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This paper presents a novel use of data mining algorithms for extraction of knowledge from a 
set of process plans.  The purpose of this paper is to apply data mining methodologies to 
explore the patterns in data generated by genetic-algorithm-generating process plans and to 
develop a rule set planner, which helps to make decisions in odd circumstances.  Genetic 
algorithms are random-search algorithms based on the mechanics of genetics and natural 
selection.  Because of genetic inheritance, the characteristics of the survivors after several 
generations should be similar.  The solutions of a genetic algorithms for process planning 
consists of the operation sequence of a job, the machine on which each operation is 
performed, the tool used for performing each operation, and the tool approach direction.  
Among the optimal or near-optimal solutions, similar relationships may exist between the 
characteristics of the operation and sequential order.  Data mining software known as See5 
has been used to explore the relationship between the operation’s sequence and its 
attributes, and a set of rules has been developed.  These rules can predict the positions of 
operations in the sequence of process planning. 
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Introduction	  	  

Process planning is an engineering task that determines the detailed manufacturing requirements 
for transforming a raw material into a completed part, within the available machining resources. 
The output of process planning generally includes operations, machine tools, cutting tools, fixtures, 
and machining parameters, among others.  This paper presents a process-planning problem for a 
part is modeled in a network by simultaneously considering the selection of operations, machines, 
cutting tools, and operations sequence, as well as the constraints imposed by the precedence 
relationships between operations and available machining resources. 

In recent years, information growth has proceeded at an explosive rate.  While database 
management systems provide us with basic tools for the effective, efficient storage and lookup of 
large data sets, the capabilities for collecting and storing data have outpaced our abilities to analyze, 
summarize, and extract knowledge from this data.  Traditional methods of data analysis were based 
mainly on direct human dealings with data.  Large volumes of data overwhelm the traditional 
manual methods of data analysis, such as spreadsheets and ad-hoc queries, and while informative 
reports can be produced through these methods, they cannot further analyze the content of those 
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reports.  These methods help only in data collecting and computing; they do not assist in improving 
the analysis task.  Moreover, they overemphasize the statistical aspects of data while ignoring the 
domain knowledge of data.  As a result, traditional analysis can fail to reveal the physical natures 
that the data implies.  The modern answer is data mining, which is being used both for analysis and 
to predict the future pattern.   Data mining is a step in a long process chain of data analyzing that 
involves the evaluation and interpretation of patterns to determine what constitutes knowledge.  In 
this paper, a See5 data mining tool (RuleQuest software, Australia) is used to induct a rule set from 
a classified data.  

Literature	  Review	  

Literature on computer-aided process planning (CAPP) is vast, and a considerable amount of work 
on CAPP has been carried out over the last few decades. In the past, Alting and Zhang (1989); 
Steudel (1984); Weill, Spur, and Eversheim (1982); and Cay and Chassapis (1997) performed 
extensive studies on CAPP. 

Zhang, Zhang, & Nee (1997) presented an approach that deals with process-planning problems using 
genetic algorithms (GAs, which are random-search algorithms based on the mechanics of genetics 
and natural selection) in a concurrent manner in generating the entire solution space by considering 
the multiple decision-making activities—i.e., operation selection, machine selection, setup selection, 
cutting tool selection, and operations sequencing—simultaneously.  GAs are selected due to their 
flexible representation scheme.  Specially designed crossover and mutation operators are used to get 
a near-optimal process plan.  A space search method is used for comparison. 
In a distributed manufacturing environment, factories possessing various machines and tools at 
different geographical locations are often combined to achieve the highest production efficiency.  
When jobs requiring several operations are received, feasible process plans are produced by those 
factories available. Li, Fuh, Zhang, and Nee (2005) used GA to get optimal or near-optimal process 
plans for a single manufacturing system, as well as distributed manufacturing systems.  It is shown 
from the case study that the approach is comparative with or better than the conventional single-
factory CAPP. The applications of GA for different types of process-planning problems were 
addressed by Goldberg & Lingle (1985), Goldberg (1989), Bruns and  Forrest (1993), Falkenauer and 
Delchambre (1992), Dagli and Sittisathanchai (1993), Zhang (1997), and Dereli and Filiz (1999). 

A new generation of techniques and tools are required to assist humans in intelligently analyzing 
voluminous data for pieces of useful knowledge. Knowledge discovery in databases and data mining 
integrate database management systems and artificial intelligence technologies to assist humans in 
analyzing large quantities of data. Knowledge discovery in databases is defined as the nontrivial 
process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data 
(Fayyad, 1997). 

Koonce and Tsai (2000) presented a novel use of data mining algorithms for the extraction of 
knowledge from a large set of job shop schedules.  They applied data mining methodologies to 
explore the patterns in data generated by a GA performing a scheduling operation and to develop a 
rule set scheduler that approximates the GA’s scheduler.  In using a GA for job shop scheduling, the 
solution is an operational sequence for resource allocation.  Among the optimal or near-optimal 
solutions, similar relationships may exist between the characteristics of operations and sequential 
order. An attribute-oriented induction methodology was used to explore the relationship between an 
operation’s sequence and its attributes, and a set of rules has been developed.  These rules can 
duplicate the GA’s performance on an identical problem.  
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Harrath, Chebel-Morello, and Zerhouni (2002) proposed a new method based on GA and data mining 
to resolve job shop scheduling problems.  The developed GA generates a learning population of good 
solutions, which are mined by the mean of See5 classifier systems.  The mining step gives decision 
rules that are transformed into a metaheuristic that allows the sequence of operations on the 
machine. Harrath, Chebel-Morello, and Zerhouni (2001) and Taaj (1997) addressed a job shop 
scheduling problem with the use of data mining and GAs. 

Yang and Webb (2002) argue that the requirements for effective discretization differ between naïve 
Bayes learning and many other learning algorithms.  They evaluate the effectiveness with naïve 
Bayes classifiers of nine discretization methods: equal width discretization, equal frequency 
discretization, fuzzy discretization, entropy minimization discretization, iterative discretization, 
proportional k-interval discretization, lazy discretization (LD), nondisjoint discretization (NDD), and 
weighted proportional k-interval discretization (WPKID). The authors say that, in general naïve 
Bayes classifiers trained on data preprocessed by LD, NDD, or WPKID achieve lower classification 
error than those trained on data preprocessed by the other discretization methods, but LD cannot 
scale to large data. This study led to a new discretization method, weighted nondisjoint 
discretization, which combines the advantages of WPKID and NDD.	  

Background	  	  

In process planning, a part is generally described by features, which are geometric forms having 
machinable shapes, such as holes, slots, and bosses. Given a part and a set of manufacturing 
resources, the process-planning problem can be defined as follows: (Zhang, Ma, & Nee, 1999). 

i) Operation selection: For each feature, determine one or several operations required. This 
includes the selection of machines, cutting tools, and tool approach directions (TADs) based 
on the feature geometry and available machining resources. 

ii) Operation sequencing: Determine the sequence of executing all operations required for the 
part so that the precedence relationships (PRs) among all the operations are maintained   

The decision-making tasks in i) and ii) above must be carried out simultaneously to achieve an 
optimal plan against a predetermined evaluation criterion. Most of these systems, however, focus on 
generating the optimal plan for individual features. Recently, research has focused on process-
planning optimization by considering some of the decision-making tasks concurrently. These efforts 
have undoubtedly achieved certain success; however, few CAPP systems have gained industry 
acceptance. CAPP systems based on the different criteria are as follows: 

i) Simple or limited machining environment: Most reported CAPP systems are designed 
for handling planning tasks within a simple machining environment, such as a vertical 
milling center. To accommodate various machining environments in different companies 
and/or the change of machining capacity in the same company, a CAPP system must be able 
to handle different job shop environments. 

ii) Feature being the basic element: Most existing CAPP systems use features as the basic 
elements for process planning. In practice, human planners use operations for process plans. 
The difference between using features and operations as the basic elements occurs when a 
feature needs two or more operations to be performed on different machines. In such a 
situation, the optimum plan in terms of minimum setups can never be reached if features are 
used as the basic planning elements. 
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iii) Sequential decision-making: Most existing approaches treat the various decision-making 
activities of process planning in a sequential manner. Although this strategy may reduce the 
solution space significantly, the optimum or even the feasible plans may well be lost on the 
way to the final solution.  

When the various decision-making tasks are carried out simultaneously, process planning becomes a 
combinatorial problem. During the last decade, GAs have been applied to many such problems, 
including job shop scheduling,  the travelling salesman problem (TSP is an NP-hard problem in 
combinatorial optimization studied in operations research and theoretical computer science), and 
other NP (i.e., nondeterministic polynomial time)-complete problems. A process-planning problem is 
similar to a traveling salesman problem in that every operation has to be traversed once and only 
once; although, a process-planning problem is more complicated due to precedence constraints 
among operations and nonfixed “distance” between operations (time required for machine, setup, and 
tool change). It is expected that GAs can provide a valid option for solving the process-planning 
problems so long as a suitable string representation and a corresponding search operator can be 
devised. Recently, there have been reports on applying GAs to process planning.  

The	  Process	  Planning	  Model:	  A	  Network	  Representation	  

Given	  a	  part	  needing	  M-‐stages,	  (“machining stage” or M-stage is a general term for any OPT; a feature can then 
be represented by a fixed number of M-stages while each M-stage has its alternative sets of [M, T, TAD]. A part can 
also be represented in the similar fashion) the process-planning problem can be conveniently described by a 
network constrained by its PRs. The network consists of M-stages. Each M-stage consists of several 
combinations of machine (M), tool (T), and TAD. 

There is a link between any two M-stages that represent the PR between them (i.e., the one that the 
arrow points to must be performed after the other, while a link with double arrows means that there 
is no PR between the two M-stages they connect). An M-stage network for a part that consists of five 
operations is depicted in Figure 1. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

Figure	  1:	  Example	  M-‐Stage	  Network	  for	  a	  Part	  Consisting	  of	  Five	  Operations	  
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Flexible	  Process	  Plan	  Evaluation	  Criteria	  

The most commonly used criteria for process-plan evaluation include minimum number of setups, 
shortest process time, and minimum machining cost, among others.  Because the detailed 
information on tool paths and machining time cannot be used for plan evaluation, the following five 
cost factors are identified as the plan evaluation criteria: 

1.  Machine cost (MC), 

MC	  =	  	   	  MCIi	   Eq.	  1	  

where n is the total number of operations and MCIi is the machine cost index for using 
machine i, a constant for a particular machine. 

2.  Tool cost (TC),	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   	  TC	  =	   TCIi	  	  	   	   	   	   	   	   Eq.	  2	  

where TCIi is the tool cost index for using tool i, a constant for a particular machine. 

3.  Machine change cost (MCC; a machine change is needed when two adjacent operations are 
performed on different machines), 

MCC	  =	  MCCI	   Ω(Mi+1,	  Mi)	   	   	   	   	   	   Eq.	  3	  

where MCCI is the machine change cost index and Mi is the identification of the machine 
used to performed operation i. 

	   	   	   Ω(x,y)	  = 1,	  	  if	  x	  ≠	  y	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  0,	  	  if	  x	  =	  y	  	  	  	  	   	   	   	   	   	   Eq.	  4	  
	   	  
4.  Setup change cost (SCC; a setup change is needed when two adjacent operations performed 

on the same machine have different TADs), 

	  	  	  SCC	  =	  SCCI	  	   {[1-‐	  Ω(Mi+1,	  Mi)]*Ω(TADi=1,TADi	  )}	  	   Eq.	  5	  

where SCCI is the setup change cost index, a constant. 

5.  Tool change cost (TCC; a tool change is needed when two adjacent operations performed on 
the same machine use different tools),  
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TCC	  =	  TCCI	  *	   {[1-‐	  Ω(Mi+1,	  Mi)]*Ω(Ti+1,	  Ti)}	   	   	   	   Eq.	  6	  

where TCCI is the tool change cost index, a constant.   

These cost factors can be used either individually or collectively as a cost compound based on the 
actual requirement and data availability of the job shop. In summary, the process-planning problem 
can be rephrased as to identify a combination of M, T, and TAD from every M-stage and put them 
into an order that does not violate any PRs between any two M-stages, while achieving the least cost 
compound (cost compound is a function of the cost factors introduced earlier). 

Applying	  GA	  to	  Process-‐Planning	  Problem	  

Knowledge-‐Based	  Representation	  of	  a	  Process	  Plan	  

The first step in formulating a GA for process planning is to map the problem solutions (process 
plans) to string representations. A knowledge-dependent string is used to represent a process plan. 
For an n-operation problem, the string is composed of n-segments. Each segment contains an M, T, 
and TAD from a unique M-stage and its order in the string. This representation is illustrated 
through an example of a six-operation problem, as shown in Figure 2. This string representation can 
cover all the solution space due to the selection of machine tools, cutting tools, TADs, and the 
sequence among operations. 

	  

Figure	  2:	  A	  String	  Representing	  a	  Process	  Plan	  With	  Six	  Operations	  

Generation	  of	  Initial	  Population	  

To generate the initial sequences of the operation that obey precedence constraints, an algorithm has 
been generated. The algorithm for generating a solution based on given  PR  is described as follows: 

1. Select (at random) an operation with no predecessors. 
2. From the remaining operations, select an operation at random such that it obeys the PR.  
3. Repeat step 2 until all operations are completed. 
4. Assign M, T, and TAD for each operation. (If any operation has more than one alternative, 

[e.g., OP1 can be done on machines M1, M2, and M3], choose one of the machines at random.)  
5. Repeat steps 1 through 4 until required initial population is achieved. 

Fitness	  Evaluation	  

Once all solution strings are generated, the cost compound for the plan alternatives represented by 
these strings can be calculated using equations 1–6. Cost compound is used as the fitness of the 
solution string. 
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Reproduction	  

The present reproduction operator works in two steps. First, it applies “elitism” by copying the 
solution string having the lowest cost value, thus keeping the cost function nonincreasing. Second, it 
uses the “roulette wheel” method for the reproduction of the remaining string solutions. 

Crossover	  

The strings obtained from reproduction are then mated at a given probability (crossover rate). To 
ensure that the crossover will not result in any violation of PRs and each operation in the offspring is 
executed only once, the cyclic crossover operator proposed by Dagli & Sittisathanchai (1993) is 
adopted. The algorithm for the crossover of string 1 and string 2 is described as follows: 

1. Determine a cut point randomly from the all the positions of a string. Each string is then 
divided into two parts—the left side and the right side—according the cut point.  

2. Copy the left side of string 1 to form the left side of offspring 1. The operator constructs the 
right side of offspring 1 according to the order of operations in string 2. 

3. Copy the left side of string 2 to form the left side of offspring 2. The operator constructs the 
right side of offspring 2 according to the order of operations in string 1. 

This process—cyclic crossover selecting a string pair with probability Pc randomly selecting a cut 
point—is illustrated in Figure 3. A pair of strings (parent 1 and parent 2) is under the crossover 
operation in which the cut point is chosen between positions 3 and 4. The left side of parent 1, op4-
op1-op2, is used to form the left side of offspring 1. The order of the right side of parent 1, op5-op7-
op8-op3-op6-op9, is adjusted according to the order of parent 2 to form the right side of offspring 1. 
By doing so, the sequences among the operations in both parent 1 and parent 2 are maintained in 
offspring 1. A similar operation is applied to parent 2 and parent 1 to form offspring 2. 

	  

Figure	  3:	  An	  Example	  of	  Applying	  the	  Cyclic	  Crossover	  for	  Changing	  Operations	  Sequence	  
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Mutation	  

Three mutation operations were developed in which the process-planning heuristics are employed: 
machine mutation, tool mutation, and TAD mutation.  

Machine mutation is used to change the machine to perform an operation if more than one machine 
can be applied. To reduce the total number of machine changes, machine mutation does not stop at 
the selected position. Instead, the machine alternatives for every other operation are also checked to 
determine if a mutation can heuristically reduce machine changes. The algorithm for machine 
mutation is described as follows: 

1. For every solution string, select an operation (a position in the string) randomly and use a 
predetermined probability (mutation rate) to determine whether or not the machine needs to 
be changed. 

2. Randomly choose a machine (Mb) from all the alternatives to replace the current machine 
(Ma). 

3. Identify all the other operations in the same string whose current machine is Ma. If any one 
of these operations has Mb as an alternative, assign Mb to replace Ma. 

An example of this machine mutation is illustrated in Figure. 4. It can be seen that op3 (M1) is 
selected for mutation where M1 is the current machine. M3 is then assigned to op3 to replace M1. It is 
also found that M1 is currently used by op1, op4, op5, and op2. Among them, op1, op4, and op5 have 
M3 as one of their alternative machines; therefore, M3 is assigned to op1, op4, and op5 to replace M1. 

	  

	  

Figure	  4:	  An	  Example	  of	  Machine	  Mutation	  With	  Size	  Operations	  
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Tool mutation operates on the solution strings after machine mutation. It has a similar mechanism. 
TAD mutation operates on the solution strings after both machine mutation and tool mutation. It 
also has a similar mechanism. 

The settings of GA parameters for the example part (Figure 5) were as follows: 

 Population size: 100 
 Crossover probability: Pc = 0.7. In the present GA formulation, crossover is equivalent to a 

change of operation sequence that should therefore be vigorously performed to traverse more 
points in the solution space. 

 Mutation probability: The three mutations play a similar role as the crossover since the 
extended solution space due to the availability of alternative machines, tools, and TADs must 
be adequately traversed in the optimizing process; therefore, the three mutation probabilities 
should be similar (e.g., Pm = 0.35). 

 Stopping criterion: According to the observation, all the cases tested achieved very good results 
after 6,000 generations.  The stopping criterion of 6,000 generations was therefore selected.  

	  

Figure	  5:	  A	  Prismatic	  Part	  and	  Its	  19	  Features	  

Process	  Planning	  for	  a	  Sample	  Part	  

The authors have considered the same part, resources, and other constraints as those taken by 
Zhang, Zhang, and Nee (1997).  Figure 5 shows a prismatic part and descriptions of its 19 features.  
Based off of Figure 5, the machining resources and the results of operations selection are given in 
Table 1, where columns 1 and 2 show the features and the operations to which they are mapped, 
column 3 shows the possible TADs for each operation, the machine alternatives for each operation 
are shown in column 4, and the tool alternatives for each operation are shown in column 5. Table 2 
depicts machine, tool, and other cost indices for the example prismatic part. The PRs between the 
operations are then obtained as shown in Table 3. 
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Table	  1:	  The	  Operation	  Selection	  Results	  for	  the	  Example	  Prismatic	  Part	  
Features	   Operation	  

Candidates	  
TAD	  

Candidates	  
Machines	  
Candidates	  

Tool	  
Candidates	  

F1	   Drilling	  (op1)	   -‐z,	  +z	   M1,	  M2,	  M3	   T1	  
F2	   Drilling	  (op2)	   -‐z,	  +z	   M1,	  M2,	  M3	   T1	  
F3	   Milling	  (op3)	   -‐z,	  +z	   M2,	  M3	   T7	  
F4	   Milling	  (op4)	   -‐z,	  +y	   M2,	  M3	   T5,	  T6	  
F5	   Milling	  (op5)	   +y	   M2,	  M3	   T5,	  T6	  
F6	   Milling	  (op6)	   +y	   M2,	  M3	   T5,	  T6	  
	  
F7	  

Drilling	  (op7)	  
Reaming	  (op8)	  
Boring	  (op9)	  

-‐z,	  +z	  
-z, +z 
-z, +z 

M1,	  M2,	  M3	  
M1, M2, M3 
M3,	  M4	  

T2	  
T3 
T4 

F8	   Drilling	  (op10)	   -‐z	   M1,	  M2,	  M3	   T1	  
	  
F9	  

Drilling	  (op11)	  
Reaming	  (op12)	  
Boring	  (op13)	  

-‐z,	  +z	  
-z, +z 
-z, +z 

M1,	  M2,	  M3	  
M1, M2, M3 
M3, M4 

T2	  
T3 
T4 

F10	   Milling	  (op14)	   +x	   M2,	  M3	   T5,	  T6	  
F11	   Drilling	  (op15)	   -‐z	   M1,	  M2,	  M3	   T1	  
F12	   Drilling	  (op16)	   -‐z	   M1,	  M2,	  M3	   T1	  
F13	   Milling	  (op17)	   -‐y,	  -‐z	   M2,	  M3	   T5,	  T8	  
F14	   Milling	  (op18)	   -‐y,	  -‐z	   M2,	  M3	   T5,	  T6	  
F15	   Drilling	  (op19)	   -‐z,	  +z	   M1,	  M2,	  M3	   T1	  
F16	   Drilling	  (op20)	   -‐z,	  +z	   M1,	  M2,	  M3	   T1	  
F17	   Milling	  (op21)	   -‐y	   M2,	  M3	   T5,	  T6	  
F18	   Drilling	  (op22)	   -‐y	   M1,	  M2,	  M3	   T1	  
F19	   Drilling	  (op23)	   -‐y	   M1,	  M2,	  M3	   T1	  

Note: TAD = tool approach direction (x = horizontal; y = vertical; z = upward); F = feature; op = operation; M = 
machine; T = tool. 

Table	  2:	  Cost	  Indices	  for	  the	  Example	  Prismatic	  Part	  
Machine	  Cost	  Indices	   Tool	  Cost	  Indices	   Other	  Indices	  

M1	  (10):	  Drill	  press	  
M2	  (35):	  Vertical	  milling	  

M3	  (60):	  Vertical	  CNC	  milling	  
M4	  (50):	  Boring	  machine	  

T1	  (3):	  Drill	  1	  
T2	  (3):	  Drill	  2	  
T3	  (8):	  Reamer	  

T4	  (15):	  Boring	  tool	  
T5	  (10):	  Milling	  cutter	  1	  
T6	  (15):	  Milling	  cutter	  2	  
T7	  (10):	  Chamfer	  tool	  
T8	  (10):	  Slot	  cutter	  

MCCI	  =	  300	  
SCCI	  =	  90	  
TCCI	  =	  10	  

	  

Note: M = machine; T = tool; CNC = computer numerical control; MCCI = machine change cost index; SCCI = 
setup change cost index; TCCI = tool change cost index. 
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Table	  3:	  The	  Precedence	  Matrix	  Between	  Operations	  for	  the	  Example	  Prismatic	  Part	  
	  	  	   O
p0

1	  

O
p0

2	  

O
p0

3	  

O
p0

4	  

O
p0

5	  

O
p0

6	  

O
p0

7	  

O
p0

8	  

O
p0

9	  

O
p1

0	  

O
p1

1	  

O
p1

2	  

O
p1

3	  

O
p1

4	  

O
p1

5	  

O
p1

6	  

O
p1

7	  

O
p1

8	  

O
p1

9	  

O
p2

0	  

O
p2

1	  

O
p2

2	  

O
p2

3	  

Op01	   	   1	   1	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op02	   	   	   1	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op03	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op04	   	   	   1	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op05	   	   	   	   1	   	   1	   	   	   	   	   	   	   	   	   1	   1	   1	   1	   1	   1	   1	   1	   1	  
Op06	   	   	   	   1	   	   	   	   	   	   	   	   	   	   	   1	   1	   1	   1	   1	   1	   1	   1	   1	  
Op07	   	   	   	   	   	   	   	   1	   1	   1	   1	   1	   1	   	   	   	   	   	   	   	   	   	   	  
Op08	   	   	   	   	   	   	   	   	   1	   1	   1	   1	   1	   	   	   	   	   	   	   	   	   	   	  
Op09	   	   	   	   	   	   	   	   	   	   1	   1	   1	   1	   	   	   	   	   	   	   	   	   	   	  
Op10	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op11	   	   	   	   	   	   	   	   	   	   1	   	   1	   1	   	   	   	   	   	   	   	   	   	   	  
Op12	   	   	   	   	   	   	   	   	   	   1	   	   	   1	   	   	   	   	   	   	   	   	   	   	  
Op13	   	   	   1	   1	   	   	   	   	   	   1	   	   	   	   	   	   	   1	   1	   1	   1	   1	   1	   1	  
Op14	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   1	   	   	   	   	   	   	   	  
Op15	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op16	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op17	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op18	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   1	   	   1	   	   	   	   	  
Op19	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op20	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Op21	   1	   1	   1	   	   	   	   1	   1	   1	   1	   1	   1	   1	   	   	   	   1	   1	   1	   	   	   1	   1	  
Op22	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   1	  
Op23	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	   	  
Note: Op = operation.  

Results	  From	  GA	  Against	  Evaluation	  Criteria	  

Two evaluating criteria were used to test the GA’s capability and flexibility of handling process-
planning problems under different requirements.  The results follow. 

Criterion	  1:	  Minimizing	  Total	  Machining	  Cost	  	  (e.g.,	  CC	  =	  MC	  +	  TC	  +	  MCC	  +	  SCC	  +	  TCC)	  
The average machining cost over 60 trials is $1,751, with the minimum being $1,739 and the 
maximum being $1,789.  One of the process plans with a machining cost of $1,739 is shown in Table 
4, together with its number of machine changes, setup changes, and tool changes. 
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Table	  4:	  Process	  Plan	  Against	  Criterion	  1	  
Op	   14	   5	   6	   4	   21	   18	   17	   22	   23	   15	   1	   16	  
M	   2	   2	   2	   2	   2	   2	   2	   2	   2	   2	   2	   2	  
T	   5	   5	   5	   5	   5	   5	   5	   1	   1	   1	   1	   1	  
TAD	   +x	   +y	   +y	   +y	   -‐y	   -‐y	   -‐y	   -‐y	   -‐y	   -‐z	   -‐z	   -‐z	  
Op	   2	   19	   20	   7	   8	   3	   9	   11	   12	   13	   10	   	  
M	   2	   2	   2	   2	   2	   2	   3	   3	   3	   3	   3	   	  
T	   1	   1	   1	   2	   3	   7	   4	   2	   3	   4	   1	   	  
TAD	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   	  
Note: Op = operation; M = machine; T = tool; TAD = tool approach direction (x = horizontal; y = vertical; z = 
upward); number of machine changes = 1; number of setup changes = 3; number of tool changes = 8; total 
machining cost = $1,739. 

Criterion	  2:	  	  Minimizing	  Number	  of	  Machine	  Changes	  only	  (e.g.,	  CC	  =	  MCC)	  
Each of the 60 trials finds a process plan with zero machine changes.  One of the process plans is 
shown in Table 5.  It can be seen that only one machine is selected, for example, the computer 
numerical control milling machine.   

Table	  5:	  The	  Process	  Plan	  Against	  Criterion	  2	  
Op	   14	   5	   6	   4	   21	   22	   23	   20	   1	   2	   15	   18	  
M	   3	   3	   3	   3	   3	   3	   3	   3	   3	   3	   3	   3	  
T	   5	   5	   5	   5	   5	   1	   1	   1	   1	   1	   1	   5	  
TAD	   +x	   +y	   +y	   +y	   -‐y	   -‐y	   -‐y	   -‐y	   -‐y	   -‐z	   -‐z	   -‐z	  
Op	   17	   16	   19	   7	   8	   9	   11	   12	   13	   10	   3	   	  
M	   3	   3	   3	   3	   3	   3	   3	   3	   3	   3	   3	   	  
T	   8	   1	   1	   2	   3	   4	   2	   3	   4	   1	   7	   	  
TAD	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   -‐z	   	  
Note: Op = operation; M = machine; T = tool; TAD = tool approach direction (x = horizontal; y = vertical; z = 
upward); number of machine changes = 0; number of setup changes = 3; number of tool changes = 12; total 
machining cost = $1,929. This total machining cost is lower than the $2,664 cost discovered by Zhang et al. 
(1997). 

Data	  Mining	  

Data mining is an application, under human control, of low-level induction algorithms that are used 
to extract patterns from data in specific categories. Data mining is step of a long process chain of 
data analyzing called knowledge discovery in databases, which involves the evaluation and 
interpretation of patterns to determine what constitutes knowledge. 

Most data mining algorithms are derived from machine learning, pattern recognition, and statistics.  
These algorithms include classification, clustering, and graphical models.  The primary goals of 
knowledge discovery are prediction and description.  Prediction involves using variables to forecast 
unknown future values of other variables or attributes.  For example, some of its characteristics, 
such as size, style, location, and number of rooms, can predict the monetary value of a house.  
Description focuses on finding human-interpretable patterns describing the data, such as finding 
patterns for “good planning.” The goal of applying data mining in this work is to predict patterns in a 
set of process plans and to develop a rule set, which will help in making decisions in odd 
circumstances (Koonce & Tsai, 2000). 
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Data	  Preparation	  for	  Data	  Mining	  

The 17 unique process plans generated by GA, which satisfy the optimal criteria, are used for data 
preparation.  These process plans are generalized to higher-level concepts.  This generalized data is 
fed through the See5 data mining software to get a set of rules.   

The following six parameters are chosen as attributes for data mining (Hand, Mannila, & Smyth, 
2001): 

1. Operation  
2. Precedence 
3. Machine index 
4. Tool index 
5. TAD 
6. Priority. 

 
Operation	  
The operation attribute represents the number of the operation.  As the part consists of 23 
operations, this attribute value varies from 1 to 23; therefore, it is generalized as a “continuous” 
attribute. 

Precedence	  
The precedence attribute represents the PR among the operations. The precedence attribute is 
generalized as “Yes” or “No.” If any operation has precedence, it is denoted by “Yes,” otherwise “No.” 

Machine	  Index	  
The machine index represents the cost of unit volume material removal by a particular machine.  In 
our problem, the machine indices of different machines are shown in the Table 6. 

Table	  6:	  Machine	  Cost	  Index	  Table	  
Machine	   Index	   Classes	  

M1:	  Drill	  press	   10	   Low	  
M2:	  Vertical	  milling	   35	   Medium	  
M3:	  Vertical	  CNC	  milling	   60	   High	  
M4:	  	  Boring	  machine	   50	   High	  
Note: M = machine.  

The values of machine indices are varying from 10 to 60. The range of these values is divided into 
three equal classes.  Machine index values varying from 10 to 27 are classified as “Low,” those from 
28 to 44 are classified as “medium,” and those from 45 to 60 classified are as “high.” 

Tool	  Index	  
The tool index represents the cost of unit volume material removal by a particular tool.  In our 
problem, the tool indices of different tools are shown in the Table 7. The values of tool indices vary 
from 3 to 15. The range of these values is divided into three equal classes, such that tool index values 
varying from 3 to7 are classified as “Low,” those from 8 to 11 are classified as “medium,” and those 
from 12 to 15 are classified as “high.” 
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Table	  7:	  Tool	  Cost	  index	  Table	  
Tool	   Index	   Classes	  

T1:	  Drill	  1	   3	   Low	  
T2:	  Drill	  2	   3	   Low	  
T3:	  Reamer	   8	   Medium	  
T4:	  Boring	  tool	   15	   High	  
T5:	  Milling	  cutter	  1	   10	   Medium	  
T6:	  Milling	  cutter	  2	   15	   High	  
T7:	  Chamfer	  tool	   10	   Medium	  
T8:	  slot	  cutter	   10	   Medium	  
Note: T = tool.  

TAD	  
The TAD attribute represents the direction of the tool in which it is performing the operation.  This 
attribute has  +x and -x (horizontal), +y and -y (vertical), and +z and -z (upward/downward) as tool 
approach directions. 

Priority	  
The mining task is to find the relationship between an operation’s characteristics and its order in the 
GA solution sequence.  That is, we seek to predict the sequence position of an operation given its 
characteristics.  As each operation has different possible sequence positions, it was decided that five 
abstract concepts would be substituted during the generalization operation sequence.  The attribute 
priority is defined as a range of sequence positions in the GA solution. As the part has 23 operations, 
there will be a maximum of 23 possible sequence positions for an operation; thus, the value of 
position is classified, according to the equal-width concept, into four classes: {1,2,3,4,5,6} as First 
Class,  {7,8,9,10,11,12} as Second Class, {13,14,15,16,17,18} as Middle class, and {19,20,21,22,23} as 
Last Class (Table 8). 

Table	  8:	  Priority	  Table	  for	  a	  Process	  Plan	  Given	  by	  Genetic	  Algorithm	  
	   First	  Class	   Second	  Class	   Middle	  Class	   Last	  Class	  

Operation	  Position	   1,	  2,	  3,	  4,	  5,	  6	   	  7,	  8,	  9,	  10,	  11,	  12	  	   13,	  14,	  15,	  16,	  17,	  18	  	   19,	  20,	  21,	  22,	  23	  
Sequence	  of	  
Operations	   14,	  5,	  6,	  4,	  21,	  18	   17,	  22,	  23,	  15,	  1,	  16	   	  2,	  19,	  20,	  7,	  8,	  3	  	   9,	  11,	  12,	  13,	  10	  
 

Results	  

The structured data is manipulated by the classifier system See5, which produced a decision tree, or 
a decision rules.  The induced decision rules are all of the same IF – THEN structure.  Shown here 
are the obtained rules from the See5 software, when the rate given in the end of each rule is rate of 
good classification. 

Rule 1: Machine index = medium 
 ->  Class = first  [0.334] 
Rule 2: Tool index = low 
 TAD = -y 
 ->  Class = second  [0.972] 
Rule 3: Operation number <= 17 
 TAD = -y 
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 ->  Class = second  [0.947] 
Rule 4: Operation number > 11 
 Operation number <= 15 
 Machine index = medium 
 TAD = -z 
 ->  Class = second  [0.895] 
Rule 5: Operation number > 19 
 TAD = -z 
 ->  Class = second  [0.789] 
Rule 6: Machine index = medium 
 TAD = -z 
 ->  Class = middle  [0.665] 
Rule 7: Machine index = high 
 ->  Class = last  [0.989] 
Default class: first 

	  

Application	  of	  Rule	  Set	  

The data generated from the process plan can also be used for predicting the sequence of the 
operation when there is a machine breakdown.  Think that the tool or machine, which is performing 
the operation, is broken-down; then there are two options to adopt—one is to wait until the machine 
is repaired, and other is to perform same operation using another tool or machine. In some 
situations, the first option (i.e., to repair a machine) may take much time; therefore, the better choice 
is to follow the second option of performing the operation using alternative tools or machines.   

After selecting the alternative tool or machine, the See5 classifier gives a worthy suggestion as to 
when this operation could be completed—that is, the appropriate class for the selected alternatives.  
For example, operation 16 (see Table 4, as this operation falls in second class during the 
classification) is performed on machine number 2 (vertical milling) using a drilling tool (T1) in the ‘-z’ 
direction.  If machine 2 (classified as medium during the classification of data) is broken down, then 
it can perform the same operation using milling cutter 1 (classified as medium) on machine number 
3 (classified as high). So, for these alternatives, See5 gives last as the predictive class.  We can 
perform this operation along with the earlier-planned operations on machine number 3.  Figure 6 
shows the predictive class with confidence level. 
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Figure	  6:	  Predicting	  the	  Alternative	  Class	  for	  Operation	  16.	  

Conclusions	  

In this paper, an attempt has been made to use data mining techniques to address for the first time 
the process-planning problem.  The work proposed in this paper indicates the initial step toward the 
extraction of knowledge patterns for process planning.  The developed rule set and See5 software 
help the process planner to make instant decisions in unusual circumstances without stopping 
production. By analyzing the historical production data, planning knowledge can be extracted and 
then be expressed in IF – THEN rules. This form of knowledge representation provides clear 
indications as to which factors are most influential in predicting planning and how it can be affected 
by various levels of critical factors.  

In this paper, the authors employed GA for data mining for knowledge extraction of process-planning 
problems with minimum possible error. The error so far reported is 6.4%. Data mining requires an 
understanding of the problem domain, knowledge of mining algorithms, and an insight into which 
attributes might be significant. 
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