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ABSTRACT 

Despite the availability of vaccines, every year 40,000 individuals die due to the direct 

effect of Invasive Pneumococcal Disease (IPD) or its complications. IPD has been 

associated with 100,000-135,000 hospitalizations for pneumonia, 57,000 cases of 

bacteremia, and 300 cases of meningitis in the United States every year. Little is known 

about IPD epidemic patterns beyond annual seasonality, and this lack of understanding 

has limited the ability to detect early changes in IPD epidemiology that may lead to large 

outbreaks. To mitigate this gap in understanding, a retrospective cohort design study was 

conducted using a population-based cohort from the National Hospital Discharge Survey 

for the period 1979-2006. This study set out to determine whether invasive infection by S. 

pneumoniae in the United States occurs in an epidemic pattern of a predictable recurrent 

nature and definable frequency. The theoretical basis for the study was drawn from the 

dynamic modeling of stochastic epidemic systems, and the analysis utilized time-series 

methods to examine the data. These analyses lead to the finding that IPD epidemics 

demonstrate a chaotic dynamic and a discrete, non-Markov process; that is, there is no 

predictable pattern to epidemics of IPD. The results of this study, that recurrent events 

consistent with periodic epidemics could not be identified, provide support for the current 

method of IPD surveillance and existing models of IPD dynamics. The present practice of 

mass vaccination by risk group, as opposed to vaccination for a predicted outbreak, is 

supported by the results of this study. These evidence-supported interventions will yield 

significant reductions in the morbidity and mortality associated with IPD, and the 

positive social change that results from improved health outcomes, reductions in 

suffering, and decreased health care costs. 
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CHAPTER 1: INTRODUCTION TO THE STUDY 
 

Background 

Invasive pneumococcal disease (IPD), resulting from invasion of a normally 

sterile site by the gram-positive bacterium Streptococcus pneumoniae (S. pneumoniae) 

(Centers for Disease Control and Prevention, 2007), is responsible for morbidity, deaths, 

and as a result, use of healthcare resources (Ament, Baltussen, Duru, Rigaud-Bully, de 

Graeve, & Christie et al., 2000; Balakrishnan, Crook, Morris, & Gillespie, 2000; Poland, 

1999; Whitney, Farley, Hadler, Harrison, Lexau, & Reingold et al., 2000). Over a century 

after identification of S. pneumoniae by Pasteur and Sternberg (Austrian, 2000; Bridy-

Pappas, Margolis, Center, & Isaacman, 2005; Gray, 2000; Pasteur, 1881; Sternberg, 

1881), a sizeable body of knowledge has been accumulated, covering the characteristics 

of the bacterium (Austrian, 2004), its interaction with its human hosts (Austrian, 2004), 

and the treatment of diseases resulting from infection with S. pneumoniae (Austrian, 

2004). However, much remains unknown about the epidemic pattern of IPD. This is a 

serious deficiency, inhibiting our ability to predict outbreaks of this set of serious and 

potentially life-threatening diseases. The following overview covers the current state of 

understanding of IPD, its causal factors, the seasonality of IPD, and an approach to 

understanding the overall epidemic pattern of IPD. A brief examination of the technique 

used in determining the existence of an epidemic pattern is also provided. A more 

thorough review is found in chapter 2. 
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The Current State of Understanding 

IPD is responsible for approximately 40,000 deaths due to complications of 

infections occurring annually in the U.S. (Bloom, Wheeler, & Lynn, 1999; McDaniel & 

Swialto, 2004). The impact of IPD on morbidity is also high, with as many as 100,000-

135,000 hospitalizations for pneumonia, 57,000 cases of bacteremia, and 300 cases of 

meningitis annually in the United States (CDC, 2006). IPD affects the very young, the 

old, the immnunocompromised, and indigenous groups more than the general population 

(Butler, 2004). Children (McNabb et al., 2007), African Americans (Robinson et al., 

2001), Alaska Natives (Butler & Schuchat, 1999), and Native Americans (Benin et al., 

2003) are among the groups with highest risk for the disease.  

The following section reviews the mechanisms employed by S. pneumoniae to 

survive the host immune response and the mechanisms by which it achieves sufficient 

levels of colony survival to remain endemic in the population. These survival 

mechanisms include the ability of S. pneumoniae to alter the host/pathogen relationship, 

serotype variations, and the acquisition of drug resistance (Bridy-Pappas et al., 2005). 

Variability in preventive measures affects infection dynamics, which over time is a major 

determinant of epidemic behavior (Grenfell et al., 2004). It is IPD epidemic behavior that 

this study sought to understand. 

S. pneumoniae is a human-restricted commensal that will be acquired at one point 

or another by the majority of the population (Sleeman et al., 2006; Bridy-Pappas et al., 

2005). Nearly all children experience bacterial colonization and carriage during the first 

two years of life (Brueggemann, Peto, Crook, Butler, & Kristinsson, 2004; Hammitt, 

Bruden, Butler, Baggett, Hurlburt, Reasonover et al., 2006). The pediatric subpopulation 
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serves as a reservoir for transmission to other subpopulations. Adults who live with a 

child under five years of age, or a child who has not received appropriate vaccination, are 

more likely to be colonized than adults who do not live with children under five years of 

age (Hammitt et al., 2006). Colonization with S. pneumoniae is often a normal, benign, 

asymptomatic condition. However, when S. pneumoniae invades the sterile tissues of the 

body, life-threatening disease may result (Pericone, Park, Imlay, & Weiser, 2003). 

Invasiveness is not required for bacterial life or reproduction (Briles, Novak, Hotomi, 

Ginkel, & King, 2005). However, the ability of virulent strains of S. pneumoniae to evade 

host defenses confers some advantage over less virulent strains within the same host. The 

selection pressures within the individual host might encourage the growth of any 

bacterium that successfully eludes host immune responses. Thus, the more virulent strain 

exchanges transmissibility from the host for the ability to reproduce (Lipsitch & Moxon, 

1997). Whether as a result of host selection pressure or chance, the pneumococcus might 

leave the nasopharynx, invade sterile tissues, and cause disease in some vulnerable hosts. 

The mechanism for this action is dependent on bacterial morphology, and variation in 

morphology provides the biologic mechanism needed for development of IPD in the 

susceptible host (Rytel, Dee, Ferstenfeld & Hensley, 1974). Infection, however, is 

distributed in the population according to risk factors. As S. pneumoniae relies on 

airborne transmission, contact patterns between colonized and susceptible persons 

determine transmission patterns, and can provide selection pressures that force bacterial 

mutation, further promoting virulence and invasiveness (Petermann & Rios, 2004; 

Temime, Boelle, Opatowski, & Guillemot, 2008; Wallinga, Edmunds, & Kretzschmar, 

1999).  
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Prior to the availability of effective antibiotics and vaccines, epidemics of 

pneumococcal disease were common in closed populations, such as prisons, military 

barracks, and dormitories (Butler & Cetron, 1999; Hoge, Reichler, Dominguez, Bremer, 

Mastro, Hendricks et al., 1994). Outbreaks within these closed communities are less 

common today, but still occur, often in nursing homes and other residential health care 

settings (Romney et al., 2008). Long-term care facilities also provide a reservoir for S. 

pneumoniae (Butler & Cetron). In the United States and several other countries, day care 

centers have been identified as environments favorable for selection and amplification of 

S. pneumoniae, including drug-resistant strains (Dagan et al., 2002; Lencastre & Tomasz, 

2002).  

Invasive pneumococcal infections have a bimodal age distribution, most often 

affecting children younger than five years and adults older than 65 years. However, IPD 

can occur in any age group and is associated with a high mortality rate, exhibiting in 

some cases as much as a 20% case-fatality rate (Christenson, Lundbergh, Hedlund, & 

Ortqvist, 2001; McDaniel & Swialto, 2004). The incidence of IPD varies across the US, 

with different communities displaying widely different rates (Huang, Finkelstein, & 

Lipstich, 2005). This variation in rate may be due to differences in contact patterns 

(Bansal, Grenfell, & Meyers, 2007) and these differences prevent complete eradication of 

S. pneumoniae colonization, as between patch transmission prevents local extinctions 

from becoming global extinctions (Hagenaars, Donnelly, & Ferguson, 2004).  

Considering host factors in addition to age, it has been shown that S. pneumoniae 

presents a risk of disease to several distinct groups (Robinson et al., 2001; Butler & 

Schuchat, 1999). Susceptible populations include those with conditions that significantly 
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increase a patient’s vulnerability to infectious disease, such as cardiovascular disease, 

cardiac transplant, cerebrovascular disease, lower and chronic respiratory diseases, renal 

disease, diabetes mellitus, chronic alcoholism and its complications, sickle cell disease, 

asplenia (either functional or anatomic), HIV infection, genetic anomalies of the immune 

system, and malignant neoplasms (Amber, Gilbert, Schiffman, & Jacobson, 1990; Gilbert 

et al., 2002; Haddad et al., 2008; Hjuler et al., 2007; Juhn et al., 2008; Smith, Erlandson, 

Shulman, & Stern, 1957; Torres & Bisno, 1973). Epidemics often display temporal 

variability, with variation in the causal agent, host responses, and transmission affecting 

this variability (Bansal et al., 2007). Seasonal changes in disease incidence, that is, cyclic 

and predictable changes in disease patterns varying by the seasons of the year, have been 

identified for many diseases (Bauch & Earn, 2003). IPD has a seasonal pattern of 

incidence (Dowell, Whitney, Wright, Rose, & Schuccat, 2003). It is known that S. 

pneumoniae outbreaks occur during winter months (Dowell, Whitney, Wright, Rose, & 

Schuccat, 2003; Kim et al., 1996: Talbot et al., 2005), with the exception of Alaska 

(Davidson et al., 1989). The reason behind this seasonality remains unclear, with 

suggestions ranging from temperature influences to seasonal changes in host physiology 

(Dowell et al., 2003; Dowell, 2001). Whatever the cause, seasonality might be viewed as 

a component of another larger phenomena known as periodicity, the frequency-dependent 

recurrence of epidemics (Yulemetyev et al., 2003).  

Periodic epidemic patterns, that is, patterns of epidemics at a larger time-scale 

than seasonal, have been identified and examined for other endemic infectious diseases, 

and this knowledge used for the prevention of these diseases. Temporal models of disease 

dynamics provide many of the tools needed to identify periodic epidemic patterns. Using 
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a temporal model applied to epidemic phenomenon, Finkenstaedt and Grenfell (2000) 

showed changes in the epidemic pattern of measles. Additionally, Broutin, Guegan, 

Elguero, Simondon and Cazalles (2005), and Guris et al. (1999) used this model to 

establish the quadrennial pattern of pertussis outbreaks. The identification of a pertussis 

epidemic outside of this expected frequency led to identification of waning immunity in 

the adult population (Broutin, Guégan, Elguero, Simondon, & Cazelles, 2005; Galanas et 

al., 2006; Güris et al., 1999). On the other hand, influenza, once thought to show an 

epidemic pattern of ten year intervals, has been shown to be aperiodic through the 

application of temporal modeling (Dowdle, 2006); this result disallowed the use of 

relative frequency for influenza epidemic planning, forcing epidemiologists and public 

health planners to rely on other techniques in order to project influenza epidemics 

(Viboud, Boelle, Carrat, Valleron, & Flahault, 2003). Establishing or refuting the 

existence of a recurrent epidemic pattern for IPD will allow public health practitioners to 

apply similar techniques, with similar results.  

It is not known whether IPD epidemics occur in a periodic fashion, outside of our 

understanding of the seasonality of the diseases. Currently, there is limited understanding 

of IPD epidemic patterns beyond annual seasonality. Dowell (2001) has acknowledged 

the absence of this research, reasoning that annual seasonal patterns can be more easily 

“locked in” than can long-term patterns. A study that typifies the work done on the 

annual seasonality of IPD was conducted by Dowell, Whitney, Wright, Rose, and 

Schuchatt (2003). These researchers used information from the Active Bacterial Core 

Surveillance database and an unspecified time-series analysis process to clearly establish 

the annual seasonality of IPD. However, this study did not examine the epidemic pattern 
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outside of the annual seasonality. Other studies examining the epidemic pattern of IPD 

have concentrated on examining the relationship between annual seasonality and other 

respiratory infections (Ampofo et al., 2008; Butler & Schuchat, 1999; Kim et al., 1996; 

Talbot et al., 2005), but not the epidemic pattern beyond a year. A study that might have 

revealed the epidemic pattern of a subtype of IPD, pneumococcal bacteremia, was 

prevented from doing so by the inclusion of other causes of bacteremia in the sample 

population model (Danai, Sinha, Moss, Haber, & Martin, 2007). The study reported 

increased incidence of bacteremia during a time period when other studies reported 

decreased IPD incidence (Hammitt et al., 2006; Jackson & Janoff, 2008; McBean, Park, 

Caldwell, & Yu, 2005; Moore et al., 2004; Poehling et al., 2006; Shah & Ratner, 2005). 

This could have been due to the influence of the epidemic pattern of pathogens other than 

S. pneumoniae, and precludes use of the results in understanding IPD epidemic patterns.  

Several characteristics of IPD and the biology of S. pneumoniae provide a 

plausible basis for a periodic epidemic pattern to exist. However, no study analyzing IPD 

incidence rates over time in the United States (or any other location) to establish 

periodicity could be found in a thorough review of the existing literature. This study 

proposes to address this gap.  

Problem Statement 

There is a substantial body of evidence that establishes S. pneumoniae as a 

significant human pathogen, and IPD as an important cause of morbidity and mortality 

(Bloom, Wheeler, & Lynn, 1999; Centers for Disease Control and Prevention, 2006; 

Dochez & Avery, 1915; McDaniel and Swialto, 2004; Osler, 1898). Currently, the annual 

seasonality is understood, but not the larger epidemic patterns of IPD, and we lack 
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information needed to plan, execute, and evaluate preventive measures, and to identify 

events where the pathogen has changed its epidemiology (Broutin, Guégan, Elguero, 

Simondon, & Cazelles, 2005; Galanas et al., 2006; Güris et al., 1999). Therefore, further 

examination of the IPD epidemiology with an emphasis on the disease epidemic 

characteristics over time is needed to help guide prevention strategies. This investigation 

provides knowledge that helps to addresses this significant issue of public health. 

Nature of the Study 

In order to describe the epidemic pattern, a retrospective cohort study was 

performed. Examining a cohort taken from the National Hospital Discharge Survey 

database for the time period 1979 to the present resulted in a detailed retrospective 

description of the large epidemic pattern of invasive disease caused by S. pneumoniae. 

The study set out to establish the existence or absence of a recurrent epidemic pattern and 

frequency, with the intent of enhancing our understanding of IPD. The study determined 

the incidence of IPD during seasonal increases and established the endemic level of the 

disease in the United States from 1979-2006 to answer the following research question 

regarding the patterns of IPD incidence over time, in all ages, genders, and geographic 

locations, in the United States: 

Research Questions 

The study answered the following research questions: 

(1)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

in the aggregate, in the United States? 
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(2)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by gender, in the United States? 

(3)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by age (in ranges), in the United States? And 

(4)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by geographic area, in the United States? 

Hypotheses 

The study answered the research questions by testing the following null and 

alternative hypotheses:  

(1) Ho1: IPD did not occur in periodic epidemics of a definable frequency 

outside of the predicted seasonal increase in incidence in the United 

States for the period from 1979-2006, in the aggregate. 

(2) Ha1: IPD occurred in periodic epidemics of a definable frequency in 

addition to the predicted seasonal increase in incidence in the United 

States during the period from 1979-2006, in the aggregate. 

(3) H o2: IPD did not occur in periodic epidemics of a definable frequency 

outside of the predicted seasonal increase in incidence in the United 

States for the period from 1979-2006, by gender. 
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(4) H a2: IPD occurred in periodic epidemics of a definable frequency in 

addition to the predicted seasonal increase in incidence in the United 

States during the period from 1979-2006, by gender. 

(5) H o3: IPD did not occur in periodic epidemics of a definable frequency 

outside of the predicted seasonal increase in incidence in the United 

States for the period from 1979-2006, by age (in ranges). 

(6) H a3: IPD occurred in periodic epidemics of a definable frequency in 

addition to the predicted seasonal increase in incidence in the United 

States during the period from 1979-2006, by age (in ranges). 

(7) H o4: IPD did not occur in periodic epidemics of a definable frequency 

outside of the predicted seasonal increase in incidence in the United 

States for the period from 1979-2006, by geographic area. 

(8) H a4: IPD occurred in periodic epidemics of a definable frequency in 

addition to the predicted seasonal increase in incidence in the United 

States during the period from 1979-2006, by geographic area. 

A more detailed discussion of the objectives, research question and hypotheses 

will take place in chapter 3. 

Purpose of the Study 

The purpose of this study was to determine whether IPD epidemics in the United 

States occur in a periodic fashion, with a predictable frequency. Two objectives were 

addressed in order to answer that question. First, what was the endemic level of IPD in 

the United States for the period from 1979-2006 in the aggregate, and by gender, age (in 

ranges), and geographic area? Second, what was the incidence level of IPD during 
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seasonal increases in the period from 1979-2006? The answers to these questions 

provided information fundamental to the purpose of the study. 

Theoretical Base for the Study 

The identification of epidemic patterns, and construction of a corresponding 

epidemic model, is based upon a sound theoretical construct drawn from the concept of 

dynamic modeling of epidemics (Keeling & Rohani, 2008a). Specifically, the temporally 

forced model by Keeling and Rohani (2008c) provides the foundation for the study. This 

model has an extensive history of use in the examination of epidemic patterns in 

varicella, measles, pertussis, mumps, and rubella (Keeling & Rohani) as discussed in 

chapter 2.  

One of the strengths of the temporally forced model is that it can be applied to 

random systems (Keeling & Rohani, 2008c). In a random system, where the disease is 

endemic, the influence of external events (such as a new pool of susceptible subjects) on 

the normal random state can adjust the chaotic and random behavior towards regularity 

(Yulmetyev, Yulmetyeva, & Gafarov, 2005). Application of dynamic modeling methods 

and time series analysis to epidemic disease permits the quantification of the degree of 

randomness, or conversely, the regularity and predictability of a system (Yulmetyev et 

al., 2003). Should regularity and predictability exist in an epidemic disease, it then 

becomes possible to use this knowledge to develop a predictive model (Yulmetyev et al., 

2005). The study could have used the results to modify an existing Temporally Forced 

Model of IPD dynamics (Sutton, Banks & Castillo-Chavez, 2008). This model would 

have been modified by applying any periodic component as a factor in the existing 

models’ transfer rate equation to reflect a cyclical increase or decrease in disease 
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incidence at the dominant frequency. As no periodicity was identified, the existing model 

stands. This will be addressed further in the review of the literature in chapter 2. The 

following section provides definitions of uncommon or otherwise ambiguous terms that 

will be used throughout subsequent chapters. 

Definitions 

23-Valent Pneumococcal Polysaccharide Vaccine (23PPV) (Pneumovax or Pnu-

Immune: A purified polysaccharide vaccine targeted against 23 different serotypes of the 

Streptococcus pneumoniae bacterium (American Public Health Association, 2000). 

Chaos: The result of stochastic behavior occurring in and influencing a 

deterministic system (Stewart, 2002). For example, when an erratic time series is 

observed within a deterministic system, the system is exhibiting chaos (Taniguchi & 

Kakizawa, 2000). 

Clockwork Process: A term describing a system dynamic that appears to occur as 

if by the mechanism of a gear-driven machine, with no variation or deviation from the 

predicted path (Bjornstad, Finkenstadt, & Grenfell, 2002).  

Colonization: The establishment of a microbial colony with no signs of disease 

(Hierholzer, 1996). 

Cooley-Tukey Algorithm: A Fast Fourier Transform (FFT) algorithm for use in 

computer processing. By the use of recursive operations (in this context, dividing the 

main problem into sub-problems of the same type), the Cooley-Tukey implementation of 

the FFT reduces a large Discrete Fourier Transform into several smaller Discrete Fourier 

Transforms. This reduces the time and complexity of a Fourier Transform, and facilitates 
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the design and use of computer programs for Fourier Transforms (Cooley & Tukey, 

1965).  

Deterministic System: A system in which randomness does not influence the 

development of future states of the system; the same starting conditions will always result 

in the same observed output (Aron, 2007; Keeling and Rohani, 2008d).  

Deterministic Model: A model where, given the same starting conditions (initial 

conditions) the exact same pattern or trajectory is observed for each realization of the 

model (Keeling & Rohani, 2008b).  

Disease Fadeout: The extinction of a disease expressed in a mathematical model, 

most likely as a result of a sufficient drop in the number of infected and susceptible 

individuals in a given population (Keeling & Rohani, 2008b). 

Endemic Level: The usual or expected level of disease in a defined population 

during a defined period of time (Hierholzer, 1996). 

Epidemic: An unusual and higher than expected level of disease in a defined 

population in a defined period of time (Hierholzer, 1996).  

Fourier Transform: The mathematic construction of an arbitrary function using 

sinusoids, so that the functions being studied can be written as linear combinations. Any 

periodic function can be represented as a series of harmonically related sinusoids, and the 

application of the mathematic construction of arbitrary functions using these sinusoids is 

called Fourier analysis (Wei, 1994b; Ziemer, Tranter, & Fannin, 1983).  

Fast Fourier Transform (FFT): The FFT is a means for efficiently computing the 

discrete Fourier transform for frequency domain time-series analysis. It overcomes the 
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computational complexity of an n-point discrete Fourier transform through an iterative 

process by means of trigonometric and complex exponential functions (Wei, 1994b).  

Frequency Domain Analysis: A statistical method for describing a fluctuating 

time series in terms of sinusoidal behavior at a set of frequencies. The fundamental 

approach to frequency domain analysis is the Fourier transform, which decomposes a 

periodic function into a sinusoidal function (Wei, 1994b). 

Herd Immunity: The resistance of a population to invasion by and spread of an 

infectious disease due to sufficient levels of immunity in that population (Fine, 1993). 

Index Case; The first recognized case in a series of cases in a given host 

population (Hierholzer, 1996). 

Infectivity: The ability of a pathogen to cause infection in a susceptible host 

(Nelson, 2007). 

Invasive Pneumococcal Disease (IPD): The disease resulting from invasion of a 

normally sterile site by the bacterium Streptococcus pneumoniae (CDC, 2007). 

Therefore, the presence of S. pneumoniae in the blood or neural tissues, including CSF, 

meets the conceptual definition for this study.  

 ICD-9-CM. The International Classification of Diseases 9th Revision, Clinical 

Modification. A scheme for classification of diseases, where diagnoses are coded into 

three to six digit numbers (Kongstvedt, 2003).  

 Markov Process: A stochastic process where future probabilities are determined 

by the most recent conditions, not by past events (Gnedenko, 1962; Kemeny & Snell, 

1960; Papoulis, 1984).  
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Markov Chain: A type of Markov Process; in a Markov Chain, only the current 

state has any influence on the future of the system, and then only on the next state. 

Therefore, future states are based in probability, rather than deterministically (Kemeny & 

Snell, 1960). 

Noise: For the purposes of this study, noise refers to the uncertainty in the 

recorded data that can influence the degree of stochasticity in the epidemic dynamics. 

This noise can arise from under- or over-reporting of the disease or misdiagnosis 

(external noise) (Keeling & Rohani, 2008b).  

Non-Vaccine Types: S. pneumoniae serotypes not targeted by either one or both of 

the approved pneumococcal vaccines (Hausdorff, Bryant, Kloek, Paradiso & Siber, 

2000). 

Periodicity: In terms of epidemic dynamics, periodicity is defined as the 

frequency-dependent recurrence of epidemics; a larger phenomena than seasonality 

(Yulmetyev et al., 2003).  

Periodogram: A periodogram is the visual representation of the periodic 

components in a series of observations resulting from a Time Series Analysis by the 

Fourier or Fast Fourier Transform approaches (Wei, 1994a). 

PnCRM7 (Prevnar): The heptavalent conjugated vaccine currently approved and 

recommended for pediatric administration in the United States (Bernatoniene & Finn, 

2005). This vaccine formulation includes seven of the most common invasive serotypes 

of S. pneumoniae. This vaccine does not confer lifetime immunity to IPD (Millar et al., 

2006). 
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Seasonality: Cyclic changes in disease patterns varying with annual recurring 

events, such as weather patterns and school starts (Fisman, 2007; Keeling & Rohani, 

2008c).  

Sinusoidal Behavior: The results of a mathematic transform of information to the 

form of sine waves (sinusoids). The sinusoids, when expressed graphically in the form of 

periodograms, can be used to identify periodic signals or events, and to determine their 

frequency (Ziemer, Tranter, & Fannin, 1983). 

Stationary Process: A stationary process refers to any stochastic process that 

increases or decreases systematically over time (Wei, 1994c).  

Stochasticity: The presence of time indexed random variables in a process; e.g. 

random behavior in a system over time (Wei, 1994c). Because of the chance nature of 

disease transmission, stochasticity is inherent in epidemic processes (Keeling & Rohani, 

2008a). 

Stochastic Model: A mathematic model that approximates and accounts for 

random events occurring in time and addresses any Markov property present in the 

dynamics of an epidemic. For most population sizes, a stochastic model will be more 

realistic than a deterministic model, but will be more complex mathematically (Keeling 

& Rohani, 2008a).  

Time Series: A sequence of data points taken at specific time intervals. These data 

points are considered to be dependant or correlated, and thus the order of the observations 

is important (Wei, 1994a).  
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Time-Series Analysis: A statistical method for analysis of a time series or other 

ordered sequences of observations; particularly in terms of analysis and prediction made 

of observations taken on defined and often evenly spaced time intervals (Wei, 1994e).  

Virulence: The relative intrinsic ability of an agent to produce disease, or the 

severity of the disease and damage to the host after infection by an agent (Hierholzer, 

1996; Nelson, 2007). 

Assumptions, Limitations, Scope and Delimitations 

Assumptions 

A key assumption of this study was the accuracy of the data from the NHDS 

database. The reliance of the NHDS on ICD-9CM codes for classifying discharge 

diagnosis means that the quality of the data set is greatly dependent on the accuracy of 

coding (Guevara et al., 1999). To ensure accurate data, the NHDS employs quality 

control techniques dependant on the submitted format. For the most part, coding errors 

are the greatest hazard to reliability of the data within the NHDS (Popovic, 2001), and 

error detection procedures are in place to ensure that these hazards are reduced. Hospital 

discharge data have been considered by some to be more accurate and reliable than that 

obtained by surveys, as the information on diagnosis is obtained directly from the health 

care providers. Recall bias on the part of the patient is thus less of a concern (Machlin, 

Cohen & Thorpe, 2000). Therefore, the accuracy of the NHDS data may be assumed. 

Additional discussion of the NHDS, its sampling frames and techniques, and studies 

addressing the accuracy of the NHDS are included in chapter 2. 
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Limitations 

A key limitation to the study related to analysis of the data by race or ethnicity. 

Data on race and ethnicity within the NHDS is often missing (Dennison & Pokras, 2000), 

or underreported (Kozak, 1995). This missing data may be attributed to the fact that many 

hospitals are not mandated to gather this information. As of 2005, only 22 states required 

hospital collection of this information, and often, the information was not always 

collected (Schoenman et al., 2005). Thus, the research excludes the use of race or 

ethnicity in analysis. 

The Scope of the Study 

The study examined the periodicity of IPD within the United States only. The 

occurrence of IPD outside of this defined geographical area was not considered in the 

analysis. Thus, generalization to populations outside of the United States, where vaccine 

uptake and prevalent S. pneumoniae serotypes may differ, may not be valid.  

Additionally, the study was bounded by the characteristics of the NHDS. 

Occurrence of IPD in hospitals that do not report discharges to the NHDS will not factor 

into the analysis. Although this boundary to the study may have impacted on the 

calculation of incidence rates, it should not preclude the determination of any pattern of 

IPD epidemics, as the NHDS provides a sufficiently large population to detect 

perturbations in the epidemic dynamics.  

Significance of the Study 

Filling the Existing Gap in Our Understanding of IPD 

The pattern, if any, of pneumococcal outbreaks had yet to be established. It is 

important in light of S. pneumoniae’s endemicity and potential lethality that a lack of 
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understanding of the IPD dynamic did not continue. It is this gap in our knowledge that 

this study will help to fill. 

Currently, there is a dearth of research on large epidemic patterns in S. 

pneumoniae invasive infections; thus, public health and clinical practitioners lack the 

fundamental knowledge to make the appropriate choice of predictive models for long-

term planning, and epidemics may go unacknowledged or their severity unrecognized 

when they deviate from the normal pattern or rate of prevalence. Furthermore, 

identification of epidemic patterns can aid in the assessment of vaccine efficacy; that is, 

the extent to which the current vaccines address the most common virulent serotypes. If 

an epidemic pattern changes, or if an epidemic pattern emerges, this change in disease 

dynamics might alert practitioners to a change in IPD epidemiology that requires 

attention and action. As an example of changing IPD epidemiology, there are reports of 

pneumococcal serotypes responsible for IPD that are not addressed by either of the 

current pediatric or adult vaccines. There are several of these non-vaccine types (NVTs) 

associated with IPD in the post-vaccine era, and at least one report refers to a fluctuating 

pattern in NVT-associated IPD incidence (Akduman, Ehret, & Judson, 2006), reflecting 

the impact of NVT emergence on epidemic dynamics. The knowledge that was gained as 

a result of this study has a potential impact on the planning and execution of public health 

interventions to prevent or ameliorate outbreaks of IPD, and the potential for positive 

social change through the reduction of death and disability. 
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Positive Social Change Emerging from the Study 

The results of this study will facilitate improved disease surveillance through the 

use of robust mathematical models to predict epidemics. The improvement in 

surveillance emerges from the ability to identify outbreaks occurring at variance with the 

predicted pattern. If a novel serotype, or a serotype not addressed by the vaccines, 

emerged as a significant pathogen, or if vaccine-mediated immunity waned earlier than 

predicted, the periodic pattern of IPD epidemics (if a pattern exists) might vary, alerting 

practitioners to the need for further investigation. Additionally, this information might 

lead to enhanced disease surveillance through the ability to employ long-run probability 

calculation (Kachigan, 1982) for epidemic forecasting.  

This improved surveillance and predictive capability could significantly reduce 

the public health impact of IPD by reducing the number of hospitalizations, and 

providing an impetus for vaccination. This promotes positive social change through 

improved health outcomes and decreased health care costs (Ament et al., 2000). 

Currently, prevention interventions targeted against IPD emphasize vaccination, 

particularly in the pediatric population (Overturf, 2000; Parsons & Dockrell, 2002). 

Although vaccination has been successful in reducing the incidence of IPD, vaccination 

against S. pneumoniae is not universal, as some people elect to not vaccinate their 

children or themselves. Establishment of a pattern to IPD epidemics could facilitate 

prediction of outbreaks; vaccination campaigns can then target these unvaccinated 

subpopulations prior to the periodic rise in incidence and encourage them to receive 

vaccination. Unvaccinated individuals might well seek vaccination in the face of a 



21 

predicted epidemic, rather than relying on herd immunity (Bauch, 2005), thus decreasing 

morbidity and mortality.  

The efficacy of pneumococcal vaccines, and vaccine coverage of the most 

common virulent serotypes is an issue of some importance (Jackson et al., 2003; Madhi, 

Whitney, & Nohynek; Maki, 2004; McDaniel & Swialto, 2004) and on-going research 

(e.g., Maekelae & Kayhty, 2004; Whitney et al., 2006). Assessment of vaccine efficacy 

and changes that might be required in vaccine serotype coverage can be improved if we 

understand the epidemic dynamics of IPD. It could have been possible that administration 

of vaccine at the nadir of an epidemic cycle, with measurement of attack rate at the apex 

of a subsequent cycle, could give a false impression of poor vaccine efficacy, when the 

increased incidence of IPD was part of a predictable natural phenomenon. Controlling for 

this would clarify the relationship between the vaccine and surrounding, confounding 

conditions. As no periodicity exists, this can be excluded as a factor in efficacy, and 

researchers can target other areas impacting vaccine efficacy, such as molecular factors 

(Obert et al., 2006).  

Summary 

This introduction provided a brief examination of the current state of knowledge 

addressing IPD. The characteristics of the bacterium that facilitate colonization and 

infection were addressed, with an emphasis on the endemicity of pneumococcal 

colonization. Additionally, the basic concepts of infectious disease dynamics, specifically 

seasonality and periodicity, were introduced. The use of mathematical modeling to 

describe and understand disease dynamics was briefly explained, and a potential 

approach to determining or refuting the existence of a periodic epidemic pattern in the 
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disease dynamics of IPD was presented. Definitions for uncommon terms have been 

provided in this introductory chapter, as well as the hypotheses, assumptions, and 

boundaries for the study. Finally, a discussion of the positive social change that could 

result from an investigation into IPD epidemic dynamics was offered. Further explanation 

and clarification will be found in subsequent chapters. 

Invasive pneumococcal disease presents a significant risk to vulnerable 

subpopulations, despite an extensive body of knowledge covering its causal factors, at-

risk hosts, successful protocols for treatment, and vaccine-based prevention. Much 

remains to be uncovered about IPD, particularly whether or not IPD epidemics occur in a 

predictable, periodic manner. This research yields information on the absence of 

perturbations in the epidemiologic pattern over the study period, when compared to the 

normal incidence rate. These perturbations would have constituted evidence of large 

epidemics of invasive disease, and if present would have been examined and analyzed to 

establish the existence of epidemic periodicity, and the frequency of that periodicity or 

aperiodicity The expected outcome was establishment of whether IPD occurs in 

predictable epidemics over the long term, in all ages, genders, and geographic areas. The 

results of this study provide information valuable to other researchers, and could generate 

many other lines of inquiry. To further understand the extent of our current understanding 

of IPD, and the methods that may be applied to identification of possible epidemic 

patterns, a more in-depth and thorough review of the literature follows. Chapter 3 

contains a discussion of the study methods.  



CHAPTER 2: REVIEW OF THE LITERATURE 

Introduction and Background 

In the United States, Invasive Pneumococcal Disease (IPD) is responsible for 

approximately forty thousand deaths each year from pneumococcal infection of all types 

(Bloom, Wheeler, & Lynn, 1999; McDaniel & Swialto, 2004), with an estimated 175,000 

hospitalizations due to the disease annually (CDC, 2006). This disease is not evenly 

distributed throughout the population in the United States. The very young, the old, those 

with immunonological deficiencies, and indigenous groups bear the major burden of this 

disease (Butler, 2004). Variation within subpopulations exists in IPD incidence, with 

children (McNabb et al., 2007), African Americans (Robinson et al., 2001), Alaska 

Natives (Butler & Schuchat, 1999), and Native Americans (Benin et al., 2003) among the 

high-risk groups for the disease.  

A great deal of knowledge has been accumulated on IPD, encompassing the 

natural history of the responsible pathogen, the subpopulations at risk for IPD, and the 

treatment of IPD. The study of past efforts into understanding the pathology and 

epidemiology of S. pneumoniae establishes a basis for reflection on the many current 

inquiries focused on the pneumococcus. Understanding the organism and its 

epidemiology, developing and assessing clinical approaches to the treatment of 

pneumococcal disease, and prevention of the disease are lines of inquiry reflective of past 

research, present efforts, and future endeavors. The character of current inquiry into 

invasive diseases resulting from S. pneumoniae infection falls largely within the confines 

of those lines of inquiry. Much of the recent work concentrates on extending the work on 

clinical treatment, vaccine efficacy, vaccine delivery, microbial genetics and antibiotic 
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resistance (Castillo, Rickman, Brodine, Ledbetter, & Kelly, 2000;  Guchev et al., 2005; 

Metlay et al., 2006). What is not understood is the epidemic pattern of IPD. While 

seasonality has been established, the pattern of epidemics of IPD has not. 

The following chapter presents a critical review of the literature, to establish the 

current state of understanding of IPD. Key words used in the literature search included 

pneumococcus, Streptococcus pneumoniae, invasive pneumococcal disease, 

pneumococcal bacteremia, time-series analysis, epidemiologic modeling, and disease 

modeling. Common abbreviations were also identified, such as IPD. To enhance the 

value of returned searches, key words were grouped into concepts using Boolean 

operators (and/or/not), for instance, pneumococcal AND modeling. 

The primary databases used were PUBMED, MEDLINE, the Cumulative Index of 

Nursing and Allied Health (CINAHL), ScienceDirect, and EBSCO Academic Search 

Premier. Returned searches were evaluated for literature that addressed the general 

research goals, and these documents were obtained, either by electronic download, 

interlibrary loan, or in some cases by purchase from the publisher. The literature was then 

categorized and cataloged using EndNote X1 for Mac (Thompson Reuters, Philadelphia, 

PA) bibliographic software. 

The literature search proceeded in an iterative fashion. The list of references in 

each obtained document was used to identify additional literature, in particular primary 

sources, and to identify additional key words and concepts to further direct the search. To 

aid in the identification of new literature, an automated search of the PUBMED database 

was conducted weekly using the myNCBI feature and previously validated search 

strategies. 
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In order to move towards an understanding of the epidemic pattern of IPD, it is 

first necessary to address our current understanding of IPD. This review of the literature 

provides a historical background and examines the pathogen itself. The review addresses 

the epidemiology of IPD, the subpopulations at risk, and the prevention of IPD. Much of 

the biology and epidemiology of S. pneumoniae is the basis by which the bacterium 

survives the host immune response (Grenfell et al., 2004) and maintains an endemic 

presence in the host. Variations in S. pneumoniae serotype, drug resistance, alterations in 

host/pathogen relationships, and variations in preventive measures are all part of infection 

dynamics, which over time is a major determinant of epidemic behavior (Grenfell et al.), 

and a clear understanding of these elements is needed as a basis for the study. A review 

of other diseases with epidemic periodicity follows, accompanied by a discussion of the 

mathematical modeling that has been employed to find epidemic periods in other 

diseases.  

Of particular pertinence to the research is past work on the epidemiology of IPD, 

wherein the annual seasonality of S. pneumoniae invasive infection has been established 

(Dowell, Whitney, Wright, Rose, & Schuchatt, 2003). However, patterns of large 

epidemics, that is, the existence or absence of a long-term recurring pattern to epidemic 

S. pneumoniae, have not been properly addressed. Currently, there is a dearth of research 

on large epidemic patterns in S. pneumoniae invasive infections; thus, public health and 

clinical practitioners lack the fundamental knowledge to make the appropriate choice of 

predictive models for long-term planning, and epidemics may go unacknowledged or 

their severity unrecognized when they deviate from the normal pattern or rate of 

prevalence. Furthermore, identification of epidemic patterns can aid in the assessment of 
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vaccine effectiveness; that is, the extent to which the current vaccines address the most 

common infectious serotypes. If the epidemic pattern changes, or if the epidemic pattern 

has been eliminated by successful vaccines and vaccination programs, a pattern re-

emerges; a variation in an established pattern might alert practitioners to a change in 

pneumococcal epidemiology that requires attention and action. Epidemic pattern changes 

were noted subsequent to the implementation of measles vaccine (Noah, 1989), and a 

deviation from the normal periodicity alerted the public health community to changes in 

pertussis epidemiology (Galanis, King, Vaughese, & Halperin, 2006). However, in both 

of these examples, the long-term periodic pattern of epidemics was known. The pattern, if 

any, of pneumococcal outbreaks has yet to be established. It is important in light of S. 

pneumoniae’s endemicity and potential lethality that this does not continue. It is this gap 

in our knowledge that the study will fill. 

Currently, interventions targeted to the prevention of pneumococcal disease 

emphasize vaccination (Dagan & Lipsitch, 2004). However, reductions in funding for 

children’s health and disparate patterns in realized access to health care (including 

vaccinations) hinder our ability to promote vaccination as an intervention. Establishment 

of a pattern to IPD epidemics could facilitate prediction of outbreaks. Vaccination 

promotion efforts could use this information to create incentives to vaccination (e.g., 

unvaccinated individuals might well seek vaccination in the face of a predicted epidemic) 

(Bauch, 2005; Bauch & Earn, 2004). Additionally, this information might lead to 

enhanced disease surveillance through the ability to employ long-run probability 

calculation (Kachigan, 1982) for epidemic forecasting, and two, the ability to detect the 

atypical patterns of epidemics (Gertz et al., 2003; Hsieh et al., 2006). In order to justify 
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this statement claiming positive social change implications for this research, and to 

clearly delineate the gap in the current knowledge regarding epidemic periodicity in IPD, 

a review of the literature follows, starting with an examination of S. pneumoniae as a 

significant human pathogen of historical importance. 

Streptococcus pneumoniae as a Significant Human Pathogen of Historical Importance.  

S. pneumoniae is a gram-positive pneumococcal bacterium identified almost 

simultaneously by Pasteur and Sternberg in 1880 (Austrian, 2000; Bridy-Pappas, 

Margolis, Center, & Isaacman, 2005 & Isaacman, 2005; Gray, 2000; Pasteur, 1881; 

Sternberg, 1881). Ubiquitous and highly adaptive, this bacterium has levied an enormous 

burden on its human hosts. Responsible for a variety of life-threatening diseases 

(Tomasz, 1999), S. pneumoniae is a frequent cause of Community-Acquired Pneumonia. 

Additionally, S. pneumoniae is the causal agent for a variety of invasive diseases that 

bear a high mortality rate, often attacking the most vulnerable members of a population, 

accounting for a large burden of disease, disability, and death.  

The subject of concentrated study for over 128 years, much of S. pneumoniae’s 

natural history and epidemiology is known, but much remains to be discovered. The 

history of our endeavors against S. pneumoniae is one of advances in understanding, from 

the genetic profile of the 92 distinct serotypes, to identification of at-risk populations, to 

development of efficacious antibiotics and vaccines.  

The natural history of the pneumococcus and IPD has evolved through several 

distinct but overlapping periods; the first an initial period of microbial identification and 

establishment of a basic nomenclature and pathology, followed by a period emphasizing 

treatment, composed of pre- and post-antibiotic phases, a period focused on vaccination, 
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both pediatric and adult, and finally, research into the pneumococcal genome. The first 

steps towards understanding the microbiology, pathology, pathophysiology, and 

epidemiology of S. pneumoniae were taken when Sternberg and Pasteur isolated the 

pneumococcus from human saliva (Sternberg from his own, and Pasteur from a pediatric 

victim of rabies), and later grew the organism in vitro (Austrian, 1960). Subsequently 

given a number of names, among them Microbe septicemique du salive, Mircoccus 

pasteuri, Bacillus saivarius septicus, Micrococcus pneumiae cruposae, Diplococcus 

pneumoniae, Micrococcus or Diplococcus lanceatolus, Micrococcus of sputum 

septicemia and Frankel’s pneumococcus (also Pneumobacillus of Frankel), prior to 

settling on the now standard Streptococcus pneumoniae in 1974 (Jordan, 1918; Watson, 

Musher, Jacobson, & Verhoef, 1993; Welch, 1892), the pneumococcus was the focus of 

many researchers, but it remained for Weichselbaum to identify the pneumococcus as the 

pathogen responsible for lobar pneumonia (Austrian, 1960). Soon after Weichselbaum’s 

recognition of S. pneumoniae’s role in lobar pneumonia, the pneumococcus was found to 

have invasive characteristics, demonstrating pathology outside of the pulmonary system. 

By the end of the 1880s, S. pneumoniae had been found in blood, cerebrospinal fluid 

(CSF), cardiac valves, joint fluid, and the middle ear (Austrian, 1981). The clinical and 

epidemiologic aspects of pneumococcal infection were soon documented; Osler (1899) 

described the signs, symptoms, and risk groups for lobar pneumonia only three years 

after Weichselbaum’s work. A variety of researchers contributed to the extensive body of 

knowledge surrounding the pneumococcus, developing the ways and means to identify 

the pneumococcus in pathological samples and methods to assign a serotype to isolated 

bacterium. Neufeld, in particular, expanded our knowledge of the pneumococcus, 
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describing the Quellung reaction (describing the swelling of the bacterium in the face of 

antiserum, and still used for typing of S. pneumoniae) and capsular types 1 and 2; 

Haendel, Dochez and Gillespie added to Neufeld’s work by defining a third capsular type 

(Austrian, 1999; Austrian, 2004; Watson et al., 1993). The next and overlapping phase of 

discovery addressed the clinical aspects of pneumococcal disease, both in its pneumonia 

and invasive manifestations. 

 Prior to widespread deployment of antibiotics, the use of horse and rabbit antisera 

was the primary therapeutic regimen for treatment of invasive pneumococcal disease 

(Austrian, 1999), requiring serotyping of the specific pneumococcus of clinical interest in 

order to choose the appropriate antisera (Howard, 1921). An enzyme derived from a 

related bacterium was found to selectively kill serotype 3 S. pneumoniae, raising hopes 

for another pharmacotherapy; however, the enzyme levels required in vivo were 

extremely high, and the enzyme was only effective against serotype 3, and not the more 

virulent serotype 1 (Avery & Dubos, 1931). Thus, antisera remained the sole 

pharmacologic intervention, with the result that IPD commonly exhibited multi-organ 

system involvement and a high mortality, despite up to 50% mortality reductions through 

the use of equine antisera therapy (Howard, 1921). An example of multi-organ system 

invasive pneumococcal disease reflecting the pre-antibiotic period is the triad of 

pneumococcal pneumonia, meningitis, and endocarditis originally described in 1881, and 

later named Austrian’s Triad (Austrian, 1957; Beadsworth, Wooton, Chenzbraun, & 

Beaching, 2007; Taylor & Sanders, 1999). Treatment of pneumococcal disease by 

antisera was short-lived as a clinical approach, as antibiotic development occurred very 

soon after the implementation of antisera therapy. The development of effective 
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antibiotics was clearly a boon to the patient and the clinician confronted with 

pneumococcal disease, as before the availability of effective antibiotics, invasive 

pneumococcal disease killed over 70% of those affected (Butler & Cetron, 1999).  

Identification of antibiotics suitable for employment against the pneumococcus 

occurred soon after the discovery of the organism and its role in pneumonia and invasive 

disease. The first antibiotic deployed against S. pneumoniae, ethylhydrocuprein 

(optochin) (Watson et al., 1993), is notable for engendering the first cases of microbial 

resistance to antibiotics (Austrian, 2004), a situation that would be repeated. Because of 

this acquired resistance, and toxicity in humans, optochin was rendered of utility only as 

a laboratory test for identification of the pneumococcus (Bowers & Jeffries, 1955). Other 

antibiotics followed, with penicillin initially proving˙ effective against all serotypes of the 

pneumococcus, with the unfortunate result of delaying the development of efficacious 

vaccines and reducing interest in the pneumococcus as a clinical entity (Austrian, 2004; 

Austrian, 1960). Antibiotic therapy with sulfanilamides, penicillin, chloramphenacol, and 

chlortetracycline lowered case fatality rates from pneumococcal infections to 5% to 8%, 

and clinical entities such as Austrian’s Triad became rarer. Sources of pneumococcal 

typing sera at the commercial level were gone within a decade of the introduction of 

antibiotic therapy, as it was no longer profitable to make these products in the post-

penicillin era (Austrian, 1999). However, the ability of S. pneumoniae to quickly develop 

antibiotic resistance led to renewed interest in vaccine development. 

Pneumococcal vaccine development can be traced back to 1882, one year after the 

isolation of S. pneumoniae, with the first large clinical trial of a pneumococcal vaccine 

occurring in 1911 (Austrian, 1978; Williams & Masterton, 2008), with development of 
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newer vaccines continuing throughout the 1940s, though vaccine development was 

slowed by the success of antibiotic therapies that promised to eliminate the threat of 

pneumococcal disease. However, when clinicians realized that IPD still carried a 25% 

mortality rate, development of an effective polyvalent pneumococcal polysaccharide 

vaccine was undertaken (Bridy-Pappas, Margolis, Center, & Isaacman, 2005; Butler, 

Shapiro, & Carlone, 1999; Whitney, Schaffner, & Butler, 2001).  

From this brief overview, it is clear that the study of S. pneumoniae has 

contributed to our understanding of genetics, antimicrobials, and development of 

microbiological laboratory procedures. If those were the only outcomes associated with 

our study of the pneumococcus, it would still remain worthy of our attention, as S. 

pneumoniae is an important agent and cause of life-threatening disease, and more 

knowledge of its epidemiology is required. Our current understanding of the nature of its 

most serious manifestation, IPD, is examined next. 

General Epidemiology 

Characteristics of the Causal Agent for IPD, Streptococcus pneumoniae 

The causal agent for IPD is the bacterium S. pneumoniae, a gram-positive, alpha-

hemolytic, catalase-negative, anaerobic bacterium (Bridy-Pappas et al., 2005). S. 

pneumoniae colonization is endemic (Rieux, 2002). This endemicity is important to this 

study, as endemic levels of colonization are required for IPD, and endemic IPD will 

accompany any IPD epidemics and epidemic patterns that might be detected. To 

understand the mechanism that enables S. pneumoniae to achieve all of the feats ascribed 

to it, despite vaccines and antibiotics targeted against it, a thorough review of the 

microbiology of S. pneumoniae is in order. 
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The bacterium colonizes the nasopharynx, and is normal flora and non-

pathological in most individuals (Rieux, 2002). In most cases, colonization with S. 

pneumoniae is asymptomatic (Alekshun & Levy, 2006; Obert et al., 2006). The 

pneumococcus is a primarily human-restricted commensal that will be acquired at one 

point or another by the majority of the population (Bridy-Pappas et al., 2005; Sleeman et 

al., 2006).  There is evidence supporting S. pneumoniae as a primary pathogen in horses 

(Serotype 3); however, the equine reservoir does not present a host or vector for human 

colonization or infection (Whatmore et al., 1999). Therefore, for the remainder of this 

review, only human colonization and disease are considered. 

Nearly all children experience bacterial colonization and carriage during the first 

two years of life (Brueggemann, Peto, Crook, Butler, & Kristinsson, 2004; Hammitt et 

al., 2006). Colonization with S. pneumoniae may occur on the day of birth, and children 

may be colonized with as many as four serotypes at one time (Gundel & Schwarz, 1932). 

Colonization peaks sometime during the second or third year of life and this near 

universal pediatric colonization is a key factor in the endemicity and transmission of the 

bacterium (Myers & Gervaix, 2007). Colonization is common to such a degree that Berg 

et al. (2006) consider the pneumococcus to be normal flora of the nasopharynx and upper 

respiratory tract. Carriage rates in healthy adults range up to 30%, in healthy children, 

from to 50 to 60%. This colonization can persist up to four months. However, carriage 

periods average only two to four weeks for most adults (Bridy-Pappas et al., 2005; 

Müller-Graf et al., 1999; Myers & Gervaix, 2007). As long as the colonizing serotypes 

are not virulent strains, continued colonization might not be a negative finding, as it 

appears that colonization with S. pneumoniae may inhibit nasal colonization by 
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Staphylococcus aureus and Haemophilus influenzae, primarily through inhibition via 

production of hydrogen peroxide (Pericone, Overweg, Hermans, & Weiser, 2000; Regev-

Yochay, Trzcinksi, Thompson, Malley, & Lipsitch, 2006). Exposure to H2O2 is lethal to 

the Staphylococcus; however, S. pneumoniae is not inhibited by endogenously produced 

H2O2, regardless of an increased bacterial mutation rate (Pericone et al., 2003).  

It is clear that colonization with S. pneumoniae is more often than not a normal, 

benign condition. However, colonization is a necessary step towards the acquisition of 

IPD (Nelson et al., 2007), and because of the near universality of colonization, IPD 

should not be susceptible to extinction. Universal colonization does not provide a 

mechanism by which IPD epidemics might display periodicity, but does provide the 

mechanism by which the disease can develop and remain endemic.  

When S. pneumoniae leaves its normal ecological niche, clinical illness (often 

life-threatening) might be the result (Pericone et al., 2003). Dwelling in the host 

nasopharynx is advantageous to the pneumoccocus, as it permits transmission to other 

susceptible hosts. Leaving the nasopharynx and acting in a pathogenic manner is not 

required for bacterial life or reproduction, and fatal pathogenesis might actually be 

disadvantageous to the pneumococcus, as the death of a carrier precludes further spread 

of the organism (Briles, Novak, Hotomi, Ginkel, & King, 2005). However, the ability of 

virulent strains of S. pneumoniae to evade host defenses should confer some advantage 

over less virulent strains within the same host. The selection pressures within the 

individual host might encourage the growth of bacterium that successfully evades host 

immune responses. This creates a situation in which the more virulent strain exchanges 

transmissibility from the host for the ability to reproduce (Lipsitch & Moxon, 1997). 
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Whether as a result of host selection pressure or not, the pneumococcus does leave its 

normal ecological niche and results in disease in some vulnerable hosts. How the 

pneumococcus leaves the nasopharynx, evades the host immune responses and invades 

otherwise sterile sites is directly related to bacterial morphology, and provides the 

biologic mechanism needed for acquisition of IPD in the susceptible host. 

S. pneumoniae morphology can be described by the conformation of a 

polysaccharide capsule (Austrian, 1954). Each S. pneumoniae strain can be categorized 

by capsular serotype, based on the laboratory identification of one or more of at least 92 

immunologically and chemically distinct polysaccharide capsules (Obert et al., 2006; 

Rieux, 2002). These serotypes may be immunologically cross-reactive, but many are not, 

creating challenges for both the host immune systems and vaccine development 

(Hausdorff, Bryant, Kloek, Paradiso, & Siber, 2000). Within serotypes, a number of 

genetically different clones may be identified by means of molecular genetic techniques 

(Jefferies, Smith, Clark, Dowson, & Mitchell, 2004). This within serotype diversity may 

be due to the ability of S. pneumoniae to horizontally transfer genetic material 

(Brueggemann et al., 2003; Carrolo, Pinto, Melo-Cristino, & Ramirez, 2009; Lopez, 

2006). This ability to harbor distinctive clones within serotypes accounts for the presence 

of both non-resistant and drug-resistant strains within defined serotypes. The wide 

variability in composition of the capsule in each serotype has also given rise to 

speculation that the human immune system views each serotype of S. pneumoniae as a 

different pathogen (Lipsitch et al., 2005). This presents a plausible explanation for the 

lack of cross-coverage between vaccine and non-vaccine types, and for the persistence of 

the bacterium in its hosts.  
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Capsulation is required for invasiveness, with different strains varying in 

invasiveness based upon capsular serotype (Sleeman et al., 2006). Invasiveness can vary 

as much as 60 times between the least and most invasive serotypes (Crook, 2006), and 

the nature of the capsular type can determine whether the pneumococcus behaves as a 

primary or opportunistic pathogen (Sjoestroem et al., 2006). It has long been recognized 

that non-capsulated avirulent strains can mutate into capsulated, virulent strains (Avery, 

MacLeod, & McCarty, 1944). Of note, several other bacterium that are linked to bacterial 

meningitis are encapsulated, Haemophilus influenzae type b and Neisseria meningitis, for 

example. This encapsulation is required if the bacterium is to breach the blood-brain 

barrier (Nelson et al., 2007), thus accounting for the role of S. pneumoniae as a cause of 

the meningococcal form of IPD. 

A competent pneumococcal polysaccharide capsule is part defense mechanism 

(Avery & Dubos, 1931), a determinant of virulence and morbidity (Rytel, Dee, 

Ferstenfeld, & Hensley, 1974), a target for vaccines (Lipsitch et al., 2005) and a means of 

specific type identification. The major virulence factor for S. pneumoniae is the capsular 

polysaccharide, which defends the bacterium from opsonization and thus phagocytosis 

(Rieux, 2002; Varon, 2001). The capsule is composed of peptoglycans, and is both 

hydrophyllic and polarized, carrying a negative electrical charge (Rieux). It modulates 

ion transfer into the cellular membrane, and aids in the formation of biofilms (Allegrucci 

& Sauer, 2007), as well as adhesion to the epithelium of the nasopharynx (Varon, 2001). 

Biofilm formation in S. pneumoniae may aid in persistence of colonization, increasing the 

opportunity of the organism to spread to other vulnerable hosts (Moscoso, Garcia, & 

Lopez, 2006). 
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Capsular incompetence seriously reduces bacterial virulence, and non-

encapsulated strains are avirulent (Kharat & Tomasz, 2006). The capsule also presents 

antigens that are immunogenic. Successful immunization provides sufficiently high titers 

of antibodies to these capsular antigens, turning the bacterial protective strategy to an 

immunologic advantage.  

In addition to capsular capability, isolates of S. pneumoniae exhibit three 

phenotypes, opaque, semi-transparent and transparent, when viewed on a transparent 

solid medium (Cundell, Weiser, Shen, Young, & Tuomanen, 1995; King, Hippe, & 

Weiser, 2006; Weiser, Austrian, Sreenivasan, & Masure, 1994), or combinations thereof. 

This is not solely a descriptive phenomenon, as it appears that the ability of the 

pneumococcus to colonize a susceptible host is largely related to phenotype. Spontaneous 

and reversible variations in the phenotypes appear to be related to different stages of 

colonization and infection, and to potential for virulence (Serrano, Melo-Cristino, & 

Ramirez, 2006; Woude & Baumler, 2004). These phase variations are notable for 

differences in autolysis, production of techoic acid (required for cellular adhesion, and 

reduced by as much as half in opaque variants) and to site-specific adhesion (Allegrucci 

& Sauer, 2007; Woude & Baumler).  

The transparent phenotype appears to be better suited to host nasopharyngeal 

mucosal cell surface adhesion, with an increased ability to desialylate host proteins such 

as C-reactive protein (most commonly in the acute phase of the infection (MacLeod & 

Avery, 1941)) and immunoglobulins. The transparent variant exhibits twice the 

adherence capability of opaque phenotypes in vitro (Cundell et al., 1995).This increased 
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adherence capability is as a result of capsular and cell wall structure (Magee & Yother, 

2001; Rajam et al., 2008; Tong, Weiser, James, & DeMaria, 2001).  

The opaque phenotype, with its resistance to opsonization and phagocytosis, is 

more suited to invasiveness outside of the respiratory tract (King et al., 2006; Sjoestroem 

et al., 2006). The robust capsule of the opaque variant is essential to invasiveness (Magee 

& Yother, 2001), and the diminished capability of the capsule to adhere to mucosa 

permits bacterial escape from mucus and precludes bacterial clearance by mucocilliary 

flow (Nelson et al., 2007). Extrapulmonary invasiveness then proceeds via bacterial/host 

chemical interactions with the vascular endothelium of the alveolar capillaries, whereby 

disease may transition from pneumococcal pneumonia to the pneumococcal sepsis variant 

of IPD. Past studies have shown this process to occur in more than 20% of pneumococcal 

pneumonia cases (Andonegui, Goring, Liu, McCafferty, & Winston, 2009; Ortqvist et al., 

1990). 

The opaque phase variants might also escape the nasopharynx via the cervical 

lymphatics (Weiser et al., 1994). When invading via the pulmonary vasculature, the 

transition to invasive pathogen is facilitated by cytokine stimulation of the vascular 

endothelium; opaque phenotype adherence in these cell types results partially from 

interactions between pneumococcal cell wall techoic acid and a related 

phosphorylcholine determinant (PCho) in de novo Platelet-Activating Factor (PAF) in the 

host epithelial cells. Binding to PAF aids the pneumococcus in migration through the 

respiratory and vascular epithelium. Of note, PAF receptors have also been identified in 

the brain (Cundell et al., 1995; Garau, Lemaire, Vernet, Dideberg, & Guilmi, 2005).  
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In addition to the action of techoic acid at PAF receptor sites, S. pneumoniae of 

all phenotypes produces surface exoglycosidases that promote adherence. A 

pneumococcal neuraminidase, NanA, working in sequence with a beta-galctosidase and a 

beta-N-acetylglucosaminidase, removes terminal sialic acids from the host cell, exposing 

additional adherence receptors and providing a carbon source for bacterial nutrition. As 

already noted, all morphological phases of S. pneumoniae produce NanA, but this ability 

to deglycosylate host proteins is of particular importance to adhesion in the trachea and 

other structures outside of the normal nasopharyngeal colonization sites (Hsiao, Parker, 

Ratner, Prince, & Tong, 2009; King et al., 2006). 

S. pneumoniae exhibits spontaneous phase variations between the three 

phenotypes (Cundell et al., 1995), thus permitting invasive and non-invasive clones 

within the same serotype (Obert et al., 2006). This has been observed in other human 

respiratory pathogens, such as Haemophilus and Neisseria spp. The ability to 

spontaneously shift phenotypic variables permits the pathogen to adapt to varying 

challenges presented by the host immune response in the different ecologies of the 

nasopharynx, pulmonary structures, blood, or cerebral spinal fluid (Cundell et al., 1995). 

Transparent variants are successful at adhering to nasopharyngeal cells, while opaque 

variants are capable of evading mucocilliary clearance, travel from the mucosa to the 

epithelium, and thereby ensure that a part of the bacterial growth can evade mucosal-

based immunologic responses (Bootsma, Egmont-Peterson, & Hermans, 2007; Nelson et 

al., 2007).  

Three hundred and ninety seven genes that appear to be conserved across strains 

govern phase variation in S. pneumoniae, making the ability of S. pneumoniae strains to 
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engage in invasiveness dependent on genome content. In the laboratory setting, a variety 

of techniques have been developed to classify pneumococcal isolates on a genetic basis.  

In vivo, however, it is environmental conditions that result in varied expression of 

capsular and other pneumococcal genes (Obert, Gao, Sublett, Tuomanen, & Orihuela, 

2007; Ohlsen, Hacker, & Ziebuhr, 2004), and pneumococcal gene expression varies 

depending on the site of colonization (Orihuela et al., 2004). In blood, S. pneumoniae 

reacts as if under stress and in a nutrient poor environment, despite the nutrient-rich 

medium presented by blood. However, it is clear that the pneumoccocus takes advantage 

of the high carbon availability in blood, as the organism reduces production of substrates 

needed for sucrose and maltose metabolism (Orihuela et al.). In CSF, different gene 

expressions occur, also consistent with an organism under stress in a nutrient-poor 

environment (Orihuela et al.).  

Given the importance of adherence to successful bacterial colonization, it should 

come as no surprise that S. pneumoniae exercises additional measures beyond 

modification of host cell surface biochemistry to ensure that adhesion takes place. In 

some clinical isolates, pili extend beyond the polysaccharide capsule, enhancing adhesion 

to the pulmonary epithelium. This increased adhesion increases virulence, but not without 

a cost to the microbe. The presence of pili in a systemic infection stimulates a higher 

TNF response, with an accompanying higher host inflammatory response, and might thus 

negatively impact bacterial survival (Barocchi et al., 2006; Regev-Yochay, Lipsitch, 

Basset, Rubenstein, Dagan, Raz et al., 2009).  
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Through this wide variety of measures, the pneumococcus may invade normally 

sterile sites. The results of these morphology-mediated invasions are then dependent on 

pneumococcal virulence factors and the host’s ability to respond to the invasive disease. 

Virulence is based on a combination of intrinsic factors of the bacterium, and extrinsic 

factors related to the host’s immune function (Rieux, 2002). Virulence factors are 

genetically determined, and include capsular composition, pneumolysin (SP1923), 

hemolytic cytotoxin, autolysin (SP1937), major murein hydrolase, pyruvate oxidase 

(SP0930), Pneumococcal Surface Antigen A (PsaA), Pneumococcal Surface Protein A 

(PspA), and a heat shock serine protease, HtrA, among others (Echenique, Kadioglu, 

Romao, Andrew, & Trombe, 2004; Jedrzejas, 2001; Linder, Hollingshead, Januczyk, 

Christensson, & Akesson, 2007; Obert et al., 2006; Rieux, 2002). Genes expressing these 

factors have been shown as essential for colonization and invasive disease, and are part of 

the core genome of S. pneumoniae (Obert et al., 2006; Ohlsen et al., 2004)). The presence 

of the polysaccharide capsule is regarded as the primary virulence factor, but several 

other pneumococcal proteins count as virulence factors (Jedrzejas, 2001).  

Genomic sequencing has been completed for three pneumococcal strains, two 

virulent (serotype 4, specifically the TIGR4 strain; and serotype 19F, specifically the G54 

strain) and the other avirulent (serotype 39, the laboratory strain R6), and partial 

sequencing has been completed for several other serotypes (Dopazo et al., 2001; Lanie et 

al., 2007; Tettelin et al., 2001). The pneumococcus genotype is highly plastic, capable of 

sharing genes horizontally between both its own species and other closely related 

bacterial species. It is this horizontal transfer that has been credited with the development 

of penicillin resistance by the pneumococcus (Dowson, Coffey, & Spratt, 1994; 
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Hakenbeck et al., 2001; Hsieh et al., 2006). This genetic plasticity and high level of 

adaptability exists in all serotypes of S. pneumoniae and again, may account for both 

emergence of a specific serotype in an epidemic, for antibiotic resistance and for 

endemicity (Lopez, 2006). However, serotype distribution differs by geographic area and 

age group (Babl, Pelton, Theodore, & Klein, 2000; Sjoestroem et al., 2006).  

Certain serotypes are associated with high attack rates and are rarely isolated from 

healthy carriers; conversely, other serotypes are often isolated from healthy carriers but 

have very low attack rates. A small subset of serotypes causes most invasive 

pneumococcal disease (Bridy-Pappas et al., 2005; Hausdorff, Feikin, & Klugman, 2005; 

Lencastre & Tomasz, 2002; Obert et al., 2006; Sleeman et al., 2006), with attack rates 

varying by capsular serotype (Sleeman et al.); it is believed that an estimated 90% of IPD 

is caused by only 16 distinct serotypes (Hakenbeck et al., 2001). Almost 90% of 

pneumococcal invasive disease in children can be attributed to eleven serogroups, 

serogroups 1,3,4,5,6,7,9,14, 18,19, and 23 (Babl, Pelton, Theodore, & Klein, 2001; 

Hausdorff, 2007; Kyaw, Clarke, Edwards, Jones, & Campell, 2000). Patients infected 

with HIV are often infected with these same serogroups (Babl, Pelton, Theodore, & 

Klein). The most prevalent serogroups in adults are 1,9,14,7,4,23,3,8,6,19 and 22 (Kyaw 

et al.). Additionally, higher rates of mortality are associated with specific serotypes; 

invasive disease caused by serotypes 3, 6B and 19F have higher mortality than that 

caused by serotypes 1 and 7F (25% and 10%, respectively) (Sjoestroem et al., 2006). 

Furthermore, some virulent serotypes (1 and 7F) infect otherwise healthy individuals, 

functioning as primary pathogens, while other serotypes cause disease in subjects with 

predisposing conditions, acting as opportunistic pathogens (Sjoestroem et al).  



42 

Mode of Transmission 

Pneumococci are transmitted by airborne droplets; viable bacteria have been 

isolated in the air of crowded rooms after sneezing (Bridy-Pappas et al., 2005; Berk, 

Gage, Holtsclaw-Berk, & Smith, 1985). Outbreaks of pneumococcal disease often occur 

in settings of crowding (Greenwood, 1999), pointing towards a density dependence in S. 

pneumoniae endemicity and epidemic potential. Outbreaks in jails, military training 

settings, nursing homes, and child-care centers are well documented (Butler, Dowell, & 

Breiman, 1998; Hoge et al., 1994). Because of the droplet transmission and the level of 

endemicity of S. pneumoniae, exposure in these close communities is universal and 

periodic colonization and re-colonization guaranteed (Gordon & French, 2005). Stress 

predisposes subjects to infection, with sleep and calorie deprivation contributing to the 

incidence of IPD (Butler & Schuchat, 1999).  

Incidence and Prevalence of IPD in the United States 
 

General burden of IPD on the Human Population 

Despite our extensive knowledge of the pneumococcus, and the availability of 

effective antibiotics to fight invasive pneumococcal infection, invasive infections 

resulting from S. pneumoniae present a significant burden to the human population. S. 

pneumoniae is the leading cause of bacteremia, sepsis and bacterial meningitis (with an 

incidence rate of 1.1/100,000) in the United States (Bridy-Pappas et al., 2005); the 

relationship between S. pneumoniae and meningitis is particularly noteworthy, as, 

Haemophilus influenzae type b (Hib) infections have declined in the U.S., due to the 

availability of an efficacious vaccine against that pathogen (Bridy-Pappas et al.; Butler, 

Shapiro, & Carlone, 1999; Cabellos et al., 2009; Chen et al., 1998; Lanie et al., 2007; 
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Obert et al., 2006); post-Hib vaccine, S. pneumoniae emerged as the dominant cause of 

bacterial invasive diseases in children, including meningitis (Bernatoniene & Finn, 2005; 

Hamdad et al., 2007; Overturf, 2000).  

In terms of morbidity and mortality, the negative consequences of invasive 

pneumococcal disease are significant, as disease caused by S. pneumoniae has been 

reported as responsible for an estimated 36% of community-acquired pneumonia, 50% of 

nosocomial pneumonias. Also, it is responsible for 50,000 cases of bacteremia, and 

3,000-6,000 cases of meningitis each year in the United States (CDC, 2006). In the 

United States, approximately 40,000 deaths have been reported each year from 

pneumococcal infection of all types (pneumonia and invasive) (Bloom et al., 1999; 

McDaniel & Swialto, 2004), with an estimated 175,000 hospitalizations due to the 

disease each year in the United States (CDC). Greater than half of the invasive 

pneumococcal disease in the United States occurs in the population with chronic disease 

(Kyaw et al., 2005).  

A 2001 study by Robinson et al. established that invasive pneumococcal disease 

could be responsible for more than 62,000 hospitalizations and more than 6,000 deaths in 

1998 alone (Robinson et al.). These deaths most often occur in the older population. The 

mortality rate for invasive pneumococcal disease is highest among those aged over 80 

years, at 17.4/100,000 (Robinson et al.). However, other subpopulations share in the 

general burden of invasive pneumococcal disease. Case fatality rates are highest for the 

subpopulations with chronic diseases, immunosuppression, congestive heart failure, 

malignancy, renal failure, and HIV/AIDS (Alanee et al., 2007; Robinson et al.). The 
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mortality of pneumococcal meningitis approaches 30% and half of the survivors suffer 

permanent neurological deficits (Orihuela & Tuomanen, 2006). 

Incidence of Invasive Pneumococcal Infections in the United States 

The incidence of IPD varies across the US, with different communities displaying 

widely different rates (Huang, Finkelstein, & Lipstich, 2005). This variation in rate may 

be due to differences in contact patterns (Bansal, Grenfell, & Meyers, 2007). These 

different rates of incidence (and the plasticity of the organism) may serve to prevent 

complete eradication of S. pneumoniae colonization, as between patch transmission 

prevents local extinctions from becoming global extinctions (Hagenaars, Donnelly, & 

Ferguson, 2004). Invasive pneumococcal disease displays geographic variance in 

incidence rates and serotype frequency (Hausdorff, Silber, & Paradiso, 2001; Sniadack et 

al., 1995), still, across geographic regions, the rates of invasive pneumococcal disease are 

highest in the first two years of life (Butler, Shapiro, & Carlone, 1999), with documented 

incidence rates in the post-conjugate vaccine period at 8-75 cases per 100,000 

(Brueggemann, Peto, Crook, Butler, & Kristinsson, 2004).  

Incidence rates vary by sub-population. In adults in long-term care facilities, the 

incidence rate of invasive pneumococcal disease is 194.2 cases per 100,000, compared to 

a rate of 44.6/100,000 for the same age group living in the community (Bridy-Pappas et 

al., 2005). As another example of variation within subpopulations, among the Navaho, 

incidence rates of 78-235 cases per 100,000 annually have been observed; elevated 

incidence rates have also been observed in the White Mountain Apache tribe (Benin et 

al., 2003).  
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IPD rates are markedly higher among Native Americans/Alaskan natives, who at 

some points in time have had some of the world’s highest rates of invasive pneumococcal 

disease (Rudolph, Parkinson, Reasonover, Parks, & Butler, 2000), with an age-adjusted 

incidence rate 2.5 times higher than non-Alaska Natives in the same geographic area 

(Hennessy et al., 2002), who have similar incidence rates to overall US rates (Hennessy 

et al., 2005). For Alaskan Natives 65 years old or older, the incidence rate for invasive 

pneumococcal infections has been documented at 186/100,000 (Butler & Schuchat, 

1999). No data supporting specific genetic factors predisposing indigenous populations to 

invasive pneumococcal disease has been published (Butler et al., 2001), and associations 

between socioeconomic status (SES) and IPD, which could account for the higher 

incidence, have been refuted in another study (Chen et al., 1998). The higher overall 

incidence of IPD in this population may be more due to health factors and personal habits 

than with SES or environmental conditions (Singleton et al., 2007). The prevalence of 

drug-resistant pneumococcal serotypes is also high in these populations, with over 10% 

of pneumococcal isolates having reduced susceptibility to ß-lactam antibiotics during the 

1990’s (Hennessy et al., 2002).  

The incidence of invasive pneumococcal disease is also higher in African 

Americans than in the general population, regardless of income strata (Chen et al., 1998). 

African Americans had an overall incidence of invasive pneumococcal disease of 

49.7/100,000, compared with an overall incidence rate for whites of 19.7/100,000 

(Robinson et al., 2001). By 2000, the overall incidence rate was 8.8 per 100,000 in 

otherwise healthy adults. In the subpopulation of adults aged between 65 and 79, the 

incidence rate was 23.3 per 100,000, and for adults aged 80 and greater, 71.2/100,000 
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(Kyaw et al., 2005). Hospitalization rates fell as well, with a discharge rate of 

9.12/100,000 in 1998 and a 2003 rate of 5.6/100,000 (Shah & Ratner). 

HIV-positive persons are another subpopulation with disparate incidence rates of 

IPD. Due to the variation in pneumococcal capsule, the already impaired immune system 

of the HIV-positive person may not recognize even previously acquired serotypes, 

making recurrent IPD a factor in this population and in other immunocompromised 

groups (McEllistrem et al., 2002; Turett, Blum, & Telzak, 2001). The peak of incidence 

for IPD in HIV-positive persons occurs between 35 and 49 years of age, with an 

incidence rate of 571.3 to 820.7 cases per 100,000 in these age groups (Kyaw et al., 2005; 

Steenhoff, Wood, Rutstein, Wahl, McGowan, & Shah, 2008). Antibiotic resistant strains 

have been observed in increasing proportions in this population (Buie et al., 2004). 

The annual attack rate for HIV-positive persons is 1% (Butler & Schuchat, 1999). 

In San Francisco during the 1990’s, over 40% of invasive pneumococcal disease in the 

population aged from 18-64 years was in HIV-positive persons (Butler et al., 1998). 

However, since the institution of Highly Active Antiretroviral Therapy (HAART), the 

incidence of invasive pneumococcal disease in the HIV-positive population has fallen, 

with a 57% decline in the first five years after the introduction of HAART. However, the 

incidence remains much higher than that of the general population, with estimates of up 

to 40 times more incidence, and higher levels of disease recurrence (Heffernan et al., 

2005; Steenhoff, Wood, Rutstein, Wahl, McGowan, & Shah, 2008).  

Incidence rates for IPD in the United States have been declining since the 

introduction of the pediatric vaccine (Hammitt et al., 2006; McBean, Park, Caldwell, & 

Yu, 2005; Moore et al., 2004; Poehling et al., 2006; Shah & Ratner, 2005; Tsai, Griffin, 
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Nuorti, & Grijalva, 2008; Wilkinson, Bulloch, & Smith, 2009). This reduction in 

incidence may be credited to the indirect effect of herd immunity (Haber et al., 2005; 

Millar et al., 2008; Tasslimi et al., 2008; Williams & Masterton, 2008). As an example of 

a reduction in IPD incidence that might be credited to herd immunity, Rosen & Ryan 

(2007) examined adult workers in a children’s daycare facility, and found that these 

workers were less likely than other adults to be colonized with S. pneumoniae, and make 

a case that this is due to wide-spread pediatric vaccination. A study conducted by 

Grijalva, Nuorti, Arbogast, Martin, Edwards, and Griffin (2007) lends support to this 

conclusion. 

In 1998, the overall incidence of IPD in the United States was 23.2 per 100,000 

for all ages combined (Hammitt et al., 2006; Moore et al., 2004; Robinson et al., 2001; 

Shah & Ratner, 2005). Incidence was highest among children younger than two, at 166.9 

cases per 100,000. Incidence was lowest for the population aged from five to 17, with a 

rate of 3.9 per 100,000. The incidence increased again among the 65 and older age group, 

with an incidence rate of 61.5/100,000 (McBean et al., 2005).  

As in the general population, the incidence of IPD in the Alaskan Native 

population has decreased since the introduction of the conjugate vaccine; decreases in 

IPD occurred as decreases in the serotypes included in the vaccine. In the Alaska Native 

population, pediatric pneumococcal meningitis declined from 6.0/100,000 to 1.3/100,000 

in the post-vaccine period. This decrease occurred in the Alaska Native population even 

with continued carriage of pneumococcus, though carriage of serotypes addressed by the 

conjugate vaccine decreased (Hennessy et al., 2005; Miernyk et al., 2000; Moore et al., 

2004). Evidence shows that the 23-valent vaccine given to those over two years of age is 
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also efficacious in the Alaskan Native population, and might further reduce the incidence 

of pneumococcal disease (Singleton et al., 2007). 

The incidence rate for drug-resistant S. pneumoniae invasive infections in the 

subpopulation aged less than one year was 12.4/100,000; for adults greater than 65 years 

of age, 4.1/100,000 (McNabb et al., 2007). This declining incidence in drug-resistant 

infections may be attributable to better discretion in the use of antibiotics, the effects of 

vaccination campaigns in the pediatric and adult populations, age-specific immunological 

barriers, or a combination of these factors (Borer et al., 2001; McBean et al. 2005). 

Supporting this contention is the observation that drug-resistance in S. pneumoniae varies 

by geographic area, reflecting different antibiotic selection pressures (McBean et al.). 

Geographic variation should be considered when examining epidemic patterns of IPD, in 

addition to consideration when assessing drug-resistance patterns. 

The effect of these reductions in IPD incidence is of importance to the concept of 

periodicity. It could be hypothesized that a reduction in overall incidence could preclude 

detection of IPD periodicity. In other words, as the incidence of epidemics is reduced to a 

level approaching the endemic level, periodic peaks may be harder to detect. However, 

lower amplitude of any periodic events will not prevent detection of these events by 

frequency domain analysis (Wei, 1994b), and the periodicity and frequency (if any) will 

remain detectable even in the face of under-reporting of events that might also account 

for the appearance of reduced incidence (Keeling & Rohani, 2008b). 

S. pneumoniae Colonization and Infection, and Risk Factors for IPD 

Colonization with S. pneumoniae is common (Rieux, 2002). Infection, however, 

is distributed in the population according to risk factors. As S. pneumoniae relies on 
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airborne transmission, contact patterns between colonized and susceptible persons 

determine transmission patterns, and can provide selection pressures that force bacterial 

mutation (Petermann & Rios, 2004; Wallinga, Edmunds, & Kretzschmar, 1999).  

Prior to the availability of effective antibiotics, epidemics of pneumococcal 

disease were common in closed populations, such as prisons, military barracks, and 

dormitories (Hoge et al., 1994). Outbreaks within closed communities are less common 

today, but still occur, often in nursing homes and other residential health care settings 

(Butler & Cetron, 1999). Long-term care facilities also provide a reservoir for S. 

pneumoniae (Butler & Cetron), and day care centers have been identified as 

environments favorable for selection and amplification of S. pneumoniae, including drug-

resistant strains (Dagan et al., 2002; Lencastre & Tomasz, 2002). Invasive pneumococcal 

infections have a bimodal age distribution, most often affecting children younger than 

five years and adults older than 65 years, reflecting both the unique immunology of those 

populations, and the nature of the environment where those subpopulations are often 

found. However, IPD can occur in any age group and is associated with a high mortality 

rate (Christenson, Lundbergh, Hedlund, & Ortqvist, 2001; McDaniel & Swialto, 2004). 

The risk of IPD is highest among children, older adults, smokers, and the 

population with certain chronic diseases (Robinson et al., 2001; Butler & Schuchat, 1999; 

Hjuler et al., 2008). The pediatric subpopulation has the highest incidence rates of IPD, 

with the highest levels among children aged less than two years (Robinson et al., 2001). 

However, the elderly and those with chronic diseases are also at risk; in the United States, 

these adult subpopulations contain the individuals who are also the most likely to die of 
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IPD, even in the absence of risk factors other than age (Klemets, Lyytikainen, Ruutu, 

Ollgren, & Nuorti, 2008; Whitney, Schaffner, & Butler, 2001).  

In addition to the risk of pneumococcal infection inherent to age, other risk factors 

increase vulnerability to pneumococcal infection. These risk factors are medical 

conditions that significantly increase a patient’s vulnerability to pneumococcal 

pneumonia or IPD. The medical conditions are cardiovascular disease (Robinson, 

Baughman, Rothrock, Barrett, Pass, Lexau et al., 2001), cardiac transplant (Amber, 

Gilbert, Schiffman & Jacobsen, 1990), cerebrovascular disease (Bridy-Pappas, Margolis, 

Center & Issacman, 2005), lower and chronic respiratory diseases (Betts, 2003; Juhn, 

Kita, Yawn, Boyce, Yoo, McGree et al. 2008), renal disease, diabetes mellitus (Kyaw, 

Rose, Fry, Singleton, Moore, Zell et al., 2005), chronic alcoholism and its complications 

(Haddad, Poruczni, Joyce, De, Pavia, Rolfs et al., 2008), sickle cell disease (Klemets, 

Lyytikainen, Ruutu, Ollgren & Nuorti, 2008), asplenia (either functional or anatomic) 

(Gray, 2000; Schutze, Mason, Barson, Kim, Wald, Givner et al., 2002; Smith, Erlandson, 

Shulman & Stern, 1957; Torres & Bisno, 1973), and malignant neoplasms (Berk, Gage, 

Holtsclaw-Berk & Smith, 1985). Patients with these risk factors alone are considered 

eligible for pneumococcal vaccination if aged between two and 65 years (Christenson, 

Lundbergh, Hedlund, & Örtqvist, 2001; Dworkin, Ward, Hanson, Jones, & Kaplan, 2001; 

Gilbert et al., 2002; Fedson, Harward, Reid, & Kaiser, 1990; Haddad et al., 2008; Maki, 

2004; McDaniel & Swialto, 2004; Whitney, Schaffner, and Butler, 2001).  

Smoking and exposure to environmental tobacco smoke, are known risk factors 

for IPD (Breiman et al., 2000; Gordon & French, 2005). In a study of immunocompetent 

adults aged from 18-64 years, over half of IPD was attributed to smoking, making 
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smoking the strongest risk factor of those studied. There is a dose/response effect, with 

the strength of association between smoking and IPD increasing with an increase in the 

number of cigarettes smoked and the duration of the smoking history (Whitney, 

Schaffner, & Butler, 2001). In addition to environmental risk factors, rare genetic 

mutations predispose some persons to IPD (Chapman et al., 2007; Hirschfeld et al., 2007; 

Ku et al., 2006). 

Diagnosis of IPD 

Diagnosis of IPD is dependent on the site of infection. For bacterial meningitis, 

most patients present with fever, headache, meningismus, and signs of cerebral 

dysfunction. Confirmation of this diagnosis is based upon the findings of an examination 

of cerebral-spinal fluid. Gram stain is a rapid method of identifying the pathogen, as is 

the employment of latex agglutination. Additionally, DNA amplification techniques such 

as Polymerase Chain Reaction (PCR) can be employed if the gram stain, bacterial antigen 

tests and cultures do not yield definitive results (Resti, Micheli, Moriondo, Becciolini, 

Cotimiglia et al., 2009; Smith et al., 2009; Tunkel & Scheld, 2003; Verhelst, 2003). 

Diagnosis of pneumococcal bacteremia is through focused physical examination 

resulting from a high index of clinical suspicion. Fever with chills, tachycardia, 

hypotension, and hyperventilation, often signs of infection, can point the clinician 

towards a diagnosis of sepsis and bacteremia. Confirmation of invasive pneumococcal 

sepsis or bacteremia is through blood cultures, with gram staining again as a tool for 

pathogen identification (Dorman, 2003). However, it has been noted that gram staining 

has greater utility in identifying S. pneumoniae in CSF than in other body fluids, and 

PCR might be the confirmation method of choice in these cases (Gray, 2000). In any 
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case, to move a case from probable to confirmed IPD requires laboratory-confirmed 

culture of S. pneumoniae, in order to meet the CDC case definition and provide 

conclusive evidence of pneumococcal infection (CDC, 2007; Werno & Murdoch, 2008). 

Clinical classification of pneumococcal isolates is by capsular serotype (Austrian, 

1999; Crook, 2006), though molecular genetic methods are sometimes employed, 

particularly in the classification of drug-resistant strains (Riley, 2004). Studies of colony 

morphology, sensitivity to optochin, and bile solubility also are employed in the clinical 

identification of pneumococci (Breiman et al., 2000; Rudolph, Parkinson, Reasonover, 

Parks, & Butler, 2000; Verhelst et al., 2003). As an alternative to these methods, 

Multilocus Sequence Typing (MLST) or Polymerase Chain Reaction (PCR) may be used 

to determine the genotype of S. pneumoniae (Riley; Verhelst). Conventional culture 

methods are inexpensive and aid in determination of antibiotic resistance, however, 

culturing requires more time than MSLT or Polymer Chain Reaction (PCR) testing. 

Additionally, results of antibiotic resistance tests can be obscured if the IPD patient has 

already received antimicrobial therapy; genomic testing can identify resistant clones in 

the face of this previous antibiotic treatment (Abdeldaim, Stralin, Olcen, Blomberg, & 

Herrmann, 2008).  

Antibiotics in the Treatment of IPD 

Inappropriate use of antibiotics has been put forward as the cause for geographic 

differences in S. pneumoniae drug resistance patterns, and as the cause of the 

development of drug-resistance on the whole (Hausdorff et al., 2000; McBean et al., 

2005). Beta-lactam antibiotics have been the treatment of choice for IPD for over 50 

years (Ball, 1999); however, treatment modalities frequently change. Changes in the 
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treatment of IPD are driven by the emergence of drug-resistant serotypes (Maki, 2004), 

and by the development and acceptance of new antibiotics. As S. pneumoniae develops 

additional drug resistances, recommendations will continue to evolve. 

Treatment failure has been documented in patients receiving ß-lactam antibiotic 

therapy for meningitis (Butler & Cetron, 1999; Butler, Dowell, & Breiman, 1998). Thus, 

for treatment of pneumococcal meningitis, the use of ß-lactams is inappropriate, and 

combination therapies with third-generation cephalosporins such as ceftriaxone or 

cefotaxime with vancomycin is indicated (with the vancomycin discontinued if the S. 

pneumoniae strain shows sensitivity to cefotaxime). Combination therapy is highly 

recommended, as the bacterium may develop resistance to ceftriaxone monotherapy 

(Ball, 1999; Greene and Demasi, 1996; Tunkel and Scheld, 2003). Levofloxacin, a 

fluoroquinolone, is also highly effective against S. pneumoniae (Goldstein & Garabedian-

Ruffalo, 2002; Tunkel & Scheld, 2003). 

In the treatment of bacteremia and pneumococcal sepsis, recommendations have 

included the use of macrolides or tetracyclines rather than ß-lactams for treatment of IPD, 

though it must be noted that S. pneumoniae has shown some macrolide-resistance 

(Daneman, McGeer, Green, & Low, 2006; Metlay et al., 2006). Other recommendations 

include the use of cephalosporins or a ß-lactam with a ß-lactamase inhibitor (such as 

piperacillin/tazobactam) combined with a macrolide or quinalone for treatment of the 

very ill (Ball, 1999). However, caution must be taken when inhibiting β-lactamase, as it 

appears that doses sufficient to inhibit mutated S. pneumoniae penicillin binding proteins 

PBP2x and PBP1a are also sufficient to induce tissue inflammation, with the potential for 

clinical complications (Moore et al., 2007). The use of vancomycin or a quinalone is 
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essential when β-lactam resistance has been identified, with Linezolid or dalfopristin 

acceptable alternatives to vancomycin (in the absence of concurrent meningitis) 

(Dorman, 2003). Development of drug-resistance is a part of the survival strategy used by 

S. pneumoniae to avoid extinction (McBean et al., 2005), and the emergence and 

variation of drug-resistant clones may have an impact on epidemic dynamics. 

The Emergence and Impact of Drug-Resistant Streptococcus pneumoniae (DSRP) 

Penicillin resistance is common in S. pneumoniae, as is resistance to other classes 

of antibiotics, particularly the cephalosporins (Rice, 2006). Outside of the previously 

noted optochin resistance in vitro, resistant pneumococci were first isolated in laboratory 

mice. However, drug-resistant strains in the human population did not emerge until the 

1960’s (Butler & Cetron, 1999). The first clinical reports of drug-resistant S. pneumoniae 

were from a single case in Australia in 1967 (Crewe-Brown et al., 1997), and a single 

pediatric case in a small village in New Guinea in 1969 (Tomasz, 1999). A case of drug-

resistant S. pneumoniae was reported in Chicago in 1969 (Parker, Davison, Paterson, & 

Madden, 1970). More drug-resistance was identified in South Africa in 1973, then in 

Spain (the Spain 23F-1 and F-3 clones are now two of the most commonly encountered 

drug-resistant clones in the United States), and by the mid-1990’s, drug-resistance was no 

longer rare in the United States (Bean & Tomasz, 1973; Lawrenson et al., 1988)Richter et 

al., 2002; Tomasz (Klugman, 2003; L. McGee et al., 2001). The first drug-resistant 

strains in the United States emerged in the pediatric population, and the occurrence of 

drug-resistant strains remains highest in this subpopulation (Butler & Schuchat, 1999). 

However, drug-resistant strains have become increasingly common in the subpopulation 

aged >65 years (Butler & Cetron; Butler & Schuchat).  
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In the United States, outbreaks of drug-resistant S. pneumoniae have been 

reported in both childcare centers and long term care facilities. In some areas of the 

United States, 30% of S. pneumoniae isolates exhibit antibiotic resistance (Hawley & 

Whitney, 2002). By the mid-1990’s, the prevalence of penicillin-intermediate and 

penicillin-resistant strains of S. pneumoniae reached 30% and 20%, respectively (Ball, 

1999). There is a significant association between recent treatment with ß-lactam 

antibiotics and new invasive infection with ß-lactam resistant strains (Ball; Butler & 

Cetron, 1999). Other predictors of infection with drug-resistant strains are attendance at 

day care centers and HIV-positive status (Ball, 1999). Both children and HIV-positive 

persons are vulnerable to acquisition of S. pneumoniae, including nosocomially. 

Nosocomial pneumococcal infections may contribute to as much as 40% of the cases of 

pneumococcal bacteremia (Bouza et al., 2005), and many of these hospital-acquired 

infections are drug-resistant (Crewe-Brown et al., 1997), possibly due to antibiotic 

selection pressures combined with poor host immunity. 

Antibiotic selection pressure is an important factor in development of drug-

resistance S. pneumoniae. Selection pressure may result in the “un-masking” of drug 

resistant clones; e.g. the drug-resistant clones were present at lower and less likely to be 

detected levels than the non-resistant variants, and are revealed when the non-resistant 

colonization is eliminated. This then permits the amplification of the resistant clones. 

Selection pressure may also function by replacement, where the host ecology is cleared of 

non-resistant S. pneumoniae, and the drug-resistant strains replace them from community 

reservoirs of colonization (DeVecchi, Nicola, Ossola, & Drago, 2009; Nuermberger & 

Bishai, 2004). 
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However, antibiotic and host immunity selection pressures, while important 

epigenetic events in the development of drug resistance (Trzcinksi et al., 2004), are not 

required for the acquisition of antibiotic resistance by S. pneumoniae. Clones of resistant 

strains can spread rapidly over large geographic areas. Interestingly, researchers have 

documented variation over time in emergence of virulent, resistant clones, with durations 

of emergent events of three and five years (Normark et al., 2001). These frequency-

domain emergent events might function as attractors for epidemic events, events that may 

or may not present as predictable patterns in the long term. 

Prevention of IPD 
 

Adult Pneumococcal Vaccines 

The current adult vaccine contains 25 micrograms of 23 purified capsular 

polysaccharide antigens (Butler, Shapiro, & Carlone, 1999). The current adult vaccine 

covers approximately 90% of the serogroups that cause IPD in the United States. The 

effectiveness of both vaccines depends on the distribution of serotypes in the vaccinated 

population (Butler, Shapiro, & Carlone; Kyaw, Clarke, Edwards, Jones, & Campell, 

2000).  

The Advisory Committee on Immunization Practices recommends pneumococcal 

vaccination for those aged 65 and older, and those greater than two years of age at 

increased risk for IPD, with periodic revaccination recommended for certain 

subpopulations (Butler & Cetron, 1999; Butler, Shapiro, & Carlone, 1999; Mufson, 2000; 

Pletz, Maus, Krug, Welte, & Lode, 2008). Consideration has been given to vaccinating 

the general population starting at age 50, particularly African Americans (Sisk, Whang, 

Butler, Sneller, & Whitney, 2003). Additionally, HIV-positive persons with a CD4 count 
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of 200 or greater should receive pneumococcal vaccination ( Breiman et al., 2000; Feikin 

et al., 2004; Penaranda et al., 2007). 

Pneumococcal capsular polysaccharide vaccines create T cell-independent 

antibody responses, thus, they are not suited to children under two years of age (Pletz, 

Maus, Krug, Welte, & Lode, 2008). This population appears to have some developmental 

limitations in T cell response, particularly in the neonatal subpopulation. This 

unsuitability is also true for some HIV-infected adults (Butler, Shapiro, & Carlone, 1999; 

Chen et al. 1998; Feikin et al., 2004; Randolph & Lewis, 2006; Sniadack et al., 1995).  

Pediatric Pneumococcal Vaccines 

The current pediatric vaccine is a heptavalent conjugate formulation (the 

heptavalent pneumococcal conjugate vaccine, or PnCRM7) and addresses 70% of the 

serotypes most responsible for IPD in the pediatric population (Hausdorff, 2007). This 

vaccine is safe and efficacious, though significant differences in serotype-specific 

immune response has been reported (Kamboj, Kirchner, Kimmel, Greenspan, & 

Schreiber, 2003). Reactions to the vaccine tend to be limited to localized swelling and 

redness, and did not increase with dose (Black & Shinefield, 2002). 

Conjugated vaccines may stimulate immunogenicity in the pediatric population, 

but are limited by a restricted number of antigens that may be included in a vaccine 

formulation (Butler & Cetron, 1999). It is a conjugate vaccine that is recommended for 

use in the early pediatric subpopulation, and the vaccine has been found safe for 

simultaneous administration with the Hib vaccine. In fact, simultaneous vaccination with 

the pediatric conjugate vaccine and the Hib vaccine may be synergistic, improving the 

immunogenicity of the pneumococcal vaccine (Daum et al., 1997). Vaccination of infants 
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with PnCRM7 has been shown to reduce S. pneumoniae carriage through at least three 

years of age (Millar et al., 2006). It is important to recognize that the heptavalent 

conjugate vaccine does not confer lifetime immunity. The eventual loss of immunity, 

coupled with the ease of transmission, is another factor that ensures the endemicity of S. 

pneumoniae infections (Keeling & Rohani, 2008). 

PnCRM7 confers protection by reducing colonization density, and this protection 

can occur as early as one month after the third priming dose, and may protect even earlier 

(O'Brien et al., 2007). Concerns have been raised, however, that the heptavalent vaccine 

does not cover Serotype 1, a serotype associated with a high attack rate and high 

morbidity. However, the study addressing this concern found a very low carriage rate of 

Serotype 1 S. pneumoniae (Brueggemann & Spratt, 2003), and other study found that the 

incidence of serotype 1 had a high year-to-year variability (Hausdorff, 2007).  

There are reports of non-vaccine types (NVTs) associated with IPD in the post-

vaccine era, and at least one of these reports refers to a fluctuating pattern in NVT-

associated IPD incidence (Akduman, Ehret, & Judson, 2006), reflecting the impact of 

NVT emergence on epidemic dynamics. Moore et al. (2008) and Pai et al. (2005) report 

on the emergence of serotype 19A some three to four years after implementation of the 

pediatric vaccine. Additionally, the strain reported in the Pai et al. study was antibiotic 

resistant and virulent, carrying the transposon-encoding for the Spain9v-3 clone, an 

internationally prevelant antibiotic-resistant variety (Pai et al., 2005; Pelton et al., 2007). 

Of note, the 19A serotype is addressed by the adult vaccine. Serotype 15 is another NVT 

identified as associated with IPD by the Pai et al. (2005) study, and has gained in 

prevalence in children hospitalized with IPD. Finally, the previously rare (in the United 
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States and Europe) serotype 1, which is also an NVT, rapidly emerged (Normark et al., 

2001). As NVTs increase in prevalence and acquisition of drug-resistance (Cao et al., 

2009; Hanage et al., 2007; Lesley McGee, 2007), the patterns of epidemics of IPD could 

potentially change. Normark et al. suggest constant surveillance of serotypes to evaluate 

vaccine coverage as the NVTs replace vaccine serotypes as colonizers. Knowledge of the 

IPD epidemic pattern, if it exists, might aid in this surveillance.  

Potentially impacting the epidemic system of IPD are pediatric vaccine shortages 

that took place in 2001 and in 2004 (Smith et al., 2007). Interruptions in measles 

vaccination altered the observed periodicity of that viral disease in the UK (Jansen et al., 

2003). It is possible that any temporal variation that might exist in IPD could exhibit 

similar effects. While the long-term periodicity of IPD has yet to be established, thus the 

pressing need for this study, temporality and seasonality is characteristic of other human 

diseases.  

Temporality and Seasonality of Infectious Diseases 

Epidemics often display temporal variability, with variation in the causal agent, 

host responses, and transmission affecting this variability (Bansal et al., 2007; Grassly & 

Fraser, 2006). Seasonal changes in disease incidence, that is, cyclic and predictable 

changes in disease patterns varying by the seasons of the year, have been identified for 

many diseases, and identification of epidemic patterns, including seasonality, has been a 

long-standing goal of mathematical epidemiology. Records dating back to the early 20th 

century have been examined in attempts to find seasonal and periodic patterns for disease 

outbreaks, with some success (Bauch & Earn, 2003).  
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Among the diseases showing seasonality are influenza in temperate regions 

(Viboud et al., 2006), malaria following seasonal rain (Altizer et al., 2006), and IPD 

(Dowell et al., 2003). This seasonality can vary due to geography, changes in host-

pathogen interactions, and due to changes in weather patterns. It is important from an 

epidemiologic standpoint to understand the seasonality of diseases, in order to target 

interventions, such as vaccination ahead of the influenza season, spraying for mosquitoes 

in the spring as a measure against the spread of West Nile virus (Altizer et al., 2006), and 

to detect changes in the epidemiology of the disease of interest (Finkenstadt & Grenfell, 

2000).  

Temporality and Seasonality of IPD 

IPD has a seasonal pattern of incidence; this pattern directly correlates to seasonal 

outbreaks of Respiratory Syncytial Virus (RSV) and Influenza, and with average hours of 

daily darkness, shorter daylight periods having higher incidence of IPD (Ampofo et al., 

2008; Butler & Schuchat, 1999; Kim et al., 1996; Stegemann et al., 2009; Talbot et al., 

2005). When influenza and RSV outbreaks coincide, the incidence of IPD also 

significantly increases (Butler & Schuchat; Jansen, Sanders, Van der Ende, Van Loon, 

Hoes, & Hak, 2008; Talbot et al.). These influences on IPD seasonality leads to a peak 

incidence in the winter months (Dowell, Whitney, Wright, Rose, & Schuccat, 2003; Kim 

et al.; Talbot et al.) , with the exception of Alaska (Davidson et al., 1989). Within the 

broad area of epidemiologic inquiry, a small but important body of research has focused 

on a theory of seasonality, that is, the premise that S. pneumoniae outbreaks and 

epidemics correlate to recurrent weather patterns and temperatures. It has been shown 

that S. pneumoniae outbreaks occur during winter months (Dowell et al., 2003); the 
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reason behind this seasonality remains unclear, with suggestions ranging from 

temperature influences to seasonal changes in host physiology (Dowell et al.; Dowell, 

2001). In the study by Dowell et al. it was determined that temperature was not correlated 

with IPD, despite the clear seasonality of pneumococcal outbreaks. Weather can have an 

effect on infectious disease, with some organisms less viable at certain temperatures, and 

others taking advantage of changing host conditions due to weather. Additionally, other 

diseases with incidence fluctuation by season, specifically measles, have outbreaks that 

associate with the start of school years (Lloyd, 2001). Given the strong relationship 

between S. pneumoniae colonization and daycare or childcare center attendance (Huang, 

Finkelstein, & Lipstich, 2005; Lencastre & Tomasz, 2002), this might be a plausible 

cause for forcing of IPD seasonality.  

Periodicity of Diseases 

Seasonality, whatever the cause, might be viewed as a component of another 

larger phenomena ( Yulmetyev et al., 2003), that is, periodicity, the frequency-dependent 

recurrence of epidemics. Periodicity might also be described as a traveling wave 

phenomenon (Grenfell, Bjornstad, & Kappy, 2001), relying for activation on bacterial 

colonization, playing against the attractors of new susceptibles, mutation of the 

bacterium, and both small and large networks of transmission, with inhibition by death or 

immunity (Grenfell, Bjornstad, & Kappy; Kamo & Sasaki, 2005). Periodicity of 

epidemics, with a regular frequency of occurrence, has been observed in several diseases.  

Other diseases such as measles, mumps, rubella, RSV and varicella zoster 

(chicken pox) show a predictable recurrent pattern of epidemics and also show a 

seasonality comparable to that of IPD, particularly in the periods prior to the beginning of 
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mass vaccination efforts (Duppenthaler, Gorgievski-Hrisoho, Frey, & Aebi, 2003; Earn, 

Rohani, Bolker, & Grenfell, 2000; Lofgren, Fefferman, Naumov, Gorski, & Naumova, 

2007). Measles, for instance, has demonstrated annual, biennial and triennial epidemic 

cycles, mumps a 3-5 year cycle, rubella, a 4-5 year cycle, RSV, a two year cycle, and 

varicella, cycles of 2-3 years (Anderson, Grenfell & May, 1984). Of note, measles 

displayed periodic epidemics both before and after a vaccination effort (Grenfell et al., 

2001; Riley, 2007). However, Ellner et al., (1998) and Olsen & Schaffer (1990) argue 

that post-vaccination measles incidence reflects a chaotic system (one very sensitive to 

the effects of random events). If this is true, post-vaccination measles incidence should 

not have a detectable periodic pattern, as a chaotic system, by definition, is one that is in 

a state of disorder and irregularity (Yulmetyev, Yulmetyeva, & Gafarov, 2005). 

Providing evidence contrary to these conclusions, Earn et al. (2000) and Grenfell et al. 

(2001) showed that the periodicity of measles epidemics is conserved, but with 

decreasing frequency and lower amplitude. This fits with the predictions made by Bolker 

& Grenfell (1996), and helps to mitigate the earlier concern that reduced IPD incidence 

levels could prevent periodic pattern detection. 

Infections due to B. pertussis exhibit a triennial cycle, post vaccination 

(Anderson, Grenfell, & May, 1984). Pertussis was on an annual to a five year cycle in the 

pre-vaccine period, with little synchrony between geographic areas (Duncan, Duncan, & 

Scott, 1996; Rohani, Earn, & Grenfell, 1999). The effects of vaccination on pertussis 

periodicity, that is, a reduction in the force of transmission in the community, might have 

served to lengthen the inter-epidemic period, but the regularity of pertussis epidemics 

continue (Anderson et al., 1984), though the epidemic peaks are noisier (containing slight 
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irregularities that do not detract from the overall frequency of occurrence) than those 

observed in measles, possibly due to stochastic recovery effects (Verdasca et al., 2005). 

Of note, different geographic areas fell into periodic synchrony in the post-vaccine period 

(Rohani et al., 1999). In examining the possible periodicity of IPD epidemics, it may be 

wise to evaluate the data in terms of geographic area. S. pneumoniae exhibits geographic 

heterogeneity in drug-resistance, and might exhibit similar characteristics in terms of 

epidemic pattern. 

An epidemic of pertussis outside of the expected frequency led to identification of 

waning immunity in the adult population (Broutin, Guegan, Elguero, Simondon, & 

Cazelles, 2005; Galanis et al., 2006; Guris et al., 1999; Oregon Department of Human 

Services, 2004). If S. pneumoniae has periodicity, this same warning mechanism might 

be employed. On the other hand, influenza, once thought to show an epidemic pattern of 

ten year intervals, has been shown to be aperiodic (Dowdle, 2006); this disallows the use 

of relative frequency for epidemic planning, forcing epidemiologists and public health 

planners to rely on techniques from weather forecasting in order to project influenza 

epidemics (Viboud, Boelle, Carrat, Valleron, & Flahault, 2003). This technique should be 

employed, as the research reveals that S. pneumoniae outbreaks are aperiodic.  

Periodicity of IPD Epidemics 

It was not known whether or not IPD epidemics occur in a periodic fashion, 

outside of our understanding of the seasonality of the disease. Several characteristics of 

IPD and S. pneumoniae created a plausible argument that such a pattern might exist. 

Among these are the microbial mechanisms that ensure endemicity and prevent 

extinction, the distribution of S. pneumoniae colonization, which relies on children in 
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crowded settings as a reservoir; this reservoir will undergo periodic replenishment with a 

new group of susceptibles, and the observed periodicity in serotype 1 colonization. 

However, no study analyzing IPD incidence rates over time to establish periodicity in the 

United States or any other location could be found, and this is the gap in the literature that 

the study fills. The following section reviews the data sets required to provide this 

information. 

Models based on Time-Series Analysis 

The noise, specifically observational noise (Chen & Bokka, 2005; Keeling & 

Rohani, 2008b), exhibited in an epidemic system can be difficult to separate from chaos 

(Stewart, 2002). To avoid this confusion, awareness of random perturbations over time 

(stochasticity) (Stewart, 2002), hidden Markov chains (the results of stochastic processes 

that may result in a “settling” of the pattern and thus may obscure periodicity) (Meyn & 

Tweedie, 1993), and their potential to affect the results of a study is important (Francq & 

Roussignol, 1997; Olsen & Schaffer, 1990), and drives model selection to a great degree. 

Rohani et al. (1999) concluded that pertussis, when examined from a deterministic 

perspective, is very sensitive to stochasticity, which should be taken into account when 

selecting a model for analysis. It is not known whether IPD also exhibits this sensitivity, 

but when selecting a model and technique for elucidating IPD epidemic dynamics, the 

potential for sensitivity to stochastic effects must be considered. 

When cyclic epidemics are more regular in occurrence than would be expect 

edbased on chance, an appropriate model can be fitted, and later used in surveillance 

(Hamaker, Dolan, & Molenaar, 2005). One set of models suitable for this purpose are 

those based in the repeated measurement of a set of variables, the multivariate time 
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series, or time-series analysis (Hamaker, Dolan, & Molenaar). Models built on time-

series analysis can be based on the time domain, or based on frequency domain analysis, 

specifically, the Fourier Transform (a mathematical approach for transforming a wave 

process to a simpler linear expression) (Wei, 1994b), which produces a periodogram (a 

visual representation of the quantitative results of the Fourier Transforms which 

facilitates the analysis of a frequency domain time-series) (Wei, 1994a) that correlates to 

the contribution of the varied frequency components to the observed patterns of disease 

incidence (Anderson et al., 1984; Lindsey, 2004a).  

When selecting the appropriate model to represent epidemic dynamics, it is 

essential to ask several questions. First, what is the role of the initial conditions, that is, 

the number of susceptible persons, the index case, the rate of infectivity, the number of 

persons exposed, and the virulence of the pathogen at the start of the very first outbreak? 

(Keeling & Rohani, 2008b). In modeling IPD, the initial conditions are unknown. 

Secondly, have observations, such as the count of cases of IPD, been made regularly or 

irregularly in terms of time? The source of data for this study, the National Hospital 

Discharge Survey, is based on regular observations. Third, is the dynamic of the epidemic 

stationary, that is, does the incidence increase or decrease systematically over time 

without peaks? Epidemics exhibit non-stationarity (Keeling & Rohani). Finally, does the 

epidemic dynamic appear to follow a Markov process, that is, the current condition of 

disease incidence is dependent on the condition occurring immediately before it in time? 

Answering these questions will aid in selecting the appropriate model of epidemic 

dynamics (Lindsey, 2004b). 
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Deterministic Models 

Deterministic time series models have been used in resolving the underlying 

processes of disease transmission and incidence (Lloyd, 2004). However, stochastic 

events can cause fluctuations in disease patterns, and deterministic models are not 

accurate in the setting of random perturbations (Lloyd, 2004). Because of the 

unpredictable and labile nature of the S. pneumoniae organism, with its ready sharing of 

genetic materials and agility in evading the host immune response, the resultant incidence 

of IPD may well occur in a stochastic, non-Markov fashion, ruling out the use of a 

deterministic model that might exhibit complex and unrealistic patterns (Lloyd, 2001). 

Furthermore, a deterministic model requires an initial condition, and seasonal forcing 

must be accounted for (Earn et al., 2000).  

For measles, the initial condition used in building a deterministic model was the 

transmission process, that is, the path from the index case to the next group of infected 

persons (Bjornstad, Finkenstadt, & Grenfell, 2002). However, if a simulation is run 

against a deterministic model, for each run with the same initial condition, the results 

must be the same, in a clockwork process, in other words, an epidemic dynamic that 

appears to occur as if by the mechanism of a gear-driven machine, with no variation or 

deviation from the predicted path (Bjornstad, Finkenstadt, & Grenfell). Epidemics do not 

truly function in clockwork, mechanistic fashion, and the randomness of the epidemic 

process once it begins presents difficulty in modeling (Yulmetyev et al., 2003). It is hard 

to imagine an epidemic that would occur in the exact same fashion if repeated, with the 

same people acquiring the disease each time. For measles to truly model in a 

deterministic fashion, the initial conditions must be known, and the epidemic must follow 
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the same path for each realization from the same ensemble. Therefore, deterministic 

models may not be ideally suited to the description of epidemic phenomena, or for 

identifying periodicity of epidemics, the goal of the research.  

Stochastic Models 

This leads towards discussion of a non-deterministic, stochastic model as a more 

appropriate approach for the study. Mollison, Isham, & Grenfell (1994) observe that for 

large populations, deterministic models can approximate epidemic behaviors, but these 

models can only approximate the mean behavior of the system (Finkenstadt & Grenfell, 

2000). Stochastic modeling of epidemics can be difficult, because chance events might be 

major factors in the eventual size and timing of an epidemic. Still, stochastic models can 

more accurately describe epidemic patterns (Finkenstadt, Bjornstad & Grenfell, 2002; 

Mollison et al., 1994). The primary advantage to such a model is the ease by which they 

can be built, by virtue of familiar mathematics (Mollison et al.).  

However, a stochastic model can aid in understanding the process of the 

epidemic, and while more complicated mathematically (Mollison et al., 1994), is better 

suited to determination of an epidemic pattern. It must be acknowledged that a stochastic 

model could exhibit disease fadeout (the extinction of a disease expressed in a 

mathematical model, most likely as a result of a sufficient drop in the number of infected 

and susceptible individuals in a given population within the model) ( Keeling & Rohani, 

2008b; Lloyd, 2004), but this is unlikely in the case of IPD, given the ubiquity of S. 

pneumoniae colonization, the emergence of NVT serotypes, and the other factors that 

mediate in favor of IPD endemicity. Some evidence has been gathered from animal 

models showing that epidemic periodicity may be determined in part by the introduction 
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of new susceptibles and the acquisition of immunity (Anderson et al., 1984). Underlying 

this conclusion is a theory of the mass action principle of transmission, that is, the 

incidence of a disease is dependent on the density of colonized or infectious individuals, 

multiplied by the density of susceptible persons (Anderson et al.; Grassley & Fraser, 

2006; Wilson & Worcester, 1945). According to Grassly and Fraser (2006), if an 

infection results in either immunity or death, the law of mass action predicts disease 

cycles. Seasonal variations due to deviations in the pattern of disease transmission will 

occur due to inconsistent contact patterns (and thus a variable contact rate) (Soper, 1929). 

This might account for disease cycles in infectious diseases that do not confer immunity. 

 In addition to these seasonal variations in contact patterns, replenishment of 

susceptible hosts, colonization with S. pneumoniae, and occurrence of IPD can be 

reasonably expected to occur in a random fashion and vary over time, and health policy 

changes, vaccination campaigns and vaccine shortages are external factors that could act 

as attractors in a stochastic system and influence the dynamics of the system (Xia, 

Bjornstad, & Grenfell, 2004), introducing a degree of uncertainty (Koelle & Pascual, 

2004), or pushing the system into a stable cycle (Earn et al., 2000). To further complicate 

model building, irregularities in vaccine supply, as happened with the pediatric vaccine 

against S. pneumoniae, and variations in vaccine effectiveness, such as from low efficacy 

vaccines or serotype replacement, will account for changes to epidemic patterns 

(Alexander, Moghadas, Rohani, & Summers, 2006) in a stochastic manner. As shown in 

work on the dynamics of measles epidemics, for utility in epidemiology, any potential 

model must be able to account for this stochasticity (Grenfell, Bjornstad, & Finkenstadt, 

2002; Xia et al., 2004). 
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Yulmetyev et al. (2003) have demonstrated the use of the Fast Fourier Transform 

(FFT) for the purpose of detecting periodicity in epidemics, describing constancy 

between the epidemic periods of Acute Respiratory Tract Infections (ARTI) with the 

causal organisms unidentified. This particular work demonstrated the successful use of 

the FFT, and by extension, frequency-domain analysis in a setting of a stochastic, non-

Markov epidemic process, of which IPD arguably fits. The use of a stochastic, non-

Markov process for analysis of epidemic patterns takes into account the dynamic nature 

and non-stationarity of epidemic systems, yielding a more accurate and detailed view of 

the epidemic course (Mollison et al., 1994; Yulmetyev et al.).  

Modeling of Disease Dynamics using Time-Series Approaches while Accounting for 

Stochasticity 

The literature contains several notable examples of the application of time series 

approaches to the determination of epidemic dynamics. Many of these studies also 

approached the problem from a stochastic perspective. Measles, rotavirus, and pertussis 

have all been studied in this fashion. 

A study of infection dynamics that employed mathematical methods to account 

for stochasticity and chaos focused on rotavirus. Several models were used to examine 

rotavirus dynamics, both deterministic and non-deterministic. Each model revealed a 

different aspect of the population dynamic (Jose & Bishop, 2003). After an examination 

of the results, Jose and Bishop determined that the dynamic was best described by a 

variation of time-series analysis, wavelet-based incidence analysis. The results of wavelet 

analysis revealed an annual, biannual, and triennial period, as well as other embedded 

cycles. While the patterns exhibited self-similarity over multiple scales (a fractal pattern), 
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the existence of a periodic and predictable epidemic pattern could not be determined. A 

chaotic dynamic, as found in this study of rotavirus infection dynamics, is well suited to 

the wavelet analysis technique (Cazelles, Chavez, Berteaux, Menard, Vik, Jenouvrier, et 

al., 2008).  

This method of time-series analysis had been previously applied to measles 

population dynamics, which have a known periodicity (Grenfell, Bjornstad, & Kappy, 

2001). Grenfell, Bjornstad and Kappey (2001) applied a wavelet approach to the analysis, 

as opposed to traditional Fourier analysis. While Grenfell, Bjornstadt and Kappy stated 

that this method has potential as a tool for analysis, they noted that the wavelet method 

requires a large set of data. Most significantly, they observed that the deterministic model 

they developed using this analysis makes predictions that did not match reality (Grenfell, 

Bjornstad & Kappey, 2001). Wavelet analysis techniques may have value in 

understanding aperiodic epidemics (Cazelles et al., 2008). Because S. pneumoniae 

epidemics have a known periodic component, seasonality, analyses based on wavelet 

approaches are not indicated, and are not recommended for the study.  

Another approach to understanding epidemic dynamics using time-series analysis 

has been the modification of existing deterministic models to incorporate time series 

methods. An example of this modification is an analysis of whooping cough epidemics in 

London, Duncan, Duncan and Scott (1996) employed a modification of the Susceptible-

Infected-Recovered (SIR) model through application of time-series analysis. This 

modification yielded a model that described the changing epidemic dynamic of whooping 

cough during the period from 1701 to 1812 in London. The model was then compared to 

a time-series analysis of wheat prices for the same time period, and the correlation 



71 

between wheat prices (as an marker of nutrition in the population) and whooping cough 

was examined. This study illustrates the value of understanding the multiple year 

epidemic dynamics. Once the pattern was discerned, it was used to help identify potential 

causal factors, and in this case, elucidated the role of malnutrition in whooping cough 

outbreaks (Duncan, Duncan & Scott, 1996).  

Stone, Olinky, and Huppert (2007) also modified the forced SIR model, by 

applying frequency domain time-series analysis to measles data from the US and the UK, 

and using the results to modify the SIR model. Seasonal forcing was removed from the 

model, and the dynamic of the multiple year epidemic cycle was substituted. This 

facilitated a better understanding of post-epidemic dynamics, and provided a model better 

suited to prediction of future outbreaks (Stone, Olinky & Huppert, 2007).  

This modification of the SIR model to examine measles epidemic patterns led to 

extension of the modified model, the TSIR (Time series SIR) model (Bjornstad, 

Finkenstaedt & Grenfell, 2002) to further account for stochasticity. The TSIR model was 

described as a discrete time stochastic analogue of the SIR model (Grenfell, Bjornstad & 

Findkenstaedt, 2002). By including consideration of spatial transmission patterns, Xia, 

Bjornstad and Grenfell (2004) introduced additional stochastic elements into the model. 

The consideration of stochastic factors led to a model with a better fit with historical 

measles dynamics (Xia, Bjornstad, & Grenfell, 2004).  

Previous Attempts at Constructing a Model of Sepsis Epidemic Patterns using Time-

Series Analysis 

Sepsis is a component of IPD, and a review of the literature revealed one study 

that attempted to employ time-series analysis to determine the epidemic patterns of 
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sepsis. An investigation of all-cause sepsis periodicity showed an increase in sepsis 

incidence over time; this study employed a deterministic model (Danai, Sinha, Moss, 

Haber, & Martin, 2007). This research revealed that sepsis increased in incidence over 

the study period. However, during the same period, vaccination appears to have reduced 

the incidence of IPD (Hammitt et al., 2006; Jackson & Janoff, 2008;McBean, Park, 

Caldwell, & Yu, 2005; Moore et al., 2004; Poehling et al., 2006; Shah & Ratner, 2005). 

The observed rise in sepsis in light of an observed fall in IPD incidence over the same 

period suggests that the Danai et al. study should not be used to describe IPD epidemic 

patterns, and the increase in sepsis incidence described in this study might be reflective of 

possible increases in other pathogen incidence. Danai et al. used a deterministic model 

that, while mathematically less complex than a stochastic model, might not have been 

ideal for examination of epidemic dynamics (Mollison et al., 1994; Yulmetyev et al.). No 

other articles could be found in the literature attempting to examine IPD periodicity. 

A Model of IPD Dynamics Amenable to Modification as a Temporally-Forced Model 

using Time-Series Analysis 

The SIR model has been modified to account for stochasticity and incorporate 

time series analysis (Keeling & Rohani, 2008c). This model is suitable for infectious 

diseases in which immunity is acquired by surviving the infection. IPD does not present a 

good fit to the SIR model, because not all susceptible and exposed persons become 

infected and infection with S. pneumoniae does not confer permanent immunity (Bridy-

Pappas, Margolis, Center & Isaacman, 2005; Millar et al., 2008). Therefore, a better 

model for describing the epidemic dynamics of IPD might be the Susceptible-Exposed-

Infected-Recovered (SEIR) model, which can account for the variance between exposed, 
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infected and infectious states (D'Innocenzo, Paladini, & Renna, 2006; Keeling & Rohani, 

2008b). Sutton, Banks & Castillo-Chavez (2008) have applied this model to IPD, with the 

inclusion of seasonality to result in a Temporally Forced Model. Colonization rates serve 

as a proxy for exposure, and birth rates, death rates, and vaccination rates are factored 

into the model, as is seasonality (Sutton, Banks, & Castillo-Chavez, 2008). The data used 

to calculate rates and modify model parameters was either obtained from existing 

literature or direct measurement. This resulted in a deterministic model that was 

employed to assess the impact of a recently implemented pneumococcal vaccination 

program. The initial conditions of the deterministic model were derived from historical 

data. The model was calibrated by comparison to existing data, and required only minor 

modification of parameters to obtain a fit (Sutton, Banks, & Castillo-Chavez, 2009). This 

model of IPD epidemic dynamics provides a starting point for further model 

development. It does, however, exhibit an important weakness. 

Beyond the weakness inherent in the deterministic nature of this model, a 

weakness of this model is that it does not account for any variation in the epidemic 

pattern beyond a seasonal increase. Thus, it is only capable of modeling a single 

epidemic, in a continuous dynamic. Modification of this model, to account for stochastic 

effects from periodicity, might create a model of greater accuracy and utility. This 

modification requires knowledge of the IPD epidemic pattern beyond one year. This 

information would then be used to alter the transfer rate equations in the model to reflect 

a cyclical increase or decrease at a set frequency.  

Any modification of the SEIR model must be contemplated in light of the 

observations of Finkenstaedt and Grenfell (2000). Establishing a connection between the 
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time series and the SEIR model could be problematic because the only directly 

observable variable is the number of infected individuals, and this might be under-

reported. Parameters such as birthrates and vaccination rates change over time, and this 

could impact the accuracy of the model. Finally, the SEIR model is a continuous 

dynamical system, and time-series analysis in the frequency domain is based upon 

discrete time intervals (Finkenstaedt and Grenfell, 2000). 

A modification to the Sutton, Banks, and Castillo-Chavez model of IPD dynamics 

(2008) would share some of those limitations, but not all. Under reporting is a 

consideration, but the introduced noise would only lower the amplitude of observed 

periods. By use of frequency domain rather than time domain techniques, the patterns, if 

any, to IPD epidemic dynamics would still be revealed. The SEIR model of IPD 

dynamics can be linked together as sequential realizations, with the rate of entry into the 

population adjusted between each annual realization to account for varying birthrates, 

either historical or predicted, dependant on the purpose of the modeling. The existing 

model already provides the opportunity to input the vaccination rate (Sutton, Banks, & 

Castillo-Chavez, 2008), which again could be modified for each realization. Realizing the 

entire model as a sequential linkage of individual models ameliorates the concern over 

use of discrete time data in a continuous dynamical system. Each annual model would 

retain its continuous dynamic, with only that year’s incidence and seasonal forcing 

applied. Thus, an individual year is a continuous model, but the whole is constructed on 

discrete intervals. 

The SEIR model has been realized as just such a discrete-interval stochastic 

model. Using measles, as described in the work of Anderson and May (1991), Verdasca, 
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da Gama, Nunes, Bernardino, Pacheco, and Gomez (2005) assumed differing amplitudes 

of seasonal forcing, and also realized the model in an unforced configuration. They 

acknowledged the need to modify the models parameters for vaccination and other 

variables. Their results supported the conclusion that the model must take these factors 

into account, but also that the resulting model can fit readily to the observed data. They 

also observed that this model is computationally feasible (Verdasca, da Gama, Nunes, 

Bernardino, Pacheco, & Gomez, 2005). 

A Recommended Approach for Description of Epidemic Patterns of IPD 

IPD displays cyclic epidemics that are regular in occurrence, by seasonality 

(Dowell, Whitney, Wright, Rose, & Schuchatt, 2003). In situations where cyclic 

epidemics are more regular in occurrence than would be expected based on chance, 

models can be devised and later used in surveillance (Hamaker, Dolan, & Molenaar, 

2005). Appropriate to such situations are those models built upon on the repeated 

measurement of a set of variables (Hamaker, Dolan, & Molenaar). Models built on these 

repeated measurements of discrete variables can be based on either the time domain or 

frequency domain (Wei, 1994b). As it is the frequency of IPD epidemics that is a focus of 

this research, time-series analysis in the frequency domain is the most suitable approach.  

In recommending this approach, consideration was given to the role of initial 

conditions, that is, the number of susceptible persons, the index case, the rate of 

infectivity, the number of persons exposed, and the virulence of the pathogen at the start 

of the very first outbreak (Keeling & Rohani, 2008b). In IPD, the initial conditions are 

unknown. That the initial conditions are unknown is a key reason for selection of a 

stochastic approach for this study, rather than a deterministic approach. For IPD to 
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accurately model in a deterministic fashion, the initial conditions must be known, and the 

epidemic must follow the same path for each realization from the same ensemble 

(Bjornstad, Finkenstadt, & Grenfell, 2002). Therefore, a deterministic model is not 

ideally suited to the description of IPD epidemic periodicity. 

 Also, consideration is given to the regularity or irregularity of observations of a 

key variable, the count of cases of IPD. Regular observations are a component of this 

study’s source of data, the National Hospital Discharge Survey. Finally, stationarity of 

the epidemic dynamic and the possibility of a Markov process are considered. Epidemics 

exhibit non-stationarity (Keeling & Rohani), and no evidence could be found in the 

literature that IPD epidemics follow a Markov process. These considerations weigh on 

the selection of the appropriate approach, and lead to the exclusion of time-series analysis 

focused on deterministic systems (Wei, 1994e).  

Stochastic Approaches 

An analytic approach that takes stochastic behavior and focuses on the frequency 

component of the epidemic dynamic is more suitable to this study. It must be 

acknowledged that a stochastic model could lead to results that suggest disease fadeout 

(the extinction of a disease expressed in a mathematical model, most likely as a result of 

a sufficient drop in the number of infected and susceptible individuals in a given 

population within the model) ( Keeling & Rohani, 2008b; Lloyd, 2004), but this is 

unlikely in the case of IPD, given the ubiquity of S. pneumoniae colonization, the 

emergence of NVT serotypes, and the other factors that mediate in favor of IPD 

endemicity. Further aiding in the argument in favor of an approach that accounts for 

stochasticity is the random nature of replenishment of susceptible hosts, colonization with 
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S. pneumoniae, and seasonal variation in IPD incidence. External factors such as 

irregularities in vaccine supply or serotype replacement, as noted in the review of the 

literature, could influence the dynamics of the system ( Alexander, Moghadas, Rohani, & 

Summers, 2006; Xia, Bjornstad, & Grenfell, 2004), introducing stochasticity (Koelle & 

Pascual, 2004), or pushing the system into a stable cycle (Earn et al., 2000). As shown in 

work on the dynamics of measles epidemics, the approach must be one that is capable of 

dealing with this potential stochasticity (Grenfell, Bjornstad, & Finkenstadt, 2002; Xia et 

al., 2004). An approach that is non-deterministic and focused on the detection of periodic 

events is time-series analysis in the frequency domain, by use of the Fast Fourier 

Transform (FFT). 

Yulmetyev et al. (2003) have demonstrated the successful use of the FFT, and by 

extension, frequency domain analysis in a setting of a stochastic, non-Markov epidemic 

process, which describes IPD epidemics. The use of a stochastic, non-Markov process for 

analysis of epidemic patterns takes into account the dynamic nature and non-stationarity 

of epidemic systems, yielding a more accurate and detailed view of the epidemic course 

(Mollison et al., 1994; Yulmetyev et al.). The Fast Fourier Transform produces a 

periodogram, a visual representation of the quantitative results of the transform, which 

facilitates the analysis of a frequency domain time series (Wei, 1994a) that correlates to 

the contribution of the varied frequency components to the observed patterns of disease 

incidence (Anderson et al., 1984; Lindsey, 2004a).  

The results of such an analysis can then be applied to the SEIR model put forth by 

Sutton, Banks and Castillo-Chavez (2008). By applying the periodic component as a 

factor in the existing models transfer rate equation to reflect a cyclical increase or 
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decrease in disease incidence at the dominant frequency, the model could better fit the 

IPD disease dynamic by reflecting the effects of time on multiple epidemic occurrences. 

By using predicted birth rates, death rates, and the periodic component, the modified 

model could be used as a predictive tool. When IPD dynamics differ from the predictive 

model, the situation could then be examined for changes in IPD epidemiology. However, 

as the results revealed that IPD does not have a periodic epidemic dynamic, so the SEIR 

model remains as currently envisioned by Sutton, Banks, and Castillo-Chavez. 

Given a technique for construction of the model, and an appropriate framework 

for model selection, the size and quality of the data set must be addressed, as in order to 

join a model with the observations, both large and full data sets are needed (Lindsey, 

2004a; Lloyd, 2001). The study used the National Hospital Discharge Survey (NHDS) as 

the data set. This is both a large and full data set, as the following review will illustrate. 

National Hospital Discharge Survey (NHDS) as a Secondary Data Source for the 

Research 

Definition and History of the NHDS 

The NHDS is a continuous national probability survey, intended to gather and 

disseminate information on the inpatient utilization of non-Federal short stay hospitals 

(Dennison & Pokras, 2000; National Center for Health Statistics, 2007a). The data within 

the NHDS is derived from the medical records of inpatients discharged from a national 

sample of approximately 500 hospitals (Boulet et al., 2006). The NHDS is considered to 

be the principle source of national level data on the characteristics of patients discharged 

from these hospitals (Lou & Zack, 2005). 



79 

The NHDS has operated continually since its inception in 1965, but some 

revisions and updates have been needed throughout the life of the system. The largest 

change occurred in 1988, when the NCHS undertook a redesign of the survey to link the 

survey to the National Health Interview Survey (NHIS) and to permit a wider selection of 

statistical software to be brought to bear on the data. Additionally, the coding methods 

and data file variables have evolved and changed over the history of the survey 

(Dennison & Pokras, 2000), specifically the transition from the International 

Classification of Diseases, 8th Revision (ICD-8) to the International Classification of 

Diseases, 9th Revision, Clinical Modification (ICD-9CM). The transition from the ICD-8 

to ICD-9CM in 1978 involved a change in the codes assigned to individual diseases, and 

thus to the variables contained in the NHDS files. The reporting of the diseases 

themselves were not affected, only the code assigned to them (Dennison & Pokras). 

Data collection and sampling procedures have undergone modification, as well. 

Beginning in 1985, two data collection procedures have been used in the survey, a 

manual system from the hospital records to abstract forms, performed by hospital staff, 

and an automated system where data is purchased from a variety of commercial vendors, 

hospitals, and public agencies (National Center for Health Statistics, 2007c). 

Approximately 40 percent of information is obtained through the automated system 

(Dennison & Pokras, 2000). From the 1988 revision to date, the sampling plan is a three-

level stratified design, with all hospitals of 1,000 beds or greater included in the sample, 

and smaller hospitals included as samples within the other two strata (Dennison & 

Pokras). 
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NHDS Data Sources and Contributors 

 The data sources and contributors to the NHDS have evolved along with the 

survey itself. In the beginning of the survey, the sample was selected from short-stay 

hospitals listed in a National Master Facility Inventory, with the sample stratified by 

hospital size (bed count), and geographic region. After the 1998 redesign, the sample was 

selected from a listing of eligible hospitals in the Specialty Medical Group (SMG) 

Hospital Market Database. This sampling scheme was used until 2003, when the listing 

changed to the Healthcare Market Index and Hospital Market Profiling Solution. Both of 

these listings were formerly components of the SMG Hospital Market Database, thus the 

data source remains essentially the same, with only the name of the database changed and 

the main source of the data split into two reports (Hospital Care Statistics Branch, 2007). 

 As it has done throughout its history, the NHDS currently covers discharges from 

non-institutional hospitals. Federal, military, and Veterans Administration hospitals are 

excluded from the survey. Additionally, patients in the sampled hospitals must have an 

average length of stay of less than 30 days, and the hospital must have a declared 

specialty of general medical or general surgical, or a children’s general specialty to be 

included in the survey. Finally, surveyed hospitals must have six or more beds staffed for 

patient use (Hospital Care Statistics Branch, 2007). 

 When sampling this population of hospitals, large hospitals (1000 beds and 

greater), and those with the highest number of discharges (compared among the reporting 

hospitals, and varying from year to year) are always selected, and the remainder of the 

sample is selected according to a three-stage sampling scheme (Dennison & Pokras, 

2000). Hospitals are stratified by whether or not they subscribe to a commercial 
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abstracting service, and by size. Subsequent samples are based upon the type of service 

provided by the hospital and by bed count. The sample frame is updated every three years 

to allow for changes in hospital size or services and to capture hospitals that opened after 

the last sampling (National Center for Health Statistics, 2007b). The information obtained 

through these sampling frames is organized into a defined structure, enabling the efficient 

handling and use of the data. 

The Structure of NHDS Data 

The design of the NHDS is focused on deriving accurate estimates of inpatient 

hospital utilization. SUDAAN, a statistical software package for analysis of data from 

complex studies, is used to calculate the standard errors in these estimates, and all 

statistics used in these calculations are made available to users of the data (Kozak, 

Defrances, & Hall, 2006). This transparency is a hallmark of the NHDS. This is only a 

general look at NHDS data structure, and a further exploration of how the NHDS 

structures the large volume of information it gathers is in order. 

The NHDS performs data gathering, manipulation, and distribution in accordance 

with three prioritized objectives. The first priority objective is national aggregate 

statistics, the second is national trend statistics, and the third is aggregate statistics for the 

four major United States Census regions (Dennison & Pokras, 2000). This prioritization 

of effort occurred as part of the 1988 redesign of the NHDS, and informs the basic 

structure of the NHDS.  

As have the sampling frames, NHDS variables have evolved throughout the life 

of the survey. These variables are provided as part of the documentation included with 

each NHDS annual file. A review of the list of data variables reveals a variable set that 
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appears to be comprehensive and relevant to the declared purpose of the database, and 

pertinent to the declared objective of the NHDS. These variables are appropriate for this 

study. The use of specific disease codes will enable the identification of IPD cases from 

within the large data set. The current iteration of the NHDS relies on the use of ICD-9CM 

coding as the key variable for disease identification.  

The Use of ICD-9CM Coding as a Key Variable in the NHDS, and Quality Assurance for 

Coding and Data Accuracy. 

The NHDS has made use of standardized disease codes from its inception, 

starting with the ICD-8. As the coding standard changed, so did the variable within the 

NHDS. Currently, the NHDS expresses diagnostic information at discharge using ICD-

9CM codes, inclusive of all ages, genders, and geographic location. For data received on 

manual worksheets, the coding process is validated by sampling ten percent of each batch 

of 1000 records. These samples are coded by a second coder, and any discrepancies are 

resolved by a chief coder. New coders processing NHDS data have 100 percent of their 

first three batches audited, and half of their remaining work for the first year is also 

audited. Any batch that has an error rate greater than five percent must be completely 

recoded. When data entry and quality control is completed, a file of records is sent to 

NCHS for editing, estimation and further processing. 

For the automated data, the quality control process is different. First, the 

electronic files are evaluated for physical integrity. If the file is unusable, a new one is 

requested. Files are then brought into a standard format and layout. All of the records are 

then evaluated for missing or inaccurate information, and the results are reviewed for 

invalid ICD-9CM codes. If any problems identified can’t be resolved by NCHS, a new 
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file is requested, and the process begins again upon receipt of the new file (McLemore & 

Pokras, 2001).  

For the most part, coding errors are the greatest hazard to reliability of the data 

within the NHDS (Popovic, 2001). Hospital discharge data has been considered by some 

to be more accurate and reliable than that obtained by surveys, as the information on 

diagnosis is obtained directly from the health care providers (De Bruin, van Heel, 

Lukens, & Hoes, 2005; Machlin, Cohen & Thorpe, 2000). Recall bias on the part of the 

patient is thus less of a concern (Machlin, Cohen & Thorpe). Therefore, within reason 

and given an understanding of the methodology of the survey, users of NHDS data may 

accept its reliability. 

Correlation of NHDS Data to Population Estimates is Essential to Calculating Incidence 

 Conveniently, the NHDS data provided on CD-ROM is already correlated to 

population estimates, with included calculated error rates, so that researchers can readily 

use it to determine incidence rates. NHDS data obtained from on-line sources must be 

utilized with the included United States Census files to correlate to population efforts 

(National Center for Health Statistics, 2007b). This requires analysts to ensure that the 

correct census data is used when computing population rates; the NHDS provides the 

appropriate census files as part of the on-line file with the annual utilization data. 

 Once decoded, the NHDS data lends itself to analysis and manipulation with 

many available programs and systems. It remains that the format is not immediately 

importable to many of these systems, and the use of the CDC Statistical Export and 

Tabulation System (SETS) is recommended for initial conversion of the NHDS data to 

the proper format if the commercial Statistical Analysis Software (SAS) is not the 
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statistical analysis program of choice. It must be further noted that personal information 

and subject identifiers are not retrievable from the NHDS data set, regardless of software, 

as the NHDS is designed with robust privacy protections. 

Privacy Protections in the NHDS. 

The original data source for the NHDS is not available to the public (Lou & Zack, 

2005), and in the original data source, names or other subject unique identifiers are not 

obtained from the reporting hospitals (Popovic, 2001). Additionally, the publicly 

available files do not include medical record numbers, date of birth, admission and 

discharge dates, in fact, all direct identifiers, are omitted from the data set (Popovic). 

These restrictions and omissions from the public data set provide adequate privacy 

protections, and bring the NHDS into compliance with the Health Insurance Portability 

and Accountability Act (HIPAA), as well as the appropriate sections of the Public Health 

Service Act (Popovic). This protection of subject privacy is a strength of the NHDS; 

other strengths and limitations require further discussion. 

Strengths and Limitations of the NHDS 

Conveniently, the NHDS data provided on CD-ROM is already correlated to 

population estimates, with included calculated error rates, so that researchers can readily 

use it to determine incidence rates (National Center for Health Statistics, 2007b). This 

counts as a strength of the NHDS. However, the transmittal of this data by File Transfer 

Protocol, either in ASCII or SETS formats requires either statistical software with 

specific input files, such as SAS, or other, intermediate software, such as SETS or a text 

editor that will accept ASCII. This requires users of the data to obtain this software, and 

is a limitation of the NHDS when used in an on-line environment.  



85 

The NHDS makes use of ICD-9CM codes to express discharge diagnosis, as do 

many compilations of data used in health services (De Coster et al., 2006), and this use of 

a standardized coding format can be considered one of the strengths of the NHDS. Still, 

users of NHDS data must stay aware of the fact that the use of ICD-9CM coding for 

tracking disease and mortality data is widely practiced, but has some limitations (Kloss, 

2005). Early studies of the NHDS concluded that demographic information in the 

database was highly reliable, and that discrepancies in this data component were centered 

on dates of admission and discharge, date of birth or age, and gender. It was further 

concluded that these errors were largely caused by problems in transcription.  

However, these researchers also found that the reliability of diagnostic 

information varied widely, depending on the coding scheme in use (Demlo & Campbell, 

1981). The reliance of the NHDS on ICD-8, and later ICD-9CM, codes for classifying 

discharge diagnosis means that the quality of the data set is greatly dependent on the 

accuracy of coding (Guevara et al., 1999). Because the NHDS is a major source of 

national level data for hospital discharge information, these questions of reliability must 

be considered. The accuracy of the ICD-9CM codes entered into the NHDS data base is 

verified by the CDC (Popovic, 2001). Therefore, to reduce the impact of reliability 

issues, the study used data gathered and coded after 1978 and the transition to the ICD-

9CM coding scheme.  

Furthermore, the utility of these codes in studies of specific disease entities, for 

example, pneumococcal incidence and cardiac arrest, has been upheld by independent 

study (De Bruin, van Hemel, Leufkens, & Hoes, 2005; Guevara et al., 1999). 

Nonetheless, other studies have reported underestimation of incidence in the NHDS 
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(Boulet, Correa-Villansenor, Hsia, & Atrash, 2006), and researchers must remain aware 

of reliability issues within the NHDS related to coding. Other limitations in the NHDS 

are related to the completeness of data, specifically data on race and ethnicity. 

Data on race and ethnicity within the NHDS is often missing (Dennison & Pokras, 

2000), or underreported (Kozak, 1995). This is not isolated to the NHDS, as researchers 

have noted information on race and ethnicity either missing or unreliably reported in 

other hospital discharge surveys and databases. This missing data may be attributed to the 

fact that many hospitals are not mandated to gather this information. As of 2005, only 22 

states required hospital collection of this information, and even then, the information was 

not always collected (Schoenman et al., 2005). Under-reporting of data will not impact 

the possible periodicity of IPD; rather, it will lower the amplitude of any detected 

periodic events (Keeling & Rohani, 2008b). Thus, the missing data does not significantly 

impact the study. 

Researchers examining the under-reporting of race within the NHDS are clear in 

their recommendations. They clearly advise against attempting proportional adjustments 

of NHDS data, as it would possibly correct the estimate of some discharges, while 

overestimating others (Kozak, 1995). The study goes on to state that “no ideal solution 

exists” to the problem, and that NHDS race data be used with caution (Kozak). As to the 

category changes in the 2000 census, Parker et al. (2004) recommend the use of bridge 

models to ensure comparability between older data and current data. These 

recommendations may or may not be suitable, and users of NHDS data may want to 

exclude the use of race or ethnicity in analysis, or pursue other databases with more 

reliable data. Again, the under-reporting of race in the NHDS simply inserts a degree of 
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observational noise into the model, and should have no effect on the possible 

phenomenon of periodicity of IPD epidemics (Keeling & Rohani, 2008b). 

A Serious Gap in Our Knowledge of IPD Epidemic Dynamics 
 

From the preceding review, the depth and breadth of our understanding of the 

epidemiology of IPD can be discerned. Detailed understanding of the microbial 

mechanisms of colonization and infection, host vulnerabilities and factors contributing to 

colonization and infection, and the seasonal nature of IPD is apparent. Knowledge of 

these factors is essential to attaining an understanding of their interplay in potential 

epidemic dynamics. Mechanisms ensuring microbial survival also ensure endemicity, 

which influences incidence rates, and the patterns of epidemics. Changes in host 

vulnerability, from vaccination or lack of vaccination, and effective or ineffective use of 

antibiotics, can also provide plausible reasons for variations in IPD epidemic patterns.  

This review of the literature also reveals established concepts and tools for 

analysis of data related to IPD; specifically, the use of time-series analysis to elucidate 

patterns of epidemics. Choices exist in models, and the choice made clearly depends on 

the nature of the question and ease of computation. Finally, the existence of an archival 

data set conducive to the study has been reviewed.  

A large and detailed body of knowledge exists for addressing IPD, epidemic 

seasonality, and epidemic modeling. However, a serious gap existed in this body of 

knowledge, in that the epidemic periodicity of IPD has not been determined. It is this gap 

that this study addresses. Through the use of time-series analysis applied to the NHDS 

data set, this study determined that a pattern of IPD epidemics did not exist, and 

described a chaotic epidemic dynamic. The following chapter will address specifics of 
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the study design, sample, and analytic techniques used to answer the important question: 

Does invasive infection by S. pneumoniae in the United States occur in a periodic 

epidemic pattern of a predictable recurrent nature and definable frequency? 



CHAPTER 3: METHODS 

Introduction 

In the previous chapter, current literature addressing the epidemiology of IPD was 

reviewed, with emphasis on mechanisms that might influence potential epidemic 

dynamics. The review of the literature also examined approaches to identification and 

analysis of epidemic periodicity; specifically, the use of frequency-domain Time Series 

Analysis to establish epidemic dynamics was reviewed. Lastly, the characteristics of an 

archival data set conducive to this study were discussed. Clearly, a large and detailed 

body of knowledge exists addressing IPD, epidemic seasonality, and epidemic modeling. 

However, a serious gap exists in the literature covering IPD; the existence or absence of 

epidemic periodicity of IPD has not been determined. This study is intended to fill this 

gap, and the discussion in this chapter will address specifics of the study design, sample, 

and analytic techniques intended to address this gap in the literature. 

Study Design and Approach 

 The general intent of this study was to provide a detailed description of the 

epidemic pattern of invasive disease caused by S. pneumoniae infection by relating 

incidence to time for a cohort of discharged hospitalized patients in the United States 

with a discharge diagnosis of IPD, taken from the National Hospital Discharge Summary 

(NHDS) database for the period of 1979-2006. In order to develop this detailed 

description, the study utilized a retrospective cohort study design. To accomplish the 

objective of the study, the endemic level of IPD in the United States during the period 

from 1979-2006 was determined, as well as the incidence level of IPD in the United 
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States during the same period. This provided information essential to answering the 

research questions:  

(1)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

in the aggregate, in the United States? 

(2)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by gender, in the United States? 

(3)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by age (in ranges), in the United States? And 

(4)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by geographic area, in the United States 

The hypotheses were as follows: 

(1) Ho1: IPD did not occur in periodic epidemics of a definable frequency 

outside of the predicted seasonal increase in incidence in the United 

States for the period from 1979-2006, in the aggregate. 

(2) Ha1: IPD occurred in periodic epidemics of a definable frequency in 

addition to the predicted seasonal increase in incidence in the United 

States during the period from 1979-2006, in the aggregate. 
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(3) H o2: IPD did not occur in periodic epidemics of a definable frequency 

outside of the predicted seasonal increase in incidence in the United 

States for the period from 1979-2006, by gender. 

(4) H a2: IPD occurred in periodic epidemics of a definable frequency in 

addition to the predicted seasonal increase in incidence in the United 

States during the period from 1979-2006, by gender. 

(5) H o3: IPD did not occur in periodic epidemics of a definable frequency 

outside of the predicted seasonal increase in incidence in the United 

States for the period from 1979-2006, by age (in ranges). 

(6) H a3: IPD occurred in periodic epidemics of a definable frequency in 

addition to the predicted seasonal increase in incidence in the United 

States during the period from 1979-2006, by age (in ranges). 

(7) H o4: IPD did not occur in periodic epidemics of a definable frequency 

outside of the predicted seasonal increase in incidence in the United 

States for the period from 1979-2006, by geographic area. 

(8) H a4: IPD occurred in periodic epidemics of a definable frequency in 

addition to the predicted seasonal increase in incidence in the United 

States during the period from 1979-2006, by geographic area. 

Calculation of endemicity and incidence rates occurred prior to the time-series 

analysis of the data. Calculation of the cumulative incidence was made by dividing the 

number of IPD cases during the period from 1979-2006 by the size of the population at 

the start of each of year within the period from 1979-2006 totaled. The US census 

information, provided for each year of the NHDS data, was used to establish the 
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denominator. The resulting information was used to establish the cumulative rate of 

incidence of IPD per 100,000 population from 1979-2006, and the incidence rates of IPD 

per 100,000 population stratified by gender, age in ranges and by geographic area. The 

mean of each these incidences was calculated to establish the endemic levels of IPD for 

the period 1979-2006. The endemic level was calculated to enable establishment of 

epidemic levels in the presence of periodic outbreaks; periodicity was not observed, thus 

this level was not used in subsequent analyses. 

The question of epidemic recurrence at definable frequency was then addressed 

by frequency domain time-series analysis. Frequency domain time-series analysis was 

achieved through the employment of the SPSS 17.0 for Mac statistical software package; 

the Forecasting module command set Spectra was applied to the data for the transform, 

analysis, and construction of the periodogram (SPSS, Chicago). Visual display of 

quantitative data is through the use of graphs developed using SPSS 17.0 for Mac. This 

analysis yielded information on perturbations in the epidemiologic pattern over time 

(when compared to the normal disease pattern). These perturbations, if present, would 

constitute evidence of large epidemics of invasive disease, and if present can be 

examined and analyzed to establish the existence of epidemic periodicity (and the 

frequency of that periodicity) or aperiodicity.  

Setting and Sample 

The study is archival research; the data for the study is contained in the CDC’s 

National Hospital Discharge Survey (NHDS) database (Popovic, 2001), for the period 

ranging from 1979 to the most recent year of compiled data, 2006. These data sets are 

publicly accessible, by either purchase from the National Technical Information Service, 
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or by download from the CDC server. For the data sets from 1979 to 1995, a multi-year 

CD-ROM was purchased from the National Technical Information Service, (order 

number PB99-501876). The data for the period 1996 to 2006 was downloaded by File 

Transfer Protocol (FTP) from the CDC server at http://nber15.nber.org/nhds/ftp.cdc.gov/ 

pub/Health_Statistics/NCHS/Datasets/NHDS/. Documentation for the on-line data sets 

was also obtained by FTP from the CDC server at http://nber15.nber.org/nhds/ 

ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documentation/NHDS.  

The NHDS, the major source of national level aggregative information on hospital 

utilization in the United States, is a continuous national probability survey targeting the 

inpatient utilization of non-Federal short stay hospitals, through the gathering and 

processing of data derived from the medical records of inpatients discharged from a 

national sample of approximately 500 hospitals (Dennison & Pokras, 2000; National 

Center for Health Statistics, 2007a). The data within the NHDS are derived from the 

medical records of inpatients discharged from a national sample of approximately 500 

non-institutional hospitals (Boulet et al., 2006). The NHDS is considered to be the 

principle source of national level data on the characteristics of patients discharged from 

these hospitals (Lou & Zack, 2005).  

Federal, military, and Veterans Administration hospitals are excluded from the 

NHDS. Additionally, hospitals must have an average in-patient length of stay of less than 

30 days, a declared specialty of general medical or general surgical, or a children’s 

general specialty to be included in the survey. Finally, surveyed hospitals must have six 

or more beds staffed for patient use. The NHDS expresses diagnostic information at 
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discharge using ICD-9CM codes, inclusive of all ages, genders, geographic location, and 

co-morbidities (Hospital Care Statistics Branch, 2007). 

Description of the Study Population 

The population for the study was defined as those cases with a discharge 

diagnosis of IPD included in the NHDS data base (Popovic, 2001), for the defined time 

period of 1979-2006. The accuracy of the ICD-9CM codes entered is verified by the 

CDC (Popovic), and the utility of these codes in studies of pneumococcal incidence has 

been upheld by independent study (Guevara et al., 1999). Subject selection criteria will 

be set narrowly, by selecting specifically those conforming to the ICD-9CM codes 

consistent with IPD. The NHDS data set is searchable for these codes, as well as those for 

age, gender, race, geographic region, and dates of admission and discharge. The use of 

ICD-9CM coding to select a sample has been employed an earlier significant study that 

addressed seasonality of IPD, but not periodicity (Dowell et al., 2003). To further clarify 

the study population, definitions of IPD are in order, moving from a conceptual 

definition, through a case definition, and finally to an operational definition. 

Case Definition 

IPD was defined as a clinically compatible case, with a laboratory-confirmed 

culture of S. pneumoniae isolates obtained from blood, cerebral spinal fluid (CSF), 

pleural fluid, pericardial fluid, joint aspirate, or other normally sterile sites. This 

definition specifically excluded otitis media, as the specific causal organism is rarely 

identified for this diagnosis and it rarely requires in-patient treatment. Furthermore, 

infections with other Streptococcus species, such as S. pyogenes, S. scarlatinae or S. 

puerperalis were excluded from this definition of IPD. These organisms, while clinically 
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important in their own right, have different clinical character than S. pneumoniae 

(Breiman et al., 2000). 

Operational Definition of IPD 

For an operational definition of IPD, the research study used specific International 

Classification of Diseases, 9th Revision, Clinical Modification (ICD-9CM) codes 

consistent with three general diagnostic groupings of IPD: septicemia, bacteremia, and 

meningitis. These codes are pneumococcal septicemia (038.2), bacteremia (790.7) with 

an accompanying pneumococcus (041.2), pneumococcal meningitis (320.1), or any 

combination thereof. 

Sampling Method and Frame 

The sample design employed in the study was multi-stage random sampling 

(Trochim, 2001), with elements of both probability and non-probability sampling. The 

initial sampling was conducted in the process of compiling the NHDS, which is a 

probability sample representing a sample of hospitals, as discussed earlier. The next stage 

of sampling was the identification and extraction of the subpopulation of NHDS-listed 

IPD cases by specific ICD-9CM codes for analysis, which is a non-probability sample.  

The sampling frame of the NHDS is a continuous national probability survey of a 

national sample of approximately 500 hospitals. In compiling the NHDS, large hospitals 

(1000 beds and greater), and those with the highest number of discharges (compared 

among the reporting hospitals, and varying from year to year) are always selected, and 

the remainder of the sample is selected according to a three-stage sampling scheme 

(Dennison & Pokras, 2000). Hospitals are stratified by whether or not they subscribe to a 

commercial abstracting service, and by size. Subsequent samples are based upon the type 



96 

of service provided by the hospital and by bed count. The sample frame is updated every 

three years to allow for changes in hospital size or services and to capture hospitals that 

opened after the last sampling (National Center for Health Statistics, 2007b). The 

sampling frame of the NHDS was thus confind to large hospitals, specifically, those with 

the highest count of discharges are selected with certainty. The remainder of the sample 

was selected according to a three-stage plan.  

The first group selected as a result of the three-stage plan is a sample from 

geographic region. Within those groupings, hospitals are further stratified by whether or 

not they subscribe to a commercial abstracting service, and by size. The third stage 

samples are based upon the type of service provided by the hospital and by bed count. 

The sample frame is updated every three years to allow for changes in hospital size or 

services and to capture hospitals that opened after the last sampling (National Center for 

Health Statistics, 2007b). 

The next stage of sampling for the study occurred with the selection of IPD cases 

from the NHDS data set for the period from 1979, when the use of ICD-9CM codes was 

instituted (Popovic, 2001) to 2006 (the last year for which data have been compiled). 

Within this data set, all cases of IPD will be selected. This sample frame is necessary to 

conduct an accurate frequency-domain time-series analysis; a total count of events at 

each point in time (monthly for the performed analysis) is used to establish the 

components of the spectrum (Wei, 1994). Time-series analysis differs from descriptive 

statistics in that omission of cases by random sampling might distort the analysis, by 

reducing the amplitude of any periodic components and thus potentially reducing the 
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amplitude of any events below the level needed to distinguish between periodicity and 

chaos (Yulmetyev, Yulmetyeva, & Gafarov, 2005). 

Thus, the first stage of sampling was a probability sample (by the design of the 

NHDS), and the second stage was non-probability sampling that (driven by the 

requirements of frequency-domain time-series analysis) included all IPD cases compiled 

from the dataset. Eligibility for inclusion in the study sample was determined by ICD-

9CM code.  

Eligibility Criteria  

Subject selection criteria was set narrowly, by selecting specifically for 

pneumococcal septicemia (ICD-9CM code  =  038.2) or bacteremia (ICD-9CM code  =  

790.7) with an accompanying pneumococcus (ICD-9CM code  =  041.2), as well as for 

pneumococcal meningitis (ICD-9CM code  =  320.1), or any combination thereof. All 

ages, genders, races, and geographic regions as defined in the NHDS data set were 

included. Non-specific codes for septicemia (ICD-9CM code =  038), bacteremia (ICD-

9CM code =  790.7) or bacterial meningitis (ICD-9CM code =  320) were excluded from 

the analysis, to avoid gathering data on invasive disease that might have been attributable 

to other pathogens, such as Staphylococcus aureus, Moraxella catarrhalis, or Klebsiella 

pneumoniae. Additionally excluded were cases of otitis media, as the specific causal 

organism is rarely identified, nor does it often require in-patient treatment (Breiman et al., 

2000). Furthermore, infections with other Streptococcus species, such as S. pyogenes, S. 

scarlatinae or S. puerperalis were excluded from case selection.  
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Instrumentation and Materials 

Having defined the setting and sample for the study, and discussed the sampling 

frame and methods, the focus now turns to the instrumentation and materials required to 

conduct this study. In the ensuing discussion, a description of the dataset, data collection 

tools, processes, and the location of the raw data will be covered.  

Study Instruments, Type of Instrument, and Concepts Measured by the Instruments 

The study dataset for the research consisted of the individual data sets from the 

NHDS from 1979-2006. These files are organized by individual year, and the format 

varies depending upon the year of publication. For the period from 1979 to 1996, a multi-

year CD-ROM provides all of the applicable files (National Center for Health Statistics, 

2007a). The data set for this date range in the study was the CD-ROM, National 

Technical Information Service (NTIS) order number PB99-501876. For the years 1996 to 

2006, the data sets for the study were obtained from a CDC server through FTP via 

compressed file sets that contain data elements in ASCII (American Standard Code for 

Information Interchange) format (CDC, 2007), an American National Standards Institute 

(ANSI) standard format that permits interoperability across a variety of platforms 

(American National Standards Institute, 2002). Documentation files unique to each year 

were transmitted or stored on the CD-ROM uncompressed, either in Adobe Portable 

Document Format (.pdf) or Text format (.txt), again dependant on the year that the data 

were published. The actual format of data in the NHDS is determined by the syntax laid 

out in the survey codebook. The codebook for the NHDS is published annually as part of 

the supporting documentation for the annual survey, and is contained as an addendum to 

the documentation file. Each individual record within the NHDS data is listed as a 
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separate line consisting of numeric string, with values and positions in the numeric string 

corresponding to those listed in the codebook (National Center for Health Statistics, 

2007b). 

A Detailed Description of the Variables Contained in the Data 

The variables contained in the numeric string are listed in the documentation 

included with each NHDS annual file. The variables in the NHDS case string are as 

follows: 

(1) Survey Year (the last two digits of the survey year) 

(2) Newborn status (coded as 1  =  newborn, 2  =  not newborn) 

(3) Units for age (coded as 1  =  years, 2   =  months, 3   =  days) 

(4) Age in years, months, or days (coded as units  = years, 00-99, If 

units  = months, 01-11, If units-days, 00-28). Fields for years, 

months and days exist in the dataset. 

(5) Sex (coded as 1 = male, 2 = female) 

(6) Race (coded as 1 = White, 2 = black, 3  = American 

Indian/Alaskan Native, 4 = Asian, 5 = Native Hawaiian or other 

Pacific Islander, 6 = Other, 8 = Multiple race indicated, 9 = Not 

stated) 

(7) Marital status (coded as 1 = Married, 2 = Single, 3 = Widowed, 4  

= Divorced, 5 = Separated, 9 = Not stated) 

(8) Discharge month (coded 01-12 = January to December) 

(9) Discharge status (coded 1 = Routine/discharged home, 2 = Left 

against medical advice, 3 = Discharged/transferred to short-term 
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facility, 4 = Discharged/transferred to long-term care institution, 5 

= Alive, disposition not stated, 6 = dead, 9 = Not stated or not 

reported) 

(10)  Days of care (coded as the actual number of days)  

(11) Length of stay flag (coded 0 = Less than 1 day, 1 = One day or 

more) 

(12) Geographic region (coded 1 = Northeast, 2 = Midwest, 3 = South, 

4 = West) 

(13) Number of beds, recode (coded 1 = 6-99, 2 = 100-199, 3 = 200-

299, 4 = 300-499, 5 = 500 and over) 

(14) Hospital ownership (coded 1 = Proprietary, 2 = Government, 3 = 

Nonprofit, including church) 

(15) Analysis weight (used to obtain weighted estimates) 

(16) First two digits of survey year 

(17-23) Diagnosis codes (1970-77: one to five 4-digit ICD-8 diagnostic 

codes: 1979-2006; one to seven 5-digit ICD-9-CM codes) 

(24-27) Procedure codes (1970-77: zero to three 3-digit ICD-8 procedure 

codes: 1979-2006: zero to four 4-digit ICD-9-CM procedure 

codes) 

(28) Principal expected source of payment (not contained in the data set 

for 1977-97) (coded as 1 = Worker’s compensation, 2 = Medicare, 

3 = Medicaid, 4 = Other government, 5 = Blue Cross/Blue Shield, 
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6 = HMO/PPO, 7 = Other private insurance, 8 = Self-pay, 9 = No 

charge, 10 = Other, 99 = Not stated) 

(29) Secondary expected source of payment (not contained in the data 

set for 1977-97) (coded as 1 = Worker’s compensation, 2 = 

Medicare, 3 = Medicaid, 4 = Other government, 5 = Blue 

Cross/Blue Shield, 6 = HMO/PPO, 7 = Other private insurance, 8 

= Self-pay, 9 = No charge, 10 = Other, 99 = Not stated) 

(30) Diagnosis-related group (DRG) codes: 1986-2006 (Not on 

multiyear file) 

(31) Type of Admission (coded as 1 = Emergency, 2 = Urgent, 3 = 

Elective, 4 = Newborn, 9 = Not available) 

(32) Source of Admission (coded as 1 = Physician referral, 2 = Clinical 

referral, 3 = HMO referral, 4 = Transfer from a hospital, 5 = 

Transfer from a skilled nursing facility, 6 = Transfer from other 

health facility, 7 = Emergency room, 8 = Court/law enforcement, 9  

= Other, 99 = Not available) (National Center for Health Statistics, 

2007). 

The geographic regions for the NHDS are as follows: 

(1) Northeast: Maine, New Hampshire, Vermont, Massachusetts, Connecticut, 

Rhode Island, New York, New Jersey, Pennsylvania 

(2) Midwest: Michigan, Ohio, Illinois, Indiana, Wisconsin, Minnesota, Iowa, 

Missouri, North Dakota, South Dakota, Nebraska, Kansas 



102 

(3) South: Delaware, Maryland, District of Columbia, Virginia, West 

Virginia, North Carolina, South Carolina, Georgia, Florida, Kentucky, 

Tennessee, Alabama, Mississippi 

(4) West: Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, 

Nevada, Washington, Oregon, California, Hawaii, Alaska (Hospital Care 

Statistics Branch, 2007). 

The NHDS data provided on CD-ROM is already correlated to population 

estimates, with included calculated error rates, so that researchers can readily use it to 

determine incidence rates. NHDS data obtained from on-line sources must be utilized 

with the included United States Census files to correlate to population efforts (National 

Center for Health Statistics, 2007a). This required assurance that the correct census data 

were used when computing population rates; the NHDS provides the appropriate census 

files as part of the on-line file with the annual utilization data. 

Processes for Assessment of the Reliability and Validity of the Data 

A key assumption of the study was the reliability and validity of the data from the 

NHDS database. The NHDS makes use of ICD-9CM codes to express discharge 

diagnosis, as do many compilations of data used in health services (De Coster et al., 

2006), and this use of a standardized coding format can be considered one of the 

strengths of the NHDS. Still, users of NHDS data must stay aware that, although the 

ICD-9CM coding system for tracking disease and mortality data is widely practiced, the 

approach has some limitations (Kloss, 2005). Early studies of the NHDS concluded that 

demographic information in the database was highly reliable, and that discrepancies in 

this data component were centered on dates of admission and discharge, date of birth or 
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age, and gender. Kloss further concluded that these errors were largely caused by 

problems in transcription. 

However, these researchers also found that the reliability of diagnostic 

information varied widely, depending on the coding scheme in use (Demlo & Campbell, 

1981). The reliance of the NHDS on ICD-9CM codes for classifying discharge diagnosis 

means that the quality of the data set is greatly dependent on the accuracy of coding. 

Significantly, the utility of these codes in studies of specific disease entities, and of 

particular importance to the study, pneumococcal incidence, has been upheld by 

independent research (Guevara et al., 1999). 

To ensure accurate data, the NHDS employs quality control techniques dependant 

on the submitted format. For the most part, coding errors are the greatest hazard to 

reliability of the data within the NHDS (Popovic, 2001), and error detection procedures 

are in place to ensure that these hazards are reduced. For potential NHDS data received 

on manual worksheets, the coding process is validated by sampling ten percent of each 

batch of 1000 records. These samples are again coded by a second coder, and any 

discrepancies are resolved by a chief coder. New coders processing NHDS data have 

100% of their first three batches audited, and half of their remaining work for the first 

year is also audited. Any batch that has an error rate greater than five percent must be 

completely recoded. When data entry and quality control is completed, a file of records is 

sent to NCHS for editing, estimation, and further processing (McLemore & Pokras, 

2001). 

For the automated data, the quality control process is different. First, the 

electronic files are evaluated for physical integrity. If the file is unusable, a new one is 
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requested. Files are then brought into a standard format and layout. All of the records are 

then evaluated for missing or inaccurate information, and the results are reviewed for 

invalid ICD-9CM codes. If any problems identified can’t be resolved, a new file is 

requested, and the process begins again upon receipt of the new file (McLemore & 

Pokras, 2001). 

Hospital discharge data has been considered by some to be more accurate and 

reliable than that obtained by surveys, as the information on diagnosis is obtained directly 

from the health care providers. Recall bias on the part of the patient is thus less of a 

concern (Machlin, Cohen & Thorpe, 2000). However, an issue of data accuracy relates to 

analysis of the data by race or ethnicity. Data on race and ethnicity within the NHDS is 

often missing (Dennison & Pokras, 2000), or underreported (Kozak, 1995). This missing 

data may be attributed to the fact that many hospitals are not mandated to gather this 

information. As of 2005, only 22 states required hospital collection of this information, 

and often, the information was not always collected (Schoenman et al., 2005). Thus, the 

research excluded the use of race or ethnicity in analysis. 

Based upon the quality assurance measures in place, the accuracy of the NHDS 

data may be assumed. The NHDS data set is sufficiently large and detailed to permit 

frequency domain time-series analysis. Additional discussion of the NHDS, NHDS 

sampling frames and techniques, and studies addressing the accuracy of the NHDS may 

be found in Chapter Two. 

Location of the Raw Data 

The raw data for the study was obtained from two sources. In the case of the 

multi-year CD-ROM, the data set was purchased from the National Technical 
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Information Service, as order number PB2005-500003, available on-line at 

http://www.ntis.gov/search/product.aspx?ABBR=PB2005500003. The data for the period 

1996 to 2006 was downloaded by FTP from the CDC server at 

http://nber15.nber.org/nhds/ftp.cdc.gov/pub/Health_Statistics/NCHS/Datasets/NHDS/. 

Documentation for the on-line data sets was downloaded by FTP from the CDC server at 

http://nber15.nber.org/nhds/ftp.cdc.gov/pub/Health_Statistics/NCHS/Dataset_Documenta

tion/NHDS. Given the extremely large number of cases catalogued in 28 years of hospital 

discharges, it is impractical to include the raw data in the appendix of this paper. 

Data Collection and Analysis 

 Data sets were obtained from either the CD-ROM (for years 1979-2001) or the 

on-line files (for the years 2001- 2006). Data extraction was conducted through the use of 

the TextEdit for Mac (OS X 10.5.5) application (Apple, Cupertino, CA). Once the data 

for each year was extracted into .txt format, it was read into SPSS 17.0 for Mac (SPSS, 

Chicago), and each annual file was converted to SPSS .sav format. This process was 

repeated for each year’s data set, and duplicate data sets were compared to each other to 

ensure accurate transfer and formatting.  

Files with errors during comparison were deleted, and the process repeated, to 

ensure the accuracy of data. After error checking was complete, each annual file was 

saved as an independent file, backups of each individual file were made, and the backups 

stored at an off-site location. Finally, the annual files were merged into a cumulative file 

using the SPSS 17.0 for Mac Merge Files Add Cases command; the resulting file was 

saved in SPSS .sav format, and backed up as with the individual annual files. 

The first analysis was focused on determining the endemic level of IPD in the 



106 

United States for the period from 1979-2006, in the aggregate, and by gender, age (in 

ranges), and geographic area. Using the SPSS Data Select command on the merged data 

set, IPD cases by ICD-9CM code (NHDS variables 17-23), specifically pneumococcal 

septicemia (038.2) or bacteremia (790.7) with an accompanying pneumococcus (041.2), 

as well as for pneumococcal meningitis (320.1), were selected and the resulting cases 

counted by use of the SPSS 17.0 for Mac Analyze/Descriptive Statistics/Frequencies 

command. Calculation of the cumulative incidence for the period from 1979-2006 

followed. The formula for this calculation was: Number of IPD cases during the period 

from 1979-2006/Size of the population at the start of each of year within the period from 

1979-2006 totaled. The US census information provided for each year of the NHDS data 

was used to establish the denominator. 

This process was repeated with the data further selected by gender (NHDS 

variable 5), then repeated with the data further selected by age (in ranges) (NHDS 

variable 4, recoded as 1 = 0-4 years, 2 = 5-14 years, 3 = 15-24 years, 4 = 25-34 years, 5  

= 35-44 years, 6 = 45-54 years, 7 = 55-64 years, 8 = 65-74 years, 9 = 75-84, 10 = 85-98), 

and finally repeated with the data further selected by geographic area (NHDS variable 

12). The resulting information was used to establish the cumulative rate of incidence of 

IPD per 100,000 population from 1979-2006, and the incidence rates of IPD per 100,000 

population stratified by gender, age in ranges and by geographic area. The mean of each 

these incidences was calculated to establish the endemic levels of IPD for the period 

1979-2006.  

The next phase of analysis was targeted to determine the predicted incidence level 

of IPD during seasonal increases, and to answer the research questions: 
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(1)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

in the aggregate, in the United States? 

(2)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by gender, in the United States? 

(3)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by age (in ranges), in the United States? And 

(4)  Do epidemics of IPD occur in a periodic manner with a definable 

frequency in addition to the predicted seasonal increase in incidence, 

by geographic area, in the United States?  

Using the appropriate SPSS Data Sort and Select commands on the merged data 

set, IPD cases by the specific ICD-9CM code (NHDS variables 17-23) for IPD were 

selected. The results were then be subjected to frequency-domain time-series analysis 

through the employment of the SPSS 17.0 for Mac add-on module Forecasting. The 

SPSS 17.0 for Mac Forecasting command set Spectra was used to execute an FFT and 

plot a periodogram of IPD incidence for each month in the period from 1979-2006.  

Additional periodograms were derived from the data, in the aggregate and 

stratified by gender, age in ranges, and geographic region for each month in the period 

from 1979-2006. These periodograms were examined with attention to detection of 

periodic components in addition to the expected seasonal incidence. These perturbations 

were examined and analyzed to establish or refute the existence of epidemic periodicity 
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(and the frequency of that periodicity), addressing the study research question. All 

analytic results were reported in both numeric and graphic formats. Graphics were 

generated by the SPSS 17.0 for Mac software package. All data, raw, reformatted, and 

analyzed, had personal identifiers removed as part of the NHDS data set development 

process. 

Analysis of the data facilitated the calculation of the cumulative incidence level of 

IPD in the United States for the period from 1979-2006, in the aggregate, and by gender, 

age (in ranges), and geographic area. Using the SPSS Data Select command on the 

merged data set, IPD cases by ICD-9CM code (NHDS variables 17-23), specifically 

pneumococcal septicemia (038.2) or bacteremia (790.7) with an accompanying 

pneumococcus (041.2), as well as for pneumococcal meningitis (320.1), were selected 

and the resulting cases counted by use of the SPSS 17.0 for Mac Analyze/Descriptive 

Statistics/Frequencies command. Annual incidence rates were then calculated, using the 

formula: Estimated number of IPD cases for each year/Size of the US population for that 

year. Calculation of the cumulative incidence of IPD in the United States for the period of 

1979-2006 followed. The formula for this calculation was: Number of IPD cases during 

the period from 1979-2006/Size of the US population for each of year within the period 

from 1979-2006 totaled. The US census population information provided for each year of 

the NHDS data was used to establish the denominator. The results are expressed as cases 

per 100,000. 

This process was repeated with the data further selected by gender (NHDS 

variable 5), then repeated with the data further selected by age (in ranges) (NHDS 

variable 4, recoded as 1 = 0-4 years, 2 = 5-14 years, 3 = 15-24 years, 4 = 25-34 years, 5  
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= 35-44 years, 6 = 45-54 years, 7 = 55-64 years, 8 = 65-74 years, 9 = 75-84, 10 = 85-98), 

and finally repeated with the data further selected by geographic area (NHDS variable 

12). The results are expressed in terms of cases per 100,000. The outcomes of the first 

analysis were then used to calculate the endemic rate of IPD per 100,000 from 1979-

2006. As previously noted, the endemic level was calculated to enable establishment of 

epidemic levels in the presence of periodic components to the IPD dynamics; if these had 

been detected, the level of these components would have been compared to the endemic 

level in order to establish or refute the presence of an epidemic. Periodicity was not 

observed in this study, thus this level was not used in subsequent analyses. 

The third phase of the analysis concentrated on refuting or establishing the 

existence of periodic epidemics of IPD, beyond the previously established seasonality. 

Using the appropriate SPSS Data Sort and Select commands on the merged data set, IPD 

cases by the previously identified ICD-9CM codes (NHDS variables 17-23) were 

selected. The results were then subjected to frequency-domain time-series analysis 

through the employment of the SPSS 17.0 for Mac add-on module Forecasting. The 

SPSS 17.0 for Mac Forecasting command set Spectra was used to execute an FFT and 

plot periodograms of IPD incidence for the period from 1979-2006. These periodograms 

were generated for the all variables data set, and for data stratified by gender, age in 

ranges, and geographic region. The periodograms were generated in the frequency 

domain (Wei, 1994f).  

These periodograms were examined and analyzed to establish or refute the 

existence of epidemic periodicity (and the frequency of that periodicity) using the 

techniques elucidated by Wei (1994f). This analysis addressed the hypotheses of this 
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study. The results of this analysis were expressed in graphic form, using the graphics 

generated by the SPSS 17.0 for Mac software package. 

An additional analysis was conducted to indentify seasonality of IPD in the 

United States for the period from 1979-2006. As in the previous analysis, the SPSS 17.0 

for Mac Forecasting command set Spectra was used to execute a FFT based on a 

modified Cooley-Tukey algorithm (SPSS, 2008) and plotted a periodogram of IPD cases 

by month for the period from 1979-2006. As in the prior analysis, these periodograms 

were generated in the frequency domain (Wei, 1994f). The data was not analyzed by 

strata of time period, as the analytic techniques used require long time series, and 

stratification into shorter groups of years would not have met this requirement 

(Komalapriya et al., 2008) 

Measures for the Protection of Participant Rights 

Walden University Institutional Review Board (IRB) approval was granted for 

this study, under IRB approval number 05-28-09-0328781. The original data source for 

the NHDS is not available to the public (Lou & Zack, 2005), and in the original data 

source, names or other subject unique identifiers are not obtained from the reporting 

hospitals (Popovic, 2001). Additionally, the publicly available files do not include 

medical record numbers, date of birth, admission and discharge dates, in fact, all direct 

identifiers, are omitted from the data set (Popovic). These restrictions and omissions from 

the public data set ensure privacy protection, and bring the NHDS into compliance with 

the Health Insurance Portability and Accountability Act (HIPAA), as well as the 

appropriate sections of the Public Health Service Act (Popovic, 2001). The Public Health 

Service Act states that data collected by the National Center for Health Statistics can only 
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be used for health reporting and analysis, and prohibits any other use or attempts to 

determine the identity of a case (National Center for Health Statistics, 2007).  



CHAPTER 4: RESULTS 

Introduction 

The purpose of this study was to describe the epidemic pattern of IPD in the 

United States in the last 28 years. The following research questions were addressed: 

(1) Do epidemics of IPD occur in a periodic manner with a definable frequency in 

addition to the predicted seasonal increase in incidence,  

(a) in the aggregate, 

(b) by gender, 

(c) by age range, and 

(d) by geographic area.  

Two specific objectives were addressed in order to answer these questions. First, 

the incidence levels of IPD for each year and for the combined period in the time span 

from 1979-2006 were estimated. Calculation of incidence levels permitted the 

comparison of the results of this study to those of previous studies, and acted as a check 

against intrusion of non-pneumococcal disease into the analysis, which would have been 

reflected in incidence levels that rose, rather than fell after the introduction of the 

pediatric vaccine. Second, the endemic levels of IPD in the United States were calculated 

for the period from 1979-2006 in the aggregate, and by gender, age (in ranges), and 

geographic area. The endemic level was calculated to enable establishment of epidemic 

levels in the presence of periodic outbreaks; periodicity was not observed, thus this level 

was not used in subsequent analyses. These subsequent analyses used the estimated count 

of cases within each month of the time period to construct periodograms of IPD incidence 



113 

for the period 1979-2006 in the aggregate, and by gender, age (in ranges), and geographic 

area. 

Analysis 

IPD Incidence in the United States 

The first measure obtained was the incidence levels of IPD in the United States 

for the period from 1979-2006, as cumulative incidence for all variable, and cumulative 

incidences by gender, age (in ranges), and geographic area. Using the SPSS Data Select 

command on the merged data set, IPD cases by ICD-9CM code, specifically 

pneumococcal septicemia (038.2) or bacteremia (790.7) with an accompanying 

pneumococcus (041.2), as well as for pneumococcal meningitis (320.1), were selected 

and the resulting cases counted by use of the SPSS 17.0 for Mac Analyze/Descriptive 

Statistics/Frequencies command (SPSS, Chicago). Calculation of the cumulative 

incidence for the period from 1979-2006 followed, by dividing the estimated number of 

IPD cases during the period from 1979-2006 by the size of the population for each of 

year within the period from 1979-2006 totaled. The U.S. census population information 

provided for each year of the NHDS data was used to establish the denominator (U.S. 

Department of Health and Human Services, 2008). 

This process was repeated with the data stratified by gender, then repeated with 

the data stratified by age (in ranges) (0-4 years, 5-14 years, 15-24 years, 25-34 years, 35-

44 years, 45-54 years, 55-64 years, 65-74 years, 75-84, 85-98), and finally repeated with 

the data stratified by geographic area. The resulting information was used to establish the 

cumulative rate of incidence of IPD per 100,000 from 1979-2006, and the incidence rates 

of IPD per 100,000 by gender, age ranges, and by geographic area.  
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IPD Endemic Levels in the United States 

The second measure obtained was the endemic level of IPD for the period 1979-

2006, calculated as the summation (Σ) of the annual incidence of IPD per 100,000. The 

US census population information provided for the 28 years of the NHDS data was used 

as the denominator. As previously noted, the endemic level was calculated to establish 

epidemic levels in the presence of periodic outbreaks; periodicity was not observed, thus 

this level was not used in subsequent analyses. 

IPD Seasonality in the United States 

An analysis was intended to determine the seasonal incidence level of IPD. Using 

the SPSS Data Sort and Select commands on the merged data set, IPD cases by the 

specific ICD-9CM code for IPD were selected, and the resulting cases counted by using 

the SPSS 17.0 for Mac Analyze/Descriptive Statistics/Frequencies command (SPSS, 

Chicago). The results were then subjected to frequency domain time-series analysis 

through the employment of the SPSS 17.0 for Mac add-on module Forecasting. The 

SPSS 17.0 for Mac Forecasting command set Spectra were used to execute an FFT and 

plot a periodogram of IPD incidence by year in the period from 1979-2006. The data 

were not analyzed by the strata of age (in range), gender, or geographic area, as the 

analytic techniques used require long time series, and stratification into shorter groups of 

years would not have met this requirement. Exponential smoothing of the data was 

through application of the Parzen filter algorithm in the SPSS 17.0 for Mac Forecasting 

Spectra command set (SPSS, Chicago). 
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IPD Periodicity in the United States 

As in the analysis for seasonal components, the appropriate SPSS Data Sort and 

Select commands were applied to the merged data set, and IPD cases by the previously 

identified ICD-9CM codes were selected, and the resulting cases counted by use of the 

SPSS 17.0 for Mac Analyze/Descriptive Statistics/Frequencies command (SPSS, 

Chicago). The results were then subjected to frequency domain time-series analysis 

through the SPSS 17.0 for Mac add-on module Forecasting. The SPSS 17.0 for Mac 

Forecasting command set Spectra was used to execute an FFT and plot periodograms of 

IPD incidence for the period from 1979-2006. Periodograms were generated for the all-

variables data set and for data stratified by gender, age in ranges, and geographic region. 

The periodograms were generated in the frequency domain, and exponential smoothing 

of the data was through application of the Parzen filter algorithm in the SPSS 17.0 for 

Mac Forecasting Spectra command set (SPSS, Chicago). 

Results 

IPD Incidence in the United States 

The yearly incidence of IPD in the United States, for the period from 1979-2006, 

ranged from a low of 7.2 per 100,000, in 1985, to a high of 143.6 per 100,000, in 1998. 

The annual IPD incidence rate fell from 77.3 per 100,000 in 2000 to 26.1 per 1,000,000 

in 2004, then increased over the final two years of the data examined to 49.7 per 100,000 

(see Figure 1). The cumulative incidence of IPD in the United States for the period from 

1979-2006 was calculated as 53.5 per 100,000.  
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Figure 1. Incidence of IPD in the United States, 1979-2006, per 100000. 

Stratification by Age Group, Gender, and Region  

Stratification by age (in ranges) revealed that persons aged from 5-14 years had 

the highest IPD incidence rate, 133.2 per 100,000, while those persons aged from 15-24 

had the lowest incidence rate, 15.9 per 100,000 (see Figure 2). When stratified by gender, 

the cumulative incidence of IPD in the United States from 1979-2006 was 68.0 per 

100,000 for men and 43.7 per 100,000 for women (see Figure 3). An examination of data 

by geographic region revealed that the Midwest region had the highest incidence in the 

period from 1979-2006 with an incidence of 79.0 per 100,000. The Northeast and South 

regions both had an incidence of 66 per 100,000 in the same period. Finally, the West 

region had the lowest IPD incidence of 58.9 per 100,000 (see Figure 4).  
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Figure 2. Incidence of IPD in the United States, 1979-2006, by age. 
 

 

Figure 3. Incidence of IPD in the United States, 1979-2006, by gender. 
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Figure 4. Incidence of IPD in the United States, 1979-2006, by geographic region. 

IPD Endemic Levels in the United States 

The endemic level of IPD in the United States for the period 1979-2006 was 46.9 

per 100,000. The endemic level was calculated to enable establishment of epidemic levels 

in the presence of periodic outbreaks. Because the analysis did not detect periodic 

components to the epidemic dynamic, this level was not used in subsequent analyses. 

Periodicity of IPD Epidemics in the United States. 

The periodogram for IPD incidence in the United States for the period from 1979-

2006 by month, combining all ages, genders, and geographic regions is shown in Figure 

5. This addresses hypotheses Ho1 and Ha1. This periodogram exhibits a disordered 

waveform not consistent with periodicity, supporting the null hypothesis. This result held 

even after exponential smoothing of the sample spectrum. None of the perturbations in 

the waveform were of sufficient amplitude (represented by vertical height of the centered 

wave along the y-axis) to warrant further examination. 
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Figure 5. Periodogram of IPD incidence in the United States for the period from 1979-

2006, inclusive of all ages, genders, and geographic regions. 

IPD periodicity stratified by gender, geographic region, and age group  

Periodograms for IPD cases stratified by gender are shown in Figures 6 and 7. 

These graphs focus on hypotheses H a2 and H o2, and yielded similar results as the overall 

incidence periodogram; that is, the waveforms are not consistent with periodicity of IPD 

epidemics, even after exponential smoothing of the sample spectrum. No peaks consistent 

with periodic events could be identified, and no perturbations in the waveform were of 

sufficient amplitude (represented by vertical height along the y-axis) to warrant further 

examination. Despite the gender disparity in incidence, the morphology of these 

periodograms were similar in that both showed a similar lack of peaks consistent with 

periodic components that could be analyzed further. 
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Figure 6. Periodogram of IPD incidence in the United States for the period from 1979-

2006, by gender, male.  

 

Figure 7. Periodogram of IPD incidence in the United States for the period from 1979-

2006, by gender, female. 

The time series analysis graph for periodicity of IPD epidemics in the United 

States, 1979-2006 by geographic regions (see Figure 8), for hypotheses H o3 and H a3, did 

not reveal a recurrent epidemic pattern in any of the four regions. The morphology of the 

waveforms in these periodograms differs from the previous examples by exhibiting a 

reduced density of waveforms. None of the periodograms contain a peak or perturbation 

consistent with a recurrent epidemic pattern 
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Figure 8. Periodogram of IPD incidence in the United States for the period from 1979-

2006, Northeast, Midwest, South, and West census regions (from top to bottom). 

The results of the analysis of the occurrence of IPD cases stratified by selected 

age ranges, attending to hypotheses H o4 and H a4, are shown in figure 9, as well as in 

figures 11, 12,13, 14, and 15, which may be found in the appendix. Again, the waveforms 
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for each age group are not consistent with periodicity of IPD epidemics, even after 

exponential smoothing of the sample spectrum. As in the analysis by geographic region, 

the morphology of the waveforms in several of the periodograms differs from those in the 

aggregate by displaying a reduced density of waveforms. This is true for the results of 

time series analysis of IPD incidence for ages ranging from 5-14 years (see Figure 11), 

15-24 years (see Figure 12), 25-34 years (see Figure13), 35-44 years (see Figure 14) and 

45-54 years (see Figure 15). Periodograms 11-15 may be found in the appendix. The 

waveforms for theses age ranges were not conducive to analysis, and the low amplitude 

of these waveforms most likely reflects the distribution of IPD by age group. In all age 

ranges that displayed periodograms suitable for analysis, no peaks consistent with 

periodic events could be identified, and no perturbations in the waveform were of 

sufficient amplitude (represented by vertical height along the y-axis) to warrant further 

examination.  
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Figure 9. Periodogram of IPD incidence in the United States for the period from 1979-

2006, 0-4 years of age, 55-64 years of age, 65-74 years of age, 75 years of age and older 

(from top). 
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 When analyzed for seasonality, the same results held; that is, no discernable peak 

was found in the periodogram consistent with recurrent events (see Figure 10). 

 

Figure 10 . Periodogram of IPD incidence in the United States for the period from 1979-

2006, analyzed for seasonality of outbreaks. 

Summary 

The results of this study fail to support the hypotheses that IPD occurred in 

periodic epidemics of a definable frequency in addition to the predicted seasonal increase 

in incidence in the United States during the period from 1979-2006, in the aggregate, and 

when stratified by age, gender, or geographic region. Additionally, the results of this 

study do not support a seasonal component to IPD outbreaks. While some variance in 

incidence rates from previous studies was observed, the cumulative rates of incidence for 

IPD in the United States were consistent with previously reported data. The age-related 

distribution of IPD noted by prior researchers was, however, also discernable in the data 

analyzed in this study. Further discussion of the results of this study and its implication 

for prediction of IPD epidemics will be presented in chapter 5. Also in the following 

chapter is a review of potential lines of inquiry generated by this study, and a discussion 

of the positive social impact that results from this study. 



CHAPTER FIVE: DISCUSSION 

Overview 

Streptococcus pneumoniae, in its manifestation as IPD, has been and still is 

responsible for significant morbidity and mortality (Bloom, Wheeler, & Lynn, 1999; 

Centers for Disease Control and Prevention, 2006; Dochez and Avery, 1915; McDaniel 

and Swialto, 2004; Osler, 1898). Our understanding of IPD epidemic dynamics currently 

extends only as far as annual seasonality (Dowell, Whitney, Wright, Rose, & Schuchatt, 

2003), which limits our ability to plan, execute, and evaluate preventive measures. 

Additionally, changes in the bacterial genome have conferred new antibiotic resistance 

patterns (Lopex, 2006), and permitted the emergence of serotypes that are not addressed 

by the current vaccines. Our limited ability to predict IPD epidemic dynamics creates 

challenges in detecting these changes. It was the unclear nature of epidemic patterns in 

IPD outside of the previously described annual outbreaks, and the impact of the absence 

of understanding of IPD epidemic dynamics that led to this research study. 

In order to elucidate the epidemic pattern, a retrospective cohort study was 

performed, resulting in a 28-year retrospective description of IPD epidemic dynamics. 

The study set out to establish the existence or absence of a recurrent epidemic pattern and 

frequency, with the intent of enhancing our understanding of IPD. The following research 

questions were addressed: 

Do epidemics of IPD occur in a periodic manner with a definable frequency in 

addition to the predicted seasonal increase in incidence,  

(1) in the aggregate, 

(2) by gender, 



126 

(3), by age range , and 

(4) by geographic area.  

Two specific objectives were addressed in order to address the following 

questions: What was the incidence level of IPD for each year and for the combined 

period in the time span from 1979-2006? and What was the endemic level of IPD in the 

United States for the period from 1979-2006 in the aggregate, and by gender, age (in 

ranges), and geographic area?  

The results of the study were clear; the null hypotheses held in all cases and in all 

strata. IPD in the United States, for the period from 1979-2006, did not occur in periodic 

epidemics of a definable frequency outside of the predicted seasonal increase in 

incidence. Additionally, the seasonality described in a previous study was not detected by 

our analysis. 

Discussion 

Incidence and Endemicity 

As a basis for examining the periodicity of IPD epidemics, incidence and 

endemicity rates were determined. Calculation of incidence levels permitted the 

comparison of the results of this study to those of previous studies. Additionally, this 

calculation provided a means to detect the inadvertent inclusion of cases that were not 

clearly pneumococcal in nature. In the study by Danai et al. (2007), inclusion of non-

pneumococcal causes of sepsis resulted in a rise in incidence over time. Should this have 

occurred in this study, the rise in incidence would have been contrary to the expected fall 

in incidence, particularly in the period after introduction of the pediatric vaccine 

(Hammitt et al., 2006; McBean, Park, Caldwell, & Yu, 2005; Moore et al., 2004; 
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Poehling et al., 2006; Shah & Ratner, 2005; Tsai, Griffin, Nuorti, & Grijalva, 2008). The 

endemic level was calculated to enable establishment of epidemic levels in the presence 

of periodic outbreaks; periodicity was not observed, thus this level was not used in 

subsequent analyses.  

The results of the incidence calculations were consistent with previous studies, 

with the exception of the age-stratified analysis. The results are also congruent with 

previously reported studies which documented incidence rates ranging from 8-75 cases 

per 100,000 (Brueggemann, Peto, Crook, Butler, & Kristinsson, 2004). Significantly, the 

annual incidence rates found in this study show a decline in the IPD incidence rate which 

is consistent with previously reported declines, after implementation of the pediatric 

vaccine (Hammitt et al., 2006; McBean, Park, Caldwell, & Yu, 2005; Moore et al., 2004; 

Poehling et al., 2006; Shah & Ratner, 2005; Tsai, Griffin, Nuorti, & Grijalva, 2008). 

Thus, a major purpose of incidence calculation was met, and the results of this study can 

be compared to a previous study addressing epidemic dynamics of bacteremia. 

The pattern of IPD incidence rates in the aggregate observed over the time period 

after implementation of the pediatric vaccine is consistent with a sample that included 

only streptococcal disease. The results of this study were likely unbiased by the inclusion 

of other pathogenic causes for sepsis, meningitis, or bacteremia. Thus, the overall 

incidence and endemicity rates observed in this study establish a robust basis for the 

subsequent time series analysis. However, before discussing the findings of the time 

series analysis, further attention should be given to the incidence findings. 

Examination of the data by the strata of gender, geographic region, and age (in 

ranges) revealed variations in incidence rates, largely consistent with those reported by 
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previous studies (Christenson, Lundbergh, Hedlund, & Ortqvist, 2001; Harboe, Thomson, 

Riis, Valentiner-Branth, Christensen, et al., 2009; Huang, Finkelstein, & Lipstich, 2005; 

Kyaw et al., 2005; McDaniel & Swialto, 2004; Robinson, 2001). When examining the 

results of analysis of specific geographic region data, the regional variations in IPD 

incidence supported the observations of Huang, Finkelstein, and Lipstich (2005), who 

reported geographic variation in prevalence of pneumococcal carriage (a precursor to 

pneumococcal disease). Also supporting the findings in previous work is the detected 

disparity of incidence between genders, with males displaying a higher incidence of IPD 

than females (Harboe, Thomson, Riis, Valentiner-Branth, Christensen, et al., 2009). The 

reasons for this disparity are unclear, though this finding is concordant with those of two 

other studies. A study of immunocompetent adults (Nuorti et al., 2000) found that male 

gender was an independent risk factor for IPD. The incidence of IPD was higher in male 

infants and children in a study conducted by Klein (1981). However, an examination of 

natural immunity to the pneumococcus in light of age and gender revealed that, with 

aging, a stronger decline in anti-pneumococcal antibody concentration was seen in 

women when compared to men (Simell, Lahdenkari, Reunanen, Kaeyhty, & Vaevaeinen, 

2008).  

The higher IPD incidence in the 5-14 year age group differs from study results 

reported by Robinson (2001), in which the highest incidence rates were in children under 

the age of two. However, the results for adults aged 80 years and greater, ranging from 

63.1 to 76.1 per 100,000 are congruent with those reported by Kyaw et al. (2005) of 

71.2/100,000 (Kyaw et al., 2005). Despite differences in reported incidence in the lower 

age ranges between this and previous studies (Christenson, Lundbergh, Hedlund, & 
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Ortqvist, 2001; McDaniel & Swialto, 2004), the previously described bimodal 

distribution of IPD incidence (disease affecting primarily those early and late in life) was 

apparent in the results of the analysis in this study (Figure 2). The difference is 

attributable to age ranges between the previous studies, and this one may reflect 

differences in contact patterns between the sample population in the previous studies and 

the sample population in this study (Bansal, Grenfell, & Meyers, 2007). That is, because 

the studies sampled from different populations and over different time spans, there might 

have been geographic and temporal difference in the number and intensity of contacts 

and exposures in different social settings, which would have influenced the spread of 

IPD.  

Streptococcus pneumoniae is an adaptive organism, able to shift genetically in 

response to host pressures and to share resistance genes with and from other organisms 

(Boots et al., 2003; Lopex, 2006; Sorrell, Pedersen, Hails, & Boots, 2009), providing 

plausible mechanisms for the continued universal colonization of S. pneumoniae and the 

continued endemicity of IPD. Further ensuring the persistence of colonization and disease 

are the nature of the bacterium and of the vulnerable population. Not all colonization with 

S. pneumoniae is followed by infection, not all infection with S. pneumoniae is fatal, and 

infection with one strain of S. pneumoniae does not confer resistance to other strains of 

the organism. This characteristic of the pneumococcus permits the persistence of the 

bacterium in the host population. This persistence of non-pathenogenic colonization 

allows the bacterium to reproduce more successfully than a more virulent pathogen 

might, but also ensures that disease endemicity is preserved (Boots et al., 2003; Sorrell, 

Pedersen, Hails, & Boots, 2009).  
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Host contact patterns also bear on endemicity. As observed in this and previous 

studies (Huang, Finkelstein, & Lipstich, 2005), the incidence of IPD varies across the 

regions of the US. This variation in rate may also be due to differences in contact patterns 

(Bansal, Grenfell, & Meyers, 2007); these differences in the number, frequency and 

intensity of contacts and exposures in different social settings prevent complete 

eradication of S. pneumoniae colonization and thus preclude eradication of IPD. What 

Hagenaars, Donnelly and Ferguson (2004) call between patch transmission is 

unpredictable, and could serve to prevent IPD from extinction.  

These factors partially explain the rates of incidence and continuing endemicity 

observed in this study. Another factor impacting the results of this study is the possible 

presence of anomalies in reporting to the NHDS and resulting variation in the data sets 

used for analysis. The initial time periods subjected to analysis, 1979-1987, and most 

noticeably, the years 1985 and 1987, were marked by lower incidence rates than reported 

in previous studies. It is possible that in the first few years that this finding reflects 

differences in the use of ICD-9CM codes during those periods, which followed a 

significant change in the coding guidelines; that is, the change from the ICD-8 in 1979 

(Popovic, 2001). However, within the NHDS documentation, no reference to changes in 

ICD-9CM codes or coding practices were found that impacted on the years 1985 and 

1987, and this is not a limitation of the study.  

A more likely explanation for those years is that of an under-reporting or 

misclassification of IPD during those time periods. Under reporting in the NHDS has 

been documented for other disease classifications (Surjan, 1999; Movig, Leufkens, 

Lenderink & Egberts, 2003;van de Garde, Oosterheert, Bonten, Kaplan & Leufkens, 
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2007). However, within the NHDS documentation, insufficient information on reporting 

practices or changes in the time span of interest prevents more than speculation.  

Later incidence rates are more consistent with those reported in earlier studies 

(Bridy-Pappas et al., 2005; Brueggemann, Peto, Crook, Butler, & Kristinsson, 2004; 

Hammitt et al., 2006; McBean, Park, Caldwell, & Yu, 2005; Moore et al., 2004; Poehling 

et al., 2006; Shah & Ratner, 2005; Tsai, Griffin, Nuorti, & Grijalva, 2008). Whether this 

reflects changes in coding or reporting practices subsequent to 1987 could not be 

determined. It must be noted, however, that under-reporting, while it might have 

impacted the incidence rates in the first eight years of the study period, should not have 

impacted the frequency-domain time series analysis that examined both seasonality and 

periodicity (Keeling & Rohani, 2008b). A resistance to the effects of under-reporting 

influenced the decision to employ this analytic technique. 

Additionally, the mean incidence rate and the resulting endemic rate calculated 

from the data used in this study are congruent with those reported by other researchers. 

This overall consistency contributes to confidence in the data set as a basis for time series 

analysis. Thus, the data sets were used as a basis for time series analysis in the frequency 

domain. These analyses were conducted in an attempt to discern both seasonal and 

additional periodic epidemic dynamics.  

Seasonality 

Numerous studies have shown that IPD has a seasonal pattern of incidence; this 

pattern directly correlates to seasonal outbreaks of viral respiratory disease, and with 

variations in the length of the day (Ampofo et al., 2008; Butler & Schuchat, 1999; Kim et 

al., 1996; Stegemann et al., 2009; Talbot et al., 2005). These influences on IPD 
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seasonality leads to a peak incidence in the winter months (Dowell, Whitney, Wright, 

Rose, & Schuccat, 2003; Kim et al.; Talbot et al.). However, the results of this study 

revealed findings inconsistent with this previous work, in that IPD in the United States 

for the period 1979-2006 for all variables did not occur on a predictable seasonal basis.  

The explanations for the lack of seasonality of IPD outbreaks in this study are 

many. Prior infection with viral agents, changes in host contact patterns, implementation 

of vaccination programs, and other changes in environmental factors have all been put 

forward as possible causes for alterations in the seasonality of diseases (Fisman, 2007), 

and IPD is likely to have been influenced by many or all of these factors over the 28-year 

time period subjected to analysis. Additionally, the length of time addressed by this study 

might have influenced the results. 

 In a previous study that used time series analysis to detect seasonality in IPD, 

Dowell et al. (2003) performed time series analysis for two years of data, in contrast to 

this study, which evaluated outbreak dynamics over a 28-year period. It is possible that 

alterations in the host/pathogen ecology over the longer period of time precluded or 

obscured the emergence of a seasonal pattern that was persistent over the entire analysis 

period (Watts, Muhamad, Medina & Dodds, 2005). The time span addressed by this 

analysis, 28 years, should have been sufficient to reconstruct the dynamics of the system 

and identify any seasonal components or other periodicities (Kamlapriya, Thiel, Romano, 

Marwan, Schwarz & Kurths). The observed absence of a predictable, recurrent pattern of 

IPD epidemic dynamics was also the finding when the data was analyzed for dynamics 

beyond an annual occurrence. 
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Periodicity 

Results from the time series analysis revealed findings that fail to support the 

existence of periodic epidemics of IPD in addition to the expected annual increases in 

incidence. These results hold for the analysis in the aggregate, and for data stratified by 

gender, age (in ranges), and by geographic region. Examination of the incidence data 

(Figure 1) with attention to the shape of the data points over time supports this 

conclusion, as the variation in levels displays no discernable pattern. Use of frequency 

domain time series analysis techniques should have revealed any hidden patterns or 

periodic components (Wei, 1994f). Instead, the results of this study showed an absence of 

IPD periodic epidemics of a definable frequency outside of the predicted seasonal 

increase in incidence in the United States for the period from 1979-2006, in the 

aggregate, and when stratified by gender, geographic region, or age (in ranges). When 

examining the periodograms for the strata, differences in morphology are apparent when 

compared to the aggregate periodogram, most likely due to reduced case counts in the 

stratified analyses. However, with the exception of the 5-54 years age strata, insufficient 

waveform density was present to permit conclusions. None of the analyzed periodograms 

whether in the aggregate or by strata, displayed recurrent events consistent with periodic 

epidemics. Therefore, the results of this study reveal that IPD epidemics demonstrate a 

chaotic dynamics; that is, a discrete non-Markov process (Yulemetyev et al., 2003). IPD 

appears to exhibit aperiodic epidemic behavior.  

 Frequency domain analysis produced visual representations of the quantitative 

results of the Fourier Transforms which facilitated the analysis of the frequency domain 

time-series (Wei, 1994a) that correlated to the contribution of the varied frequency 
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components to the observed patterns of disease incidence (Anderson et al., 1984; 

Lindsey, 2004a). Theses periodograms reveals waveforms that were chaotic, that is, in a 

state of disorder and irregularity (Yulemetyev, Yulmetyeva, & Gafarov, 2005). The 

periodogram of aggregate data displays what Yulemetyev, Emalyanova, Demin, Gafarov, 

Haenggi and Yulmetyeva (2003) described as “strongly expressed asymmetry,” and 

evidence for the “existence of a clearly expressed noise.”  

This finding is consistent with the findings of Danai et al. (2007), in a study of 

sepsis of all causes. Much like the factors addressed in the discussion of the seasonality 

findings, variations in host contact patterns, lower incidence rates following the release of 

the pediatric vaccine, changing antibiotic resistance patterns, and the emergence of NVT 

serotypes could have acted to attenuate the pattern of, or completely prevent the 

emergence of, a pattern of IPD epidemics over longer periods (Watts, Muhamad, Medina 

& Dodds, 2005). If the pattern was only weakly established, and lacked persistence, the 

effects of changes in host immunity and the efforts of the microbe to remain endemic 

might either eliminate or prevent patterns from forming (Bansal, Grenfell & Meyers, 

2007). Determining and estimating these effects can be difficult (Lande, Engen & 

Saether, 2002), and the analytic technique chosen for this study was not suited to that task 

(Rodriquez-Aria & Rodo, 2004). 

In a random system, where the disease is endemic, the influences of stochastic 

events (such as a new pool of susceptible subjects) on the normal random state can adjust 

the chaotic and random behavior towards regularity (Yulemetyev, Yulmetyeva, & 

Gafarov, 2005). This did not appear to happen in IPD epidemic dynamics in the data set 

analyzed in this study. However, modeling of the influence of stochastic events on 
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epidemic dynamics can be difficult, because these chance events might be major factors 

in the eventual size and timing of an epidemic (Finkenstadt, Bjornstad & Grenfell, 2002; 

Mollison et al., 1994). 

In addition to these seasonal variations in contact patterns, replenishment of 

susceptible hosts, colonization with S. pneumoniae, and occurrence of IPD can be 

reasonably expected to occur stochastically, and influence the dynamics of the system 

(Xia, Bjornstad, & Grenfell, 2004) by introducing a degree of uncertainty (Koelle & 

Pascual, 2004). An example of a stochastic event that might have acted as a weak 

attractor in IPD dynamics is the irregularity in pediatric vaccine supply and variations in 

vaccine effectiveness, such as from low efficacy vaccines or serotype replacement 

(Alexander, Moghadas, Rohani, & Summers, 2006). These factors could have affected 

the epidemic dynamics of IPD by providing an impact to the system that was continued 

through the remainder of the time period; however, it does not appear that this occurred. 

Any impact of these possible stochastic events on the time series of IPD incidence 

did not exhibit persistence; that is, the impact of increased IPD incidence in 1998 or of a 

later shortage in the pediatric vaccine did not exert an ongoing effect on later incidence 

levels in the series (McCabe, Martin & Tremane, 2005). This might have resulted from 

temporal differences in exposure patterns and interactions between susceptible and 

infectious individuals (Watts, Muhamad, Medina & Dodds, 2005; Wallinga, Edmunds & 

Kretzschmar, 1999); the changing disease ecology could have prevented the emergence 

of stable epidemic cycles as a result of stochastic events (Rodriquez-Arias & Rodo, 

2004). 
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The impact of stochastic changes in the overall ecology of a disease on epidemic 

dynamics can be seen in measles, in which seasonality was less striking and epidemic 

periods changed after the introduction of vaccination (Grenfell, Bjoernstadt & Kappey, 

2001). It can be speculated that the geographic areas addressed in this study of IPD were 

larger than those in the Grenfell, Bjoernstadt and Kappey study, and the variations in 

contact pattern less predictable, thus the impact on any seasonality or periodicity might 

be larger, as well. Furthermore, as vaccination levels increase, periodic cycles of disease 

can decrease (Anderson, Grenfell & May, 1984). All of these factors could partially 

explain the absence of seasonality or periodicity in IPD in this study.  

Another factor, the previously discussed possible variation in reporting of IPD, 

while it might have impacted the incidence rates reported in this study, should not have 

influenced the results of the time series analysis. When planning this study, consideration 

was given to the regularity or irregularity of observations of a key variable, the count of 

cases of IPD, and the analytic technique of frequency-domain time series analysis was 

chosen in part to account for this possibility. Under-reporting and the resulting lower 

amplitude of any periodic events should not have prevented detection patterns to these 

events by frequency domain analysis (Wei, 1994b). Any periodicity and frequency of 

IPD outbreaks should have remained detectable even in the face of under-reporting of 

events (Keeling & Rohani, 2008b); the same possible under-reporting that might account 

for the appearance of reduced incidence in the early years of the data.  

The appearance of reduced incidence could have lead to the phenomenon of 

disease fadeout (the extinction of a disease expressed in a mathematical model, most 

likely as a result of a sufficient drop in the number of infected and susceptible individuals 
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in a given population within the model), which has been a concern when constructing 

models and analyzing data in these situations, ( Keeling & Rohani, 2008b; Lloyd, 2004). 

This did not appear to occur in this study, perhaps due to the ubiquity of S. pneumoniae 

colonization, the emergence of NVT serotypes, and the other factors that mediate in favor 

of IPD endemicity.  

However, all of these factors could have created observational noise that affected 

the results of the analysis. Observational noise (Chen & Bokka, 2005; Keeling & Rohani, 

2008b) exhibited in an epidemic system can be difficult to separate from chaos (Stewart, 

2002), and this drove selection of the analytic technique. Rohani et al. (1999) observed 

that pertussis is very sensitive to stochasticity, and it is possible that IPD also exhibits this 

sensitivity, thus obscuring or precluding the emergence of a predictable epidemic pattern. 

The infectious period of S. pneumoniae could have generated multiple small amplitude 

variations, with none of the variations of sufficient amplitude or persistence to develop 

into a cyclical pattern (Altizer, Dobson, Hosseini, Hudson, Pascual & Rohani, 2006).  

Additionally, stationarity of the epidemic dynamic and the possibility of a Markov 

process were considered. Epidemics exhibit non-stationarity (Keeling & Rohani, 2008b), 

and no evidence could be found in the literature that IPD epidemics follow a Markov 

process. Examination of the periodograms revealed findings consistent with this premise, 

as stationarity did not appear, and no evidence of Markov processes could be found.  

In an existing model of IPD dynamics, Sutton, Banks & Castillo-Chavez (2008) 

have applied the Susceptible-Exposed-Infected-Recovered (SEIR) model to IPD, with the 

inclusion of seasonality to result in a Temporally Forced Model. In this model, 

colonization rates serve as a proxy for exposure, and birth rates, death rates, and 
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vaccination rates are factored into the model, as is seasonality (Sutton, Banks, & Castillo-

Chavez, 2008). The data used to calculate rates and modify model parameters can be 

obtained from existing literature or direct measurement. The results of this study can be 

applied to this model, by exception rather than by addition to the existing model.  

Specifically, the model’s transfer rate equation does not require modification 

based upon the results of this study. Predicted birth rates, death rates, and a transfer rate 

that accounts for seasonality remain the most suitable predictive components of the 

model. This SEIR model of IPD dynamics can be linked together as sequential 

realizations, with the rate of entry into the population adjusted between each annual 

realization to account for varying birthrates, either historical or predicted. The existing 

model already provides the opportunity to input the vaccination rate (Sutton, Banks, & 

Castillo-Chavez, 2008), which again could be modified for each realization. Realizing the 

entire model as a sequential linkage of individual models ameliorates the concern over 

use of discrete time data in a continuous dynamical system. Each annual model would 

retain its continuous dynamic. However, based on the results of this study, no adjustment 

need be made for fluctuations or perturbations in the epidemic dynamic beyond 

seasonality. 

Implications for Social Change 

The results of this study have several implications for social change. Should an 

epidemic pattern have been identified, it could have been used to modify an existing 

model of IPD epidemic dynamics to permit prediction of outbreaks beyond annual 

seasonality. However, in the absence of a discernable pattern, additional support is 

provided for maintaining and perhaps expanding the current method of surveillance, the 
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Active Bacterial Core Surveillance System, which emphasizes reporting of serotype and 

strain (CDC, 2009), rather than prediction of future epidemic dynamics. Furthermore, the 

use of long-run probability calculation (Kachigan, 1982) for IPD epidemic forecasting is 

not supported by the findings of this study, and efforts and funding can be devoted to 

other, proven methods of IPD reduction. This promotes positive social change through 

emphasis on current, proven methods of evidence-based practice, resulting in improved 

health outcomes and decreased health care costs (Ament et al., 2000). 

The current emphasis on mass vaccination by risk group, as opposed to 

vaccination for a predicted outbreak, is sound practice in light of the results of this study. 

Currently, prevention interventions targeted against IPD emphasize vaccination, 

particularly in the pediatric population (Overturf, 2000; Parsons & Dockrell, 2002). 

Although not universal, vaccination has been successful in lowering the rate of IPD 

incidence; this reduced incidence was found during data analysis in this study. Because a 

pattern of IPD epidemics was not found in this study, vaccination campaigns can provide 

accurate information on the unpredictability of IPD to unvaccinated subpopulations. 

Those unvaccinated individuals relying on game-theoretical approaches to disease 

prevention, whether conciously or unconciously (Bauch, 2005) lose support for this 

strategy in light of the results of this study. As the risk is more unpredictable, the reliance 

on herd immunity becomes less supportable, and the need for individual protective 

actions more pressing. Thus, the results of this study provide support for education and 

prevention interventions that target the risk populations on an ongoing basis, rather than 

ahead of a seasonal or periodic epidemic. These evidence-supported interventions will 
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yield significant reductions in the morbidity and mortality associated with IPD, and the 

positive social change that results from reductions in suffering and societal cost.  

The efficacy of pneumococcal vaccines, and vaccine coverage of the most 

common virulent serotypes continues to be an issue of public health importance (Jackson 

et al., 2003; Madhi, Whitney, & Nohynek; Maki, 2004; McDaniel & Swialto, 2004). 

Assessment of vaccine efficacy and changes that might be required in vaccine serotype 

coverage is improved by a better understanding of the epidemic dynamics of IPD. It 

could have been argued that administration of vaccine at opposing points in an epidemic 

cycle (administration in the “trough” of the dynamic, and assessment of efficacy at the 

peak), could give a false impression of poor vaccine efficacy, when the increased 

incidence of IPD was part of a predictable natural phenomenon. As no periodicity 

appears to exist, this can be excluded as a factor in vaccine efficacy, and researchers can 

target other areas impacting vaccine efficacy, such as molecular factors (Obert et al., 

2006).  

Recommendations for Action 

The recommendations for action as a result of this study are two-fold. First, the 

absence of a periodic dynamic of IPD epidemics must be shared with the many 

stakeholders concerned with IPD prevention and treatment. Publication in a peer-

reviewed journal, as well as presentations of the results to appropriate professional 

audiences is the minimum action in this regard. Second, the use of time series analysis as 

a tool for examining disease dynamics should be similarly described. While a substantial 

body of literature addresses the subject, the application of these techniques is not a 

standard tool in epidemiologic research. These techniques are complex, but can enhance 
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our understanding of disease dynamics, which warrants further discussion and 

constructive criticism of the processes. 

Recommendations for Future Studies 

The use of frequency domain time-series analytic techniques for epidemiologic 

research, as applied in this study, is supported by the literature; however, future studies of 

IPD epidemic patterns might benefit from a variation of time-series analysis, wavelet-

based incidence analysis. A system exhibiting a chaotic dynamic, as found in this study, 

would be well suited to the wavelet analysis technique (Cazelles, Chavez, Berteaux, 

Menard, Vik, Jenouvrier, et al., 2008). Wavelet analysis techniques have value in 

understanding aperiodic epidemics (Cazelles et al., 2008), which it appears may be the 

dynamic of IPD. Thus, it is recommended that a future study of IPD dynamics using this 

technique be applied to a suitable data set. 

An additional study might apply either frequency domain time-series analysis or 

wavelet analysis to a different data set, that of the Active Bacterial Core Surveillance 

system. It was this data set that revealed seasonality; however, it is smaller in time span 

than the NHDS. Time-series analysis requires large data sets, and the limited data set size 

might significantly reduce the ability to detect periodicity in addition to seasonality. 

Conclusion 

This study set out to determine whether invasive infection by S. pneumoniae in 

the United States occurs in an epidemic pattern of a predictable recurrent nature and 

definable frequency. Although annual cyclic increases have been reported in the 

literature, little was known about IPD epidemic patterns for larger periods of time, 

limiting our ability to detect changes in IPD epidemic dynamics and thus to predict 
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outbreaks. This study attempted to address this gap in the knowledge in the epidemiology 

of IPD through a retrospective cohort design using a population-based cohort from the 

National Hospital Discharge Survey conducted from 1979-2006. Drawing from the 

theoretical base of dynamic modeling of stochastic epidemic systems, this study utilized 

time-series methods to examine IPD epidemic dynamics. The results of the study were 

consistent with the finding that IPD in the United States, for the period from 1979-2006, 

did not occur in periodic epidemics of a definable frequency outside of the predicted 

seasonal increase in incidence.  

The results of this study provide support for maintaining established evidence –

based surveillance practices and current methods of disease prevention. This in turn could 

significantly reduce the public health impact of IPD by reducing the number of 

hospitalizations, and decreasing morbidity and mortality. This promotes positive social 

change through improved of health outcomes in the general population and decreased 

health care costs (Ament et al., 2000).  
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APPENDIX 

 
Figure 1. Incidence of IPD in the United States, 1979-2006, per 100000. 
 

 

Figure 2. Incidence of IPD in the United States, 1979-2006, by age. 
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Figure 3. Incidence of IPD in the United States, 1979-2006, by gender. 
 

 

Figure 4. Incidence of IPD in the United States, 1979-2006, by geographic region. 
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Figure 5. Periodogram of IPD incidence in the United States for the period from 1979-
2006, inclusive of all ages, genders, and geographic regions. 

 

 
Figure 6. Periodogram of IPD incidence in the United States for the period from 1979-
2006, by gender, male.  

 

Figure 7. Periodogram of IPD incidence in the United States for the period from 1979-
2006, by gender, female. 
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Figure 8. Periodogram of IPD incidence in the United States for the period from 1979-

2006, Northeast, Midwest, South, and West census regions (from top to bottom).  
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Figure 9. Periodogram of IPD incidence in the United States for the period from 1979-

2006, 0-4 years of age, 55-64 years of age, 65-74 years of age, 75 years of age and older 

(from top). 
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Figure 10. Periodogram of IPD incidence in the United States for the period from 1979-

2006, analyzed for seasonality of outbreaks. 

 

Figure 11. Periodogram of IPD incidence in the United States for the period from 1979-

2006, 5-14 years of age. 

 

Figure 12. Periodogram of IPD incidence in the United States for the period from 1979-

2006, 15-24 years of age. 
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Figure 13. Periodogram of IPD incidence in the United States for the period from 1979-

2006, 25-34 years of age. 

 

Figure 14. Periodogram of IPD incidence in the United States for the period from 1979-

2006, 35-44 years years of age. 

 

Figure 15. Periodogram of IPD incidence in the United States for the period from 1979-

2006, 45-54 years years of age. 
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