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Abstract 

Hazardous waste site remediation cost estimation requires a good estimate of the contaminated 

soil volume.  The United States Environmental Protection Agency (U.S. EPA) currently uses 

deterministic point values to estimate soil volumes but the literature suggests that probability 

bounds analysis (PBA) is the more accurate method to make estimates under uncertainty.  The 

underlying statistical theory is that they are more accurate than deterministic estimates because 

probabilistic estimates account for data uncertainties.  However, the literature does not address 

the problem of selecting an optimal decision point from the interval-valued PBA estimates.  The 

purpose of this study was to identify the optimal PBA decision point estimator and use it to 

demonstrate that because the PBA method also accounts for data uncertainties, PBA estimates of 

remedial soil volumes are more accurate than the U.S. EPA deterministic estimates.  The 

research questions focused on determining whether the mean or the 95th percentile decision point 

is the optimal PBA estimator.  A convenience sample of seven sites was selected from the U.S. 

EPA Superfund Database.  The PBA method was used to estimate the remedial soil volumes for 

the sites.  Correlation analyses were performed between the mean and 95th percentile PBA 

estimates and the actual excavated soil volumes.  The study results suggest that the lower bound 

95th percentile PBA estimate, which had the best R2-value of 89%, is the optimal estimator.  The 

R2-value for a similar correlation analysis using the U.S. EPA deterministic estimates was only 

59%.  This confirms that PBA is the better estimator.  The PBA estimates are less contestable 

than the current U.S. EPA deterministic point estimates. Thus, the PBA method will reduce 

litigation and speed up cleanup activities to the benefit of the U.S. EPA, corporations, the health 

and safety of nearby residents, and society in general.  
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Chapter 1: Introduction to the Study 
 

Background 

Since the 1980s, a series of environmental regulations have been enacted in the 

United States and these have had financial impacts on companies that generate hazardous 

wastes in the course of their normal operations.  One such regulation is the 

Comprehensive Environmental Response and Comprehensive Liability Act (CERCLA) 

of 1980.  

As part of the due diligence requirements of CERCLA, the United States 

Environmental Protection Agency (U.S. EPA) requires all hazardous waste generating 

facilities in the USA to conduct a Preliminary Assessment (PA).  The purpose of a PA is 

to investigate the potential for soil or groundwater contamination on a specific parcel of 

commercial or industrial real estate based on site hydrogeologic features, past site usage 

practices, and existing potential hazards such as underground storage tanks.  If the 

potential for soil or groundwater contamination is identified, a Remedial 

Investigation/Feasibility Study (RI/FS) should be conducted to determine the full extent 

of contamination.  If any contaminant is detected above the U.S. EPA’s risk-based 

cleanup levels, then cleanup action is required. 

At every hazardous waste site, there are one or several potentially responsible 

parties (PRPs).  The PRPs are all the past and present owners and non-owners of the site 

who’s past or present activities have contributed to the site soil and/or groundwater 

contamination.  Typically, the cost of remediation is distributed among the PRPs using an 



 

 

2
agreed upon formula such as the length of time an owner occupied the site.  In 

order to reduce litigation among the PRPs, a generally accepted cost estimation method 

must be used to estimate the site remediation cost. 

The Sarbanes-Oxley Act, another regulation that requires an estimate of 

hazardous waste site remediation cost, was signed into U.S. law on 30th July 2002.  The 

Sarbanes-Oxley Act requires companies to disclose in their annual financial reports any 

environmental damage or uncertainties that have had or may have an adverse effect on 

revenues.  The accuracy of a company’s annual financial report is very important for 

several reasons.  Stock analysts use the information to rate stocks to help investors make 

educated decisions on whether or not to buy or sell certain stocks.  Stock holders also 

need accurate information to ensure the value of their stocks are not inflated to fool them 

into believing the company is doing well when the contrary is true. 

 The insurance industry periodically estimates the cost of potential environmental 

liabilities at their insured sites.  Prior to the enactment of CERCLA in 1980, the insurance 

industry had sold general liability policies to several polluting industries.  After the 

enactment of CERCLA, the insurance companies were suddenly saddled with huge future 

debts associated with soil and groundwater remediation at several insured sites.  

Insurance companies are interested in getting out of these liabilities through negotiated 

buyouts of the existing policies.  In a buyout transaction, the insured presents a claim for 

a negotiated settlement in the form of a future cost estimate for the site.  

In all the aforementioned cases, the problem with estimating the future cost of 

environmental remediation is that the PA and RI/FS reports have too many data 



 

 

3
uncertainties to permit a deterministic cost estimate.  Through this study, I seek 

to validate an alternate cost estimation method that requires the minimal data normally 

found in the PA and RI/FS reports. 

 

Introduction 

 The problem with deterministic estimates is the implicit assumption that all the 

required site data values are known with precision.  This is not the case with the data 

found in PA and RI/FS soil boring reports.  A typical soil-boring report shows that for 

any given area, the depths at which contaminants are found above cleanup levels vary 

considerably across the site.  The area impacted by the hazardous chemicals is also not 

constant because the contaminants tend to spread out, as they are slowly washed 

downward by rainwater through the soil into the groundwater aquifer.  It is worth 

pointing out here that in a soil excavation activity, the soil samples are routinely checked 

at some pre-determined depths to ensure that the excavation does not go below the depths 

necessary to remove all soils that are contaminated above cleanup levels.  This minimizes 

the soil excavation, treatment, and disposal costs.  These uncertainties lead to the 

conclusion that selecting a single value for area and/or depth in a deterministic estimate 

entails the high risk of either grossly underestimating or grossly overestimating remedial 

soil volumes.  The difficulties with deterministic estimates have made it necessary to find 

a remedial cost estimation methodology that does not ignore the uncertainties in the data 

values. 



 

 

4
 The soil remediation cost for a hazardous waste site is directly 

proportional to the excavated soil volume.  Therefore, soil volume would be used as a 

surrogate for the remediation costs, and vice-versa, in the ensuing discussions.  The 

American Society for Testing Materials (ASTM) has published a standard (ASTM E-

2137) to designate standardized methods for estimating costs under uncertainty.  The top 

three methods in ASTM’s order of preference are: the expected value, the most likely 

value, and the range of values.   

 The most common method for calculating the expected value is to use a decision 

tree analysis to calculate, essentially, the weighted average of the product of the cost of 

all possible events and their respective probabilities.  However, decision trees are 

oversimplified since events are assumed to have the exact probabilities used in the 

estimates.  Also, the assignment of probability values to the events are done arbitrarily, 

based on either subjective opinion or expert opinion.  For this reason, the expected values 

derived from the decision tree methodology are not readily accepted at contested 

settlements. 

In order to overcome the deficiency of the decision tree methodology, some 

analysts use Monte Carlo (MC) simulation.  In a MC simulation, the exact probabilities 

are replaced with probability distributions to account for all possible values the variable 

may assume.  The most common method used to select the probability distributions is to 

fit the available data and constraining parameters to several distributions and then select 

the one that gives the best fit.   



 

 

5
Unfortunately, the expected values derived from a Monte Carlo 

simulation are also open to challenges because of the assumptions required to implement 

the MC procedure.  For example, there may be insufficient data to justify the assignment 

of a particular probability distribution to a variable.  There is also the question of 

imprecision in the measurements that yielded the exact data values used to derive the 

parameters of the assigned probability distribution.   

 The data variability and imprecision in MC modeling may be reduced by using 

two-dimensional MC modeling.  This modeling involves nesting one MC simulation 

within another.  Typically, the inner simulation is selected to account for the natural 

variability of the underlying physical or biological process being modeled.  The outer 

simulation is chosen to account for imprecision about the input parameters.  The whole 

process is just like running a complete Monte Carlo simulation within a Monte Carlo 

simulation at each of the iterations.  Besides the uncertainty in the selection of the correct 

probability distributions for the variables, two-dimensional MC presents a very large 

computational burden and is not easily accomplished.  

The other future cost estimation methods, the most likely value and the range of 

values, are useful only when there is sufficient site-specific data to calculate costs to a 

reasonable degree of accuracy.  The imprecision and variability of the site data in the 

RI/FS reports make it necessary that the future cost estimates be made under uncertainty.  

Therefore, there is a need for another cost estimation method that minimizes the use of 

subjective probabilities to calculate remediation costs under uncertainties. 
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 In recent times, several authors have proposed methods based on 

imprecise probabilities that may be used for decision-making under uncertainty.  The 

term imprecise probability is a generic term for all mathematical models that measure 

chance or uncertainty without sharp numerical probabilities.  The perceived advantages 

of using imprecise probabilities as compared to the decision tree methodology or Monte 

Carlo simulation are:  

• Modeling assumptions and inferences are more apparent and credible. 

• Sensitivity analysis is built into the model. 

• Information from different sources, such as interval estimates and probabilities 

could be coherently combined. 

An extensive literature review did not reveal any instance when an imprecise 

probability method has been used to estimate the remedial soil volume for a hazardous 

waste site.  Dankwah (2009) investigated the feasibility of using the following imprecise 

probability methods to estimate the remedial soil volume for a hazardous waste site: 

Interval Arithmetic (IA), Dempster-Shafer Theory (DST), and Probability Bounds 

Analysis (PBA).  Dankwah (2009) concluded that both IA and DST are interval methods.  

As such, they have the following deficiencies that make them unsuitable for estimating 

remedial soil volumes under uncertainty: 

• Difficulty of transforming measurements into intervals. 

• Do not use additional information about the site data such as mean, median, 

standard deviation, and percentiles. 

• Method is heavily dependent on expert opinion for probability assignments. 
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Dankwah (2009) found that PBA is suitable for estimating remedial soil 

volumes at hazardous waste sites because it does not require the assumption of exact 

probabilities or probability distributions.  Instead, estimates could be made with summary 

statistics data, such as mean, median, and standard deviation.  Dankwah (2009) used PBA 

to estimate the remedial soil volume for the Dover Manufactured Gas Light site in Dover, 

Delaware, using data from the PA and RI/FS reports for the site.   

PBA has several advantages over both MC and deterministic models.  However, 

the scanty literature available on the use of the PBA models for decision-making suggests 

that the method is not being widely used.  The reason could lie with the difficulty of 

interpreting PBA modeling results for decision-making. 

 

Problem Statement 

 PBA uses a combination of interval methods and classical probability theory to 

generate the calculation results.  For this reason, the result for any selected percentile or 

any measure of central tendency is not a unique number but is rather an interval with 

lower and upper bounds.  Also, since PBA uses minimal data, the probability bounds are 

not very tight and this leads to a wide span between the lower and upper bounds of the 

results.  The problem, then, was to choose whether the lower bound, upper bound or mid-

point of a selected percentile or that of a measure of central tendency is the optimal 

decision point. 

 The second problem with PBA results is the selection of a percentile that would 

be readily acceptable to both decision-makers and the impacted community.  In a typical 
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MC, the scientific community generally recognizes the 95th percentile value as 

an acceptable decision point that minimizes risk in the estimates.  However, the 95th 

percentile values for PBA results tend to be extremely high as compared with the MC 

results.  For example, Bergback, Oberg, & Sanders (2006) compared the results of an 

exposure assessment model for Cadmium using deterministic estimates, MC, and PBA.  

The results showed that the 95th percentile values for the PBA result were higher than that 

of the MC result by several orders of magnitude.  Ferson, Hope, & Regan (2002) also 

showed that PBA produced the highest upper bounds at the 95th percentile level for a 

food-web exposure model when compared with the result for a two-dimensional MC 

model.  Dankwah (2009) compared the PBA and the probabilistic estimates of the 

remedial soil volume for the former Dover Manufactured Gas Light site.  The result was 

that the upper bound of the 95th percentile PBA result was almost twice the mean value 

determined by probabilistic modeling.  However, the mean remedial soil volume 

estimated by the probabilistic modeling was within the lower and upper bounds of the 

mean of the PBA estimate.  There was no established selection criterion to choose any 

one of the upper or lower bound of the 95th percentile values or that of the mean values as 

the optimal decision point.  This confirms the problem of selecting a decision point from 

the wide array of PBA results.   

 For PBA to gain wide acceptance as a method to estimate remedial soil volumes, 

there must be an acceptable solution to the problem of choosing a credible decision point 

from the wide array of the PBA results.  The research questions addressed in this study 
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would stimulate interest in the use of PBA models to estimate remedial soil 

volumes at hazardous waste sites under uncertainty. 

 

Purpose 

 The purpose of this study was to determine whether the mean or the 95th 

percentile PBA estimate would be the optimal decision point for PBA models when used 

to estimate remedial soil volumes under uncertainty.  Since the PBA result for both the 

mean value and the 95th percentile value are interval values, the investigation analyzed 

their lower bounds, upper bounds, and midpoint values separately. 

 

Research Questions 

 The following research questions were addressed in the study: 

• Is the 95th percentile volume an appropriate PBA decision point for the remedial 

soil volume estimates?  Separate analysis was performed for the lower bound, 

upper bound, and midpoint of the 95th percentile interval values. 

• Is the mean volume an appropriate PBA decision point for the remedial soil 

volume estimates?  Separate analysis was performed for the lower bound, upper 

bound, and midpoint of the mean interval values. 
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Significance of the Study 

 The alternate method that is used to estimate remedial soil volumes and 

remediation cost under uncertainty is MC.   However, MC requires probability 

distributions, which are either assumed from experience or established through curve-

fitting techniques from the available data.  The MC cost estimates are not readily 

accepted at remediation cost settlements because of the uncertainties in the assumption of 

probability distributions or the imprecision in the data that was used to derive the 

parameters of the probability distributions.  

The advantage of the PBA methodology is that remedial soil volume estimates 

could be made with summary statistics data such as mean, median, standard deviation, 

and percentiles.  PBA does not require the assumption of exact probabilities or 

probability distributions but permits the use of exact probabilities or probability 

distributions if needed.   However, the problem with PBA is that the modeling result for 

any percentile is not a unique number but it is rather an interval with a wide span between 

the maximum and the minimum values.  The lack of a unique decision point for PBA 

models makes it more difficult to use PBA for decision-making under uncertainty.  A 

good resolution of the research questions would encourage greater use of the PBA 

methodology to estimate remedial soil volumes under uncertainty at hazardous waste 

sites. 
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Method of Inquiry 

 This is a quantitative study.  I used site-specific data in PBA models to estimate 

remedial soil volumes at seven Superfund sites where soil excavation had actually 

occurred.  I performed linear regression analysis to identify any linear statistical 

association that existed between the upper or lower bounds of the 95th percentile values 

or that of the mean of the PBA-estimated soil volumes and the actual excavated soil 

volumes.  For the two strongest statistical associations identified in the study, I performed 

two separate hypothesis tests for the existence of a population coefficient of correlation to 

confirm the associations were not by chance but indeed, correlation did exist between the 

PBA-estimated soil volumes and the actual excavated soil volumes.  

 Next, I made an MC estimate of the soil volume for each site from the same site-

specific data.   I performed a series of regression analyses using the mean and the 95th 

percentile MC estimates as the independent variables and the actual excavated soil 

volumes as the dependent variables.  I performed another regression analysis using the 

U.S. EPA’s deterministic soil volume estimates as the independent variables and the 

actual excavated soil volumes as the dependent variables.  Finally, I compared the R2-

values of the best PBA estimates, MC estimates, and the deterministic estimates to 

determine which one of them had the best correlation to the actual excavated soil 

volumes.   

Operational Definitions 

 I obtained the data for the study from the U.S. EPA’s public-domain reports.  The 

U.S. EPA generates these reports as part of the hazardous waste site remedial 
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investigation process.  The operational definitions of the titles of the U.S. EPA 

reports and other terminologies used in this study are as follows: 

Superfund: The name of the fund established by the United States congress to 

address abandoned hazardous waste sites that pose imminent threat to human health or 

environment. 

Potentially responsible party (PRP): Any individual or company who at any time 

contributed to a spill or other contamination at a Superfund site. 

Remedial investigation (RI):  An investigation intended to gather the necessary 

data to: (a) determine the nature and extent of contamination, (b) establish the cleanup 

criteria for the site, (c) identify alternative remedial actions, and, (d) support the technical 

and cost analysis of the remedial alternatives. 

Feasibility study (FS):  A study of a hazardous waste site intended to: (a) evaluate 

alternative remedial actions in order to select the most cost-effective remedial action, and, 

(b) prepare cost estimates for budgetary purposes. 

Contaminants of concern (COC):  Chemicals identified during the RI/FS that 

need to be addressed by a cleanup action because they pose a potential threat to human 

health or environment. 

Record of decision (ROD): A public document that explains which cleanup 

alternative the U.S. EPA has selected for a Superfund site. 

Explanation of Significant Differences (ESD): A public document that explains 

significant changes from the ROD.  
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Remedial design (RD):  A design document detailing the technical 

specifications for the cleanup remedies and technologies. 

Preliminary closeout report: A report prepared by the U.S. EPA remedial 

program manager to confirm that the physical construction of the remedy for a site is 

complete. 

Five-year review:  Reports required, following cleanup action, for sites where 

hazardous substances still remain onsite at high levels but below the cleanup levels. Five-

year reviews are required to confirm the cleanup action remains protective of human 

health and the environment. 

 

Limitations of the Study 

 The contaminated media at a hazardous waste site may include soil or 

groundwater contamination or both.  This study is limited to the soil component of the 

remedial activity only.  The groundwater contamination is very complex to model 

because the contaminants may come from multiple sources.  For example, groundwater 

contaminants may migrate from an upstream facility to the groundwater underneath a 

downstream facility.  All the sources that contribute to the groundwater contamination 

must be investigated thoroughly and included in the model. 

 Because of the need to select sites where soil excavation activities have been 

completed and where the actual excavated soil volumes are known with certainty, I did 

not select the sites randomly.  This limits the generalization of the results to the general 
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population of hazardous waste sites.  However, the recommendations include 

suggestions for further studies and methodological enhancements to address this problem. 

 

Social Change Implications 

 The adoption of the PBA methodology for estimating remedial soil volumes 

under uncertainty would lead to the following benefits: 

• Reduce litigation expenses among the potentially responsible parties. 

• Speed up remedial actions so contaminants do not continue to adversely 

impact the health and safety of nearby residents. 

• Increase productivity in the area because nearby residents would be 

healthier and have less sick off-days. 

 

Summary 

The use of probability bounds analysis to estimate remedial soil volumes under 

uncertainty seems quite attractive because ordinary summary statistics such as mean, 

standard deviation, and percentiles could be used.  PBA does not require the assumption 

of exact probabilities or probability distributions.  However, the PBA estimate for any 

selected percentile or any measure of central tendency is not a unique number but is 

rather a wide interval.   The problem, then, is to how to select an optimal decision point 

from the wide array of PBA estimates.  In this study, I seek to address this problem.  The 

other methods that could be used in place of PBA are MC and deterministic models.  
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However, both MC and deterministic models suffer from methodological 

problems.  Chapter 2 presents a literature review that discusses the methodological 

problems associated with MC and deterministic models when compared to PBA 

estimates.  The discussions and analyses in the chapter point to the advantages of PBA 

over both MC and deterministic estimates.  Chapter 3 provides details of the analytical 

methods employed in the study.  They are: probability bounds analysis, Monte Carlo 

simulation, regression analysis, and a hypothesis test for the existence of a population 

coefficient of correlation.  I obtained the data for the study from the U.S. EPA Superfund 

Site Information Database.  Chapter 4 presents the results of the PBA, MC, and 

deterministic models.  Chapter 5 presents the interpretations, conclusions, and 

recommendations from the study. 
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Chapter 2: Literature Review 

Introduction 

 I have discussed the following alternate remedial soil volume estimation methods 

in this literature review: Probability Bounds Analysis (PBA), Monte Carlo Simulation 

(MC), and deterministic modeling.  Both PBA and MC are probabilistic models.  The 

argument against the use of probabilistic models to make estimates in place of 

deterministic models is that probabilistic models inflate the outcome by including 

extreme data values with low probabilities in the estimates.  The literature review in this 

chapter makes counter-arguments in favor of the use of probabilistic models to make 

estimates when uncertainties exist in the data.  The literature review also shows that the 

PBA results consistently had the lowest lower bounds and the highest upper bounds when 

compared with both MC and deterministic estimates.  This presents the problem of 

choosing a credible decision point for PBA results and I seek to provide an answer in this 

study. 

 

Strategy Used for Searching Literature 

I used the following sources for the literature search: WorldCat database and the 

Walden database.  The WorldCat organization is a worldwide network of libraries.  It 

makes it possible to search the catalogs of several libraries at once for an item and then 

locate it in a nearby library.  For this study, I accessed the WorldCat database on the 

Internet at: http://www.worldcat.org/advancedsearch.  The keywords I used for the search 
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were: “probability bounds analysis”, “imprecise probabilities”, “deterministic 

probabilistic risk”, and “deterministic risk assessment”.  

I also searched the following databases via the Walden database using the same 

key words: Academic Search Premier, Business Source Premier, Walden Dissertation 

Abstracts, and Sage Journals Online.  I used the Walden document delivery system to 

obtain copies of all the literature related to this study. 

. 

Organization of the Literature Review 

    I have divided the literature review into two sections: literature supporting MC 

over deterministic modeling, and literature supporting PBA over MC modeling.  Taken 

together, the literature review shows that PBA possesses several advantages over both 

MC and deterministic modeling. 

 

Literature Supporting Monte Carlo Analysis over Deterministic Modeling 

Mathematical models are generally used to represent physical systems.  This 

enables the decision-maker to enter the parameters of the model and derive a result from 

which the decision-maker could make conclusions or decisions.  Models may also be 

used to study cause and affect relationships between variables.  The quality of the input 

data directly affects the reliability of the model result and thus deserves attention.   

In quantitative risk assessment for environmental regulations, decision-makers 

prefer to use deterministic models to generate exact values.  The argument against the use 
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of deterministic models is that they ignore the imprecision and variability in the 

data.  The imprecision in the data arises from the fact that measuring devices are not 

precise and have measurement errors.  The variability in the data arises from natural 

randomness.  Probabilistic models have been suggested as an alternative modeling 

approach that incorporates both imprecision and variability.  Bergback & Oberg (2005) 

presented arguments to support the use of probabilistic models instead of deterministic 

models in quantitative risk assessment.   

Bergback & Oberg (2005) argued that deterministic point estimate of risk ignores 

the variability and imprecision in the model parameters.  In order to compensate for the 

uncertainty, risk managers use conservative values of the modeling parameters in the 

deterministic model.  However, this compounding of worse case scenarios leads to an 

overestimate of risk.  Also, a point estimate does not tell the percentage of the target 

population that would be exposed above the toxicity limits, or, the maximum possible 

exposure level.  A probabilistic risk assessment is preferred because it accounts for both 

the variability and the imprecision in the exposure model.  The output risk or exposure 

levels are presented as a probability distribution that could be analyzed further.   

Bergback & Oberg (2005) supported the argument with a comparison of the 

results of the deterministic and probabilistic risk assessment for benzo[a]pyrene.  The 

results of the probabilistic risk assessment indicated that the upper 95th percentile 

toxicological reference value for benzo[a]pyrene corresponded well with the 

deterministic reference value.  The extra information provided by the MC result was that 

5% of the target population would have an intake of benzo[a]pyrene that would be more 
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than the toxicological reference value.  This showed that probabilistic risk 

assessment could give similar results as point estimates with conservative parameter 

values.  However the additional information provided by the MC could be used to 

quantify risk better and make better decisions. 

Oberg & Sander (2006) also compared the results of deterministic and 

probabilistic risk assessment for an industrial site.  The site chosen was a closed steel mill 

facility. Both deterministic and MC models were used to compute the exposure 

assessment for six elements in the site-specific study.  Sixty- two soil samples had 

previously been analyzed and this provided data of the pollutant concentrations.  The 

upper 95% confidence limit estimate of the pollutant concentrations and the other 

modeling parameters were used as the conservative values in the deterministic 

assessment.  In the probabilistic assessment, the soil concentration for each constituent 

was represented by a lognormal distribution.  The settings and probability distributions 

for the other parameters were selected from the USEPA Exposure Factors Handbook.  

The MC model was run for 10,000 iterations using the Crystal Ball software.  The 

exposure assessment was done for both sensitive and less-sensitive land-use scenarios. 

In the sensitive and less-sensitive land-use scenarios, the deterministic point 

estimates and the 95th percentile MC estimates for the various soil contaminants were 

approximately of the same order of magnitude.  This case study also supported the 

conclusion of Bergback & Oberg (2005) that the probabilistic exposure estimates for a set 

of soil contaminants could be quite similar to deterministic estimates with conservative 
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values.  However, the MC modeling results histogram provided a database for 

further analysis of the modeling results. 

Bergback, Oberg, & Sander (2006) continued the argument against the use of 

precise data in environmental models with another analysis to demonstrate how a change 

in the assumption of the probability distributions affected the results of a previously 

reported exposure assessment result for cadmium in soil.  The investigation compared 

five modeling results based on five different sets of input values.  The input values were: 

point estimates, point estimates with rounding errors, Monte Carlo (MC) with all 

probability distributions, probability boxes, and, probability boxes with rounding errors.  

The results showed that the 5th percentile value for the MC modeling result was of 

the same order of magnitude as both the point estimate, and, the point estimate with 

rounding errors result.  However the 95th percentile values for the MC, probability boxes, 

and the probability boxes with rounding errors differed by several orders of magnitude.  

The results for probability boxes had the widest range between the 5th and 95th 

percentiles, reflecting the fact that more of the uncertainties had been captured in the 

PBA analysis.  This full disclosure of uncertainty may lead to better decisions. 

 

Literature Supporting Probability Bounds Analysis over Monte Carlo Analysis 

While MC models represent substantial improvement over the use of 

deterministic models, they are not free from uncertainties.  There is imprecision in the 

exact values used to generate the probability distributions and there is uncertainty even in 

the choice of the probability distributions.  For these reasons, Ferson, Regan, & Sample 
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(2002) argued that probability bounds analysis rather than MC should be used 

in environmental risk assessment. 

Ferson , Regan, & Sample (2002) compared and contrasted the results of a 

wildlife ecological screening model for four scenarios.  The scenarios used were: 

deterministic modeling using 90th percentile values to represent conservative input 

values, deterministic modeling using median values, MC modeling, and, probability 

bounds analysis.  The chemical constituents modeled were lead and DDT, and, the target 

organisms were meadow moles, and, short-tailed shrews.  The wildlife screening levels 

were calculated by solving an U.S. EPA hazard quotient (HQ) model for the dose that 

gave an HQ value of one.  The USEPA guidance document specifies that the calculations 

should be made using conservative values for the model parameters and should also be 

deterministic.  The goal of the USEPA is that the screening levels, expressed as mg/kg of 

soil, should be as low as possible in order to protect the target organism.  

Based on the 10th percentile values, the PBA methodology consistently produced 

the lowest screening level estimates irrespective of the target chemical or organism.  The 

highest screening levels were obtained for the deterministic estimates using median 

values and were up to 1000 times more than the 10th percentile PBA estimates.  The 

screening levels for the MC analysis, based on the 10th percentile values, were the second 

highest.  Additionally, the MC result had a problem where some of the results implied an 

HQ that was greater than one, which made them invalid solutions to the HQ model.  In 

contrast, the PBA did not produce an HQ greater than one in any scenario.  This showed 

that the PBA methodology produced screening levels that were more protective of 
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ecological receptors than the current method of compounding conservative 

estimates in deterministic models. 

 One method to minimize the deficiencies of one-dimensional MC modeling is to 

use 2-dimensional Monte Carlo (2D-MC) modeling.  Two-dimensional MC modeling 

involves nesting one MC simulation within another.  Typically, the inner simulation is 

selected to account for the natural variability of the underlying physical or biological 

process being modeled.  The outer simulation is chosen to account for imprecision about 

the input parameters.  The whole process is just like running a complete Monte Carlo 

simulation within a Monte Carlo simulation at each of the iterations.   

Ferson , Hope, & Regan (2002) compared and contrasted the results of two-

dimensional MC and PBA models using existing data from a previously published 

probabilistic food-web exposure model.  The original model was for a soil heavily 

contaminated with PCB and Aroclor-1254.  The exposure to environmental receptors was 

previously modeled with a one-dimensional MC model. For the 2-D MC model, five 

parameters that were deemed most sensitive were modeled with inner and outer loops.  

The model simulations were performed with Crystal Ball software with 200 outer loop 

iterations to account for imprecision in the data.  The inner loop consisted of 1000 

iterations to account for variability.  For the PBA, additional information such as means, 

standard deviations, upper and lower bounds, etc., were extracted from literature sources.  

The data was then used in the RAMAS RiskCalc software to generate p-boxes for the 

PBA analysis. 
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 The output of the models was the toxicity reference value (TRV).  The 

TRV for this study was defined as the lowest dose at which specified types of adverse 

effects occurred in mink.  The 2-D MC result showed that there was a 95% chance that 

95% of the mink population would exceed the maximum TRV.  The PBA result showed 

there was a 95% chance that 100% of the mink population would exceed the maximum 

TRV.  The PBA results had the lowest minimum bound and the highest upper bound.  

The maximum value of the PBA result exceeded the TRV by 12 orders of magnitude.  

The PBA methodology gave a much wider range of results than the 2D-MC because it 

captured the large number of uncertain parameters.  In this study, there were over 40 

uncertain parameters.   

 The PBA methodology finds application in other fields besides environmental risk 

assessments.  Engineering design decisions and estimations are usually made under 

uncertainty with deterministic values.  Without quantifying the extent of the uncertainty, 

the common practice to account for uncertainty is to add a safety factor, say 15% more, to 

the estimate.  Another practice is to replace some of the point estimates with exact 

probability distributions in a MC analysis of uncertainty.  Aughenbaugh & Paredis (2005) 

argued that assigning a random safety factor is inadequate and MC simulation does not 

fully account for imprecision and variability in the parameter estimates.  Therefore, it is 

better to use PBA to capture the full extent of the uncertainty.   

 Aughenbaugh & Paredis (2005) illustrated the solution to the problem with a 

hypothetical design of a pressure vessel that was to contain air at a designated pressure.  

The vessel was to be used in a human occupied location and therefore the cost of failure 
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or explosion weighed heavily in the estimate.  The dimensions and the steel 

wall thickness of the vessel had to be selected in such a way as to minimize cost and also 

minimize the probability of failure.  The criterion used to compare the pressure vessel 

designs was the utility of competing designs.  Utility theory states that one design is 

preferred to another if, on average, it has a higher expected utility.  The assumption was 

made that the steel material was new and that there were 50 yield stress measurements 

available.  Instead of using all the 50 yield stress measurements to generate a probability 

distribution for the MC and a p-box for the PBA, various sample sizes were used to 

calculate the utilities for different samples sizes in order to compare the MC and PBA 

results for the different sample sizes.  The selected data was fitted to a normal distribution 

for the MC analysis.  For the PBA, the data was used to generate a p-box without making 

any assumptions about the underlying distribution. 

 Aughenbaugh & Paredis (2005) assumed an optimal design under precise 

information for the purpose of comparing the MC and PBA results.  The 95th percentile 

value of the PBA result had a better utility than the 95th percentile MC result when 30 

yield strength samples were used for the analysis.  For smaller sample sizes than 30, the 

PBA consistently yielded better utility values.  As the sample size approached 50, both 

MC and PBA yielded similar results.  However, for sample size of 50 and possibly more 

than 50, the MC yielded better results.  This result is similar to the result presented in 

Ferson, Hope, and Regan (2002).  The PBA methodology gave better results than MC for 

small sample sizes because the imprecision was lower.  However, for larger sample sizes, 

the MC gave better results because the imprecision was higher.  
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 Because the PBA methodology is more efficient at capturing 

uncertainties than 2D-MC, it has been proposed as a method for conducting sensitivity 

analysis of MC results.  Ferson & Troy (2006) argued that the PBA approach is a 

straightforward method for conducting sensitivity analysis of probabilistic models 

because it does not make unfounded assumptions about probability distributions.  The 

PBA approach uses the available constraining data to derive bounds on the possible 

distributions in the form of a p-box.  The p-box is distribution-free because it does not 

make any assumptions about the type of distributions that fit the constraining data.  The 

PBA model then projects the uncertainty throughout the model to yield bounds on the 

model result.   

  Aughenbaugh and Paredis (2007) presented a similar argument to support the use 

of the PBA methodology for sensitivity analysis, especially in engineering designs.  

Aughenbaugh & Paredis (2007) argued that probability bounds analysis (PBA) is a better 

method for conducting sensitivity analysis because the PBA methodology preserves both 

the interval and probabilistic forms of uncertainty.  The methodology does not make 

assumptions about distributions.  The p-boxes are constructed only with the available 

constraining information.  Also, the dependency bounds algorithm used to implement the 

PBA methodology uses only the bounds in the calculations and therefore includes all the 

family of distributions that meet the constraining data.  

 The extensive literature search conducted by this author did not reveal any 

existing study where PBA has been used to estimate the remedial soil volume at a 

hazardous waste facility.  As a prelude to this study, this author used both PBA and 
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probabilistic analysis to estimate the remedial soil volume at the Dover Gas 

Light site in Dover, Delaware (Dankwah, 2009).  The estimated mean soil volume for 

PBA with summary statistics data was between 12219 and 12937 cubic yards.  The 

expected soil volume for the probabilistic analysis was 12644 cubic yards, which fell 

within the range of the PBA mean results.  On the other hand, the 95th percentile soil 

volume estimate for PBA with summary statistics data was between 20619 and 24917 

cubic yards.  This was almost two times the mean for the PBA with summary statistics 

data.  The research problem, then, is to determine which bound of the PBA mean or the 

95th percentile value represents the optimal decision point.   

 

Summary 

I have presented arguments and supporting studies in this literature review to 

show that PBA is a very versatile methodology that has found applications in 

environmental risk assessment, sensitivity analysis of MC results, engineering designs, 

and cost analysis.  In the context of cost analysis, the remedial soil volume could be used 

as a surrogate for remediation costs since the two are directly related.  The literature 

review also shows that PBA possesses several advantages over both MC and 

deterministic modeling.  

I have provided details of the analytical methods employed for the study in 

Chapter 3.  They are: probability bounds analysis, Monte Carlo simulation, regression 

analysis, and a hypothesis test for the existence of a population coefficient of correlation.  

I obtained the data for the study from the U.S. EPA Superfund Site Information Database.  
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Chapter 4 presents the results of the PBA, MC, and deterministic models.  

Chapter 5 presents the interpretations, conclusions, and recommendations from the study. 
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Chapter 3: Research Method 
 

Introduction 

 I employed the following research methods in the studies: probability bounds 

analysis (PBA), Monte Carlo (MC) modeling, linear regression analysis, and a hypothesis 

test for the existence of a population coefficient of correlation.  Linear regression analysis 

and MC are well-established statistical methods and therefore do not need further 

introduction.  I have briefly discussed the PBA method and the procedure for the test of 

hypothesis for the existence of a population coefficient of correlation in the subsequent 

paragraphs.  This is followed by details of the study design, sampling population, data 

sources, data collection methods, and presentation of the data. 

 

Probability Bounds Analysis 

The development of the PBA methodology originated from the probability 

bounding methods that have been accumulated in the course of the history of probability 

theory.  For example, Chebychev’s inequalities provide a method to place an upper 

bound on a probability distribution when only the mean and variance of the distribution 

are known.  Similarly, Markov’s inequality provides a method for finding the bounds on 

the probability that a positive variable is greater than or equal to a certain positive 

number.  However, the idea of probability bounds analysis did not emerge until Williams 

and Downs (1990) presented numerical methods for computing the results of the bounds 

on a given set of input distributions after the mathematical operations of addition, 
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subtraction, multiplication, and division of the random variables.  The 

numerical methods are referred to as the “dependency bounds and convolutions” (DBC).  

Scott Ferson (2002) later extended the dependency bounds algorithms developed by 

Williams and Downs (1990) to cover mathematical transformations such as: logarithms, 

square roots, and convolutions such as maximum, minimum, and powers.  This was 

implemented in a commercial software called RiskCalc (Ferson, 2002).   

Probability bounds analysis is a discrete analytical method that requires minimal 

data, which may or may not include probability distributions.  The input data may be 

expressed as an interval or as an imprecisely known probability distribution.  For 

example, the upper and lower bounds on an imprecisely known normal distribution with 

mean between µ1 and µ2, and standard deviation between σ1 and σ2, could be determined 

from the envelope formed by the normal distribution functions corresponding to each 

parameter set: 

(µ1,σ1),  (µ1,σ2),  (µ2,σ1),  (µ2,σ2) 

I determined the parameter set by interval arithmetic operations.  I have illustrated 

this distribution with numeric data in Figure 1.  The resulting graph is called a probability 

box or a p-box.  A p-box is not a single probability distribution but rather represents all 

the classes of distributions that fit within the box.  Any particular individual member 

from the class can be thought of as representing variability in a Monte Carlo model.  The 

class as a whole represents the associated imprecision in the parameter estimates.  A p-

box enables the model to propagate both variability and imprecision through the 

calculations simultaneously.  The p-box yields a lot of information about the family of 
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Figure 1.  P-Box for an imprecisely known Normal Distribution bounded by  

             N(15, 3) and N(20, 5). 
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distributions.  For example, a horizontal slice at the median (CDF = 0.5) gives 

the interval bounds on the median as [12, 17].   

The advantage of PBA over MC is that a distribution-free analysis could be 

performed with summary statistics data such as mean, median, mode, standard deviation, 

and percentiles.  The RiskCalc software contains transformation algorithms that use these 

constraining data to generate p-boxes for further analysis.  I have illustrated this with a 

numeric example in Figure 2 for the minimum, maximum, and mean values.  

RiskCalc is a calculator.  The PBA calculations proceed first by using the 

constraining data to generate the p-boxes, discretizing the bounds of the p-boxes and 

then, following the modeling equations, using the dependency bounds convolution 

algorithms to calculate the distribution of the modeling results.  The program allows the 

user to specify a desired output such as the 95th percentile value or a measure of central 

tendency such as the mean or median. 

 

Test of Hypothesis for a Population Coefficient of Correlation 

The r-value from the regression analysis is the sample coefficient of correlation.  

A high r-value implies a high degree of association between the variables.  However, 

because the r-value is a sample variable and would be different for a different set of seven 

sites, a test of hypothesis for the existence of a population coefficient of correlation is 

needed to confirm if any association that is found is not by chance but indeed, correlation 

does exist between the PBA-estimated and the actual excavated soil volumes.  The test of  
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Figure 2.  P-Box for a summary statistics with minimum=0, mean = 6, and,  
           maximum =  10 
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hypothesis for the existence of a population coefficient of correlation follows 

the following procedure in Guzelian (1979, p511-515): 

“Let ρ = population coefficient of correlation 

The hypothesis to be tested is: 

H0 : ρ = 0 (Null hypothesis, no correlation,) 

 H1 : ρ ≠ 0 (Alternative hypothesis, correlation exists,) 

Use the r and r2 values from the regression analysis to compute the t-statistic 

t =  r√(n-2)/(1-r2) where, n = number of samples 

Based on a 5% significance level and (n-2) degrees of freedom, use t-distribution 

tables to obtain the critical values corresponding to: 

CV1 = -t.025 

 CV2 =  t.025 

The following will be the decision rule for the test of correlation of ρ: 

Accept H0 when CV1 < t < CV2 

 Reject H0 when t ≤ CV1 or t ≥ CV2” 

 

Design of the Study 

This is a quantitative study.  I employed the following research methods in the 

study: probability bounds analysis (PBA), Monte Carlo (MC) analysis, linear regression 

analysis, and a hypothesis test for the existence of a population coefficient of correlation.  

I used the commercial PBA software, RiskCalc Version 4.0, in a distribution-free 

analysis using two different sets of distribution-free data for the depths as the 



 

 

34
constraining variables to generate p-boxes to calculate the soil volume 

estimates for seven Superfund sites.  In the first set of the PBA soil volume estimates, I 

used the following constraining parameters to represent the excavation depths: minimum 

depth, average depth, maximum depth, and the standard deviation.  In the second set of 

the PBA soil volume estimates, I used the following constraining parameters to represent 

the excavation depths: minimum depth, 25th percentile depth, 50th percentile (median) 

depth, 75th percentile depth, and the maximum depth.  The purpose of using the two 

different sets of constraining data to generate two different sets of PBA estimates was to 

determine which of the two data sets would lead to a better correlation between the PBA 

estimated soil volumes and the actual excavated soil volumes.   

I used the Excel spreadsheet software to perform the linear regression analysis 

between the actual excavated soil volumes as the dependent variables and the PBA-

estimated soil volumes as the independent variables.  I used the R2-values as a measure of 

the degree of statistical association between the variables.  A high R2-value implied a 

high degree of statistical association.  For the two best statistical associations identified, I 

performed a test of hypothesis to confirm the existence of a population coefficient of 

correlation.  

 Next, I performed an MC estimate of the excavated soil volumes for the seven 

sites using the Oracle Crystal Ball (OCB) Software, Release 11.1.1.3.0.  OCB software is 

an Excel add-in that enables simulations to be performed in spreadsheet calculations.  

Each simulation run consisted of 1000 iterations.  I performed a second set of  regression 
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analysis using the mean and the 95th percentile MC estimates, respectively, as 

the independent variables and the actual excavated soil volumes as the dependent 

variables.   

I performed a third set of regression analysis using the U.S. EPA’s deterministic 

soil volume estimates as the independent variables and the actual excavated soil volumes 

as the dependent variables.  Finally, I compared the R2-values of the best PBA estimates, 

MC estimates, and the U.S. EPA deterministic estimate to determine which of them had 

the best correlation to the actual excavated soil volumes.  

 

Sample and Population 

The U.S. EPA’s Superfund Site Information Database (SSIB) contains data on all 

the abandoned hazardous waste sites in the USA where the U.S. EPA has determined that 

there is an uncontrolled release of hazardous chemicals to the soil or groundwater and 

this poses an immediate danger to the health and safety of nearby communities.  The sites 

listed in the SSIB are called “Superfund Sites” and they were the universe population for 

the study.   

 

Sample Selection Procedure 

I could not select the study sites randomly from the U.S. EPA universe of 

hazardous waste sites due to the following reasons: 
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• The sites in the SSIB were at different stages in the remediation 

process.  Some sites had been cleaned up completely while others were yet to 

commence the cleanup activities.  Therefore, it was likely that a random sample 

would include sites where there is no data or where there is incomplete data. 

• The sites listed in the SSIB did not all require soil remediation.  Some sites were 

listed only because of groundwater contamination.  Therefore, it was likely that a 

random sample would include sites where there is no soil data. 

• Even at sites where soil remediation was needed, soil excavation was not always 

part of the remedy.  For example, in-situ technologies could be employed to 

remove highly volatile organic compounds from soils without excavation.  In the 

cases where the threat of soil contaminants to groundwater was not severe, the 

U.S. EPA only recommended that an asphalt cap be placed on top of the soil to 

prevent further ingress of rainwater to carry contaminants further downward into 

the groundwater aquifer. 

Because of the reasons stated above, the sample population for this study was 

reduced to the subset of the SSIB universe where soil excavation had been completed and 

where the actual excavated soil volume was known with certainty.  This condition was 

imposed by the data needs for the regression analysis. 

 

Number of Samples 

I found from the U.S. EPA’s database that only U.S. EPA Region 3 covering 

Pennsylvania, Delaware, Maryland, Virginia, and West Virginia had complete site reports 
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on the website.  Of the sites I reviewed, only five sites met the criteria for 

inclusion in the study.  U.S EPA Region 7 and U.S. EPA Region 10 had limited reports 

for a few sites on their website.  However, only one site from U.S. EPA Region 7 and one 

site from U.S. EPA Region 10 met all the conditions for inclusion in the study.  For these 

reasons, I selected the seven sites with readily available data for the study. 

Seven sites are adequate for this study because the study seeks to explore a linear 

statistical association between the PBA-estimated soil volumes and the actual excavated 

soil volumes.  While three data points are enough to define a linear relationship or 

straight line, I used seven sites to help define the straight line better and also provide 

enough data for the hypothesis test for the existence of a population coefficient of 

correlation. 

I could have requested additional site data from the U.S. EPA under the Freedom 

of Information Act (FOIA).  Unfortunately, the U.S. EPA views such requests for data on 

‘closed-cases’ with suspicion and requests could take several months to be fulfilled with 

no guarantee that the site reports would have adequate data for inclusion in the study.   

 

Data Collection 

 

Introduction 

The United States Congress provides funds to the U. S. EPA annually for the 

cleanup of the Superfund sites.  The U.S. EPA is, however, authorized to use legal 
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processes to recover the cleanup costs from the past and present owners and 

non-owners of the site who’s past or present activities have contributed to the soil and/or 

groundwater contamination.  Since the U.S. EPA uses public funds for the cleanup 

activities at the Superfund sites, all reports generated in the course of the site 

investigations and remedial activities are public records and can be accessed directly 

from the SSIB at: http://www.epa.gov/superfund/cleanup/index.htm.  I used the search 

capacity of the SSIB to select only sites where the soil remediation has been completed.  

Next, I used the Closeout Reports for the sites to identify the sites where soil excavation 

was part of the remedy and also where the actual excavated soil volume was reported in 

cubic yards.  In the majority of the Closeout Reports, the excavated soil volume was 

reported in tons with no further information on the soil density to permit the conversion 

from tons to cubic yards.  The models in the study calculate soil volumes and not 

weights.  Therefore, those sites could not be included in the study because of the lack of 

this critical data.  In the end, seven sites met all the data requirements for the study and 

all such data were available in the public domain and freely accessible on the SSIB. 

The next sections on data collection address the data collection methods and the 

assumptions made for the PBA models and the MC models separately.   

 

Data Collection for PBA Models 

The data required for the PBA models to estimate the soil excavation volume at 

each site are the expected excavation depths at each site, and the expected contaminated 

area at each site.  These data were not available in ready-to-use forms in the U.S. EPA 
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site study reports.  Therefore, I made assumptions in order to translate the 

available data into a form that could be used for the PBA models.  The procedures I used 

to obtain the data for the PBA models are discussed separately for the expected 

excavation depths and the expected excavation areas. 

 

Assumptions for PBA excavation depths. 

  The soil-boring data from the RI/FS reports show, at each soil-boring location, the 

concentration of the contaminant of concern (COC) at several depths below ground level.  

The mere presence of a COC at a soil-boring location does not automatically mean that 

the area must be excavated.  The U.S. EPA rules demand soil excavation or soil treatment 

only when the COC concentration exceeds the risk-based site-specific cleanup level that 

has been established by the U.S. EPA for that particular site.  The U.S EPA establishes 

the site-specific cleanup levels from risk analysis using the RI/FS data on the 

hydrogeology of the site, the nature of the COC, and the potential threats to both the 

ecology and groundwater resources.  The concentrations of a COC at the various soil-

boring depths when compared with the site-specific cleanup level give an indication of 

the expected depths to which each soil- boring location area must be excavated in order 

to reduce the COC concentration remaining in the soil to a level below the site-specific 

cleanup level.   

I made the following assumptions in order to translate the available RI/FS soil-

boring chemical analysis data into the raw data of expected excavation depths: 
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• If the COC concentration does not exceed the site-specific cleanup level 

at all the depths at which the COC concentration was measured in any single bore 

location then the expected excavation depth at that bore location is zero.  In other 

words, no soil excavation is required at such a location. 

• If the COC concentration exceeds the site-specific cleanup level at any one of the 

depths at which the COC concentration was measured in a bore location, then the 

expected excavation depth is the next lower depth at which the measured COC 

concentration does not exceed the site-specific cleanup level.  For example, if a 

COC was found above the site-specific cleanup level at a depth of 5 feet below 

grade but not at the next lower depth of 6 feet below grade, then I assumed the 

expected excavation depth for that soil-boring location is 6 feet below grade. 

• The site reports indicate the U.S. EPA did not select the soil-boring locations 

statistically.  Instead, the U.S. EPA selected the soil-boring locations according to 

the past site uses.  The areas most likely to have a COC received the most soil 

bores.  Even though this may bias the results towards higher soil volumes, I 

assumed that the soil-boring locations were acceptable for this study.  

Table 1 shows the sites I selected from the U.S. EPA Superfund Database for this 

study, a brief description of the previous onsite activities, and the soil conditions before 

the cleanup activities began.  Table 2 presents a summary of the references for the U.S. 

EPA documents from which I obtained the soil-boring data for each site in the study.  

Table 3 shows the COC at each site, the site-specific cleanup level for the COC at each 

site, and the corresponding reference for the source of that information. 
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Table 1 

Selected Sites and Description of Past Site Uses 

 
Site name and location 
 

 
Site description and soil conditions 

Aladdin Plating Company, 
Lackawanna County, PA 
(1947 to 1982) 

The site was used for chromium electroplating.  As a result of 
the waste-handling activities, the site soil was contaminated with 
chromium from the electroplating activities. 

 
C&R Battery Company, 
Chesterfield County, VA 
(1973 to 1985) 

 
The company operated a battery breaker for the purpose of 
separating and recovering lead from discarded automobile and 
truck batteries.  The site soil was contaminated with lead from 
battery breaking and leads recovery operations.  

 
Paoli Rail Yard, Paoli, PA 
(1915 to present) 

 
The site was used to repair electric-powered rail cars.  In the 
1950’s, polychlorinated biphenyls (PCBs) were used to cool the 
transformers in the train cars. The site soil was contaminated 
with polychlorinated biphenyls (PCBs) from the waste handling 
activities. 

 
Peoples Natural Gas 
Company, Dubuque, IA 
(1930’s to 1954) 

 
The site was the location of a former manufactured gas plant.  
The byproducts of the operation were coal tar and cyanide-
bearing wood chips.  These were buried onsite.  As a result, the 
site soil was contaminated with polynuclear aromatic 
hydrocarbons (PAHs).  
 

 
Taylor Lumber and 
Treating Company, 
Sheridan, OR 
(1946 to 2001) 

 
The company operated a sawmill and wood treating operations 
onsite. The site soil was contaminated with arsenic from the 
chemicals used for the wood treating operations.  

 
Tonolli Corporation, 
Nesquehoning County, PA 
(1974 to 1986) 

 
The corporation operated a lead-acid battery recycling and 
secondary lead reclamation facility at the site.  The site soil was 
contaminated with lead from the smelter operations. 

 
U.S. Titanium Company, 
Nelson County, VA 
(1931 to 1971) 

 
The company produced titanium dioxide pigment at the site.  
The byproduct from the operation was hydrated ferrous sulfate, 
also called “copperas”.  The copperas was buried onsite at 
several locations.  This was the source of acidic waters that 
contaminated nearby rivers 
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Table 2 

Soil Boring Data Source References 

 
Site name and location 
 

 
Source(s) of soil boring data 

Aladdin Plating Company, 
Lackawanna County, PA 
(1947 to 1982) 

 
Roy F. Weston (1988a, p AR300324 – 
AR300325) 

 
C&R Battery Company, Chesterfield 
County, VA 
(1973 to 1985) 

 
NUS Corporation (1990a, p AR302030) 

 
Paoli Rail Yard, Paoli, PA 
(1915 to present) 

 
Groundwater Technology Inc. (1990, p 
AR300721 – AR300739) 

 
Peoples Natural Gas Company, 
Dubuque, IA 
(1930’s to 1954) 

 
Barr Engineering Company (1994, Table 2-
3) 

 
Taylor Lumber and Treating 
Company, Sheridan, OR 
(1946 to 2001) 

 
 
CH2MHILL (2004, Table A-1) 
CH2MHILL (2006, Figure A-1) 

 
Tonolli Corporation, Nesquehoning 
County, PA 
(1974 to 1986) 

 
Paul C. Rizzo Associates Inc. (1991, p 
AR301613 – AR301650) 

 
U.S. Titanium Company, Nelson 
County, VA 
(1931 to 1971) 

 
Hydrosystems Inc. 
(1987b, p 301345 - 301349) 
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Table 3 

Site-Specific Soil Risk-Based Cleanup Standards and References 

 
Site name and location 
 

 
Risk-based cleanup standards 

Aladdin Plating Company, 
Lackawanna County, PA 
(1947 to 1982) 

Excavate all soils containing more than 50 mg/kg 
chromium 
Ref: U.S. EPA (1998) 

 
C&R Battery Company, Chesterfield 
County, VA 
(1973 to 1985) 

 
Excavate all soils containing more than 1000 mg/kg 
lead. 
Ref: U.S. EPA (1990) 

 
Paoli Rail Yard, Paoli, PA 
(1915 to present) 

 
Excavate all soils containing more than 25 mg/kg 
PCBs 
Ref: U.S. EPA (1992a) 

 
Peoples Natural Gas Company, 
Dubuque, IA 
(1930’s to 1954) 

 
Excavate all soils containing more than 100 mg/kg 
carcinogenic PAHs or 500 mg/kg total PAHs up to 6 
ft. Excavate up to upper confining unit if oil sheen is 
visible after 6 ft.   
Ref: U.S. EPA (1991) 

 
Taylor Lumber and Treating 
Company, Sheridan, OR 
(1946 to 2001) 

 
Excavate all soils containing more than 159 mg/kg 
arsenic in the West Facility area. 
Ref: U.S. EPA (2005) 

 
Tonolli Corporation, Nesquehoning 
County, PA 
(1974 to 1986) 

 
Excavate all soils containing more than 1000 mg/kg 
lead 
Ref: U.S. EPA (1992b) 

 
U.S. Titanium Company, Nelson 
County, VA 
(1931 to 1971) 

 
Excavate copperas and all visibly impacted soils in 
Area 1. 
Ref: U.S. EPA (1989) 
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I used the site-specific cleanup levels of the COCs in Table 3, and the 

assumptions for the excavation depths, as decision rules to translate the soil-boring 

results from the sources listed in Table 2 into a raw data of expected excavation depths 

for each site.  Tables 4 to 10 present the raw data of expected excavation depths at each 

site and the corresponding summary statistics.   

With the exception of the Paoli Rail Yard site (Table 6), all the sites in the study 

had one contiguous area to be excavated.  As a result, there is only one summary statistics 

data on the expected excavation depths for those sites.  The soil investigation at the Paoli 

site covered four separate areas.  Two areas were investigated with soil bores at several 

depths.  Table 6 presents the raw data on the expected excavation depths and the 

summary statistics for those two areas.  At the other two remaining areas, only surface 

soils at six inches below grade were analyzed for COCs.  A COC was found above the 

site-specific cleanup level but there was no further soil-boring data at depths below six 

inches.  Therefore, I assumed the expected excavation depths for those two areas were 

interval values that range from zero inches to one foot below grade. 

In the case of Peoples Natural Gas, the ROD limited the excavation depth to six 

feet below grade.  However, if oil sheen was visible after the first six feet of excavation 

then excavation should continue down to the upper confining unit which is between six 

feet and 10 feet below ground level.  For this reason, the default maximum excavation 

depth for the Peoples Natural Gas site was 10 feet.  This is shown in Table 7. 
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Table 4  

Excavation Depth Data for the Aladdin Plating Company Site 

Soil bore Expected   
location excavation depth (ft)   
    
H-1 2.5 
H-2 2.5 
H-3 2.5 
G-1 2.5 
G-2 2.5 
G-3 2.5 
L-0 1.5 
M-0 2.5 
1 3.0 
2 3.0 
3 2.0 
J-1 2.0 
N-0 2.5 
I-1 3.0 
I-2 2.5 
I-3 2.5 
K-1 3.0 
M-1 3.0 
A-0 6.0 
I-0 6.0 
J-0 6.0 

 
Summary statistics for excavation depth (ft) 
 
Mean 3.0238 
Standard Error 0.2834 
Median 2.5 
Mode 2.5 
Standard 
Deviation 1.2988 
Sample Variance 1.6869 
25th Percentile 2.5 
75th Percentile 3.0 
Range 4.5 
Minimum 1.5 
Maximum 6 
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Table 5 

Excavation Depth Data for the C&R Battery Company Site 

    

Soil bore 
location 

Expected excavation 
depth (ft) 

 Soil bore 
location 

Expected excavation 
depth (ft) 

SO-01 6  SO-31 0 
 SO-02 3  SO-15 9 
S0-05 6  SO-16 9 
SO-06 3  SO-17 3 
SO-07 3  SO-18 9 
SO-08 9  SO-20 0 
SO-09 3  SO-21 0 
SO-10 9  SO-22 6 
SO-11 9  SO-23 0 
SO-12 6  20-24 0 
SO-13 9  S0-25 6 
SO-14 6  SO-28 6 
SO-19 3  SO-32 0 
SO-28 6  SO-37 0 
 
Summary statistics for excavation depth (ft) 
Mean 4.6071 
Standard Error 0.6452 
Median 6 
Mode 6 
Standard Deviation 3.4139 
Sample Variance 11.655 
25th Percentile 1.5 
75th Percentile 7.5 
Range 9 
Minimum 0 
Maximum 9 
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Table 6 

Excavation Depth Data for the Paoli Rail Yard Site 

A. Throat & East Car Shop Area          B. South & West Car Shop Area  
 
Soil bore  Expected         Soil bore                      Expected 
location                      excavation depth (ft)         location              excavation depth (ft) 
 
2-3 0  A-North 4.5 
4-5 8  A-south 0 
3-4 4  East 30.5 
1-2 2  SB-1 2.5 
B-west 4.5  SB-2 14.5 
B-N.E. 0  SB-3 14.5 
B-SW 0  West 21.5 
C-SE 0    
C-SW 0    
Pile-1 16.5    

 
Summary statistics for excavation                  Summary statistics for excavation depth 
depth Throat & East Car Shop Areas  (ft)                South and West Car Shop  (ft) 
 
Mean 3.5  Mean 12.571 
Standard Error 1.68  Standard Error 4.1782 
Median 1  Median 14.5 
Mode 0  Mode 14.5 
Standard 
Deviation 5.3125  

Standard 
Deviation 11.054 

Sample Variance 28.222  
Sample 
Variance 122.20 

25th Percentile 0  25th Percentile 2.5 
75th Percentile 4.5  75th Percentile 21.5 
Range 16.5  Range 30.5 
Minimum 0  Minimum 0 
Maximum 16.5  Maximum 30.5 

 
 
 
C. Expected excavation depth for East Storage Yard (ft) = [0, 1] 
    
D.  Expected excavation depth for Turnaround Track (ft) = [0, 1] 
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Table 7 

Excavation Depth Data for the Peoples Natural Gas Site 

Soil bore  Expected 
location  excavation depth (ft) 
 
  
SB-101 0 
SB-102 2 
SB-103 10 
SB-104 10 
SB-105 0 
SB-106 0 
SB-106A 6 
SB-107A 0 
SB-108 0 
SB-109 0 
SB-110 10 
SB-111 0 
SB-112 0 
SB-113 0 
SB-113A 0 
SB-113X 0 
SB-116 0 

 
 
Summary statistics for excavation depth  (ft) 
 
Mean 2.2353 
Standard Error 0.9684 
Median 0 
Mode 0 
Standard 
Deviation 3.9926 
Sample Variance 15.94 
25th Percentile 0 
75th Percentile 2 
Range 10 
Minimum 0 
Maximum 10 
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Table 8 

Excavation Depth Data for Taylor Lumber & Treating Site 

Soil bore  Expected 
location  excavation depth (ft) 
 
OS-12 2 
OS-13 2 
OS-14 2 
GP-01 5 
PS-01 6 
WF-4 0 
WF-05 0 
WF-06 0 
WF-07 2 
WF-09 0 
WF-12 2 

 
 
Summary statistics for excavation depth  (ft) 
 
Mean 1.9091 
Standard Error 0.6098 
Median 2 
Mode 2 
Standard 
Deviation 2.0226 
Sample Variance 4.0909 
25th Percentile 0 
75th Percentile 2 
Range 6 
Minimum 0 
Maximum 6 
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Table 9 

Excavation Depth Data for the Tonolli Corporation Site 

Soil bore 
location 

Expected excavation 
depth (ft) 

 Soil bore 
location 

Expected excavation 
depth (ft) 

SO-S1 0  SO-S30 0 
SO-S2 0  SO-S31 0 
SO-S3 0  SO-S32 0 
SO-S4 5  SO-S33 0 
SO-S5 0  SO-S34 0 
SO-S6 0  SO-S35 0 
SO-S7 0  SO-S36 0 
SO-S8 5.5  SO-S37 0 
SO-S9 0  SO-S38 0 
SO-S10 3  SO-S39 0 
SO-S11 5  SO-S40 10 
SO-S12 0  SO-S41 0 
SO-S13 0  SO-S42 0 
SO-S14 10  SO-S43 0 
SO-S15 9  SO-S44 0 
SO-S16 0  SO-S50 1.5 
SO-S17 5  SO-S51 0 
SO-S18 8  SO-S52 0 
SO-S19 0  SO-S53 0 
SO-S20 10  SO-S54 2 
SO-S21 10  SO-S55 0 
SO-S22 0  SO-S56 0 
SO-S24 0  SO-S57 0 
SO-S25 0  SO-S58 3 
SO-S26 5  SO-S59 6 
SO-S28 5  SO-S60 5 
SO-S29 10  SO-S61 5 
   SO-S62 5 
 
Summary statistics for excavation depth  
(ft) 

Summary statistics for excavation depth  
(ft) 

Mean                                            2.3273                      25th Percentile                             0 
Standard Error                             0.4633 75th Percentile                             5 
Median                                                  0 Range                                        10 
Mode                                                     0 Minimum                                    0 
Standard Deviation                       3.4362 Maximum                                  10 
Sample Variance                           11.808   
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Table 10 

Excavation Depth Data for the U. S. Titanium Corporation Site 

Soil bore  Expected             
location  excavation depth (ft) 
 
3-86 0 
4'86 13 
5-86 0 
6-86 9.5 
7-86 0 
8-86 0 
9-86 12 
10-86 15.5 
11-86 0 
12-86 7 
13-86 0 
14-86 23 
15-86 6 
16-86 0 
17-86 13.5 
18-86 13 
19-86 20 
20-86 24 

 
 
Summary statistics for excavation depth  (ft) 
 
Mean 8.6944 
Standard Error 2.0000 
Median 8.25 
Mode 0 
Standard 
Deviation 8.4855 
Sample Variance 72.004 
25th Percentile 0 
75th Percentile 8.25 
Range 24 
Minimum 0 
Maximum 24 
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Assumptions for PBA excavation areas. 

For some of the sites, the U.S. EPA Remedial Design Reports contained data on 

the expected excavation areas for the sites.  The U.S. EPA estimated those areas after 

further site delineation studies or by computer programs designed for that purpose.  When 

provided, I assumed the U.S. EPA reported excavation areas to be the minimum expected 

excavation areas in the PBA models.  I estimated the other areas that were not available 

in the U.S. EPA reports from available scaled drawings that showed both the soil boring 

locations and the contaminated areas.  To be consistent, I only used the soil-boring results 

within the designated excavation areas in the PBA estimates. 

When rainwater washes a COC down into the soil, the COC does not go straight 

down but tends to spread out laterally as it percolates slowly through the soil.  For this 

reason, I assumed the contaminants in the expected excavation area had spread laterally 

increasing the area by up to 10%.  Therefore, I assigned a 10% halo to the delineated 

areas to account for the contaminant spread.  For example, given an expected excavation 

area of k square feet, I represented the area in the PBA model as an interval ranging from 

k to 1.1k square feet.  Table 11 shows the expected excavation areas used in the PBA 

models for the selected sites, and the sources of the data. 

 

Data Collection for Monte Carlo Models 

 The data required for the MC models to calculate the expected soil volumes are 

the probability distributions for the areas and the excavation depths.  I have discussed  
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Table 11 

Expected Site Excavation Areas and Source References 

 
Site name and location 

Minimum expected  
excavation area (ft2) 

Source of area data 

 
Aladdin Plating Company, 
Lackawanna County, PA 
 

 
363,500 

 
Estimated from scaled 
drawing.  Ref: U.S. 
EPA 1993, Figure 4. 

 
C&R Battery Company, 
Chesterfield County, VA 
 

 
142,700 

 

 
NUS Corporation 
(1990, p AR302144) 

 
Paoli Rail Yard, Paoli, PA 
 

 
Throat area & east car shop = 
177,500 
East storage yard = 189,300 
South & west of car shop yard = 
119,800 
Turnaround track = 91,520 
 

 
Groundwater 
Technology (1991, p 
AR301686 - 
AR301687) 
 

 
Peoples Natural Gas 
Company, Dubuque, IA 
 

 
127,602 

 
Barr Engineering 
Company (1994, 
Appendix B) 
 

 
Taylor Lumber and Treating 
Company, Sheridan, OR 
 

 
171,191 

 
 

 
CH2MHILL (2006, p 3-
6) 
 
 

 
Tonolli Corporation, 
Nesquehoning County, PA 
 

 
 

540,000 

 
 
Paul C Rizzo Associates 
(1992, p AR304023)  
 

 
U.S. Titanium Company, 
Nelson County, VA 
 

 
87,120 

 

 
Hydrosystems Inc. 
(1987a, p AR301081) 
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the assumptions used to obtain the distributions for the areas and the expected 

excavation depths separately in this section. 

 

 Assumptions for MC excavation areas. 

 I assumed the expected excavation areas were uniformly distributed with the areas 

reported in Table 11 as the minimum areas.  I assumed in this case also that there has 

been a 10% increase in area due to the COC spread during its downward migration.  

Therefore, the maximum area is 110% of the area in Table 11. 

 
 

Assumptions for MC excavation depths. 

 I performed two sets of MC estimates using the same uniform distributions for the 

expected excavation areas but different distributions for the expected excavation depths.  

In the first set of MC runs, I assumed that the excavation depths were normally 

distributed.  The mean and standard deviation of the excavation depths for each site were 

the same as those from the summary distributions in Tables 4 to 10.  The only exception 

was the two Paoli areas where only surface soils were analyzed.  In this case, I assumed 

the excavation depths were uniformly distributed between zero inches and 12 inches. 

 In the second set of MC runs, I represented the expected excavation depth for 

each site by percentile distributions corresponding to the values in Tables 4 to 10.  For 

the two Paoli sites where only surface soils were analyzed, I assumed again that the 

excavation depths were uniformly distributed between zero inches and 12 inches.  Tables 
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12 and 13 present a summary of the data used for the two sets of MC models, 

respectively. 

 

Data for Deterministic Models 

 I compiled the U.S. EPA deterministic estimate for each site from the U.S. EPA 

Feasibility Study reports for the purpose of comparing the outcomes of MC, 

deterministic, and PBA models.  Table 14 presents the U.S. EPA deterministic soil 

volume estimate for each site and the corresponding reference source for the data. 

 

Data for Regression Models 

For this study, the data required for the regression models are the mean and the 

95th percentile estimated soil volumes from the PBA and MC models, and the U.S. EPA 

deterministic soil volumes.  These are the independent variables in the regression models.  

The dependent variables in the regression models are the actual excavated soil volumes.  

Table 15 presents the actual soil volumes excavated during site remedial activities and 

the references for the data. 

 

Data Protection Measures 

 The process of cleaning up a hazardous waste site is a joint venture between the 

U.S. EPA and the impacted community.  The U.S. EPA, through community meetings 

and public hearings, shares all site investigation reports and discusses the most effective  
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Table 12 

Data for Monte Carlo Models Assuming Normal Probability Distributions for the 

Excavation Depth 

Site name and location 
 

Excavation area (ft2) Excavation depth (ft) 

Aladdin Plating Company, 
Lackawanna County, PA 
 

Uniform (363500, 399850) Normal (3.02, 1.30) 
Max /Min = 6 / 1.5 

C&R Battery Company, 
Chesterfield County, VA 
 

Uniform (142700, 156970) 
 

Normal (4.61, 3.41) 
Max / Min = 9 / 0 

Paoli Rail Yard, Paoli, PA 
 
 
 
 
 
 
 
 
 
 

Throat area & east car shop = 
Uniform (177500, 195250) 
 
East storage yard = Uniform 
(189300, 208230) 
 
South & west of car shop 
yard = Uniform (119800, 
131780) 
 
Turnaround track = Uniform 
(91520, 100672) 

Normal (3.5, 5.31) 
Max / Min = 16.5 / 0 
 
Uniform (0, 1) 
 
 
Normal (12.57, 11.05) 
Max / Min = 30.5 / 0 
 
Uniform (0, 1) 

 
 
Peoples Natural Gas 
Company, Dubuque, IA 

 
 
Uniform (127602, 140362) 
 

 
 
Normal (2.235, 3.993) 
Max / Min = 10 / 0 

 
Taylor Lumber and Treating 
Company, Sheridan, OR 

 
Uniform (171191, 188310) 
 

 
Normal (1.91, 2.02) 
Max / Min = 6 / 0 

 
Tonolli Corporation, 
Nesquehoning County, PA 

 
Uniform (540000, 594000) 

 
Normal (2.33, 3.44) 
Max / Min = 10 / 0 

 
U.S. Titanium Company, 
Nelson County, VA 

 
Uniform (87120, 95832) 
 

 
Normal (8.69, 8.49) 
Max / Min = 24 / 0 
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Table 13 

Data for Monte Carlo Models Assuming Percentile Distributions for the Excavation 

Depths 

 
Site name and location 
 

 
Excavation area (ft2) 

 
Excavation depth (ft) 

Aladdin Plating Company, 
Lackawanna County, PA 
 

Uniform (363500, 399850) Percentile distribution from 
Table 4. 

C&R Battery Company, 
Chesterfield County, VA 
 

Uniform (142700, 156970) 
 

Percentile distribution from 
Table 5. 

Paoli Rail Yard, Paoli, PA 
 
 
 
 
 
 
 
 
 
 

Throat area & east car shop 
Uniform (177500, 195250) 
 
East storage yard = Uniform 
(189300, 208230) 
 
South & west of car shop 
yard  Uniform (119800, 
131780) 
 
Turnaround track = Uniform 
(91520, 100672) 

Percentile distribution from 
Table 6. 
 
Uniform (0, 1) 
 
 
Percentile distribution from 
Table 6. 
 
 
Uniform (0, 1) 

 
 
Peoples Natural Gas 
Company, Dubuque, IA 

 
 
Uniform (127602, 140362) 
 

 
 
Percentile distribution from 
Table 7. 

 
Taylor Lumber and 
Treating Company, 
Sheridan, OR 

 
 
Uniform (171191, 188310) 
 

 
 
Percentile distribution from 
Table 8. 

 
Tonolli Corporation, 
Nesquehoning County, PA 

 
 
Uniform (540000, 594000) 

 
 
Percentile distribution from 
Table 9. 

 
U.S. Titanium Company, 
Nelson County, VA 

 
 
Uniform (87120, 95832) 
 

 
 
Percentile distribution from 
Table 10. 
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Table 14 
 
U.S. EPA Deterministic Soil Excavation Volume Estimates 
 

 
Site name and location 

 
U.S. EPA deterministic  
soil volume (cu. yds) 

 
Source of area data 

 
Aladdin Plating Company, 
Lackawanna County, PA 
 

 
11,000 

 
Roy F. Weston (1988a, 
p AR300326) 

C&R Battery Company, 
Chesterfield County, VA 
 

36,000 NUS Corporation 
(1990b, p AR302142) 

Paoli Rail Yard, Paoli, PA 
 

25,219 Groundwater 
Technology (1991, p 
AR301686 - 
AR301687) 

 
Peoples Natural Gas 
Company, Dubuque, IA 
 

 
9,500 

 
Barr Engineering 
Company (1994, 
Appendix B) 

 
Taylor Lumber and Treating 
Company, Sheridan, OR 
 

 
12,824 

 
CH2MHILL (2006, p 3-
6) 
 
 

Tonolli Corporation, 
Nesquehoning County, PA 
 

39,300 Paul C Rizzo Associates 
(1992, p AR304023)  
 

U.S. Titanium Company, 
Nelson County, VA 
 

32,000 Hydrosystems Inc. 
(1987a, p AR301167) 
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Table 15 

Actual Excavated Soil Volumes Obtained from U.S. EPA Sources 

 
Site name and location 

 
Actual excavated soil  
volume (cu. yds) 

 
Source of volume data 

 
Aladdin Plating Company, 
Lackawanna County, PA 
 

 
28,600 

 
U.S. EPA (1999a, p2) 

 
C&R Battery Company, 
Chesterfield County, VA 
 

 
38,600 

 
U.S. EPA (2003, p6) 

 
Paoli Rail Yard, Paoli, PA 
 

 
83,000 

 

 
U.S. EPA (2005, p5) 

 
Peoples Natural Gas 
Company, Dubuque, IA 
 

 
17,350 

 
U.S. EPA (2000a, p3) 

 
Taylor Lumber and Treating 
Company, Sheridan, OR 
 

 
15,700 

 
 

 
U.S. EPA (2008, p3) 

 
Tonolli Corporation, 
Nesquehoning County, PA 
 

 
 

114,300 

 
U.S. EPA (1999b, p3) 

 
U.S. Titanium Company, 
Nelson County, VA 
 

 
65,000 

 

 
U.S.EPA (2000b, p6) 
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cleanup methods with the impacted community throughout the remediation 

process.  The U.S. EPA has created the SSIB as the database from which the general 

public can obtain information about the cleanup progress for a site and/or obtain copies of 

the site investigation reports. 

The reports from which I obtained the data for the study are still in the public 

domain.  They could be freely accessed from U.S. EPA’s website at: 

http://www.epa.gov/superfund/cleanup/index.htm.  Therefore, no individual, 

organization, or company would be injured as a result of the publication of the data in 

this study and data protection measures are not needed.  

 

Summary 

I have presented the analytical methods employed for the study in this chapter.  

They are: probability bounds analysis, MC analysis, linear regression analysis, and a 

hypothesis test for the existence of a population coefficient of correlation.  I have 

presented details of the study design, data sources, data collection methods, the U.S. EPA 

deterministic soil volume estimates for each site, and finally, the data used for the PBA 

and MC models.  Chapter 4 presents the results of the PBA and MC models, and analysis 

of the regression results.  Chapter 5 presents the interpretations of the results, 

conclusions, and recommendations from the study. 
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Chapter 4: Results 

 

Introduction 

 Chapter 4 presents the results of the PBA and MC modeling and analyses 

conducted for the study.  I have reported the results and findings separately for PBA soil-

volume estimates, MC soil-volume estimates, and the U.S. EPA deterministic soil 

volume estimates.  Each section contains the results of the modeling soil volume 

estimates followed by a series of two-variable linear regression analysis to determine the 

strengths of the correlations between the various modeling estimates of soil volumes and 

the actual excavated soil volumes.  Finally, I have compared and contrasted the best 

regression results for the PBA models, MC models, and the U.S. EPA deterministic 

estimates in this chapter. 

 

PBA Modeling Results 

I performed two sets of PBA estimates using the data from Tables 4 to 10.  In 

both sets, I represented the expected site excavation areas as intervals using the 

corresponding area data in Table 11 for each site as the lower bound, and 110% of the 

same area as the upper bound.  

 PBA offers the choice of using either summary statistics data or percentile 

distributions to represent the excavation depths.  For the first set of PBA estimates, I 

represented the excavation depths by summary distribution data.  For the second set of 
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PBA estimates, I represented the excavation depths by percentile data.  The 

purpose was to determine which of them would lead to a better correlation with the actual 

soil volumes.  I have discussed these below. 

PBA Using Summary Statistics Data for Excavation Depths 

 The Risk Calc software has a function called “minmaxmeanstddev(minimum, 

maximum, mean, standard deviation)” that uses the following summary statistics data to 

generate p-boxes for the PBA estimates: minimum, maximum, mean, standard deviation.  

In the first set of PBA estimates, I used this function to represent the expected excavation 

depths at each site, using the data from Tables 4 to 10.  The PBA programs that I used to 

calculate the expected soil excavation volume at each site and the results generated are 

presented in Appendices A to G.  Table 16 presents the mean soil volume estimates based 

on PBA using summary statistics data and Table 17 presents the results for the 95th 

percentile soil volume estimates based on PBA using summary statistics data.  I have 

included the actual soil volumes excavated during site remediation in the tables to 

facilitate the comparisons. 

 As expected, PBA does not give a unique result for the mean (Table 16).  The 

model output is the minimum and maximum values for the mean.  I calculated the mid-

point values in the tables as the average of the maximum and minimum soil volume 

estimates.  With the exception of the Aladdin and Paoli sites, all the maximum mean 

values underestimate the actual excavated soil volumes.  The maximum underestimate 

was for the Tonolli site where it was only 48% of the actual excavated soil volume. 
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Table 16 

Results for PBA-Estimated Mean Soil Volumes Using Summary Statistics Data for 

Excavation Depths 

 
 
 
Site name and location 

 
Actual 
soil volume 
(cubic yards) 

 
PBA mean results with summary statistics data 
 
Minimum 

 
Maximum 

 
Mid-point 

 
Aladdin Plating Company 
Lackawanna County, PA 

 
28,600 

 
39,783 

 
45,599 

 
42,691 

 
C & R Battery Company 
Chesterfield County, PA 

 
38,600 

 
23,463 

 
27,703 

 
25,583 

 
Paoli Rail Yard 
Paoli, PA 

 
83,000 

 
74,585 

 
102,299 

 
88,442 

 
Peoples Natural Gas 
Dubuque, IA 

 
17,350 

 
9,643 

 
12,588 

 
11,116 

 
Taylor Lumber & Treating 
Company, Sheridan, PA 

 
15,700 

 
11,469 

 
13,962 

 
12,716 

 
Tonolli Corporation 
Nesquehoning County, PA 

 
114,300 

 
43,160 

 
54,700 

 
48,930 

 
U. S. Titanium Company 
Nelson County, VA 

 
65,000 

 
26,670 

 
32,214 

 
29,442 
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Table 17 

Results of PBA-Estimated 95th Percentile Soil Volumes Using Summary Statistics Data 

for Excavation Depths 

 
 
 
 
Site name and location 

 
Actual 
soil volume 
(cubic yards) 

95th Percentile PBA results with summary 
statistics data 
 
Minimum 

 
Maximum 

 
Mid-point 

 
Aladdin Plating Company 
Lackawanna County, PA 

 
28,600 

 
50,194 

 
88,856 

 
69,525 

 
C & R Battery Company 
Chesterfield County, PA 

 
38,600 

 
36,386 

 
52,323 

 
44,355 

 
Paoli Rail Yard 
Paoli, PA 

 
83,000 

 
92,662 

 
279,623 

 
186,143 

 
Peoples Natural Gas 
Dubuque, IA 

 
17,350 

 
35,977 

 
51,986 

 
43,982 

 
Taylor Lumber & Treating 
Company, Sheridan, PA 

 
15,700 

 
22,778 

 
41,847 

 
32,313 

 
Tonolli Corporation 
Nesquehoning County, PA 

 
114,300 

 
123,548 

 
220,000 

 
171,774 

 
U. S. Titanium Company 
Nelson County, VA 

 
65,000 

 
50,308 

 
85,184 

 
67,746 
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The 95th percentile estimates for the PBA modeling using summary 

statistics data for depths present a different contrast (Table 17).  The upper bound 95th 

percentile results overestimate the actual excavated soil volumes at each site.  In the case 

of the Paoli site, the PBA-estimated soil volume was 337% of the actual excavated soil 

volume.  The lower bound results of the 95th percentile PBA estimates appear to be within 

a more reasonable range of the actual excavated soil volumes. 

 

PBA Using Percentile Data for Excavation Depths 

The Risk Calc software provides the option to use percentile distributions as the 

constraining data to generate p-boxes for the estimates.  In the second set of PBA 

estimates, I used the Risk Calc function, “fivenumbers(minimum, 25th percentile value, 

median, 75th percentile, maximum)” to represent the expected excavation depths at each 

site, using the percentile data from Tables 4 to 10.  The PBA programs that I used to 

calculate the expected soil volume at each site and the results generated are presented in 

Appendices H to N.  Table 18 presents the mean PBA soil volume estimates using 

percentile data for depths, and Table 19 presents the 95th percentile PBA soil volume 

estimates using percentile data for depths.  I have included the actual soil volumes 

excavated during site remediation to facilitate the comparisons. 

The upper bound of the mean soil volume estimates using percentile data for 

depths (Table 18) are higher than the upper bound of the mean soil volume estimates 

using summary statistics data for depths (Table 16).  The upper bounds of the mean soil 

volume estimates using percentile data for depths (Table 18) appear to be within a more  
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Table 18 

Results of PBA-Estimated Mean Soil Volumes Using Percentile Data for Excavation 

Depths 

 
 
 
Site name and location 

 
Actual 
soil volume 
(cubic yards) 

 
PBA mean results from percentile data 
 
Minimum 

 
Maximum 

 
Mid-point 

 
Alladin Plating Company 
Lackawanna County, PA 

 
28,600 

 
31,772 

 
51,833 

 
41,803 

 
C & R Battery Company 
Chesterfield County, PA 

 
38,600 

 
19,423 

 
34,883 

 
27,153 

 
Paoli Rail Yard 
Paoli, PA 

 
83,000 

 
50,496 

 
135,407 

 
92,952 

 
Peoples Natural Gas 
Dubuque, IA 

 
17,350 

 
2268 

 
15,596 

 
8,932 

 
Taylor Lumber & Treating 
Company, Sheridan, PA 

 
15,700 

 
6,213 

 
17,437 

 
11,825 

 
Tonolli Corporation 
Nesquehoning County, PA 

 
114,300 

 
24,000 

 
82,500 

 
53,250 

 
U. S. Titanium Company 
Nelson County, VA 

 
65,000 

 
17,109 

 
40,596 

 
28,853 
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Table 19 

Results of PBA-Estimated 95th Percentile Soil Volumes Using Percentile Data for 

Excavation Depths 

 

 
 
Site name and location 

Actual 
soil volume 
(cubic yards) 

95th Percentile PBA results from percentile data 
 
Minimum 

 
Maximum 

 
Mid-point 

 
Aladdin Plating Company 
Lackawanna County, PA 

 
28,600 

 
40,389 

 
88,856 

 
64,623 

 
C & R Battery Company 
Chesterfield County, PA 

 
38,600 

 
39,639 

 
52,323 

 
45,981 

 
Paoli Rail Yard 
Paoli, PA 

 
83,000 

 
95,396 

 
279,623 

 
187,510 

 
Peoples Natural Gas 
Dubuque, IA 

 
17,350 

 
9,452 

 
51,986 

 
30,719 

 
Taylor Lumber & Treating 
Company, Sheridan, PA 

 
15,700 

 
12,681 

 
41,847 

 
27,264 

 
Tonolli Corporation 
Nesquehoning County, PA 

 
114,300 

 
100,000 

 
220,000 

 
160,000 

 
U. S. Titanium Company 
Nelson County, VA 

 
65,000 

 
43,560 

 
85,184 

 
64,372 
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reasonable range of the actual soil volumes than the soil volume estimates 

using summary statistics data for depths (Table 16). 

In Table 19, the upper bounds of the 95th percentile estimates exceed the actual 

excavated soil volumes at all sites.  The extent of the overestimate is quite significant, 

ranging from 337% of the actual excavated soil volume for the Paoli site to 31% for the 

U.S. Titanium site.  This eliminates the possibility that the upper bound of the 95th 

percentile PBA soil volume estimate could be used as a quick estimate of the upper 

bound of the expected soil volume for budgetary purposes. 

 

Regression Results between PBA Estimates and Actual Soil Volumes 

 I performed a series of two-variable linear regression analyses using the actual 

excavated soil volumes as the dependent variables and each of the lower bound, upper 

bound, and mid-point PBA estimates from Tables 16, 17, 18, and, 19 as the independent 

variables.  Table 20 presents the regression results for PBA estimates using summary 

statistics data for depths, and Table 21 presents the regression results for PBA estimates 

using percentile data for depths.  From Table 20, the best correlation is the lower bounds 

of the 95th percentile results for the PBA estimates using summary statistics data for 

excavation depths.  The coefficient of correlation, R-value, is 0.943.  The coefficient of 

determination, R2-value, is 0.89 which implies that about 89% of the variation in the 

actual excavated soil volumes from site to site is explained by the corresponding linear 

statistical relationship in Table 20. 
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Table 20 

Regression Results between PBA-Estimated Soil Volumes Using Summary Statistics Data 

for Excavation Depths and the Actual Excavated Soil Volumes  

 
Excavation depth 

data source for  
PBA analysis 

 
 
 

Decision point 

 
 
 

R2 -Value 

 
 
 

R-Value 

 
 
 

Slope 

 
 
 

Intercept 
 

PBA using 
summary statistics 

data 

 
mean 

lower bound 

 
0.464 

 
0.681 

 
1.126 

 
14,982 

 
PBA using 

summary statistics 
data 

 
mean 

upper bound 

 
0.460 

 
0.678 

 
0.812 

 
18,255 

 
PBA using 

summary statistics 
data 

 
mean 

mid-point 

 
0.463 

 
0.680 

 
0.946 

 
16,800 

 
PBA using 

summary statistics 
data 

 
95th percentile 
lower bound 

 
0.890 

 
0.943 

 
0.970 

 
-5,290 

 
PBA using 

summary statistics 
data 

 
95th percentile 
upper bound 

 
0.705 

 
0.840 

 
0.332 

 
12,949 

 
PBA using 

summary statistics 
data 

 
95th percentile 

mid-point 

 
0.785 

 
0.886 

 
0.516 

 
6,397 
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Table 21 

Regression Results between PBA-Estimated Soil Volumes Using Percentile Distribution 

Data for Excavation Depths and the Actual Excavated Soil Volumes 

 
Excavation depth 

data source for  
PBA analysis 

 
 
 

Decision point 

 
 
 

R2 -Value 

 
 
 

R-Value 

 
 
 

Slope 

 
 
 

Intercept 
 

PBA using 
percentile data 

 
mean 

lower bound 

 
0.309 

 
0.556 

 
1.270 

 
24,341 

 
PBA using 

percentile data 

 
mean 

upper bound 

 
0.564 

 
0.751 

 
0.656 

 
16,323 

 
PBA using 

percentile data 

 
mean 

mid-point 

 
0.501 

 
0.708 

 
0.910 

 
17,373 

 
PBA using 

percentile data 

 
95th percentile 
lower bound 

 
0.884 

 
0.940 

 
0.966 

 
4,727 

 
PBA using 

percentile data 

 
95th percentile 
upper bound 

 
0.705 

 
0.840 

 
0.332 

 
12,949 

 
PBA using 

percentile data 

 
95th percentile 

mid-point 

 
0.772 

 
0.878 

 
0.507 

 
9,720 
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The second best correlation result is for the lower bounds of the 95th 

percentile PBA soil volume estimates using percentile data for excavation depths.  The 

R2-value is 0.884 and the R-value is 0.940.  The closeness between the two best PBA 

correlation results suggest that there is no significant difference between the lower bound 

95th percentile PBA results for PBA estimates using summary statistics data for 

excavation depths and PBA estimates using percentile data for excavation depths.   

Figure 3 presents an ordered bar graph summary of the correlation results for all 

the PBA estimates.  The graph indicates that the 95th percentile estimates do, in general, 

give better correlation to the actual soil volumes than the mean estimates. 

 

Results for the Monte Carlo Estimates 

 I performed two sets of soil volume estimates using Monte Carlo simulation. I 

used the Crystal Ball software and each simulation was set to 1000 iterations.  In both 

sets of MC estimates, I represented the expected excavation area by uniform 

distributions.  I used the same maximum and minimum area values in the PBA estimates 

for each site for the MC estimates.  However, in the MC estimates, I assumed the area 

was uniformly distributed between the maximum and minimum values.   

The main difference between the two sets of the MC estimates was the type of 

distribution used to represent the expected excavation depths.  In the first set of MC 

estimates, I represented the expected excavation depth at each site by a normal 

distribution with the same mean and standard deviation as the data in Tables 4 to 10.  In  
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 Figure 3.  Ordered bar graph summary of R2-values for all PBA estimates 
 
 
PCLBM = Lower bound mean estimate, PBA using percentile distribution for depths. 

SSUPM = Upper bound mean estimate, PBA using summary data for depths 

SSMPM = Mid-point mean estimate, PBA using summary data for depths 

SSLBM = Lower bound mean estimate, PBA using summary data for depths 

PCMPM = Mid-point mean estimate, PBA using percentile data for depths 

PCUPM = Upper bound mean estimate, PBA using percentile data for depths 

SS95UB = Upper bound 95th percentile estimate, PBA using summary data for depths 

PC95UB = Upper bound 95th percentile estimate, PBA using percentile data for depths 

PC95MP = Mid-point 95th percentile estimate, PBA using percentile data for depths 

SS95MP = Mid-point 95th percentile estimate, PBA using summary data for depths 

PC95LB = Lower bound 95th percentile estimate, PBA using percentile data for depths 

SS95LB = Lower bound 95th percentile estimate, PBA using summary data for depths. 
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the second set of MC estimates, I represented the expected excavation depths 

by percentile distributions corresponding to the data in Tables 4 to 10. 

 

Results for MC Estimates Assuming Normal Distributions for Excavation Depths 

 Table 22 presents the results of the MC soil volume estimates assuming normal 

distributions for the excavation depths.  The 95th percentile results overestimate the actual 

soil volumes for all sites.  The results for the mean estimates are mixed, with some very 

high overestimates and some very low underestimates. 

 

Results for MC Estimates Assuming Percentile Distributions for Excavation Depths 

 Table 23 presents the results of the MC soil volume estimates assuming percentile 

distributions for the expected excavation depths.  The 95th percentile results again 

overestimate the actual soil volumes for all sites.  In this case also, the results for the 

mean estimate are mixed, with some very high overestimates and some very low 

underestimates. 

 

Regression Results between MC Estimates and Actual Soil Volumes 

 Table 24 presents the regression results between the MC estimated soil volumes 

as the independent variables and the actual excavated soil volumes as the dependent 

variables.  The best correlation was obtained for the 95th percentile soil volume estimate 

in the case where I represented the areas by uniform distributions and the expected  
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Table 22 

Results of MC-Estimated Soil Volumes Assuming Normal Distribution for Excavation 

Depths 

 

 
 
Site name and location 

Actual 
soil volume 
(cubic yards) 

Mean 
soil volume 
(cubic yards) 

 
95th Percentile  
soil volume 

 
Aladdin Plating Company 
Lackawanna County, PA 

 
28,600 

 
45,517 

 
71,512 

 
C & R Battery Company 
Chesterfield County, PA 

 
38,600 

 
25,261 

 
46,354 

 
Paoli Rail Yard 
Paoli, PA 

 
83,000 

 
108,898 

 
185,668 

 
Peoples Natural Gas 
Dubuque, IA 

 
17,350 

 
19,261 

 
40,858 

 
Taylor Lumber & Treating 
Company, Sheridan, PA 

 
15,700 

 
16,048 

 
34,383 

 
Tonolli Corporation 
Nesquehoning County, PA 

 
114,300 

 
79,623 

 
170,958 

 
U. S. Titanium Company 
Nelson County, VA 

 
65,000 

 
34,861 

 
69,961 
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Table 23 

Results of MC-Estimated Soil Volumes Assuming Percentile Distribution for Excavation 

Depths 

 

 
 
Site name and location 

Actual 
soil volume 
(cubic yards) 

Mean 
soil volume 
(cubic yards) 

 
95th Percentile  
soil volume 

 
Aladdin Plating Company 
Lackawanna County, PA 

 
28,600 

 
57,768 

 
87,547 

 
C & R Battery Company 
Chesterfield County, PA 

 
38,600 

 
31,294 

 
51,511 

 
Paoli Rail Yard 
Paoli, PA 

 
83,000 

 
28,163 

 
81,062 

 
Peoples Natural Gas 
Dubuque, IA 

 
17,350 

 
26,404 

 
50,310 

 
Taylor Lumber & Treating 
Company, Sheridan, PA 

 
15,700 

 
35,966 

 
61,038 

 
Tonolli Corporation 
Nesquehoning County, PA 

 
114,300 

 
115, 431 

 
212,627 

 
U. S. Titanium Company 
Nelson County, VA 

 
65,000 

 
28,051 

 
80,987 
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Table 24 

Regression Results between MC-Estimated Soil Volumes and the Actual Excavated Soil 

Volumes 

 
Excavation depth 

assumption  
for MC analysis 

 
 
 
 

Decision point 

 
 
 
 

R2 -Value 

 
 
 
 

R-Value 

 
 
 
 

Slope 

 
 
 
 

Intercept 
 

MC assuming 
normal distribution 

 

 
Mean 

 

 
0.643 

 
0.802 

 
0.856 

 
11,488 

 
MC assuming 

normal distribution 
 

 
95th Percentile 

 
0.792 

 
0.890 

 
0.524 

 
5,443 

 
MC assuming 

percentile 
distribution  

 

 
Mean 

 

 
0.390 

 
0.625 

 
0.715 

 
18,795 

 
MC assuming 

percentile 
distribution 

 

 
95th Percentile 

 

 
0.666 

 
0.816 

 
0.536 

 
3,890 
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excavation depths by normal distributions.  The R2-value is 0.792 which 

implies about 79% of the variation in the actual excavated soil volumes are explained by 

the corresponding linear relationship in Table 24.   

Figure 4 presents an ordered bar graph summary of all the correlation results for 

the MC estimates.  Figure 4 also shows that the 95th percentile MC estimates correlate 

better with the actual soil volumes than the mean estimates. 

 

Regression Results between U.S. EPA Deterministic Estimates and Actual Volumes 

 Table 25 presents the results of the regression analysis between the U.S. EPA 

deterministic soil-volume estimates as the independent variables and the actual excavated 

soil volumes as the dependent variables.  The R2-value is only 58.9%.    

 

Comparison of Best Correlation Results for PBA, MC, and Deterministic Estimates 

Table 26 presents a summary of the best correlation results for the PBA estimates, 

the MC estimates, and the U.S. EPA deterministic estimate.  The summary is also 

presented in an ordered bar graph in Figure 5.  The results indicate that the lower bound 

of the 95th percentile PBA estimate is a better estimator of remedial soil volumes than 

either the mean or 95th percentile MC estimates.  The result with the poorest correlation 

was the U.S. EPA deterministic estimates.  This shows that the current U.S. EPA 

deterministic methods are inadequate for estimating soil volumes and the probabilistic 

methods, PBA and MC, give much better soil volume estimates. 
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Figure 4.  Ordered bar graph summary of R2-values for all MC estimates 
 
 
MCPCM = Mean estimate, MC using percentile distributions for depths 

MCNM = Mean estimate, MC assuming normal distributions for depths 

MCPC95 = 95th percentile estimate, MC using percentile distributions for depths 

MCN95 = 95th percentile estimate, MC assuming normal distributions for depths 
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Table 25 

Regression Results between U.S. EPA Deterministic Soil Volumes and the Actual 

Excavated Soil Volumes. 

 
Source of soil 

volume estimates 

 
 

Decision point 

 
 

R2 -Value 

 
 

R-Value 

 
 

Slope 

 
 

Intercept 
      

U.S. EPA 
Deterministic 

Estimates 

N/A 0.589 0.7675 2.266 -1,892 
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Table 26  

Summary of Best Soil Volume Estimates from the PBA, MC, and Deterministic Models 

 
Excavation   

depth assumption 

 
 

Decision point 

 
 

R2 -Value 

 
 

R-Value 

 
 

Slope 

 
 

Intercept 
 

PBA using 
summary statistics 

data 

 
95th Percentile 
Lower Bound 

 
0.890 

 
0.943 

 
0.970 

 
-5,290 

 
 

PBA using 
percentile data 

 
 

95th Percentile 
Lower Bound 

 
 

0.884 

 
 

0.940 

 
 

0.966 

 
 

4,727 

 
 

MC using summary 
statistics data 

 

 
 

95th Percentile 

 
 

0.792 

 
 

0.890 

 
 

0.524 

 
 

5,443 

 
U.S. EPA 

deterministic 
estimates 

 

 
Calculated 

Result 

 
0.589 

 
0.7675 

 
2.266 

 
-1,892 
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Figure 5.  Ordered bar graph summary of best R2-values 

 

DETM = U.S. EPA deterministic estimates 

MCN95 = 95th percentile estimate, MC assuming normal distributions for depths 

PC95LB = Lower bound 95th percentile estimate, PBA using percentile data for depths 

SS95LB = Lower bound 95th percentile estimate, PBA using summary data for depths. 
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Hypothesis Test for a Population Coefficient of Correlation 

 I performed a test of hypothesis on the two best PBA results in Table 26 to 

confirm the existence of a population coefficient of correlation.  The null hypothesis was 

that the population coefficient of correlation equaled zero.  The alternate hypothesis was 

that the population coefficient of correlation was not zero.  I have shown the calculations 

in Appendices O and P.  The results do confirm the existence of correlation between the 

lower bound 95th percentile PBA results and the actual excavated soil volumes. 

 

Summary 

 This chapter presented the soil volume estimates obtained by using PBA and MC, 

and the results of the correlation analysis. The goal of the study was to find an optimal 

decision point for PBA models when used to estimate remedial soil volumes at hazardous 

waste sites.  Table 26 presents a summary of the best correlations obtained from the 

PBA-estimates, MC-estimates, and the U.S. EPA deterministic estimates.  The results of 

this study indicate that the optimal decision point for PBA models when used to estimate 

remedial soil volumes is the lower bound value of the 95th percentile PBA estimate.  The 

results also show that both the lower bound 95th percentile PBA estimates and the 95th 

percentile MC estimates are better predictors of remedial soil volumes than the present 

U.S. EPA deterministic estimates.   

There was no significant difference in the correlation results for the lower bound 

95th percentile PBA estimates in the case where I used summary distribution data for the 

excavation depths or the case where I used percentile data for the excavation depths.  
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This indicates that it is optimal to use either the summary statistics or the 

percentile distributions in making PBA estimates.  Chapter 5 presents the interpretations 

of the results, conclusions, and recommendations.  
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Chapter 5: Discussion, Conclusions, and Recommendations 

 

Introduction 

The United States Environmental Protection Agency (U.S. EPA) currently uses 

deterministic methods to estimate remedial soil volumes at hazardous waste sites.  I have 

presented data in this study to show that the U.S. EPA deterministic estimates widely 

underestimate the actual excavated soil volumes.  Probability Bounds Analysis (PBA) is 

an alternate method to estimate remedial soil volumes that also accounts for the 

uncertainties and the imprecision in the soil volume estimates.  However, the PBA result 

for any selected percentile or any measure of central tendency is not a unique number but 

is rather a wide interval.  The research questions, then, were to determine whether the 

lower bound or upper bound of the 95th percentile PBA estimate or that of the mean 

estimate is the optimal decision point.   The identification of an optimal decision point 

would encourage a greater use of the PBA method to estimate remedial soil volumes at 

hazardous waste sites under uncertainty. 

In the course of the study, additional questions arose regarding how the best PBA 

decision point estimate would compare with a similar MC estimate or the current U.S. 

EPA deterministic estimate.  In other words, it is not only enough that the best PBA 

decision point estimate should correlate well with the actual excavated soil volumes but it 

should also be a better estimator of the remedial soil volumes than both MC estimates 

and the current U.S. EPA deterministic estimates. 
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I addressed the above questions in the study by comparing the strengths 

of the correlations between the actual excavated soil volumes and the PBA, MC, and U.S. 

EPA deterministic estimates.  I have summarized the results in Table 26 and this will be 

the reference material for the discussion of the results of the study, and the conclusions. 

 

Discussion of Results 

 The study shows that the PBA methodology can be applied to estimate remedial 

soil volumes using data that is normally collected during hazardous waste site 

investigation studies.  The two best correlations in Table 26 are the lower bound 95th 

percentile PBA soil volume estimates using summary statistics data for depths, and the 

lower bound 95th percentile PBA soil volume estimates using percentile distributions for 

depths.  Table 26 also indicates that the correlation for the lower bound 95th percentile 

PBA estimates is about the same for both PBA with summary statistics data for 

excavation depths and PBA with percentile distributions for excavation depths.   

 Table 26 also indicates that PBA gives a higher correlation with the actual 

excavated soil volumes than both MC and U.S. EPA deterministic approach.  The reason 

could be that only two variables, area and depth, are needed for the analysis.  

Aughenbaugh & Paredis (2005) have shown that PBA gives better results than MC when 

the number of variables in the model is less than 30. 

 Although the MC soil volume estimates give better correlations than the U.S. 

EPA deterministic estimates, the arbitrary selection of the probability distributions for the 

excavation areas and depths in the MC estimates may require justification in a contested 
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settlement.  This is not the case with PBA models.  For example, I assumed the 

excavation areas in the MC estimates were uniformly distributed.  The shapes of the 

cumulative density functions for the uniform distributions are the same as that of the p-

boxes derived from the same interval limits for the PBA estimates.  However, the 

assumption of interval limits for areas in the PBA estimates instead of uniform 

distributions is intuitive enough to be accepted without justification.  Another problem 

with the MC estimates in this study is that it is hard to justify the assumption of normal 

distributions for the expected excavation depths given the highly skewed data for 

excavation depths in Tables 4 to 10. 

 The worst correlation result in Table 26 is for the U.S. EPA deterministic 

estimates using conservative values.  Table 14 confirms that The U.S. EPA deterministic 

methods consistently underestimate the remedial soil volumes.  The best deterministic 

underestimate is for the C&R Battery site where it is 93% of the actual excavated soil 

volume.  The worst deterministic underestimate is for the Paoli Rail Yard site where it is 

only 30% of the actual excavated soil volume.  The median deterministic underestimate is 

for the U.S. Titanium site where it is 49% of the actual excavated soil volume. 

 In the course of soil excavation activities, soil samples are routinely taken at some 

pre-determined depths and analyzed for the presence of COCs.  The purpose is to 

minimize cost by ensuring that the excavation does not proceed beyond what is necessary 

to remove only the soils that have COC concentrations above the cleanup level.  

However, because the deterministic models underestimate the remedial soil volumes, 

situations arise where additional soil volumes must be excavated in order to remove all 
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soils that have COC concentrations above the cleanup level.  When this occurs 

and the additional excavation work appears to be significant, the U.S. EPA issues a 

document called, “Explanation of Significant Differences”, (ESD), to authorize the 

additional soil excavation.   For example, the original U.S. EPA deterministic soil volume 

estimate for the Tonolli site was 39,300 cubic yards.  However, as the excavation 

progressed, the US E.P.A. issued an ESD (U.S. EPA 1999c) to explain that the 

excavation would need to be expanded because more contaminated soils above the 

cleanup level had been found in the course of the excavation.  The ESD did not provide a 

revised estimate of the expected total soil volume.  In the end, a total of 114,300 cubic 

yards of soil was excavated at the Tonolli site.   The financial impact of such a dramatic 

increase in the total soil volume could have a crippling effect on the business operations 

of the PRPs who would eventually have to pay for this additional excavation cost on 

short notice.  Since the study results show that both PBA and MC give much higher 

remedial soil volume estimates than the U.S. EPA deterministic estimates, the use of 

these probabilistic methods to estimate remedial soil volumes under uncertainty should 

be encouraged.  This is better for the PRPs because the additional soil volumes that may 

have to be excavated in the event there is an underestimate would be much less in this 

case than in the case of the deterministic estimates.  

 This study is very relevant to the work of the U.S. UPA and I would share the 

results with the agency.  I hope to get the co-operation of the U.S. EPA to carry out a 

larger study that overcomes the limitation of this study.  
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 The limitation of the study is that I did not select the sites randomly 

from the U.S. EPA universe of hazardous waste sites.  Therefore, the results and 

conclusions apply to this population only and may not be extended to include the general 

population of hazardous waste sites. 

 

Conclusion 

 The conclusion from the study is that the optimal decision point for PBA models 

when used to estimate remedial soil volumes at hazardous waste sites under uncertainty is 

the lower bound 95th percentile estimate.  If we let PBA95TH represent the lower bound 

95th percentile PBA soil volume estimate, then the statistical relationship between the 

actual excavated soil volume and the lower bound 95th percentile PBA soil volume 

estimate is: 

Actual Soil Volume = PBA95TH * 0.970 – 5290 

The R2 value is 89% which means about 89% of the variation in the actual excavated soil 

volumes in the study are explained by the above equation.  There is no significant 

difference in the estimate whether the expected excavation depths are represented by 

summary statistics data or percentile distributions in the PBA soil volume estimate. 

 

Social Change Implications 

The adoption of the PBA methodology for estimating remedial soil volumes 

under uncertainty would lead to the following benefits: 
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• Reduce litigation expenses among the potentially responsible 

parties. 

• Speed up remedial actions so contaminants do not continue to adversely 

impact the health and safety of nearby residents. 

• Increase productivity in the area because nearby residents would be 

healthier and have less sick off-days. 

 

Recommendations 

 Although the study results look promising, the fact that I did not select the study 

sites randomly limits the general application of the regression equation.  One 

recommendation to improve the study is to validate the above regression equation by 

applying it to a different set of sites.  The procedure would be to select other sites where 

soil excavation has been completed from the U.S. EPA universe, use PBA to estimate the 

remedial soil volumes, select the lower bound 95th percentile estimates, and then, use the 

regression equation as a correction factor to estimate the actual soil volumes.  The 

‘corrected’ soil volumes could then be compared with the actual excavated soil volumes 

for correlations. 

 The sample size limitation for this study was imposed by the availability of data 

on the U.S. EPA’s website.  The study could also be improved by selecting a greater 

number of sites randomly from the subset of the U.S. EPA’s universe of hazardous waste 

sites where soil excavation is complete for another study.  However, this can only be 

feasible when the U.S. EPA is an active participant in the study.   In this way, the 
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information that is not available on U.S. EPA’s website could be recovered 

from the U.S. EPA files or from contractor records. 
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Appendix A: PBA Soil Volume Estimate Using Summary Statistics Data – 

Aladdin Plating Site  

 

// DISTRIBUTION-FREE MODELING FOR THE ALADDIN PLATING COMPANY SITE 

// USING p-BOXES CONSTRUCTED FROM THE SUMMARY STATISTICS DATA IN TABLE 4 

 

// Expected soil excavation area range, assuming 10% halo 

 Area = [363500, 399850]  // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 4 

 Dmin = 1.5      // minimum depth, ft 

 Dmax = 6       // maximum depth, ft 

 Dmean = 3.02   // mean depth, ft 

 Stddev = 1.30 // standard deviation, ft 

// Probability bounds on depth is constructed from the above summary statistics data using the 

//Risk Calc  Version 4.0 function: minmaxmeanstddev (minimum, maximum, mean, standard 

//deviation) 

 Depth = minmaxmeanstddev(Dmin, Dmax, Dmean, Stddev) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //   soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[20194.4,88855.6],  mean=[39783,45599],  var=[1e+07,9e+08])   

 cut(Volume, 95%)  // displays the 95th percentile soil volumes 

    [ 50194.23, 88855.56]  
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Appendix B: PBA Soil Volume Estimate Using Summary Statistics Data – 

C&R Battery Plating  

 

// DISTRIBUTION-FREE MODELING FOR THE C & R BATTERY 

// USING p-BOXES CONSTRUCTED FROM THE SUMMARY STATISTICS DATA IN TABLE 5 

// Expected soil excavation area range, assuming 10% halo 

 Area = [142700, 156970] // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 5 

 Dmin = 0        // minimum depth, ft 

 Dmax = 9       // maximum depth, ft 

 Dmean = 4.61    // mean depth, ft 

 Stddev = 3.41 // standard deviation, ft 

// Probability bounds on depth is constructed from the above summary statistics data using the 

//Risk Calc Version 4.0 function: minmaxmeanstddev (minimum, maximum, mean, standard 

//deviation) 

 Depth = minmaxmeanstddev(Dmin, Dmax, Dmean, Stddev) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    // soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,52323.3],  mean=[23463,27703],  var=[4e+07,6e+08])  

 

 cut(Volume, 95%)  // displays the 95th percentile soil volumes 

    [ 36386.22, 52323.34]  
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Appendix C: PBA Soil Volume Estimate Using Summary Statistics Data – 

Paoli Rail Yard 
 

// DISTRIBUTION-FREE MODELING FOR THE PAOLI RAIL YARD SITE USING 

// p-BOXES CONSTRUCTED FROM THE SUMMARY STATISTICS IN TABLE 6 

 

// Throat & East Car Shop area soil volume calculation 

 Area1 =[177500, 195250]   // expected excavation area at this location, ft2 

 Dmin1 = 0          // minimum excavation depth, ft 

 Dmax1 = 16.5    // maximum excavation depth, ft  

 Dmean1 = 3.5    // mean excavation depth, ft 

 Dstddev1 = 5.31       // standard deviation of excavation depth, ft 

// Probability bounds on depth at each location is constructed from the above summary statistics 

//data using the Risk Calc function: minmaxmeanstddev(minimum, maximum, mean, standard 

//deviation) 

 Depth1 = minmaxmeanstddev(Dmin1, Dmax1, Dmean1, Dstddev1) 

 

// Calculation of soil volume in the Throat and East Car Shop area 

 Volume1 = (Area1 * Depth1)/27      // volume in cubic yards 

 

// South & West Car Shop area soil volume calculation 

 Area2 = [119800, 131780]     // expected excavation area at this location, ft2 

 Dmin2 = 0 // minimum excavation depth, ft 

 Dmax2 = 30.5 // maximum excavation depth, ft 

 Dmean2 = 12.57 // mean excavation depth, ft 

 Dstddev2 = 11.05 // Standard deviation of excavation depth, ft 

// Calculation of excavation depth in the South & West Car Shop area 
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 Depth2 = minmaxmeanstddev(Dmin2, Dmax2, Dmean2, Dstddev2) 

 

// Calculation of soil volume in the South & West Car Shop area 

 Volume2 = (Area2 * Depth2)/27 // volume in cubic yards 

 

// East Storage Yard soil volume calculation 

 Area3 = [189300, 208230] // expected excavation area, ft2 

 Depth3 = [0, 1]  // expected excavation depth, ft 

 

 Volume3 = (Area3 * Depth3)/27 // volume in cubic yards 

 

// Turnaround Track soil volume calculation 

 Area4 = [91250, 100672]   // expected excavation area, ft2 

 Depth4 = [0, 1]  // expected excavation depth, ft  

 

 Volume4 = (Area4 * Depth4)/27 // volume in cubic yards 

 

// Calculation of total site soil excavation volume 

 Volume = Volume1 + Volume2 + Volume3 + Volume4 // Total site volume, cu. yds. 

 

// Displaying results 

 Volume  // displays min, max, mean, variance for soil volume 

    ~(range=[0,279623],  mean=[74585,102299],  var=[0,1e+10])  

 cut(Volume, 95%)  // displays the 95th percentile soil volumes 

    [ 92662.35, 279622.9]  
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Appendix D: PBA Soil Volume Estimate Using Summary Statistics Data – 

Peoples Natural Gas  
 
 

// DISTRIBUTION-FREE MODELING FOR PEOPLES NATURAL GAS SITE USING 

// p-BOXES CONSTRUCTED FROM THE SUMMARY STATISTICS IN TABLE 7 

 

// Expected soil excavation area range, assuming 10% halo 

 Area = [127602, 140362]     // interval estimate, ft2 

// Expected soil excavation depth summary statistics data from Table 7 

 Dmin = 0     // minimum depth, ft 

 Dmax = 10   // maximum depth, ft 

 Dmean = 2.24   // mean depth, ft  

 Dstddev = 3.99   // standard deviation, ft 

 

// Probability bounds on depth is constructed from the above summary statistics data using the 

//Risk Calc function: minmaxmeanstddev(minimum, maximum, mean, stddev) 

 Depth = minmaxmeanstddev(Dmin, Dmax, Dmean, Dstddev) 

 

// Calculation of expected soil volume 

 Volume = (Area * Depth)/27   // volume in cubic yards 

 

// Displaying results 

 Volume      // Displays min, max, mean, variance for soil volume 

    ~(range=[0,51985.9],  mean=[9643,12588],  var=[1e+08,4e+08])  

 cut(Volume, 95%)     // displays the 95th percentile soil volumes 

    [ 35976.76, 51985.93]  
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Appendix E: PBA Soil Volume Estimate Using Summary Statistics Data – 

Taylor Lumber & Treating  
 
// DISTRIBUTION-FREE MODELING FOR THE TAYLOR LUMBER & TREATING SITE 

// USING p-BOXES CONSTRUCTED FROM THE SUMMARY STATISTICS DATA IN TABLE 8 

// Expected soil excavation area range, assuming 10% halo 

 Area = [171191, 188310] // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 8 

 Dmin = 0        // minimum depth, ft 

 Dmax = 6      // maximum depth, ft 

 Dmean = 1.91   // mean depth, ft 

 Stddev = 2.02   // standard deviation, ft 

 

// Probability bounds on depth is constructed from the above summary statistics data using the 

//Risk Calc Version 4.0 function: minmaxmeanstddev (minimum, maximum, mean, standard 

//deviation) 

 Depth = minmaxmeanstddev(Dmin, Dmax, Dmean, Stddev) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    // soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,41846.7],  mean=[11469,13962],  var=[1e+07,3e+08])  

 cut(Volume, 95%)  // displays the 95th percentile soil volumes 

    [ 22778.42, 41846.67]  
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Appendix F: PBA Soil Volume Estimate Using Summary Statistics Data – 

Tonolli Corporation  
 
// DISTRIBUTION-FREE MODELING FOR THE TONOLLI CORPORATION SITE 

// USING p-BOXES CONSTRUCTED FROM THE SUMMARY STATISTICS DATA IN TABLE 9 

// Expected soil excavation area range, assuming 10% halo 

 Area = [540000, 594000] // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 9 

 Dmin = 0        // minimum depth, ft 

 Dmax = 10     //   maximum depth, ft 

 Dmean = 2.33   // mean depth, ft 

 Stddev = 3.44   // standard deviation, ft 

 

// Probability bounds on depth is constructed from the above summary statistics data using the 

//Risk Calc Version 4.0 function: minmaxmeanstddev (minimum, maximum, mean, standard 

//deviation) 

 Depth = minmaxmeanstddev(Dmin, Dmax, Dmean, Stddev) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //   soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,220000],  mean=[43160,54700],  var=[8e+08,9e+09])  

 cut(Volume, 95%)  // displays the 95th percentile soil volumes 

    [ 123547.7, 220000]  
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Appendix G: PBA Soil Volume Estimate Using Summary Statistics Data – U. 

S. Titanium Corporation 
 

// DISTRIBUTION-FREE MODELING FOR THE U. S. TITANIUM CORPORATION SITE 

// USING p-BOXES CONSTRUCTED FROM THE SUMMARY STATISTICS DATA IN TABLE 10 

// Expected soil excavation area range, assuming 10% halo 

 Area = [87120, 95832] // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 10 

 Dmin = 0        // minimum depth, ft 

 Dmax = 24     //   maximum depth, ft 

 Dmean = 8.69   // mean depth, ft 

 Stddev = 8.49   // standard deviation, ft 

 

// Probability bounds on depth is constructed from the above summary statistics data using the 

//Risk Calc Version 4.0 function: minmaxmeanstddev (minimum, maximum, mean, standard 

//deviation) 

 Depth = minmaxmeanstddev(Dmin, Dmax, Dmean, Stddev) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //   soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,85184],  mean=[26670,32214],  var=[8e+07,1e+09])  

 cut(Volume, 95%)  // displays the 95th percentile soil volumes 

    [ 50307.6, 85184]  
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Appendix H: PBA Soil Volume Estimate Using Percentile Distributions – 

Aladdin Plating Site 
 

// DISTRIBUTION-FREE MODELING FOR THE ALADDIN PLATING COMPANY SITE 

// USING p-BOXES CONSTRUCTED FROM THE PERCENTILE DATA IN TABLE 4 

// Expected soil excavation area range, assuming 10% halo 

 Area = [363500, 399850]   // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 4 

 Dmin = 1.5   // minimum depth, ft 

 D25 = 2.5        // 25th percentile depth, ft 

 D50 = 2.5    // median (50th percentile) depth, ft 

 D75 = 3   // 75th percentile depth, ft 

 Dmax = 6  // maximum depth, ft. 

 

// Probability bounds on depth is constructed from the above percentiles data using the Risk Calc 

// Version 4.0 function: fivenumbers(minimum, 25th percentile, median, 75th percentile, 

//maximum) 

 Depth = fivenumbers(Dmin, D25, D50, D75, Dmax) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //  soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[20194.4,88855.6],  mean=[31772,51833],  var=[2832052,7e+08])  

   cut(Volume, 95%) // Displays 95th percentile result. 

    [ 40388.88, 88855.56]  
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Appendix I: PBA Soil Volume Estimate Using Percentile Distributions – 

C&R Battery 
 

 
// DISTRIBUTION-FREE MODELING FOR THE C & R BATTERY COMPANY SITE 

// USING p-BOXES CONSTRUCTED FROM THE PERCENTILE DATA IN TABLE 5 

// Expected soil excavation area range, assuming 10% halo 

 Area = [142700, 156970]   // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 4 

 Dmin = 0   // minimum depth, ft 

 D25 = 1.5        // 25th percentile depth, ft 

 D50 = 6    // median (50th percentile) depth, ft 

 D75 = 7.5   // 75th percentile depth, ft 

 Dmax = 9  // maximum depth, ft. 

 

// Probability bounds on depth is constructed from the above percentiles data using the Risk Calc 

// Version 4.0 function: fivenumbers(minimum, 25th percentile, median, 75th percentile, 

//maximum) 

 Depth = fivenumbers(Dmin, D25, D50, D75, Dmax) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //  soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,52323.3],  mean=[19423,34883],  var=[1e+08,5e+08])  

   cut(Volume, 95%) // displays the 95th percentile soil volumes 

    [ 39638.88, 52323.34]  
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Appendix J: PBA Soil Volume Estimate Using Percentile Distributions – 

Paoli Rail Yard 

 
 
// DISTRIBUTION-FREE MODELING FOR THE PAOLI RAIL YARD SITE USING 

// p-BOXES CONSTRUCTED FROM THE PERCENTILES IN TABLE 6 

 

// Throat & East Car Shop area soil volume calculation 

 Area1 = [177500, 195250]   // expected excavation area at this location, ft2 

 Dmin1 = 0          // minimum excavation depth, ft 

 D25A = 0     // 25th percentile depth, ft  

     D50A = 1 // median (50th percentile depth), ft 

 D75A = 4.5 // 75th percentile depth, ft 

 Dmax1 = 16.5 // maximum depth, ft 

// Probability bounds on depth at each location is constructed from the above summary statistics 

//data using  the Risk Calc function: fivenumbers(minimum, 25th percentile, median, 50th 

//percentile, maximum) 

 Depth1 = fivenumbers(Dmin1, D25A, D50A, D75A, Dmax1) 

 

// Calculation of soil volume in the Throat and East Car Shop area 

 Volume1 = (Area1 * Depth1)/27      // volume in cubic yards 

 

// South & West Car Shop area soil volume calculation 

 Area2 = [119800, 131780]     // expected excavation area at this location, ft2 

 Dmin2 = 0          // minimum excavation depth, ft 

 D25B = 2.5     // 25th percentile depth, ft  

     D50B = 14.5 // median (50th percentile depth), ft 

 D75B = 21.5 // 75th percentile depth, ft 



 

 

109
 Dmax2 = 30.5 // maximum depth, ft 

// Calculation of excavation depth in the South & West Car Shop area 

 Depth2 = fivenumbers(Dmin2, D25B, D50B, D75B, Dmax2) 

 

// Calculation of soil volume in the South & West Car Shop area 

 Volume2 = (Area2 * Depth2)/27 // volume in cubic yards 

 

// East Storage Yard soil volume calculation 

 Area3 = [189300, 208230] // expected excavation area, ft2 

 Depth3 = [0, 1]   // expected excavation depth, ft 

 Volume3 = (Area3 * Depth3)/27 // volume in cubic yards 

 

// Turnaround Track soil volume calculation 

 Area4 = [91250, 100672]   // expected excavation area, ft2 

 Depth4 = [0, 1]   // expected excavation depth, ft  

 Volume4 = (Area4 * Depth4)/27 // volume in cubic yards 

 

// Calculation of total site soil excavation volume 

 Volume = Volume1 + Volume2 + Volume3 + Volume4 // Total site volume, cu. yds. 

 

// Displaying results 

 Volume  // displays min, max, mean, variance for soil volume 

    ~(range=[0,279623],  mean=[50496,135407],  var=[0,1e+10])  

 cut(Volume, 95%)  // // displays the 95th percentile soil volumes 

    [ 95396.29, 279622.9]  
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Appendix K: PBA Soil Volume Estimate Using Percentile Distributions – 

Peoples Natural Gas 
 
 
// DISTRIBUTION-FREE MODELING FOR THE PEOPLES NATURAL GAS SITE 

// USING p-BOXES CONSTRUCTED FROM THE PERCENTILE DATA IN TABLE 7 

// Expected soil excavation area range, assuming 10% halo 

 Area = [127602, 140362]   // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 4 

 Dmin = 0   // minimum depth, ft 

 D25 = 0        // 25th percentile depth, ft 

 D50 = 0    // median (50th percentile) depth, ft 

 D75 = 2   // 75th percentile depth, ft 

 Dmax = 10  // maximum depth, ft. 

// Probability bounds on depth is constructed from the above percentiles data using the Risk Calc 

// Version 4.0 function: fivenumbers(minimum, 25th percentile, median, 75th percentile, 

//maximum) 

 Depth = fivenumbers(Dmin, D25, D50, D75, Dmax) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //  soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,51985.9],  mean=[2268,15596],  var=[1e+07,5e+08])  

   cut(Volume, 95%)   // displays the 95th percentile soil volumes 

    [ 9452, 51985.93]  
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Appendix L: PBA Soil Volume Estimate Using Percentile Distributions – 

Taylor Lumber & Treating 
 
 
// DISTRIBUTION-FREE MODELING FOR THE TAYLOR LUMBER & TREATING SITE 

// USING p-BOXES CONSTRUCTED FROM THE PERCENTILE DATA IN TABLE 8 

 

// Expected soil excavation area range, assuming 10% halo 

 Area = [171191, 188310]   // interval estimate of area, ft2 

// Expected soil excavation depth from the summary statistics data in Table 4 

 Dmin = 0   // minimum depth, ft 

 D25 = 0        // 25th percentile depth, ft 

 D50 = 2    // median (50th percentile) depth, ft 

 D75 = 2   // 75th percentile depth, ft 

 Dmax = 6  // maximum depth, ft. 

// Probability bounds on depth is constructed from the above percentiles data using the Risk Calc 

// Version 4.0 function: fivenumbers(minimum, 25th percentile, median, 75th percentile, 

//maximum) 

 Depth = fivenumbers(Dmin, D25, D50, D75, Dmax) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //   soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,41846.7],  mean=[6213,17437],  var=[3e+07,2e+08])  

   cut(Volume, 95%)   // displays the 95th percentile soil volumes 

    [ 12680.81, 41846.67]  
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Appendix M: PBA Soil Volume Estimate Using Percentile Distributions – 

Tonolli Corporation 

 
 
// DISTRIBUTION-FREE MODELING FOR THE TONOLLI CORPORATION SITE 

// USING p-BOXES CONSTRUCTED FROM THE PERCENTILE DATA IN TABLE 9 

// Expected soil excavation area range, assuming 10% halo 

 Area = [540000, 594000]   // interval estimate of area, ft2 

 

// Expected soil excavation depth from the summary statistics data in Table 4 

 Dmin = 0   // minimum depth, ft 

 D25 = 0        // 25th percentile depth, ft 

 D50 = 0    // median (50th percentile) depth, ft 

 D75 = 5  // 75th percentile depth, ft 

 Dmax = 10  // maximum depth, ft. 

// Probability bounds on depth is constructed from the above percentiles data using the Risk Calc 

// Version 4.0 function: fivenumbers(minimum, 25th percentile, median, 75th percentile, 

//maximum) 

 Depth = fivenumbers(Dmin, D25, D50, D75, Dmax) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //   soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,220000],  mean=[24000,82500],  var=[1e+09,9e+09])  

   cut(Volume, 95%)   // displays the 95th percentile soil volumes 

    [ 100000, 220000]  
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Appendix N: PBA Soil Volume Estimate Using Percentile Distributions – 

U.S. Titanium Corporation 

 
 
// DISTRIBUTION-FREE MODELING FOR THE U. S. TITANIUM SITE 

// USING p-BOXES CONSTRUCTED FROM THE PERCENTILE DATA IN TABLE 10 

// Expected soil excavation area range, assuming 10% halo 

 Area = [87120, 95832]   // interval estimate of area, ft2 

 

// Expected soil excavation depth from the summary statistics data in Table 4 

 Dmin = 0   // minimum depth, ft 

 D25 = 0        // 25th percentile depth, ft 

 D50 = 8.25   // median (50th percentile) depth, ft 

 D75 = 13.5  // 75th percentile depth, ft 

 Dmax = 24  // maximum depth, ft. 

// Probability bounds on depth is constructed from the above percentiles data using the Risk Calc 

// Version 4.0 function: fivenumbers(minimum, 25th percentile, median, 75th percentile, 

//maximum) 

 Depth = fivenumbers(Dmin, D25, D50, D75, Dmax) 

 

// Calculation of the expected soil volume 

 Volume = (Area * Depth)/27    //  soil excavation area in cu. yds. 

 

// Displaying results 

 Volume      // displays min, max, mean, and, variance for soil volume 

    ~(range=[0,85184],  mean=[17109,40596],  var=[2e+08,1e+09])  

   cut(Volume, 95%)   // displays the 95th percentile soil volumes 

    [ 43560, 85184]  
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Appendix O: Hypothesis Test for Correlation - Best Regression Outcome 

 
 
The best regression outcome was obtained using the lower bound 95th percentile results 

of PBA with summary statistics data for depths.   

 Let Ω = population coefficient of correlation 

 The hypothesis to be tested is as follows: 

  H0 : Ω = 0  (no correlation) 

  H1 : Ω ≠ 0  (correlation exists) 

Based on a two-tailed probability test, a 5% significance level, 5 degrees of freedom, and 

the Student’s t-distribution, the decision rules are as follows: 

 Accept H0:   if -2.571 < t < 2.571 

 Reject H0: if t ≤ -2.571 or      if t ≥  2.571 

The data requirements for this hypothesis test were obtained from Table 25 as follows: 

  r  = 0.943  

  r2 = 0.890 

  n = 7 

  t = 0.943√[(7-2)/(1-.890)] 

  t = 6.358 

 

Based on the decision rules the null hypothesis is rejected leading to the conclusion that 

correlation exists between the 95th percentile lower bound PBA estimates with summary 

statistics data for depths and the actual excavated soil volumes.  
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Appendix P: Hypothesis Test for Correlation – Second Best Regression 

Outcome 
 

 
The second-best regression outcome was obtained using the lower bound 95th percentile 

results of PBA with percentile distribution data for excavation depths.   

 Let Ω = population coefficient of correlation 

 The hypothesis to be tested is as follows: 

  H0 : Ω = 0  (no correlation) 

  H1 : Ω ≠ 0  (correlation exists) 

Based on a two-tailed probability test, a 5% significance level, 5 degrees of freedom, and 

the Student’s t-distribution, the decision rules are as follows: 

 Accept H0:   if -2.571 < t < 2.571 

 Reject  H0: if t ≤ -2.571 or  if t ≥  2.571 

The data requirements for this hypothesis test were obtained from Table 25 as follows: 

  r = 0.940  

  r2 = 0.884 

  n = 7 

  t = 0.940√[(7-2)/(1-.884)] 

  t = 6.171 

 

Based on the decision rules the null hypothesis is rejected leading to the conclusion that 

correlation exists between the 95th percentile lower bound PBA estimates with summary 

statistics data for depths and the actual excavated soil volumes. 
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