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Abstract
Industrial experts agree that cloud computing can significantly improve business and
public access to low cost computing power and storage. Despite the benefits of cloud
computing, recent research surveys indicated that its adoption in U.S. hospitals is slower
than expected. The purpose of this study was to understand what factors influence cloud
adoption in U.S. hospitals. The theoretical foundation of the research was the diffusion of
innovations and technology-organization-environment framework. The research question
was to examine the predictability of cloud computing adoption for U.S. hospitals as a
function of 6 influential factors: relative advantage, compatibility, complexity,
organizational size, structure, and culture. The research methodology included a cross-
sectional survey with an existing validated questionnaire. A stratified random sample of
118 information technology managers from qualified U.S. hospitals completed the
questionnaire. The categorical regression analysis rendered F statistics and R? values to
test the predictive models. The research results revealed that all 6 influential factors had
significant correlations with the public cloud adoption intent (adjusted R*> = .583) while
only the 3 technological factors had significant correlations with the private cloud
adoption intent (adjusted R* = .785). The recommendation is to include environmental
factors and increase sample size in the similar future research. The developed predictive
models provided a clearer understanding among hospital IT executives and cloud service
providers of cloud adoption drivers. The potential implications for positive social change
can be the increase of efficiency and effectiveness in U.S. hospital operation once their

speed of cloud adoption has increased.
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Chapter 1: Introduction to the Study

A hospital information system (HIS) is a comprehensive and complex integration
of various software applications, useful in managing the information required in hospital
planning, operational, financial, legal, medical, and documentation processes. Typically,
a HIS consists of patient scheduling, admission, discharge, payroll, accounts receivable,
patient health record management, data analytics, and other functional modules to
support the hospital’s daily operation (Sheldon, n.d.). As the need arose for Health
Insurance Portability and Accountability Act (HIPAA) compliance and continuous
improvement on patient safety, many hospitals considered shifting from traditional paper-
based information systems to paperless electronic data acquisition and reporting systems
through modern mobile technologies. Nevertheless, according to Japsen (2013), only
1.8% of U.S. hospitals had a complete electronic medical records (EMR) system. With
the ongoing government and public demand for service improvement and challenges in
information technology (IT) budget for most hospitals, a push toward the adoption of
cloud computing is imminent while the concern for data privacy and security persists.

Cloud computing may appear to be a new terminology in the IT vocabulary, but
the foundational concepts of cloud computing have existed since the 1960s when IT
experts introduced time sharing and virtual machine technologies for mainframe
computers (Cusumano, 2010). Realistically, cloud computing is an accepted development
in virtualization, service-oriented architecture, and utility-computing technologies (Clario
Analytics, n.d.; Hill, 2013). Cloud computing is a consolidation of these proven

technologies, theories, and business processes to allow a new form of IT outsourcing



(Williams, 2012). The rapid public acceptance of smartphones and other mobile devices
has indicated the growing need for mobile applications and remote data access, with a
record high of 1.3 trillion transactions each month (Tweney, 2013). This increase in the
public use of cloud technology requires enormous processing power and storage at the
back end so that high processing and storage applications can run on today’s mobile
device platforms. Technologists and economists have labeled cloud computing as the
fifth utility after oil, gas, water, and electricity, as it is useful for achieving large
computing power and storage on demand (Buyya, Yeo, Venugopal, Broberg, & Brandic,
2008).

According to several U.S. surveys (e.g., the 2009 International Data Corporation
[IDC] cloud services study, the 2013 North Bridge’s future of cloud computing survey,
and the CDW 2013 State of the Cloud Report), many enterprises have not adopted cloud
service. The main concerns are data security, data privacy, legal compliance, service
availability, intellectual property protection, resource control, and vendor lock-in. Slow
cloud adoption because of these concerns was surprising to most visionaries (Business
Wire, 2011; CDW, 2013; Hickey, 2010).

The Tata Consulting Service (TCS) conducted a study of global cloud adoption
and found that the health care industry was the slowest adopter among 16 key U.S.
industrial segments surveyed (TCS, 2011). This slow adoption is problematic because
higher administration work and skilled labor are deficient in the U.S. health care industry,
particularly for hospitals, due to the compliance requirements of health care reform acts

and aging workforce, respectively (Harrington & Heidkamp, 2013). Accelerating cloud



adoption is one solution for improving administrative efficiency and redirecting capital
investment to other facility improvements instead of expanding IT infrastructure.

With effective use of cloud computing services, hospitals can offer low cost EMR
systems that allow their health care professionals to access patient health information
from anywhere and anytime, beyond regular software tools for conferencing,
collaboration, and office productivity. With highly scalable, low cost, agile, and pay-as-
you-go service characteristics of cloud computing, hospital staff can implement newly
innovative IT solutions with a fraction of IT infrastructure investment and
implementation time (Roney, 2012a). Data privacy and security concerns for cloud
computing services are among the major hindering factors for its adoption in hospitals.
However, in reality, most cloud service providers can offer much higher security and
privacy control than most small to medium hospitals due to their limited IT budget and
lack of security expertise (Roney, 2012b). Furthermore, once data from medical
institutions under the same health care network reside in the cloud, the hospital staff can
provide a common medical and health information repository for the health care
analytics. The analysis results are beneficial to the social communities that these medical
institutions serve.

According to the CDW 2013 cloud computing adoption survey, 73% of surveyed
participants answered that the increased personal use of cloud services is influential in
their organization’s decision to adopt cloud computing. Among these 1,242 surveyed
participants are employees in the health care industry (13%) and hospital IT decision

makers (10%). Within the health care industry, 35% responded that they were utilizing
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some forms of cloud computing services in 2012, which is only a 5% increase from usage
rates in 2011. However, these uses are mainly for office collaboration and productivity
(51%), instead of managing their core business processes (CDW, 2013). So far, the
degree of influence of various factors on the intent of U.S. hospitals to adopt cloud
services has been unclear, even some level of cloud computing adoption exists.

In this chapter, I discuss the background of this quantitative research, cloud
computing concepts, adoption issues, and potential values provided to the U.S. health
care industry, especially hospitals. Next is a discussion of the problem statement and
purpose statements to illustrate the significance of the problem and the research goal to
address the stated problem. Finally, subsequent sections include the research questions
and hypotheses, the guiding theoretical framework, the nature of this quantitative
research, term definitions, assumptions, scope, delimitations, and limitations. The ending
section of this chapter contains the implications of this study to theory and practice along
with a summary.

Background of the Study

The idea of interconnecting computers around the globe and allowing programs
and data to be accessible began in the 1960s (Cantu, 2011). Nevertheless, only after the
occurrence of broadband Internet in the 1990s did data transmission speed become fast
enough for cloud computing technology to be feasible (Shimrat, 2009; Steddum, 2013).
The development of cloud services started in the 1990s from the initial form of
subscription and web-based software accessed through the Internet (e.g., customer

relationship management system from Salesforce.com) to today’s forms of cloud service



offerings, such as software, storage, platform, and infrastructure (Mohamed, n.d.).
Currently, four cloud deployment models and three service models are in use.
Deployment models include public cloud, private cloud, hybrid cloud, and community
cloud, which differ by what types of users can coexist and share the physical computing
resources as tenants (Mather, Kumaraswamy, & Latif, 2009; Sonsinky, 2011; Williams,
2012). According to Aljabre (2012) and Finan (2012), service models consist of software
as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS).

Internet users can view cloud computing as a renewed medium of IT outsourcing.
The main difference is that it has a much better scalability, agility, and cost-effectiveness
with its resource democratization ability that allows many tenants to share a large IT
resource pool (Mather et al., 2009). IT providers can allocate or misallocate this kind of
resource pool to an individual client on demand, and the cloud service vendors only
charge their clients a per usage rate (Himmel, 2012; Sosinsky, 2011; Williams, 2012). In
today’s highly competitive market, business agility and efficient operation are essential
for business profitability and long-term survival.

These benefits seem to have not triggered high enterprise cloud adoption rates in
U.S. industries, according to the 2013 Outlook on Technology: Cloud Computing Survey
Results, which the PC Connection conducted. Interestingly, 31% of the surveyed 500
U.S. companies from various industry segments responded that they have no plan to use
cloud computing services (Bramwell, 2013). This phenomenon of slow cloud adoption is
similarly evident in the U.S. health care industry. According to the CDW 2013 State of

the Cloud Report, health care ranked seventh out of eight surveyed U.S. industries in



terms of cloud computing adoption speeds. Additionally, 65% of the health care
respondents in the CDW survey replied that their corporations have no plan to use cloud
services (Bowman, 2013).

To illustrate further the use of cloud computing within the health care industrial
segment, another survey the research firm KLAS conducted in 2011 indicated that U.S.
hospitals are laggards of cloud services adoption within the U.S. health care industry, as
compared with other clinical offices (Terry, 2011). Only 4% of cloud service customers
are health care related (Bowman, 2013; Good, 2013). Conversely, industrial experts have
indicated that most health care corporations have to reduce their expenses by 20—40%
(McNickle, 2011). Furthermore, U.S. hospitals have an urgent need to maintain
productivity and service quality with the aging workforce by investing in better
technology and facility support (Harrington & Heidkamp, 2013). For instance, according
to HIPAA and the American Recovery and Reinvestment Act (ARRA) compliance
requirements, by 2015 all health care providers will have to maintain their patient
medical and health records electronically and retire their existing hard copy of patient
record file systems (Good, 2013). Concerning the aging workforce, research has indicated
that the current average age of registered nurses in the United States is 50, and more than
25% of physicians are over 60 years old (Harrington & Heidkamp, 2013).

Researchers have conducted numerous studies to determine the key factors
hindering cloud computing adoption (Chebrolu, 2010; Hailu, 2012; Opala, 2012; Ross,
2010; Tweel, 2012). Concerns, such as data security, data privacy, integration

complexity, legal compliance, and vendor lock-in, seem to be the reasons why



7
corporations are unwilling to adopt cloud computing (Business Wire, 2011; Ekufu, 2012;
Finan, 2012; Himmel, 2012; Mather et al., 2009; Ross, 2010). To encourage U.S.
hospitals to explore the benefit of using cloud services, it is important for them to
understand all critical factors that can affect the success of cloud computing adoption. For
instance, cloud services may be useful for providing a cost-effective and practical
platform to share patients’ private health information if medical institutions authorizing
the sharing of information can address the security and privacy concern of using the
public cloud (Miliard, 2013).

In summary, there was a lack of specific scholarly research focusing on
understanding the influential factors for U.S. hospitals’ cloud adoption (Armbrust et al.,
2009; Tweel, 2012). In this research, I used regression analysis to determine the
significance of six technological and organizational factors in predicting the degree of the
cloud computing adoption intent for U.S. hospitals.

Problem Statement

Among U.S. organizations, hospitals seem to be one of the slowest adopters of
cloud computing services (TCS, 2011; Terry, 2011). Researchers have noted that the
importance of cloud computing services in their primary capability is to (a) lower the
need for IT investment, and (b) improve business agility and scalability with its on-
demand, pay-as-you-go charging model (Armbrust et al., 2009; King, 2011a; Mather et
al., 2009; Ross, 2010; Sosinsky, 2011). However, studies indicated that U.S. hospitals are
not using cloud service advantages to improve their cost structure and operational

efficiency. These hospitals are struggling to manage additional complexity and



8
challenges due to issues such as the government-directed health care reform and an aging
workforce (Harrington & Heidkamp, 2013; Parrington, 2010).

As cloud computing is still an emerging technology, scholarly research on cloud
computing adoption is lacking (Armbrust et al., 2009; Tweel, 2012). An initial review of
the literature revealed that several key or critical technological and organizational factors
influencing cloud computing adoption seemed to be the cause of delay for IT managers to
use cloud computing services (Chebrolu, 2010; Hailu, 2012; Opala, 2010; Ross, 2010;
Tweel, 2012). The problem was in the limited understanding of these technological and
organizational factors for predicting the adoption intention of cloud computing services
in U.S. hospitals. If this study could clearly show this understanding, then it would be
useful to IT managers and cloud vendors in identifying the gaps to address the concerns
in accelerating the cloud computing adoption rate of U.S. hospitals.

Purpose of the Study

The purpose of my research was quantitative and explanatory in nature, as I
attempted to explain the six variables and their degrees of significance in predicting cloud
computing adoption intent. To do so, I developed a statistical model to predict the cloud
computing adoption intent of hospital IT managers by using multiple linear regression
(MLR) analysis. The analysis consisted of six internal (technological and organizational)
innovation adoption influential factors as composite predictor variables: (a) relative
advantage, (b) compatibility, (c) complexity, (d) organizational size, (e) organizational
structure, and (f) organizational culture according to the diffusion of innovations (DOI)

and technology-organization-environment (TOE) theories. I assessed each factor with one



or more Likert-type survey questions constructed based on a validated and published
instrument. This research could be informative and helpful in understanding how the six
influential factors can affect the cloud computing adoption intention in U.S. hospitals. As
a result, this research could be useful in developing a predictive cloud computing
adoption model, which could serve as a tool for hospital IT managers. These IT managers
would be able to create their cloud computing implementation strategy while cloud
service vendors would be able to enhance their products and services based on their
assessment of the six influential factors.

Additionally, as an IT professional working in a company offering cloud
computing services, I planned to create a scientific model to predict cloud computing
adoption intent based on the identified six influential factors for U.S. hospitals.

Research Questions and Hypotheses

The overarching research question for this study was: What are the technological
and organizational factors (within the six selected factors) that strongly influence U.S.
hospitals’ cloud computing adoption intention?

To operationalize this research question into a number of related research
hypotheses based on regression, it was necessary to explain the independent and
dependent variables for the study briefly and use them to develop the hypotheses.
Research Variables

In this study, I developed a regression model consisting of six independent
variables (X1 to Xs) and one dependent variable (Y). As noted in subsequent paragraphs,

some of these variables were fixed factors (i.e., categorical variables) while the rest were
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formed by summing specific survey Likert items. Such summation variables represented
index or composite variables. Since each variable was the sum of ordinal variables, each
one was equal to an interval variable. In summary, each composite interval variable score
was the result of summing a series of related survey item scores with each survey item

equally weighted. Table 1 shows the details of this alignment and calculation.
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Survey Items Alignment and Value Calculation Method for Composite Variables

Adoption Survey item Calculation Data type of the
influential final (composite)
factor variable
(composite
variable)
Xi= Use 7-point Likert-type scale to measure Xi=01+ 0+ Q3 Interval
Relative from strongly disagree, disagree, neutral, + 04+ 05+ O
advantage agree to strongly agree for the following
survey questions:
01 = Increase the profitability of my
hospital.
0> = Allow your hospital to provide
additional services.
Q3= Allow for reduced operational costs.
Q4= Allow better communication with my
patients, staff, and medical partners.
(5= Require no up-front capital
investment.
Qs = Provide dynamic and high service
availability.
Xo= Use 7-point Likert-type scale. Measuring Xo=07+0s+ Q9 Interval
Compatibility from strongly disagree, disagree, neutral, + 0o
agree to strongly agree for the following
survey questions:
07= Cloud computing adoption is
consistent with my hospital’s beliefs
and values.
Qg = Attitudes towards cloud computing
adoption in my hospital is favorable.
Qo= Cloud computing adoption is
compatible with my hospital’s IT
infrastructure.
Q0= Cloud computing adoption is
consistent with my hospital’s
business strategy.
X3= Use 7-point Likert-type scale. Measuring X3=0n+0n+ Interval
Complexity from strongly disagree, disagree, neutral, O3+ Qs+ Qs
belief of cloud agree to strongly agree for the following
computing survey questions:

011 = Cloud computing service is
cumbersome to use.

012 = Using cloud computing services
requires a lot of mental efforts.

013 = Using cloud computing is often
frustrating.

(table continues)
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Adoption Survey item Calculation Data type of the
influential final (composite)
factor variable
(composite
variable)
Q14= The user interface of cloud
computing services is clear and
understandable.
0Oi5= Cloud computing services are easy to
purchase and startup.
Xy= It is measured by the number of staffed Xs= Qs Interval
Organizational ~ beds that are grouped in one to eight scale
size from:
O16=6-24(=1),25-49(=2),50-99 (=
3), 100 - 199 (= 4), 200 - 299 (= 5),
300 - 399 (= 6), 400 - 499 (=7) and
greater than 500 (= 8) staffed beds.
Xs= Use a multiple choice question to Xs= 0 Nominal
Organizational ~ categorize into four types:
structure 0O17= functional (= 1), divisional (= 2),
matrix (= 3) and others (= 4).
Xs= Use a multiple choice question to Xo= Qs Nominal
Organizational  categorize into five types:
culture Q5= clan (= 1), adhocracy (= 2), hierarchy
(= 3), market (= 4) and others (= 5).
Y= Use 7-point Likert-type scale. Measuring Y=019+0x»+ Interval
Cloud from strongly disagree, disagree, neutral, O
computing agree to strongly agree for the following

adoption intent

survey questions:

Q19= Intends to adopt cloud computing.

(-0 = Likely to take steps to adopt cloud
computing in the future.

(1 = Likely to adopt cloud computing in
the next 12 months.
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In this study, I utilized the variables above and aimed to predict the degree of
innovation adoption (Y) as a function of several technological or organizational factors
(measured by X to Xs). Thus, the refined research question was: Does regression allow
prediction of hospital IT managers’ cloud computing adoption intent () as a function of
the six influential adoption factors, including relative advantage (X1), compatibility (X>),
and complexity belief of cloud computing (X3), organizational size (X4), organizational
structure (Xs), and organizational culture (Xs) in the United States?

The expression of the model could be represented by the equation Y = by + b1.Xi
+ ... + beXs. Although the model was linear, it included a mix of interval and nominal
independent variables; thus, I could not directly model with ordinary least squares (OLS)
regression. Instead, I solved the model using categorical variables to dummy coding
variables transformation procedure or SPSS/GLM. Due to the simplicity, I chose to use
SPSS/GLM instead of dummy coding. I explain the modeling and execution details of
using SPSS in Chapter 3.

Based on the research question, I operationalized the regression-related null and
alternative hypotheses as listed below:

HO1: X1 = relative advantage is not a significant predictor of Y = intent to adopt;
mathematically, b1 = 0 in the resulting regression model.

H1:: X1 = relative advantage is a significant predictor of ¥ = intent to adopt;
mathematically, b1 != 0 in the resulting regression model.

HO0,: X>= compatibility is not a significant predictor of ¥ = intent to adopt;

mathematically, b> = 0 in the resulting regression model.
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H1,: X>= compatibility is a significant predictor of Y = intent to adopt;
mathematically, > != 0 in the resulting regression model.

HO03: X5 = complexity belief is not a significant predictor of Y = intent to adopt;
mathematically, b3 = 0 in the resulting regression model.

H13: X5 = complexity belief is a significant predictor of ¥ = intent to adopt;
mathematically, b3 != 0 in the resulting regression model.

HO04: X4= organizational size is not a significant predictor of ¥ = intent to adopt;
mathematically, b4 = 0 in the resulting regression model.

H14: X4 = organizational size is a significant predictor of ¥ = intent to adopt;
mathematically, b4 != 0 in the resulting regression model.

HOs: X5 = organizational structure is not a significant predictor of ¥ = intent to
adopt; mathematically, bs = 0 in the resulting regression model.

H1s: X5 = organizational structure is a significant predictor of Y = intent to adopt;
mathematically, b5 != 0 in the resulting regression model.

HO¢: Xs= organizational culture is not a significant predictor of Y = intent to
adopt; mathematically, b5 = 0 in the resulting regression model.

Hl¢: X6 = organizational culture is a significant predictor of Y=intent to adopt;
mathematically, b5 != 0 in the resulting regression model.

HO7: The linear model Y = bo + b1X1 + ... + bsXs has no significant fit;
mathematically, R(Y | Xi...Xs) = 0.

H17: The linear model ¥ = bo + b1.X1 + ... + beXs has a significant fit;

mathematically, R(Y | Xi...Xs) !=0.
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Theoretical Foundation

The theoretical framework of this study indicated a clear understanding of the
nature and characteristics of the innovation adoption process. Such an understanding was
essential to the determination of the predominant and predictive factors of cloud
computing adoption in U.S. hospitals.

The technological innovation adoption process has been an important topic for
years among researchers developing theories based on adoption behavior studies on the
individual or enterprise level. According to Oliverira and Martins (2011), the developed
applied technology adoption models for research practitioners include:

e diffusion of innovations (DOI) by Rogers in 1962,

e theory of planned behavior (TPB) by Ajzen in 1985,

e technology acceptance model (TAM) by Davis et al. in 1989,

e technology-organization-environment (TOE) framework by Tomatzky and
Fleischer in 1990, and

¢ unified theory of acceptance and use of technology (UTAUT) by
Venkatesh, Thong, and Xu in 2003.

Among these theories, only DOI and TOE are important to addressing the
adoption process at the enterprise level while all others are useful in addressing
individual levels of innovation acceptance (Oliverira & Martins, 2011). DOI contains
insight on the attributes of an innovation itself that can have an effect on a social group’s
intent to adopt and on how peers can influence the willingness to adopt (Robinson, 2009).

As stated in the DOI theory, prediffusion phase includes the factors of relative advantage,
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compatibility, complexity, trialability, and observability (Rogers, 2003). Under the TOE
framework, DOI stated attributes that influence adoption fall into the technological
context as they associate with technological innovation. Tornatzky and Fleischer (1990)
argued that any innovation adoption process is not only affected by the technological
context, but the organizational and environmental context also plays a significant role in
influencing the acceptance and adoption speed of innovation. The TOE framework
establishes a macroscopic view of innovation adoption according to these three key
influential contexts, which group the influential factors in adoption underneath them
(Tornatzky & Fleischer, 1990). A more detailed explanation of these theories is in
Chapter 2.

Based on the literature review, combining the TOE and DOI methodology seemed
to provide a stronger theoretical framework in explaining the influences on cloud
computing services adoption created by various key factors than only using DOI theory
(Tweel, 2012). The main benefit of using TOE was that its use compensated for the
insufficiency in the DOI theory by adding emphasis on the organizational effect of
innovation adoption. Additionally, TOE includes a better way to aggregate the level of
influence generated by adoption factors into technological and organizational context.
For this reason, I abstracted the six key innovation adoption factors from DOI and TOE
theory under technological and organizational context as the core test elements in this

study.
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Nature of the Study

I selected a quantitative regression research method because I intended to quantify
the degree to which six internal (technological and organizational) innovation adoption
factors, as noted in the literature, can be useful in predicting the degree of cloud
computing adoption intention. Qualitative research methods would have been
inappropriate for quantifying the degree in which each variable can be a contributing
factor to the adoption or for studying the simultaneous interaction effect of variables on
the intention to adopt cloud computing technologies. Knowing the actual contribution of
each variable is important to prioritize the variables leading to cloud computing adoption
improvement.

In this study, I predicted the dependent composite variable (¥) capturing the intent
of an IT manager in U.S. hospitals to adopt cloud computing services as a function of six
independent composite variables (X; to Xs). Relative advantage, compatibility, and
complexity fall under the technological context while organizational size, organizational
structure, and organizational culture fall under the organizational context. The research
not only created a predictive model for cloud computing adoption but also validated the
DOI and TOE theoretical frameworks. In general, it would have been difficult to
introduce experimental controls on any one of the six independent variables and in
observing the impact to the cloud adoption intent (dependent composite variable) within
the current hospital environment. Thus, a MLR analysis was a more appropriate research

approach than experimental design (Balling, 2008).
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The statistical regression design is not indicative of a precise causal relationship
analysis between individual independent and dependent variables, as compared to
experimental factorial design. However, this design was ideal for achieving a cost-
effective way to analyze any combined effect of the six influential factors for adopting
cloud computing for U.S. hospitals. Furthermore, its simple survey design structure can
be useful for future longitudinal study. Researchers may then be able to determine the
change of influential factors on cloud computing adoption as cloud computing
technology progresses.

The data collection approach of this study was to use validated attitudinal
measures to assess the variables. I collected the survey data through a self-administered
online questionnaire and transferred the collected data to SPSS to calculate the composite
variable value. Subsequently, I fed this value to a general linear model (GLM) for
regression analysis to answer the research question and test the inferential hypotheses.
The population of this study included IT managers of the qualified hospitals in the 48
continental U.S. states who have direct decision authority or influence on cloud
computing adoption. I planned to select the survey participants by using a proportional
stratified random sampling method with the sample framework set as the contacts
retrieved from the company’s health care customer network. Chapter 3 includes the
details of research design, methodology, instrumentation, and operationalization of

constructs.
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Definitions

Many terms and definitions are relatively new and especially relate to the latest IT
and technology adoption theories. As they are rapidly evolving, a variety of definitions
may exist. This section provides the definition of terms used in this study and gives a
concise meaning for the random variables applied.

Cloud computing: An IT model that provides on-demand Internet access, self-
service system configuration, rapid provisioning, and deprovisioning capability to
common shareable computing resource pools. Internet users can easily share resources
such as network, storage, servers, and applications without compromising the segregation
of resource ownership. Currently, cloud computing supports three common service
models (SaaS, PaaS, and [aaS) and four common deployment models (public cloud,
private cloud, community cloud, and hybrid cloud) according to Mell and Grance (2011).

Community cloud: One of the current deployment models for cloud services. It is
a cloud environment owned by the community with common objectives, needs, and
requirements, such as security and regulatory compliance. Use of community cloud is
common for U.S. federal agencies as well as health and medical industries (Finan, 2012;
Williams, 2012).

Diffusion: A special type of two-way communication, which has the intent to
trigger penetration of innovation and potentially cause changes to social systems. Due to
the uncertainty and lack of structure in innovation ideas, diffusion can take much time

(Rogers, 2003).



20

Electronic medical records (EMR): A digital form of a patient’s complete medical
record that tracks physicians’ diagnostic and treatment history, vaccinations, medications,
laboratory test results, long-term health data, and hospitalization records. The goal is to
allow authorized access to patient health care information in a unified format for multiple
health care providers to create and maintain for a patient (Garrett & Seidman, 2011).

Grid computing: A computing technology that involves the use of interconnected
computer networks to accomplish a particular task by working on a common workload
simultaneously. Every computer in the system is a contributing factor to its resources
including processing power, memory, and storage with other computers in the same
system. At the end user viewpoint, this system of computers resembles a supercomputer
(Strickland, n.d.).

Health Insurance Portability and Accountability Act (HIPAA): In 1996, the U.S.
Congress established and passed this Act to protect the use and disclosure of an
individual’s health information. All U.S. health care providers received the HIPAA-
compliant guidelines with which they had the legal obligation to follow (“HIPAA —
General Information,” 2013).

Hybrid cloud: One of the current deployment models for cloud services. Under
this model, the infrastructure has the nature of public, private, and community cloud.
Hybrid cloud has the connections of these various cloud instances through a special
interconnect technology, enabling the interoperability between different types of cloud
services and the transfer of data and applications seamlessly among them (Finan, 2012).

With the hybrid cloud, users can create an integrated business environment for which
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applications with high security and privacy requirements are operable in a private cloud
and other applications in a public cloud (Williams, 2012).

Infrastructure as a service (laaS): As one of the cloud services, the service
providers package the infrastructure resources (server, network, and storage) and sell
them as a subscription service. Clients can create virtual machines on demand with the
hardware and operation system (OS) specification that they picked from the vendor’s
supported list (Finan, 2012; Mather et al., 2009; Williams, 2012).

Platform as a service (PaaS): As a cloud service, PaaS is useful in offering
development and deployment platform for software developers to benefit from a pay-as-
you-go charging plan. This service has a web browser through which users may access a
set of vendor-provided standard software design, programming, testing, and integration
toolkit (Finan, 2012; Mather et al., 2009; Williams, 2012).

Private cloud: Similar to the public cloud, private cloud is a kind of cloud
deployment model that includes virtualization technology to encapsulate the physical
hardware from the operating system layer. Multiple users within the same corporation
can share the same pool of infrastructure resources, which resemble their physical
machines. The corporation’s internal IT can manage this cloud infrastructure on the
premises, or cloud service vendors can serve it for their end users (Finan, 2012; Williams,
2012).

Public cloud: A kind of cloud deployment model with a virtualization capability

similar to that of a private cloud. However, the cloud service vendor’s data center
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contains its infrastructure to serve the public with multitenant security, application, and
data control (Finan, 2012; Williams, 2012).

Software as a service (SaaS): As a cloud service, under SaaS, consumers will rent
instead of purchase the software, based on subscription or pay-per-use charging scheme
(Finan, 2012; Mather et al., 2009). Clients do not need to purchase their servers, which
are helpful in reducing the complexity and cost of hardware infrastructure installation and
maintenance (Williams, 2012).

Variable-radius measurement: This degree of competition measurement is equal
to the calculated average of distance measurement from each customer’s home location to
the service provider location (to determine the radius of a service provider’s market area).
Service providers can then calculate the degree of competition by counting the number of
providers servicing a given geographical area. This measurement is a common method
used for business services (e.g., health care service) highly bounded by geographic
locations (Gresenz, Rogowski, & Escarce, 2004).

U.S. region: A region of the United States is a geographical grouping of multiple
U.S. states. According to U.S. Census Bureau (2014), the United States consists of five
census regions—west, midwest, northeast, south, and pacific. The west, midwest,
northeast, and south regions include the 48 continental states and one federal district (i.e.,
Washington DC). The pacific region consists of all noncontinental states, including

Alaska, Hawaii, and all offshore U.S. territories and possessions.
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Assumptions
Research assumptions are the underlying stated facts that researchers believe to be
true (Leedy & Ormrod, 2005). Researchers can link them to the deployed theory, the
observed phenomenon, the accuracy of the measuring system, the selection process for
the research participants, and the analysis of the survey results (Simon, 2011a). Table 2

shows the assumptions of this research regarding these areas.
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Assumptions with Justifications, Risks, and Mitigations
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Research Assumptions Justifications Risks Mitigations

component

Theory Innovation adoption The constructive DOI and TOE Compared various
theories—DOI and elements for cloud might not be the technological
TOE—provide computing adoption  best innovation adoption theories.
appropriate are similar to other adoption theories  Only included the
theoretical technology to apply. critical factors
framework adoptions for which validated in other

have the application research studies.
of innovation
adoption theories.

Phenomenon  The actual slow cloud Survey results show  The actual Analyzed survey
computing adoption cloud computing behavior could be  results for cloud
phenomenon for U.S.  adoption rate and affected by computing adoption
hospitals is adoption intention perceived studies to determine
measurable by the have a causal behavior control,  whether cloud
low intention of their  relationship. and different from computing adoption
IT managers to adopt. behavioral rate has a causal

intention (Ajzan, relationship with the
1985). adoption intention.

Methodology  Quantitative research ~ Examined what are The six selected Reviewed cloud
is appropriate the critical critical factors computing adoption
research method. influential factors, might not be the research to identify

instead of trying to most predictors the six most critical
answer the why or for the U.S. factors.
how of research. hospitals’

intention to adopt

cloud computing.

Instruments Online self- It is cost-effective Low response Sent invitation
administrated survey  and fast method to rate. letters and
questionnaire is a reach a large sample  Doubt on validity  reminders to
valid and reliable population via and reliability of encourage survey
instrument. emails and website.  the survey participation.

questionnaire Used validated
construct. survey
questionnaire.

Analysis MLR is useful in Expected normal Onmitted variable =~ Reviewed cloud

making causal
prediction on cloud
computing adoption
intention of U.S.
hospital IT managers.

distribution for
collected response
data based on
sampling population
method and size.

bias might exist
due to missing
critical factors

computing adoption
research to identify
the current six most
critical factors. Used
R? to measure model
significance.

(table continues)
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Research Assumptions Justifications Risks Mitigations
component
Power of Sufficient responses The selected Typical low Set up a larger
detection can come from all sampling framework response rate sampling size to
selected U.S. regions  provided sufficient (10—15%) anticipate low
to make a proper population for response rate. Used
statistical analysis. sampling. proportional
stratified random
sampling method to
guarantee a certain
number of sample
candidates from
each selected U.S.
region.
Participants Provide honest and Participants were Participants might  Only picked IT
unbiased responses. professionals, and be too stressful to  managers with
Have foundational their responses provide rational decision
understanding of would be their best ~ and thoughtful responsibilities for
cloud computing personal judgment answers. cloud computing
service and according to adoption. Used
deployment models. organizational validated
benefit and risk questionnaire with
assessment. clear survey
questions.
Results It is meaningful and As the researcher Unscholarly Followed proper
sufficient to create a  utilizes a proper research research guideline

predictive adoption
model to forecast
cloud computing

adoption intention for

U.S. hospitals.

theoretical
framework, an
instrument, a sample
group, and analysis,
the expected result
is to have strong
external validity and
generalization.

and procedure.
Reviewed and
validated the
intermediate results
with research
committee
members.
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Innovation adoption theories—DOI and TOE—comprise the appropriate
theoretical framework for this research despite their limited applications for cloud
computing adoption studies so far. The justification was that the constructive elements of
behavioral intention for cloud computing adoption under an organizational context are
similar to other types of innovation adoption. Therefore, these theories can be equally
applicable. The risk was that the DOI and TOE might not be the best innovation adoption
theories to apply. The challenge was that cloud computing is an emerging technology.
Researchers have developed insufficient empirical methodologies to describe the
adoption behavior (Armbrust et al., 2009; Tweel, 2012). The mitigation approach was to
compare various innovation adoption theories, and I determined that combining DOI and
TOE theories was most suitable for the core theoretical base for this research. In addition,
this study included only the factors validated by other research studies that have
statistically significant association with adoption intention.

As emphasized in the problem statement, the research phenomenon was the slow
adoption of cloud computing for U.S. hospitals, even when IT managers recognize the
numerous business and financial benefits of such adoption. The assumption was that the
U.S. hospitals’ cloud computing adoption intention has a causal relationship with the
actual cloud computing adoption, and adoption intention is measurable. According to
TPB, the actual behavior can be different from behavioral intention, which the perceived
behavior control can affect (Ajzan, 1985). To mitigate possible issues with this
assumption, I conducted a comprehensive literature review on cloud computing adoption

rate and intention survey studies. So far, the results have shown that the actual adoption
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rate and degree of adoption intention for cloud computing have a predictive, causal
relationship (CDW, 2013; North Bridge, 2013; TCS, 2011). Therefore, the use of cloud
computing adoption intention in U.S. hospitals was safe to project its future adoption rate.
I discuss the details of this survey study comparison in Chapter 2.

The quantitative methodology choice was the right choice of research method
because the objective of this study was to examine the predictive power of the critical
factors influencing the cloud computing adoption intention for U.S. hospitals. As the goal
was to use the six selected factors to create a predictive model of cloud computing
adoption intention for U.S. hospitals (instead of an exploratory study to identify all
possible influential factors), quantitative research is more appropriate than qualitative
research (Mora, 2010). The risk is whether the six selected dependent variables are the
most essential factors to drive cloud computing adoption intention in U.S. hospitals. If
not, omitted variables bias could exist, and the functional construct between the
dependent variables and independent variable could not demonstrate statistical
significance (Sykes, n.d.). To mitigate this bias risk, I reviewed research studies on cloud
computing adoption to identify the six most critical factors that fit the DOI and TOE
models. During the statistical analysis, the R? statistic was useful to measure to determine
whether omitted variable bias exists.

The assumption was that an online, self-administrated survey questionnaire was
an appropriate instrument due to cost and time constraints for this study and due to its
ease of distribution to a large group of participants via e-mails and an Internet website.

The risks included the traditional low response rate for online survey and the validity and
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reliability of the construct of survey questions. To mitigate this risk, I sent an invitation
letter and reminders to selected sample candidates to encourage the survey participation.
In addition, I used a validated survey questionnaire from another cloud computing
adoption study and modified it to fit this study.

An essential assumption for conducting MLR analysis was that the collected data
were under a normal distribution pattern. I expected the six selected critical factors to be
linearly independent and that the variance of the error was random and constant across
observations. Since sufficient number of sizes and types of hospitals exist in the United
States, I expected the response to the survey items to follow a normal distribution pattern.
According to innovation adoption studies, the six selected independent variables do not
seem to have any correlated effect among themselves (Rogers, 2003; Tornatzky &
Fleischer, 1990). As mentioned, unless there is omitted variable bias (detectable by the
statistical R? value), the variance of the error should be random and constant.

To identify the significant relationship between the six selected influential factors
for adoption and the adoption intention of U.S. hospital IT managers, I assumed I could
receive sufficient responses to fulfill the minimum statistical sample size requirements
for MLR. I assumed that I could invite sufficient sampling participants for my study
within my sampling framework, as it should consist of most U.S. hospital IT contact
information. To minimize the risk of generalization, I used a proportional stratified
random sampling method to guarantee receiving enough return responses from IT
managers of the hospitals in the selected regions that comprise the 48 continental U.S.

states.
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The assumption regarding participants was that they were willing to provide
honest and unbiased responses. Additionally, I assumed that they have a fundamental
understanding of cloud computing services and deployment models. Therefore, they gave
their opinion and decision regarding acceptance or rejection of this technology according
to their best personal judgment of their organization’s benefit and risk instead of basing a
decision on ignorance. The risk was that the participants are under a high-stress working
environment and unable to provide thoughtful answers. The mitigation step to getting the
best, unbiased, and meaningful responses was to select only IT managers who have the
responsibility to make decisions or to influence cloud computing adoption to provide the
survey responses, and I also used a validated survey questionnaire with clear survey
questions.

Finally, the assumption for the research result was that it could be meaningful and
useful to create a predictive model to forecast the cloud computing adoption intention in
U.S. hospitals. As long as I followed the proper research method, this assumption should
be achievable. To reduce the risk of unscholarly research results, I aligned my study with
Walden University’s research guidelines and procedures. In addition, I reviewed and
validated the intermediate results with the research committee members.

Scope and Delimitations

The objective of this research was to determine whether any of the three selected
technological factors (relative advantage, compatibility, and complexity as independent
composite variables, X1 to X3) and the three organizational factors (organizational size,

structure, and culture as independent composite variables, X4 to Xs) under the innovation
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adoption theories (DOI and TOE) are causal predictors to the intent of hospital IT
managers for cloud computing adoption (dependent composite variable, Y). The study
included a focus on assessment at the organization level instead of at the individual
decision maker’s level regarding perceived relative advantage, complexity, and
compatibility judgment on cloud computing technologies. The scope was a more
cohesive view of influential factors on cloud computing adoption intent for U.S.
hospitals, compared with the research for general U.S. industries. I measured each of the
independent variables by one or multiple survey items corresponding to the aspects of
that variable. Table 1 shows the detailed alignment of the survey items and the variables
along with the score calculation method.

This study excluded trialability and observability, as they indicated little
correlation with cloud computing adoption rate, according to Powelson (2012) and Tweel
(2012). I did not study the environmental factors (e.g., industrial competition and support
infrastructure), as they represent external factors that were outside the scope of this study.
The research method for this study was a cross-sectional survey design involving an
assumed representative sample from the population. The analysis involves regression,
useful for predicting any possible causal relationship between the listed influential factors
and the hospital’s intent for cloud computing adoption, without the construct validity to
conclude any absolute causal relationship (Lomax & Li, 2013).

In addition, the general competition measurement scheme applied in most
industrial segments is not relevant for U.S. hospitals; thus, researchers have suggested

using the variable-radius measurement method instead (Gresenz et al., 2004). Therefore,
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this study excluded the analysis of cloud adoption factors under the environment context
of TOE due to data collection complexity and effort of measuring industrial competition
for U.S. hospitals with the suggested variable-radius method. Other researchers may find
the analysis of cloud adoption factors under environmental context a significant topic for
future research endeavors.

The theoretical population boundary of this research included the IT managers,
who have a direct influence or decision power on cloud computing adoption in qualified
hospitals of the 48 continental U.S. states. The planned accessible population was the IT
managers of qualified hospitals in the 48 continental U.S. states who were in the
company’s health care customer network. This company currently sells and supports its
software products to almost all U.S. hospitals. Its health care customer network database
should consist of sufficient IT contact information (e.g., e-mail address and office phone
number) of hospitals in each U.S. state. I distributed survey request e-mails to hospital IT
managers whom I selected through a proportional, stratified random sampling for each
U.S. region within the accessible population. The sampling administration window closed
after I received sufficient responses as according to the desired total sample size. This
approach was to guarantee proper survey result representation from each U.S. region to
provide sufficient statistical power for hypothesis tests (Trochim, 2001).

I conducted a pilot study to confirm the validity and reliability of the survey
instrument and to ensure clarity of the survey questions. As I selected the survey

participants from United States only, the research viewpoint on cloud adoption factors
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was U.S.-centric as expected. The research result of this study had limited generalization,
which may be inapplicable in other countries.

I have listed each delimitation item together with the corresponding justification,

risks, and mitigations in Table 3.
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Delimitations with Justification, Risks, and Mitigations
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Research Delimitations Justifications Risks Mitigations
Component
Objective Predicted the Other researchers The phenomenon The success results of
possible causal found the of the six selected other research studies
relationship correlation between  critical factors and adoption theories
between the six trialability and within the U.S. were the basis for
critical factors and observability with hospital selecting the most
cloud computing cloud computing environment was relevant factors for this
adoption. adoption intention yet inexplicable. study.
Trialability and insignificant.
observability No simple way is
factors under suitable to measure
DOIL. I excluded factors (e.g.,
the environmental  competition) under
factors under the environmental
TOE. context for U.S.
Research What are the The objective was MLR was not the Compared and
question technological and  facilitative for proper analysis analyzed other
organizational identifying the method that would  statistical methods
factors (within the  possible causal be helpful in (e.g., factorial and
six selected relationship between answering the correlational analysis)
factors) that these factors and research question to conclude that MLR
strongly influence  cloud computing is the best method to
the U.S. hospitals’ adoption intention create a predictive
cloud computing for U.S. hospitals. model.
adoption
intention?
Theoretical Technology Provided the DOI and TOE were Researched and
perspective adoption theories  theoretical not the best choices analyzed other
include the DOI framework of what for a theoretical innovation theories
and TOE potential influential ~ framework. based on the literature
factors for new review to determine
technology whether I could use
adoptions. combined DOI and
TOE as my theoretical
framework.
Population IT managers of I contributed to this ~ The IT managers Used descriptive

qualified hospitals
in the 48
continental U.S.
states registered in
the company’s
health care
customer database

research topic with a
relevant and
accessible
population.

within the
company’s health
care customer
network might
carry a similar
cloud computing
adoption intent.

statistic to analyze
whether the survey
result values were
under the normal
distribution.

(table continues)
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Research Delimitations Justifications Risks Mitigations
Component
Geographical Hospitals in the The statistical power Sample candidates  Used proportional
representation 48 continental of detection justified might not stratified sampling
U.S. states. the external validity = proportionally method to ensure a
and generalization. come from the presentable amount of
selected U.S. sample candidates
regions, and the come each selected
outcome might U.S. regions.
affect the
generalization.
Limitations

As this research was a MLR study instead of an experimental study, I could only
define predictor variables (the six selected adoption influential factors) and observe
whether they have covariate effect with the outcome variable (cloud computing adoption
intention of U.S. hospital IT managers). Therefore, I could not draw any absolute
conclusion on the causal relationship between the predictor variables and the outcome
variable (Singleton & Staits, 2005; Wijayatunga, n.d.).

In terms of the power of detection, due to the limited time, resource constraint,
and required sample size, I chose the proportional, stratified random sampling method. I
picked a small number of random sample candidates proportionally from each selected
U.S. region and with a combined sample size large enough to provide sufficient statistical
power for generalization based on the estimated response rate (Singleton & Straits, 2005).
The selected participants only included the hospital IT managers who have registered
contact information in the accessible population and located in the United States

(sampling frame). The American Hospital Association (AHA) provided a list of 5,723
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hospitals currently in the United States (“’Your best source for hospital information,”
2013). In addition, my research had much narrower scope than in Tweel’s (2012)
research. My research result only represents the analysis and prediction of the cloud
adoption intent for U.S. hospitals, instead of for all U.S. industries as in Tweel’s (2012)
research.

This sampling frame might have a potential bias. As I selected the study sample
from the company’s health care customer network, these research subjects could be
representing a group of I'T management people who have similar, yet unknown
backgrounds. These groups might have common subjective norms on technological
preference, risk tolerance, and decision making. As a result, they might have a similar
mindset toward cloud computing adoption. The descriptive statistic generated as part of
the results analysis could be useful to confirm whether such sampling frame bias exists.
Furthermore, self-administered online surveys usually have a low response rate. To
compensate for this limitation, I sent invitation letters and reminder e-mails to encourage
survey participation.

The population of this study only included the qualified hospitals in the 48
continental U.S. states (i.e., hospitals with 50 or more staffed beds). Therefore, the
generalization power of this study only represented the cloud computing adoption
intention of hospitals in the United States. According to Black (1999), without the right
mix of views and opinions collected from the sample groups, the generality could be
limited. However, for countries that have a similar socioeconomic environment as the

United States, this research result could be useful for predicting the influential factors for
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their hospitals’ intention to adopt cloud computing services. To demonstrate whether this
study has an unbiased population sample, I discuss descriptive statistics such as hospital
type and bed size in Chapter 4.

Finally, with increased need for cost containment and increased demand for
patient data privacy, IT managers of U.S. hospitals are under pressure to find innovative
and effective ways to manage their new financial and workforce challenges (McNickle,
2011; Parrington, 2010). This work pressure may influence their ability to make a
rational decision on new technology adoptions. To mitigate this limitation and risk, I
conducted a pilot study to determine whether the survey questionnaire was clear and easy
to understand with minimal mental effort. Based on the pilot study result, I adjusted the
survey questionnaire content as necessary.

As cloud computing is an emerging technology, its business model, value
proposition, and constraints are rapidly changing. Therefore, quickly diminishing the
predictive validity of this study could be possible, and the significance of each factor as a
predictor of the cloud adoption intention could shift over time. To improve the
generalizability of this research, besides MLR analysis on the six critical factors level, I
concatenated and analyzed the independent variables under the technological and
organizational context level. This approach should provide a better macro viewpoint.

Table 4 contains the summary of the limitation of this research study together

with its justification, risks, and mitigation plans.
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Limitations with Justification, Risks, and Mitigations
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Research Limitations Justifications Risks Mitigations

component

Theory DOI and TOE asa This study showed This study Declared as a future
theoretical an analysis of cloud  excluded some research opportunity.
framework can computing adoption  factors under DOl Used test statistic R?
only indicate that should be a and environmental to determine whether
planned behavior  rational decision for  factors under there is significant
for adoption U.S. hospitals. TOE. omitted variable error
intention. exists.

Phenomenon Other possible Low cloud More than Reviewed research
causes beyond computing adoption  adoption intention  studies to find
planned behavior  intention from U.S. from U.S. hospital evidence to
are not under hospital IT IT managers demonstrate cloud
consideration for ~ managers is the could be computing adoption
slow cloud major cause for slow influential to and adoption
computing cloud computing cloud computing intention has a direct
adoption for U.S.  adoption. adoption. correlation. Used test
hospitals statistics R? to detect

possible omitted
variable bias issue.

Methodology Quantitative The objective was to ~ Statistical analysis I declared it as a
research can only ~ examine which of was the basis of future research option
be useful in the six selected my research to explore further
determining critical factors have  result, lacking in-  why and how the
influences, instead  a significant depth exploratory  identified significant
of why and how influence on cloud power as in influential factors are
cloud computing computing adoption  qualitative affecting cloud
adoption is slow and to create a research methods.  computing adoption
for U.S. hospitals.  predictive model. for U.S. hospitals.

Quantitative
research is the
commonly
applicable method.
Instrument Online self- It is the most cost The research I informed the

administrated
survey
questionnaire in
this research only
consists of Likert
and multiple-
choice type of
questions. The
survey has no
open question to
allow the

effective, objective
way to collect large
amount of survey
data. It is a suitable
method for
quantitative
statistical analysis.
Open questions will
require additional
codification effort.

insight would
have a very
narrow focus on
identifying the
correlation
between the
selected six
selected factors
and cloud
computing
adoption intention

readers on the
limitation of data
collected via the
online self-
administrated
questionnaire and
provided the
questionnaire details
(see Appendix. A).
The survey included
a validated

(table continues)
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Research Limitations Justifications Risks Mitigations

component
participants to of U.S. hospital instrument to
provide more IT managers. improve rationality
insight into the and reliability.
research on cloud
computing
adoption.

Analysis MLR analysis The expectation in The result of The six selected
only fits data this study included MLR was not factors were the basis
under the normal  the normal permissible for of objective for this
distribution. The distribution of data. ~ claiming absolute  research to identify
included factors causal the possible causal
are linearly relationship. relationship and
independent of create a predictive
each other. model for cloud

computing adoption
intention. Future
experimental
researchers will need
to confirm the cause-
effect relationship for
any factor that has
shown a significant
correlation.

Participants As a behavioral The selected Some participants ~ Conducted a pilot
study, total participants were might not be able  study to determine
reliance on professional, who to provide the best whether the survey
honesty and would provide rational answers instrument is clear or
unbiased answers ~ honest and unbiased  based on their may require any
from the answers as expected. organizational improvement.
participants to benefit and risk
provide in the assessment due to
survey are the high-stress
important. Since I hospital
shall select all environment.
participants from
the company’s
health care
customer network,
they may carry a
similar
preexisting bias.

Power of The total number  The current The hospitals that ~ Used proportional

detection of U.S. hospitals limitations involved ~ would respond to  stratified sample

is 5,723 (AHA,
2013), and only a
relatively small
sample size will
be of use.

cost, resource, and
time constraint
permissible to only a
small number of
selected hospitals in

the survey might
fall under a few
U.S. states, and
the outcome
might affect the

method to pick
proportional number
of sample candidates
from the selected
U.S. regions to

(table continues)
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Research Limitations Justifications Risks Mitigations
component
this research. generalization. improve the overall
generalization.
I had much The scope of my I could not Clearly stated the
narrower research  research was to generalize my scope and
scope than in determine the IT research result to  generalization
Tweel’s research.  manager’s cloud other U.S. limitation of my
computing adoption  industries besides  study.
for U.S. hospitals U.S. hospitals.
only, instead of for
the entire U.S.
industry as in
Tweel’s research.
Results Limited by the The selection of six ~ The values and I analyzed the
statistical analysis  factors was constraints for technological and
results on the according to cloud computing organizational

independent and
dependent
variables

adoption theories
and research studies.
The adoption factors
for cloud computing
may be similar to
another technology
adoption as
expected.

are rapidly
changing, the
predictive validity
can diminish
quickly.

context level to
observe its
generalizability on
the technology and
organizational
context level.
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Significance of the Study

Significance to Theory

This study included the underresearched area of cloud computing adoption in
hospitals, focusing on the emerging technology, which is still in a rapid growth phase and
in need of its own theoretical basis for business value and risk measurement (Ekufu,
2012; Himmel, 2012; Paquet, 2013; Powelson, 2012; Ross, 2010; Tweel, 2012). The
output of this study was helpful in filling the knowledge gap, the lack of a predictive
model to determine the expected cloud computing adoption intent for U.S. hospitals,
based on six predefined influential factors regarding innovation adoption.
Significance to Practice

The purpose of this quantitative study was to examine the degree of influence of
key technological and organizational factors in predicting the adoption intention of cloud
computing in U.S. hospitals with MLR analysis. Cloud service providers may find this
model useful as they seek ways to resolve the cloud adoption obstacles and improve the
technology and service perception for U.S. hospitals. Furthermore, the model may also be
useful to U.S. hospital IT managers to enrich the decision framework, including cloud
adoption strategy, cloud computing service, deployment model selection, and
implementation priority.
Significance to Social Change

Similar to the positive social change created by the adoption of broadband
Internet, IT specialists anticipate the increase in technological innovation, improvement

in business agility, scalability, and mobility of cloud computing services (Business Wire,
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2011; Himmel, 2012; King, 2011b). Especially for U.S. hospitals, cloud computing
service providers offer low cost commodity digital communication and document
processing services, on-demand EMR software (SaaS), HIPAA compliant platform, and
scalable infrastructure resources. These cloud services could be useful in tremendously
reducing small hospitals’ competitive disadvantage compared to large hospital chains by
improving their operational efficiency and effectiveness. Instances may include the
reduction of the required upfront capital funding for IT infrastructure or operational
expenses for data security compliance, availability of in-house IT expertise, and the
ability to maintain high IT resource utilization (Good, 2013). Based on Porter’s five-force
competition model, with effective rivalry supplier market, economic productivity will
rise, along with more jobs that U.S. hospitals may generate in the future (Grundy, 2006).
Ultimately patients, health care providers, and the entire health care industry can benefit
by having better hospital services that tend to be more affordable, innovative, and
transparent (Shimrat, 2013).

By consolidating the current scattered, end-user-owned computing infrastructure
into cloud service vendors’ mega data centers, overall computing resource utilization will
greatly increase, which in turn reduces worldwide power consumption and carbon
dioxide emission (Borja, 2012; Williams, 2012). Based on the industrial forecast, by
2020, cloud-related services will have an allocated 69% of the IT budget, and that will be
equivalent to $12.3 billion of IT spending for large corporations with revenue greater
than $1 billion. Besides the economic benefits, using cloud services can be a viable

source of significant environmental benefit. According to an environmental study, the
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carbon footprint can also be reduced by 85.7 million metric tons per year after the current
capacity of cloud computing services are fully utilized (Williams, 2012). Currently, the
health care industry is only 4% of U.S. cloud service use (Good, 2013). This report has
indicated that the opportunity for accelerating the cloud computing adoption is high, and
the global economic and environmental improvement contribution can be enormous.

Summary and Transition

Based on many predictions of technologists, the social and financial effects
created by cloud computing development can be as significant as for the broadband
Internet adoption in the last decade. Surprisingly, the current adoption speed for
enterprises is slower than expected (North Bridge Venture Partners, 2012), especially for
U.S. health care organizations such as hospitals (Bowman, 2013; Gold, 2013). According
to most of the general surveys and studies, the concerns seem to include the potential
risks of immature technology; lack of standards, security, and data privacy; and
regulation compliance (Ekufu, 2012; Himmel, 2012; Mather et al., 2009; Paquet, 2013;
Ross, 2010; Sosinsky, 2011). Presently, scholarly quantitative research is limited; filling
this research gap can be useful in providing sufficient validity and generalization to
specify the degree of influence for key DOI and TOE factors on cloud service adoption.

The objective of this research effort was to close this research gap by examining
the significant factors under technological and organizational contexts, based on DOI and
TOE theories, and creating a predictive model, which can affect cloud service adoption
intent for U.S. hospitals. The dependent composite variables in this study included (a)

relative advantage, (b) compatibility, (c) complexity, (d) organizational size, (¢)
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organizational structure, and (f) organizational culture. The outcome was a quantitative,
MLR research with population sampling candidates retrieved from the company’s health
care customer network for hospital IT managers in the United States. I adopted to this
study a validated online self-administered survey questionnaire, which I enhanced to fit
this study in collecting research data. I invited a small, initial sample group to participate
in the pilot study in order to validate and improve the survey instrument. The collected
data passed through MLR analysis and hypothesis tests in order to draw research
conclusions. As a result, the output of this research could be used to frame a decision
framework to assist U.S. hospital IT managers in defining their cloud computing adoption
strategy and roadmap.

I provide in Chapter 2 a detailed literature review on technology adoption
theories, the nature and characteristics of cloud computing, their current available service
and deployment models, architecture, benefit and risks, the current circumstance of U.S.
hospitals in adopting new technologies, and the types of regression analysis methods.
Furthermore, I discuss innovation adoption methodologies to provide a comprehensive
viewpoint on their relevance to this study. In Chapter 3, I cover the research

methodology.
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Chapter 2: Literature Review

Cloud computing adoption in U.S. hospitals is slower than expected, and
currently, only 35% of U.S. hospitals have indicated that they have a solid plan for future
cloud services adoption (Terry, 2011). As U.S. hospitals are facing significant financial
and legal compliance challenges, cloud computing services could provide the needed
economic and technological advantages. Nevertheless, cloud service providers and
hospital IT managers should firstly understand the technical and organizational factors
that affect the adoption rate. The objective of this cross-sectional survey research was to
predict hospital IT managers’ intent to adopt cloud computing based on the six selected
factors (predictors): relative advantage, compatibility, complexity, organization size,
organizational structure, and organizational culture. The ultimate goal was to (a) provide
an academic contribution to identifying the degree of influence of these factors on U.S.
hospital’s cloud computing adoption, and (b) create a predictive model of adoption to
assist hospital IT managers to decide how they can accelerate their cloud adoption. In
addition, this study may also be useful in providing cloud service providers the required
insights related to slow cloud adoption in U.S. hospitals.

With this objective and goal, this chapter includes the literature review of more
than 100 journal articles, reports, books, and academic research according to four themes.
For the first theme, I describe classical technology adoption theories and provide a
justification for the selection of DOI and TOE frameworks as the theoretical foundation
of this research. For the second theme, I provide the concepts and development of cloud

computing with a focus on its architecture, services, business, social benefits, risks, and
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constraints. For the third theme, I review the current business challenges and status of IT
adoption in U.S. hospitals. For the fourth theme, I present an overview of regression
methods and the process to create a statistical predictive model. Finally, I conclude with a
summary and transition to Chapter 3.

Literature Search Strategy

As cloud computing is an emerging technology, and U.S. hospital technology
adoption is continuously evolving, online blogs, wikis, and journal articles contain the
most up-to-date information that was important for this research. Most relevant and peer-
reviewed journals related to the research topic came from Healthcare IT News, Gartner
Research, International Journal of Business and Social Science, Business Wire, Forbes,
Computer Weekly, International Journal of Information Management, SERI Quarterly,
Journal of Internet Law, znet.com, Journal of Information Systems, Journal of High
Technology Management Research, Global Journal of Business Research, Informatica
Economica, and Financial Executive. The recent scholarly and dissertation research
papers were among the sources I searched and retrieved from ProQuest dissertation
database. The main keywords I used included cloud services, cloud computing, health
care cloud, hospital cloud, hospital information system, cloud adoption, technology
adoption, adoption theories, and statistical regression. The scope of most research papers
or journal articles was within the last five years to ensure their content included the most
recent aspects of the research topics. The main search engines for articles and research

papers were Bing, Google Scholar, and Walden University library’s database searches.
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Theoretical Foundation

The common challenge for new technology adoption is that no universal guidance
for decision makers is in line with critical factors. The lack of universal guidance reduces
the technology adoption intent and hinders the adoption decision progress (Tornatzky &
Fleischer, 1990). In this respect, scholars and researchers have conducted multiple studies
based on individual and social behavior viewpoints to identify the most influential
technology adoption factors instead of judging the adoption by the technology itself.
Within the last two decades, scholars have developed several technology adoption
theories to address this concern. These theories include the technology acceptance model
(TAM) by Davis et al. (1989), the theory of planned behavior (TPB) by Ajzen (1985), the
unified theory of acceptance and use of technology (UTAUT) by Venkatesh et al. (2003),
the diffusion of innovations by Rogers (2003), and the technology-organization-
environment framework (TOE) by Tomatzky et al. (1990). In the following sections, I
briefly describe each of these adoption theories and provide justification on why I chose
DOI and TOE for this research.

Technology Acceptance Model (TAM)

The TAM model includes three key influential factors—perceived usefulness,
ease of use, and attitude toward using—affecting the perception of an individual, which
is, in turn, influential to the behavioral intention to accept a new technology (Chuttur,
2009; Powelson, 2012). As illustrated in Figure 1, external variables are technology
features, user training, user involvement in the design, and implementation process

influential to user’s perceived ease of use and usefulness. Once these perceptions are set,
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they then become the driving factors for a user to accept or reject the new technology.
The perceived usefulness and attitude toward using a new technology have a direct
correlation with the behavioral intention to use technology (Davis et al., 1989).

Researchers have widely used this methodology in various technology adoption
studies and demonstrated that it is a valid and reliable theory to provide a reasonable
prediction on user acceptance for new technology deployment (Lule, Omwansa, &
Waema, 2012). However, several researchers argued that the TAM model is more
suitable for technology adoption studies with the voluntary use of a system instead of
mandatory applications, such as in the commercial business environment. TAM does not
indicate further explanation on the reasons for success or failure of technology adoption
beyond showing the correlation with perceived usefulness and ease of use. Therefore,
TAM has limited practical use (Chutter, 2009), as it also lacks any relation to external
factors as demonstrated in other technology adoption theories, such as organizational
size, competitive pressure, and system compatibility. As the research environment of this
study is within a corporation setting, external factors besides perceived usefulness, and
ease of use are influential to IT managers’ intention to adopt cloud computing services.

TAM appears to be an inappropriate theory to apply.
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Figure 1. Technology acceptance model. It shows the interrelationships between adoption
factors. Adopted from “Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology,” by F. D. Davis, MIS Quarterly, 13(3), 1989, pp.
319-314. Copyright 2010 by MISRC. Reprinted with permission.

Theory of Planning Behavior (TPB)

The TPB model is an attempt to link an individual’s beliefs with individual’s
behavior and intention. This theory is the successor of the theory of reasoned action
(TRA) with modification to include perceived behavioral control as a way to address the
limitation of TRA. According to Ajzen (1985), TRA is only suitable to predict deliberate
behavior when the intention is 100% voluntary and under an individual’s control. As
illustrated in Figure 2, TRA consists of three types of beliefs that align independently
with three theoretical components: (a) attitude toward the behavior, (b) subjective norm,
and (c) perception of behavioral control. In combination, these three beliefs comprise the
components for the formation of an individual’s behavioral intention. Many health-
related research studies validated the TRA theory by showing a high correlation of

attitudes and subjective norms to behavioral intention (Sheppard, Hartwick, & Warshaw,
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1988). However, personal intention and decision assessment based on individual’s beliefs
and behavior is still this theory’s main application, instead of business decision
assessment. Furthermore, Dutta-Bergman (2005) argued that emotion could heavily
influence an individual’s behavior at a given time for then the behavioral intention may
not be rational. Therefore, TRA is not the right choice as the foundational theory for my
research study because, for a business-oriented research within a workplace setting, this
theory is lacking any objective organizational and environmental measure. Similar to the
constraint for applying TAM, the research result may indicate insufficient details to
highlight critical characteristics of cloud computing and organizational factors to predict

the IT managers’ intention for adoption.
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Attitude
toward the
behavior

Perceived
behavioral
control

Figure 2. Theory of planned behavior. It shows subjective norm, attribute toward the
behavior, and perceived behavioral control are three key factors to drive intention.
Adopted from “The Theory of Planned Behavior,” by 1. Ajzen, Organizational Behavior
and Human Decision Processes, 50, 1991, pp. 179-211. Copyright 1997 by Elsevier.
Reprinted with permission.

Unified Theory of Acceptance and Use of Technology (UTAUT)

UTAUT, Venkatesh and his associates developed in 2003, is another well-
accepted technology adoption theory. UTAUT is a combination of eight innovation
adoption theories, including TRA, TAM, TPB, DOI, motivational model (MM),
combined TAM and TPM (C-TAM-TPB), model of PC utilization (MPCU), and social
cognitive theory (SCT). This new unified theory indicates the behavioral intention to
accept and use new technology (Sundaravej, n.d.; Venkatesh et al., 2003). As illustrated

in Figure 3, UTAUT consists of four key constructs: (a) performance expectancy, (b)

effort expectancy, (c¢) social influence, and (d) facilitating condition.
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Gender, age, experience, and voluntariness are moderation components that
interact with the four constructs to influence the behavioral intention. Since UTAUT is a
consolidation of adoption theories, it has significant conceptual similarity with those
theories. For instance, its social influence is equivalent to the subjective norm in the TPB,
performance expectancy and effort expectancy are similar to the perceived usefulness and
ease of use under the TAM model. Although UTAUT is a more comprehensive
technology adoption model as compared with TAM and TPB, it is very difficult to apply
because it consists of 41 and more than 8 independent variables to predict adoption
intention and behavior respectively (Bagozzi, 2007). Due to its unnecessary complexity, [

do not consider this theory as part of my research theoretical framework.

Performance
Expectancy

Expeciancy

Bahavioral Lise
Intention Behavior

Social
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Gender Age Experience of Use “i

Figure 3. Unified theory of acceptance and use of technology. It shows two-dimensional
influence to behavioral intention. Adopted from “User Acceptance of Information
Technology: Toward a Unified View,” by V. Ventakesh, M.G. Morris, F.D. Davis, and
G.S. Davis, MIS Quarterly, 27,2003, pp. 425-478. Copyright 2014 by MISRC.
Reprinted with permission.
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Diffusion of Innovations (DOI)

DOI states that several factors are influential to the technology adoption rate: (a)
leadership style, such as attributes to change; (b) organization structure, such as
centralized versus decentralized control, slack size, structure formalization, and internal
collaboration versus competition model; and (¢) external characteristics of an
organization, such as system openness (Powelson, 2012; Roger, 2003; Ross, 2011).

Specifically for norm similar to Ajzen (1985), Rogers (2003) explained that a
social system has a structure where chief users can create and set the standard behavior to
guide the behavior of most members. Therefore, besides individual’s preference, the
social system can also be directly influential to the adoption rate of innovation. The
reason is that social system is a venue where users can maintain a formal and informal
structure to constrain people in ways they should interact with each other to solve
common problems and provide a sense of regularity and stability (Roger, 2003). Even
norm and communication channels seem to be important in innovation adoption; Rogers’
research did not prove them as most critical factors.

In his study, Rogers (2003) concentrated on the influential factors of technology
itself and created a five-factor influential model. Rogers argued that the main objective of
an innovation-decision process was to reduce the uncertainty about consequences. The
five influential factors are essential for an individual to gain better understanding of
potential consequences. Rogers claimed that these five factors indicated 49-86%

explanation behind the innovation adoption, as follows:
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Relative advantage. It represents the perceived extra value of using a new
technology, compared with an existing solution. For example, financial and social
status benefit can be part of the relative advantages. According to Rogers (2003),
relative advantage is the strongest predictor of an innovation adoption rate. As
Powelson (2012) highlighted, cloud computing is an emerging innovation, and its
elasticity capacity feature has significant relative advantage for the business,
particularly for small corporations that lack strong financial position to invest on
IT capitals.
Compeatibility. It refers to the degree of synchronization with an existing value,
method, and experience. It means it does not include conflict to the current social
system value and norms. When an innovation is compatible with an individual’s
belief and value system, the individual’s uncertainty about technology will
diminish, and a higher rate of adoption is permissible (Shin, 2006).
Complexity. The perceived technological solution is simple to understand and
apply. Researchers can use the perceived functional points and process steps to
perform a specific function to measure complexity (Tornatzky & Fleischer, 1990).
Besides this scientific calculation, researchers can estimate the complexity of
technology innovation by the amount of physical and behavioral knowledge
aggregation through observation of cause—effect understandings in real world
scenarios. According to Tornatsky and Fleischer (1990), technological solutions
with less perceived knowledge aggregation required (i.e., less complex) normally

indicate higher adoption rate.
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o Trialability. When someone tries a new technology, the trialability of that
technology increases because it shows the possibility to do incremental adoption
instead of full adoption. As an investment, training and change management risk
become minimal, trialability typically has a high degree of adoption. Additionally,
with trialability, the user could gain the opportunity for reinvention and
customization during the trial period, which has a positive effect to encourage
adoption (Shin, 2006).

o Observability. It represents the result of a new technological solution that is
highly visible, and its result value is ready for assessment. This positive visible
effect can be influential to peers, causing faster adoption of the similar
technology.

According to Rogers (2003), relative advantage and compatibility are the most
important among the five key influential factors for technology. Rogers concluded that if
an individual or corporation perceived an innovation as having high relative advantage,
no compatibility issue, and simple to apply, then it would have a high adoption rate
without too much consideration on trialability and observability.

Due to the DOI’s strong theoretical base on revealing the critical factors for
innovation adoption at the individual and organizational level with vital research-
supported validity, I had chosen it as one of the foundational theories for this research.
Compared with other innovation adoption theories, with DOI, people can address the
adoption at the enterprise level instead of only at the individual level (Oliverira &

Martins, 2011).



55

PRIOR
CONDITIONS
1. Previow practice
2. Felt needs/problem s
3. Immovativeness
4. Horms of the social
system s
COMMUNICATION CHANNELS

I III.
KENOWLED GE PERSU ASI> DECISI Ob> M PLEMENT&T]ON CONFI RM ATION

T

Char acteristics of the Per cenredChnractenshcs of 1. Adophin  — Continue d Adoption
Dre cision-Making Tnit the Innovation LaterA dogtion
1. Bocioeconomic 1. Relatsve advantage Discontinuance
characteristics 2. C ompatibality 2. Reje cHon e—C ortinue d Feje ction
2. Personality variables 3. Complexity
3. Communic ation behavior 4. Trialabibty

5. Observablity

Figure 4. Diffusion of Innovation (DOI)—a model of Five Stages in the innovation-
decision process. Adopted from Diffusion of Innovations (p. 170), by E. M. Rogers, 2003,
New York, NY: Free Press. Copyright 2003 by E. M. Rogers. Reprinted with permission.
Technology—Organization—-Environment (TOE) Framework
The distinction of TOE from other innovation adoption theories is that it does not

include technology innovation itself. Moreover, TOE shows an influence analysis of
other factors under organizational and environmental context and their interrelationship
affecting the result of adoption. As a summary illustrated in Figure 5, under the TOE
framework, the factors in three interconnected contextual areas affect technology
adoption process (Oliverira et al. 2011; Tornatzky & Fleischer, 1990):

e Technological context. It shows how the internal and external availability of

different technologies affect a new technology adoption. The justification or

rejection for adoption usually relates to the perceived direct and indirect benefits,
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perceived barriers, interoperability and interconnectivity, required IT
infrastructure, and expertise of the technology itself.

Organizational context. It indicates the degree of effect of organizational size,
culture, and structure influential to the technology adoption. It shows the level of
satisfaction of the existing technology base, adoptability, financial power,
management support, commerce strategy, and view on the return of investment
relating to the decision of a new technology adoption.

Environmental context. It shows the influence caused by its industrial segment,
competitors, and government. To measure, it indicates whether perceived
government—pressure; market uncertainty; competitive pressure; the need for
regulatory policy compliance; and assessment of consumer, trading partner, and

vendor support readiness are in favor of a new technology adoption.
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Making Slack
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Availability

Characteristics

Figure 5. Technology—organization—environment (TOE) framework. Adopted from The
Processes of Technology Innovations (p. 153), by L. Tornatzky and M, Fleischer, 1990,
Lexiqgtf)n, MA: Lexington Books. Copyright 1990 by Lexington Books. Reprinted with
permission.

For this research, I was interested in how organizational factors become
influential to the adoption of cloud computing as an emerging technology, in addition to
the technical context. Organizational sizes, organizational structure, and organizational
culture are three predictor variables within the organizational factors. Specifically for
organizational cultures, I measured them using two core competing value dimensions and
simplified them into four forms: clan, adhocracy, hierarchy, and market. These two
dimensions represented two orientations to measure an organization’s people
management (from flexibility to stability) and business management (from the internal
capability to external positioning focus) styles. According to Cameron, Quinn, DeGraff,

and Thakor (2003), by intersecting these two dimensions, organizational cultures can be

under the classification of a clan (i.e., focus on flexibility and internal capability),



58
adhocracy (i.e. focus on flexibility and external positioning), hierarchy (i.e. focus on
stability and internal capability), and market (i.e., focus on stability and external
positioning).

As highly regulated and structured U.S. hospitals carry their social responsibilities
parallel to their revenue generation or cost recovery goals, their IT managers’ intention
on cloud adoption is not be voluntary. Therefore, I believed combining the DOI and TOE
theory strengthened the relevance of my study due to their coverage of organizational
context. It can also be useful in providing a strong theoretical framework to develop a
predictive model to determine the cloud computing adoption intent, according to a set of
influential factors described in these two theories.

Literature Review
Concepts and Development of Cloud Computing

What is cloud computing? Cloud computing is a progressive technological
evolution of grid computing and virtualization. Its functions include virtualization to
support a transparent encapsulation of resources from a physical server (memory, CPU,
and storage) to a segregation of multiple virtual servers. Assigned tenants can allocate
and control these resources similar to physically owning a server (Mather et al., 2009;
Reese, 2009; Williams, 2012). To extend the virtualization capability further, cloud
computing has another essential concept called service abstraction, in which cloud users
access the service through a self-service web interface via the Internet. As the underlining

infrastructure is virtual and built on top of a shared resource pool, cloud computing is
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helpful for providers to support multitenant charge per usage and provide instant
scalability with agility (Sosinsky, 2011).

By definition, cloud computing includes the functions of IT services, which a
third party provides. Cloud computing, which carries the attributes of multitenancy,
massive scalability, rapid elasticity, metered usage charge, and self-provisioning for
shared IT resources, runs on a distributed network and is accessible with common
Internet protocols (Mather et al., 2009; Sosinsky, 2011). In the business viewpoint, cloud
computing is a new IT resource subscription model (instead of just an Internet-enabled IT
infrastructure virtualization technology) because it is useful for enabling businesses to
eliminate their need to provide capital investment on IT infrastructure (Williams, 2012).
Figure 6 shows a brief summary of cloud computing’s deployment models, service

models, and service attributes with the explanations included in the subsequent sections.

Deployment
models Private

Service Infrastructure as Platform as a Software as a
models a Service (1aa$) Service (Paa$) Service (SaaS$)

Service [ Resource pooling I
attributes

Broad network access “ Measured service “ On-demand self-service ][Hapid elasticityl

Figure 6. NIST (National Institute of Standard and Technology) Cloud Computing
Definitions. Adopted from Cloud Computing Bible (p. 6), by B. Sosinsky, 2011,
Indianapolis, IN: Wiley Publishing, Inc. Copyright 2011 by Wiley Publishing, Inc.
Reprinted with permission.
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Key characteristics of cloud computing service. As cloud computing is an
emerging technology, its business model, characteristics, and underlying technology are
continuously evolving. Currently, the cloud computing characteristics are as follows:

e Cloud service providers use Internet broadband network access and a web
browser to connect services to their clients (Reese, 2009; Smith, 2013; Williams,
2012). Therefore, its service is accessible from anywhere as long as Internet is
available (Finan, 2012).

o The service includes special on-demand and self-serve tools and portals to allow
subscribers to manage provisioning and back office functions with a service-
oriented approach (Armbrust et al., 2009; Finan, 2012; Jackson, 2011; Reese,
2009; Smith, 2013; Wilder, 2012; Williams, 2012).

o It has multitenant resource pooling by virtualization technologies to reduce
charges to individual subscribers and maximize its own resource utilization
(Jackson, 2011; Reese, 2009; Sosinsky, 2011; Wilder, 2012; Williams, 2012).
Each tenant can only access its allocated resource without interfering others under
the same sharing physical infrastructure (Smith, 2013; Wilder, 2012; Williams,
2012).

e The individual subscriber receives all monitored, measured, and reported resource
consumption to check usage visibility and associate with charge amount (Reese,

2009; Wilder, 2012; Williams, 2012). The providers bill the service usage on a
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pay-as-you-go scheme to their clients. The billing scheme is similar to general
utility services (Finan, 2012; Smith, 2013; Sosinsky, 2011).

The cloud providers do not require users to sign any long-term commitment
contract for the services received. Therefore, the cloud service has a low entry
cost to try out or pilot (Armbrust et al., 2009; Sosinsky, 2011).

The biggest strength of the services is rapid elasticity (Finan, 2012; Williams,
2012). Under the end user perspective, the cloud resource is near infinite
(Sosinsky 2011; Wilder, 2012), which avoids unnecessary infrastructure charges
for its subscribers due to underutilization and decreasing time to market (Smith,
2013; Williams, 2012). Cloud-provisioned servers can have the auto-scaling
capability to turn the service on when the load is high, or shut itself down when
the server is idle (Reese, 2009).

Cloud computing service models. Understanding the common service and

deployment models of cloud computing is important. As cloud computing is rapidly

developing, more service models will be available in the future. Nevertheless, most

providers, as illustrated in Figure 7, commonly offer three service models:

Software as a service (SaaS). The cloud providers offer application software
through subscription base, and subscribers can run it under the cloud provider's
infrastructure instead of theirs (Finan, 2012; Sosinsky, 2011; Williams, 2012). As
a result, subscribers experience reduced complexity and cost of installation and
maintenance (Williams, 2012). Subscribers only need to do some application

configurations and not carry any responsibility to manage and support the
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software and hardware for a specific business function. Microsoft Office 365,
Google Mail, QuickBooks Online, Dynamics CRM Online, and Salesforce.com
for customer relationship management are a few of many popular SaaS (Sosinsky,
2011).
Platform as a service (PaaS). The cloud providers set up infrastructure, operating
systems, and required development toolkits for subscribers to use as their
development platform without the cost and lead time to build up and tear down
the dynamic infrastructure instances to support their software development life
cycle (Finan, 2012; Sosinsky 2011; Williams, 2012). The service is supportive of
the idea behind the rapid design, development, test, and new application
deployment. Currently, this service has the highest growth rate among the three
services (Williams, 2012). Microsoft Azure, Google AppEngine, and Force.com
are the three popular PaaS due to ease of use, low cost, and comprehensive tool
sets for development, test, and deployment (Sosinsky, 2011).
Infrastructure as a service (IaaS). The cloud providers package virtualized
infrastructure (server, network, and storage) as a service for subscription and
allow subscribers to use them to run their applications (Finan, 2012; Sosinsky,
2011; Williams, 2012). This service does not require the initial capital expense,
procurement and installation lead time, ongoing maintenance charge, and
implementation complexity (Sosinsky, 2011; Williams, 2012). Microsoft Azure,
Amazon AWS, Verizon Terremark, and RackSpace are a few cloud service

providers that offer [aaS (Sosinsky, 2011).
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Stateless application architeclure
Monthly subscription-based pricing model

A platform that enables developers to write | » Microsoft Azure
applications that run on the cloud |, Google App Engine
A platform would usually have several
application services available for quick
deployment

« Force.com

A highly scaled redundant and shared | - Amazon EC2, 53, elc.
computing infrastructure accessible | .
using Internet technologies Rackspace Mosso offering

Consists of servers, storage, security, | Sun’s cloud services
databases, and other peripherals | - Terremark cloud offering

While cloud-based software services are maturing, cloud platform
and infrastructure offerings are still in their early stages

Figure 7. Cloud service models. Adopted from Cloud Security and Privacy: An
Enterprise Perspective of Risks and Compliance (Theory in Practice) (p. 17), T. Mather,
S. Kumaraswamy, and S. Latif, 2009, Sebastopol, CA: O’Relly Media, Inc. Copyright
2009 by O’Relly Media. Reprinted with permission.

Cloud computing deployment model. Cloud providers usually run the three
service models under a deployment model called public cloud. Nevertheless, due to the
data privacy and security concern, cloud providers developed other deployment models to
accommodate the needs of subscribers. Nowadays, consumers and enterprises highly
adopt four deployment models, mainly distinguished by tenant strategy under the
foundational infrastructure layer, in terms of segregation of physical resource and data.
These four deployment models include:

o Public. A cloud service provider owns the cloud infrastructure with a design

specifically for public use (Finan, 2012; Sosinky, 2011).
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o Private. The cloud infrastructure design is exclusively for one client to fulfill
multiple departmental needs (Finan, 2012; Sosinky, 2011). It can be on or off-
premise, and the management is under an in-house technical staff or a third party
(Sosinky, 2011).

e Community. The cloud infrastructure design is useful for serving a group of
clients with common objectives, functions, or under the same organizational
group (Finan, 2012; Sosinky, 2011).

o Hybrid. It is a combination of multiple types (public, private, and community) of
cloud infrastructure, connected seamlessly through specific application program
interface (Finan, 2012; Sosinky, 2011).

Perceived benefits and barriers for cloud computing adoption. As mentioned
in Chapter 1, even though cloud computing seems to have tremendous benefits for
enterprises, its adoption is lower than expected, particularly for U.S. hospitals.
Researchers are interested exploring this phenomenon to identify the critical factors
influential to the cloud computing adoption. Based on my literature review, the summary
of perceived benefits and barriers for cloud computing adoption can be a significant
source of hints and association with the influential factors described in the DOI and TOE
technology adoption theories.

The benefits of adopting cloud computing services can be on the global
socioeconomic and individual business enterprise level. The global socioeconomic level
has a focus on the potential impacts of cloud computing development and adoption for

the overall global economy and environmental changes. These benefits are as follows:
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As cloud computing applies a virtualization and multitenant approach, which has
an allocation of IT infrastructure resource to a large group of customers, it can
have a high operational efficiency and resource utilization. With tremendous
economies of scale, cloud service providers can offer IT services at low price
points (Armbrust et al., 2009; William, 2012). With the ability to access advanced
IT services without the need for high upfront capital investment, many small and
medium companies can compete against large corporations (Aljabre, 2012;
Armbrust et al., 2009; Campbell, 2010). In addition, with the reduced
infrastructure investment, the business entry points are lower and the competition
via innovation increases (Jackson, 2011).
Besides the cost-saving benefit, cloud computing adoption also accelerates
information sharing, accessing latest technology innovation, enabling data
analytics, future cost transparency, and predictability (Aljabre, 2012; Finan,
2012).
Cloud computing adoption can shorten the IT sourcing time for enterprises that in
turn improves time to market as no more hardware deployment lead time is
needed. As cloud service clients improve overall time to market for their products,
their new product innovation cycle also improves (Finan, 2012; Jackson, 2011).
As a result, cloud users experience better, more affordable, and faster cycles of
new products and service creation. This IT technological and service model will

ultimately be helpful in improving the quality of human life (Williams, 2012).
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On the enterprise business level, the largest benefits of cloud computing services
are its resource elasticity, scalability, and low cost, flexible pay-as-you-go billing
model (Aljabre, 2012; Armbrust et al., 2009; Jackson, 2011).
With fast provisioning speed (for scale up or scale down), users benefit from
reduced infrastructure maintenance time and solution implementation (Campbell,
2010; Jackson, 2011; Williams, 2012)
Users can avoid the cost of infrastructure overprovisioning or the risk of
opportunity lost due to infrastructure underprovisioning (Armbrust et al., 2009;
Campbell, 2010).
Users can transform their capital expense to operational expense so that the cash
flow can match with total infrastructure cost (Finan, 2012; Jackson, 2011;
Williams, 2012).
Adopting cloud service is an opportunity for businesses to redeploy company
resources on their core capabilities to provide business values to their customers
instead of worrying about IT infrastructure (Aljabre, 2012; Campbell, 2010).
On the end users’ viewpoint, cloud service offers almost an infinite computing
resource and support on demand for complex data processing needs that require a
huge amount of parallel computing power (Aljabre, 2012; Finan, 2012).
Subscribing to a cloud service can be the best time to streamline the IT supply
chain process and provide a unified way to acquire, consume, maintain, and pay

for IT infrastructure as global resources (Williams, 2012).
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Cloud users can be recipients of a reliable, secure and high-quality IT services
that may not be implementable by small and medium corporations with limited IT
funding and internal expertise (Aljabre, 2012; Jackson, 2011).
Acquiring cloud service may be helpful for users improve internal and external
business collaboration with the ease to use mechanism to access information
anywhere at any time and via any device (Aljabre, 2012; Armbrust et. al, 2009;
Jackson, 2011; Williams, 2012).

While cloud computing has benefits for businesses in terms of cost, technological

innovation, and flexibility, many scholars argued that cloud service is still immature in

several areas, and thereby put businesses at risk. These concerns include:

Data security and privacy. Under the public cloud model, company data are in the
safe keeping of the cloud service providers’ data centers. Corporations may feel
out of control to protect their data and have to rely on third party’s security
policies and technologies to do so (Ekufu, 2012; Williams, 2012; Sosinsky, 2011).
Network bandwidth and security. Unlike companies’ infrastructure on-premise,
cloud computing services depend on the public Internet infrastructure, for which
performance can be unpredictable due to uncontrollable network traffic via
Internet communication pipelines (Reese, 2009; Sosinsky, 2011). When the
Internet reaches saturation, such as in some special event days (e.g., Thanksgiving
Black Friday), the low availability of cloud services may be the cause of
jeopardizing a company’s operational efficiency. Furthermore, as cloud services

include multitenant virtualization technologies, implementing security intrusive
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detection can also be challenging due to a virtualized network environment
(Reese, 2009).

Vendor lock-in. Currently, cloud service providers do not provide an industrial
standard on how to integrate cloud services and resources (Himmel, 2012). Once
companies adopt a specific cloud service from a cloud vendor, migrating their
applications and data to other service providers can be difficult and time-
consuming (Sosinsky, 2011).

Legal and service level compliance. For some industries (e.g., health care,
financial, and law advisory corporations), legal and service level compliance is
specifically important due to public impact of their services and the large amount
of customers’ private and commercial sensitive data withholding. Nevertheless,
not all cloud service providers have internal legal compliance expertise to satisfy
regulatory requirements, such as U.S. HIPAA and EU data protection laws
(Canellos, 2013; Paquet, 2013; Williams, 2012). Once the migration of data to the
cloud environment is complete, the corporations providing data may have to bear
the risk of legal and service level compliance violation if the cloud service
contracts have not stated clearly the legal and service level responsibilities
(Sosinsky, 2011). In addition, the physical location of data will be difficult to
track after their transfer to the cloud data center (Paquet, 2013; Reese, 2009).
Existing IT investment. Many large corporations have existing investments in
their data centers, platforms, or applications. These investments may not fully

depreciate. Even moving to the cloud environment does not involve upfront
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capital investment but may indicate increasing the IT operational cost and
underutilizing owned infrastructure (Reese, 2009). Furthermore, the modern cloud
infrastructure may not be compatible with the existing infrastructure on premise
and application design (Williams, 2012; Reese, 2009).

Software licensing and infrastructure cost. In general, clients expect cloud
services to be scalable and demand elasticity (i.e., clients can ramp up and down
their service needs on demand). Nevertheless, as most cloud services are still
premature, the licensing schemes for required software are not yet in line with the
new cloud computing model (Reese, 2009; Sosinsky, 2011). In the cost control
standpoint, the dynamic resource allocation flexibility provided as a cloud selling
feature can be unfavorable to customers trying to avoid a highly fluctuated IT
operational expense (Sosinsky, 2011).

Fear of job loss. As corporations consider cloud computing services as a new
medium of IT outsourcing, IT staff may resist migrating existing IT services and
infrastructure to the cloud due to job loss fear (Williams, 2012).

Even though plenty of tangible and intangible benefits and concerns come with

the cloud service adoption that IT managers have to consider, to most extent, the adoption

choice will still matter according to the perception of whether the benefits are much

higher than the cost and risks. Therefore, having a relevant predictive model can be

helpful to cloud services providers and IT decision makers in analyzing and changing the

status of critical adoption factors, as a way to accelerate the adoption. For instance, the

benefits and barriers can be directly relevant to the three technical factors of this research:
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Relative advantage: Financial benefit and cost, security and data privacy risk,
scalability, deployment cycle time, and flexibility for future change.
Compatibility: Existing infrastructure and technologies deployed, and compliance
requirement in legal and public regulation.

Complexity: Ease of use, training requirement, and self-service capability.

Current Development and Status of Technology Adoption for U.S. Hospitals

Similar to other industries, U.S. hospitals and the entire health care industry are

active in introducing new medical and information technologies in terms of new

equipment, medications, and systems for improving effectiveness and efficiency on

patient sickness diagnostic and treatment. With this research focused on information

technology for U.S. hospitals such as cloud computing, I reviewed more than 30 related

articles to understand its development and status. From the mega trend perspective, I

found three important aspects:

Creation of the interconnected electronic HIS with streamlined workflows and
medical data hubs, integrating internally with all departments and externally with
other health care providers and payers.

The introduction of mobile devices with intuitive user interfaces (e.g., voice and
handwriting recognition), which physicians and nurses use in rendering service.
Acceleration on the outsourcing hospital administrative operation and systems to
third-party vendors, such as cloud service providers and business process

outsourcing (BPO) vendors.
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Creation of the interconnected HIS. In recent years, HIS have expanded from
its original goal of managing cost and handling billing to now including patient
prescription, examination, and medical instruction functions. The main difference
between a HIS and other information systems is that the former serves as a sociotechnical
system because its tasks involve a lot of human interaction, information exchange and
processing (K. Zarour & Zarour, 2012). The basic objective of a HIS is to improve
patient service and care, hospital planning and management, safety and quality
assessment, medical research and epidemiology by providing accurate patient data at the
right time in the right place and to the right people (Li, Wu, Chen, Zhou, & Wu, 2011; K.
Zarour & Zarour, 2012). According to Hosseini, Nordin, Mahdiani, and Rafiei (2014), the
HIS should consist of the minimal four functional subsystems: (a) clinical operation and
nursing management; (b) laboratory information management; (c¢) pharmacy information
management; and (d) radiology information management. K. Zarour and Zarour (2012)
mentioned that it should also include EMR and medical image retrieval and archiving.
Additionally, Lee, Ramayah, and Zakaria (2012) stated that the HIS should have a real-
time monitoring capability for patients.

Haque, Kayadibi, Rafsanjani, and Billah (2013) later believed that hospital
financial management, outpatient information management, and health information
exchange (HIE) subsystems are also essential for a HIS to be fully functional.
Furthermore, Yang, Zheng, and Wang (2011) alleged that patient registration, health
check management, surgery management, anesthesia management, drug management,

and blood transfusion management are the other six core subsystems for large-scale HIS.
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This list of diversity corresponding to HIS and functionalities indicates no consensus on
which capabilities are essential. Most likely, it depends on the process and technological
maturity of a hospital.

The improvement of patient safety is possible with effective HIS while hospitals
can have better communication with patients, nurses, and doctors. Timely and accurate
medical information is available at the point of service without the need to coordinate
multiple support staff to retrieve the information (K. Zarour & Zarour, 2012;
Mirabootalebil, Malaekeh, & Mahboobi, 2012). Besides immediate patient safety and
financial benefit, redundant task elimination, common processes, employee job
satisfaction, enhancing patient trust, available data for medical research, and the notion of
personal lifetime health plan (PLHP) can be the other intangible values of HIS (Hosseini
et al., 2014; Lee et al., 2011; Mirabootalebil et al., 2012; Siegel, 1968). Furthermore,
hospitals with information systems can have reduced time in reporting statistical data for
public health safety (Anema, Kievit, Fischer, Steyerberg, & Klazinga, 2013), which in
turn can be a contributing factor in disease prevention and chronic-disease management
(“Health Information Technology,” 2005).

Disregard with the benefits and the availability of required technologies, the
adoption of HIS was slow according to published public statistics in 2009. During that
period, only 17% of U.S. hospitals and 21% of U.S. physicians were using electronic
order entry forms and EMR (Lee et al., 2011). Mirabootalebil et al. (20012) reported that
the low adoption rate might be because many HIS designs are only supportive of

financial and management point of view and exclude the usability assessment for the end
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users, including physicians and nurses. Besides the system interoperability and system
design issues, a suspected reason for low hospital investment in information systems is
that improving patient care efficiency might have an effect on hospitals’ incomes due to
reduced patient bed days (“Health Information Technology,” 2005).

In the past three to four years, the adoption of HIS indicated significant
improvement. Within different functional areas of a HIS, Optum Institute (2012)
highlighted that the biggest acceleration for recent HIS development is from the EMR
and the HIE. As the Optum Institute’s 2012 CIO survey reported, 87% of surveyed
hospitals now have EMR and 70% have been using HIE technology. The EMR system
includes incredible convenience and improved safety measurement to medical staff and
patients with a complete patient medical and treatment records stored online (Morris,
Savelyich, Avery, Cantrill, & Sheikh,2005). Other dominated factors for EMR’s recent
rapid adoption are Obama administration’s 6.5 billion incentive payment for health care
institutions to convert health care providers’ existing paper systems to EMR and the
coming 2015 penalty for noncompliance with the U.S. government health IT regulation
(Freudenheim, 2012).

Nevertheless, even though more hospitals now have EMR system and HIE,
technology concerns still arise in that existing medical data lack the required
effectiveness and interoperability (Optum Institute, 2012). For instance, some EMR
implementations are still difficult to use, arguably slowing physicians and nurses’ daily
work efficiency. Hospital staff can easily make mistakes based on point-on-click user

interface design. Any system downtime can be the cause of a life-or-death situation for
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the patient (Freudenheim, 2012). These barriers for the adoption of EMR and HIE
indicated issues on raising cost; insufficient implementation time; lack of data accuracy
and completeness; and legacy system and process incompatibility. The overall resistance
to the adoption of a HIS was due to lack of required mobility, intuitive user interface,
staff training, and uncertainty about its system reliability, according to Hanada, Shusku,
and Kobayashi (2010). K. Zarour and Zarour (2012) further added that the development
and deployment of a HIS include several challenges: (a) the enhancement pace cannot
keep with the new technology changes, (b) lack of unified information exchange
standard, (c) the system lacks accurate and sufficient data to support day-to-day hospital
decision making and execution, and (d) patients’ trust on data privacy is low.

Some of the challenges are due to the amount, diversity, and complexity of
information that stakeholders require in hospital operation. Hosseini et al. (2014)
identified that the key factors for the adoption of information system for hospitals are
system, service, and information quality; perceived usefulness; and perceived ease of use
based on the TAM framework. Chow, Chin, Lee, Leung, and Tang (2011), in their
research on HIS adoption in a Hong Kong private hospital, discovered that nurse attitude
and satisfaction of using HIS play a significant role in hospitals. The primary factors are
work units, perceived usefulness, and the level of support that nurses receive pertaining
to the HIS.

A good HIS should be scalable, flexible, stable, robust, requiring low
maintenance effort, easy and open for customization to fit for hospital operation (Yang et

al., 2011). In a case study research article, Patrick (2011) argued that using an enterprise-
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wide, off-the-shelf HIS (e.g., Firstnet) might lack the critical design features, as
compared with in-house, developed best-of-breed solution. Conducting a risk assessment
of a HIS before its adoption is the responsibility of the hospital IT manager, to ensure
patient safety and confirm the expected results and future workflow productivity. One
way to improve the operational efficiency and effectiveness design of a HIS is to use
critical path analysis to define optimal process flows with preset standard service quality
and lead time (Hanada et al., 2010).

Haque et al. (2013) proposed two new conceptual HIS solution selection methods
for a HIS. The first method is a rapid learning system, which has a special algorithm for
analyzing the foundational patient needs and search for proven solutions. The second
method is useful for analyzing the capability and process domains of a HIS and for
identifying the critical elements essential for its effectivity. For the creation of an in-
house HIS, Damij (1998) recommended the use of a methodology called tabular
application development. This method consists of five phases for the design and
implementation of a HIS: (a) problem analysis with entity diagram, (b) business process
analysis with activity—task table, (c) data analysis with object modeling technique, (d)
system design, and (e) implementation.

In terms of the architectural design development of a HIS, history indicated two
stages. In the first stage, a HIS only operates under one centralized database. While in the
second stage, a HIS consists of many components with built-in databases. The data
exchange relies on the extraction of data from various modules into a centralized data

warehouse after data cleansing and conversion (Li et al., 2011). K. Zarour and Zarouor



76
(2012) as well as Li et al. (2011) proposed a similar technical architecture of a HIS that
consists of three layers: user interface, system function, and data access. It has seven
critical components that are useful for reducing the design complexity and improving the
interoperability of a HIS. The seven components include (a) web portal, (b) user—system
communication agent, (c) local database for the core function of every HIS, (d) peer-to-
peer interconnection network, (e) data warehouse with shared hospital data, (f) user
profile ontology, and (g) access control module.

Another major development for HIS was the use of workflow engine, which is
facilitative in providing more seamless integration among processes and systems of
hospitals and health care partners. This new approach is called process-oriented hospital
information system (Tavakol, Hachesu, Rezapoor, & Rezazadeh, 2013). It is helpful in
satisfying the need to connect heterogeneous system environment at the process level and
enable health care service providers to exchange data in varying data formats. It can
improve operational efficiency and data quality of a HIS by means of a better process
management and control (Yang et al., 2011). Additionally, if this technology combines
with the convenience of wireless handheld devices, users can further enhance the data
query and entry capability at the point of service (Tavakol et al., 2013). In general, a
workflow engine of a HIS should include three architectural components: workflow
management system, process modeler, and application integration bus (Yang et al.,
2011).

Computer -aided decision support in a clinical operation is another area, which

show major improvement in recent years. With this capability included in appropriate
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clinical workflows, a HIS can directly provide patients with specific recommendations
(e.g., medication and treatment assignment at the time and location needed), and reduce
redundant data entry and query (Kawamoto, Houlihan, Balas, & Lobach, 2005).

Interestingly, the outpatient capability of a HIS is expected to increase
significantly due to the common availability of broadband Internet and continuous price
drop of home-based health monitoring devices, such as portable weight, blood pressure
and blood sugar monitoring and alert systems. As a pilot project, the Intel Digital Health
Group sponsored, program patients can take a daily health measurement with their home-
based health monitoring device. Patients will send, through the device, the digital health
data and share their EMR directly with their physicians and hospitals (Olson, 2009).

According to Hanada et al. (2010) as well as K. Zarour and Zarour (2012), the
success factors for creating and sustaining EMR are data confidentiality, integrity, and
availability. At the same time, for a HIS, other success factors include the use of
normalized information distribution standard (e.g., XML) and unified interagent
communication protocols (e.g., HL7). As suggested, to improve the interoperability of a
HIS with other health care systems, the federal government should create common data
protocol and access standard (“EHR Report: Health IT isn't delivering,” 2013).
Establishing a national data repository for EMR was highly recommended (Anema et al.,
2013).

As Tavakol et al. (2013) stated, due to the lack of reliable technology to send,
receive, present, and transfer medical information to an authorized medical staff, the

triggered medical errors became the cause of mortality (nearly 98,000 annually),
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according to the U.S. Institute of Medicine. Potentially the recorded 200,000 adverse
drug events could be avoidable if physicians could have received early alert before the
issuance of a drug prescription (‘“Health Information Technology,” 2005). Despite the
rapid improvement in user interface and mobility of a HIS as hardware and software
technology continue to advance, the main challenge for the development and adoption of
a HIS remains with the interoperability of other health care partners and patients’ home-
based health monitoring devices. If a HIS can be useful in ultimately delivering seamless
patient information exchange among health care providers, then doctors can review the
patient’s historical health condition and make the best treatment decision (Chow et al.,
2011).

The introduction of mobile devices for hospital applications. Until recent
years, the electromagnetic interference among medical devices was the biggest concern in
using wireless data and voice communications system in hospitals. Researchers helped
mitigate this concern with their continuous evaluation, and it had finally been mitigated
(Hanada et al., 2010). With this constraint removed, a HIS is now workable with a
wireless network and mobile devices in tracking the location of expensive medical
equipment through a method called RF-ID technology. Physicians and nurses can carry
their cell phones at work and be able to contact their medical teams easily during an
emergency (Hanada et al., 2010).

With the introduction of smartphones and tablets, physicians and nurses can now
use them to make necessary real-time data entry and query from a remote location

(Karahoca, Bayraktar, Tatoglu, & Karahoca, 2009). With advancing technology in
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mobile devices, the health care industry can create different applications suitable for
hospital users and allow them to integrate well with their existing HIS. For FDA to
approve these applications, software application developers need to comply with the
FDA-published mobile health application guideline. The most valuable mobile
application usages surveyed for doctors and nurses are the remote access to patient’s
EMR; lab result and medical image enquiry; appointment schedule setting and alert; and
drug application assistance (McNickle, 2011).

With hospitals extending their outpatient services, mobile applications for patients
become more vital than the traditional desktop computer applications. Applications such
as medication intake reminder and remote health monitoring are increasing (Fong &
Chung, 2013). These applications can capture the patient health data and send them
remotely to the EMR module of a HIS. With the continuous development of this mobile
technology with cloud computing platform (e.g., centralized information hub), hospitals
are able to extend their outpatient service by reducing the hospital pressure to have
enough beds available at all times.

Acceleration on the hospital IT outsourcing. As the cost of structure and
pressure of global competition in the health care industry continue to increase, qualified
health care resource shortage in the United States becomes a significant issue to resolve.
Four particular segments in health care have the urgency to improve their innovation and
cost position are: (a) health care providers, (b) payers and governments, (c) life science
and pharmaceutical companies, and (d) medical device manufacturers (Cisco, 2014).

Health care providers such as hospitals have been seeking to outsource their IT hardware
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and software infrastructure to third party cloud service providers. Many even consider
outsourcing their routine and administrative tasks to vendors offering business process as
service.

Nevertheless, according to Presti (2013) and Bowman (2013), despite the key
cost, scalability, and reliability benefit of hiring cloud service providers, cloud computing
adoption in health care industry is still slower than expected. As highlighted in Chapter 1,
the main barriers are still system reliability, data backup, disaster recovery,
interoperability, privacy, and security compliance concern (Shimrat, 2009; Hirsch, 2012).
As hospitals must be able to operate 24 hours and 365 days per year, any outsourced IT
solutions must be agile enough to handle change requests from internal medical
operation, hospital management, and external regulation bodies effectively (Siegel,
1968). The general perception is that software reliability offered by cloud services
remains unsuitable for the requirements of hospitals, according to the software error rate
measured by other industrial software products. For instance, the prediction of 60,000
adverse events can happen based on existing software reliability statistics, which is
unacceptable in health care industry (Freudenheim, 2012). Since most cloud service
providers have legal clause in their contract to defer their responsibility and
accountability for incidents caused by program bugs, it makes hospitals more skeptical to
deploy a cloud-based solution such as the EMR (Freudenheim, 2012).

With the new HIPAA and ARRA requirements, hospitals and other health care
service providers now have to keep the patient records electronically and make them

accessible online by 2015. Otherwise, they will have to pay penalties (Good, 2013).
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Under the 2013 HIPAA revision, cloud service providers as business associates for any
health service providers must report any disclosure of patient data even it may not cause
significant financial risk to themselves or their customers (Smith, 2013). Addressing
some existing concerns of health care providers is helpful and facilitative of the need for
infrastructure outsourcing to cloud service providers. Based on the current estimation, the
cloud computing market will grow to $5.4 billion in 2017 due to this U.S. regulation
(Good, 2013). To further relieve the security and privacy concerns, hospitals and cloud
service providers with HIPAA certification have been active in resolving the data
ownership, integrity, confidentiality, and availability concerns, and in starting to provide
adequate audit measurement and data archiving strategy (Chen, Lu, & Jan, 2012). Many
cloud service providers also utilize external independent audit to enforce privacy and
security compliance in order to boost trust (Miliard, 2013).

The Optum Institute (2012) reported in its CIO survey, that 60% of the surveyed
hospitals, currently having EMR system and HIE, had planned to invest in a new cloud-
based environment. They anticipated cloud technology would be helpful in providing the
needed applications and additional infrastructure in the future. As long as hospitals and
the entire health care industry are progressing to adopt cloud computing, the development
of cloud-based software will grow. For instance, having an integrated cloud-based EMR
system that is assessable by all health care providers of a patient is helpful to each health
care practitioner in making accurate diagnosis to create an appropriate patient treatment
plan. The cloud technology involves low-cost, low-maintenance, and interconnected

environment (Chen et al., 2012). Applications for the EMR, drug prescription, clinical
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operations and administration, and physician order-entry systems will become more
popular (Shimrat, 2009).

Presti (2013) shared that health care institutions adopting cloud computing
platforms mostly demand a private cloud architecture first, instead of a multi-tenant
public cloud environment. This technological requirement is an adoption barrier
symptom since the full trust on cloud security is still lagging. According to Shimrat
(2009), more than 300 software manufacturers have been providing some forms of cloud-
based electronic health care system since 2009. Google and Microsoft invested heavily in
electronic health care systems under the brands as Google health and Microsoft
HealthVault, respectively. These two corporations are competing for the leadership role
to create an alliance with health care providers and IT solution builders. Nowadays, over
58% of health care CIOs started to realize the cloud benefits. They began to believe it
could significantly transform their business as well as improve service quality and cost
structure (Miliard, 2013). For cloud service providers to be a success to attract health care
customers, they must offer more HIPAA-compliant solutions. Specifically, hospitals can
then realize the following vital benefits:

e Improved security. Cloud service providers most likely have more security
experts, data encryption, authorization/authentication control, and backup/restore
service than most I'T departments in hospitals.

o Highly scalable infrastructure can correspond with the rapid increase of patient

data due to the data retention policy imposed by government regulation.
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o Improved data mobility. Once hospitals store their data in the cloud, physicians
can access the data remotely with the use of mobile devices, such as cell phones
and tablets.

o Lower cost for patients and hospitals. Patients can avoid duplicated laboratory and
radiology tests due to loss of their test records. At the same time, hospitals also
receive the benefit by not investing in new hardware, software, and their in-house
IT experts.

o Better data sharing. Patients can easily share their EMR with other health care
partners without much administration effort (Good, 2013).

The rapid development of cloud computing and Internet technology is facilitative
of enabling the business process outsourcing model for U.S. hospitals and other health
care providers. Hospitals can have a back office workforce provided by a BPO vendor
that has operational staff in other countries (e.g., India), at a low cost. Besides the
classical SaaS, PaaS, and IaaS benefits, this outsourcing model is supportive to hospitals
in managing the operational cost, avoiding staff training on new software, and enabling
hospital staff to focus on their core health care services (Steve, 2010). Overall, it can be
useful for improving the society by making the health care industry more efficient.
Scholars reported that 16% of the U.S. GDP was from the health care sector in 2009
(Fong & Chung, 2013).

Overview of Statistical Regression Methods
Traditionally, many quantitative correlation studies used factorial methods.

Nevertheless, as Balling (2008) and LaMorte (n.d.) described, MLR is a more efficient



84
statistical method than factorial analysis. They explained that the MLR could be a viable
tool for measuring the effect of multiple independent variables simultaneously without
the need to set all variables under control except the one under examination.

By definition, regression methods are statistical tools useful in predicting the
relationship between variables. Similar to other nonexperimental correlation analyses,
these statistical tools cannot ascertain any causal relationship (Flom, 2011). Many types
of regression analysis classification are according to relationship, number of predictor
variables, and outcome variable. The objective of MLR is to model the mean response of
the dependent variable as a function of a set of independent variables. Under linear
regression, researchers use a linear function to build a prediction model (Washington
State University, 2007; Yale University, 1998).

Types of regression methods. With a single linear regression, the researchers use
one independent variable (also called explanatory, predictor, covariate, or confounding
variable) to predict the dependent variable (also called outcome or criterion variable)
value and expect that their relationship is linear. Since the analysis using this method may
ignore other important correlated factors, the result regression Equation 1 as illustrated
below can have a significant omitted variable bias (LaMorte, n.d.; Sykes, n.d.).

Y=h +bhX+e (1)

Where Y is the dependent variable, X is the independent variable, by is the value
of Y when X is equal to zero, b is the coefficient of X to Y, and ¢ is the noise including

omitted variable bias value and random errors. Also described as residual, € is equivalent
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to the deviations of the observed values from the mean value of Y (LaMorte, n.d.). The
noise due to random variance includes the errors that are not controllable (Balling, 2008).

When X value is plotted against Y value on a two-dimensional graph, Equation 1
shows a straight line that carries the best estimated by and b1 based on the least sum of
square distance between the line and the plotted X—Y pairs. Corresponding to the
interception and scope of the equation line are b and b1 (Balling, 2008; Holmes, 2011;
Lane, n.d.; Sykes, n.d.). In other words, the equation result has the minimum sum of the
squared difference between the predicted and actual value points of the dependent
variable (Holmes, 2011).

Under the MLR, researchers use more than one predictor variables in the
regression analysis to calculate the outcome variable value and expect that their
relationships are linear (Griffin, 2013; Holmes, 2011; LaMorte, n.d.; Lane, n.d.). Multiple
regression is more appropriate than single regression as it reduces omitted variables bias
(Sykes, n.d.). The MLR in Equation 2 is quite similar to a single linear regression, except
that it has more independent variables Xi and corresponding coefficient factors. Each
coefficient represents the independent influence (or individual contribution) of associated
predictor variable X; to the value of the outcome variable ¥ (Holmes, 2011; LaMorte,
n.d.).

Y=bo+bXi+bXo+ ... +buate 2)

In general, the dependent variable Y and independent variable X; for single or
MLR require the continuous type of data values, such as interval and ratio (Flom, 2011).

In the case that the dependent variable Y has continuous data values but one or more
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independent variables have discrete data values, such as ordinal and nominal, the
researchers will need to transform those independent variables by using a dummy coding
method. This type of regression is called categorical regression, and those independent
discrete variables are also known as categorical variables (Griffin, 2013). Under the
circumstances that the dependent variable Y has discrete data values, researchers will
need to use logistics regression method (LaMorte, n.d.). The logistics regression method
includes three subtypes (binary, ordinal, and multinomial logistics regression practices)
depending on the data type of dependent variable (Flom, 2011).

Besides linear regression methods, nonlinear regression is another category of
regression that researchers can use to predict the response of the dependent variable,
based on the nonlinear relationships with a set of independent variables. The three
common types of nonlinear regressions are Cox proportional hazard regression, Poisson
regression, and negative binomial regression. When the outcome variable is time value of
a specific event, researchers should use Cox proportional hazard regression method.
Adversely if the outcome variable is the number of counts, researchers can use either
Poisson or negative binomial regression because in either case, only positive number can
be the outcome variable value, which follows a Poisson distribution curve (Griffin,
2013). Nevertheless, Poisson regression has more restricted assumption including the
relationship between conditional mean and variance. However, the assumption for
negative binomial regression is more relaxed. Furthermore, when many zero counts exist,
zero-inflated Poisson and zero-inflated negative binomial regression methods can have

better prediction (Flom, 2011).
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In my research paper, I had a set of six predictor variables to predict the hospital
IT managers’ intention to adopt cloud computing. I assumed their relationship with the
dependent variable (hospital IT managers’ intention) is linear, and I validated this
assumption during the research analysis. The data type of four of them (relative
advantage, complexity, compatibility, and organizational size) is interval, which I could
simply apply to my MLR model. Nevertheless, the other two predictor variables
(organizational structure and organizational culture) had the data type as nominal. That
means they are categorical variables. Therefore, I must first transform the survey
response data under these two categorical variables by using dummy coding method.
Since I am using SPSS for my statistical analysis, which provides the GLM capability to
create the best set of dummy variables automatically. By using GLM, I avoided to
performing the dummy coding manually. Therefore, I skip its detailed explanation in this
section.

Process to build a regression model. The two common processes to determine
the best-estimated set of independent variables are (a) standard and (b) forward-backward
stepwise approach. Under the standard approach, researchers use the literature review
approach to identify theoretical predictor variables. Apparently, under the forward-
backward stepwise approach, researchers utilize statistically significant tests to determine
whether an independent variable should be in or out of the regression equation (Holmes,
2011). Under the forward stepwise approach, by comparing the statistical R* value of the

original set of predictor variables with the R* after an additional variable added to the



88
equation, researchers can determine the effect of the latter variable, whether it should be
in the model.

To get a better evaluation of the prediction effectiveness of the regression model,
the adjusted R? can provide a better result, as researchers can take the sample size and
number of predictors into consideration (Holmes, 2011). Under the backward stepwise
approach, after completing the initial statistical analysis and determining the R?, the
researcher will exclude some independent variables from the regression equation and
rerun the statistical analysis. If the result of the second analysis has less prediction power,
it implies that the excluded variables are more significant to the model, and they should
stay in the model (Lane, n.d.). I must highlight one important aspect: For all statistical
tests to drive a significant conclusion, researchers must set the desired confidence level
first (Sykes, n.d.). Furthermore, as a general rule of thumb, the sample size should be
greater than ten times the number of independent variables (Holmes, 2011). The
regression model result should be unbiased, consistent, and efficient. In other words, the
mean of estimated outcome value should be close enough to represent the true value
(unbiased). The regression model should indicate an accurately estimated result at all
times (consistent). The estimated outcome value should have minimal variance (efficient)
with the observed outcome value (Sykes, n.d.).

Another essential step is to eliminate outliers to improve the normality of the
regression model. Otherwise, the coefficient estimation is not accurate. The most
common way to reduce outliers is by removing observed points with a value greater than

two standard deviations. However, this method has no guarantee to produce a better p
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value in the normality test. Courvoisier and Renaud (2010) recommended using robust
analysis that applies M estimation regression as according to Tukey's biweight method.
As aresult, the effect of the outlining observation will have less effect on the estimation
of the regression coefficients. The only disadvantage is that it has less statistical power
than the standard R* method.

Similar to statistical analyses, proper sample sizing setting is critical for
developing a valid and reliable regression model. Shieh (2013) argued that the classical
sample size calculation method by Bonet and Wright for MLR is inaccurate. Since the
statistical distribution curve of R* is always skewed, researchers should calculate the
sample size based on the required confidence intervals, magnitude of squared multiple
correlation coefficients, and the number of independent variables, instead of by
confidence intervals as stated in Bonet and Wright’s sample sizing method.

Basic assumptions for MLR. Similar to other statistical methods, the MLR has
assumptions that researchers have to be aware of and examine as to ensure that their
created model has the required construct validity and reliability. The basic four principal
assumptions that a valid MLR should include independence, linearity, normality, and
homoscedasticity:

e Independence means each predictor variable is independent with other predictor
variables (Sykes, n.d.). As a consequence of having highly correlated independent
variables, the outcome changes explainable by the individual independent variable
are relatively small in compared with the overall variance for all independent

variables explained together (Lane, n.d.). It affects the degree of significant
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measurement for each independent variable. Furthermore, each observed sample

object must be independent and not interference with the others (Holmes, 2011;

Sykes, n.d.).

e Linearity means the relationships between the independent variables and

dependent variable are linear (Lane, n.d.; Holmes, 2011).

e Normality means the variation (also called noise, errors, or residuals) of the
outcome variable changes should follow a standard normal distribution (LaMorte,

n.d.; Lane, n.d.).

e Homoscedasticity means the variances of errors are the same no matter of their

predicted outcome values (Holmes, 2011; Lane, n.d.).

Validation tests for MLR. To ensure that the MLR assumptions are valid,
researchers must conduct multiple statistical tests for confirmation. As explained, if the
predictor variables are highly correlated, it implies difficulty to detect which variable is
generating the effect with the independent variables. This situation is called collinearity.
To diagnosis this problem, researchers can use multiple statistical tests, such as variance
inflation factors, condition number, determinant, and k& value (Balling, 2008; Pina-
Monarrez, 2011). As recommended by Balling (2008), when the k£ value is higher than
30, the collinearity of a regression model is high. Nevertheless, these tests cannot
distinguish the severity of collinearity under different correlation structures. Therefore,
the R* scheme to determine the regression equation is not accurate when collinearity is
present. One common way to solve the collinearity issue is to take two highly correlated

variables and construct them under a different simple linear regression model. Once
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researchers determine the coefficient between those two variables, they can simplify the
original regression equation by substituting one correlated variable by another one
(Balling, 2008). Alternatively, Pina-Monarrez (2011) suggested using Ridge regression
method to overcome the collinearity situation by calculating the correlational effect
among the predictor variables. This approach requires less number of statistical analysis
iterations.

For the linearity test, the simplest method is to create multiple scatter plots with
each to detect the relationship between the outcome variable and a particular predictor
variable in the regression model. Under each graph, the Y axis and X axis represent the
observed outcome values and the corresponding input values for the predictor variable
under examination. Researchers can detect the linearity visually (Griffin, 2013).

As described in the section on using R* for determining whether a predictor
variable should be included or excluded as part of the stepwise regression model building
approach, R? is an essential statistical value to measure how many variations of the
outcome variable was due to the changes of predictor variables as a whole. R? is simply
the square of the correlation coefficient (R), that is the mathematical evaluation of how
close is the regression line fit into the sampled Xi~Y pairs (Judge, 2014). A high R?
indicates the regression model has sufficient statistical power to predict the outcome
value (Sykes, n.d.). By examining R? in F test, researchers can determine the percentage
of variation in the outcome variable attributed by the variation of the regression model

(i.e., the combined variation effect of all predictor variables). Researchers normally set
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the null hypothesis to be the combined variance effect of the independent variables on the
dependent variable equal to zero, that is R? is zero (Holmes, 2011).

Besides validating the significance of the entire regression model, researchers use
¢ test on the coefficient factors—b; of each predictor variable—to determine their
individual contribution to the variation of the outcome variable. The null hypotheses are
set to state that the variation effect of a particular predictor variable on the dependent
variable is equal to zero (Holmes, 2011).

Recent quantitative researches on applying MLR. Even though many scholars
have applied the MLR in their quantitative research studies, I can only find a few that
relates to HIS technology or cloud computing adoption. I picked a few of those that could
represent the good use of the MLR, or provide research contribution to apply MLR
method for predictive model creation.

Arieshanti, Purwananto, Ramadhani, Nuha, and Ulinnuha (2013) compared
theories and methodologies to build a reliable predictive model to provide a leading
indicator for corporation bankruptcy. They illustrated the use of MLR together with a
multiple layer perception (MLP) method to create a bankruptcy predictive model with
financial indices as predictors. As the result, the model generated the second best
prediction and identified 74.5% of corporate bankruptcy in their research test.

Ilgan (2013) demonstrated a classical use of MLR in his research. He developed a
MLR model to predict the final examination result for college students basd on gender,
study time, perceived importance of a school course, student attitudes on the course, and

teachers. An important aspect of this paper is that Ilgan illustrated on how to use other



93
statistical analysis methods to supplement the standard approach for creating a multiple
linear model. He used (a) exploratory factor analysis to discover underlying structure and
develop a scale, which is a set of questions for quantitative research measure, (b)
principal component analysis to identify the essential independent variables, and (c)
confirmatory factor analysis to confirm the significance of selected factors. According to
Ilgan’s research result, his MLR model could predict 33% of the outcome variance.

Thaweewannakij et al. (2013) conducted a research study for the critical factors
that affect Thai senior citizens’ functional ability. The predictor variables included
weight, height, age, and sex while the measurements of the outcome variable came from
several different physical tests. The key difference of their MLR research among others is
the use of post hoc analysis to discover patterns from the data pairs. Most scholars argued
that this is not an effective method and creates data dredging (Deng, 2009).

Pathak (2012) applied the MLR to predict the groundwater quality based on
dissolved oxygen level as an outcome variable with a set of physicochemical substances
in the water as predictors. The scholar used forward stepwise approach and R to find the
suitable regression equation. As the result, Pathak identified SO4, HCO3, CI and Mg as
critical predictor variables that could affect the ground water quality (i.e., DO level).

Cerruti and Decker (2011) built a predictive model for estimating the degree of
utility equipment damage (including poles, transformers, primary wires, etc.) caused by
adverse weather. The predictor variables included maximum window gust, maximum
temperature, liquid—water—equivalent precipitation (LWE), 10-day accumulated LWE, 3-

day maximum temperature sum, severe weather report count per region, and other storm
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factors. Since the data type of the dependent variable is countable, the researchers did
logarithmic transformation so that the MLR can be applicable. The researchers also used
the perfect prognosis method to create the MLR equation. Their research result seems
provide better adaptability for a future model upgrade. To eliminate irrelevant predictors,
the researchers applied the backward stepwise approach.

In another study, Kabaasaki and Totan (2011) investigated the relationship
between elementary school students' mental issues and social-emotional training
needs. The studied mental issues included substance abuse, depression, anxiety, violence,
and aggressiveness; and social-emotional training needs included self-awareness,
emotional control, arrangement skills, and social relationships with others. Firstly, the
data went through Pearson product moment correlation coefficient calculation to
determine the correlation among the independent variables and dependent variable as part
of the collinearity test. The researchers then used multivariate Mahalanobis distance
method to identify and eliminate outlier observation points. To ensure linearity, the
researchers reviewed the scatter plots for confirmation. As the result of the MLR
analysis, the researchers determined that depression, anxiety, negative self-concept,
somatization, and hostility have negative significant relationships with the social and
emotional training needs.

Shepherd and Yu (2011) researched on an approach to estimate data error rate that
can affect the accuracy of the MLR model, and developed a corrective procedure. As the
result, the researchers recommended conducting two rounds of data accuracy audit with

the sample size of the second audit based on the mean squared error calculation of the
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MLR. By applying this data audit and cleanup approach, the MLR model can become
more precise with a better estimation of the data error for the researchers to deploy the
right amount of effort to correct the data mistakes, as according to the desired confidence
level.

Stan (2011), in his research, created a MLR model to predict the economic rate of
return based on tangible and intangible assets as predictor variables. In the past, the rate
of return calculation only included tangible assets (e.g., cash, physical assets, shareholder
equity, etc.) because they are easy to measure. Due to the rapid change in today’s global
economic model, some intangible assets (e.g., employee skillset, corporate knowledge,
corporate image, brand, etc.) are critical for a company’s future return. The research
result showed that the new MLR model could explain 63.9% of research observations.
Stan used variance inflation factors and adjusted R? to test collinearity and validate the
model significance respectively.

Noh, Kwon, Yoon, and Hwang (2011) conducted a medical field research on 89
Korean hospitals to determine the internal and external factors that affect hospital-based
home nursing care. The internal factors included managerial resources, core hospital
capability, organization structure, and culture. The external factors consisted of market
and community aspects. The researchers used cross-sectional survey and forward
stepwise approach of MLR to create the predictive model. To determine any collinearity,
the researchers deployed the independent variable tolerance and variance inflation factors
to examine the independent variables. As the result, the researchers showed that

managerial resource factors (except hospital cash flow), service development, unified
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HIS, and nurse passion had significant effects on home nursing care. Since this research
relates to new service adoption for hospitals, some of the identified predictive factors
may be indirectly relevant to my research on hospital cloud computing adoption.

Coté, J. Gagnon, Houme, Abdeljelil, and Gagnon (2011) conducted another
medical field research to predict the intention of nurses to apply research evidence in
their clinical decision making. This study was an adoption theory research with the goal
of identifying the critical adoption factors by using MLR. The study was similar to my
research in terms of predicting the hospital IT managers’ intention on cloud computing
adoption with the six technological and organizational factors. In my research, I used
DOI and TOC as my theoretical framework. However, Cot¢ et al. applied TPB and used
subjective norm, perceived behavioral control, and attitudes as their MLR foundational
predictor variables, and added moral norm, pass behavior, gender, and education level as
extended predictor variables. To confirm the validity of their survey questionnaire, they
instrumented a panel of four experts to review. They used traditional validation tests and
approach to develop their MLR models.

Coté et al. (2011) included Pearson correlation coefficient calculation to
determine the relationships among independent and dependent variables, and stepwise
approach to identify individual contribution of each independent variable in predicting
the outcome and the criteria for inclusion or exclusion. According to Coté et al., moral
norm, perceived behavioral control, normative beliefs, and past behavior were significant
predictor variables for the intention of nurses to use the research findings for clinical

decision making. Moral norm and perceived behavioral control factors related to about
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70% of the outcome variance. Nevertheless, the generalization of the research was
limited because it showed all collected samples from one hospital.
Summary and Conclusions

In this chapter, I reviewed four major themes: (a) comparison of different
technology adoption theories; (b) overview of the latest cloud computing technologies;
(c) recent development and adoption of HIS; and (d) review of various regression
methods to create predictive models. From the literature review, I identified that the
combination of DOI and TOE adoption theories was the most appropriate theoretical
foundation for my research. The combination of these theories contained the required
technological and organizational factors to construct a predictive model to forecast the
hospital IT managers’ intention of cloud computing adoption.

Beyond reviewing the latest cloud computing technologies, I analyzed the current
benefits and barriers for its adoption. From the recent development and adoption of HIS, I
realized the current preferences and challenges for hospitals to adopt new technologies.
The above literature review provided the confirmation on my predictor variables
selection. Under the final theme of reviewing regression methods, I confirmed that MLR
was a suitable method and provided guidance for a detailed procedure to build and
validate an effective predictive model. As the conclusion of my literature review, limited
researchers had done studies on cloud computing adoption; so far, all of them applied
correlational analysis, and none of them considered including organizational structure
and culture as critical factors. Furthermore, I did not find a study showing the application

of MLR to create cloud computing adoption predictive model for U.S. hospitals. In
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Chapter 3, I provide a detailed explanation of the research method and design, including
the sample group selection, sizing, data collection, data analysis, and required validation

tests.
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Chapter 3: Research Methods

In this explanatory quantitative study, I utilized a cross-sectional survey design to
gather the data needed to examine the relationship between the intent of IT managers in
U.S. hospitals to adopt cloud computing (the dependent variable) as the function of six
identified critical technological and organizational factors (the independent variables).
The basis for the theoretical framework of this study was the two innovation adoption
theories: DOI and TOE. The relationship between the independent and dependent
variables was a predictive model based on MLR. This predictive model could be useful in
assisting (a) hospital IT management to develop their cloud computing implementation
strategy and (b) cloud service vendors to enhance their products and services. The
research question was: Does regression allow us to predict the cloud computing adoption
intent of U.S. hospital IT managers (Y) as a function of the six influential adoption
factors, including relative advantage (X1), compatibility (X2), and complexity belief of
cloud computing (X3), organizational size(X4), organizational structure (Xs), and
organizational culture (Xs) in the United States?

Corresponding to the RQ, the regression-related null and alternative hypotheses
were set as follows:

HO1: X1 = relative advantage is not a significant predictor of Y = intent to adopt;
mathematically, 51=0 in the resulting regression model.

H1:: X1 = relative advantage is a significant predictor of ¥ = intent to adopt;

mathematically, b1 != 0 in the resulting regression model.
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HO0,: X>= compatibility is not a significant predictor of ¥ = intent to adopt;
mathematically, b> = 0 in the resulting regression model.

H12: X>= compatibility is a significant predictor of Y = intent to adopt;
mathematically, > != 0 in the resulting regression model.

HO0s: X5 = complexity belief is not a significant predictor of Y = intent to adopt;
mathematically, b3 = 0 in the resulting regression model.

H13: X5 = complexity belief is a significant predictor of ¥ = intent to adopt;
mathematically, b3 != 0 in the resulting regression model.

HO04: X4= organizational size is not a significant predictor of ¥ = intent to adopt;
mathematically, b4=0 in the resulting regression model.

H14: X4= organizational size is a significant predictor of ¥ = intent to adopt;
mathematically, b4 != 0 in the resulting regression model.

HOs: X5 = organizational structure is not a significant predictor of ¥ = intent to
adopt; mathematically, b5 = 0 in the resulting regression model.

H1s: X5= organizational structure is a significant predictor of Y = intent to adopt;
mathematically, b5 != 0 in the resulting regression model.

HO¢: Xs= organizational culture is not a significant predictor of Y=intent to adopt;
mathematically, bs= 0 in the resulting regression model.

Hl¢: Xs= organizational culture is a significant predictor of Y = intent to adopt;
mathematically, b5 != 0 in the resulting regression model.

HO7: The linear model Y = bo + b1X1 + ... + bsXs has no significant fit;

mathematically, R(Y | Xi...Xs) = 0.
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H17: The linear model Y = bo + b1.X1 + ... + bsX;s has a significant fit;
mathematically, R(Y | Xi...Xs) !=0.

This chapter has five main sections. Under the research design and rationale
section, I explained the study variables and the research design choice as associated with
the research question. Under the methodology section, I described the population, sample
size, sampling method, participant recruitment procedure, data collection process, survey
instruments, and operationalization of constructs. Then followed by the threats of validity
section, in which I discussed the potential threats to internal, construct, and external
validity; the chosen statistical tests to discover these threats; and the procedures to
minimize their effect on the research result. Under the ethical procedure section, I
illustrated the process I followed to (a) get data access agreement; (b) maintain the data
privacy and confidentiality for participants; and (c) collect data protection. Finally, I
concluded this chapter with a summary section.

Research Design and Rationale
Study Variables

Statistical data have three types: numerical, categorical, and ordinal. Numerical
data are measurable and can further be distinguishable as discrete and continuous.
Discrete data are countable as integers while continuous data are representable as
intervals with real numbers. Categorical data mean the classification of certain
characteristics, such as gender and marital status. Scholars can even represent them

through integer values, as they do not have any mathematical meaning. Ordinal data are



102
mixes of numerical and categorical data. They represent a set of categories and indicate
the meaning of numerical order by their values (Rumsey, 2011).

According to the definition of Singleton and Straits (2005), dependent variable is
the object of study that researchers want to explain its outcomes as the change in the
value of the corresponding independent variables. My study included one dependent
variable and six independent variables, also known as predictor variables. The objective
of my study was to predict the correlated responses behind the hospital IT managers’
intention to adopt cloud computing (dependent variable Y) as according to the changes in
three technological and three organizational factors (independent variables X1 to Xs). The
predictors were relative advantage (X1), complexity (X2), compatibility (X3),
organizational size (Xs), organizational structure (Xs), and organizational culture (Xs).
Four independent variables (X1 to X4) were composite in nature and assessed by summing
a subset of related questions. Two of these variables were categorical in nature (X5 and
Xs). Following are the definition of the six independent variables and their corresponding
subset of survey items.

Technological predictors.

e Relative advantage (X1) represents the perceived business and financial
value (positive or negative) of cloud computing technology in compared
with other existing technologies in used (Rogers, 2003). Six survey items
included financial benefit (reduction in capital investment, a potential

increase in profitability, and operational cost saving), new service
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opportunities, and existing service improvement in terms of service
satisfaction and availability.

Complexity (X2) as Rogers (2003) stated, is the factor that has a negative
effect on innovation adoption. The higher perceived complexity triggers a
lower adoption rate. Similar to the technology acceptance model (TAM)
of Davis (1986), ease of use is a typical way to measure complexity. Five
survey items for ease of use measurement were cumbersome to use,
required mental effort, user frustration, intuitive to use, and ease of
purchase and startup.

Compatibility (X3) can be subjective or objective measurement from
decision makers to determine whether cloud computing matches with their
social value, faith, knowledge and perceived needs (Rogers, 2003). This
study included four survey items: business strategy alignment, adaptability
with existing IT infrastructure, cloud technology favorability, and

consistency with hospitals’ faith and value system.

Organizational predictors.

Organizational size (X4) is one of the several factors, which most scholars
apparently ignored as a critical factor for cloud computing adoption. As
the size of an organization can affect its financial position, marketing, and
business strategies, it may set some default preference to accept or reject
cloud computing services. In this study, [ used a common measurement

for the hospital size, which was the number of staffed patient beds. The
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survey included a question asking survey participants to provide this
information.

Organizational structure (Xs) can typically be categorized as functional,
divisional and matrix structure (White, n.d.). Functional and divisional
organizations usually use a top-down decision model (Gillikin, 2013;
Johnson, 2013) while matrix organizations use consensus decision model
(Guzman, 2013). As it is one of the most important factors to consider the
organization’s characteristics and nature, the survey included one survey
question asking survey participants to identify the most appropriate
organizational structure associated with their hospitals.

Organizational culture (Xs), in general, includes perceived value,
subjective norm, communicating style, and belief systems. It seems no
consistent way existed to measure an organization’s culture; thus, this
research used one of the general organizational culture theories that
Cameron et al. (2003) developed. It classified four types of organizational
culture (clan, adhocracy, hierarchy, and market) based on two conflicting
dimensions of organization value, that was, flexibility versus stability and
internal maintenance versus external positioning, according to Cameron et
al. By intersecting these two dimensions, organizational cultures can be
classified as clan (i.e., focus on flexibility and internal capability),
adhocracy (i.e., focus on flexibility and external positioning), hierarchy

(i.e., focus on stability and internal capability), and market (i.e., focus on
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stability and external positioning). The survey included a question asking
survey participants to classify their hospital’s organizational culture based
on the definition of organizational culture.

Design to Address Research Questions

I used a cross-sectional survey research design approach to achieve the research
objective of confirming the preselected critical factors that influenced the IT managers’
intention to adopt cloud computing, and to create a corresponding MLR model to predict
the future cloud adoption. As my research goal was explanatory instead of exploratory, it
suited for quantitative instead of qualitative research (Amora, 2010). As an explanatory
research, my study included answers to my correlational hypotheses using the dependent
and independent variables. In addition, a cross-sectional instead of the longitudinal
design suited for studying changes over time is appropriate (Singleton & Staits, 2005).
Based on my literature review, this research could be the first baseline study to determine
the critical factors for cloud computing adoption in U.S. hospital environments. In the
future, other scholars could reuse the survey instrument and composite variables in their
longitudinal research if they are interested to study the shift of critical factors due to the
technological and social environment changes over time.

As highlighted in Chapter 1, my primary research question was whether the six
independent variables retrieved from the DOI and TOE methodologies could be useful
for predicting the criterion variable (i.e., the intention of hospital IT managers to adopt
cloud computing services). By theory, to determine any causal relationship, the best

research design should be randomized experimental design (Trochim, 2001).
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Nevertheless, such design was not possible in my study to preset and control the research
condition in U.S. hospitals. Therefore, the appropriate and cost effective research design
for my study was nonexperimental. To detect causal linkage among the six influential
innovation factors and the cloud adoption intent for U.S. hospital IT managers, I had to
rely on statistical regression modeling approach.

Among the regression models, MLR is a statistical method for estimating the
linear relationship between a dependent variable and a set of independent variables (two
or more) with prediction and explanation as purpose (Holmes, 2011). Researchers use
MLR when the dependent variable is continuous, and the expected relationship is linear.
The goal is to predict the value of the dependent variable as a function of one or more
predictor variables (Griffin, 2013). In a MLR design, examining multiple variable effects
simultaneously is feasible, without the need to control other independent variables except
the one under examination as in factorial analysis (Balling, 2008). MLR shows extreme
efficiency in measuring the effect of multiple independent variables and in eliminating
the strict control between groups of experimental items (LaMorte, n.d.), which it is not
possible in the U.S. hospital environment as explained earlier.

Time and Resource Constraints

I had limited time and resource for my dissertation research. With the
consideration of allocating one year to complete my dissertation, I did not plan to conduct
a pilot qualitative research first to review the insight of cloud computing adoption
phenomenon. I could only count on my theoretical and literature review to determine the

list of potential critical factors and hypotheses influential to the cloud adoption for U.S.
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hospitals. To provide an in-depth understanding of the cloud adoption under the health
care industry, I limited my research to U.S. hospitals. Therefore, my analysis and
conclusion had limited generalization applicable to other countries. Further validity tests
may come from other scholars to confirm the similarity and difference between hospitals
in the United States and other countries.

Due to the expected busy work life of most U.S. hospital managers, I considered
their limited time to answer any survey questionnaire. For this reason, I had to make my
survey questionnaire simple and only included questions for the seven study variables
based on a validated survey questionnaire. I excluded the environmental factors to reduce
my research effort.

Methodology
Population

The target population of my research was IT managers of qualified hospitals in
the 48 continental U.S. states with key levels of IT decision makers, including CIOs, IT
directors, and IT departmental managers. Their roles include decision-making authority
for determining the adoption of new technologies. My study excluded hospitals in
Alaska, Hawaii, and all other offshore territories and possessions of the United States. To
qualify in my research, hospitals needed to have 50 or more staffed beds. The reason was
to be sure IT is relevant to their operation. According to the 2012 AHA survey, the
United States has 5,723 registered hospitals, which include 4,999 community hospitals,
211 federal government hospitals, 413 nonfederal psychiatric hospitals, 89 nonfederal

long-term care hospitals, and 11 hospital units of institutions (AHA, 2014). 4,000
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hospitals have registered IT manager contact information in the company’s customer
contact database, 3,915 reside in the 48 continental U.S. states, and 2,866 fulfill the
qualification criteria. Table 5 shows the geographical distribution of these hospitals

within the 48 continental U.S. states.



Table 5

Number of Registered and Qualified Hospitals per State

U.S. state Number of Number of qualified
hospitals hospitals
AL - Alabama 93 68
AR - Arkansas 50 39
AZ - Arizona 73 48
CA - California 348 284
CO - Colorado 53 36
CT - Connecticut 34 31
DC - Washington D.C. 8 7
DE - Delaware 8 6
FL - Florida 212 167
GA - Georgia 116 95
IA - Towa 40 29
ID - Idaho 17 10
IL - Illinois 140 124
IN - Indiana 98 71
KS - Kansas 60 35
KY - Kentucky 76 60
LA - Louisiana 113 66
MA - Massachusetts 80 57
MD - Maryland 50 41
ME - Maine 22 15
MI - Michigan 106 85
MN - Minnesota 56 45
MO - Missouri 88 65
MS - Mississippi 72 48
MT - Montana 15 10
NC - North Carolina 105 82
ND - North Dakota 10 6
NE - Nebraska 29 18
NH - New Hampshire 14 13
NJ - New Jersey 73 64
NM - New Mexico 37 19

(table continues)
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U.S. state Number of Number of qualified
hospitals hospitals
NV - Nevada 28 21
NY - New York 202 168
OH - Ohio 152 114
OK - Oklahoma 102 48
OR - Oregon 36 26
PA - Pennsylvania 176 139
RI - Rhode Island 12 11
SC - South Carolina 66 47
SD - South Dakota 28 10
TN - Tennessee 116 83
TX - Texas 379 214
UT - Utah 35 19
VA - Virginia 90 76
VT - Vermont 7 5
WA - Washington 64 43
WI - Wisconsin 76 59
WV - West Virginia 37 30
WY - Wyoming 13 9
Total 3,915 2,866

Sampling and Sampling Procedures

As I had no direct access to the IT manager contacts via AHA, I had to use
another contact access point for my research sampling. My original sampling frame was
the customer contact database of a software manufacturer that sold products to most of all
U.S. hospitals. My study population included the IT manager of qualified hospitals in the
48 continental U.S. states, who had contact information available in my sampling frame. |
excluded hospitals in Alaska, Hawaii, and all other offshore territories and possessions of
the United States, and as a qualification criterion, hospitals needed to have 50 or more

staffed beds.
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Sampling methods has two main types: purposive (nonrandom) and random. The
nonrandom sampling has a serious limitation on generalization, and its statistical
inferences are difficult to estimate (Banerjee & Chaudhury, 2010). To demonstrate
sufficient statistical generalization power for my research results, I decided to use a
proportional stratified random sampling method for selecting survey participants (IT
managers), who work for hospitals in one of the four regions of the 48 continental U.S.
states (west, midwest, northeast, and south). [ used the U.S. census region to state

classification as published by U.S. Census Bureau (2014) as illustrated in Figure 8.
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Figure 8. U.S. regions to states map. The United States includes five regions—west,
midwest, northeast, south, and pacific. The west, midwest, northeast, and south regions
consist of the 48 continental states and Washington D.C. of the United States. The pacific
region includes Alaska, American Samoa, Guan, Hawaii, Northern Mariana Islands,
Puerto Rico, and Virgin Islands, which I excluded in my research. Adopted from Census
regions and divisions of the United States, by U.S. Census Bureau (2014). Retrieved from
https://www.census.gov/geo/maps-data/maps/pdfs/ reference/us regdiv.pdf.

One of the advantages of stratified random sampling above simple random
sampling is that it is facilitative to ensure sufficient selected sample subjects from each
region. Stratified random sampling has higher statistical precision based on the
assumption that within the regional variability is less than simple random sampling
(Crossman, 2014a). These two stratified sampling advantages were important for this

research because hospitals in different regions most likely had social beliefs and
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environmental differences. This phenomenon might reduce the predictability of the
regression model due to less homogeneity among subjects if selected by a simple random
sampling. By using this sampling strategy, the generalization power of this research
would be higher, having the opportunities to do further statistical analysis and
comparison within and among regions.

As the basic statistical principle, when the sample size increases, the standard
errors will decrease, and the confidence interval will be narrow. It denotes a higher
statistical power (Field, 2013). Nevertheless, having a large sample may not be feasible
considering financial and time limitations. Therefore, to determine the proper sample size
for my study, so that the corresponding statistical tests can have results with statistically
significant confidence, first, | must make several research design decisions. They
included the values for acceptable Type 1 error (o), required statistical power, (i.e., 1),
Type 2 error (B), and expected effect size.

Type 1 error is the probability to reject the null hypothesis while it is true. Type 2
error is the probability of not rejecting the null hypothesis while it is false. These two
errors are negatively related. It means that when ones try to reduce Type 1 error, Type 2
error will increase (Taylor, 2014). Setting the levels for Type 1 and 2 errors is a balanced
act, but normally reducing Type 1 error is more important than Type 2 error, and it
should be set to a low value. Such as .05, it implies 95% confidence that the rejection of
the null hypothesis is correct. As Field (2013) described, maximum Type 2 error should
be .2, that is, 80% chance that the acceptance of the null hypothesis is correct, based on

the recommendation of Cohen (1992). In this research, I set .05 as the value of Type 1



114
error to provide high confidence in the statistical result, which gauged the confidence
level to 95%.

Effect size for a MLR model represents the magnitude of variance of the
dependent variables is relevant to the variance of the independent variables, and
coefficient of determination, R> is commonly useful for measuring the effect size for
regression model. Based on Fual, Erdfelder, Buchner, and Lang’s (2009) explanation, the
effect size for GLM is measurable with the population correlation coefficient of the
alternative hypothesis, H1 p°. To determine its appropriate value, the estimated total
sample size (110), number of predictors (11), observed R*(.3), confidence level (1 —a =1
—.5=.95), and relative central interval position (.5) must be supplied to the G*Power
screen as illustrated in Figure 8. The reason to set R> as .3 was to ensure the effect size
would be large enough. As a general guideline, which Nandy (2012) and Field (2013)
provided, R> must be larger than .14 and .26, respectively if a large effect size is expected.

As described in the previous section, this research study had four continuous
(relative advantage, complexity, compatibility, and organizational size) and two
categorical (organizational structure and organizational culture) predictor variables. To
calculate the total number of predictors, the number of required dummy variables must be
determined and then added to the number of continuous predictor variables. For the
categorical variable — organizational structure, it consisted of four categories — functional,
divisional, matrix, and others, requiring three dummy variables (i.e., 4 — 1). For the

categorical variable—organizational culture with five categories—clan, adhocracy,



115
hierarchy, market, and others, requiring four dummy variables (i.e., 5 — 1). Therefore, the

total number of predictors was 11 (i.e., 4 + 3 + 4).

@ From confidence interval

Total sample size 110

Number of predictors 11

Observed R? 0.3
Confidence level (1-ot) 0.95
Rel C.l. pos to use (0=left,1=right) 05

C.l. lower p? 0.054036
C.| upper p2  0.3819004
Statistical lower bound 0. 104675

Statistical upper bound  0.3569757

From predictor correlations

Specify matrices

Hlp  0.2329682

[ Calculate and transfer to main window ]

Close

Figure 9. G*Power H1 p? determination. It is determined by estimated total sample size,
number of predictors, observed R?, confidence level, and relative central interval position
as input parameters.

To avoid complex manual calculation, I used G*Power 3.1 utility to determine the
sample size. G*Power is a commonly used sample size calculator and is available for a
free download from the website <http://www.gpower.hhu.de/>. The input parameters for

the G*Power sample size calculation were:
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e Selected MLR—random as the statistical test. G*Power supports MLR with
predictors having random or fixed value. As my research was
nonexperimental, and the values of predictors were sampled from the study
population, I should select the random MLR option (Fual et al., 2009):

e Selected the type of power analysis as prior to estimating the sample size
before conducting the research study instead of post hoc analysis to confirm
the statistical power.

e Selected the statistical tests as two tails.

e Inputted H1 p? as .2329682 based on the calculation as illustrated in Figure 8.

e Set HO p? as zero.

e Set Type I error as .05.

e Set statistical power as .95.

Inputted the number of predictors as 11.

As the result, the minimum sample size for this study was approximately 110.
Based on the proportional stratified sampling method, the minimum number of
observations for each of the four regions was equal to the total sample size (i.e., 110)

multiplied by its percentage of the total population size (Stat Trek, 2014).
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Figure 10. G¥*Power parameter screen. It shows the input and output parameters for

sample size calculation.
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Figure 11. XY graph of sample size and statistical power. It shows the effect of sample
size change on statistical power.

Procedures for Recruitment, Participation, and Data Collection

As mentioned, the planned sampling frame was the customer contact database of
a software manufacturer serving most of the U.S. hospitals. I planned to extract the list of
IT contacts for the U.S. hospitals from this customer contact database. Initially, I kept
their contact name, position, e-mail address, phone number, and main office address in a
Microsoft Excel spreadsheet. Then I added two additional columns: the first one as
unique case identifier based on a randomly assigned number, and the second one as

indicator of the corresponding U.S. regional value (1 = West, 2 = Midwest, 3 =
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Northwest, and 4 = South). I assigned the U.S. regional value to each U.S. hospital in the
list based on their state. Table 6 shows the U.S. state to region assignment. Then I sorted
the edited Excel table ascendingly by the U.S. region and identifier column.
Table 6

U.S. State to U.S. Region Assignment Cross Reference

Region State Region State Region State

West Arizona South Alabama Northeast ~ Connecticut
West California South Arkansas Northeast ~ Massachusetts
West Colorado South Washington D.C.  Northeast Maine

West Idaho South Delaware Northeast ~New Hampshire
West Montana South Florida Northeast ~ New Jersey
West New Mexico South Georgia Northeast New York
West Nevada South Kentucky Northeast  Pennsylvania
West Oregon South Louisiana Northeast ~ Rhode Island
West Utah South Maryland Northeast ~ Vermont
West Washington South Mississippi

West Wyoming South North Carolina

Midwest Iowa South Oklahoma

Midwest linois South South Carolina

Midwest Indiana South Tennessee

Midwest Kansas South Texas

Midwest Michigan South Virginia

Midwest Minnesota South West Virginia

Midwest Missouri (table continues)
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Region State Region State Region State
(table North Dakota

continues)

Midwest Nebraska

Midwest Ohio

Midwest South Dakota

Midwest Wisconsin

According to Hamilton’s (2009) research, 50% of online surveys received about
26% of response rate. However, the degree of variation was high and became difficult to
predict. In my research, I planned to apply this 26% response rate as my guideline to
decide the required number of random invitation emails. I sent those emails to the listed
hospital IT manager contacts for my online survey under each U.S. region, based on the
calculated illustrated in Table 7. The invitation email clearly indicated:

e the objective of my research,

e encouragement for the survey participant,

e the incentive of receiving a full anonymous research report after completing

the survey,
e the qualification for the survey participant,
e my contact for survey questions and issues, and

e the link to the online survey site.
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Table 7

Minimum Sample Size and Required Survey Invitation Calculation

Region Number of Percentage of total Minimum Number of required
qualified population (P, =N,  sample size (ny, invitations for online survey
hospitals (N;) /N x 100) =110 x Pp)* (In=nn/26%)**

Midwest 661 23.06% 26 98

Northeast 503 17.55% 20 75

South 1177 41.07% 46 174

West 525 18.32% 21 78

Total 2866 =N 425

Note. * 110 was the total sample size, ** 26% was the expected response rate. The calculated ny, and Iy
values shown were rounded up.

The mechanic to generate the required random hospital survey invitations
involved the number of contacts available for each region. Assuming for each region had
N contacts in the prepared Excel list and 7, was the required invitations, I selected every
k™ row in the sorted contact table within a given region, with the first one randomly
selected first (k= Nu / In). The selection was a standard procedure for creating
proportional random systematic sampling for each stratum.

Due to the anticipated busy schedule of hospital IT managers and the potential
email reroute lead time to the appropriate hospital IT managers, a six weeks survey-
taking window was included to ensure maximum return of responses. By the mid of each
two weeks, emails were sent to the potential survey participants as a friendly reminder to
complete an online survey. Once the survey open window expired, I transferred the
collected survey data from the online survey website database into a secured laptop. The
collected survey data itself did not capture any personal and hospital profile information

in order to ensure full anonymity of participants.
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Pilot Study

Despite the majority content of my research instrument was from Dr. Tweel’s
(2012) validated instrument, confirming appropriateness of my modification was still
important. As part of the instrument construct validation and feasibility study, I
conducted a small-scale pilot study to check the appropriateness of the survey items with
the research question, the ease of understanding for all survey questions, and the logistics
of the survey procedure (Teijlingen & Hundley, 2001). The participants of the pilot run
included a group of five to ten subject matter expert (SME). They all had rich work
experience on health care IT and understood the needs and concerns of the health care
industry to adopt new technology. Besides answering the online survey questionnaire, |
planned to have a 15- to 30-minute phone interview with each SME in this pilot group.
The goal was to confirm the clarity of the questions, the average time to complete the
survey questionnaire, and understand any hygiene factor that could be an obstruction to
the participant to provide answers. As an important note, the initial result received from
this pilot group was separate and did not merge with the actual final stage sampling and
analysis. Essentially, I did not include the participants or use the data from the pilot study
in the final study.
Instrumentation and Operationalization of Constructs

Research instrument. I used a validated research instrument, which Dr. Tweel
(2012) developed, to study IT managers’ cloud computing adoption for various U.S.
industries. This instrument applied to the target and study population of 30,000 and 4,000

U.S. IT managers, respectively, with the sampling frame based on the contact information
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that Applied Computer Research maintained. In Dr. Tweel’s (2012) research, he used a
stratified random sampling to select sample groups from a number of U.S. industries. In
total, Dr. Tweel received 221 completed sample responses that satisfied his minimum
required samples of 109, with statistical power of .8 and a equal to .05. To ensure quality
result, Dr. Tweel verified his survey instrument for convergent, discriminant, and
construct validity. On October 13, 2013, I received Dr. Tweel’s permission to use his
instrument, as shown in Appendix D.

The instrument of Dr. Tweel (2012) was an online survey questionnaire to collect
data for studying the correlation between the IT manager’s cloud computing adoption
(criterion variable) and eight predictor variables. The latter included two technological
factors (relative advantage and compatibility); three organizational factors (organizational
size, organizational readiness, and top management support); and three environmental
factors (mimetic, coercive, and normative pressures). My core reasons for selecting this
survey questionnaire as my base research instrument were as follows:

e The survey questionnaire had similar research objective in examining the
relationship between IT manager’s cloud computing adoption intent and
several innovation influential factors.

e Its theoretical framework was also constructed according to DOI and TOE
theories, except that I excluded the applied institutional theory that Dr. Tweel
(2012) also applied due to my reduced research scope to exclude

environmental factors.
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e Dr. Tweel conducted sufficient validity and reliability tests on his survey

instrument and research method. In addition, Dr. Tweel’s survey instrument
was also an adoption of another well-proven survey instrument, which Dr.
Yoon developed in 2009, with minimal modification. Dr. Yoon’s instrument,
which originated for researching virtual technology adoption, has been
applicable to several quantitative studies (Tweel, 2012).

Due to similarities in the theoretical framework and research design, I followed
most of Dr. Tweel’s data collection and analysis procedure to ensure the validity and
reliability of my research. However, several major differences arose between Dr. Tweel’s
and my research approach. In my study, I had much narrower research scope to determine
the IT manager’s cloud computing adoption for U.S. hospitals only, instead of for all U.S.
industries. Due to my time and resource constraint, I limited my study to technological
and organizational factors, and left the study on any environmental factor for cloud
computing adoption to other scholars. Under the technological factors, I intentionally
inserted back complexity as one of the critical factors to examine even though Dr. Tweel
claimed that complexity was not a significant factor based on his literature research. It
was because, according to my literature research, several scholars found that complexity
has a significant correlation with cloud computing adoption (Ekufu, 2012; Paquet, 2013;
Powelson, 2012).

Under the organizational context, I altered the survey question nine in Dr. Tweel’s
research instrument to include survey items to study organizational structure and culture

influence to cloud computing adoption intent, instead of top management support and
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organizational readiness. I intended to show that substituting top management support
and organizational readiness by organizational structure and culture could provide a
broader perspective on how organizational nature of a hospital can influence its cloud
computing adoption. Furthermore, I argued that the level of top management support for
innovation adoption is a reflection of certain organizational structure and culture.
Similarly, the concept of organizational readiness is part of the concept of compatibility
in the DOI theory, that is, if organizational readiness for a corporation is low for an
innovation adoption, its perceived technological compatibility should also be low (see
Appendix A for my modified survey instrument).

Operationalization. As mentioned in the study variables section, this research
included three technological (relative advantage, compatibility, and complexity) and
three organizational (organizational size, organizational structure, and organizational
culture) predictor variables, and one criterion variable (U.S. hospital IT managers’ cloud
computing adoption intent). Overall, two data types of variables were included in this
study—continuous and categorical. For the variables (hospital IT managers’ intention for
cloud adoption, relative advantage, complexity, and compatibility), their corresponding
survey items were measured with a 7-point Likert scale from strongly disagree (coded as
1) to strongly agree (coded as 7). The data type for these survey items was ordinal in
nature. Nevertheless, I could treat their corresponding composite variables as continuous
because once I added the survey item values for the corresponding composite variable,

the resulted value became interval data.
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Additionally, as Simon and Goes (2013) indicated, even Likert-type scales are
ordinal data but researchers can analyze with interval procedures as long as the scale item
has at least five to seven ordinal categories. The argument is that with sufficient scale
categories, the survey values mostly fall into a normal distribution. As Martin (2014a)
explained, scholars can analyze count variables with linear models, as long as the data is
not along the boundary of zero. For the independent variable (organizational size), as it
always be a nonzero positive integer measured by the number of staffed patient beds in
the surveyed hospitals, researchers can also treat it as continuous.

For the two independent variables (organizational structure and organizational
culture), I measured and analyzed them with four organizational structures (functional,
divisional, matrix, and others) and five organizational cultural styles (clan, adhocracy,
hierarchy, market, and others), respectively. As they carried a predefined set of levels,
these two independent variables are categorical. Before I could apply MLR analysis
technique, as the standard transformation procedure, I had to either convert these two
categorical variables manually into two sets of dichotomous variables via the dummy
coding scheme (Stockburger, n.d.), or use the GLM method in SPSS for automated
dummy variable creation (Martin, 2014b). For simplicity, I had chosen the latter
approach. I explain the details under the methodology section. Table 1 in Chapter 1
shows the alignment of survey items to the study variables, calculation, and the results

data type of each composite variable.
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Data Analysis Plan

Similar to most other quantitative social researchers, I used a statistical software
package called IBM SPSS to provide descriptive and inferential statistics for the required
analyses and tests. Once I completed the data aggregation task in Microsoft Excel, the
results data then loaded into the SPSS data view with each row representing a case, and
column representing either case ID, demography, survey item value, or composite
variable value.

To drive statistical significant conclusion, the desired confidence level must be set
first (Sykes, n.d.). In my study, I set the confidence level to 95% as Field (2013)
recommended. Before beginning to describe my analysis plan and statistical test
procedure, the following was the recap of my research question, null hypotheses (HO;),
and alternative hypotheses (H1;):

Does regression allow us to predict the cloud computing adoption intent of U.S.
hospital IT managers (Y) as a function of the six influential adoption factors, including
relative advantage (X1), compatibility (X2), and complexity belief of cloud computing
(X3), organizational size (X4), organizational structure (Xs), and organizational culture
(X6)?

HO1: X1 = relative advantage is not a significant predictor of Y = Intent to adopt;
mathematically, b1 = 0 in the resulting regression model.

H1:: X1 = relative advantage is a significant predictor of ¥ = intent to adopt;

mathematically, b1 != 0 in the resulting regression model.
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HO0,: X>= compatibility is not a significant predictor of ¥ = intent to adopt;
mathematically, b> = 0 in the resulting regression model.

H12: X>= compatibility is a significant predictor of Y = intent to adopt;
mathematically, > != 0 in the resulting regression model.

HO0s: X5 = complexity belief is not a significant predictor of Y = intent to adopt;
mathematically, b3 = 0 in the resulting regression model.

H13: X5 = complexity belief is a significant predictor of ¥ = intent to adopt;
mathematically, b3 != 0 in the resulting regression model.

HO04: X4= organizational size is not a significant predictor of ¥ = intent to adopt;
mathematically, b4 = 0 in the resulting regression model.

H14: X4= organizational size is a significant predictor of ¥ = Intent to adopt;
mathematically, b4 ! = 0 in the resulting regression model.

HOs: X5 = organizational structure is not a significant predictor of ¥ = intent to
adopt; mathematically, bs = 0 in the resulting regression model.

H1s: X5 = organizational structure is a significant predictor of Y = intent to adopt;
mathematically, b5 != 0 in the resulting regression model.

HO¢: Xs= organizational culture is not a significant predictor of Y = intent to
adopt; mathematically, bs = 0 in the resulting regression model.

Hl¢: X = organizational culture is a significant predictor of Y = intent to adopt;
mathematically, b5 != 0 in the resulting regression model.

HO7: The linear model Y = bo + b1X1 + ... + bsXs has no significant fit;

mathematically, R(Y | Xi...Xs) = 0.
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H17: The linear model Y = bo + b1.X1 + ... + beXs has a significant fit;
mathematically, R(Y | X1...Xs) !=0.

My data analysis began with reporting the missing data and descriptive statistics
on the collected samples. It showed the mean, min, max, standard deviation, frequency,
and other parametric statistics for each variable of the sample result. Then I checked the
sample data linearity and identified unusual cases by using scatterplot graphs. During this
stage, I eliminated some obvious outliers and performed the required data transformation
to ensure linearity. As my research objective was to examine the relationship between the
cloud adoption intention of the U.S. hospital IT managers (outcome variable) and the six
preset adoption influential factors (predictor variables), using GLM function in SPSS was
the most direct and efficient way to establish the regression model and to test the stated
hypotheses.

To begin my regression analysis, first, [ had to decide which of the three predictor
loading methods—hierarchical, forced entry, and stepwise—I should use. Hierarchical,
forced entry, and stepwise approach mean predictors are loaded in blocks, all at once, and
one at a time respectively (Field, 2013; Holmes, 2011). The predictor loading priority
criteria for hierarchical and stepwise method mostly bases on historical known or
calculated correlation significance. Traditionally many scholars suggested to use the
stepwise (either forward or backward) approach to determine the predictors should
ultimately be included or excluded in their regression models (Coté et al., 2011; Holmes,

2011; Lane, n.d.; Noh et al., 2011).
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Conversely, Field (2013) strongly disagreed that stepwise is the right approach to
start the regression analysis. He argued that researchers could judge the predictor addition
and removal by using semi partial correlation calculation of an individual predictor with
the outcome value. That can be highly influenced by other predictors already entered into
the regression model. With this consideration, I planned to start with the forced entry
approach to load all of the six predictor variables at once because they have strong
theoretical support (Rogers, 2003; Tornatzky & Fleischer, 1990) and demonstrated
significant correlations with innovation adoption in other studies (Ekufu, 2012;
Powelson, 2012; Ross, 2010). I put the continuous independent variables (relative
advantage, compatibility, complexity, and organization size) as covariates and the
categorical independent variables (organizational structure and culture) as factors in the
SPSS GLM model.

For multiple regression having more than two predictor variables, the most
common method to determine the best equation for the predictive model is the use of
least sum of variance square methods with the measurement presented as R> (Holmes,
2011; Lane, n.d.). Nevertheless, it can only predict outcome variance contributed by the
combined variance of predictors in the given sample. To determine the predictive power
of the regression model that scholars can generalize to the target population, using
adjusted R*is more appropriate because it includes the number of predictor variables and
sample participants into consideration (Field, 2013). SPSS provides R, R? and adjusted
R? value together with the estimated regression coefficient for each predictor variable as

part of the GLM result output. A small delta value between R? and adjusted R? is a good
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indicator that the collected sample provides a good presentation to the target population
(Field, 2013).

To improve the accuracy of my predictive model, I planned to rerun the GLM
several times by taking a backward stepwise method to eliminate one predictive variable
at a time that is most insignificant (i.e., highest p value). After each run, if the adjusted R*
of the predictive model is higher than the previous one, it indicates the last model is
better. At the end, the optimal predictive model would be the one with the highest
adjusted R? and the regression coefficients of all predictor variables in the model with a
significant nonzero value with p < .05 (Washington State University, 2007; Yale
University, 1998).

After executing the initial regression, I saved the generated statistical diagnostics
and conduct various statistical tests on the regression residuals (i.e., the difference
between each predicted and observed value) to ensure no violation of all basic linear
regression—Ilinearity, normality, homogeneity of variance (homoscedasticity)—and
independence assumptions (Field, 2013). For any violation of these assumptions, I would
need to rerun the regression with GLM options turned on. As Field (2013) recommended,
researchers should apply the weighted least squares regression, bootstrap data transform,
and multilevel model technique to correct the violation of homogeneity of variance,
normality, and independence respectively.

To accept or reject a null hypothesis, researcher needs to do significant tests. For
null hypotheses HO:1 to HOs, I used ¢ statistics as the significant test method. The method

is useful in determining the probability (p value) of getting an observed ¢ > 1 (i.e., the
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ratio of systematic variance explainable by the model to unexplainable random errors)
while the regression coefficient of its corresponding predictor variable is equal to zero.
When the latter is zero, it means that the independent variable is not a significant
predictor. If the probability of getting this condition is close to zero (i.e., p <.001), it
implies the associated null hypothesis can be rejected, and the corresponding predictor
variable is significant (Field, 2013; Holmes, 2011). Similarly, for the null hypothesis H07,
I used F statistics as the significant test method on the entire regression model. It
determines the probability (p value) of getting an observed F > 1 (i.e., the ratio of
variance explainable by the model to unexplainable random errors) while the R value is
equal to zero (i.e., R = 0). When that happens, it means that the regression model does not
fit with the observed sample data at all. Vice versa, if the probability of getting this
situation is close to zero (i.e., p <.001), it implies the null hypothesis H07 is not
acceptable, and the presented regression model is significant (Field, 2013; Holmes,
2011).

Threats to Validity
As a measurement for any research, the result is made of true value, systematic
and random errors. Reliability is a measurement of the quality of research that can
produce consistent and dependable results. The test must be repeatable, and the result
should be similar under the same environment setting. Validity means whether the
operational definition reflects the necessary measurement to the decided concept. As a
quality check, validity is helpful to determine whether the research measures the right

things, and the corresponding measured results are accurate. Therefore, reliability and
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validity are tests for the goodness of a specific operational definition. Without these tests,
we cannot assure the quality and credibility of a research (Singleton & Straits, 2005). The
classification of validity threats and tests are internal, external, and construct. The
following sections include a detailed explanation for the threats of my research under
these three categories, the measurement method, and the potential solutions to resolve
these threats.

External Validity

External validity is a measurement of the generalization power of research. When
research has high external validity, it implies that its finding and conclusion could be
applicable in other environments (considering the place, time, and people) with similar
context (Singleton & Straits, 2005; Trochim 2001). To demonstrate the required
generalization power of my study, I first had to validate all assumptions of the linear
regression model as stated in the threats to construct and statistical conclusion validity
section and confirm that no significant external influential factor exists, as stated in the
threats to internal validity. Then I would compare the R? and adjusted R? value of the
model (a cross-validation method). If the difference between these two values is small,
then it indicates that the predictive power of the regression model from the sample is
similar to that derived from the target population. With low shrinkage of predictive
power, it means the regression model has high generalization (Field, 2013).
Internal Validity

Internal validity is a measurement for a researcher to determine the reliable

evidences, to claim the stated relationship result between the independent and dependent
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variables, but not by other unknown external factors (Singleton & Straits, 2005; Trochim,
2001). For regression analysis, the omitted variable bias can risk the accuracy of the
model as mentioned in Chapters 1 and 2. As a scholar, I need to ensure I had not omitted
any important variable. That was the reason I had relied on the literature review to
identify the critical predictors of the cloud computing adoption intent, according to other
research studies. When the R? result is small, it can be a good indicator that omitted
variable bias exists. As a solution, I might have to insert additional predictor variables
into the model and seek for R? improvement.

Construct Validity
In construct validity, researcher tests the credibility of the research by applying
the theoretical framework and by operationalizing the instrument and analysis plan to
achieve the right measurements of the noted observations (Trochim 2001). Conclusion
validity is a justification measurement for the claim of cause and effect relationship based
on observations and statistical analysis. To be able to provide good prediction using
MLR, researches must fulfill the basic assumptions for construct and conclusion validity
(Lane, n.d.; Holmes, 2011; Sykes, n.d.) as follows:
o Linearity. The relationship between the dependent variable and each independent
variable is linear.
o Normality. The errors (or called residuals) must have a normal distribution.
o Homoscedasticity. The variances of errors are the same regardless of their
predicted values.

e Independence. Each sample subject is independent of other sample subjects.
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When the observed data violate these assumptions, the regression coefficient
estimates, the confidence intervals, and p values will not be reliable (Field, 2013). The
following subsection contains the detection method and procedure to correct these
threats.

Linearity. It implies that the relationship between the dependent and independent
variables are linear, and the errors are random (Field, 2013; Holmes, 2011; Schofer,
2007). One simple way to diagnose potential linearity bias is to review the scatterplot
graph of standardized residuals against standardized model predicted values (zpred vs.
zresid in SPSS). When the plot result shows some forms of curve (Figure 11), it indicates
the violation of linearity. To fix the issue, I had to consider applying a nonlinear
transformation to the regression equation, such as log or power function, depending on
which is more appropriate. Furthermore, I might have to use another predictor variable

that carries a linear relationship with the criterion variable.
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Figure 12. Scatter plot of zpred vs. zresid to check the linearity. When the plot shows a
curved shape, it can be a good indicator of linearity issue.

Normality. MLR requires the normality assumption to be met. Otherwise, the
coefficient and confidence intervals calculation will not be accurate. Additionally, certain
significant tests rely on the assumption of normally distributed errors. One of the
common contributors to nonnormality is outliers. I provided further details on the
procedure to detect and eliminate outliers under the outlier section. The common
normality tests include the review of histograms, P—P plots, and K-S test (Field, 2013).
The review of residual histograms at different values of the predictor variable is a good
spot check for normality. Figure 12 is an illustration of residual histogram that lacks

normal distribution.
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Histogram - Not Normally Distributed

0

Figure 13. Histogram to check normality. It shows an example of residual histogram that
does not have a normal distribution.

The P—P plot shows data points of the residual distribution against a normal
distribution with the same mean and variance. If the residual is normally distributed, the
plotted data point should be along the diagonal line. A bow-shaped pattern indicates that
the residuals have excessive skewness. An S-shaped pattern indicates the residuals have
excessive kurtosis (Field, 2013). Figure 13 shows the P—P plot of the standardized

residual with good normal distribution.
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Figure 14. The normal distribution of P—P plot for standardized residual to check
normality. It illustrates a good normal distribution for the residuals. Adopted from
Research and Statistical Support by J. Starkweather. Retrieved from
http://www.unt.edu/rss/class/Jon/SPSS SC/Module9/M9 Regression/

SPSS M9 Regression2.htm. Copyright 2014 by J. Starkweather.

Similar to the concept of P—P plot, the K—S test shows the calculation of scores
from the sample and compares them with the scores from a normal distribution with the
same mean and standard deviation. If the test is nonsignificant (i.e., p > .05), it implies
that the residual distribution is not significantly different from a normal distribution
(Field, 2013).

Homoscedasticity. When the variance of errors is not constant at different values
of the predictor variable, the coefficient estimation and confidence interval calculation is

not accurate. It indicates giving too much weight to a small subset of observation data

with large variance of errors. To diagnose a homoscedasticity situation, we can use a
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scatterplot for the criterion variable against each predictor variable (Figure 15) or a plot
of the standardized predicted value against standardized residual values (Figure 14).
When the data plot shows as a funnel shape, the regression model may suffer from the
homoscedasticity. The solution Field (2013) recommended is to apply the weight least

square regression: a function of the variance applied as weights to each case.
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Figure 15. Scatterplot graph to check homoscedasticity. It shows the partial correlational
effect of a predictor variable on the criterion variable. It shows that the residual variances
increase as the predictor variable values become bigger and the overall plot forms a
funnel shape.

Independence. Researchers use Durbin—Watson statistic to determine whether
sample objects are independent to each other by checking whether their corresponding
residuals are independent. By using this test, researchers can determine the correlation
between adjacent residuals. The test result can have a value between zero and four. A

value of two indicates that residuals are independent. Nevertheless, when the test value is
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less than one or greater than three, it illustrates the violation of the independence
assumption (Field, 2013). Under that condition, researchers have to establish a multilevel
model for fitting the observed sample data to the regression model. To create a multilevel
model in SPSS, I would need to identify a context variable to segregate the data into
different groups. In case this situation occurs, the hospital region may be a good potential
context variable with the assumption that hospitals in the same geographical region have
similar characteristics and preference.

Even though the four multiple regression assumptions are met, the model might
still not be fitting to provide an accurate prediction if the following two situations exist,
as they are influential to the correlation coefficient value of the predictor variables:

e Outliers. Some cases have extreme value compared with the others and reside far
beyond the normal distribution curve. Their extreme values are highly influential
to the coefficient calculation.

e Multicollinearity. Independent variables are highly correlated with other
independent variables.

Outliers. An easy way to spot out significant outliers is to use a scatterplot graph
for each predictor variable (Figure 16). In general, scholars recommended the method to
reduce outliers by removing the observation points with a value greater than two standard
deviations from the mean. However, this method has no guarantee to produce an
acceptable p value for significant tests. With this reason, a better solution is to use
influence and distance statistics. With SPSS, scholars can produce these statistics (e.g.,

Cook’s distance) as new variables and associate their values with each corresponding
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case. When the Cook’s D value of a case is >4 / (N — k— 1),  might have to classify it as
an outlier and exclude it from the regression, for which N is the sample size, k is the

number of predictors (Schofer, 2007).
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Figure 16. Scatter plot graph to detect outliers. It shows the partial correlational effect of
a predictor variable on the criterion variable with or without the outliers. The black
regression line shows the best fit line without the outliers while the red line shows the
regression line including the outlier observations.

Multicollinearity. When the independent variables in the regression model are
highly correlated, the situation is called multicollinearity. Once it happened, the variance
that can be explained by individual independent variables is relatively small, compared
with the overall variance of all independent variables explained together (Balling, 2008;

Lane, n.d.). To detect a multicollinearity situation, one common approach is to review the

covariance matrix generated as part of the SPSS descriptive statistic output. This matrix
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shows Pearson’s correlation efficient, » between each pair of variables included in the
model. When a pair of independent variables has an » > .9, it indicates that they are
highly correlated, and the concern of multicollinearity exists. Another recommendation
that Field (2013) provided to detect multicollinearity is to pay special attention to one or
more of the following symptoms:

o The sign of the regression coefficient is not as expected.
o In the subsequent regression run under the stepwise model building process, the
following situations occur:

e A large change in the significance of the existing predictor variables after a

new predictor becomes part of the regression model.

e An added predictor variable becomes insignificant in the step.

e The estimated standard deviation of the model increases significantly with the

addition of a new predictor variable.

Additionally, researchers can also apply the independent variable tolerance and
variance inflation factor tests to examine the independent variables for the existence of
multicollinearity (Nok et al., 2011; Radneantu, Stan, & Gabroveanu, 2011). When the
average value of variance inflation factors is not much greater than one, the regression
model has no sign of multicollinearity (Field, 2013). In case, the sign exists, one method
to solve the collinearity issue is to take two highly correlated variables and construct
them under a simple linear regression model. Once researcher determined the regression
coefficient, he can substitute one correlated variable by another as to simplify the original

MLR equation and fix the multicollinearity issue (Balling, 2008).
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Ethical Procedures
Role of the Researcher

Unlike in qualitative research in which the scholar plays a significant role and is
part of the research instrument, the researcher’s role in a quantitative study is almost
nonexistent by following proper ethical guidelines (Simon, 2011b). As my full disclosure,
I'am an IT executive and professional working for a software manufacturing company
that supplies desktop, server, and cloud-based software and infrastructure worldwide. For
this research, I planned to rely on my company’s customer network to identify required
research participants, and use its internal survey management service to collect my
survey data.

This study did not impose any researcher bias in the data collection process due to
a number of factors:

e [ selected the study population fully based on the criteria listed in the

sampling procedure.

e [ utilized proportional stratified random sampling method.

e [ had no direct contact with my survey respondents.

e The participant inputs were totally anonymous and voluntary.

To ensure objective data analysis, I applied all standard statistical tests for MLR
to minimize any personal knowledge and experience influence to the analysis result.
Access Agreement

For this study, I followed the ethical guidelines and approval process defined by

the National Institutes of Health (NIH), Office of Extramural Research, and Institutional
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Review Board (IRB) of Walden University. I planned to collaborate with my company to
gain access to the customer contact database for identifying potential survey participants
and provide the online survey website and survey management service. For these reasons,
I would have needed to obtain the letter of cooperation and data use agreement from the
survey management department of my company. Finally, I conducted the research data
collection and analysis work only upon the receipt of the IRB approval. The received IRB
approval number was 01-14-15-0040993.
Treatment of Human Participants

The human participants in this research were IT managers of U.S. hospitals. To
protect their data privacy, the survey excluded questions pertaining to personal data (e.g.,
name, gender, age, work experience, and academic background). The survey also
excluded information about the hospital name to avoid any possible induction to locate
the participant’s identity. Even though at the end of the survey, the participant could
supply the email address as the incentive to receive the final research report, the email
address was stored separately from the collected survey data. Therefore, even the
researcher is unable to associate the participant’s email address with the provided survey
responses.

The survey participants did not receive pressure or stress, as they were voluntary
to provide their answers to the online self-administrated survey. They had the right to
discontinue the survey at any time during the process. Before the online survey began, the
first survey question was to ask the survey participants to review and agree on the

consent for providing their data. This measure was helpful in ensuring that participants
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understand the intent of the survey questionnaire, the background of the research bodies,
and their right on data privacy and confidentiality. In case the survey participants had any
question and concern, they could contact the researcher or the research supervisor.
Treatment of Data

I planned to store the survey data in my company’s survey data repository for
which only authorized survey management support personnel could access. Since my
research did not collect any personal and corporate profile information, no privacy and
confidential information could be retrievable based on any reverse engineering scheme.
Once the survey input window was closed, I transferred the raw survey data to a data
encrypted and password protected laptop and stored in a password-protected Excel
spreadsheet format. After I had confirmed the success in transferring raw data transfer, I
would send a request to remove the original data from the online survey repository. I then
aggregated and regrouped the data before loading them into SPSS for statistical data
analysis. After I received my dissertation approval, I would archive and keep the raw and
intermit statistical data for another five years before finally removing them, based on the
IRB guidelines of Walden University.

Summary

In this chapter, I described my research design and methodology as a cross-
sectional quantitative research. I picked MLR as my research analysis method to examine
the relationship between the U.S. hospital IT managers’ cloud adoption intent and the six
technological and organizational predictor variables. The latter included relative

advantage, complexity, compatibility, organizational size, organizational structure, and
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organizational culture. My sampling framework was planned to be the customer contact
list of a software manufacturer that sold its products to most of the U.S. hospitals. My
research instrument was a self-administrated online survey questionnaire that I enhanced
from a validated survey research. I planned to have a minimum of 110 U.S. hospital IT
managers’ survey responses for my study, to analyze the collected data with SPSS GLM,
to validate the required MLR assumptions, and test the research hypotheses with F and ¢
statistics. As the result, I attempted to provide a regression model that can predict the
U.S. hospital IT managers’ cloud adoption intent (Y), based on the defined six critical
factors, in the form of Y = b + b1.X1 + boXo + ... buXn. In the next chapter, I reported my

research results with all the statistical analysis details.
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Chapter 4: Results

The purpose of this survey study was to conduct a regression analysis to examine
the cloud computing adoption intent of U.S. hospital IT managers. The research question
was: Does regression allow us to predict the cloud computing adoption intent of U.S.
hospital IT managers as a function of six influential factors: (a) relative advantage, (b)
compatibility, (¢) complexity, (d) organizational size, (¢) organizational structure, and (f)
organizational culture? The following seven null hypotheses anchored the research
question for my cloud computing adoption study:

HO1: X1 = relative advantage of cloud computing is not a significant predictor of ¥
= intent to adopt cloud services; mathematically, b1 = 0 in the resulting regression model.

HO0,: X>= compatibility of public cloud is not a significant predictor of ¥ = intent
to adopt cloud services; mathematically, b, = 0 in the resulting regression model.

HO3: X3 = complexity belief of public cloud is not a significant predictor of ¥ =
intent to adopt cloud services; mathematically, b3 = 0 in the resulting regression model.

HO04: X4= organizational size is not a significant predictor of ¥ = intent to adopt
cloud services; mathematically, b4 = 0 in the resulting regression model.

HOs: X5 = organizational structure is not a significant predictor of ¥ = intent to
adopt cloud services; mathematically, bs = 0 in the resulting regression model.

HOg¢.: X6= organizational culture is not a significant predictor of ¥ = intent to
adopt cloud services; mathematically, b= 0 in the resulting regression model.

HO7: The linear model Y = bo + b1.X1 + ba X2 + b3 X3 + baXs + bsXs + bsXs has no

significant fit; mathematically, R(Y | X1, ... Xs) = 0.
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This chapter began with a brief description of the research purpose, pilot test
result, and then proceeded to the final study details including data collection outcomes,
treatment and intervention fidelity, and the statistical analysis results. I provided the
reliability and validity test results as graphs and statistical tables as to confirm the
required assumptions for applying the categorical regression method. Finally, I provided
a brief summary of my statistical findings to conclude the chapter.
Pilot Study

For my pilot study, I invited ten health care IT SMEs through my personal
network, and five of them accepted the invitation. I provided my online survey with one
additional open question for them to offer feedbacks on the survey clarity and
recommended improvement areas. They provided several recommendations as listed
below:

e Most IT executives of U.S. hospitals have different perspectives on public
versus private cloud services. It was better to provide separate survey items
for compatibility, complexity, and cloud adoption intents for public versus
private cloud services.

e Since Qi¢was the survey item to ask for number of staffed beds, it should be
adjacent with other demographical questions at the beginning of the survey
questionnaire.

e The definitions of different organizational structure types for the survey item

Q17 was not clear, and it should provide additional clarification.



149

e The potential survey participants should receive the invitation emails during

normal office hours as IT executives of U.S. hospitals might have limited
access to their email accounts during non-office hours.

e The expected response rate could be low due to the high security and privacy

concern for U.S. hospitals.

Based on the above recommendations, I restructured the originally-proposed
survey items to segregate the survey questions for public versus private cloud services as
shown in Table 8. Since the differences in public and private cloud services are mainly
with regards to its implementation and deployment technology nature, it is reasonable to
separate only the influential factors—compatibility and complexity, and the adoption
intent. Table 9 shows the updated research questions and null hypotheses.

Table 8

Modified Survey Items Alignment and Value Calculation Method for Composite
Variables after Pilot Study

Adoption Survey item Calculation Data type of the
influential final (composite)
factor variable
(composite

variable)

Xi= Use 7-point Likert-type scale to measure Xi=01+ 0>+ Q3 Interval

Relative from strongly disagree, disagree, neutral, + Qs+ Os+ Q¢

advantage agree to strongly agree with the following

survey questions:

Q1 = Increase the profitability of my
hospital.

(> = Allow your hospital to provide
additional services.

03 = Allow for reduced operational costs.

Q4= Allow better communication with my
patients, staff, and medical partners.

(5= Require no up-front capital
investment.

Qs = Provide dynamic and high service
availability. (table continues)
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Adoption Survey item Calculation Data type of the
influential final (composite)
factor variable
(composite
variable)
Xoa= Use 7-point Likert-type scale. Measuring Xo1=07.1+ 0Os.1 Interval
Compatibility from strongly disagree, disagree, neutral, + Qo1+ Q101
of public cloud  agree to strongly agree with the following
survey questions:
7.1 = Public cloud adoption is consistent
with my hospital’s beliefs and
values.
(Og.1 = Attitudes towards public cloud
adoption in my hospital is favorable.
(9.1 = Public cloud adoption is compatible
with my hospital’s IT infrastructure.
Q10.1 = Public cloud adoption is consistent
with my hospital’s business
strategy.
Xon= Use 7-point Likert-type scale. Measuring Xo2=072+ Og2 Interval
Compatibility from strongly disagree, disagree, neutral, + Qoo+ Qo2
of private cloud agree to strongly agree with the following
survey questions:
07, = Private cloud adoption is consistent
with my hospital’s beliefs and
values.
(Og» = Attitudes towards private cloud
adoption in my hospital is favorable.
(9.2 = Private cloud adoption is compatible
with my hospital’s IT infrastructure.
Q102 = Private cloud adoption is consistent
with my hospital’s business strategy.
Xz= Use 7-point Likert-type scale. Measuring Xs1=0mn.1+ 0121 Interval
Complexity from strongly disagree, disagree, neutral, + Qi+ Quar +
belief of public  agree to strongly agree with the following  Qis.1
cloud survey questions:
Q111 = Public cloud service is cumbersome
to use.
O12.1= Using the public cloud services
requires a lot of mental efforts.
O13.1= Using the public cloud is often
frustrating.
Q14.1= The user interface of public cloud
services is clear and understandable.
Q5.1 = Public cloud services are easy to
purchase and startup.
Xzo= Use 7-point Likert-type scale. Measuring Xs2=0mn2+ Oz Interval
Complexity from strongly disagree, disagree, neutral, + Qa2+ Quat
belief of private  agree to strongly agree with the following  QOis»
cloud survey questions:

QO\11.2= Private cloud service is
cumbersome to use.

(table continues)
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Adoption Survey item Calculation Data type of the
influential final (composite)
factor variable
(composite
variable)
012, = Using private cloud services
requires a lot of mental efforts.
013, = Using the private cloud services is
often frustrating.
Q142= The user interface of private cloud
services is clear and understandable.
Q152 = Private cloud services are easy to
purchase and startup.
Xy= It is measured by the number of staffed Xa= Qe Interval
Organizational  beds that are grouped in one to eight scale
size from:
016°=50-99 (= 1), 100 - 199 (= 2), 200 -
299 (=3), 300 - 399 (=4), 400 - 499
(=5) and > 500 (= 6) staffed beds.
Xs= Use a multiple choice question to Xs= 0 Nominal
Organizational ~ categorize into four types:
structure 0O17= functional (= 1), divisional (= 2),
matrix (= 3) and others (= 4).
Xo= Use a multiple choice question to Xe= 018 Nominal
Organizational  categorize into five types:
culture Q5= clan (= 1), adhocracy (= 2), hierarchy
(= 3), market (= 4) and others (= 5).
Y= Use 7-point Likert-type scale. Measuring Y1 =001+ O Interval
Public cloud from strongly disagree, disagree, neutral, + O
adoption intent  agree to strongly agree with the following
survey questions:
Q19.1= Intends to adopt public cloud
computing.
0»0.1= Likely to take steps to adopt public
cloud computing in the future.
0»1.1= Likely to adopt public cloud
computing in the next 12 months.
Y= Use 7-point Likert-type scale. Measuring Y2 =0Qi90+ 02 Interval
Private cloud from strongly disagree, disagree, neutral, + Oz
computing agree to strongly agree with the following

adoption intent

survey questions:

Q192 = Intends to adopt private cloud
services.

(202 = Likely to take steps to adopt private
cloud services in the future.

(1.2 = Likely to adopt private cloud
services in the next 12 months.

Note: * Since I pre-screened U.S. hospitals with 50 or more staffed beds as the
qualification criteria in my study, I modified the survey item Qs to exclude the selection
options for 6-24 and 25-49 staffed beds.
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Renewed Research Questions and Hypotheses for Public and Private Cloud Adoption

Analysis

Public Cloud Adoption

Private Cloud Adoption

RQ1: Does regression allow us to predict the
public cloud services adoption intent of U.S.
hospital IT managers as a function of six
influential factors: (a) relative advantage, (b)
compatibility, (¢) complexity, (d) organizational
size, (e) organizational structure, and (f)
organizational culture?

HO.1: X = relative advantage of cloud computing
is not a significant predictor of ¥, = intent to adopt
public cloud services; mathematically, b;.1=0 in
the resulting regression model.

HO0,.1: X2.1 = compatibility of public cloud services
is not a significant predictor of ¥; = intent to adopt
public cloud services; mathematically, ;=0 in
the resulting regression model.

HO;.1: X3.1 = complexity of public cloud services is
not a significant predictor of Y; = intent to adopt
public cloud services; mathematically, 531 =0 in
the resulting regression model.

HO04.1: Xs= organizational size is not a significant
predictor of ¥; = intent to adopt public cloud
services; mathematically, b4.1 = 0 in the resulting
regression model.

HOs.1: X5= organizational structure is not a
significant predictor of Y; = intent to adopt public
cloud services; mathematically, bs.1 = 0 in the
resulting regression model.

HOs.1: Xs= organizational culture is not a
significant predictor of Y, = intent to adopt public
cloud services; mathematically, bs1 = 0 in the
resulting regression model.

HO7.: The linear model Y1 = bo + b1.1.X1 + by
Xo1+ b3aXs1 + ba1Xa + bsiXs + b1 Xs has no
significant fit; mathematically, R(Y1 |
X1.X2.1,X3.1,X4, X5 Xe) = 0.

RQ2: Does regression allow us to predict the
private cloud services adoption intent of U.S.
hospital IT managers as a function of six
influential factors: (a) relative advantage, (b)
compatibility, (c) complexity, (d) organizational
size, (e) organizational structure, and (f)
organizational culture?

HO2: X = relative advantage of cloud computing
is not a significant predictor of ¥> = intent to adopt
private cloud services; mathematically, ;,=0 in
the resulting regression model.

HO0.,: X»2,= compatibility of private cloud services
is not a significant predictor of ¥> = intent to adopt
private cloud services; mathematically, b2,=0 in
the resulting regression model.

HO3.2: X3, = complexity of private cloud services is
not a significant predictor of Y> = intent to adopt
private cloud services; mathematically, b3,= 0 in
the resulting regression model.

HO04,: X4= organizational size is not a significant
predictor of ¥, = intent to adopt private cloud
services; mathematically, b4, = 0 in the resulting
regression model.

HO0s,: X5= organizational structure is not a
significant predictor of Y, = intent to adopt private
cloud services; mathematically, bs>= 0 in the
resulting regression model.

HO0s2: Xs= organizational culture is not a
significant predictor of ¥, = intent to adopt private
cloud services; mathematically, bs>= 0 in the
resulting regression model.

HO7.: The linear model Y2 = bo2 + b12X1 + b2
Xo2+ b32X32 + banXs + bs2Xs + bs2Xs has no
significant fit; mathematically, R(Y> |
X1.X22,X32,X4,X5 Xe) = 0.
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Besides the improvement of the survey, with the pilot study, I was able to test out:
e the creation of online survey questionnaire,
e the robustness of the online survey site,
e the logistics of sending invitations,
e the survey result data download procedure, and
e the execution of statistical data analysis.
Nevertheless, due to insufficient data points, the statistical analysis of the pilot
study would not be meaningful and thus it had not been performed.
Data Collection
The sampling plan encompassed the qualified hospitals registered in the
company’s customer contact database. Nevertheless, due to the company’s information
confidentiality policy, I was directed to use an external business profiling and contact
research service (http://www.hoovers.com) subscribed by the company. From that, I was
able to extract qualified hospital IT contacts together with their corresponding hospital
profile information. That included the IT personnels with the managerial role who work
in U.S. hospitals located in 48 continental states with 50 or more staffed beds. For each
retrieved IT contact, | sent a test email that introduced my research interest and myself in
order to confirm the provided email address is valid. This approach helped to exclude all
invalid contacts from my sampling framework upfront. With the advice from the pilot

study SMEs, I changed my expected response rate from 26% to 5%, and that
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tremendously increased my required survey invitations from 425 to 2200. Table 10 below
provided the breakdowns of the required invitations for each U.S. region.

Table 10

Qualified Hospitals under Hoovers Sampling Framework

U.S. Region U.S. State  Number of Number of qualified IT  Required Survey
qualified hospitals  contacts with valid Invitations with
within sampling email address expected Response
framework Rate = 5%

Midwest 627 671 606

IA 47 40
IL 106 128
IN 70 84
KS 52 50
MI 60 69
MN 41 38
MO 53 58
ND 9 11
NE 31 27
OH 88 94
SD 17 16
WI 53 56
Northeast 413 430 388
CT 30 50
MA 58 60
ME 18 16
NH 16 24
NJ 36 44
NY 140 117
PA 108 111
VT 7 8
South 782 905 816

AL 18 46
AR 24 11
DC 6 10

DE 3 0 (table continues)
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U.S. Region U.S. State  Number of Number of qualified IT  Required Survey
qualified hospitals  contacts with valid Invitations with
within sampling email address expected Response
framework Rate = 5%

FL 106 169
GA 70 96
KY 44 45
LA 54 70

MD 20 21
MS 36 34
NC 51 53
OK 40 42

SC 29 34
TN 56 60
X 163 160
VA 33 31

wVv 29 23

West 365 432 390

AZ 26 37
CA 153 180
CO 32 34

ID 16 20
MT 18 19

NM 13 14
NV 11 9
OR 21 30
UT 12 19
WA 48 51
WY 15 19
Total 2187 2438 2200

The entire survey window was open from 5 January to 13 February, 2015. At the

close of the survey window, I received 130 responses with 5 acknowledged without

sufficient IT decision authority and 7 with incomplete data. That led to 118 valid survey

responses with response rate of 5.4%. As the number of received responses met the

minimal sample size requirement of 110, the research result should carry a significant



156
representation for the target population. In Table 11, it shows the sample sizes for the
four U.S. regions and provides a proportional comparison with the target population.
Although I used a proportional stratified random sampling method, the regional sample
proportions were still significantly deviated from the proportions of the target population.
For South region, the received responses were less than the minimum required sample
size (as shown in Table 11) by 9 (i.e., 46 — 37). It limited the ability of my research for
any further statistical investigation down to the South region itself. However, the survey
collected sufficient number of responses for Midwest (28), Northeast (29), and West (24)
region and their percentages were in similar proportions as for the target population.
Therefore, my study should still carry a reasonable representation for those three regions
and the entire 48 U.S. continental states.

Table 11

Target Population and Sample Demographics by U.S. Region

Region Target Population*® Accessible Population** Samples (Received
Responses)
Frequency % Frequency % Frequency %

Midwest 661 23.1 627 28.7 28 23.7
Northeast 503 17.6 413 18.9 29 24.6
South 1177 41.1 782 35.8 37 314
West 525 18.3 365 16.7 24 20.3
Total 2866 100.0 2187 100.0 118 100.0

Note. * Target population and ** accessible population data are corresponding
to the data presented in Table 7 and 10.
Table 12 provided demographical statistics in addition to the comparison of the
target population and sample proportion by U.S. region as shown in Table 11.
Additionally, Table 12 provided the data to evaluate the representation of the sample in

associated with the target population by hospital type, years of operation, 2014 annual
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revenue, and staffed bed size. Under hospital type, the collected sample lacked of
representation on Federal government hospitals and majority of the responses (78%) was
from nonprofit hospitals. For years of operation, 61% of the hospitals established for
more than 60 years and the resulted sample lacked representation for hospitals that were
less than ten years old. For annual revenue in 2014, 69.5% of hospitals were more than
$50M. Since the demographical attributes—hospital type, years of operation, and annual
revenue in 2014—were not part of dependent variables in my research, they did not affect
the resulted statistical analysis. However, it had some implications for the generalization,
for which I discussed further under the Evaluation of the Statistical Assumption section.
Table 12

Target Population and Sample Demographics by Other Attributes

Demographic Target Population Sample Sample Histogram
Attribute
Frequency %  Frequency %
Hospital Type
1= Federal Gov. 107 3.7 0 0.0
2= State / Local Gov. 509 17.8 14 11.9
3= Nonprofit 1464 51.1 92 78.0
4= For-profit 534 18.6 11 9.3 1 mm
5= Other 252 8.8 1 0.8 T e T
Total 2866 100.0 118 100.0

Years of Operation

0=1-10 272 9.5 0 0.0

1=10-20 283 9.9 1 0.8

2=20-30 141 4.9 7 59 ‘
3=30-60 767 26.8 38 32.2 — L
4=>60 1403 49.0 72 61.0

Total 2866 100.0 118 100.0

(table continues)
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Demographic Target Population Sample Sample Histogram
Attribute
Frequency %  Frequency %
Annual Revenue in
2014
1= $2M-$10M 4 0.1 5 42
2=$11M-$50M 62 2.2 21 17.8
3=>$50M 2758 96.2 82 69.5 ‘*‘
4=N/A 42 1.5 10 8.5 i
Total 2866 100.0 118 100.0
Staffed Bed Size
1=50-99 557 19.4 26 22.0
2=100-199 940 32.8 26 22.0
3=200-299 550 19.2 25 21.2
4=300-399 336 11.7 15 12.7 HH
5=400-499 183 6.4 12 10.2 N
6=>500 300 10.5 14 11.9
Total 2866 100.0 118 100.0

Note. The target population demographical statistics were retrieved and consolidated
from the American Hospital Directory (AHD): www.ahd.com, American Hospital
Association (AHA): www.aha.org and Hoovers: www.hoovers.com. ** The
frequency for hospitals with 2014 annual revenue between $2M and $10M in the
received response was higher than the demographic statistics provided by AHD for

2014.

Treatment and/or Intervention Fidelity

Firstly, I selected the survey candidates with the stratified proportional sampling

method as described in Chapter 3. Then I sent professionally designed survey invitation

emails (as shown in Appendix E) by using my Walden University email address with the

online survey access link to the 2200 identified survey candidates. As mentioned by Dr.

Tweel (2012), using university provided email account to send survey invitations could

provide better confidence to the email recipients that the email is not a spam. In the first

week of my survey window, I sent out about 500 invitations on each workday.

I used a U.K. based survey service company (http://www . kwiksurveys.com) that

provided the online survey design, data collection, and basic data analysis capability. To
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ensure I could offer my research summary report to all survey participants as an
acknowledgement for their support, I redirected the survey participants to my custom
designed thank you page after they completed the survey, to provide their email
addresses. Therefore, I avoided any association of my collected survey data with the
participants’ email addresses and ensured their responses are anonymous. Furthermore,
this procedure prevented me from sending reminders to people who had already taken the
survey. The response rate of my first round of invitation was very low. It was only about
1% (i.e., 22 responses) after two weeks. As part of my observation, I received no
response on Monday and most responses came on Friday. The responses seem only came
on the same day as requested, i.e., no response received on the dates that I did not send
the survey invitation requests. To increase my response rate, [ began to send out the
survey request reminders in the third week of my survey window from Tuesday to
Friday, but not Monday. In addition, I enhanced my invitation email with a stronger
emphasis on the value of my research. The response rate had significantly raised. By the
end of the fifth week, I totally received 86 responses and that triggered me to send out the
second reminder as my final attempt to collect the minimal required sample responses.
Finally, I received 130 responses at the end of my six weeks survey window. Besides the
minor adjustment on my survey invitation logistics and using reminder approach to
encourage survey participation, I did not have any adverse event of intervention.

Study Results
For the statistical analysis, I used the IBM SPSS Statistics version 21. It provided

the required statistical capabilities, such as descriptive and inferential statistics, charting,
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and general linear modeling. My analysis consisted of two parts. In the first part, I
examined the descriptive statistics and evaluated the reliability and validity of survey
items used to determine the values of the composite variables. To confirm no violation of
assumptions for GLM, I performed various graphical plots and statistical tests for
linearity, normality, homoscedasticity, independence, and the absence of
multicollinearity. In the second part, I assessed the contribution and significance of the
six independent variables—relative advantage, compatibility, complexity, organizational
size, organizational structure, and organizational culture—in relationship with the
dependent variable—U.S. hospital IT managers’ intent to adoption public and private
cloud services—by using SPSS GLM method.

As described in Chapter 3, attitude type survey items—Q1 to (015 were ordinal
data based on the Likert scale of 1 (strongly disagree) to 7 (strongly agree). Since the
survey items Q11, Q12, and Q13 were phrased in an opposite way, the response scores had
to be reversed by subtracting the answer from 8 (i.e. 8 — response value). This procedure
safeguarded the responses of all survey items Q11 to Q15 were following the same
direction of altitude scoring. This prevented the scores of negative phrased survey items
counterbalancing out the score of the positive phrased survey items in the same group
when they were summed together to produce the value for the corresponding composite
variable, i.e., complexity behalf.

As mentioned in the Pilot Study section, the survey items for the composite
independent variables—compatibility and complexity and the composite dependent

variable—U.S. hospital IT managers’ intent for cloud computing adoption were splitted
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into two groups—public and private cloud services. Therefore, I reported out my analysis
results separately for public and private cloud adoption with the dependent and

independent variables as listed in Table 13.

Table 13

Renewed Dependent and Independent Variable Lists after Segregating the U.S. Hospital
IT Managers’ Adoption Intent by Public versus Private Cloud Services

Public Cloud Services Private Cloud Services

Dependent Composite Variable
Y= Public cloud services adoption intent of U.S. Y>= Private cloud services adoption intent of U.S.

hospital IT managers hospital IT managers

Independent Composite Variables

Xi = Relative advantage X1 = Relative advantage

X>.1= Compatibility of public cloud X».,= Compatibility of private cloud
X;.1= Complexity of public cloud X;.,= Complexity of private cloud
Xs= Organizational size Xs= Organizational size

Xs= Organizational structure Xs= Organizational structure

Xs= Organizational culture Xs= Organizational culture

Note. X1, Xa, X5, and X remained as the same independent variables for both public
and private cloud services adoption study.

Descriptive Statistics

To report out the descriptive statistics, I used the minimum, maximum, mean,
standard deviation, and variance of the received responses calculated by SPSS on all
survey items as shown in Table 14. For the seven composite variables, I also produced
similar statistics together with skewness measurement as shown in Table 15 after
applying the summation formula as explained in Table 8. The key observations provided
by the descriptive statistics of the survey items included that no respondent:

e Strongly disagreed cloud computing services allowing their hospitals to

provide additional services (Q»).
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e Strongly disagreed cloud computing services allowing better communication

with patients, staff, and medical partners for their hospitals (Qs).

e Strongly agreed public cloud computing services being consistent with their

hospitals’ beliefs and values (7).

e Strongly agreed public cloud computing services are providing clear and

understandable user interface (Q14).

e Strongly agreed public cloud computing services being easy to purchase and

startup.

e Strongly agreed private cloud computing services being cumbersome to use.

Table 14

Descriptive Statistics for the Survey Items

N  Min. Max. Mean Std. Variance
Deviation

01 = Increase profit 118 1 7 4.45 1.647 2.711
(0, = Additional services 118 2 7 5.09 1.396 1.949
03 = Reduce cost 118 1 7 491 1.664 2.769
Q4= Better Communication 118 2 7 5.03 1.320 1.742
0Os= No upfront investment 118 1 7 4.20 1.767 3.121
Os = High flexibility and availability 118 1 7 5.20 1.488 2215
Public cloud services

07.1 = Consistent with belief and value 118 1 6 391 1.268 1.607
(Og.1= Favorable attitude 118 1 7 3.76 1.363 1.858
(9.1 = compatible with existing infra. 118 1 7 4.18 1.534 2.353
010.1 = Consistent with business strategy 118 1 7 4.06 1.348 1.817
Private cloud services

07, = Consistent with belief and value 118 1 7 4.73 1.344 1.806
(g, = Favorable attitude 118 1 7 4.67 1.415 2.001

(table continues)
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N Min. Max. Mean Std. Variance
Deviation

09> = compatible with existing infra. 118 1 7 4.98 1.267 1.607
Q102 = Consistent with business strategy 118 1 4.58 1.464 2.144
Public cloud services

Oi1.1 = Cumbersome to use 118 1 7 3.69 1.195 1.427
012.1= Require a lot of mental efforts 118 1 7 3.84 1.408 1.982
Q131 = Frustrated to use 118 1 7 3.99 1.544 2.385
Oi1.1: = Not cumbersome to use 118 1 7 4.30 1.179 1.390
Q12.1:= Not require a lot of mental efforts 118 1 7 4.14 1.385 1.919
Q131 = Not frustrated to use 118 1 7 4.01 1.544 2.385
Q4.1 = User interface is understandable 118 1 6 4.37 1.123 1.261
Q15.1= Easy to purchase and startup 118 1 6 3.95 1.358 1.844
Private cloud services

Q112 = Cumbersome to use 118 1 6 3.55 1.251 1.566
0122= Require a lot of mental efforts 118 1 7 3.67 1.314 1.727
Q133 = Frustrated to use 118 1 7 3.88 1.492 2.225
QO11.2r = Not cumbersome to use 118 2 7 4.45 1.251 1.566
Q122:= Not require a lot of mental efforts 118 1 7 4.33 1.314 1.727
Oi3.2: = Not frustrated to use 118 1 7 4.12 1.492 2.225
Q142 = User interface is understandable 118 1 7 3.92 1.141 1.302
Q152 = Easy to purchase and startup 118 1 7 3.85 1.506 2.267
Q16= Organizational size 118 1 6 3.00 1.643 2.701
017= Organizational structure 118 1 2.17 1.081 1.168
Q13 = Organizational culture 118 1 2.90 1.297 1.682
Public cloud services

Q9.1 = Intends to adopt 118 1 4.19 1.543 2.380
0101 = Take steps to adopt 118 1 7 4.13 1.566 2.454
(0>1.1= Adopt in next 12 months 118 1 7 3.65 1.549 2.400
Private cloud services

Q19 = Intends to adopt 118 1 481 1.157 1.338
>0, = Take steps to adopt 118 1 7 4.79 1.211 1.468

(table continues)
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N  Min. Max. Mean Std. Variance
Deviation

(>12= Adopt in next 12 months 118 1 7 4.21 1.332 1.775
Note. Qit.ir, Qi2.1r, Q13.1r, Q11.2r, Q12.2r, and Q13.2r were the transformed survey
items.They reversed the attitude of the answers from the negative to the positive tone
for their corresponding survey items Q11.1, Q2.1 Q13.1, Q11.2, Q12.2, and Q1322
respectively.

To determine whether the sample data corresponding to each variable were
normally distributed, the z-score value for skewness (i.e., skewness value divided by
standard error of skewness) should be within the range of -1.96 and +1.96 (Doane &
Seward, 2011). Based on the skewness values shown in Table 15, I concluded that all
composite variables were within the required range to assume their data points were
normally distributed, except for organizational size (Xs). It had the z-score skewness
value of 2.161 that exceeded the upper boundary of 1.96 by 0.201 slightly. The normal
curve of the histogram charts in Table 16 also revealed this fact. Since data were mostly
within the suggested criteria of normality, no data transformation was required.

Table 15

Descriptive Statistics for the Composite Variables

N Min. Max. Mean Std. Variance Skewness

Deviation
X1 = Relative advantage 118 10 42 28.88 6.592 43.456 211
Public cloud services
X>.1 = Compatibility 118 4 27 1585 4.689 21.983 .063
Xz.1= Complexity 118 6 33 21.17 5.493 30.178 .180

Private cloud services
X2, = Compatibility 118 4 28 18.96 5.105 26.058 412

(table continues)
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N Min. Max. Mean Std.

Variance Skewness

Deviation
X3, = Complexity 118 8 30 20.67 5.099  26.001 .039
Xs= Organizational size 118 1 6 3.00 1.643 2.701 482
Xs= Organizational structure 118 1 4 2.17 1.081 1.168 358
X¢= Organizational culture 118 1 5 2.90 1.297 1.682 .025
Y = Adoption intent for public 118 3 21 1191 4.342 18.854 284
cloud services
Y,= Adoption intent for private 118 3 21 13.82 3.327 11.071 .330
cloud services
Note. Since composite variables—Xs, X5, and Xe—had a single survey item, their
descriptive statistics were equivalent to Q16, O17, and Q18 shown in 14 respectively.
The standard error of skewness for all composite variables was .223.
Table 16
Histograms with Normal Curve for Composite Variables
Common Composite Variable Composite Variable for Public Composite Variable for Private
Cloud Services Cloud Services
Relative advantage (X1) Compatibility (X2.1) Compatibility (X2.2)

25| — 259 10

10 15

T
20

T T
2 0

(table continues)
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Common Composite Variable Composite Variable for Public Composite Variable for Private
Cloud Services Cloud Services
Organizational size (X4) Complexity (X3.1) Complexity (X3.2)
[ N 20
Organizational Structure (Xs) Adoption Intent (Y1) Adoption Intent (Y2)

50 40 30

Note. The normal curve of the composite independent variable (X4) is slightly
asymmetric.

Evaluation of Statistical Assumption

As a generalization precaution, since the sample in my research did not have any

representation for U.S. hospitals that is federal government owned and within one to ten
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years of operation, I could not assume my statistical analysis results can generalize to
those specific U.S. hospitals.

Survey instrument reliability and validity assessment. As described in Chapter
3, I used a survey instrument with its reliability and validity confirmed in Dr. Tweel’s
(2012) research. However, as I changed some of the survey items, it was necessary to
check for its reliability and validity again. Cronbach’s Alpha is the most common
measure of scale reliability. By comparing the alpha value of a construct with the
corresponding alpha value of if-item-deleted, I could determine whether the construct is a
reliable measurement in the survey instrument. As a general guideline, the overall alpha
of a reliable construct should have a value higher than 0.7 (Field, 2013). For a survey
item with a higher alpha value of if-item-deleted than the overall alpha value, it indicated
that the construct should be more reliable after the researcher drops that survey item from
the survey. In Table 17, it illustrates that all the constructs have alpha values higher than
0.7. It confirmed that the survey instrument had acceptable reliability. Nevertheless, Os
and Q142 might need attentions as they had a much higher alpha value of if-item-deleted
than for the overall construct (by .061 and .067 respectively).
Table 17

Reliability Statistics for the Constructs and Corresponding Survey Items

Construct Nof Cronbach’s Corresponding Survey Items Cronbach's
Items Alpha Alpha if Item
Deleted
X1 = Relative advantage 5 798 .
01 = Increase profit 730
(0, = Additional services 718
03 = Reduce cost 137
Q4= Better Communication 775

(table continues)
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Construct Cronbach’s Corresponding Survey Items Cronbach's
Alpha Alpha if Ttem
Deleted

0Os= No upfront investment .859
Os = High flexibility and availability 758

Xo.1 = Compatibility of .870 .

public cloud services
0.1 = Consistent with belief and value 825
0s.1 = Favorable attitude 797
0v.1 = compatible with existing infra. 918
0101 = Consistent with business 788

strategy

X3.1 = Complexity of public .886

cloud services
O11.1r = Not cumbersome to use 832
Q12.1:= Not require a lot of mental .841

efforts

Q3.1 = Not Frustrated to use .856
Q14.1= User interface is understandable .887
Q5.1 = Easy to purchase and startup .881

X, = Compatibility of 947

private cloud services
07.,= Consistent with belief and value .905
QOs»= Favorable attitude 944
09> = compatible with existing infra. 951
QO102= Consistent with business 916
strategy

X32= Complexity of 813

private cloud services
0112 = Cumbersome to use 708
QO122=Require a lot of mental efforts 732
Q133 = Frustrated to use 726
Q142= User interface is understandable .880
Q152 = Easy to purchase and startup 791

Y = Adoption intent of 933

public cloud services
Q19.1 = Intends to adopt 900
0201 = Take steps to adopt 834
0>1.1= Adopt in next 12 months .966

Y, = Adoption intent of .867

private cloud services
0192 = Intends to adopt 760
0102 = Take steps to adopt 757
(»12= Adopt in next 12 months 921

By further investigating their inter-item correlation matrices as shown in Table 17

and Table 18, Qs and Q142 also show low and negative correlation with other survey

items under the same construct. This finding supported the argument if I dropped both Qs
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and Q142 from their corresponding construct—Xi and X3 2, the reliability of the survey
instrument might increase. However, since Dr. Tweel’s validated survey instrument
consisted of two survey items, I kept them in my result analysis and expected future
research with larger sample size can provide better confirmation.

Table 18

Inter-item Correlation Matrix for the Construct Relative Advantage

O j0)) 0s O4 0s Os
O 1.000
(93 722 1.000
0Os .808 .648 1.000
04 426 541 472 1.000
Os .106 325 -.040 .056 1.000
Os 412 456 .536 .449 293 1.000

Note. Qs has a low correlation with Q1 and Q4, marginal correlation with Q», and
negative correlation with Qs.

Table 19

Inter-item Correlation Matrix for the Construct Complexity of the Private Cloud Model

Ot O O3 QOia Ois2
O 1.000
Onar 928 1.000
Oiar .823 .839 1.000
Qa2 102 -.017 .091 1.000
Oisa 527 419 457 .366 1.000

Note. Q142 has a low correlation with Q112rand Qi132rand negative
correlation with Q12.2r.

To test the construct validity of the survey instrument, I did a principal

components analysis (PCA) to determine whether the six identified independent variables
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were principal components for my research. As a rule of thumb, minimal ten observations
per variable are required. That means I needed 70 observations for my study. As |
received 118 responses, it exceeded this basic requirement for PCA. I conducted two
PCAs with one for public cloud services adoption and another for private cloud services
adoption. First, I checked whether the KMO value was higher than .6. If so, the null
hypothesis that the correlation matrix is an identity matrix can be rejected (Bartlett’s test
of sphericity) and confirm the presented PCA values are relevant (Field, 2013). From the
correlation matrix, I noticed that no correlation among independent variables was higher
than .9 as the indicator that each dependent variable was essential components of the
survey instrument. Finally, by checking the extraction value in the communalities table, I
could determine whether the principal components could explain a good proportion of
each variable's variance (i.e., > .3). When the included variables in the PCA could satisfy
all these criteria, they could then represent as principal components (UCLA, 2015).

For public cloud services adoption, the PCA showed the KMO value of .619 that

exceeded the cutoff point of .6. In
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Table 20—correlation matrix, it indicated no high correlation among independent
variables (i.e., no correlation value was higher than .8). In addition, in Table 21, no
extraction value was less than .3. Therefore, the construct validity of the survey

instrument for public cloud services adoption was sufficient.
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Table 20

Correlation Matrix of Composite Variables for the Public Cloud Model

Xi X241 X1 X Xs Xo )¢l
X 1.000
X2 362 1.000
Xz .188 .309 1.000
Xa 384 .075 .002 1.000
Xs -.328 -.042 -.129 .091 1.000
Xs -.069 -.094 -.115 .309 445 1.000
Y 484 527 .289 450 .018 .061 1.000

Note. There is no strong correlation between dependent variables. The correlation
between the independent variables—Xs and Xs and dependent variable Y1 are low.

Table 21

Communalities of Composite Variables for the Public Cloud Model

Initial Extraction
Xi 1.000 759
Xa1 1.000 .678
X3 1.000 583
Xa 1.000 77
X 1.000 .802
X 1.000 .693
)4 1.000 751

Note. Extraction Method: PCA.

For private cloud services adoption, the PCA showed the KMO value of .630 that
exceeded the cutoff point of .6. In Table 22—correlation matrix, it indicated no high
correlation among independent variables. In addition, in Table 23, all extraction values
were higher than .3. Therefore, the construct validity of the survey instrument for private

cloud services adoption was also sufficient.
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Table 22

Correlation Matrix of Composite Variables for the Private Cloud Model

Xi X22 X3 X Xs Xo Y,
X 1.000
X22 .369 1.000
Xza 340 577 1.000
Xa 384 .030 107 1.000
Xs -.328 -177 -.146 .091 1.000
Xs -.069 -.122 -.103 .309 445 1.000
)z 439 .780 514 131 -.270 .022 1.000

Note. There was no strong correlation between dependent variables. The
correlation between the independent variable Xs and dependent variable Y2 was
low.

Table 23

Communalities of Composite Variables for the Private Cloud Model

Initial Extraction

Xi 1.000 .768
Xa2 1.000 .849
Xaa 1.000 .614
Xa 1.000 .821
X 1.000 764
Xs 1.000 743
)2 1.000 798

Note. Extraction Method: PCA

Statistical assumptions validation for GLM. As discussed in Chapter 3, I must
verify the sample data that they met the linear regression assumptions for construct and
conclusion validity. Otherwise, the presented statistical results could be misleading.
These assumptions included linearity, normality, homogeneity of variance

(homoscedasticity), independence, and multicollinearity.
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To test linearity and homoscedasticity of my two categorical regression models—
public and private cloud services adoption, I used the scatterplot graphs of standardized
model predicted values against standardized residual values (zpred vs zresid) as shown in
Figure 17. Since they did not indicate any specific curve and funnel shape, my sample
data satisfied the GLM assumptions that the six independent (or called predictor)
variables had linear relationships with the dependent variable, and residual variances

were constant at different levels of the predictor variables.
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Figure 17. Scatterplot of zpred vs. zresid for the regression models of public and private
cloud services adoption. It shows no specific pattern as an indicator that the models
satisfy linearity and homoscedasticity assumption.

To test the normality of the two regression models, I used both the residual
histogram and P-P plot techniques. In Figure 18, it shows the normal curves of the two
models as in symmetric bell shape. In Figure 19, as the degree of the actual residual
values of the two cloud models coinciding with the respective lines of expected values,

the assumption of residual normality was satisfied. Nevertheless, under the private cloud

adoption model, a minor kurtosis of the sample data was detected as a slight S-shaped
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pattern presented in the plot. Most likely, from the diagram, the normality of the private

cloud services adoption model could be improved by excluding the outliers carrying

residual values from -4 to -8 range.
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Figure 18. Residual histogram for the regression models of public and private cloud

services adoption. As the normal curves were symmetric, it justified the assumption of
normality for the models.
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Figure 19. P-P Plot of Residual for the regression models of public and private cloud
services adoption. Since the actual residual values coincided closely with the expected
value, the normality assumption of the models was met.

To test the assumption of the residual independence, I used Durbin-Watson

statistic. As explained by Field (2013), the test provides a value between zero to four. If

the residuals are independent with each other, the test value should be close to two.
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Whenever it is less than 1 or greater than 3, the independence assumption is questionable.
In my sample data, the Durbin-Watson test provided a value of 2.060 and 1.975 for the
public and private cloud services adoption model respectively. Since these values were
close to two, I could then assume the residual independence.
To confirm the absence of multicollinearity (i.e., the independent variables do not
highly correlate with each other), I could simply examine the coefficient values of the

independent variables in the correlation matrices as shown in
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Table 20 and Table 22. Since none of the pairs has coefficient value was greater

than 0.8, I could then assume no multicollinearity existed. Another way to detect
multicollinearity is to use variance inflation factor (VIF) analysis. With VIF value greater
than 5, it is an evidence of multicollinearity (Annmaria’s Blog, 2015). Table 24 shows
the VIF values calculated for the public and private cloud regression models. Since the
VIF values were from 1.128 to 1.620 that was substantially lower than 5, I could assume
that it was no multicollinearity concern in my models.
Table 24

Collinearity Statistics of the Categorical Regression Models

Public Cloud Services Private Cloud Services

Independent Variables Tolerance VIF Independent Variables Tolerance VIF
X1 = Relative advantage .617 1.620 X;= Relative advantage 622 1.608
X>.1= Compatibility 187 1.271 X,,= Compatibility .621  1.611
Xz.1= Complexity .886 1.128 Xz,= Complexity .644  1.552
Xs= Organizational size 728 1.374 X,= Organizational size 721 1.386
Xs= Organizational structure .688 1.453 Xs = Organizational structure 705 1.418
Xs = Organizational culture 719 1.392 Xs= Organizational culture 723 1.383
Y1 = Adoption intent of public cloud services Y, = Adoption intent of private cloud services

Statistical Analysis Findings

Besides the confirmation of the GLM assumptions, it is important to identify
critical outliers and exclude them before the final reporting on the statistical findings.
Otherwise, the outliers can significantly distort the results. As described in Chapter 3,
researchers use two common methods to identify outliers. The first method is to examine
the scatterplot graphs for each independent variable against the dependent variable as

shown in Table 25.
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Table 25

Scatterplot Graphs of the Regression Models before Outliers Exclusion

Public Cloud Services Adoption Private Cloud Services Adoption
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The second method is to use Cook’s distance to determine whether a case is an
outlier. Cook’s distance is a better solution to guarantee an acceptable p-value for
significant tests (Schofer, 2007). As mentioned in Chapter 3, when a case with Cook’s
distance >4 / (N - k -1), where N is the sample size, & is the number of predictors; it is
classified as outlier and should be excluded. Since my sample size was 118, and the
number of predictors was 11, that meant my regression analysis should exclude any case
with Cook’s distance is greater than .0377. As the result, nine and ten cases were
removed from the public and private cloud adoption model respectively. Table 26 shows
the scatterplot graphs of each independent variable against the dependent variable for the
public and private cloud services adoption model after I excluded the identified outliers.
Readers can notice that the intercept and the slope of the regression lines had changed
after the outliers were removed.

Table 26

Scatterplot Graphs of the Regression after Outliers Exclusion
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(table continues)
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To address the research questions and test their corresponding research

hypotheses as stated in Table 9, I conducted the GLM analysis separately for public and

private cloud services adoption. The results are illustrated in Table 27 and Table 28

respectively.

Table 27

Statistical Analysis Results of the Public Cloud Regression Model (N =109, Dependent

Variable = Y;)

B SEB t Sig. Partial 95%
I Confidence
Interval

Constant -3.889  1.589 -2.448 .016 .058 (-7.042,-.736)
Xi=Relative Advantage 238 .058 4.108 .000 .147 (.123,.353)
X2.1= Compatibility 174 075 2333 .022 .053 (.026,.323)
X3.1= Complexity .249 .059 4203 .000 .153 (.131,.366)
X, = Organizational Size 174 212 3.645 .000 .119 (.353,1.196)
Xs= Organizational Structure = functional =1 -5.086 1.331 -3.822 .000 .130 (-7.727,-2.445)
Xs= Organizational Structure = divisional =2  -2.227 1.163 -1.915 .058 .036 (-4.534,.081)
Xs= Organizational Structure = matrix = 3 -2951  1.149 -2.568 .012 .063 (-5.232,-.671)
Xs= Organizational Structure = others =4 0?
Xs = Organizational Culture = clan = 1 2478 1.046 2.369 .020 .054 (.402,4.553)
Xs = Organizational Culture = adhocracy =2 1.508 1.030 1.464 .146 .021 (-.536,3.551)
Xs= Organizational Culture = hierarchy = 3 2.976 990 3.006 .003 .084 (1.011,4.940)
Xs= Organizational Culture = market = 4 0?
Xs = Organizational Culture = others = 5 0?

Note. a. This parameter is set to zero because it is redundant. R>=.621, Adjusted R?

=.583, F(10,98) =16.077, p < 0.001.



184
Table 28

Statistical Analysis Results of the Private Cloud Regression Model (N =108, Dependent
Variable = Y>)

B SEs ¢ p  Partial 95%
IP? Confidence

Interval
Constant 1.855 789 2.350 .021 .054 (.288,3.422)
Xi -Relative Advantage 102 .029  3.478 .001 112 (.044,.160)
X>2= Compatibility 368 .045 8.248 .000 .415 (.279,.456)
X3.2= Complexity 118 .043 2772 .007 .074 (.033,.202)
X4 = Organizational Size -170 106 -1.611 .110 .026 (-.380,.039)

Xs= Organizational Structure = functional = 1 307 1.078 284 777 .001 (-1.834,2.447)
Xs= Organizational Structure = divisional = 2 264 1.093 241 810 .001 (-1.906, 2.434)

Xs= Organizational Structure = matrix = 3 -1.182 1.102 -1.073 .286 .012 (-3.369, 1.005)
Xs= Organizational Structure = others = 4 0?

X = Organizational Culture = clan =1 -1.286 1.079 -1.192 236 .015 (-3.429, .856)
Xs = Organizational Culture = adhocracy = 2 .074 1.086 .068 .946 .000 (-2.081,2.229)
Xe= Organizational Culture = hierarchy = 3 .831 1.056 787 433 .006 (-1.264,2.926)
Xs= Organizational Culture = market = 4 .833 1.055 789 432 .006 (-1.262,2.928)
Xs= Organizational Culture = others =5 0?

Note. a. This parameter is set to zero because it is redundant. R?= 807, Adjusted R?
=.785, F(11,96) = 36.567, p < 0.001.

The followings are the restatement of the research questions, hypotheses, and the
result of the statistical findings.

Public cloud services adoption analysis.

RQ1: Does regression allow us to predict the public cloud services adoption intent
of U.S. hospital IT managers as a function of six influential factors: (a) relative
advantage, (b) compatibility, (c) complexity, (d) organizational size, (e) organizational
structure, and (f) organizational culture?

HO1.1: X1 =relative advantage of cloud computing is not a significant predictor of
Y1 = intent to adopt public cloud services; mathematically, b1.1 = 0 in the resulting

regression model.
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From Table 27, the null hypothesis H01.1 was rejected, #(97) = 4.108, p <.001,
partial n*> = .147. Therefore, Xi = relative advantage was a significant predictor of ¥ =
intent to adopt public cloud services; mathematically, b1.1 = .238 in the resulting
regression model. As the effect size measurement with partial eta square (n?), X1 =
relative advantage could explain 14.7% of the variance that other variables could not
explain.

HO02.1: X2.1 = compatibility of public cloud is not a significant predictor of Y1 =
intent to adopt public cloud services; mathematically, 521 = 0 in the resulting regression
model.

From Table 27, the null hypothesis H02.1 was rejected, #(97) = 2.333, p <.05,
partial n*> = .053. Therefore, X>.1 = compatibility was a significant predictor of Y1 = intent
to adopt public cloud services; mathematically, b>.1 = .174 in the resulting regression
model. As the effect size measurement, X2 1 = compatibility could explain 5.3% of
variance that other variables could not explain.

HO0s.1: X3.1= complexity belief of public cloud is not a significant predictor of Y;
= intent to adopt public cloud services; mathematically, b3.1 = 0 in the resulting regression
model.

From Table 27, the null hypothesis H03.1 was rejected, #(97) = 4.203, p <.001,
partial n*> = .153. Therefore, X3.1 = complexity belief was a significant predictor of ¥ =
intent to adopt public cloud services; mathematically, b3.1 = .249 in the resulting
regression model. As the effect size measurement, X3.1 = complexity belief could explain

15.3% of variance that other variables could not explain.
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HO04.1: X4= organizational size is not a significant predictor of Y1 = intent to adopt
public cloud services; mathematically, 4.1 = 0 in the resulting regression model.

From Table 27, the null hypothesis H04.1 was rejected, #(97) = 3.645, p <.001,
partial n>=.119. Therefore, X4 = organizational size was a significant predictor of Y1 =
intent to adopt public cloud services; mathematically, b4.1 = .774 in the resulting
regression model. As the effect size measurement, X4 = organizational size could explain
11.9% of variance that other variables could not explain.

HOs.1: X5 = organizational structure is not a significant predictor of Y1 = intent to
adopt public cloud services; mathematically, bs.1 = 0 in the resulting regression model.

From Table 27, the null hypothesis H0s.1 was rejected when organizational
structure is functional (i.e., = 1), #97) = 3.822, p <.001, partial > = .130; and matrix
(i.e.,=3), #(97) = 2.568, p < .05, partial n? = .063. Therefore, X5 = organizational
structure was a significant predictor of Y1 = intent to adopt public cloud services when it
was functional or matrix; mathematically, bs.1 =-5.086 and = -2.951 respectively in the
resulting regression model. As the effect size measurement, X5 = organizational structure
could explain 13% and 6.3% of variance that other variables could not explain when it is
functional and matrix respectively.

HO0g¢.1: X6 = organizational culture is not a significant predictor of Y1 = intent to
adopt public cloud services; mathematically, bs.1 = 0 in the resulting regression model.

From Table 27, the null hypothesis HOs.1 was rejected when organizational culture
is clan (i.e., = 1), #(97) = 2.369, p < .05, partial n*> = .054; and hierarchy (i.e., = 3), #(97)

=3.006, p <.001, partial n> = .084. Therefore, Xs = organizational culture was a
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significant predictor of ¥ = intent to adopt public cloud services when it was clan or
hierarchy; mathematically, be.1 = 2.478 and = 2.976 respectively in the resulting
regression model. As the effect size measurement, Xs = organizational culture could
explain 5.4% and 8.4% of variance that other variables could not explain when it was
clan and hierarchy respectively.

HO7.1: The linear model Y1 = bo1 + b1.1X1 + b1 Xo1 + b3 X310 + ba1Xs + bs1Xs +
be.1.X6 has no significant fit; mathematically, R(Y1 | X1 X2.1,X3.1,X4,X5.Xs) = 0.

From Table 27, the null hypothesis H071 was rejected, R = .621, Adjusted R?
=.583, F(10,98) =16.077, p < 0.001. The linear model Y1 =-3.889 + .238X) + .174X2,
+.249X3.1 + .774X4 + bs.1.Xs5 + be.1Xs had a significant fit; where b5 =-5.086 or -2.951 if
organizational structure was functional or matrix respectively, be.1 = 2.478 or 2.976 if
organizational culture was clan or hierarchy respectively. The linear model could explain
62.1% and 58.3% of the variance of the U.S. hospital IT managers’ adoption intent for
the public cloud services in the sample and target population respectively. Since R? and
adjusted R? had only 3.8% difference, the generalization power of this public cloud

services adoption model was good.

Private cloud services adoption analysis.

RQ2: Does regression allow us to predict the private cloud services adoption
intent of U.S. hospital IT managers as a function of six influential factors: (a) relative
advantage, (b) compatibility, (c) complexity, (d) organizational size, (e) organizational

structure, and (f) organizational culture?
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HO12: X; =relative advantage of cloud computing is not a significant predictor of
Y> = intent to adopt private cloud services; mathematically, 1.2 = 0 in the resulting
regression model.

From Table 28, the null hypothesis H01.2 was rejected, #(96) = 3.478, p < .05,
partial n*> = .112. Therefore, X; = relative advantage is a significant predictor of Y> =
intent to adopt private cloud services; mathematically, b1.2=.102 in the resulting
regression model. As the effect size measurement, X1 = relative advantage could explain
11.2% of variance that other variables could not explain.

HO0,2: X>>= compatibility of private cloud is not a significant predictor of Y2 =
intent to adopt private cloud services; mathematically, 522 = 0 in the resulting regression
model.

From Table 28, the null hypothesis H02.» was rejected, #(96) = 8.248, p <.001,
partial n*> = .415. Therefore, X>, = compatibility is a significant predictor of Y> = intent to
adopt private cloud services; mathematically, b>>=.368 in the resulting regression
model. As the effect size measurement, X2 > = compatibility could explain 41.5% of
variance that other variables could not explain.

HO3.2: X32= complexity belief of private cloud is not a significant predictor of Y>
= intent to adopt private cloud services; mathematically, b32= 0 in the resulting
regression model.

From Table 28, the null hypothesis H03 > was rejected, #96) =2.772, p < .05,
partial n*> = .074. Therefore, X3, = complexity belief is a significant predictor of Y> =

intent to adopt private cloud services; mathematically, b32=".118 in the resulting
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regression model. As the effect size measurement, X32 = complexity belief could explain
7.4% of variance that other variables could not explain.

HO042: X4 = organizational size is not a significant predictor of Y2 = intent to adopt
private cloud services; mathematically, b42 = 0 in the resulting regression model.

From Table 28, the null hypothesis H04> was not rejected, #96) = 1.611,p =
.110. Therefore, X4 = organizational size is not a significant predictor of Y2 = intent to
adopt private cloud services; mathematically, b4 = 0 in the resulting regression model.

HOs: X5 = organizational structure is not a significant predictor of Y2 = intent to
adopt private cloud services; mathematically, s> = 0 in the resulting regression model.

From Table 28, the null hypothesis HOs> was not rejected; #(96) = .284, p =.777
when organizational structure is functional (i.e., = 1); #96) = .241, p = .810 when
organizational structure is divisional (i.e., = 2); #(96) = -1.073, p = .286 when
organizational structure is matrix (i.e., = 3). Therefore, X5 = organizational structure is
not a significant predictor of Y2 = intent to adopt private cloud services; mathematically,
bs2= 0 in the resulting regression model.

HO0¢.2: X6 = organizational culture is not a significant predictor of Y>=intent to
adopt private cloud services; mathematically, s> = 0 in the resulting regression model.

From Table 28, the null hypothesis H0¢> was not rejected; #96) = 1.192, p = .236
when organizational culture is clan (i.e., = 1); #(96) = .068, p =.946 when organizational
culture is adhocracy (i.e., = 2); #(96) = .787, p = .433 when organizational culture is

hierarchy (i.e., = 3); #(96) = .789, p = .432 when organizational culture is market (i.e., =
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4). Therefore, Xs = organizational culture is a significant predictor of Y2 = intent to adopt
private cloud services; mathematically, bs.1 = 0 in the resulting regression model.

HO7,: The linear model Y2 = bo2 + b12X1 + b22 X2 + b32X32 + baoXs + bsoXs +

be2X6 has no significant fit; mathematically, R(Y2 | X1 X2.2,X3.2,X4,X5.Xs) = 0.

From Table 28, the null hypothesis H07 was rejected, R? = .807, Adjusted R?
=.785, F(11,96) =36.567, p <0.001. The linear model Y> = 1.855 + .102X; + .368X22
+ .118X3.2 has a significant fit. The linear model could explain 80.7% and 78.5% of the
variance of the U.S. hospital IT managers’ adoption intent for the public cloud services
in the sample and population respectively. Since R? and adjusted R? had only 2.2%
difference, the generalization power of this private cloud services adoption model was
good.

Summary

Chapter 4 began with the outcomes of the pilot study. As its result, my research
on overall cloud computing adoption intent became splitting into public and private cloud
services adoption intent for U.S. hospitals. It described the adjustments of the survey
items in my survey instrument, research questions, and hypotheses. Then it followed by
the actual data collection procedure and result. I reported out the sampling framework
change from my company’s customer contact database to a research corporation’s
business profiling and contact database (http://www.hoovers.com). I reported the
demographical distribution of the 118 valid survey responses with comparison to the
target population, including count by region, hospital type, years of operation, and 2014

annual revenue. Descriptive statistics and histogram charts on the survey items and
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computed composite variables were included to analyze the data distribution of the
survey result. I tested the reliability and validity of the enhanced survey instrument with
PCA. I confirmed the linearity, normality, homoscedasticity, independence, and the
absence of multicollinearity of the two categorical regression models—public and private
cloud service adoption—by use of various statistical tests and charting techniques. That
included Durbin-Watson, VIF, KMO, correlation matrix, P-P plot, and scatterplots. I
used Cook’s distance test to identify and eliminate outliers. I conducted two SPSS GLM
analyses with the dependent variable set as U.S. hospital IT managers’ adoption intent for
public and private cloud services. Both SPSS GLM applied organizational structure and
organizational culture as fixed factors, and relative advantage, compatibility, complexity
belief, and organizational size as covariates.

As the result, the analyses indicated that relative advantage, compatibility, and
complexity behalf are significant predictors for U.S. hospital IT managers’ adoption
intent for both public and private cloud services. For public cloud services adoption, the
regression model showed statistical significance regarding organization size with U.S.
hospital IT managers’ adoption intent, but not for private cloud services adoption.
Furthermore, when organizational structure was functional and matrix and organizational
culture was clan and hierarchy in the sample cases, they showed significant relationships
with U.S. hospital IT managers’ adoption intent under the public cloud services adoption
model. However, organizational structure and organizational culture did not show any
statistically significant relationship with U.S. hospital IT managers’ adoption intent under

the private cloud services adoption model. Both categorical regression models seemed to
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have significant fit with the collected sample values. They were able to explain 62.1%
and 80.7% of the variance in the U.S. hospital IT managers’ adoption intent under the
public and private cloud adoption model. Chapter 5 provides the detailed interpretation of
the findings, limitations of the study, implications, and conclusion of the research

findings.
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Chapter 5: Discussion, Conclusions, and Recommendations

As presented by TCS (2011), the health care industry is slow in adopting cloud
computing. Particularly for U.S. hospitals, data privacy and security concerns seem to be
the major barriers (Japsen, 2013). Due to the lack of scholarly research on U.S. hospitals’
cloud computing adoption, the purpose of my research was to address this gap by
examining the suspected influential factors affecting U.S. hospital IT managers’ intent for
cloud computing adoption. This research used online self-administrated survey
questionnaire as the research instrument for data collection and utilized the SPSS GLM
for data analysis and hypothesis testing. I used a proportional stratified random sampling
method to select the participants for this study from a paid industrial contact profiling
service, (http://www.hoovers.com). The survey participants included IT executives of
U.S. hospitals who play a critical role in influencing technology adoption decisions and
work in the qualified U.S. hospitals within the 48 U.S. continental states.

As part of the pilot study recommendation, I separated the survey questions and
the result analysis for public versus private cloud services adoption. In total, I sent 2200
survey invitation emails to potential candidates together with two iterations of reminder
emails to encourage participation. As the result, I received 118 valid survey responses
within six weeks of my survey window.

The key findings included the significant relationships of all six influential factors
with the public cloud adoption of U.S. hospitals, and the significant relationship of the

three technological factors with the private cloud adoption of U.S. hospitals. The
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predictability of the public and private cloud adoption regression model seemed high with
adjusted R* equal to .583 and .785 respectively.

This chapter begins with the interpretation of the findings and results in
comparison with the peer-reviewed literature described in Chapter 2. Then follows the
generalization and validity limitation discussion, recommendation for further research
and implications for positive social change and future methodological and theoretical
development. Finally, it concludes with the summary of key essence of this study.

Interpretation of Findings

As my theoretical framework, I applied DOI and TOE framework to study the
influential impacts of U.S. hospital cloud adoption by the six identified critical factors
under the technological and organizational context. Based on my research result summary
as shown in Table 29, both the public and private cloud services adoption model
explained a significant portion of the outcome variances within the sample—62% (R* =
.621) and 81% (R? = .807) respectively. While all six predictor variables (technological—
relative advantage, compatibility, and complexity; and organizational—size, structure,
and culture) were significant for the public cloud services adoption, only the
technological factors were significant for the private cloud services adoption. This
finding on significance of technological factors on cloud services adoption aligned with
the research result produced by Powelson (2012) and Tweel (2012). It also confirmed the
DOI and TOE framework theory that the technological factors (relative advantage,
compatibility, and complexity) are critical for new technology adoptions (Rogers, 2003).

However, the orders of significance among these factors were quite difference. The
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previous researches concluded that relative advantage, compatibility, and complexity had
the highest correlation with the adoption intent for cloud computing technology.
Nevertheless, my research result showed that organizational factors had higher
correlation than technological factors with the public cloud services adoption. It
confirmed that one could not ignore the organizational factors for new technology
adoptions as stated in TOE framework (Tornatzky & Fleischer, 1990). On the other hand,
it disconfirmed Rogers’ (2003) claim that relative advantage, compatibility, and
complexity are three most significant influential factors for new technology adoptions.

I found organizational size was a significant factor with high correlation (B =
.774) under the organizational context, and compatibility had lower correlation than other
organizational factors (B = .174) with public cloud services adoption. Whereas, Dr.
Tweel (2012) reported that organizational size had no significant relationship with the
cloud adoption intent in his Arizona small business cloud adoption study. Additionally, it
is important to highlight that my research result also showed that the three organizational
factors had no significant relationship with the private cloud services adoption for U.S.
hospitals. It disconfirmed the TOE framework that factors under organizational context
are as critical as factors under technological context for new technology adoptions
(Tornatzky & Fleischer, 1990). Additionally, this specific finding on the difference of
influential factors for public versus private cloud services adoption brought up new
curiosity on how different cloud deployment models can affect the adoption intent. It will

require scholars to explore in the future.
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By comparing the regression coefficient of each technological factor—relative
advantage, compatibility, and complexity—between the public and private cloud services
adoption model, I discovered that the proportion of the significance of these three factors
were tremendously different in these two models. Under the public cloud services
adoption model, relative advantage, and complexity factor explained uniquely about 15%
variances (partial /]? = .147 and .153) of the adoption intent and compatibility explained
only 5% variances (partial 7]* =.053). In contrast, under the private cloud adoption
model, the compatibility factor explained uniquely about 42% variances (partial /]*
= .415) of the adoption intent while relative advantage and complexity explained only
11% (partial I]> = .112) and 7% variances (partial /] = .074) respectively, as shown in
Table 29. This empirical phenomenon revealed that private cloud services require a tight
integration with existing IT architecture of U.S. hospitals. It meant that IT decision
makers of U.S. hospitals have to consider the compatibility of private cloud services
seriously before their adoption. However, for public cloud services adoption, majority of
U.S. hospital IT managers are mainly considering for productivity tools, like Microsoft
0365 or other standalone cloud applications at the current stage. It may be the reason that
compatibility with hospitals’ belief and infrastructure is not a significant factor to
consider for public cloud adoption of U.S. hospitals.

Beyond the different finding on the complexity factor, my research confirmed that
relative advantage and complexity were the two most critical technological factors

influencing public cloud services adoption. It was similar to the research results reported

by other scholars (Aljabre, 2012; Armbrust et al., 2009; Campbell, 2010; Good, 2013;
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Ross, 2010; Shimrat, 2013). In Ekufu’s (2012) research, he also identified that perceived
ease of use was a critical factor for cloud services adoption, for which perceived ease of
use was the exact reverse measurement for complexity.
Table 29

Statistical Analysis Result Summary of the Regression Models

Public Cloud Services Adoption Private Cloud Services Adoption

Dependent Variable R Adp R Sig. R Adp R Sig.
Adoption Intent for U.S. .621 .583 .000 .807 785 .000
Hospital Managers

Independent Variables B Sig.  Partial n? B Sig.  Partial n°
Relative Advantage 238 .000 147 .102 .001 112
Compatibility 174 .022 .053 .368 .000 415
Complexity .249 .000 153 118 .007 .074
Organizational Size 774 .000 119

Organizational functional -5.086 .000 130

Structure matrix -2.951 012 .063

Organizational clan 2.478 .020 .054

Culture hierarchy 2.976 .003 .084

Turning to organizational factors, based on my research results, organizational
structure defined as functional and matrix had significant relationships with public cloud
services adoption, but not for divisional and others. When an organization is structured
functionally, it means the segregation of duty and line of authority is based on its internal
business functions, like finance and sales, instead of external services or market
segments. Since matrix organizational structure is a combination of functional and
divisional structure, it implies that the functional element of organizational structure has
influential relationship to the public cloud services adoption. From Table 29, functional

and matrix organizational structure had negative regression coefficient values, -5.086 and
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-2.951 respectively in the public cloud services adoption model. It implied that a hospital
has less tendency to adopt public cloud services if its organization structure is either
functional or matrix. One possible explanation was that functionally organized hospitals
are more internal tasks focused than divisionally organized hospitals, for which are more
cross-functional and care more on team collaboration. Therefore, an organization with a
functional structure has less demand to take advantage of the anywhere and anytime
information sharing capability of public cloud services for enhancing team collaboration.
In addition, organizations with a functional structure are traditionally more risk adverse
and have less willingness to accept changes, like new technology adoptions (Griffin,
2015).

As arecap on the definition of organizational culture as clan and hierarchy, clan
meant that an organization focuses on organizational flexibility and internal capability
while hierarchy meant that the organization focuses on stability and internal capability.
From my research results, only organizational cultures as clan and hierarchy had a
significant relationship with the public cloud services adoption, but not for organizational
cultures as adhocracy and market. The latter two both carries external positioning as their
essential cultural element. By comparing the two essential elements of these four types of
organizational culture (internal capability versus external positioning), it confirmed that
internal capability consideration had stronger influence than external positioning on
public cloud services adoption for U.S. hospitals. This empirical phenomenon made sense
as hospitals have important social responsibility to provide high quality of patient

services than making profit. It meant that they normally focus more on their internal
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capability than external positioning. When an organization is eager to improve internal
capability, it will have a higher tendency to adopt public cloud services. The main reason
is to take the technological advantages of public cloud services on cost reduction,
scalability, and flexibility, as stated in Chapter 2.

Another important finding from my analysis results was that organizational
factors had no significant relationship with private cloud services adoption. One
explanation is that the benefit and risk of private cloud services are not tremendously
different from existing technologies deployed in U.S. hospitals. Therefore, regardless of
what organizational size, structure, and culture, U.S. hospitals can consider adopting
private cloud services when they believe they are compatible and appropriate to increase
their internal capabilities.

Limitations of the Study

In general, the limitation of my study was in-line with the expected limitation
stated in Chapter 1. For instance, the R? and adjusted R? were significant for both the
public (.621 and .583) and private cloud services adoption model (.807 and .785). There
were moderate omitted variable biases existed as the regression models could not explain
only about 41.7% and 21.5% of the outcome variances based on the adjusted R? values.
The internal reliability and validity check of my research could be limited as I newly
introduced organizational structure and organizational culture as two categorical
predictor variables that no other scholar did any similar cloud adoption research before.
According to the feedback from the SMEs under the pilot study, the original definition of

the organization structure was not clear. Although I made additional effort to provide



200
further explanation of the definition of the organization structure in my final study, it
might still be not clear enough for some survey respondents. It might have affected their
responses in the survey.

In the first two weeks of the survey-taking window, the response rate was very
low (only about 1%). I had to send two rounds of reminder emails to encourage survey
responses. This situation might be due to the extreme workload of U.S. hospital IT
managers, serious concerns for data security and privacy, or even due to public
relationship policy of U.S. hospitals that limited the survey responses. Therefore, early,
late, and non-response bias might exist.

The sample size was slightly below the minimal requirement of 110 after I
excluded the outliers based on Cook’s distance value. The ultimate number of relevant
sample cases applied in the public and private cloud services adoption model are 109 and
108 respectively. Since there was slightly insufficient statistical power to represent the
population, the generalization from the sample to target population was less conclusive
(Koshar, 2015). Therefore, it affected the external validity. Researchers should caution to
apply my research results to other types of enterprise and geographical locations as my
target population was the qualified hospitals of the 48 U.S. continental states (Trochim,
2001). As the technologies, types, nature, and acceptance of the cloud services are rapidly
evolving, researchers who attempt to replicate my research study in the future might get
very different results. Due to this fact, the predictive validity may be limited. However,
longitude statistical studies on the cloud services adoption can still provide very valuable

information on how the cloud adoption intent changes over time and relates to different
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factors. Using abstracted influential factors recommended in the DOI and TOE theories
allowed me to maintain higher reliability of my research results over time. This approach
was different from other scholars’ research methodology. For example, Ross (2010) used
cost-effectiveness, need, reliability, and security effectiveness applied in his cloud
adoption study.

Another limitation of my study was the lack of sample representation for any
federal government and newly established (i.e., years of operation is between one to ten
years) hospitals. Since I did not have sample data to examine IT managers’ cloud
adoption intent and attitudes on the six influential factors for these groups of hospitals, it
would be inappropriate to draw any conclusion for them.

Recommendations

As the lack of commonly agreed definitions for organizational structure and
organizational culture, using them as predictor variables for cloud adoption study might
draw some levels of confusion to the survey participants. In the future academic research,
scholars may try to consider using multiple Likert scale survey items to construct the
composite predictor variables for organizational structure and organizational culture,
instead of using categorical variables as in my study. The statistical analysis procedure
and interpretation of the result will then be simpler as traditional MLR procedures can be
used, without the need to use dummy coding or GLM. It can also avoid the concern of the
interactive effect of the categorical variables. That may affect the result of the regression
model depending on the sequence of the independent variables entering into the model

(Stockburger, n.d.). Furthermore, using multiple survey items to create a composite
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variable will have the advantage to provide a more reliable survey instrument.
Researchers can conduct reliability test with Cronbach’s alpha statistics for continuous
variables but cannot measure reliability of a categorical variable value precisely.

Since my research was a new academic study for the cloud services adoption of
U.S. hospitals, there was a lack of any previous baseline statistics and findings for
reference. Therefore, more future quantitative and qualitative research on the similar
topic can help to create a better understanding of the critical factors that affect cloud
services adoption for U.S. hospitals. As my sample size was marginally acceptable, I
would recommend future quantitative research studies to increase their sample size to at
least 200 and include the types of hospitals missed in my research. With sufficient sample
size, it will avoid the situation of insufficient sample cases after researchers removed
outliers. Although using an external business profiling and contact service provided an
easy way to access the required IT contacts of U.S. hospitals, it did not provide the
credibility to convince potential respondents to accept my survey invitations. That
perhaps was the reason for my low response rate. One of my pilot study SMEs suggested
collaborating with some Healthcare IT associations for survey research. With the support
to send the survey invitations to their association members, researchers can expect a
higher response rate.

Due to time and resource constraints, I excluded environmental factors in my
research. Given about 41.7% and 21.5% of outcome variances could not be explained in

my public and private cloud services adoption models, including environmental factors in
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future research studies may explore other critical factors. That may contribute to creating
a better predictive regression model for cloud services adoption of U.S. hospitals.

Another recommendation for future research is to conduct case studies for U.S.
hospitals to analyze qualitatively on how different influential factors can affect their
adoption intent for different types of cloud services. Finally, in order to provide a better
global generalization for my research findings, it requires other scholars to conduct
similar research studies with my survey instrument and method. Those results will help to
confirm or disconfirm my result findings for hospitals in other countries. This kind of
longitude quantitative studies can provide the trending perspectives on the changes of the
influential factor effect over time with cloud services adoption.

Implications

With better awareness on the degree of influence of the six identified critical
factors on cloud services adoption for U.S. hospitals, IT managers can develop their
strategies and deployment roadmaps for cloud services adoption with higher confidence
on the expected value and resistance. Furthermore, the cloud services providers can
allocate the right level of resources and set proper priority to enhance their cloud service
capacities. That will then accelerate the services adoption through improved values and
reduced barriers. In certain areas, it also helps the cloud services providers to create
effective public awareness and training to help addressing the low cloud adoption
situation for U.S. hospitals.

As described in Interpretation of Findings section, organizational structure as

functional and matrix had significant negative relationships with the public cloud services
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adoption. It implied that hospitals with traditional functional line of authority are more
redundant to adopt public cloud services. As a logical explanation, those hospitals are
more conservative in nature and unwilling to adjust to service focus like hospitals
organized divisionally. Therefore, they are more resistance to new technology adoptions.

When the organizational culture of a hospital is clan or hierarchy, it meant that
they have higher focus on internal capability than external market positioning. From the
regression analysis result, it showed significant positive relationship with the public cloud
services adoption. It provided the implication that hospitals carry these organizational
cultures would be more favor to adopt public cloud services. One explanation was that
the IT managers of those hospitals are more eager to improve IT capability by adopting
new technologies.

The discovery of significant difference for factors influencing public versus
private cloud services adoption intent for U.S. hospitals implied cloud services providers
should consider taking different approaches and priorities to drive different types of cloud
services adoption. For example, promoting the high-security nature of private cloud
services to hospitals with serious data security and privacy concerns can help shifting the
mindset on cloud services and realize some of their benefits. It can be a stepping-stone
for future broader cloud services adoption.

In the Interpretation of Findings section, I reported that the predictive power of
the three technological factors for private cloud services adoption was quite high
(adjusted R? = .785). Nevertheless, for public cloud service adoption, the three

organizational factors were the main influencers instead of technological factors.
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Therefore, it implied that cloud services providers might need to customize their cloud
services selling approach for hospitals with different organizational size, structure, and
culture. For small cloud services providers that do not have sufficient sales resources, it
may be better to focus on developing and selling the private cloud services for U.S.
hospitals. It is because they can have a higher confidence in their return on investment
based on their technological capabilities and features as those are the key drivers for
adoption.

As an important positive social change implication, with higher and faster cloud
services adoption for U.S. hospitals, its main benefit in reducing IT investment, scalable
pay-as-you-go cost structure, high service reliability, and anywhere and anytime
information accessibility can reflect quickly on better quality and lower cost services for
patients. In a long run, when patients’ medical and health data can be securely kept in and
accessible through the cloud environment, the overall health care service efficiency
improvement via patient information sharing among health care providers can
tremendously accelerate.

Under theoretical framework, I confirmed that the technological and
organizational factors extracted from DOI and TOE theories were significant to predict
the public cloud services adoption for U.S. hospitals. It aligned with other scholars’ cloud
adoption research for different industries and countries (Hailu, 2012; Tweel, 2012; Ross,
2010). However, the organizational factors under the TOE framework did not seem
applicable to the private cloud services adoption, as my research result showed no

significance for the organizational factors in the private cloud adoption model. This
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finding was novel, as I could not identify any other scholar reported similar finding
before. However, to confirm this empirical phenomenon, I encourage scholars to conduct
additional studies in the future to explore further the relationships between cloud services
deployment models and influential factors.

Conclusions

The objective of my research study was to examine the predictive power of six
critical factors influencing the cloud computing adoption intention for U.S. hospitals, as
described in DOI and TOE framework. As the conclusion, I completed my study with
validated survey instrument and comprehensive statistical analysis with confirmed
validity and reliability. The outcomes of my research were two good predictive models
for cloud services adoption intent for U.S. hospitals—one for public cloud services and
another for private cloud services. Based on the adjusted R? values, these two regression
models could explain a high proportion of the outcome variances—58.3% and 78.5%
respectively.

Under the public cloud adoption model, I confirmed that the three technological
(relative advantage, compatibility, and complexity) and the three organizational factors
(organizational size, organizational structure, and organizational culture) were
statistically significant in predicting the U.S. hospital IT managers’ adoption intent. All
six factors had a positive correlation with the adoption intent, except for functional and
matrix organizational structure having negative correlation. The finding of positive
relationships between the technological factors and cloud adoption intent aligned with

previous research studies on cloud computing adoption under different research settings,
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such as industries and countries (Aljabre, 2012; Armbrust et al., 2009; Campbell, 2010;
Good, 2013; Ross, 2010; Shimrat, 2013). Nevertheless, it was an important discovery that
U.S. hospitals having functional or matrix organizational structure and clan or hierarchy
organizational culture had significantly negative and positive influence respectively to the
public cloud services adoption. It is noteworthy to mention that U.S. hospitals with
functional organizational structure had the highest absolute regression coefficient (5.086)
with public cloud services adoption intent while compatibility factor had the lowest
absolute regression coefficient (.176). In addition, the organizational factors had overall
higher absolute regression coefficient than technological factors under the public cloud
adoption model for U.S. hospitals. It implied organizational factors carrying more weight
than technological factors influencing U.S. hospital IT managers on adopting public
cloud services. It might tie back to the importance of the subjective norm impacts on the
cloud adoption as concluded by Ross (2012).

Under the private cloud adoption model, the statistical result confirmed that only
the three technological factors had significantly correlation with the adoption intent and
showed no significant influence from all three organizational factors. One potential
explanation for this phenomenon was that private cloud service nature does not carry any
attribute limiting organization with certain size, structure or culture to adopt.

These findings provided the hospital IT managers and cloud services providers
the insights to decide their strategies and roadmaps on how to accelerate their cloud
services adoption by influencing these six identified factors to a favorable direction. As a

positive social change, by accelerating the cloud services adoption, hospitals should be
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able to realize the financial and technological benefit of cloud services. Ultimately, it will
be beneficial to the patients by having a much higher quality and lower cost health care
services.

With the limitation of my sample size, I recommend scholars who plan to adopt or
extend my research in the future to utilize a bigger sample size. Furthermore, adding
environmental factors into my regression models may improve further the models’
predictive power on cloud services adoption intent for U.S. hospitals.

Finally, my research study filled the academic research gap in the current limited
understanding of the influential factors for the cloud services adoption of U.S. hospitals.
It provided additional insights on the influential power of organizational structure and
organizational culture on the public cloud services adoption and difference on influential

factors for U.S. hospitals’ public and private cloud services adoption.
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Appendix A: U.S. Hospitals’ Cloud Computing Adoption Survey Instrument

Cloud Computing Adoption Survey for U.S.
Hospitals - Consent

Purpose. You are invited to participate in a research

study being conducted for a dissertation at Walden UNIVERSI l Y
University. The purpose of this study is to examine the
relationship between the technological and
organizational factors and the intention for IT
managers of U.S. hospitals to adopt cloud computing.
It will take about 10 to 15 minutes to complete and there is no deception in this study. | am
interested in your opinions about cloud computing adoption.

Participation Requirements. Participants for this study are expected to (a) have some
expertise pertaining to the IT activities and operations, (b) play a role in influencing the
adoption decision process and (c) work in a U.S. hospital.

Research Personnel. The following people are involved in this research project and may be
contacted at any time:

Terence Lee (Researcher-Primary contact) - terence.lee@waldenu.edu

Dr. Christos Makrigeorgis (Dissertation Chair) - christos.makrigeorgis@waldenu.edu
Potential Risk / Discomfort. There is no known or anticipated risk in this study. However, you
can choose not to answer any question that makes you uncomfortable.

Potential Benefits. If desired, you could receive a summary of the investigation finding upon
completion of the research. The results will have scientific interest that may eventually have
benefits for people who contemplate adopting cloud computing. No incentive for participation
is offered.

Anonymity/Confidentiality. The data collected in this study are confidential. To ensure the
anonymity of the respondents, this survey tool is utilized to provide anonymous response
collection. All data is collected and coded such that your email are not associated with them.
In addition, the coded data are made available only to the researcher associated with this
project.

Withdrawal. Participation in this study is voluntary and can withdraw at any time. You may
also skip questions on the questionnaire if you do not want to answer them. | am happy to
answer any question that may arise about the study. Please direct your questions or
comments to: Terence Lee, via email at: terence.lee@waldenu.edu. If you have any question
concerning your rights as participants, you would contact the Walden Research Participant
Advocate (phone: 1-612-312-1210 or email: irb@waldenu.edu).

1) To authorize participation in this survey, please consent to the above
anonymity/confidentiality terms, please select "l agree" below to proceed with the survey.
*Please keep/print a copy of this consent page for your future reference.

| agree

| do not agree
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2) For the purpose of this survey, the participant is expected to have IT knowledge, play a
critical role in influencing technology adoption decisions and work in an U.S. hospital.
Please indicate whether you meet this profile.

Yes

No

Cloud Computing Adoption Survey for
U.S. Hospitals - P.1

N WALDEN
e following questions are related to the nature
and characteristics of your hospital. l IDIIXZE'I{SIJ I Y

3) What is the state your hospital located in?
AL - Alabama

AR - Arkansas

AZ - Arizona

CA - California

CO - Colorado

CT - Connecticut

DC - Washington DC

DE - Delaware
FL - Florida
GA - Georgia
GU - Guam

IA - lowa

ID - Idaho

IL - lllinois

IN - Indiana
KS - Kansas
KY - Kentucky
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LA - Louisiana

MA - Massachusetts

MD - Maryland

ME - Maine

MI - Michigan

MN - Minnesota

MO - Missouri

MS - Mississippi

MT - Montana

NC - North Carolina

ND - North Dakota

NE - Nebraska

NH - New Hampshire

NJ - New Jersey

NM - New Mexico

NV - Nevada

NY - New York

OH - Ohio

OK - Oklahoma

OR - Oregon

PA - Pennsylvania

RI - Rhode Island

SC - South Carolina

SD - South Dakota

TN - Tennessee

TX - Texas

UT - Utah

VA - Virginia

VT - Vermont
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WA - Washington

WI - Wisconsin

WYV - West Virginia

WY - Wyoming

4) What type of hospital is yours belonging to?

Federal Government

State / Local Government

Nonprofit

For Profit

Other (Please Specify)

5) How many years has your hospital been in operation?

1-5

5-10

10-20

20-30

30-60

>60

6) What is your hospital's annual revenue range of last year?

$2-10 Million

$11-50 Million

>$50 Million

N/A

7) Approximately how many staffed beds does your hospital currently have?

50-99

100-199

200-299
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300-399

400-499

> 500

Cloud Computing Adoption Survey for

U.S. Hospitals - P.2

The following questions are related to the
technological factors of cloud computing

adoption.

WALDEN
UNIVERSITY

8) Information technology can be used for a number of objectives. To what extent is cloud
computing adoption important for the fulfillment of the following objectives in your hospital?

Strongly
Disagree

Disagree

Slightly
Disagree

Neutral

Slightly
Agree

Agree

Strongly
Agree

Increase the
profitability of your
hospital.

Allow your hospital to
provide additional
services.

Allow for reduced
operational costs.

Allow better
communication with my
patients, staff, and
medical partners.

Require no up-front
capital investment.

Provide dynamic and
high service
availability.

9) Please indicate how much you agree or disagree with each of the following statements
based on a scale ranging from strongly disagree to strongly agree.

Strongly

Disagree

Disagree

Slightly
Disagree

Neutral

Slightly
Agree

Agree

Strongly
Agree
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Public cloud adoption
is consistent with your
hospital's belief and
value.

Attitudes towards
public cloud adoption
in your hospital is
favorable.

Public cloud adoption
is compatible with
your hospital's IT
infrastructure.

Public cloud adoption
is consistent with your
hospital's business
strategy.

Public cloud service is
cumbersome to use.

Using public cloud
services requires a lot
of mental efforts.

Using public cloud
services are often
frustrating.

The user interface of
public cloud services
is clear and
understandable.

Public cloud services
are easy to purchase
and startup.

10) Please indicate how much you agree or disagree with each of the following statements
based on a scale ranging from strongly disagree to strongly agree.

Strongly
Disagree

Disagree

Slightly
Disagree

Neutral

Slightly
Agree

Agree

Strongly
Agree

Private cloud adoption
is consistent with your
hospital's belief and
value.

Attitudes towards
private cloud adoption
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in your hospital is
favorable.

Private cloud adoption
is compatible with
your hospital's IT
infrastructure.

Private cloud adoption
is consistent with your
hospital's business
strategy.

Private cloud service
is cumbersome to
use.

Using private cloud
services requires a lot
of mental efforts.

Using private cloud
services are often
frustrating.

The user interface of
private cloud services
is clear and
understandable.

Private cloud services
are easy to purchase
and startup.
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Cloud Computing Adoption Survey for U.S. Hospitals - P.3

The following questions are related to the organizational factors of cloud computing adoption.

11) What is your hospital's primary organizational structure? *It means the hierarchical
arrangement of lines of authority of an organization in this survey.

Functional - Employee's reporting channel is organized by their functional
responsibilities and tasks.

Divisional - Employee's reporting channel is organized by product / service
types.

Matrix - It is a combination of functional and divisional structure.

Other (Please Specify)

12) What is the most perceived organizational culture of your hospital?

Clan - have an internal and organic focus on value creation and
performance criteria. Emphasize on internal collaboration.

Adhocracy - have an external and organic focus on value creation and
performance criteria. Emphasize on product/service creativity.

Hierarchy - have an internal and control focus on value creation and
performance criteria. Emphasize on internal control.

Market - have an external and control focus on value creation and
performance criteria. Emphasize on external competition.

Other (Please Specify)
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The following questions are related to your
current cloud computing adoption status and
future plan.

240

WALDEN
UNIVERSITY

13) Please indicate how much you agree or disagree with each of the following statements
based on a scale ranging from strongly disagree to strongly agree.

Strongly
Disagree

Slightly

Disagree Disagree

Neutral

Slightly
Agree

Agree

Strongly
Agree

Intends to adopt
public cloud
computing.

Likely to take steps
to adopt public cloud
computing in the
future.

Likely to adopt public
cloud computing in
the next 12 months.

14) Please indicate how much you agree or disagree with each of the following statements
based on a scale ranging from strongly disagree to strongly agree.

Strongly
Disagree

Slightly

Disagree Disagree

Neutral

Slightly
Agree

Agree

Strongly
Agree

Intends to adopt
private cloud
computing.

Likely to take steps
to adopt private
cloud computing in
the future.

Likely to adopt
private cloud
computing in the
next 12 months.
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1

IRB Materials Approved - Terence Lee
1 message

IRE <IREwaidenu. edu- Wed, Jan 14, 2015 at 3:20 PM
To: Terencs Les dtI:EI'EI'II:E-]EE-m'ﬂﬁHEI"II.I.E-(‘]-I.I:I-
Ci: Chiisios Makrigeorgls <chaistos makngeorpls@waltany aous=, IRS <IRB@waklenu edu:-

Dear Mr. Les,

This emall is to notify you that the Institutional Review Board (IRE) has approved your application for the
study entitied, "Regression Analys!s of Cloud Computing for U.5. Hospials.”

YOUr approva # 15 01-14-15-0040953. ¥ ou will nieed to raference his nUMBer In your dissertation and In
any future funding or publication submissions. Also attached to this e-mail Is the IRE approved consent
form. Piaasa note, If is s already i an on-ine fomat, you wil need to update that consent docwmant t
Inciugs the IRE approval numbar and expiration date.

Your IRE approval eXpires on January 13, 2015, Ona month befors this expiration date, you wil be &Nt 3
Conbnuing Review Form, which must be submitted If you wish tn coilect data beyond the approwal
expiration dats.

Your IRB approval s contingent wpon your adherznce 1o the exact procadures sescrived in me final
wension of the IRB application document that has been submified as of Mis dale. This Incledes maintaining
YOUF current status with the university. Your IRE approval is only vaild while you are an actively enrolisd
studant at Walkden University. [T you need to take a leave of absence or are ofheraise unabde o remain

actively enralied, your IRE approval s suspended. Absolutely MO particlpant recrultment or data coliaction
May DoCur whika 3 studant |5 not mﬂ}' enrolled.

Iyou nead to maks any changes o your research sl or procedurss, you must obian IRE approval oy
submiting the IRE Request for Change In Procedurss Fomm. ¥ou will rsceive confimmation with 3 stabs
updata of the requast within 1 wesk of SUbmitting the change requast foam and are not permited o
Implement changes prior to recelving approval. Please nobe Mat Walden Universlty does not accept
respoasiblity or Dabliky for research activiies conducted without the IRE's approval, and the University wil
rot aceapt o grant cred for student work that Taiks to comply with the policies and procedurss retated o
ethical standards In resaan,

VWhen you submitied your IRS applicafion, you made 3 commitment to communicata both dlscrele adverse
events and general probliems to the IRE within 1 wesk of thelr occumence/realization. Fallure to do 50 may
resalt in Invalidation of daia, loss of academic credit, andior loss of legal protecions otherwise avallable o
the researcher.
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Appendix D: Dr. Tweel’s Approval Email

Print Page 1 of 1
Subject: | Re: Permission for use of your survey questionnaire
From: | Terence Lee (rhkd99@yahoo.com)
To: drtweel@gmad com;
Data: Sunday, October 13, 2013 8:17 PM

Hi Dr. Tweel,

Thanks a lot. By the way, | forgot to mention that your dissertation is very well written and
provided a lot of insights to me. After my dissertation has been approved, | shall send you a

copy.

Best Regards,
Terence
Cell: (928)863-6123

On Sunday, October 13, 2013 7:18 PM, dr Tweel <drtweel@gmail.com> wrote:
Hello Terence,
Sure you have my permission. Good luck in your dissertation.
p.s. it would be nice if you could email a copy of your dissertation after you publish it.
Regards
Dr. Tweel
On Oct 13, 2013 9:48 PM, "Terence Lee" <rhk499@yahoo.com> wrote:
Dear Dr. Tweel,

I am currently pursuing my PhD study and working on my PhD dissertation. My research
interest is also related to cloud computing adoption, but with the focus on corporations
under health care industry. | would like to study some factors which have excluded from
your research, such as organization culture, organization structure and external support
infrastructure (like legal compliance), on their influence to cloud computing adoption. Also
whether the intent of adoption varies based on different cloud service models, such as
laaS, SaaS and PaaS.

| would like get your permission to use your research survey instrument in the research
paper named "Examining the relationship between technological, organizational and
environmental factors and cloud computing adoption”.

If you are the copyright owner and it is okay for you, please grant your permission by
relying to this email. Thanks a lot for your support.

Best Regards,
Terence
P.S. | got your email address from your dissertation listed above.

https://us-mg0 mail yahoo com/neo/launch? rand=fsp6nb49s6dm 1012772013
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Appendix E: Survey Invitation Letter

WALDEN UNIVERSITY

A higher degree. A higher purpose.

Ph.D. Research Survey of Cloud Computing Adoption for
U.S. Hospitals

Dear Sir / Madam,

My name is Terence Lee and is a Ph.D student at Walden University. Currently, I am
conducting research to identify influential factors that will affect the cloud computing
adoption intent for U.S. hospitals.

Due to your IT professional position in a qualified U.S. hospital, you have been identified
as a key person to be a participant ("respondent") in my survey process. Below is a link
to the online survey:

http://kwiksurveys.com/s.asp?sid=vytu82c1f9l1gfg482692

I shall keep your response completely confidential. The survey is web-based. The
participant’s name, email and IP address will not be attached to any results, and to
ensure your anonymity we will not report any results that have less than three
respondents. The survey is user-friendly, and you should be able to complete it within 10
minutes or less.

I appreciate your willingness to participate and value your feedback. My hope is this
survey can help persons like you to understand better the drivers and barriers to cloud
computing adoption. With better cloud computing services and adoption plan, scholars
and industry experts expect the business agility and cost structure for U.S. hospitals will
be tremendously improved.

If you have any questions, please feel free to contact me at Terence.lee@waldenu.edu.

Thank you for your participation. As to thank you, I shall provide my research result
summary to you via email after my dissertation have been finished.
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