sittig, D. F., Leykum, L. K., Parchman, M. L., Pugh, J. A., & McDaniel, 

R. R. (2014). Understanding differences in electronic health record (EHR) use: 

Linking individual physicians’ perceptions of uncertainty and EHR use patterns in 

ambulatory care. Journal of the American Medical Informatics Association, 21(1), 

73–81. doi:10.1136/amiajnl-2012-001377 

Leroux, J., Rizzo, J., & Sickles, R. (2012). The role of self-reporting bias in health, 

mental health and labor force participation: A descriptive analysis. Empirical 

Economics, 43, 525–536. doi:10.1007/s00181-010-0434-z 

Lewis, K., Gonzalez, M., & Kaufman, J. (2012). Social selection and peer influence in an 

online social network. Proceedings of the National Academy of Sciences, 109(1), 

68–72. doi:10.1073/pnas.1109739109. 

Leykum, L., Kumar, P., & Parchman, M. (2012). Use of an agent-based model to 

understand clinical systems. Journal of Artificial Societies and Social Simulation, 

27, 897–917. doi:10.1002/job.392 

Liebovitz, D. (2013). Meaningful EHR attributes for an era of accountability, 

transparency, shared decision making, and value assessment. Journal of Legal 



124 
 

 

Medicine, 34, 43–53. doi:10.1080/01947648.2013.768145 

Linder, J. A., Schnipper, J. L., & Middleton, B. (2012). Method of electronic health 

record documentation and quality of primary care. Journal of the American 

Medical Informatics Association, 19(6), 1019–1024. doi:10.1136/amiajnl-2011-

000788 

McCullough, J., Zimmerman, F. J., Rodriguez, H. P., Bell, D. S., & Torrens, P. R. (2014). 

Impact of clinical decision support on receipt of antibiotic prescriptions for acute 

bronchitis and upper respiratory tract infection. Journal of the American Medical 

Informatics Association, 21(6), 1091–1097. doi:10.1136/ amiajnl-2014-002648 

McCoy, A. B., Waitman, L. R., Lewis, J. B., Wright, J. A., Choma, D. P., Miller, R. A., 

& Peterson, J. F. (2012). A framework for evaluating the appropriateness of 

clinical decision support alerts and responses. Journal of the American Medical 

Informatics Association, 19(3), 346–352. doi:10.1136/amiajnl-2011-000185 

McGinn, C., Gagnon, M.-P., Shaw, N., Sicotte, C., Mathieu, L., Leduc, Y., et al. (2012). 

Users’ perspectives of key factors to implementing electronic health records in 

Canada: A Delphi study. BMC Medical Informatics and Decision Making, 12(1), 

105. doi:10.1186/1472-6947-12-105 

McGowan, J. J., Cusack, C. M., & Bloomrosen, M. (2012). The future of health IT 

innovation and informatics: a report from AMIA's 2010 policy meeting. Journal 

of the American Medical Informatics Association, 19(3), 460–467. 

doi:10.1136/amiajnl-2011-000522 

Maciejewski, M. L., Wang, V., Burgess, J. F., Bryson, C. L., Perkins, M., & Liu, C. F. 



125 
 

 

(2013). The continuity and quality of primary care. Medical Care Research and 

Review, 70, 497–513. doi:10.1177/1077558713495454 

McLeod, C. C., Klabunde, C. N., Willis, G. B., & Stark, D. (2013). Health care provider 

surveys in the United States, 2000–2010 a review. Evaluation & the Health 

Professions, 36, 106-126. doi:10.1177/0163278712474001 

McMurray, J., Hicks, E., Johnson, H., Elliott, J., Byrne, K., & Stolee, P. (2013). ‘Trying 

to find information is like hating yourself every day’: The collision of electronic 

information systems in transition with patients in transition. Health Informatics 

Journal, 19, 218-232. doi:10.1177/1460458212467547 

Mahon, P. Y. (2014). Internet Research and Ethics: Transformative issues in nursing 

education research. Journal of Professional Nursing, 30, 124–129. 

doi:10.1016/j.profnurs.2013.006.007 

Marsolo, K. (2012). Informatics and operations--let's get integrated. Journal of the 

American Medical Informatics Association, 20(1), 122–124. doi:10.1136/amiajnl-

2012-001194 

Meeks, D. W., Takian, A., Sittig, D. F., Singh, H., & Barber, N. (2014). Exploring the 

sociotechnical intersection of patient safety and electronic health record 

implementation. Journal of the American Medical Informatics 

Association, 21(e1), e28–e34. doi:10.1136/amiajnl-2013-001762 

Menon, S., Smith, M. W., Sittig, D. F., Petersen, N. J., Hysong, S. J., Espadas, D., ... & 

Singh, H. (2014). How context affects electronic health record-based test result 

follow-up: A mixed-methods evaluation. British Medical Journal open, 4(11), 



126 
 

 

e005985. doi:10.1136/bmjopen-2014- 005985  

Middleton, B., Bloomrosen, M., Dente, M. A., Hashmat, B., Koppel, R., Overhage, J. M., 

... & Zhang, J. (2013). Enhancing patient safety and quality of care by improving 

the usability of electronic health record systems: Recommendations from 

AMIA. Journal of the American Medical Informatics Association, 20(e1), e2–e8. 

doi:10.1136/amiajnl-2012-001458 

Muhlestein, D., Gardner, P., Merrill, T., Petersen, M., Tu, T. (2014). A taxonomy of 

accountable care organizations: Different approaches to achieve the triple aim. 

Retrieved from http://leavittpartners.com/aco-publications/ 

Munn, Z., McArthur, A., & Moola, S. (2010). Summaries of systematic reviews on 

nursing-related issues from the Cochrane Library, Joanna Briggs Institute and 

other evidence review, organizations: prepared by Joanna Briggs Institute. 

Journal of Advanced Nursing, 66, 16-21. doi:10.1111/j.1365-2648.2009.05187.x  

Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health 

care. Journal of the American Medical Association, 309, 1351–1352. 

doi:10.1001/jama.2013.393. 

Murphy, D. R., Reis, B., Sittig, D. F., & Singh, H. (2012). Notifications received by 

primary care practitioners in electronic health records: A taxonomy and time 

analysis. The American Journal of Medicine, 125(2), 209–e1. 

doi:10.1016/j.amjmed.2011.07.029 

Murphy, D. R., Singh, H., & Berlin, L. (2014). Communication breakdowns and 

diagnostic errors: A radiology perspective. Diagnosis, 1(4), 253–261. 



127 
 

 

doi:10.1515/dx-2014-0035 

Norman, G. (2010). Likert scales, levels of measurement and the “laws” of 

statistics. Advances in Health Sciences Education, 15, 625–632. doi:10.1007/s-

10459-010-9222-y 

Novak, L. L., Holden, R. J., Anders, S. H., Hong, J. Y., & Karsh, B. T. (2013). Using a 

sociotechnical framework to understand adaptations in health IT 

implementation. International Journal of Medical Informatics, 82(12), e331–

e344. doi:10.1016/j.ijmedinf.2013.01.009 

Onwuegbuzie, A., Frels, R., Leech, N., & Collins, K. (2011). A mixed research study of 

pedagogical approaches and student learning in doctoral-level mixed research 

courses. International Journal of Multiple Research Approaches, 5, 169–199. 

doi:10.5172/mra.2011.5.2.169 

Overby, C. L., Kohane, I., Kannry, J. L., Williams, M. S., Starren, J., Bottinger, E., ... & 

Hripcsak, G. (2013). Opportunities for genomic clinical decision support 

interventions. Genetics in Medicine, 15, 817–823. doi:10.1038/gim.2013.128 

Padgett, J. D. (2014). Patient safety culture and high reliability organizations (Doctoral 

dissertation) Retrieved from ProQuest Dissertations & Theses Database. (UMI 

No. 3625714). 

Pakhomov, S. V., Pedersen, T., McInnes, B., Melton, G. B., Ruggieri, A., & Chute, C. G. 

(2011). Towards a framework for developing semantic relatedness reference 

standards. Journal of Biomedical Informatics, 44, 251–265. 

doi:10.1016/j.jbi.2010.10.004 



128 
 

 

Pallant, J. (2013). SPSS survival manual: A step by step guide to data analysis using IBM 

SPSS. New York, NY: McGraw Hill. 

Pasmore, W. A. (1988). Designing effective organizations: The sociotechnical systems 

perspective, New York: Wiley. 

Path, A. S. (2013). Safer path forward for medical device interoperability needed, per 

new AAMI Report. Environment of Care News, 16(4). Retrieved from 

http://www.ingentaconnect.com/content/jcaho/ecn 

Pathak, J., Kho, A. N., & Denny, J. C. (2013). Electronic health records-driven 

phenotyping: Challenges, recent advances, and perspectives. Journal of the 

American Medical Informatics Association, 20(e2), e206–e211. 

doi:10.1136/amiajnl-2013-002428 

Payne, T. H., Bates, D. W., Berner, E. S., Bernstam, E. V., Covvey, H. D., Frisse, M. E., 

et al. (2013). Healthcare information technology and economics. Journal of the 

American Medical Informatics Association, 20(2), 212–217. doi:10.1136/amiajnl-

2012-000821 

Peikari, H. R., Zakaria, M. S., Yasin, N. M., Shah, M. H., & Elhissi, A. (2013). Role of 

computerized physician order entry usability in the reduction of prescribing 

errors. Healthcare Informatics Research, 19, 93–101. 

doi:10.4258/hir.2013.19.2.93 

Perna, G. (2012). Clinical alerts that cried wolf: As clinical alerts pose physician 

workflow problems, healthcare IT leaders look for answers. Healthcare 

Informatics, 29(4), 18–20. Retrieved from http://www.healthcare-informatics.com 



129 
 

 

Pham, J. C., Aswani, M. S., Rosen, M., Lee, H., Huddle, M., Weeks, K., & Pronovost, P. 

J. (2012). Reducing medical errors and adverse events. Annual Review of 

Medicine, 63, 447–463. doi:10.1146/annurev-med-061410-121352 

Podsakoff, P., MacKenzie, S., & Podsakoff, N. (2012). Sources of method bias in social  

 science research and recommendations on how to control it. Annual Review of  

 Psychology, 63, 539–569. doi:10.1146/annurev-psych-120710-100452 

Polit, D. F., & Beck, C. T. (2010). Generalization in quantitative and qualitative research: 

Myths and strategies. International Journal of Nursing Studies, 47, 1451–1458. 

doi:10.1016/j.ijnurstu.2010.06.004 ��� 

Porter, M. (2009). A strategy for health care reform-toward a value-based system. The 

New England Journal of Medicine, 361, 109–112. doi:10.1056/NEJMp0904131 

Prematunga, R. (2012). Correlational analysis. Australian Critical Care, 25, 195–199. 

doi:10.1016/j.aucc.2012.02.003 

Price, M., Singer, A., & Kim, J. (2013). Adopting electronic medical records Are they 

just electronic paper records? Canadian Family Physician, 59, e322–e329. 

Retrieved from http://www.cfp.ca/ 

Rea, S., Pathak, J., Savova, G., Oniki, T. A., Westberg, L., Beebe, C. E., et al. (2012). 

Building a robust, scalable and standards-driven infrastructure for secondary use 

of EHR data: The SHARPn project. Journal of Biomedical Informatics, 45, 763–

771. doi:10.1016/j.jbi.2012.01.009 

Rickards, G., Magee, C., & Artino Jr, A. R. (2012). You can't fix by analysis what you've 

spoiled by design: Developing survey instruments and collecting validity 



130 
 

 

evidence. Journal of Graduate Medical Education, 4, 407–410. 

doi:10.4300/JGME-D-12-00239.1 

Rippen, H. E., Pan, E. C., Russell, C., Byrne, C. M., & Swift, E. K. (2013). 

Organizational framework for health information technology. International 

Journal of Medical Informatics, 82(4), e1–e13. 

doi:10.1016/j.ijmedinf.2012.01.012 

Riskin, L., Koppel, R., & Riskin, D. J. (2014). Re-examining health IT policy: What will 

it take to derive value from our investment? Journal of the American Medical 

Informatics Association, amiajnl-2014. doi:10.1136/amiajnl- 2014-003065 

Rudin, R. S., & Bates, D. W. (2013). Let the left hand know what the right is doing: A 

vision for care coordination and electronic health records. Journal of the 

American Medical Informatics Association, 21(1), 13–16. doi:10.1136/amiajnl-

2013-001737 

Saffer, J. (2014). Owner-managers separation and the structure of IT governance 

(Doctoral dissertation). Retrieved from ProQuest Dissertations & Theses 

Database. (UMI No. 3630523)  

Schultz, S., Abercrombie, S., Crownover, B., Hoekzema, G., Krug, N., Maxwell, L., ... & 

Tuggy, M. (2013). Accountable care organizations: An opportunity for 

synergy. The Annals of Family Medicine, 11, 283–284. doi:10.1370/afm.1530 

Shaikh, U., Berrong, J., Nettiksimmons, J., & Byrd, R. S. (2014). Impact of electronic 

health record clinical decision support on the management of pediatric 

obesity. American Journal of Medical Quality, (epub ahead of print) 



131 
 

 

doi:10.1177/1062860613517926 

Singh, H., Spitzmueller, C., Petersen, N. J., Sawhney, M. K., & Sittig, D. F. (2013). 

Information overload and missed test results in electronic health record–based 

settings. Journal of the American Medical Association Internal Medicine, 173, 

702–704. doi:10.1001/2013.jamainternmed.61 

Shortell, S. M., Wu, F. M., Lewis, V. A., Colla, C. H., & Fisher, E. S. (2014). A 

taxonomy of accountable care organizations for policy and practice. Health 

Services Research, 49, 1883–1899. doi:10.1111/1475-6773.12234 

Sittig, D. F., Krall, M. A., Dykstra, R. H., Russell, A., & Chin, H. L. (2006). A survey of 

factors affecting clinician acceptance of clinical decision support. BMC Medical 

Informatics and Decision Making, 6(1), 6. doi:10.1186/1472-6947-6-6 

Sittig, D. F., & Singh, H. (2010). A new sociotechnical model for studying health 

information technology in complex adaptive healthcare systems. Quality and 

Safety in Health Care, 19, i68–i74. doi:10.1136/qshc.2010.042085 

Slavov, V., Rao, P., Paturi, S., Swami, T. K., Barnes, M., Rao, D., & Palvai, R. (2013).  

 A new tool for sharing and querying of clinical documents modeled using HL7 

Version 3 standard. Computer Methods and Programs in Biomedicine, 1–24. 

doi:10.1016/j.cmpb.2013.07.002 

Smith, M., Murphy, D., Laxmisan, A., Sittig, D., Reis, B., Esquivel, A., & Singh, H. 

(2013). Developing software to “Track and Catch” missed follow-up of abnormal 

test results in a complex sociotechnical environment. Applied Clinical 

Informatics, 4, 359. doi:10.4338/ACI-2013-04-RA-0019 



132 
 

 

Smith, S. W., & Koppel, R. (2014). Healthcare information technology's relativity 

problems: A typology of how patients’ physical reality, clinicians’ mental models, 

and healthcare information technology differ. Journal of the American Medical 

Informatics Association, 21(1), 117–131. doi:10.1136/amiajnl-2012-001419 

Spaulding, T. J., & Raghu, T. S. (2013). Impact of CPOE usage on medication 

management process costs and quality outcomes. INQUIRY: The Journal of 

Health Care Organization, Provision, and Financing, 50, 229–247. 

doi:10.1177/0046958013519303 

Stevens, J. P. (1984). Outliers and influential data points in regression analysis. 

Psychological Bulletin, 95(2), 334. doi:10.1037/0033-2909.95.2.334 

SurveyMonkey (2014). SurveyMonkey. Retrieved from http://www.surveymonkey.com  

Thabane, L., Ma, J., Chu, R., Cheng, J., Ismaila, A., Rios, L., Robson, R, Thabane, M.,  

 Giangregorio, L., & Goldsmith, C. (2010). A tutorial on pilot studies: The what, 

why and how. BMC Medical Research Methodology, 10, 1–10. doi:10.1186/1471-

2288-10-1  

Timbie, J. W., Damberg, C. L., Schneider, E. C., & Bell, D. S. (2012). A conceptual 

framework and protocol for defining clinical decision support objectives 

applicable to medical specialties. BMC Medical Informatics and Decision 

Making, 12(1), 93.	
  doi:10.1186/1472-6947-12-93 

Turner, T. L., Balmer, D. F., & Coverdale, J. H. (2013). Methodologies and study designs 

relevant to medical education research. International Review of Psychiatry, 25, 

301–310. doi:10.3109/09540261.2013.790310 



133 
 

 

Turunen, P., & Talmon, J. (2000). Stakeholder groups in the evaluation of medical 

information systems. In Seventh European Conference on Information 

Technology Evaluation, Reading, UK: MCIL, 329–334. doi:10.1.1.195.4730 

Venkatesh, V., Brown, S. A., & Bala, H. (2013). Bridging the qualitative-quantitative 

divide: Guidelines for conducting mixed methods research in information 

systems. Mis Quarterly, 37, 21–54. Retrieved from http://misq.org/ 

Vockley, M. (2013). All systems go: How systems engineering can improve healthcare 

technology. Biomedical Instrumentation & Technology, 47(2), 106–114. 

Retrieved from http://www.aami-bit.org/ 

Waitman, L. R., Aaronson, L. S., Nadkarni, P. M., Connolly, D. W., & Campbell, J. R. 

(2014). The Greater Plains Collaborative: A PCORnet clinical research data 

network. Journal of the American Medical Informatics Association, 21(4), 637–

641. doi:10.1136/amiajnl- 2014-002756 

Walsh, K., Kitson, A., Cross, W., Thoms, D., Thornton, A., Moss, C., ... & Graham, I. 

(2012). A conversation about practice development and knowledge translation as 

mechanisms to align the academic and clinical contexts for the advancement of 

nursing practice. Collegian, 19, 67–75. doi:10.1016/j.colegn.2012.02.001 

Wan, T. T., Masri, M. D., Ortiz, J., & Lin, B. Y. (2014). Willingness to participate in 

Accountable Care Organizations: Health care managers’ perspective. The Health 

Care Manager, 33, 64–74. doi:10.1097/01.HCM.0000440625.92879.e8 

Wanderer, J., Mishra, P., & Ehrenfeld, J. (2014). Innovation & market consolidation 

among electronic health record vendors: An acute need for regulation. Journal of 



134 
 

 

Medical Systems, 38(1), 1–5. doi:10.1007/s10916-014-0008-2 

Westbrook, J. I., Braithwaite, J., Georgiou, A., Ampt, A., Creswick, N., Coiera, E., & 

Iedema, R. (2007). Multimethod evaluation of information and communication 

technologies in health in the context of wicked problems and sociotechnical 

theory. Journal of the American Medical Informatics Association, 14(6), 746–

755. doi:10.1197/jamia.M2462 

Yasnoff, W. A., Sweeney, L., & Shortliffe, E. H. (2013). Putting health IT on the path to 

success. Journal of the American Medical Association, 309, 989–990. 

Yen, P. Y., & Bakken, S. (2012). Review of health information technology usability 

study methodologies. Journal of the American Medical Informatics Association, 

19(3), 413–422. doi:10.1136/amiajnl-2010-000020 

Yusoff, R., & Janor, R. M. (2014). Generation of an interval metric scale to measure 

attitude. SAGE Open, 4(1), 2158244013516768. doi:10.1177/2158244013516768 

Xiao, N., Sharman, R., Singh, R., Singh, G., Danzo, A., & Rao, H. R. (2012). 

“Meaningful Use” of ambulatory EMR: Does it improve the quality and 

efficiency of health care? Health Policy and Technology, 1, 28–34. 

doi:10.1016/j.hlpt.2012.01.009 

 

 

 

 

 



135 
 

 

 

Appendix A: Survey Questions Presented to Online Participants 

 
A. I have read, and I fully understood the Informed Consent Information. My 

participation in this survey is voluntary. I acknowledge I have not received any 
compensation or inducement to participate in this research.  

1) Yes. 

2) No.  

B. My professional credentials include (check one) 
1) Medical Doctor (MD) 
2) Doctor of Osteopathy (DO) 
3) None of these 

 

C. My hospital or health system has access to an EHR from (Check all that apply) 
1) Cerner Incorporated 
2) Epic Systems 
3) None of these 

 

D. My hospital or health system participates in an ACO 
1) Yes 
2) No 

Items E-T are scored on a 5-point Likert-type scale where 5= Strongly Agree, 4= 

Agree, 3= Neutral or No Opinion, 2= Disagree, and 1= Strongly Disagree  

E. Alerts triggered during physician order entry should account for the context 
provided by patient specific data contained in the patient’s medical record. 

F. Pop-up alerts triggered while placing orders should always include pre-populated, 
evidence-based override reasons. 

G. Alerts specific to the selection of a patient intervention (medication, lab, test, or 
procedure) should include links to patient education materials when available. 
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H. Alerts triggered by a physician during computerized order entry should include 
substitution recommendations for appropriate, lower-cost interventions if 
available. 

I. Alerts triggered while ordering an intervention for chronically ill patients or those 
at risk for diabetes, heart failure, or cardiovascular disease should contain links to 
published guidelines, peer-reviewed literature, or other supportive documentation 
such as a published quality metrics.  

J. Alerts triggered while ordering any intervention for any patient should contain 
links to additional peer-reviewed information when available. 

K. Alerts specific to chronically ill patients or those at risk for diabetes, heart failure, 
or cardiovascular disease should require a user-documented override reason when 
the provider decides to not follow the recommendation contained in the alert. 

L. All alerts should be suppressed until the last order in a session is entered by the 
physician. 

M. Alerts triggered by current ordering activity should be presented immediately as 
orders are entered. 

N. Alerts should be non-intrusively displayed (not requiring any user interaction) as 
a passive reminder during all order entry sessions for chronically ill ACO patients 
or those ACO patients at risk for diabetes, heart failure, or cardiovascular disease  

O. Pop-up alerts triggered while placing orders and contextualized by patient age and 
condition enhance compliance with ACO reportable quality measures. 

P. Passive or non-intrusive alerts visible during electronic ordering consisting of 
general reminders for at risk ACO patient populations enhance compliance with 
ACO quality measures. 

Q. Alerts whether non-intrusive or requiring action by the user should be placed in 
the provider’s ordering workflow to improve adherence to ACO quality measures. 
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Appendix B: CMS ACO Quality Measures 
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Appendix C: Letter of Cooperation 

Letter of Cooperation  

Association of Medical Directors Of Information Systems 
(AMDIS) Research Partner Name  

Willian Bria, MD Chairman  

 

Dear Kimberly,  

Based on my review of your research proposal, and on behalf of 
AMDIS, we give permission for you to conduct the study entitled: 
Assessing Clinical Software User Needs for Improved CDS Tools 
within the AMDIS community. As part of this study, I authorize 
you to invite our membership to participate in the self-completed, 
anonymous, on-line survey research. The participation of our 
members will be voluntary and at their own discretion.  

We understand that our organization’s responsibilities include: 
Providing access to the AMDIS ListServ containing email 
addresses of AMDIS physician members. We may elect to 
encourage participation to your survey by directly sending the 
URL link to the SurveyMonkey® hosted survey with an invitation 
to our membership encouraging their voluntary participation in the 
research study. We may also allow you to provide a follow up 
email directly to the membership from your Walden University 
email account with the url link and a reminder invitation to 
participate including notification to the membership of AMDIS 
cooperation as your Community Partner. We reserve the right to 
withdraw from the study at any time if our circumstances change.  
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I confirm that I am authorized to approve research in this setting 
and that this plan complies with the organization’s policies.  

I understand that the data provided and collected by the Researcher 
will remain entirely confidential and may not be provided to 
anyone outside of the student’s supervising faculty/staff without 
permission from the Walden University IRB. I understand that 
survey participants may request access to the research data for five 
years during the study retention period. I also understand that 
AMDIS may receive the final published study for dissemination to 
the member community  

Sincerely,  

William Bria, MD  
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Appendix D: Communication with Community Partner 

 

Kimberly Denney <kimberly.denney@waldenu.edu> 
 

Jun 28 
 
 
 

 
to William Bria, MD 

 
 

 

Hi Bill, 
 
The AMDIS conference was great, and I did not want to disturb you during such an important 
time. Before we head into the 4th of July Holiday weekend, I was wondering if we can share the 
invitation and the link to the final research survey with the AMDIS membership? I really 
appreciate the support you and AMDIS have provided as my community partner for this research. 
My email invitation with the link is here for your convenience: 
 
I am seeking your assistance to participate in an IRB approved research study. The survey should be 
completed by a physician using a Cerner Incorporated or Epic Systems EHR as part of the health care 
information technology infrastructure used by their organization and associated with its use in an 
accountable care organization. 
  
Although you know me from my professional work history with Stanson Health and Zynx Health, I am a 
doctoral student at Walden University. I am conducting this research to fulfill the requirements of a 
doctoral of business administration degree with a specialization in Technology Entrepreneurship. Your 
participation may provide new insights into the needs for EHR workflow integrated clinical decision 
support tools that support improved adherence to ACO quality measures. 
 
The survey automatically concludes if a participant does not satisfy any of the inclusion criteria. A 
Participant Consent Form is included at the start of the survey. The first survey question requires your 
acknowledgement that you read and fully understood all of the information provided in the Participant 
Informed Consent Form. It should take less than 7 minutes to complete the survey. All responses are 
anonymous and the pilot test data will be transferred to a secure and encrypted data storage location 
protecting the anonymity of every research participant throughout the study and a 5-year data retention 
period. Your voluntary participation is highly appreciated. 
  
You may complete the brief survey by accessing the link to SurveyMonkey® below.  
 
https://www.surveymonkey.com/r/physician_research_survey 
 
 
With Kind Regards, 
  
Kimberly Denney 
Doctoral Student, Walden University 
Kimberly.Denney@waldenu.edu  
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Appendix E Informed Consent Background and Information 

  
Assessing Clinical Software Users Needs for Improved CDS Tools  

1. Introduction and Informed Consent: DBA Survey  

Background  

You have been invited to participate in a doctoral study research project. You may have 
met me professionally through my work in the field of clinical decision support with Zynx 
Health and Stanson Health. This research is in support of my academic pursuit to earn a 
doctoral degree from Walden University. Your participation in this study requires the 
acknowledgement of your informed consent. The purpose of the research and the 
procedures for study conduct are provided here for your review. As in the case of all 
research efforts, you should be aware of the benefits and the risks that may accrue to you 
as a result of your participation. Importantly, understanding your right to terminate your 
participation at any time from the survey is critical to the protection of your rights. No 
promises or guarantees are given as to the study outcomes.  

Research Study Title: Assessing Clinical Software User Needs for Improved Clinical 
Decision Support Tools  

Researcher: Kimberly Denney, Doctoral Candidate, Walden University  

  
Assessing Clinical Software Users Needs for Improved CDS Tools  

2. Informed Consent  

Study Purpose:  All survey participants are physician executives at health systems 
participating in an ACO using either a Cerner Incorporated or an Epic Systems EHR. The 
purpose of the research is to examine the extent of any relationship between the type and 
timing of CPOE automated alerts with physician perception for better adherence to an 
ACO quality measure. Opportunities may exist for fulfilling the  

 “Triple Aim” of health care through ACOs by enhancing the experience of physicians 
using EHR integrated CDS tools. Your participation may support findings to inform 
improvements in the design of CDS tools.  
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Procedure: This study involves completing an Internet-based survey that should take 
approximately 15 minutes to complete. No compensation is provided in exchange for your 
time.  

Risks and Discomforts: No risks or discomforts are expected from taking the on-line 
survey.  

Benefits: The results obtained from the survey represent the combined opinions of your 
peers and will be made available for reference once published. The findings from this 
research will extend the base of current knowledge about CDS use by ACOs using 
integrated HIT systems. Importantly, the information obtained from this research may 
inform CDS product development efforts providing third party software vendors with a 
greater understanding and awareness of physician needs for better workflow integrated 
tools.  

Confidentiality:  Every measure is taken by the researcher to ensure the confidentiality of 
the data provided. All study files are maintained in an encrypted and access-restricted 
computer file. Aside from me, only my doctoral committee members and the Walden 
University IRB will have access to the data. A set of survey questions will confirm the 
participation of your hospital or health system in an ACO and your health system’s use of 
a particular EHR. Other than establishing your medical credentials as a physician (MD or 
DO), the survey questions do not ask for any other identifying information. Your name and 
associated health system will not be identified in the data as all survey responses remain 
anonymous. Once the study has concluded, all survey data will be stored on an external 
hard drive under lock and key in a fireproof file cabinet for 5 years. After a period of 5 
years, the external hard drive containing all of the survey data will be destroyed. 
Throughout the retention period, all of the survey data will be accessible for the use by 
other researchers upon written request. At no time will any identifying information (names, 
e-mail addresses, health system or hospital names) be shared publically.  

Withdrawing Your Participation: Your participation in this research effort remains 
voluntary at all times. At any time during the survey, you can withdraw without prejudice. 
No penalties are assigned for termination of participation. There is no compensation or 
incentive of any kind provided for your voluntary participation in this study.  

Additional Information: General questions about the study may be directed to 
Kimberly.Denney@waldenu.edu or Dr. Craig Martin my Faculty Committee Chair at 
Craig.Martin2@waldenu.edu. All questions regarding your rights as a participant should 
be directed to Walden University's IRB at irb@waldenu.edu. Walden University's approval 
number for this study is 06-09-15-0396865 and it expires June 8, 2016. 

You are advised to print and retain a copy of this informed consent information.  

The first survey question requires an indication that you read and that you fully  

understood all of this information.  
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Appendix F: Personalized Participant Email Invitation 

Dear Dr. (XXXXXX), 
 
You are invited to take part in a research study of physician executives using a Cerner 
Incorporated or Epic Systems EHR as part of the health care information technology 
infrastructure used by your organization and associated with its use in an accountable 
care organization. 
 
As the researcher, I am requesting your participation based on your knowledge of clinical 
decision support tools and understanding of physician workflow associated with 
computerized order entry. Although you may know me from my professional work 
history with Zynx Health and Stanson Health, I am a doctoral student at Walden 
University. I am conducting this research to fulfill the requirements of a doctoral of 
business administration degree with a specialization in Technology Entrepreneurship. 
Your participation may provide new insights into the needs for EHR workflow integrated 
clinical decision support tools that support improved adherence to ACO quality 
measures.  
 
You may complete the brief survey by accessing the link to SurveyMonkey® below. A 
Participant Consent Form is included at the start of the survey. The first survey question 
requires that you acknowledge you have read and fully understand all of the information 
provided in the Participant Informed Consent Form. It should not take you more than 15 
minutes to complete the survey. Your responses will be coded and transferred to a secure 
and encrypted data storage location protecting your anonymity throughout the study and a 
5-year data retention period. Your voluntary participation is highly appreciated. 
 
With Kind Regards, 
 
 
Kimberly Denney 
Doctoral Student, Walden University  
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Appendix G: Residual Statistics 

 
Residuals Statisticsa 

 Minimum Maximum Mean Std. 
Deviation 

N 

Predicted Value 20.9076 25.8086 23.7971 1.07315 69 
Std. Predicted Value -2.693 1.874 .000 1.000 69 
Standard Error of 
Predicted Value 

.389 1.325 .618 .211 69 

Adjusted Predicted 
Value 

20.4366 25.7668 23.7805 1.08256 69 

Residual -12.97233 4.82763 .00000 3.08423 69 
Std. Residual -4.144 1.542 .000 .985 69 
Stud. Residual -4.212 1.581 .003 1.006 69 
Deleted Residual -13.40319 5.07254 .01656 3.21747 69 
Stud. Deleted 
Residual 

-4.888 1.599 -.008 1.056 69 

Mahal. Distance .066 11.196 1.971 2.253 69 
Cook's Distance .000 .196 .014 .027 69 
Centered Leverage 
Value 

.001 .165 .029 .033 69 

a. Dependent Variable: Quality 

 
 

 

 

 

  

 
 


	Assessing Clinical Software User Needs for Improved Clinical Decision Support Tools
	tmp.1444095367.pdf.hRWMf

