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Introduction 

In the current paper we analyze several methods for generation of loss distribution for 

credit portfolios. Loss distributions play an important role in pricing of credit derivatives and in 

credit portfolio optimization. A loss distribution is a function of the number of entities in the 

portfolio, their credit ratings, the notional amount and recovery of each entity, default 

probabilities, loss given defaults, and the correlation/dependence structure between entities 

incorporated in the portfolio. Direct generation of loss distribution may require Monte Carlo 

simulation which is time consuming and is not effective when applied for credit portfolio 

optimization. To overcome computational complexity a number of approaches were undertaken 

based on assumptions imposed on the input parameters, goals of loss distributions generation, 

and the accepted level of tolerance and computational errors. 

 

Literature review 

 A wide range of literature was dedicated to generation of loss distributions for credit 

portfolios. Vasicek (1987, 2002) developed a large homogeneous portfolio approximation that 

played an important role in one of the first synthetic CDOs pricing methods developed by J.P. 

Morgan. This method was generalized by considering a finite number of obligors in the portfolio. 

Hull and White (2004) introduced a bucketing approach, and Andersen, Sidenius and Basu 
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(2003) offered a recursive method valid in more general cases. Glasserman and Li (2005) 

proposed the two-step-importance sampling method in which they applied Monte Carlo 

simulation methods with variance reduction techniques. A Fourier analytical approach in loss 

distribution generation was analyzed by Merino and Nyfeler (2002), Reiss (2003), and Grundke 

(2007) which was used for pricing of CDO by Greogry and Laurent (2004), Laurent (2004), and 

Laurent and Gregory (2005). This method requires a good implementation of the fast Fourier 

transform. Saddle-point approximation was analyzed by Arvanitis and Gregory (2001), Gordy 

(2002), Martin (2006), Glasserman (2008). We will analyze and compare these methods, their 

advantages and disadvantages. 

 

Large homogeneous approximations of loss distributions 

Large homogeneous portfolio (LHP) approximation was the first method developed by 

Oldrich Vasicek in 1987 at KMV Corporation. In this model, Vasicek assumed that the portfolio 

contains an infinite number of entities. Each entity has the same notional amount, default 

probability, and recovery rate (or loss given default). Loss given default can be calculated as 1 – 

recovery rate. The correlation structure is presented using one-factor Gaussian copula. Although 

these assumptions were very restrictive, the closed formula derived by Vasicek was easy to 

implement and the model was much faster than the one used Monte Carlo simulations. 

According to this model, the risk neutral portfolio cumulative loss distribution and probability 

density function for a large portfolio with underlying Gaussian copula can be expressed as 

follows (Vasicek, 2002): 
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where  – portfolio loss estimated as a fraction of the whole portfolio, Φ  – cumulative 

normal distribution, – is the inverse of cumulative normal distribution, p – the probability of 

default of a loan in the portfolio; in this case we assume that all credits have the same probability 

of default, and the number of credits is infinite, 

]1,0[∈L

1−Φ

ρ - correlation incorporated into the credit 

portfolio using one-factor Gaussian copula. Although the portfolio contains loans with the same 

default characteristics; the loans are in fact different, and, moreover, correlated with 

correlation ρ .  The advantage of using this formula is that it can be used for fast approximation 

of loss distribution for any range , where a < b, and ],[ ba ]1,0[, ∈ba . 

The above mentioned formulas (1) and (2) depend on 2 very important parameters – correlation 

and probability of default of a loan in the portfolio. A credit portfolio with high value of 

correlation (say 90%) with very small value of probability of default of a loan (say < 10 bps) will 

have loss distribution concentrated around 0%, and can be approximately considered as a credit 

portfolio riskless. 

One of the extensions of the Gaussian LHP approach is to use double-t one factor model 

proposed by Hull and White (2004). They assumed that common and individual factors are t-

distributed and derived a formula that gives fast approximation of the loss cumulative 

distribution function. 

The LHP approximation can be extended to the case of the Student-t copula. This 

approach also allows one to obtain analytical formulas for density and the cumulative 

distribution function of the portfolio loss distribution (Schloegl & O'Kane, 2005). Schloegl and 
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O’Kane (2005) also compared the VaR implied by the Student-t copula to that obtained using the 

Gaussian, Calyton, and Gumbel copulas. According to Schloegl and O’Kane (2005), the returns 

iζ of each obligor follow a multivariate Student-t distribution, so that (p. 578)  
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Conditionally onφ , the default indicator functions are all independent and the 

conditional default probability can be written as a function of the standard normal cumulative 

density function
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( ) ( )[ ] ( )θθ 1]1,0[ −∈∀ FP θφ =≤ h , where F is the cumulative distribution function of φ . Based on 

this logic, analytic formulas for cumulative distribution function and probability density function 

can be expressed using the following formulas (Schloegl & O’Kane (2005), pp. 579 – 580): 
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As was noted by O’Kane (2008), there are approaches that approximately estimate loss 

distributions and can serve as acceptable compromises to the trade-off between speed and 

accuracy. These approaches are the Gaussian approximation, binomial and adjusted binomial 

distributions (pp. 354 – 360). The Gaussian approximation uses a Gaussian density which fits the 

first two moments of the conditional loss distribution. It is then possible to obtain a closed-form 

expression for the expected tranche loss conditional on the market factor (O’Kane, 2008, p. 354). 

The idea behind the binomial approximation is to approximate the exact multinomial distribution 

with a binomial distribution. The reason for this is that the shape of binomial distribution is a 

better fit to the multinomial distribution than Gaussian. However, in this approach we match the 

first moment of the exact conditional loss distribution. The further improvement is based in 

finding a way to fit the variance. For this purpose, an adjusted binomial approximation was 

proposed by O’Kane (2008) to ensure that we match first two moments of the exact 

inhomogeneous loss distributions (pp. 358 – 360). 

The LHP approximation can be extended by using normal inverse Gaussian distribution 

(NIG). The normal inverse Gaussian distribution is a mixture of normal and inverse Gaussian 

distribution. According to Kalemanova, Schmid, and Werner (2007), a non-negative random 

variable Y has inverse Gaussian distribution with positive parameters α and β if its density 

function can be represented using the following form: 
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A random variable X follows the NIG distribution with parameters δμβα ,,,  

( ),,,(~ δμβαNIGX ) if  
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The parameters should satisfy the following conditions: 0 | |  and 0β α δ≤ < > . 

The density of the random variable ),,,(~ δμβαNIGX is given by the following 

formula: 
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is the modified Bessel function of the third kind. Kalemanova et al. (2007) suggested using the 

following parameters in the LHP model with NIG copula (with the dependency parameterφ  

defined as a square root of correlation assumed in a credit portfolio): 
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where M is a systematic market risk factor, and are idiosyncratic factors. iV

Then, asset returns will also follow NIG distribution with the following parameters: 
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The third and fourth parameters were chosen to get expected value of zero and variance 

of 1. Using the following notation ⎟⎟
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the default probability of each credit conditional on market factor is given by 
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and the loss distribution of the LHP can be estimated using the following formula (Kalemanova 

et al., 2007): 
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These formulas use special functions; however, the advantage of using them is that 

computation of loss distributions using Gaussian copula, Student-t, double-t, or NIG copula is 

much less time consuming than using Monte Carlo simulation for generation loss distributions. 

One of the advantages of using NIG copula is in the possibility of estimating four parameters of 

this distribution given observed first four moments.  

Schönbucher (2002) used an algorithm from the theory of Archimedean copula functions 

to estimate limiting loss distributions which are driven by random variable with different 
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dependency structures. This approach allowed presenting simple and realistic formulas for the 

loan portfolio distribution. The joint distributions in a credit portfolio are modeled different ways 

than just using a variant of the multivariate normal distribution function, and this approach 

proved to be feasible. In obtaining loss distributions, it is important to investigate the effect of 

the implicit assumption of a Gaussian dependency structure on the risk measures and the returns 

distribution of the portfolio, as well as the consequences of extreme events and lack of available 

data on credit risk modeling. Schönbucher (2002) showed that in the credit risk case, this effect 

can be either minor (when the Vasicek model is compared to the Clayton-dependent model) or 

significant (when one thinks that the Gumbel copula is a realistic alternative).  

 

Finite homogeneous approximation of loss distributions 

In finite homogeneous approximation (often called exact computation), the infinity 

assumption is dropped and the model uses assumptions of a single systematic factor and 

homogeneity; in this case the numerical procedure is still easy to implement. In most cases, 

however, the portfolios are not homogeneous, but if we assume that the portfolio is large, 

granularity adjustment developed by Gordy (2003), Pykhtin and Dev (2003), and Gordy (2004) 

can be applied. In both large homogeneous and finite homogeneous portfolios the loss 

distribution can be generated based on assumption of several systematic risk factors using 

appropriate random number generations for each factors.  

For a credit portfolio consisting of n entities, in the Gaussian copula case, the probability 

of k defaults (or unconditional loss distribution in discrete case) can be expressed using the 

following formula (Vasicek, 2002): 
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where p is the probability of default, ρ is correlation incorporated into the credit portfolio using 

Gaussian copula, the integrand is the conditional probability of the portfolio loss given the 

market factor u which is assumed to be normally distributed. If we consider m market factors in 

this approach, then the integration would be over these m market factors.  

 

Conditional and unconditional loss distributions generation 

The previous formula developed by Vasicek (2002) gives an idea on how to obtain the 

unconditional loss distribution in the general case. First of all, one has to compute a conditional 

loss distribution conditional on a set of underlying factors in which defaults are independent, and 

then integrate the conditional loss distribution over the distribution of the underlying factors. In 

mathematical notation, we need to compute conditional probabilities conditional on market 

factors first: 
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and then integrate over these factors: 
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where ( R
n
kLk −= 1 ) is the percentage portfolio loss, [ ]lk MMMLLP ,...,,| 21= is the probability 

that exactly k out of n issuers default conditional on market factors  ; and 

is the conditional default probability of obligor i at time t. In case of Gaussian copula 

and in case when we consider only one market factor in our model, we have: 
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Edgeworth expansion can be used as one of the methods for generating of loss 

distribution (Arvanitis & Gregory, 2001). This expansion uses the higher-order moments of the 

distributions of the constituent variables (such as number of defaults) and information contained 

in cumulants. It is well known that for the normal distribution, the first two cumulants are the 

mean and variance and the others are equal to zero. The higher cumulants give quantitative 

information about the non-normality of a distribution. Edgeworth expansion states that if the 

number of defaults are independent random variables with means , standard deviation ip iσ  and 

cumulants iκ , the probability density function of the random variable which represents 

number of defaults, can be given by 
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where is the rth Hermite polynomial, which can be obtained by successive differentiation 

of the function 
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Cumulants can be obtained from the power-series expansion of the logarithm of the 

moment generating function of the random variable. The leading term in this expansion is the 
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normal distribution, and the first and second terms adjust the skewness and kurtosis. These 

adjustments give better approximation to the loss distribution by incorporating of the skew 

(which corresponds to the asymmetry of the distribution) and kurtosis (which corresponds to the 

fat tails of distribution). As was shown by Arvanitis and Gregory (2001), the Edgeworth 

approximation with four moments is better than the normal approximation, but it becomes less 

accurate further into the tail. The approximation is poor to the left of the origin, where true 

probability density function vanishes. For example, the estimation of the unexpected loss at the 

99.9th percentile corresponds to a tail probability of 0.001. The normal approximation 

underestimates the true value by 40% and the Edgeworth approximation (with four terms) 

underestimates it by 14% (pp. 77-78).  

Hull and White (2004) presented two approaches in generating loss distributions. They 

considered a number of market factors and the conditional default probabilities were 

considered conditional on these market factors. Defining 

lMM ,...,1

)(kTπ the probability that exactly k 

defaults occur in the portfolio before time T, conditional on the default times are independent. 

The conditional default probability that all the n names will survive beyond time T is 

where 

it
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11 ,...,|,...,|0π ) ( )lMi TS M ,...,| 1 is the survival probability of the 

obligor i. Hull and White (2004) showed that the conditional probability of exactly k defaults by 

time T is  
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set{1,…,n}. Hull and White (2004) provided a fast algorithm for computing the conditional 

losses. By integrating over the market factors, one can obtain unconditional loss distribution. 
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Hull and White (2004) proposes also a bucketing approach while Anderson et al. (2003) 

proposed a recursive method for generating loss distribution. In both approaches, loss given 

default and notional values can vary between the entities, but they are still assumed to be 

deterministic. 

Hull and White (2004) divided potential losses into the following ranges: 

where { is referred as kth bucket. The loss distribution is built 

by including one debt instrument at a time. The procedure keeps track of both the probability of 

the cumulative loss being in a bucket and the mean cumulative loss conditional that the 

cumulative loss is in the bucket. The approach offered by Hull and White (2004) does not 

assume buckets of identical size; it allows the analyst accommodating situations where extra 

accuracy is needed in some regions of the loss distribution. The latter can be achieved by 

considering smaller bucket sizes. The loss distribution can be truncated at some level so that the 

analyst need not spend extra computational time on large losses that have only a very small 

chance of occurring. Hull and White (2004) reported that their approach is comparable with the 

Fourier-analytical approach in terms of computational time and accuracy and is numerically 

stable. 
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The main idea of the approach suggested by Andersen et al. (2003) was to compute some 

u as a common divisor of all potential losses, and then consider losses rounded to 

the nearest discrete point as the loss distribution is built up. here is the maximum possible 

unuu *,...,2,,0
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loss. It is important to note here that the speed of this algorithm depends on the statistical 

characteristics of the credit spreads, so that in some cases, the value of the common divisor of all 

potential losses can be very small substantially affecting the speed of the algorithm. The next 

step was to implement a recursive algorithm to determine the portfolio loss distribution that is 

used for the conditional probabilities and in case when default events are independent. It should 

be noted here that the value for u can be very small in some credit portfolios and incur 

computationally extensive loss distribution generation. Suppose we know the loss distribution 

for a reference pool of some size , where is the sum of all the 

loss weights such reference pool. Suppose we add another company to the pool with loss weight 

and known default probability

K
K lltlP max,,...,0),;( =

1+Kw

0≥K Klmax,

( )tpK 1+ . Then using independence of defaults we find for the 

loss distribution of the larger basket (Andersen et al., 2003, p.67): 

( )( ) ( ) 1max,,(1);( ++ +=−− kKK
KK wltwlPptlP !1 ); +Kpt1+ +K t1 );(+ =K tlP ,...,0 l  (25) 

This recursive relation starts with an empty basket, and increase in basket size leads to 

the same relative increase in the maximal loss. The cost of building the conditional loss 

distribution grows as roughly the square of the basket size (Andersen et al., 2003, p.67). The 

resulting conditional loss distribution is transformed to the unconditional loss distribution by 

integrating over common factor.  

Fourier analytical approach is another approach of conditional and unconditional loss 

distribution generation. This approach is alternative to recursion techniques and considers a map 

of the original problem into another space where the problem is more analytically tractable. Once 

the problem in this space is solved, we need to map the solution back to the original space. This 

approach depends on the successful implementation of fast Fourier techniques. This approach 

was used, for example, by Gregory and Laurent (2003, 2004) for pricing CDOs.  Reiβ (2003) 
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provided detailed information on how loss distribution and its first moments can be obtained 

using Fourier analytical approach, described the CreditRisk+ model in terms of characteristic 

functions instead of probability functions. Since construction of loss distribution very much 

depends on the basic loss unit, Reiβ presented an alternative approach where no basic loss unit 

had to be introduced. Merino and Nyfeler (2002) described an algorithm that combines 

techniques from numerical mathematics and actuarial science. Their approach in generation of 

loss distributions was in grouping all potential losses into exposure buckets. Approximating the 

Bernoulli default indicators by Poisson random variables allowed reducing the number of 

random variables which correspond to the number of credits in the portfolio to the number of 

buckets. Applying the fast Fourier transform, numerical quasi Monte Carlo methods allowed 

generating loss distributions of credit portfolios containing 500,000 counterparties within four 

hours with adequate accuracy. It was shown that it was not necessary to simplify the credit risk 

model or portfolio structure to calculate the body and the tail of the portfolio loss distribution and 

that the algorithm was useful for analyzing and designing CDO structures.  

Grundke (2007) analyzed whether a Fourier-based approach could be an efficient for 

calculation of risk measures in the context of a credit portfolio model with integrated market risk 

factors. He applied this approach to CreditMetrics credit portfolio model extended by correlated 

interest rate and credit spread risk. He showed that Fourier-base methods being superior to 

Monte-Carlo simulations couldn’t be superior in case of the integrated market and credit 

portfolio model even after applying standard importance sampling techniques for improving the 

performance of Fourier-based approach. This is because the higher the confidence level of the 

VaR, the larger the asset return correlation, or the larger the number of systematic risk factors. 

For the integrated market and credit portfolio methods, one should combine the Monte Carlo 
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simulation with an importance sampling technique. Combination of Monte-Carlo and importance 

sampling techniques would be appropriate for those cases where the Fourier-based approach 

performs badly, for example, for the estimation of small percentiles which are needed in credit 

risk management.  

The FFT approach was the first used loss distribution construction methodology. 

However, it is slower approach compared to the recursive approach (but still faster than the 

Monte Carlo approach) of generating loss distributions due to the following reasons (O’Kane, 

2008): 

• recursions are faster than Fourier methods, 

• recursions are easier to implement and don’t require access to any specialized 

numerical libraries; 

• using recursions the researcher can build the loss distribution for a specific 

tranche; this is not possible to do when using FFT. 

The saddle-point approximation for generating loss distribution proved to be very 

accurate in practice. When considering sums of independent random variables, it is convenient to 

consider the moment generating function (MGF). The MGF of a random variable can be 

represented as follows (Arvanitis & Gregory, 2001): 
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The well known property of the MGF of a random variables is that when independent 

variables are added, their distributions are convolved, but MGFs are multiplied. Multiplication 

operation is easy to perform than convolution. On the other side, one has to obtain the loss 

distribution of from MGF using inversion integration. By suitably approximating the shape of the 

integrand one obtains an analytical approximation of the probability density function. This 



16 
 

technique is known as the method of steepest descents or saddle-point method. The method also 

allows obtaining analytical approximations to the probability without having to integrate the 

density function. The saddle-point approximation does not make any prior assumptions about the 

shape of the loss distribution. As was suggested by Arvanitis and Gregory (2001), saddle-point 

approximation method is a fast method in obtaining approximate loss distribution and tail 

probabilities, can be used for approximation to derive expressions for loss distributions that 

include variable exposures and default probabilities, and allows incorporating correlation into the 

loss distribution (p. 285). If we denote individual losses , the distribution of each loss can 

be characterized through its cumulant generating function (Glasserman, 2008):  

nVV ,...,1

( )( )ii VEni θθθ explog)(),...,1(& =Λ=∀∀    (27) 

Each is a random fraction of a largest possible loss upon default of obligor i, all 

obligors considered here are independent. As a consequence of independence, the moment 

generating function can be represented as  
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and the cumulant generating function of L as (Glasserman, 2008) 
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Analysis of this function shows that it is increasing, convex, infinitely differentiable and 

takes zero when 0=θ . For a loss level , the saddle-point is the root 0>x xθ of the 

equation ( )xL θ x=ψ '  which is unique. 

Consider the cumulant generating function ( )θψ L . The derivatives of ( )θψ L give 

cumulants of L. The first cumulant when 0=θ  is the mean 
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When losses are assumed to be constant, kk vV = , we have 
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In other words, the derivative of the cumulant generating function is the expected loss 

where original default probabilities are replaced with
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In general, the formula for derivative is  
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which can be interpreted as the expected loss when the original default probabilities are replaced 

by ( ) ( )( )
( )( )( )1exp1

exp
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p
p and the expected losses [ ]kVE  are replaced with where 

original expected loss  coincides with

( )θ'
kΛ

[ ]kVE ( )0'
kΛ  because kΛ is the cumulant generating 

function of .Thus, each value of kV θ determines a modified set of default probabilities and a 

modified loss given default for each obligor (Glasserman, 2008, pp. 455 – 456).  

Due to complexity of the formulas provided, it is important to either develop a fast 

algorithm or approximation formulas. A saddle-point approximation can be represented the 

following way (Glasserman, 2008): 

( ) ( ) ( )( ) ( )( )xLxxLxLx xxLP θψθθψθψθ ""5.0exp −Φ++−≈>   (33) 

and the closely related Lugannani-Rice approximation is  
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where ( )( )xLx xxr θψθ −= 2)( and ( )xLxx θψθλ ")( = .  

A modification of the previous formula is 
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This modification has the advantage that it always produces a value between 0 and 1 

(Glasserman, 2008, p. 456). 

To generate the unconditional loss distribution, as it was shown before, one has to 

compute a conditional loss distribution based on the assumption of obligor independence and 

then integrate over the possible values of market factors. Factor models are popular since 

obligors are conditionally independent in such models. When integrating over the possible values 

of market factors, fast integration procedures should be used; these procedures depend on the 

probability distribution of the chosen market factors and the number of market factors. 

Glasserman (2008) proposed and algorithm for generation of unconditional loss 

distribution. The model specifies two sets of parameters – corresponding to a high-default regime 

and a low-default regime, with independent obligors in each regime. Then the model uses a 

mixture of the two sets of parameters. In this case, the underlying “factor” is the regime and the 

unconditional loss distribution may be computed as a mixture of the two conditional loss 

distributions (p. 457). This approach is quite useful when analyzing the credit portfolio 

consisting of over 100 – 120 credits that can perform differently over the specified time period. 

The credit portfolio can be partitioned into the clusters (or buckets) of credits (as well as possible 

outliers) and for each cluster low default regime and high default regime can be identified.   

Glasserman and Ruiz-Mata (2006) compared the computational efficiency of ordinary 

Monte Carlo simulation with methods that combine simulation for the factors with the 
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techniques used to generate conditional loss distributions. They determined that numerical 

transform inversion and saddle-point approximation involve some error in the calculation of 

conditional default probabilities. Because each replication using convolution, transform 

inversion, or saddle-point approximation takes longer than each replication using ordinary 

simulation, these methods complete fewer replications in a fixed amount of computing time. The 

recursive convolution method computes the full conditional loss distribution on each replication 

while transform inversion and saddle-point approximation must in practice be limited to a 

smaller number of loss thresholds. Using the saddle-point approximation requires solving for 

multiple saddle-point parameters on each replication. The computation time required using 

recursive convolution grows quickly with the number of obligors. As a consequence of these, 

with the total computing time held fixed, ordinary Monte Carlo often produces a smaller mean 

square error (Glasserman, 2008, p. 458). The number of factors plays a substantial role in 

choosing whether Monte Carlo or another method such as saddle-point or recursive approach 

should be used. When the number of factors is small, Monte Carlo simulations can be replaced 

by integration. For the moderate number of dimensions, a quasi-Monte Carlo sampling can be 

applied. On the other side, one can use approximations where a single “most important” value of 

the factors is used (Glasserman, 2004). Zheng (2007) suggested approximation of the conditional 

loss distribution using a normal distribution by matching two moments and then computing the 

unconditional distribution through numerical integration assuming small number of factors. 

Specifically Zheng (2007) suggest computing mean and variance depending on market factor Z: 

∑
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so that the 0th and first order approximation can be represented respectively the following way 

(Edgworth expansion): 
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The higher order expansion can be expressed using Chebyshev-Hermite polynomials and 

moments of up to order k + 2. The approximation error was estimated as ( )2/kno − . The 

unconditional loss distribution then can be obtained using integration. 

Glasserman and Li (2005) proposed a two-step-importance sampling technique that helps 

compute the upper tail of the loss distribution. Such techniques include Monte-Carlo simulation 

methods combined with adequate variance reduction approach, and are applicable to a wide 

range of applications. Importance sampling is a special variance reduction technique and is used 

to change the distributions of the relevant risk factors in such a way that more realizations of the 

loss random variable are in the upper tail. Then each realization is weighted by the likelihood 

ratio to correct for the change in distribution. 

Dembo et al. (2004) provided a large deviation approximation of the tail distribution of 

total financial losses on a portfolio consisting of many positions. Quantitative analysis of large 

losses is helpful in structuring large portfolio so as to withstand severe losses. Applications of 

this approach include the total default losses on a bank portfolio or the total claims against an 

insurer. A key assumption was that conditional on a common ‘correlating’ factor, position looses 

are independent. For large losses, financial distress costs are more severe if the losses occur over 



21 
 

a relatively short period of time. Sudden losses may cause extreme cash-flow stress, and 

investors may require more favorable terms when offering new lines of financing over short time 

periods, within which they may have a limited opportunity to gather information about the credit 

quality and long-term prospect of a distressed financial institutions. The results provided by the 

authors include conditions under which a large-deviations estimate of the likelihood of a failure-

threatening loss during some sub-interval of time during a given planning horizon can be 

calculated from the likelihood of the same size loss in a certain fixed “key time horizon”. The 

conditional distribution of losses on each type of position can be estimated given the large 

portfolio loss of concern. The authors provided some analytical guidance on the dependence of 

large-loss probabilities on the structure of a portfolio with a large number of positions and the 

‘most likely way’ that a large loss can occur. Given a large loss, the conditional likelihood of 

loss on each type of position and conditional distribution of exposure in the event of loss were 

calculated. These conditional calculations can be interpreted in the asymptotic sense of Gibbs 

conditioning principle.  

Sidenius et al. (2008) presented the SPA framework in which models are specified by a 

two-layer process. The first layer models the dynamics of portfolio loss distributions in the 

absence of information about default times. This background process can be explicitly calibrated 

to the full grid of marginal loss distributions as implied by initial CDO tranche values indexed on 

maturity, as well as to the prices of suitable options. The authors gave sufficient conditions for 

consistent dynamics. The second layer models the loss process itself as a Markov process 

conditioned on the path taken by the background process. The choice of loss process is non-

unique. Sidenius et al. (2008) presented a number of choices, and discussed their advantages and 

disadvantages. Several concrete model examples were given, and valuation in the new 
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framework was described in detail. Among the specific securities for which algorithms are 

presented were CDO tranche options and leveraged super-senior tranches. 

In practice, one can estimate the implied loss distribution from observed market data. For 

example, Krekel and Partenheimer (2006) described how to determine the implied loss surface of 

a credit portfolio from CDO tranche quotes. The approach can be applied for pricing of CDO 

tranches and Nth-to-default swaps and for risk management of CDO tranches. It also can serve as 

an initial distribution for dynamic loss models. The calibration can be performed numerically by 

solving a nonlinear optimization problem using sequential quadratic programming method. 

 

Analysis, conclusion and recommendations 

The most important issue in generating loss distributions for credit portfolios is to find a 

fast and accurate algorithm which can be easily implemented. There is always trade-off between 

these characteristics of the described algorithms. Some of the analyzed algorithms can be 

implemented easily for solving practical problems; on the other side, the disadvantage of 

implementing them is in a number of assumptions that can make the model unrealistic incurring 

inaccurate decision making. For a given credit portfolio, it is advantageous considering various 

loss distributions models such as bucketing approach by Hull and White (2004), recursive 

method by Andersen et al. (2003), Fourier analytical approach, and saddle-point approximation 

and use the ones that provide better solution to the specific problem and the given credit 

portfolio.  

Among the algorithms described above, the fastest algorithm is LHP, but the accuracy of 

this algorithm depends on the number of obligors in the portfolio and the credit spread 

distribution. The more concentrated the credit spreads are and the more obligors the credit 
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portfolio has, the more applicable LHP is. If we have a smaller number of obligors (say, less than 

100 obligors) we can use finite homogeneous approach. Finite homogeneous approach is slower 

than LHP since we need to integrate conditional loss distribution over the market factor to obtain 

unconditional loss distribution. Unfortunately, in practice, homogeneity assumption and 

assumption that the portfolio is large are not the case and LHP can be rejected by practitioners 

seeking more accurate loss distribution generation. LHP as well as finite homogeneous portfolio 

methods can’t be used as an approximation of heterogeneous portfolios – a loss distribution 

generated using a recursive method for a heterogeneous portfolio can be quite different from the 

loss distribution generated using LHP when the input parameter for the LHP is the weighted 

average spread of the heterogeneous portfolio. 

On the other extreme, when more accurate generation of loss distribution is required, the 

best method is Monte Carlo simulation which is, at the same time, the slowest. The Monte Carlo 

simulation is especially valuable in cases when the level of heterogeneity is very high, in other 

words when the credit spread distribution is very diverse.  

Monte Carlo simulations (as well as other loss generation methods) can be made faster 

and will require less memory if we cluster credit default spreads into homogeneous partitions of 

credit spreads. Given a heterogeneous credit portfolio, the task is to distribute into a group of 

clusters in such a way that the objects within each cluster are homogeneous and highly correlated 

while the clusters themselves are different. In fact, this task has two difficulties – firstly, we need 

to identify an optimal partition of the credit spreads into different clusters; secondly the spread 

clusters should be explicitly determined.  

 There are a number of algorithms that allows clustering of credit spreads – K-means, 

Diana, Clara, fuzzy analysis, self-organizing maps, model-based clustering. There are also 
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internal and stability validation based on internal and stability measures. Taking the credit 

spreads data and clustering partition as an input, internal measures are used to assess the quality 

of clustering based on intrinsic information. Stability measures assess clustering consistency by 

comparing it with the clusters obtained after each column is removed. However, clustering 

methods should be aligned with the goals pursued by researcher-practitioner since clustering 

methods alone may not give appropriate number of clusters for accurate pricing of credit 

derivatives. For example, if an estimation of sum of squares within groups using k-means cluster 

analysis and validation measures suggest 4 clusters of credit spreads, this number of clusters may 

not enough to estimate CDO fair spreads for each tranche given the particular level of tolerance. 

This is because we still may have high values for the within-group sum of squares, low level of 

homogeneity in each cluster or, equivalently, high level of heterogeneity within the clusters. 

High level of heterogeneity requires further increase in number of clusters to achieve 

convergence of estimated CDO fair spreads to the real one. The optimal number of clusters 

depends of the tranche being priced, credit spread distribution of the credit portfolios, and the 

recovery rates of the obligors. In practice, the number of clusters may be greater than the one 

suggested by, for example, the k-means cluster analysis; however this number of clusters still 

will be several times less than the number of obligors in the credit portfolio thereby increasing 

the speed of loss distribution generation. The disadvantage of using cluster analysis is that 

additional time is required to perform such analysis. The movements of credit spreads should be 

monitored, and the cluster analysis might be required to be performed after each switch regime 

change.  

In risk management of tranches, loss distributions for the credit portfolios need to be 

extensively recalculated for estimation of credit risk measures such as, for example, idiosyncratic 
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delta of a credit or a group of credits. One of the methods to speed up the building of loss 

distribution is perturbation method suggested by O’Kane (2008, pp. 362-364). The perturbation 

method coupled with partitioning of credit spreads can help further speed up the loss distribution 

building and allows more efficient estimation of sensitivity of CDO tranche prices to the 

instantaneous movement in credit spreads of the cluster. This is because such approach is more 

consistent with what we usually observe in the market when changes in spreads occur in a group 

of highly correlated spreads rather than in one particular credit.  

 Not all methods may be easily implemented in situations when the portfolio is 

heterogeneous. For example, in the well known algorithm proposed by Andersen et al. (2003) 

one has to estimate the value of common divisor of all potential losses. The algorithm depends 

on the statistical characteristics of the credit spreads (which can be diverse with high level of 

heterogeneity) and in some cases the value of the common divisor can be very small 

substantially affecting the speed of the algorithm and requiring more memory for estimation of 

the loss distribution. A tolerance level of the common divisor of all potential losses can be 

chosen to speed up the process, but in this case the resulting loss distribution depends on the 

chosen tolerance level, which may incur discreteness of the loss distribution shape and even may 

not be accurate affecting credit risk management and credit derivatives pricing. 

Easiness of implementation of specific algorithms as well as accuracy depends on the 

access of specialized mathematical libraries. For example, to use a complex FFT algorithm for 

loss distribution generation, an analyst would need an access to an effective FFT algorithm. 

Moreover, this algorithm requires more time for generation of loss distribution than the recursive 

algorithms described above and this one of the main reasons why FFT algorithms are not widely 

used in practice. When estimating a loss distribution using finite homogeneous portfolio, an 



26 
 

analyst needs to choose an effective integration method as well as the integration ranges to reach 

the required tolerance.  

Generation of loss distribution should be aligned with other quantitative and qualitative 

analysis of the obligors and informed decision should be made in order to properly estimate the 

input parameters. For example, credit quality of each credit can change over the specified period 

of time, and, therefore, it can affect the loss distribution that will change during this period of 

time due to changes in credit quality of the obligors. 

The analyzed methods assumed constant recovery rates. The value for recovery rates is 

often assumed to be equal to 40%, during financial crisis even less – 10 to 20%. Moreover, these 

values are often assumed to be the same for all the obligors with different ratings and credit 

spread term structure. Estimation of recovery rates for each obligor based on financial statement 

analysis, for example, estimation of recovery rates for a portfolio consisting of 140 obligors is 

time consuming; on the other side, the generated loss distribution based on the carefully 

estimated recovery rates would be more realistic.  

Since recovery rates are changing over the particular time period, the loss distribution 

generation methods can be improved by assuming that recovery rates for each obligor (and, 

therefore, loss given default) are random variables. The probabilities of default and recovery 

rates are negatively correlated and they can be exogenously modeled as stochastic processes 

which then can be incorporated into existing loss distribution generation models.  

The described methods don’t consider credit spread distribution of the credit portfolio. 

Loss distribution of the portfolio or CDO tranche depend on the credit spread distributions 

observed in the market. Analysis of credit spread distributions can help identify which credit 

spreads are most likely affect specific CDO tranche, and which credit spreads wouldn’t. For 
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example, for a given tenor, say 3 years, a credit portfolio may have credits with low credit 

spreads concentrating around the value giving time to default which are more than 10 years. 

Such credit spreads don’t affect loss distribution of the considered CDO tranche, and, therefore 

can be excluded from consideration. If a number of such credit spreads is very high, then by 

excluding these credits from consideration we can substantially decrease computational time of 

the loss distribution generation. In other words, loss distribution generation can be faster and 

substantially improved, if we perform preliminary statistical analysis of credit spread 

distribution, recovery rates and default probabilities of the obligors. 
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